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Abstract

Historically, protein engineering has predominantly involved a bottom-up strategy, utilizing

naturally occurring components as the building blocks. However, the problem of designing

arbitrary protein sequences and structures for specific problems present significant challenges

due to the complexity of biological systems. In this work, we tackle the problem of developing

models of protein sequences and structures for prediction and generation. We show that

neural networks can learn the patterns inherent to these systems and provide results for

modeling protein through predicting protein structures from a given sequence and vice versa.

Generative models can also model the unconditional distributions of protein sequence and

structure.

To model protein structures, we present an autoencoder architecture that can produce a

wide array of protein backbones to model protein structures. These structures exhibit both

local and global coherence in terms of secondary and tertiary structures. Using classical

techniques to design sequences that fold to generated backbones, we show that the model

can generate novel sequences which are validated in-silico. To generate better sequences for

these backbones, we then present ESM-IF1, a model for fixed backbone protein design. We

designed a large-scale system to predict millions of structures using AlphaFold. By training

on the synthetic data, we were able to obtain state of the art results and obtain over 50%

sequence recovery.

We then scale large protein language models to 15 billion parameters (ESM-2) as an
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unconditional model of protein sequences. ESM-2 is capable of replacing multiple sequence

alignment (MSA) features to obtain nearly state-of-the-art structure prediction results from

a single sequence Removing MSA features gives a 60x speed up, allowing us to catalog the

largest database of predicted protein structures. We open-sourced the ESM Metagenomic

Atlas, a database of over 225 million high-confidence predicted structures, giving us an

unprecedented view into the vast breadth and diversity of natural proteins. Finally, the speed

and single sequence nature of our model allows us to directly optimize the protein sequence

with respect to the protein structure. We show that black box optimization techniques

can enable the design of proteins with structural constraints as symmetry, scaffolding, and

binding. In sum, we present a series of models that are able to model the conditional and

unconditional distributions of protein sequence and structure.
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4.2 Single sequence structure prediction with ESMFold. (A) ESMFold model architecture. Arrows

show the information flow in the network from the language model to the folding trunk to

the structure module which outputs 3D coordinates and confidences. (B) ESMFold produces

accurate atomic resolution predictions, with similar accuracy to RosettaFold on CAMEO.
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Scatter-plots compare ESMFold (x-axis) predictions with AlphaFold2 (y-axis), colored by

language model perplexity. Proteins with low perplexity score similarly to AlphaFold2. (C)

Model pLDDT vs. true LDDT (left) and relative performance against AlphaFold (right)

on CAMEO. pLDDT is a well calibrated estimate of prediction accuracy. (D) Successful

examples: Top shows test-set predictions of T1057, with ESMFold (left) and AlphaFold2

(right). Coloring shows predicted LDDT for both models (ESMFold high-confidence=teal,

AlphaFold2 high-confidence=green, both low-confidence=pink). Ground truth is shown in
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ESMFold predictions are colored by chain ID and overlaid on ground truth (gray). DockQ

[4] scores are reported for the interactions; in the case of the tetramer 7QYM, the score is the

average of scores over interacting chain-pairs. (E) Unsuccessful example: Test-set predictions

of T1074, with ESMFold (left) and AlphaFold2 (right). Coloring shows predicted LDDT

for both models (ESMFold high-confidence=teal, AlphaFold2 high-confidence=green, both

low-confidence=pink). Ground truth is shown in grey. ESMFold TM-score is significantly

below AlphaFold2 TM-score. The perplexity of the unsuccessful sequence is 16.6, meaning
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4.3 Mapping metagenomic structural space. (A) ESMFold calibration with Al-

phaFold2 for metagenomic sequences. Mean pLDDT is shown on the x-axis,

and LDDT to the corresponding AlphaFold2 prediction is shown on the y-

axis. Distribution is shown as a density estimate across a subsample of ∼4K

sequences from the MGnify database. (B) The distribution of mean pLDDT

values computed for each of ∼617 million ESMFold-predicted structures from

the MGnify database. (C) The distribution of the TM-score to the most similar

PDB structure for each of 1 million randomly sampled high confidence (mean

pLDDT > 0.7 and pTM > 0.7) structures. Values were obtained by a Foldseek

search, which does not report values under 0.5 TM-score [5]. (D) This sample

of 1 million high-confidence protein structures is visualized in two dimensions

using the UMAP algorithm and colored according to distance from nearest

PDB structure, where regions with low similarity to known structures are

colored in dark blue. Example protein structures and their locations within

the sequence landscape are provided; see also Figure 4.4 and Table A.12. (E)

Additional UMAP plot in which the 1 million sequences are plotted according

to the same coordinates as in (D) but colored by the sequence identity to the

most similar entry in UniRef90 according to a blastp search. . . . . . . . . . 58
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4.4 Example ESMFold structure predictions of metagenomic sequences. (A) Ex-

ample predicted structures from six different metagenomic sequences; also

see Table A.12. Left of each subfigure: The prediction is displayed with the

AlphaFold2 prediction (light green). Right of each subfigure: The prediction

is displayed with the Foldseek-determined nearest PDB structure according to

TM-score. (B, C) Examples of two ESMFold-predicted structures that have

good agreement with experimental structures in the PDB but that have low

sequence identity to any sequence in UniRef90. (B) The predicted structure

of MGYP000936678158 aligns to an experimental structure from a bacterial

nuclease (light brown, PDB: 3H4R), while (C) the predicted structure of

MGYP004000959047 aligns to an experimental structure from a bacterial

sterol binding domain (light brown, PDB: 6BYM). . . . . . . . . . . . . . . 59
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5.1 Overview of the high-level programming language and the optimization algo-

rithm. (A) We propose a high-level programming language in which each

program consists of (1) a syntax tree (corresponding to a set of nonterminal and

terminal production rules) that enables modular and hierarchical organization

of protein subunits and (2) a set of constraint functions that can be defined

at each node of the syntax tree, where a given constraint is applied to the

entire subtree rooted at the corresponding node. (B) This program is then

compiled to a single energy function, which in our study is a simple linear

combination of the specified constraint functions. The energy function is used

to guide an optimization procedure based on simulated annealing, of which

a key component is the use of an accurate and efficient structure predictor

to evaluate the energy function at each step of the optimization. The same

energy function can guide multiple optimization trajectories. (C) Each of these

trajectories produces a protein sequence design and an associated predicted

structure. These sequences and predicted structures can then be evaluated

downstream using in silico and experimental metrics. . . . . . . . . . . . . . 61

xix



5.2 Programming full-protein or partial constraints. (A) A graphical representation of a program

for protein “free hallucination” (left) along with three example designed structures (right).

(B) The distribution of ESMFold pLDDT values over 200 free-hallucinated structures. Of

these, 100% have good confidence (ESMFold pLDDT > 0.7). (C) The distribution of

single-sequence AlphaFold2 (ssAF2) over the same 200 structures; note that ssAF2 was not

used in the design procedure. Of these, 22% have good confidence (ssAF2 pLDDT > 0.7).

(D) A graphical representation of a program for fixed backbone design (left) along with

example designs for six de novo target backbones. The experimental backbone is colored

gray; the designed backbone is colored by ESMFold pLDDT. (E) For each target backbone,

the distribution of the ESMFold pLDDT values of the final designs from 50 or more fixed

backbone design seeds is plotted as a boxplot (for all boxplots in this figure, the box extends

from first to third quartile, black line indicates the median, and whiskers indicate 2.5 times

the interquartile range) with each seed also plotted as a black circle. A horizontal red line

indicates pLDDT = 0.7. (F) For each target backbone, the distribution of RMSD values

between the target and design backbone atoms from 50 or more fixed backbone design seeds

is plotted as a boxplot with each seed also plotted as a black circle. A horizontal red line

indicates RMSD = 2.5 Å. (G) A graphical representation of a program for designing a

protein with mixed secondary structure (top) along with example designs in which secondary

structure was explicitly specified (bottom). (H) Top-left: A graphical representation of

a program for functional site scaffolding. Top-right: For each scaffolded binding site, the

distribution of RMSD between the native and designed binding site atoms (including side

chains) from 2,000 seeds is plotted as a boxplot. A horizontal red line indicates RMSD

= 2 Å. Bottom: Example designs that achieve sub-angstrom atomic coordination in the

scaffolded binding site atoms, high model confidence in the associated scaffold, and low

similarity (quantified by TM-score) to the natural protein. . . . . . . . . . . . . . . . 65
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5.3 Programming symmetry and homo-oligomerization. (A) A graphical representation of a

program for designing a single protein chain with 3-fold symmetry based on a repeated

subsequence. (B) Example designs varying fold symmetry from 3- to 8-fold. (C) 1000

randomly sampled symmetric protein designs were “roundtripped” by sampling ten sequences

via ESM-IF1 inverse folding [6] of their backbones followed by ESMFold structure prediction.

The ESMFold pLDDT of the starting backbone is indicated on the horizontal axis. The

lowest of the 10 RMSDs comparing the starting and roundtripped backbone atoms is

indicated on the vertical axis. Blue lines indicate density contours and hexagonal bins

are darker with greater density. We observed that a more confident design is associated

with roundtrip success. (D) 1,000 randomly sampled inverse folding samples are plotted

according to their ESM-IF1 perplexity on the horizontal axis and their roundtrip RMSD on

the vertical axis. We observed that a lower perplexity sequence is associated with roundtrip

success. (E) Example homo-oligomers with increasing numbers of individual protomers.

The tetrameric, hexameric, and octameric oligomers depicted here form globular polyhedral

shapes rather than the rotational symmetry of designs in (B). . . . . . . . . . . . . . 68
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5.4 Programming two levels of symmetry. (A) A graphical representation of a

program for designing two levels of symmetry in which a homo-oligomeric

symmetric dimer represents the top level of symmetry and each unit within

the dimer also has two-fold symmetry. (B) Example oligomers with two levels

of symmetry, in which we procedurally enumerate across a grid in which we

vary the top-level symmetry across the rows and the bottom-level symmetry

across the columns. Discrete chains are indicated by different colors. (C)
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1 | Introduction

Over the past decade, in the fields of natural language processing and computer vision -

hand design features have slowly given way to universal models with learned representations.

With intelligent model design such as convolutional networks and transformers, we can

learn the structure of text and pixels through data. In biology, protein sequences are often

reasoned about using multiple sequence alignment (MSA), a method which searches genetic

databases for similar sequences to represent the data. Similarly, techniques operating on

protein structures use a combination of physics based methods and statistical force fields

to model of these complex interactions. This thesis builds on prior works to model protein

sequence and structures with neural systems learned on large amounts of data.

Protein structures are polymers of amino acids. Canonically, there are twenty distinct

amino acids, which can be thought of as an alphabet that encodes all possible protein

structures. Individually, protein chains in the human body tend to be anywhere between

100-1000 amino acids long, though short peptides are useful in signally and longer chains are

found in places like human muscles. Many biological systems are a complex of a few to many

tens of protein chains that act together in one machine, although in this work we mainly

regard individual chains. This protein chains make up almost live in biological organisms,

and interactions between these molecular machines result in the complexities of life.

Though one might imagine structures purely determine function, it turns out that our

current imaging techniques are not capable of capturing the complexities of mobile protein
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structures. The standard way of imaging proteins via x-ray crystallography means that we

must be able to capture molecules in a crystal lattice, which reduces dynamic proteins to a

fixed structure in space. Fast acting functions such as catalysis can often not be captured in

our structural datasets.

Because evolution and natural selection selects for sequences that tend to be more func-

tional and helpful to an organisms’ survival, the sequence distribution of natural proteins

is then correlated with function. Rives et al. [16] shows that learning a model over the

probability distribution of sequences is correlated to protein structural and functional prop-

erties. Furthermore, the exponential rise of sequence datasets due to shotgun sequencing

techniques leads to a dramatic difference between number of known sequences and number of

known structures. UniRef [17] at the time of this work has cataloged over 250 million protein

sequences, whereas there are fewer than 500,000 protein chains available in PDB [18].

Classical state of the art methods for modeling protein structure depended on Rosetta [19],

a physics based library that uses a force field approach learned through statistics. When the

protein structure is close to the protein of interest, this is generally easy, but determining an

optimal 3D scaffold was generally difficult, and monte-carlo methods using Rosetta tend to be

trapped in local minima. As such, there is enormous interest in using neural models to learn

distributions of protein structure from data. Anand and Huang [20] presents a model that

can generically generate protein structure at a low fidelity and Eguchi et al. [21] specialize

structure generation to antibodies. Furthermore, designs are often restricted to the protein

backbone, which begs the question of which sequences might fold to the backbone.

That problem is referred to as fixed backbone protein design, an easier task since the

amino acid identity is confined by the local interactions of the protein structure. Rosetta

has several routines to do this, including FastDesign, though it requires a large number of

monte-carlo calls and does not work reliably in practice. The advent of equivariant graph

neural networks has led to large gains in performance, where one can construct a graph where
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the edges are determined by spatial distance [22, 23].

Finally, the protein sequence to structure task has been known as a "grand challenge" in

biology. Successful methods [24, 25] tend to learn an energy function as input to Rosetta

or other similar system - generally a pairwise distance map which constrains the global

conformation. The culmination of these systems used distograms and pairwise angle con-

straints to build well predicted protein structures. AlphaFold during CASP14 [3] was a step

change in structure prediction performance, almost halving the error rate with an entirely

learned model. The main innovation of this work was to represent amino acids as a cloud

of reference frames in space formed by the C-CA-N atoms, which are fixed in a tetrahedral

bond. By disentangling the amino acids from each other, the optimization problem became

easier, and neural models are able to make atom level coordinate predictions. Additionally,

the tetrahedral bond gives gives an equivariant representation unique to protein structures,

allowing for creative models to be tailor made for inference on protein structures.

With the advent of these methods, designing proteins became an easier process. Traditional

protein design and engineering often took on approach based on segmentation and search [26,

27, 28, 29, 30, 31, 32]. Basic building blocks such as segments of proteins structures are

used and the full protein is iteratively constructed from such blocks. This search problem

tends to be highly non-trivial, and designing full proteins to meet a set of specifications is

high complexity. Generation of protein structures via neural methods already hold promise,

generating peptides and proteins from specific families [20, 21, 33, 34, 35, 36].

This thesis builds on top of these earlier works, to reach state of the art performance

in both structure prediction and inverse folding with learned models. We tackle these four

topics: (a) learning distributions of protein sequences, (b) learning distributions of protein

structures, (c) predicting protein sequence from a given protein structure backbone, and (d)

predicting the protein structure directly from protein sequences alone.
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The work shown in this PhD thesis was a collective effort by many of my collaborators, and it
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1.2 Overview

This dissertation attempts to describe several computational systems that model protein

sequence and structure.

Chapter 2 models the distribution of protein structures by describing a system centered

around a vector-quantized variational autoencoder (VQ-VAE) for generating protein

backbones. By using a set of quantized vectors to describe the distance and angle

distribution for protein structures, we create energy functions for Rosetta that are

capable of folding into high quality protein backbone structures. We perform an

evaluation of the various modeling choices in the VQ-VAE, and find a setting where

the model is able to capture local and global topology and generate diverse protein

backbones. Then, by designing sequences for these backbones with Rosetta-FixBB

and validating sequence-structure generations with Alphafold, we discover the model is

able to somewhat generalize and propose protein sequences with few hits in genetic

databases. The work in this chapter predates AlphaFold2, which obsoletes some of this

work with much better inductive biases.

Chapter 3 models the distribution of protein sequence from a fixed structure, i.e. fixed

backbone protein design. We show that existing systems are data-bottlenecked, and

improve inverse folding by augmenting structural data with high quality predictions

from AlphaFold2. By making predictions for millions of protein sequences in UniRef,

we achieve a state-of-the-art result. The proposed model combines a equvariant graph

network with a transformer along with a autoregressive decoder to propose sequences

for given structures.

Chapter 4 first trains a language model that models the distribution of protein sequences,

and then tackles the structure prediction problem by predicting protein structures from
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sequences. We establish a link between language model pseudo-perplexity and structure

prediction fidelity by training a set of LMs from 35M to 15B parameters. Existing

systems use a genetic MSA search as an inital step in creating features for structure

prediction, which can be slow and cumbersome. By replacing this with a language

model, we can match the performance of Alphafold on a majority of protein sequences

with inference speeds that are an order of magnitude faster. We then use our system

ESMFold to make predictions for Mgnify, a gigantic database of metagenomic protein

sequences. ESMFold predicts high confidence structures for 225M of these, creating the

largest database of predicted protein structures to date. Cursory analysis is able to

discover proteins with structures dissimilar to existing natural proteins in this database.

Chapter 5 ties together the work by designing sequences and structures jointly. We use

black-box optimization techniques to optimize for sequences that fold to particular

structures with ESMFold. The speed of ESMFold allows us to specify structural

constraints in the form of energy functions, and use metropolis-hastings to sample

protein sequences that abide by this function. We describe a programming language to

build up arbitrary constraints, and show that without any modification, we are able to

generate proteins that conform to many different structural and sequence specifications.

Chapter 6 concludes the dissertation and discusses future work.
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2 | Deep generative models of

protein structure create new

and diverse proteins

Most designed proteins are variations on existing proteins. It is of great interest to create

de novo proteins that go beyond what has been invented by nature. A line of recent work

has explored generative models for protein structures [20, 21, 33, 34, 35, 36]. The main

challenge for a generative model is to propose stable structures that can be realized as the

minimum energy state for a protein sequence, i.e. the endpoint of folding. The space of

possible three-dimensional conformations of a protein sequence is exponentially large [40],

but out of this set of possible conformations, most do not correspond to stable, realizable

structures.

In this work we explore the use of modern variational autoencoders (VAEs) as generative

models of protein structures. We find that the models can produce coherent local and global

structural organization while proposing varied and diverse folds. We use AlphaFold to assess

the viability of sampled sequences, finding that many sequences are predicted to fold with

high confidence to their designed structures. To assess the novelty of the generated sequences,

we search sequence databases including metagenomics data for homologous sequences, finding

no significant matches for a large fraction of the generations.
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Figure 2.1: Overview of the method. Each protein structure is represented as a discretized distance
map and set of angular coordinates. The model is trained to reconstruct natural protein structures. The
decoder output can be interpreted as specifying an energy function over three-dimensional conformations
of the protein encoding the structure at its minimum. New structures are generated by passing samples
from the prior through the decoder to obtain an energy function specifying the structure. Three-
dimensional coordinates are obtained by fitting the angular degrees of freedom of an idealized rigid-body
representation of the protein chain to minimize the energy.

2.1 Methods

2.1.1 Overview

Figure 2.1 overviews the modeling approach. The model can be interpreted as generating a

coarse set of constraints that specify the shape of the protein. The structure is implicitly

encoded as the minimum of an energy over possible conformations of the protein chain. The

three-dimensional coordinates can be obtained by fitting the internal angles of a rigid body

representation of the protein chain to minimize the energy. In practice we can combine the

energy function output by the neural network with other potentials such as the Rosetta score

function. We write the structure x∗ as the outcome of this minimization:
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x∗ = argmin
x

E(x; z) +R(x) (2.1)

Here E(x; z) is the output of a decoder. Optionally R(x) subsumes additional energy

terms. During training an encoder and decoder are fit to natural structures to learn a discrete

latent code z. To produce samples, new codes are drawn from a learned autoregressive prior

pθ(z), and passed through the decoder to obtain E(x; z). The generated structure is the

result of the minimization.

We compare with several other VAE modeling approaches. Structures are represented

through a discretized pairwise distance map and set of angular coordinates. Pairwise

representations have been useful in structure prediction [41, 42, 24], and have been recently

applied to generative models of protein structures [20, 21]. We use Rosetta to perform the

minimization using the all-atom ref2015 score function [43].

2.1.2 VAE Models

We consider several VAE model variations to learn the energy p(x|z). All models described

use a convolutional encoder-decoder architecture unless otherwise specified. A downsampling

convolutional encoder q(z|x) compresses the information in the input structure x into a latent

variable with a prior p(z); an upsampling convolutional decoder p(x|z) outputs a potential

over pairwise distances and angles that reconstructs the original structure. We fix models to

work on 128 length, training on a dataset of full-chain SCOP [44] domains, filtered to the

length cutoff.

For baselines we use a basic encoder-decoder model, where q(z|x) is a ResNet [45]. For

Conv-VAE, p(x|z) is composed of transposed convolutional blocks. For MLP-VAE, p(x|z)

is a factorized residual MLP architecture, similar to Tolstikhin et al. [46], with independent

MLPs that run across the height, width, and channel dimensions. We use the classical VAE
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formulation [47] to maximize the Evidence Lower Bound.

HVAE is a hierarchical VAE proposed by [48, 49, 50, 51]. Although we tried up to 20

levels of latent variables, we discovered the generations were not as robust and tend to overfit,

producing local artifacts without much global coherence despite near-perfect reconstruction

loss. We selected a model with just 3 spatial latent variable hierarchies. q(z|x) is a ResNet,

and p(x|z) is composed of transposed convolutional blocks.

VQ-VAE is a VQ-VAE architecture, proposed by Oord et al. [52], Razavi et al. [53]. One

change we introduce is to train a transformer, similar to Ramesh et al. [54], to model the

prior of the model. Here, we first train q(z|x) and p(x|z) by setting z = VQ(q(z|x)), with

the vector quantizer block introduced in Oord et al. [52]. Then, we train a transformer prior

pθ(z) = ΠL
i=0pθ(zi|z<i), where L is the length of the prior.

VQ-VAE-BB and HVAE-BB are versions that learn backbone dihedral angles instead

of interresidue angles. We follow the work of [55] in learning a joint phi-psi backbone angle,

which then we convert into a von Mises distribution as a part of E(x; z).

E(x; z) is a piecewise linear energy function constructed from the distogram and binned

angle outputs of p(x|z) as detailed in Appendix A.1.2. We use Rosetta to minimize the energy

according to Equation (2.1) and obtain a structure. Similar to Yang et al. [25], we input

E(x; z) as an additive energy term with ref2015, and find a conformation of a poly-alanine

chain that minimizes the energy.

Analysis of generated structures can be found in Section 2.2. Further detail on architectural

and training choices we explored is in Appendix A.1.1.

2.1.3 Evaluation of Models

Across experiments we observe that validation loss does not reflect the quality of generated

structures. For example HVAE models with a large number of latent variables show better

fitting and generalization when measured by loss, but are unable to generate secondary
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Table 2.1: Comparison of models. Metrics computed across generated structures. R(x) < 0 is the
percent of all generations with negative Rosetta energy. R(x) is the average absolute value of Rosetta
energies. “MR/LR contacts” is the average number of medium or long range contacts, divided by number
of residues. “MR/LR polar” is the average number medium or long range hydrogen bonds, divided by
number of residues. % helix and % sheet measures the average proportion of α-helices and β-sheets.
VQ-VAE generates structures with low Rosetta energies, having long range contacts and hydrogen bonds,
and containing β-sheets.

% R(x) <
0

R(x) Avg MR/LR
contacts

MR/LR
polar

% α-helix %
β-sheets

MLP-VAE 0.0043 0.7301 1.5033 0.0329 0.0487 0.0138
Conv-VAE 0.0223 0.3408 1.5426 0.0277 0.1273 0.0154

HVAE 0.0817 0.3526 1.1066 0.0291 0.3229 0.0169
HVAE-BB 0.3127 0.0612 1.4830 0.0312 0.4194 0.0161

VQ-VAE 0.2140 0.2066 1.6849 0.0602 0.3387 0.0720
VQ-VAE-BB 0.1955 0.1671 1.9890 0.0879 0.2677 0.1080

structure elements. As a result we use the Rosetta score function for model selection. We

evaluate models using a variety of metrics, including the Rosetta score function values,

medium and long-range contacts, hydrogen bonds, and secondary structure elements.

We use AlphaFold [3] to predict whether the generated structures can be realized as the

endpoint of folding. We design sequences for the structures using Rosetta FastDesign. Since

FastDesign is a monte-carlo procedure, we generate up to 200 designed sequences, and use

the one with lowest ref2015 score. We use the reduce_db option provided by Alphafold to

fold the generated sequences.

2.2 Structure Generation Experiments

Here we focus on evaluating structures sampled from the model according to Figure 2.1. We

will study the ability to design sequences that fold to those structures in Section 2.3.

Qualitative inspection Figure A.2 presents sampled distograms for each model. Sam-

ples from the single latent variable models are not sharp. HVAE and VQ-VAE generate
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Figure 2.2: Gaussian kernel density estimate plot of the proposed metrics, for structures generated with
different models.

qualitatively sharper and more distinct distograms. To benchmark model fidelity, we generate

3000 samples from E(x; z), with z sampled from the model’s respective priors. Figure A.3

shows the structures resulting from energy minimization using the generated distrograms. We

observe that the baseline models only generate α-helix secondary structure elements, and do

not have realistic backbone angles. HVAE appears to mostly generate coils and trivial α-helix

bundles. VQ-VAE is the only model that successfully generates β-sheets with high-fidelity.

Quantitative metrics of Rosetta-folded structures Table 2.1 summarizes data

on the quality of generated structures. The metrics measured are as follows. R(x) is the

value of Rosetta’s ref2015 energy after the constrained folding procedure. %R(x) < 0 is the

percent of all generations with negative Rosetta energy. In general, the more negative the

energy, the better. Structures with positive energy tend to not be well formed, exhibiting

pathologies such as physically intersecting amino acids and disordered secondary structure.
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We define a Medium or Long Range (MR/LR) contact to be when two residues σi, σj,

have sequence separation in the amino acid chain |i− j| > 12 and a Cβ-Cβ distance of less

than 8Å. We then normalize this by the length of the protein and average to obtain the

MR/LR contact score. The MR/LR polar contacts similar to Cβ-Cβ contacts, except that we

use Kunzmann and Hamacher [56] to find hydrogen bonds via the Baker-Hubbaard algorithm

[57] on the generated polyalanine chain. Both of these metrics are a measure of how compact

and well-structured the generated proteins are.

Finally, % α-helix and % β-sheet measures the average proportion formed in generated

structures. The categories are based on secondary structure assignment with DSSP [58].

Table 2.1 and Figure 2.2 compare the models. Large differences in the quality of generations

are observed favoring the VQ-VAE models. Although HVAE-BB seem to be best in terms

of energy favorable structures, a large proportion of its generated structures are α-helices.

For VQ-VAE-BB, we see a large increase in the number of MR/LR contacts and long range

hydrogen bonds. The results suggest that VQ-VAE produces more realistic generations.

Best structures The above metrics can also be used to filter the generations to identify

candidates that are most likely to be designable. Figure A.1 and Figure 2.3 present filtered

results. We filter with R(x) < 0 and MR/LR contacts > 1 and show random generations that

pass this filter. Even after filtering for the highest quality generations, each of the baselines

retrieve mostly only α-helices as the best configurations. VQ-VAE is the only model that can

generate β-sheets.

Novelty and diversity Figure 2.4 evaluates the diversity and novelty of structures

generated by VQ-VAE-BB. First we compare the generated structures to each other. We

compute pairwise TM-scores between 180 generated structures. The generated structures

cluster by secondary structure into Mainly Alpha, Mainly Beta, and Alpha/Beta folds. We

classify a structure into Mainly Alpha and Mainly Beta if the proportion of β-sheets and
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Figure 2.3: Top Structures: Corresponding to Figure A.1, we show how each of the distograms fold
under constrained folding. These structures are selected to have negative Rosetta energy and > 1 MR/LR
contacts per residue We color α-helices red, β-sheets blue, and coils green. Only 3 such structures out of
3000 passed such a filter for MLP-VAE. Only VQ-VAE style models are able to generate many β-sheets.
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Figure 2.4: Diversity of structures. (Left) Pairwise TM-scores between 180 generated structures. The
majority of pairwise TM-scores are lower than the value 0.5 which roughly corresponds to the same
fold [1]. (Right) t-SNE [2] plot of the structural space covered by the same proteins. The proteins
clearly cluster by category. Each category has structures with higher and lower TM-score to its nearest
neighbor in PDB (color-code), indicating the generated structures cover a range of similarity with natural
structures.

α-helices is below 5% respectively, and Alpha/Beta otherwise. The majority of pairwise

TM-scores are below 0.5 indicating that the model produces a diverse set of folds. We

also perform a structural comparison for each of the generated structures against the entire

PDB. We find that the model generates diverse protein structures with a range of structural

similarity to natural proteins, except in the Mainly Beta category where the generations have

higher similarity.

2.3 Protein Design Experiments

We ask whether generated structures can be realized by an amino acid sequence as the

endpoint of folding. We design sequences for 40 structures and use AlphaFold to predict their

structures.

We select 40 random structures for sequence design after filtering the raw generations.

Approximately 5% of generations have R(x) < −0.1, MR/LR contacts more than 1.5 per

residue, and coils consisting of less than half the protein. 40 random structures are sampled
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that meet this criteria. 200 sequences for each structure are sampled using FastDesign and

the lowest energy sequence is selected. We run the default AlphaFold pipeline, and select the

model with highest predicted LDDT.

AlphaFold produces high confidence models (> 0.7 LDDT) for 9 of the designed sequences.

These proteins are shown in Figure 2.5. Out of this set, 8 of AlphaFold predictions had

low (maximum 2.6A) RMSD to their generated structure. The last row is the design where

AlphaFold disagrees with the generated structure. Several designs are β-barrels having

similar distograms. We note that although the argmax distograms look similar, the structures

encoded at their minima are different enough to produce different nearest neighbors in PDB

for each of the structures.

Most of the designed sequences do not have homologous sequences in UniRef90 or MGnify

[17, 59]. We run JackHMMER [60] against Uniref90 and MGnify and find no significant

sequence matches for 5 designed structures, matches with very low sequence identity (15%)

for 2 designed structures, and 75 matches with maximum sequence identity of 26% for the

final structure. To confirm this finding, we also run FastDesign against 40 randomly selected

natural protein chains between length 64-128. Sequence designs for natural structures result

in many more JackHMMER hits against UniRef90, with a higher degree of sequence similarity,

shown in Figure 2.6. These results suggest that the model generates novel proteins.

2.4 Related Work

Deep generative models One of the major goals in deep learning has been to represent

complex distributions over high dimensional data with a rich hierarchical models [61, 62, 63].

Notable successes have been achieved using deep generative models with latent variables

such as Generative Adversarial Networks (GANs) [64] and Variational Auto-Encoders (VAEs)

[47]. Vector Quantized VAE (VQ-VAE) [52, 53] finds that discretizing the latent variables
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Figure 2.5: Each row is an individual generation, selected for AlphaFold modeling confidence. (a)
argmax of the distogram proposed by our model. (b) Distogram of the AlphaFold folded structure. (c)
Superposition of designed structure (green) with AlphaFold prediction. (d) Superposition of designed
structure (green) with nearest match in PDB by TM-score (teal), using the transformation matrix from
TMalign. (e) Hydrophobic residues in purple, hydrophilic in white, proteins exhibit hydrophobic core.
Most generations have few homologs, and low sequence identity with closest homolog.
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Figure 2.6: Comparison of FastDesign sequences for natural proteins vs generations. (Left) Sequence
identity of nearest match; (Right) Log scale number of matches for each protein. Sequence identity is
computed with respect to the closest sequence match. Approximately half of the natural and generated
proteins do not have any nearby sequences in UniRef and MGnify. However FastDesign sequences for
natural proteins have many more sequence matches. Additionally, the sequence identity of the nearest
matches are much higher for natural proteins than generated proteins.

enables higher fidelity generations. Vahdat and Kautz [50] and Sønderby et al. [48], Child

[51] suggest that hierarchies are an important part of latent variable models.

Generative models for protein structures While there has been breakthrough

progress in deep learning for prediction of structure from sequence [65, 24, 55, 25, 3], in

comparison, little work has been done on generative modeling of protein structures.

Initial work explored using latent variable generative models such as GANs and VAEs

[20, 35, 36, 21]. In an alternative approach, Anishchenko et al. [34] proposes inverting a

supervised structure prediction model to generate structures and sequences jointly. Previous

latent variable generative models have not been able to produce globally coherent structures

when trained to model highly diverse sets of protein folds [20], and have been most effective

when trained on a focused set of highly related structures such as immonoglobulins [21]. In

this work we develop latent variable models that are able to generate diverse and coherent

protein structures.

Additional Generative models have also been explored for protein sequences. VAEs on

amino acid sequences have been applied in several problem settings; VAEs and other deep

18



generative models can capture the sequence diversity of specific protein families without

explicitly conditioning on structure information [66, 67, 68, 69, 70, 33]. A related problem

setting is designing protein sequences explicitly conditioned on a backbone structure as in

[71, 22, 72, 73].

2.5 Conclusions

We perform a systematic study of deep generative models for designing protein structures.

We find that generative models are able to capture local secondary structure as well as

globally coherent fold topology, when trained on a diverse set of protein domains. We find

that generated structures can be realized by sequence designs that are predicted to correctly

fold with high confidence by AlphaFold. Although the generations are structurally similar to

existing folds, sequences designed to realize them are often novel. This suggests that neural

generative models are capable of generalizing beyond simply reproducing natural proteins.
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Figure 3.1: Augmenting inverse folding with predicted structures. To evaluate the potential for training
protein design models with predicted structures, we predict structures for 12 million UniRef50 protein
sequences using AlphaFold2 [3]. An autoregressive inverse folding model is trained to perform fixed-
backbone protein sequence design. Train and test sets are partitioned at the topology level, so that the
model is evaluated on structurally held-out backbones. We compare transformer models having invariant
geometric input processing layers, with fully geometric models used in prior work. Span masking and
noise is applied to the input coordinates.

3.1 Introduction

Designing novel amino acid sequences that encode proteins with desired properties, known as

de novo protein design, is a central challenge in bioengineering [74]. The most well-established

approaches to this problem use an energy function which directly models the physical basis

of a protein’s folded state [19].

Recently a new class of deep learning based approaches has been proposed, using generative

models to predict sequences for structures [22, 72, 75, 23], generate backbone structures

[20, 21], jointly generate structures and sequences [34, 76], or model sequences directly

[16, 77, 78, 79, 80, 14]. The potential to learn the rules of protein design directly from

data makes deep generative models a promising alternative to current physics-based energy

functions.

However, the relatively small number of experimentally determined protein structures

places a limit on deep learning approaches. Experimentally determined structures cover less
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than 0.1% of the known space of protein sequences. While the UniRef sequence database [17]

has over 50 million clusters at 50% sequence identity; as of January 2022, the Protein Data

Bank (PDB) [81] contains structures for fewer than 53,000 unique sequences clustered at the

same level of identity.

Here we explore whether predicted structures can be used to overcome the limitation

of experimental data. With progress in protein structure prediction [3, 82, 41], it is now

possible to consider learning from predicted structures at scale. Predicting structures for

the sequences in large databases can expand the structural coverage of protein sequences by

orders of magnitude. To train an inverse model for protein design, we predict structures for

12 million sequences in UniRef50 using AlphaFold2.

We focus on the problem of predicting sequences from backbone structures, known as

inverse folding or fixed backbone design. We approach inverse folding as a sequence-to-

sequence problem [22], using an autoregressive encoder-decoder architecture, where the model

is tasked with recovering the native sequence of a protein from the coordinates of its backbone

atoms.

We make use of the large number of sequences with unknown structures by adding

them as additional training data, conditioning the model on predicted structures when the

experimental structures are unknown (Figure 3.1). This approach parallels back-translation

[83, 84] in machine translation, where predicted translations in one direction are used to

improve a model in the opposite direction. Back-translation has been found to effectively

learn from extra target data (i.e. sequences) even when the predicted inputs (i.e. structures)

are of low quality.

We find that existing approaches have been limited by data. While current state-of-the-art

inverse folding models degrade when training is augmented with predicted structures, much

larger models and different model architectures can effectively learn from the additional data,

leading to an improvement of nearly 10 percentage points in the recovery of sequences for

22



From complex backbones

From chain backbones From multiple conformations

From partially masked backbones

?

Figure 3.2: Illustration of the protein design tasks considered.

structurally held out native backbones.

We evaluate models on fixed backbone design benchmarks from prior work, and assess the

generalization capabilities across a series of tasks including design of complexes and binding

sites, partially masked backbones, and multiple conformations. We further consider the use

of the models for zero-shot prediction of mutational effects on protein function and stability,

complex stability, and binding affinity.

3.2 Learning inverse folding from predicted

structures

The goal of inverse folding is to design sequences that fold to a desired structure. In this

work, we focus on the backbone structure without considering side chains. While each of the

20 amino acid has a specific side chain, they share a common set of atoms that make up the

amino acid backbone. Among the backbone atoms, we choose the N, Cα (alpha Carbon),

and C atom coordinates to represent the backbone.

Using the structures of naturally existing proteins we can train a model for this task by

supervising it to predict the protein’s native sequence from the coordinates of its backbone

atoms in three-dimensional space. Formally we represent this problem as one of learning
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the conditional distribution p(Y |X), where for a protein of length n, given a sequence X

of spatial coordinates (x1, . . . , xi, . . . , x3n) for each of the backbone atoms N, Cα, C in the

structure, the objective is to predict Y the native sequence (y1, . . . , yi, . . . , yn) of amino acids.

This density is modeled autoregressively through a sequence-to-sequence encoder-decoder:

p(Y |X) =
n∏

i=1

p(yi|yi−1, . . . , y1;X) (3.1)

We train a model by minimizing the negative log likelihood of the data. We can design

sequences by sampling, or by finding sequences that maximize the conditional probability

given the desired structure.

3.2.1 Data

Predicted structures We generate 12 million structures for sequences in UniRef50 to

explore how predicted structures can improve inverse folding models. To select sequences for

structure prediction we first use MSA Transformer [85] to predict distograms for MSAs of

all UniRef50 sequences. We rank the sequences by distogram LDDT scores [55] as a proxy

for the quality of the predictions. We take the top 12 million sequences not longer than

five hundred amino acids and forward fold them using the AlphaFold2 model with a final

Amber [86] relaxation. This results in a predicted dataset approximately 750 times the size

of the training set of experimental structures (Appendix A.2.1.1).

Training and evaluation data We evaluate models on a structurally held-out subset

of CATH [87]. We partition CATH at the topology level with an 80/10/10 split resulting

in 16153 structures assigned to the training set, 1457 to the validation set, and 1797 to

the test set. Particular care is required to prevent leakage of information in the test set

via the predicted structures. We use Gene3D topology classification [88] to filter both the
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sequences used for supervision in training, as well as the MSAs used as inputs for AlphaFold2

predictions (Appendix A.2.1.1). We also perform evaluations on a smaller subset of the

CATH test set that has been additionally filtered by TM-score using Foldseek [5] to exclude

any structures with similarity to those in the training set (Appendix A.2.2).

3.2.2 Model architectures

We study model architectures using Geometric Vector Perceptron (GVP) layers [23] that learn

rotation-equivariant transformations of vector features and rotation-invariant transformations

of scalar features.

We present results for three model architectures: (1) GVP-GNN from Jing et al. [23]

which is currently state-of-the-art on inverse folding; (2) a GVP-GNN with increased width

and depth (GVP-GNN-large); and (3) a hybrid model consisting of a GVP-GNN structural

encoder followed by a generic transformer (GVP-Transformer). All models used in evaluations

are trained to convergence, with detailed hyperparameters listed in Table A.1.

In inverse folding, the predicted sequence should be independent of the reference frame

of the structural coordinates. For any rotation and translation T of the input coordinates,

we would like for the model’s output to be invariant under these transformations, i.e.,

p(Y |X) = p(Y |TX). Both the GVP-GNN and GVP-Transformer inverse folding models

studied in this work are invariant (Appendix A.2.1.3).

GVP-GNN We start with the GVP-GNN architecture with 3 encoder layers and 3

decoder layers as described in [23], with the vector gates described in [13] (GVP-GNN,

1M parameters). As inputs to GVP-GNN, protein structures are represented as proximity

graphs where each amino acid corresponds to a node in the graph. The node features are a

combination of scalar node features derived from dihedral angles and vector node features

derived from the relative positions of the backbone atoms, while the edge features capture

the relative positions of nearby amino acids.
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Figure 3.3: Example AlphaFold prediction compared with experimental structure for a UniRef50 sequence
(UniRef50: P07260; PDB: 1AP8). The experimental structure is shown as pink with transparency. The
prediction is coloured by the pLDDT confidence score, with blue in high-confidence regions.

When trained on predicted structures, we find a deeper and wider version of GVP-GNN

with 8 encoder layers and 8 decoder layers (GVP-GNN-large, 21M parameters) performs better.

Scaling GVP-GNN further did not improve model performance in preliminary experiments

(Figure 3.6c).

GVP-Transformer We use GVP-GNN encoder layers to extract geometric features,

followed by a generic autoregressive encoder-decoder Transformer [89]. In GVP-GNN, the

input features are translation-invariant and each layer is rotation-equivariant. We perform a

change of basis on the vector features from GVP-GNN into local reference frames defined

for each amino acid to derive rotation-invariant features (Appendix A.2.1.3). In ablation

studies increasing the number of GVP-GNN encoder layers improves the overall model

performance (Figure A.6), indicating that the geometric reasoning capability in GVP-GNN

is complementary to the Transformer layers. Scaling improves performance up to a 142M-

parameter GVP-Transformer model with 4 GVP-GNN encoder layers, 8 generic Transformer

encoder layers, and 8 generic Transformer decoder layers (Figure 3.6c).
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3.2.3 Training

Combining experimental and predicted data During training, in each epoch we

mix the training set of experimentally derived structures (∼16K structures) with a 10%

random sample of the AlphaFold2-predicted training set (10% of 12M), resulting in a 1:80

experimental:predicted data ratio. For larger models, a high ratio of predicted data during

training helps prevent overfitting on the smaller experimental train set (Figure 3.6b). While

adding predicted data improves performance, training only on predicted data leads to

substantially worse performance (Table A.4).

The loss is equally weighted for each amino acid in target sequences. We mask out

predicted input coordinates with AlphaFold2 confidence score (pLDDT) below 90, around

25% of the predicted coordinates. See Figure 3.3 for visualization of the pLDDT confidence

score. Most often these low confidence regions are at the start and the end of sequences

and may correspond to disordered regions. We prepend one token at the beginning of each

sequence to indicate whether the structure is experimental or predicted. For each residue

we provide the pLDDT confidence score from AlphaFold2 as a feature encoded by Gaussian

radial basis functions.

Adding Gaussian noise at the scale of 0.1 angstroms to the predicted structures during

training slightly improves performance (Table A.3). This finding is consistent with Edunov

et al. [84], who observe that backtranslation with sampled or noisy synthetic data provides a

stronger training signal than maximum a posteriori (MAP) predictions.

Span masking To enable sequence design for partially masked backbones, we introduce

backbone masking during training. We experiment with both independent random masking

and span masking. In natural language processing, span masking improves performance over

random masking [90]. We randomly select continuous spans of up to 30 amino acids until 15%

of input backbone coordinates are masked. The communication patterns in the geometric
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Perplexity Recovery %
Model Data Short Single-chain All Short Single-chain All
Natural frequencies 18.12 18.03 17.97 9.6% 9.0% 9.5%
Structured GNN CATH 7.91 6.48 6.49 31.5% 37.1% 37.1%

GVP-GNN CATH 7.14 5.36 5.43 34.0% 42.7% 42.2%
+ AlphaFold2 8.55 6.17 6.06 29.5% 38.2% 38.6%

GVP-GNN-large CATH 7.68 6.12 6.17 32.6% 39.4% 39.2%
+ AlphaFold2 6.11 4.09 4.08 38.3% 50.8% 50.8%

GVP-Transformer CATH 8.18 6.33 6.44 31.3% 38.5% 38.3%
+ AlphaFold2 6.05 4.00 4.01 38.1% 51.5% 51.6%

Table 3.1: Fixed backbone sequence design. Evaluation on the CATH 4.3 topology split test set. Models
are compared on the basis of per-residue perplexity (lower is better; lowest perplexity bolded) and sequence
recovery (higher is better; highest sequence recovery bolded). Large models can make better use of the
predicted UniRef50 structures. The best model trained with predicted structures (GVP-Transformer)
improves sequence recovery by 8.9 percentage points over the best model (GVP-GNN) trained on CATH
only.

layers are adapted to account for masking with details in Appendix A.2.1.2. Span masking

improves the performance of GVP-Transformer both on unmasked backbones (Table A.3)

and on masked regions (Figure 3.4).

3.3 Results

We evaluate models across a variety of benchmarks in two overall settings: fixed backbone

sequence design and zero-shot prediction of mutation effects. For fixed backbone design, we

start with evaluation in the standard setting [22, 23] of sequence design given all backbone

coordinates. Then, we make the sequence design task more challenging along three dimensions:

(1) introducing masking on coordinates; (2) generalization to protein complexes; and (3)

conditioning on multiple conformations. Additionally, we show that inverse folding models

are effective zero-shot predictors for protein complex stability, binding affinity, and insertion

effects.
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Figure 3.4: Perplexity on regions of masked coordinates of different lengths. The GVP-GNN architecture
degrades to the perplexity of the background distribution for masked regions of more than a few tokens,
while GVP-Transformer maintains moderate accuracy on long masked spans, especially when trained on
masked spans.

3.3.1 Fixed backbone protein design

We begin with the task of predicting the native protein sequence given its backbone atom (N,

Cα, C) coordinates. Perplexity and sequence recovery on held-out native sequences are two

commonly used metrics for this task. Perplexity measures the inverse likelihood of native

sequences in the predicted sequence distribution (low perplexity for high likelihood). Sequence

recovery (accuracy) measures how often sampled sequences match the native sequence at

each position. To maximize sequence recovery, the predicted sequences are sampled with low

temperature T = 1e−6 from the model. While the model is calibrated (Figure A.10), a lower

temperature results in sequences with higher likelihoods (and hence typically higher sequence

recovery) and lower diversity. Empirically at temperature as low as 1e−6 the sampling is

almost deterministic. Table 3.1 compares models using the perplexity and sequence recovery

metrics on the structurally held-out backbones.

We observe that current state-of-the-art inverse folding models are limited by the CATH

training set. Scaling the current 1M parameter model (GVP-GNN) to 21M parameters
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(GVP-GNN-large) on the CATH dataset results in overfitting with a degradation of sequence

recovery from 42.2% to 39.2% (Table 3.1). On the other hand, the current model at the

1M parameter scale cannot make use of the predicted structures: training GVP-GNN with

predicted structures results in a degradation to 38.6% sequence recovery (Table 3.1), with

performance worsening with increasing numbers of predicted structures in training (Figure

3.6a).

Larger models benefit from training on the AlphaFold2-predicted UniRef50 structures.

Training with predicted structures increases sequence recovery from 39.2% to 50.8% for

GVP-GNN-large and from 38.3% to 51.6% for GVP-Transformer over training only on the

experimentally derived structures. The improvements are also reflected in perplexity. Similar

improvements are observed on the test subset filtered by TM-score (Table A.2). The best

model trained with UniRef50 predicted stuctures, GVP-Transformer, improves sequence

recovery by 9.4 percentage points over the best model, GVP-GNN, trained on CATH alone.

As there are many sequences that can fold to approximately the same structure, even an

ideal protein design model will not have 100% native sequence recovery. We observe that

the GVP-GNN-large and GVP-Transformer models are well-calibrated (Figure A.10). The

substitution matrix between native sequences and model-designed sequences resembles the

BLOSUM62 substitution matrix (Figure A.9), albeit noticeably sparser for the amino acid

Proline.

When we break down performance on core residues and surface residues, as expected,

core residues are more constrained and have a high native sequence recovery rate of 72%,

while surface residues are not as constrained and have a lower sequence recovery of 39%

(Figure 3.5; top). Generally perplexity increases with the solvent accessible surface area

(Figure 3.5; bottom). Despite the lower sequence recovery on the surface, sampled sequences

do tend not to have hydrophobic residues on the surface (Figure A.11).

As an example of inverse folding of a structurally-remote protein, we re-design the receptor
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Figure 3.5: Comparison of perplexity and sequence recovery by structural context according to two
different measures: number of neighbors (top) and solvent accessible surface area (bottom). Top:
Breakdown for core and surface residues. Residues are categorized by density of neighboring Cα atoms
within 10A of the central residue Cα atom (core: ≥ 24 neighbors; surface: < 16 neighbors). Each box
shows the distribution of perplexities for the core or surface residues across different sequences. Bottom:
Perplexity and sequence recovery as a function of solvent accessible surface area. Increased sequence
recovery for buried residues suggests the model learns dense hydrophobic packing constraints in the core.

binding domain (RBD) sequence of the SARS-CoV-2 spike protein (PDB: 6XRA and 6VXX;

illustrated in Figure A.8) with the two models. The SARS-CoV-2 spike protein has no

match to the training data with TM-score above 0.5. Both GVP-GNN and GVP-Transformer

achieve high sequence recovery (49.7% and 53.6%) for the native RBD sequence (Table A.6).

See Table A.10 for a list of randomly sampled sequence designs.

While perplexity and sequence recovery are informative metrics, low perplexity and high

sequence recovery do not necessarily guarantee structural similarity. One empirically observed

failure mode in sampled sequences is repetition of the same amino acid, e.g. EEEEEEE. It

would be interesting to further identify more failure modes by studying the experimental or

predicted structures of sampled sequences.

Partially-masked backbones We evaluate the models on partial backbones. While

masking during training does not significantly change test performance on unmasked back-
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Figure 3.6: Ablation studies on training data. (a) Effect of increasing the number of predicted
structures. The original GVP-GNN degrades with training on additional data, but GVP-GNN-large and
GVP-Transformer improve with increasing numbers of predicted structures. (b) Effect of increasing the
mixing ratio during training between predicted and experimental structures. A higher ratio of predicted
structures improves performance for both GVP-GNN-large and GVP-Transformer. (c) GVP-GNN and
GVP-Transformer model size.

Perplexity
Model Chain Complex
Natural frequencies 17.93
GVP-GNN 7.80 5.37
GVP-GNN-large+AF2 6.32 3.90
GVP-Transformer+AF2 6.32 3.81

Table 3.2: Sequence design performance on complexes in the CATH topology test split when given the
backbone coordinates of only a chain (“Chain” column) and when given all backbone coordinates of the
complex (“Complex” column). The perplexity is evaluated on the same chain in the complex for both
columns.

bones (Table A.3), masking does enable models to non-trivially predict sequences for mask

regions. Although GVP-GNN-large has low perplexity on short-length masks, its performance

quickly degrades to the perplexity of the background distribution on masks longer than 5

amino acids (Figure 3.4). By contrast, the GVP-Transformer model maintains moderate

performance even on longer masked regions, with less degradation if trained with span

masking instead of independent random masking (Figure 3.4).

Protein complexes Although the training data only consists of single chains, we find that

models generalize to multi-chain protein complexes. We represent complexes by concatenating

the chains together with 10 mask tokens between chains, and place the target chain for
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Figure 3.7: Dual-state design. GVP-Transformer conditioned on two conformations results in lower
sequence perplexity at locally flexible residues than single-conformation conditioning for structurally
held-out proteins in PDBFlex (see Appendix A.2.3 for details).

sequence design at the beginning during concatenation. We include all complexes in the CATH

4.3 test set up to 1000 amino acids in length. For chains that are part of a protein complex,

there is a substantial improvement in perplexity of both models when given the full complex

coordinates as input, versus only the single chain (Table 3.2 and Figure A.7), suggesting that

both GVP-GNN and GVP-Transformer can make use of inter-chain information from amino

acids that are close in 3D structure but far apart in sequence.

Multiple conformations Multi-state design is of interest for engineering enzymes and

biosensors [91, 92]. Some proteins exist in multiple distinct folded forms in equilibrium, while

other proteins may exhibit distinct conformations when binding to partner molecules.

For a backbone X, the inverse folding model predicts a conditional distribution p(Y |X)

over possible sequences Y for the backbone. To design a protein sequence compatible with

two states A and B, we would like find sequences with high likelihoods in the conditional

distributions p(Y |A) and p(Y |B) for each state. We use the geometric average of the two

conditional likelihoods as a proxy for the desired distribution p(Y |A,B) conditioned on the

sequence being compatible with both states.

We compare single-state and multi-state sequence design performance on 87 test split
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Spearman correlation
Model No coords No RBM coords No ACE2 coords All coords
ESM-1v 0.03
ESM-1b 0.02
ESM-MSA-1b (few-shot) 0.51

GVP-GNN -0.10 0.50 0.60
GVP-GNN-large+AF2 -0.05 0.52 0.69
GVP-Transformer+AF2 -0.06 0.53 0.64

Table 3.3: Zero-shot performance on binding affinity prediction for the receptor binding domain (RBD)
of SARS-CoV-2 Spike, evaluated on ACE2-RBD mutational scan data [9]. The zero-shot predictions
are based on the sequence log-likelihood for the receptor binding motif (RBM), which is the portion of
the RBD in direct contact with ACE2 [10]. We evaluate in four settings: 1) Given sequence data alone
(“No coords”); 2) Given backbone coordinates for both ACE2 and the RBD but excluding the RBM and
without sequence (“No RBM coords”); 3) Given the full backbone for the RBD but no information for
ACE2 (“No ACE2 coords”); and 4) Given all coordinates for the RBD and ACE2.

proteins with multiple conformations in the PDBFlex dataset [93]. On locally flexible residues,

multi-state design results in lower sequence perplexity than single-state design (Figure 3.7).

See Appendix A.2.3 for more details on the PDBFlex data.

3.3.2 Zero-shot predictions

We next show that inverse folding models are effective zero-shot predictors of mutational

effects across practical design applications, including prediction of complex stability, binding

affinity, and insertion effects. To score the effect of a mutation on a particular sequence,

we use the ratio between likelihoods of the mutated and wildtype sequences according to

the inverse folding model, given the experimentally determined wildtype structure. Exact

likelihood evaluations are possible from both GVP-GNN and GVP-Transformer as they are

both based on autoregressive decoders. We then compare these likelihood ratio scores to

experimentally-determined fitness values measured on the same set of sequences.
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De novo mini-proteins Rocklin et al. [11] performed deep mutational scans across a

set of de novo designed mini-proteins with 10 different folds measuring the stability in

response to point mutations. The likelihoods of inverse folding models have been shown to

correlate with experimentally measured stability using this dataset [22, 23]. We evaluate the

GVP-Transformer and GVP-GNN-large models on the same mutational scans, and observe

improvements in stability predictions from using predicted structures as training data for 8

out of 10 folds in the dataset (Table A.5). Further details are in Appendix A.2.3.

Complex stability We evaluate models on zero-shot prediction of mutational effects on

protein complex interfaces, using the Atom3D benchmark [12] which incorporates binding

free energy changes in the SKEMPI database [94] as a binary classification task. We find

that sequence log-likelihoods from GVP-GNN are effective zero-shot predictors of stability

changes of protein complexes even without predicted structures as training data (Table A.7),

performing comparably to the best supervised method which uses transfer learning. While

we observe a substantial improvement in perplexity when predicted structures are added

to training (Table 3.2), this does not further improve complex stability prediction for the

single-point mutations in SKEMPI (Table A.7), indicating potential limitations of evaluating

models only on single-point mutations.

Binding affinity While the SKEMPI dataset features one mutation entry per protein,

we also want to evaluate whether inverse folding models can rank different mutations on the

same protein, potentially enabling binding-affinity optimization, which is an important task

in therapeutic design. We assess whether inverse folding models can predict mutational effects

on binding by leveraging a dataset generated by Starr et al. [9] in which all single amino

acid substitutions to the SARS-CoV-2 receptor binding domain (RBD) were experimentally

measured for binding affinity to human ACE2. Given potential applications to interface

optimization or design, we focus on mutations within the receptor binding motif (RBM),
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the portion of the RBD in direct contact with ACE2 [10]. When given all RBD and ACE2

coordinates, the best inverse folding model produces RBD-sequence log-likelihoods that have a

Spearman correlation of 0.69 with experimental binding affinity measurements (Table 3.3). We

observe weaker correlations when not providing the model with ACE2 coordinates, indicating

that inverse folding models take advantage of structural information in the binding partner.

When masking RBM coordinates (69 of 195 residues, a longer span than masked during

model training), we no longer observe correlation between RBD log-likelihood and binding

affinity, indicating that the model relies on structural information at the interface to identify

interface designs that preserve binding. Zero-shot prediction via inverse folding outperforms

methods for sequence-based variant effect prediction, which use the likelihood ratio between

the mutant and wildtype amino acids at each position to predict the impact of a mutation on

binding affinity. These likelihoods are inferred by masked language models, ESM-1b, ESM-1v,

and ESM-MSA-1b, as described by Meier et al. [95] (Table 3.3); additional details are given

in Appendix A.2.3.

Sequence insertions Using masked coordinate tokens at insertion regions, inverse folding

models can also predict insertion effects. On adeno-associated virus (AAV) capsid variants,

we show that relative differences in sequence log-likelihoods correlate with the experimentally

measured insertion effects from Bryant et al. [80]. As shown in Table A.8, both GVP-GNN and

GVP-Transformer outperform the sequence-only zero-shot prediction baseline ESM-1v [95].

When evaluating on subsets of sequences increasingly further away from the wildtype (≥ 2,

≥ 3, and ≥ 8 mutations), the GVP-GNN-large and GVP-Transformer models trained with

predicted structures have increasing advantages compared to GVP-GNN trained without

predicted structures.
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3.4 Related work

Structure-based protein sequence design Early work on design of protein sequences

studied the packing of amino acid side chains to fill the interior space of predetermined

backbone structures, either for a fixed backbone conformation [96, 97, 98], or with flexibility

in the backbone conformation [26]. Since then, the Rosetta energy function [19] has become

an established approach for structure-based sequence design. An alternative non-parametric

approach involves decomposing the library of known structures into common sequence-

structure motifs [99].

Early machine learning approaches in structure-based protein sequence design used

fragment-based and energy-based global features derived from structures [100, 101]. More

recently, convolution-based deep learning methods have also been applied to predict amino

acid propensities given the surrounding local structural environments [75, 102, 103, 104, 105,

106, 107, 71]. Another recent machine learning approach is to leverage structure prediction

networks for sequence design. Anishchenko et al. [34] carried out Monte Carlo sampling in

the sequence space to invert the trRosetta [25] structure prediction network for sequence

design, while Norn et al. [108] backpropagated gradients through the trRosetta network.

Generative models of proteins The literature on structure-based generative models of

protein sequences is the closest to our work. Ingraham et al. [22] introduced the formulation of

fixed-backbone design as a conditional sequence generation problem, using invariant features

with graph neural networks, modeling each amino acid as a node in the graph with edges

connecting spatially adjacent amino acids. Jing et al. [23, 13] further improved graph neural

networks for this task by developing architectures with translation- and rotation-equivariance

to enable geometric reasoning, showing that GVP-GNN achieves higher native sequence

recovery rates than Rosetta on TS50, a benchmark set of 50 protein chains. Strokach et al.
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[72] trained graph neural networks for conditional generation with the masked language

modeling objective, adding homologous sequences as data augmentation to training. Most

recently, contemporary with our work, Dauparas et al. [109] improved an existing graph

neural network [22] by combining additional input features and edge updates, and validated

designed protein sequences through X-ray crystallography, cryoEM and functional studies.

Also contemporary with our work, Yang et al. [110] showed that pretrained sequence-only

protein masked language models can be combined with structure-based graph neural networks

to improve inverse folding performance.

Recently models have been proposed to jointly generate structures and sequences. An-

ishchenko et al. [34] generate structures by optimizing sequences through the trRosetta

structure prediction network to maximize their difference from a background distribution.

The joint generation approach is also being explored in the setting of infilling partial struc-

tures. Contemporary to this work, Wang et al. [76] apply span masking to fine-tune the

RosettaFold model [41] to perform infilling, although conditioning on both coordinates and

amino acid identities instead of considering the inverse folding task. Also contemporary to this

work, Jin et al. [111] develop a conditional generation model for jointly generating sequences

and structures for antibody complementarity determining regions (CDRs), conditioned on

framework region structures. Anand and Achim [112] introduced an equivariant denoising

diffusion approach for jointly generating protein structures and sequences for infilling, loop

completion, and beyond.

So far there has been little work on generative models of structures directly. Interesting

examples include Anand and Huang [20] who model fixed-length protein backbones with

generative adversarial networks (GANs) via pairwise distance matrices, and Eguchi et al. [21]

who generate antibody structures with variational autoencoders (VAEs).
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Language models A large body of work has focused on modeling the sequences in

individual protein families. Shin et al. [78] show that protein-specific autoregressive sequence

models trained on related proteins can predict point mutation and indel effects and design

functional nanobodies. Trinquier et al. [113] also studied protein-specific autoregressive

models for sequence generation.

Recently language models have been proposed for modeling large scale databases of

protein sequences rather than families of related sequences. Examples include [114, 69, 115,

116, 70, 117, 16, 85]. Meier et al. [95] found that the log-likelihoods of large protein language

models predict mutational effects. Madani et al. [77] study an autoregressive sequence model

conditioned on functional annotations and show it can generate functional proteins.

Structure-agnostic protein sequence design We point the reader to Wu et al.

[118] for a review of the many machine learning-based sequence design approaches that

do not explicitly model protein structures. Additionally, as an alternative to sequence

generation models, model-guided algorithms design sequences based on predictive models as

oracles [119, 120, 121, 122].

Back-translation For machine translation (MT) in NLP, Sennrich et al. [83] studied

how to leverage large amounts of monolingual data in the target language, a setting that

parallels the situation we consider with protein sequences (the target language in our case).

Sennrich et al. found it most effective to generate synthetic source sentences by performing

the backwards translation from the target sentence, i.e. back-translation. This parallels the

approach we take of predicting structures for sequence targets that have unknown structures.

Edunov et al. [84] further investigated back-translation for large-scale language models.
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3.5 Conclusions

While there are billions of protein sequences in the largest sequence databases, the number

of available experimentally determined structures is on the order of hundreds of thousands,

imposing a limit on generative methods that learn from protein structure data. In this work,

we explored whether predicted structures from recent deep learning methods can be used in

tandem with experimental structures to train models for protein design.

To this end, we generated structures for 12 million UniRef50 sequences using AlphaFold2.

As a result of training with this data we observe improvements in perplexity and sequence

recovery by substantial margins, and demonstrate generalization to longer protein complexes,

to proteins in multiple conformations, and to zero-shot prediction for mutation effects on

binding affinity and AAV packaging. These results highlight that in addition to the geometric

inductive biases which have been the major focus for work on inverse-folding to date, finding

ways to leverage more sources of training data is an equally important path to improved

modeling capabilities.

Contemporary with our work, the AlphaFold Protein Structure Database [123] is rapidly

growing, featuring 1 million predicted structures as of June 2022. Structure-based protein

design models will likely continue to benefit from this new data source as the coverage expands

to encompass more of the structural universe. Additionally, with the recent progress in

structure prediction for multi-chain protein complexes [82, 124], predicted complex structures

could be another valuable source of data for learning protein-protein interactions.

We also take initial steps toward more general structure-conditional protein design tasks.

By integrating backbone span masking into the inverse folding task and using a sequence-

to-sequence transformer, reasonable sequence predictions can be achieved for short masked

spans.

If ways can be found to continue to leverage predicted structures for generative models of
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proteins, it may be possible to create models that learn to design proteins from an expanded

universe of the billions of natural sequences whose structures are currently unknown.
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4 | Evolutionary-scale prediction

of atomic level protein

structure with a language

model

4.1 Introduction

The sequences of proteins at the scale of evolution contain an image of biological structure

and function. This is because the biological properties of a protein constrain the mutations

to its sequence that are selected through evolution, recording biology into evolutionary

patterns [125, 126, 127]. Protein structure and function can therefore be inferred from the

patterns in sequences [128, 129]. This insight has been central to progress in computational

structure prediction starting from classical methods [130, 131], through the introduction of

deep learning [65, 132, 42, 25], up to present high accuracy structure prediction [3, 133].

Language models have the potential to learn patterns in protein sequences across evolution.

This idea motivates a new line of research on evolutionary scale language models [16], where

basic models [134, 69, 135] learn representations that reflect aspects of the underlying biology,

and with greater representational capacity capture secondary structure [16, 117] and tertiary
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structure [136, 16, 137, 138] at a low resolution.

Beginning with Shannon’s model for the entropy of text [139], language models of

increasing complexity have been developed, culminating in modern large-scale attention based

architectures [89, 140, 141]. Despite the simplicity of their training objectives, such as filling

in missing words or predicting the next word, language models of text are shown to develop

emergent capabilities that develop as a function of scale in increasing computate, data, and

number of parameters. Modern language models containing tens to hundreds of billions of

parameters develop abilities such as few-shot language translation, commonsense reasoning,

and mathematical problem solving, all without explicit supervision [142, 143, 144, 145].

We posit that the task of filling in missing amino acids in protein sequences across

evolution will require a language model to understand the underlying structure that creates

the patterns in the sequences. As the representational capacity of the language model and

the diversity of protein sequences seen in its training increase, we expect deep information

about the biological properties of the protein sequences to emerge, since those properties give

rise to the patterns that are observed in the sequences. To study this kind of emergence, we

scale language models from 8 million parameters up to 15 billion parameters. We discover

that atomic resolution structure prediction emerges and continues to improve in language

models over the four orders of magnitude in parameter scale. Strong correlations between

the language model’s understanding of the protein sequence (perplexity) and the accuracy of

the structure prediction reveal a close link between language modeling and the learning of

structure.

We show that language models enable fast end-to-end atomic resolution structure predic-

tion directly from sequence. Our new approach leverages the evolutionary patterns captured

by the language model to produce accurate atomic level predictions. This removes costly

aspects of the current state-of-the-art structure prediction pipeline, eliminating the need

for a multiple sequence alignment, while at the same time greatly simplifying the neural
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architecture used for inference. This results in an improvement in speed of up to 60x on

the inference forward pass alone, while also removing the search process for related proteins

entirely, which can take over 10 minutes with the high-sensitivity pipelines used by AlphaFold

[3] and RosettaFold [133], and which is a significant part of the computational cost even

with new lower sensitivity fast pipelines [8]. In practice this means the speedup over the

state-of-the-art prediction pipelines is up to one to two orders of magnitude.

This makes it possible to expand structure prediction to metagenomic scale datasets.

The last decade has seen efforts to expand knowledge of protein sequences to the immense

microbial natural diversity of the earth through metagenomic sampling. These efforts have

contributed to an exponential growth in the size of protein sequence databases, which now

contain billions of proteins [146, 59, 147]. While computational structural characterizations

have recently been completed for ∼20K proteins in the human proteome [148], and the ∼200M

cataloged proteins of Uniprot [149], the vast scale of metagenomic proteins represents a far

greater challenge for structural characterization. The extent and diversity of metagenomic

structures is unknown and is a frontier for biological knowledge, and a potential source of

new discoveries for medicine and biotechnology [150, 151, 152].

We present the first evolutionary scale structural characterization of metagenomic proteins,

folding practically all sequences in MGnify90 [59], over 617M proteins. We are able to complete

this characterization in 2 weeks on a heterogeneous cluster of 2,000 GPUs, demonstrating

scalability to far larger databases. High confidence predictions are made for over 225M

structures, revealing and characterizing regions of metagenomic space distant from existing

knowledge with the vast majority (76.8%) of high confidence predictions being separate

from UniRef90 [17] by at least 90% sequence identity, and tens of millions of predictions

(12.6%) without a match to experimentally determined structures. These results give the

first large-scale view into the vast extent and diversity of metagenomic protein structures.

All predictions can be accessed in the ESM Metagenomic Atlas (https://esmatlas.com)
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open science resource.

4.2 Atomic resolution structure emerges in

language models trained on protein sequences

We begin with a study of the emergence of high resolution protein structure. We train a new

family of transformer protein language models, ESM-2, at scales from 8 million parameters

up to 15 billion parameters. Relative to our previous generation model ESM-1b, ESM-2

introduces improvements in architecture, training parameters, and increases computational

resources and data (Appendix A.3.1.1 and Appendix A.3.2). The resulting ESM-2 model

family significantly outperforms previously state-of-the-art ESM-1b (a ∼650 million parameter

model) at a comparable number of parameters, and on structure prediction benchmarks it

also outperforms other recent protein language models (Table A.11).

ESM-2 is trained to predict the identity of amino acids that have been randomly masked

out of protein sequences:

LMLM = −
∑
i∈M

log p(xi|x\M) (4.1)

Where for a randomly generated mask M that includes 15% of positions i in the sequence,

the model is tasked with predicting the identity of the amino acids xi in the mask from the

surrounding context x\M excluding the masked positions. This masked language modeling

objective [141] causes the model to learn dependencies between the amino acids. Although the

training objective itself is simple and unsupervised, solving it over millions of evolutionarily

diverse protein sequences requires the model to internalize sequence patterns across evolution.

We expect that this training will cause biological structure to materialize in the language

model since it is linked to the sequence patterns. ESM-2 is trained over sequences in the
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Figure 4.1: Emergence of structure when scaling language models to 15 billion parameters. (A) Predicted
contact probabilities (bottom right) and actual contact precision (top left) for 3LYW. A contact is a positive
prediction if it is within the top-L most likely contacts for a sequence of length L. (B, C, D) Unsupervised contact
prediction performance (long range P@L, see Appendix A.3.2.1) for all scales of the ESM-2 model. (B) Performance
binned by the number of MMseqs hits when searching the training set. Larger ESM-2 models perform better at all
levels; the 150M parameter ESM-2 model is comparable to the 650M parameter ESM-1b model. (C) Trajectory of
improvement as model scale increases for sequences with different numbers of MMseqs hits. (D) Left-to-right
shows models from 8M to 15B parameters, comparing the smaller model (x-axis) against the next larger model
(y-axis) via unsupervised contact precision. Points are PDB proteins colored by change in perplexity for the
sequence between the smaller and larger model. Sequences with large changes in contact prediction performance
also exhibit large changes in language model understanding measured by perplexity. (E) TM-score on combined
CASP14 and CAMEO test sets. Predictions are made using structure module-only head on top of language models.
Points are colored by the change in perplexity between the models. (F) Structure predictions on CAMEO structure
7QQA and CASP target 1056 at all ESM-2 model scales, colored by pLDDT (pink = low, teal = high). For 7QQA,
prediction accuracy improves at the 150M parameter threshold. For T1056, prediction accuracy improves at the
15B parameter threshold.
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UniRef [17] protein sequence database. During training, sequences are sampled with even

weighting across ∼43 million UniRef50 training clusters from ∼138 million UniRef90 sequences

so that over the course of training the model sees ∼65 million unique sequences.

As we increase the scale of ESM-2 from 8 million to 15 billion parameters, we observe large

improvements in the fidelity of its modeling of protein sequences. This fidelity can be measured

using perplexity, which ranges from 1 for a perfect model to 20 for a model that makes

predictions at random. Intuitively, the perplexity describes the average number of amino acids

the model is choosing between for each position in the prediction. Mathematically, perplexity

is defined as the exponential of the negative log-likelihood of the sequence (Appendix A.3.2.2).

Figure A.12 shows perplexity for the ESM-2 family as a function of the number of training

updates, evaluated on a set of ∼500K UniRef50 clusters that have been held out from training.

Comparisons are performed at 270k training steps for all models in this section. The fidelity

continues to improve as the parameters increase up to the largest model. The 8M parameter

model has a perplexity of 10.45, and the 15B model reaches a perplexity of 6.37, indicating a

large improvement in the understanding of protein sequences with scale.

This training also results in the emergence of structure in the models. Since ESM-2’s

training is only on sequences, any information about structure that develops must be the result

of representing the patterns in sequences. Transformer models trained with masked language

modeling, are known to develop attention patterns that correspond to the residue-residue

contact map of the protein [136, 137]. We examine how this low resolution picture of protein

structure emerges as a function of scale. We use a linear projection to extract the contact

map from the attention patterns of the language model (Appendix A.3.2.1). The precision of

the top L (length of the protein) predicted contacts (long range contact precision) measures

the correspondence of the attention pattern with the structure of the protein. Attention

patterns develop in ESM-2 that correspond to tertiary structure (Figure 4.1a), and scaling

leads to large improvements in the understanding of structure (Figure 4.1b). The accuracy of
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the predicted contacts varies as a function of the number of evolutionarily related sequences

in the training set. Proteins with more related sequences in the training set have steeper

learning trajectories with respect to model scale (Figure 4.1c). This means that improvement

on sequences with high evolutionary depth saturates at lower model scales, and improvement

on sequences with low evolutionary depth continues as models increase in size.

For individual proteins, we often observe non-linear improvements in the accuracy of the

contact prediction as a function of scale. Figure 4.1d plots the change in the distribution of

long range contact precision at each transition to a higher level of scale. At each step there is

an overall shift in the distribution toward better performance. Also at each transition, there

is a subset of proteins that undergo significant improvement. In Figure 4.1d these are in the

upper left of each plot, far from the diagonal. The accuracy of the contact map prediction

and perplexity are linked, with proteins undergoing large changes in contact map accuracy

also undergoing large changes in perplexity (NDCG = 0.87, Appendix A.3.2.6). This link

indicates that the language modeling objective is directly correlated with the materialization

of the folded structure in the attention maps.

We investigate whether high resolution structure at an atomic level also develops. To

identify atomic resolution information in the model, we project out spatial coordinates for each

of the atoms from the internal representations of the language model using an equivariant

transformer (Appendix A.3.3.3). This projection is fit using experimentally determined

protein structures from PDB [153], and evaluated on 194 CAMEO proteins [154] and 51

CASP14 proteins [155]. TM-score, which ranges from 0 to 1, measures the accuracy of the

projection in comparison to the ground truth structure, with a value of 0.5 corresponding

to the threshold for correctly predicting the fold [156]. The evaluation uses a temporal

cutoff, ensuring that the proteins used for testing are held out from those used in fitting the

projection. This makes it possible to measure how atomic level information emerges in the

representations as a function of the parameter scale.
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We discover that an atomic resolution structure prediction can be projected from the

representations of the ESM-2 language models. The accuracy of this projection improves

with the scale of the language model. The 15 billion parameter model reaches a TM-score

of 0.72 on the CAMEO test set and 0.55 on the CASP14 test set, a gain of 14% and 17%

respectively relative to the the 150 million parameter ESM-2 model (Figure 4.1e). At each

increase in scale a subset of proteins undergo large changes in accuracy. For example, the

protein 7QQA improves in RMSD from 7.0 to 3.2 when scale is increased from 35M to 150M

parameters, and the CASP target T1056 improves in RMSD from 4.0 to 2.6 when scale is

increased from 3B to 15B parameters (Figure 4.1f). Before and after these jumps, changes

in RMSD are much smaller. Across all models (Table A.11) there is a correlation of -0.99

between validation perplexity and CASP14 TM-score, and -1.00 between validation perplexity

and CAMEO TM-score indicating a strong connection between the understanding of the

sequence measured by perplexity and the atomic resolution structure prediction. Additionally

there are strong correlations between the low resolution picture of the structure that can be

extracted from the attention maps and the atomic resolution prediction (0.96 between long

range contact precision and CASP14 TM-score, and 0.99 between long range contact precision

and CAMEO TM-score). These findings connect improvements in language modeling with

the increases in low resolution (contact map) and high resolution (atomic level) structural

information.

4.3 Accelerating accurate atomic resolution

structure prediction with a language model

Language models greatly accelerate state-of-the-art high resolution structure prediction. The

language model internalizes evolutionary patterns linked to structure, eliminating the need for

external evolutionary databases, multiple sequence alignments, and templates. We find that
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Figure 4.2: Single sequence structure prediction with ESMFold. (A) ESMFold model architecture. Arrows show
the information flow in the network from the language model to the folding trunk to the structure module which
outputs 3D coordinates and confidences. (B) ESMFold produces accurate atomic resolution predictions, with
similar accuracy to RosettaFold on CAMEO. When MSAs are ablated for AlphaFold and RosettaFold, performance
of the models degrades. Scatter-plots compare ESMFold (x-axis) predictions with AlphaFold2 (y-axis), colored by
language model perplexity. Proteins with low perplexity score similarly to AlphaFold2. (C) Model pLDDT vs. true
LDDT (left) and relative performance against AlphaFold (right) on CAMEO. pLDDT is a well calibrated estimate
of prediction accuracy. (D) Successful examples: Top shows test-set predictions of T1057, with ESMFold (left) and
AlphaFold2 (right). Coloring shows predicted LDDT for both models (ESMFold high-confidence=teal, AlphaFold2
high-confidence=green, both low-confidence=pink). Ground truth is shown in grey. Bottom two show complex
predictions on a dimer (7LQM) and a tetramer (7QYM); ESMFold predictions are colored by chain ID and overlaid
on ground truth (gray). DockQ [4] scores are reported for the interactions; in the case of the tetramer 7QYM,
the score is the average of scores over interacting chain-pairs. (E) Unsuccessful example: Test-set predictions of
T1074, with ESMFold (left) and AlphaFold2 (right). Coloring shows predicted LDDT for both models (ESMFold
high-confidence=teal, AlphaFold2 high-confidence=green, both low-confidence=pink). Ground truth is shown in
grey. ESMFold TM-score is significantly below AlphaFold2 TM-score. The perplexity of the unsuccessful sequence
is 16.6, meaning the language model does not understand the input sequence.
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the ESM-2 language model generates state-of-the-art three-dimensional structure predictions

directly from the primary protein sequence. This results in a speed improvement for structure

prediction of more than an order of magnitude while maintaining high resolution accuracy.

We develop ESMFold, a fully end-to-end single sequence structure predictor, by training

a folding head for ESM-2 (Figure 4.2a). At prediction time the sequence of a protein is input

to ESM-2. The sequence is processed through the feedforward layers of the language model,

and the model’s internal states (representations) are passed to the folding head. The head

begins with a series of folding blocks. Each folding block alternates between updating a

sequence representation and a pairwise representation. The output of these blocks is passed

to an equivariant transformer structure module, and three steps of recycling are performed

before outputting a final atomic-level structure and predicted confidences (Appendix A.3.3.1).

This architecture represents a major simplification in comparison to current state-of-the-art

structure prediction models which deeply integrate the multiple sequence alignment into the

neural network architecture through an attention mechanism operating across the rows and

columns of the MSA [3, 85].

Our approach results in a significant improvement in prediction speed. On a single

NVIDIA V100 GPU, ESMFold makes a prediction on a protein with 384 residues in 14.2

seconds, 6x faster than a single AlphaFold2 model. On shorter sequences the improvement

increases up to ∼60x (Figure A.13). The search process for related sequences, required to

construct the MSA, can take over 10 minutes with the high sensitivity protocols used by the

published versions of AlphaFold and RosettaFold; this can be reduced to less than 1 minute,

although with reduced sensitivity [8].

We train the folding head on ∼25K clusters covering a total of ∼325K experimentally

determined structures from the PDB, further augmented with a dataset of ∼12M structures

we predicted with AlphaFold2 (Appendix A.3.1.2). The model is trained with the same losses

that are used for AlphaFold [157]. To evaluate the accuracy of structure predictions we use
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test sets that are held out from the training data by a May 2020 cutoff date; as a result all

structures that are used in evaluation are held out from the training, and the evaluation is

representative of the performance that would be expected in regular usage as a predictive

model on the kinds of structures that are selected by experimentalists for characterization.

This also makes it possible to compare with AlphaFold and RosettaFold since these models

also have not been trained on structures deposited after May 2020. We use two test sets: the

CAMEO test set consists of 194 structures used in the ongoing CAMEO assessment (between

April 2022 to June 2022); the CASP14 test set consists of 51 publicly released structures that

have been selected for their difficulty for the biannual structure prediction competition.

We compare results on these evaluation sets to AlphaFold2 and RosettaFold (Figure 4.2b).

ESMFold achieves an average TM-score of 0.83 on CAMEO and 0.68 on CASP14. Using

the search protocols released with AlphaFold2, including MSAs and templates, AlphaFold2

achieves 0.88 and 0.85 on CAMEO and CASP14 respectively. ESMFold achieves competitive

accuracy with RosettaFold on CAMEO, which averages a TM-score of 0.82. When evaluating

AlphaFold2 and RosettaFold on single sequences by ablating the multiple sequence alignment,

performance degrades substantially, and falls well below that of ESMFold. Note that this

is an artificial setting as AlphaFold2 has not been explicitly trained for single sequences,

however it has recently emerged as important in protein design, where these models have

been used with single sequence inputs for de novo protein design [158, 159, 160].

While average performance on the test sets is below AlphaFold2, the performance gaps are

explained by the language model perplexity. On proteins where perplexity is low, ESMFold

results match AlphaFold2. On the CAMEO test set, the 3B parameter ESM-2 model used in

ESMFold achieves an average perplexity of 5.7. On the CASP14 test set, the same model only

has an average perplexity of 10.0. Performance within each set is also well correlated with

perplexity. On the CAMEO test set, language model perplexity has a Pearson correlation

of -0.52 with the TM-score between the predicted and experimental structures; on CASP14,
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the correlation is -0.71 (Figure 4.2b). On the subset of 18 CASP14 proteins where ESM-2

achieves perplexity < 7, ESMFold matches AlphaFold in performance (average TM-score

difference < 0.03, and no TM-score differences > 0.1). The relationship between perplexity

and structure prediction suggests that improvements in the language model will translate into

improvements in single-sequence structure prediction accuracy, consistent with observations

from the scaling analysis (Figures 4.1d and 4.1e). Additionally, this means the language

model’s perplexity for a sequence can be used to predict the quality of the ESMFold structure

prediction.

Ablation studies indicate that the language model representations are critical to ESMFold

performance (Figure A.14). With a folding trunk of 8 blocks, performance on the CAMEO

test set is 0.74 LDDT (baseline). Without the language model, this degrades substantially,

to 0.58 LDDT. When removing the folding trunk entirely (i.e. only using the language

model and the structure module), performance degrades to 0.66 LDDT. Other ablations:

only 1 block of a structure module, turning off recycling, not using AlphaFold2 predicted

structures as distillation targets, or not using triangular updates, result in small performance

degradations (change in LDDT of -0.01 to -0.04).

ESMFold provides state-of-the-art structure prediction accuracy, matching AlphaFold2

performance (< 0.05 LDDT difference) on more than half the proteins (Figure 4.2b). We find

that this is true even on some large proteins—T1076 is an example with 0.98 TM-score and 540

residues (Figure 4.2d). Parts of structure with low accuracy do not differ significantly between

ESMFold and AlphaFold, suggesting that language models are learning information similar

to that contained in MSAs. We also observe that ESMFold is able to make good predictions

for components of homo- and heterodimeric protein-protein complexes (Figure 4.2d). In a

comparison with AlphaFold-Multimer [82] on a dataset of 2,978 recent multimeric complexes

deposited in the PDB, ESMFold achieves the same qualitative DockQ [4] categorization for

53.2% of chain pairs, despite not being trained on protein complexes (Figure A.15).
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Confidence is well calibrated with accuracy. ESMFold reports confidence in the form

of predicted-LDDT. This confidence correlates well with the accuracy of the prediction,

and for high-confidence predictions (pLDDT > 0.7) accuracy is comparable to AlphaFold2

(ESMFold LDDT=0.83, AlphaFold2 LDDT=0.85 on CAMEO) (Figures 4.2c and A.16).

High-confidence predictions approach experimental-level accuracy. On the CAMEO test set,

ESMFold predictions have a median all-atom RMSD95 (root-mean-squared deviation at 95%

residue coverage) of 1.91Å and backbone RMSD95 of 1.33Å. When confidence is very high

(pLDDT > 0.9), predictions have median all-atom RMSD95 of 1.42Å and backbone RMSD95

of 0.94Å. This means the confidence can be used to predict how likely it is that a given

structure prediction will match the true structure if it were to be experimentally determined.

4.4 Evolutionary-scale structural

characterization of metagenomics

This fast and high resolution structure prediction capability enables the first large-scale

structural characterization of metagenomic proteins. We fold over 617 million sequences from

the MGnify90 database [59]. This is the entirety of the sequences of length 20 to 1024, and

covers 99% of all the sequences in MGnify90. Overall, the characterization produces ∼365

million predictions with good confidence (mean pLDDT > 0.5 and pTM > 0.5) corresponding

to ∼59% of the database, and ∼225 million predictions with high confidence (mean pLDDT

> 0.7 and pTM > 0.7) corresponding to ∼36% of total structures folded (Figure 4.3). We

were able to complete the predictions in 2 weeks on a cluster of approximately 2,000 GPUs

(Appendix A.3.4.1).

For structure prediction at scale, it is critical to distinguish well predicted proteins from

those that are poorly predicted. In the previous section, we evaluated calibration against
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experimentally determined structures on held out test sets, finding that the model confidence

is predictive of the agreement with experimentally determined structures. We also assess

calibration against AlphaFold predictions on metagenomic proteins. On a random subset

of ∼4K metagenomic sequences, there is a high correlation (Pearson r = 0.79) between

ESMFold pLDDT and the LDDT to AlphaFold2 predictions (Figure 4.3a). Combined with

results on CAMEO showing that when confidence is very high (pLDDT > 0.9), ESMFold

predictions often approach experimental accuracy, these findings mean that ESMFold’s

confidence scores provide a good indication of the agreement with experimental structures

and with the predictions that can be obtained from AlphaFold2. Across the ∼617 million

predicted structures, ∼113 million structures meet the very high confidence threshold.

Many of the metagenomic structure predictions have high confidence (Figure 4.3b) and

are novel with respect to existing sequence and structure databases (Figures 4.3c to 4.3e). On

a random sample of 1 million high confidence structures, 76.8% (767,580) of the proteins have

a sequence identity below 90% to any sequence in UniRef90, indicating that these proteins

are distinct from existing UniRef90 sequences (Figure 4.3d). For 3.4% (33,521 proteins),

no significant match is found in UniRef90 at all (Appendix A.3.4.2). We use Foldseek [5]

to compare the predicted structures to known experimentally determined structures in the

PDB database. At a threshold of 0.7 TM-score, Foldseek reports 25.4% (253,905 proteins)

without a match. At a threshold of 0.5 TM-score, Foldseek reports 12.6% (125,765 proteins)

without a match in the PDB database (Figures 4.3c and 4.3e). For 2.6% (25,664) there

is both low structural similarity (TM-score ≤ 0.5) and no close sequence homolog (> 30%

identity) (Figure 4.4a and Table A.12). Based on these subsampled estimates, there are

approximately 28 million proteins (12.6% of 225 million) with both high confidence predictions

and TMScore < 0.5 to known protein structures. These results indicate that there are millions

of structures in the atlas that are novel in comparison to known structures, and that ESMFold

can effectively characterize regions of protein space that are distant from existing knowledge.
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Large scale structural characterization also makes it possible to identify structural sim-

ilarities in the absence of sequence similarity. Many high-confidence structures with low

similarity to UniRef90 sequences do have similar structures in the PDB. This remote ho-

mology often extends beyond the limit detectable by sequence similarity. For example,

MGnify sequence MGYP000936678158 has no significant sequence matches to any entry in

UniRef90, nor any significant matches via a jackhmmer [161] reference proteome search, but

has a predicted structure conserved across many nucleases (PDB 5YET_B, TM-score 0.68;

PDB 3HR4_A, TM-score 0.67) (Figure 4.4b and Table A.12); similarly, MGnify sequence

MGYP004000959047 has no significant UniRef90 or jackhmmer reference proteome matches

but its predicted structure has high similarity to experimental structures of lipid binding

domains (PDB 6BYM_A, TM-score 0.80; PDB 5YQP_B, TM-score 0.78) (Figure 4.4c and

Table A.12). The ability to detect remote similarities in structure enables insight into function

that cannot be obtained from the sequence.

All predicted structures are available in the ESM Metagenomic Atlas (https://esmatlas.

com) as an open science resource. Structures are available for bulk download, via a program-

matic API, and through a web resource which provides search by sequence and by structure

[162, 5]. These tools facilitate both large scale and focused analysis of the full scope of the

hundreds of millions of predicted structures.

4.5 Conclusions

Fast and accurate computational structure prediction has the potential to accelerate progress

toward an era where it is possible to understand the structure of all proteins discovered in

gene sequencing experiments. This promises new insights into the vast natural diversity of

proteins, most of which is being newly discovered in metagenomic sequencing. To this end

we have completed the first large-scale structural characterization of metagenomic proteins.
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This characterization reveals the structures of hundreds of millions proteins that have been

previously unknown, millions of which are potentially novel in comparison to experimentally

determined structures.

As structure prediction continues to scale to larger numbers of proteins, calibration

becomes critical, since when the throughput of prediction is limiting, the accuracy and speed

of the prediction form a joint frontier in the number of accurate predictions that can be

generated. Very high confidence predictions in the metagenomic atlas are expected to often be

reliable at a resolution sufficient for insight similar to experimentally determined structures,

such as into the biochemistry of active sites [163]. For many more proteins where the topology

is predicted reliably, insight can be obtained into function via remote structural relationships

that could not be otherwise detected with sequence.

The emergence of atomic level structure in language models shows a high resolution

picture of protein structure encoded by evolution into protein sequences that can be captured

with unsupervised learning. ESM-2 is the result of our work over several years focusing on

emergence of biological properties, and is the first time a language model has been shown to

learn structure at an atomic resolution. Our current models are very far from the limit of

scale in parameters, sequence data, and compute that can in principle be applied. We are

optimistic that as we continue to scale there will be further emergence. Our results showing

the improvement in the modeling of low depth proteins point in this direction.

ESM-2 results in an advance in speed that in practical terms is up to one to two orders

of magnitude, which puts far larger numbers of sequences within reach of accurate atomic

level prediction. Structure prediction at the scale of evolution can open a deep view into

the natural diversity of proteins, and accelerate the discovery of new protein structures and

functions.
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Figure 4.3: Mapping metagenomic structural space. (A) ESMFold calibration with AlphaFold2 for
metagenomic sequences. Mean pLDDT is shown on the x-axis, and LDDT to the corresponding
AlphaFold2 prediction is shown on the y-axis. Distribution is shown as a density estimate across a
subsample of ∼4K sequences from the MGnify database. (B) The distribution of mean pLDDT values
computed for each of ∼617 million ESMFold-predicted structures from the MGnify database. (C) The
distribution of the TM-score to the most similar PDB structure for each of 1 million randomly sampled
high confidence (mean pLDDT > 0.7 and pTM > 0.7) structures. Values were obtained by a Foldseek
search, which does not report values under 0.5 TM-score [5]. (D) This sample of 1 million high-confidence
protein structures is visualized in two dimensions using the UMAP algorithm and colored according to
distance from nearest PDB structure, where regions with low similarity to known structures are colored
in dark blue. Example protein structures and their locations within the sequence landscape are provided;
see also Figure 4.4 and Table A.12. (E) Additional UMAP plot in which the 1 million sequences are
plotted according to the same coordinates as in (D) but colored by the sequence identity to the most
similar entry in UniRef90 according to a blastp search.
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Figure 4.4: Example ESMFold structure predictions of metagenomic sequences. (A) Example predicted
structures from six different metagenomic sequences; also see Table A.12. Left of each subfigure: The
prediction is displayed with the AlphaFold2 prediction (light green). Right of each subfigure: The
prediction is displayed with the Foldseek-determined nearest PDB structure according to TM-score. (B,
C) Examples of two ESMFold-predicted structures that have good agreement with experimental structures
in the PDB but that have low sequence identity to any sequence in UniRef90. (B) The predicted structure
of MGYP000936678158 aligns to an experimental structure from a bacterial nuclease (light brown, PDB:
3H4R), while (C) the predicted structure of MGYP004000959047 aligns to an experimental structure
from a bacterial sterol binding domain (light brown, PDB: 6BYM).
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5 | A high-level programming

language for generative

protein design

5.1 Introduction

Protein design would benefit from the regularity, simplicity, and programmability provided by

a basic set of abstractions [164, 165, 166, 167] like those used in the engineering of buildings,

machines, circuits, and computer software. But unlike these artificial creations, proteins

cannot be decomposed into easily recombinable parts because the local structure of the

sequence is entangled in its global context [168, 169]. Classical de novo protein design has

attempted to determine a fundamental set of structural building blocks, which could then

be assembled into higher-order structures [26, 27, 28, 29, 170]. Likewise, traditional protein

engineering often recombines segments or domains of natural protein sequences into hybrid

chimeras [30, 31, 32]. However, existing approaches have not been able to achieve the high

combinatorial complexity that is necessary for true programmability.

We show modern generative models realize these classical goals of modularity and pro-

grammability at a new level of combinatorial complexity. Our idea is to place the modularity

and programmability at a higher level of abstraction, where a generative model bridges the
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Figure 5.1: Overview of the high-level programming language and the optimization algorithm. (A)
We propose a high-level programming language in which each program consists of (1) a syntax tree
(corresponding to a set of nonterminal and terminal production rules) that enables modular and hierarchical
organization of protein subunits and (2) a set of constraint functions that can be defined at each node
of the syntax tree, where a given constraint is applied to the entire subtree rooted at the corresponding
node. (B) This program is then compiled to a single energy function, which in our study is a simple linear
combination of the specified constraint functions. The energy function is used to guide an optimization
procedure based on simulated annealing, of which a key component is the use of an accurate and efficient
structure predictor to evaluate the energy function at each step of the optimization. The same energy
function can guide multiple optimization trajectories. (C) Each of these trajectories produces a protein
sequence design and an associated predicted structure. These sequences and predicted structures can
then be evaluated downstream using in silico and experimental metrics.
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gap between human intuition and the production of specific sequences and structures. In this

setting, the protein designer needs only to recombine high-level directives, while the task of

obtaining a protein that fulfills those directives is placed on the generative model.

We propose a programming language for generative protein design, which allows a designer

to specify intuitive, modular, and hierarchical programs. We show that high-level programs

can be translated into low-level sequences and structures by a generative model. Our approach

leverages advances in protein language models, which learn structural information [16, 171]

and the design principles of proteins (see accompanying paper by Verkuil et al.).

In this study, our specific implementation is based on an energy-based generative model.

First, a protein designer specifies a high-level program consisting of a set of hierarchically

organized constraints (Figure 5.1a). Then, this program compiles to an energy function that

evaluates compatibility with the constraints, which can be arbitrary and non-differentiable

(Figure 5.1b). We apply constraints on structure by incorporating atomic-level structure

predictions, enabled by a language model, into the energy function. This approach enables

the generation of a wide set of complex designs (Figure 5.1c).

The use of a high-level language allows the protein designer to systematically reason about

the design space and specify very general, modular, and composable programs. To demonstrate

this, we generate proteins that realize a variety of constraints that include secondary structure,

symmetry, multimerization, and atomic-level coordination in the predicted structures.We

apply these constraints in complex, hierarchical settings, where we can enumerate a space

of highly idealized forms that have low similarity to natural structures. As de novo design

progresses to more complex proteins and protein assemblies, high-level abstractions such as

the programming language described in this study should facilitate the systematic exploration

and design of complex artificial proteins.
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5.2 A generative programming language for

protein design

We introduce a high-level programming language for generative protein design. This language

first requires a syntax tree (Figure 5.1a) consisting of terminal symbols (i.e., the leaves of

the tree) that each corresponds to a unique protein sequence (which is potentially repeated

within the protein) and nonterminal symbols (i.e., the internal nodes of the tree) that enable

hierarchical organization. Second, the language requires a set of constraints: at each node in

the tree, a protein designer can specify any number of constraints, which are applied to the

entire subtree. The syntax tree and its constraints fully specify a program in our high-level

language. We provide a more extended description of this language in the Methods section.

Each program is compiled into an energy function that specifies a generative model for

that program in the form of a distribution

pθ(x) =
exp(−Eθ(x))

Z(θ)

over protein sequences x conforming to the program. The constraints are encoded as weighted

terms that are additively combined into the total energy. Since the partition function Z,

which is a function of the parameters θ, is intractable, low temperature samples can be taken

with MCMC and simulated annealing (Figure 5.1b). The generative capacity of this approach

is built on recent developments in deep learning for protein biology. Specifically, each step

in the optimization loop has access to a fast and accurate atomic-level structure prediction

enabled by the ESM-2 protein language model.

Given a single program, the generative model can create potentially diverse designs that

fulfill the user-specified constraints (Figure 5.1c). These constraints can be arbitary and

nondifferentiable, and can span multiple scales of biological complexity, from atomic-level
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coordinates to abstract plans of the protein including the overall topology and symmetry.

This approach allows the model to propose diverse solutions where many potential designs

may satisfy the program. By leveraging an expressive model of structure in a generative

capacity, the resulting designs respect the various constraints individually and are also globally

coherent.

5.3 Results

5.3.1 Full-protein constraints

We first demonstrate that our approach can design proteins where the constraints are simply

applied to the entire sequence and structure without any hierarchical organization. An

especially valuable constraint, which we apply generally across all our design efforts, steers

the optimization toward predicted structures with higher model confidence, i.e., high pTM

and mean pLDDT. For proteins that we desire to have soluble, monomeric expression, we also

steer the optimization to minimize hydrophobic residues that are solvent-exposed (Methods).

Using only these constraints on structural confidence and hydrophobic residue placement, our

model is able to generate or “freely hallucinate” [34] high-confidence structures (Figures 5.2a

and 5.2b); across 200 seeds, all optimization loops produced predicted structures with an

ESMFold mean pLDDT greater than 0.7 (Figure 5.2B). Of these, a large portion (44, or 22%)

also had high predicted confidence (pLDDT > 0.7) by single-sequence AlphaFold2 [3] (Figure

5.2c), a separate structure prediction model that was not used in our optimization procedure.

Our objective function also enables other full-protein constraints, such as specifying the

positions of the backbone atoms while allowing the algorithm to design the corresponding

sequence, a design task referred to as fixed backbone design [74]. To achieve this, we can

add a term to the energy function that minimizes the root-mean-square deviation (RMSD)
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Figure 5.2: Programming full-protein or partial constraints. (A) A graphical representation of a program for
protein “free hallucination” (left) along with three example designed structures (right). (B) The distribution of
ESMFold pLDDT values over 200 free-hallucinated structures. Of these, 100% have good confidence (ESMFold
pLDDT > 0.7). (C) The distribution of single-sequence AlphaFold2 (ssAF2) over the same 200 structures; note
that ssAF2 was not used in the design procedure. Of these, 22% have good confidence (ssAF2 pLDDT > 0.7).
(D) A graphical representation of a program for fixed backbone design (left) along with example designs for six de
novo target backbones. The experimental backbone is colored gray; the designed backbone is colored by ESMFold
pLDDT. (E) For each target backbone, the distribution of the ESMFold pLDDT values of the final designs from
50 or more fixed backbone design seeds is plotted as a boxplot (for all boxplots in this figure, the box extends
from first to third quartile, black line indicates the median, and whiskers indicate 2.5 times the interquartile range)
with each seed also plotted as a black circle. A horizontal red line indicates pLDDT = 0.7. (F) For each target
backbone, the distribution of RMSD values between the target and design backbone atoms from 50 or more fixed
backbone design seeds is plotted as a boxplot with each seed also plotted as a black circle. A horizontal red line
indicates RMSD = 2.5 Å. (G) A graphical representation of a program for designing a protein with mixed secondary
structure (top) along with example designs in which secondary structure was explicitly specified (bottom). (H)
Top-left: A graphical representation of a program for functional site scaffolding. Top-right: For each scaffolded
binding site, the distribution of RMSD between the native and designed binding site atoms (including side chains)
from 2,000 seeds is plotted as a boxplot. A horizontal red line indicates RMSD = 2 Å. Bottom: Example designs
that achieve sub-angstrom atomic coordination in the scaffolded binding site atoms, high model confidence in the
associated scaffold, and low similarity (quantified by TM-score) to the natural protein.
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between the corresponding designed and target backbone atoms (Methods). Our simulated

annealing procedure successfully produces high-confidence designs with low RMSD (< 1.6 Å)

across diverse de novo backbones (Figures 5.2d and 5.2e), and can do so reproducibly over

different optimization runs (Figure 5.2f).

5.3.2 Partial constraints

We next sought to increase the complexity of our designable space by varying the constraints

enforced on different parts of a protein. For example, a simple mixed-constraint setting is to

specify a two-domain protein with different combinations of secondary structure composition

(Figures 5.2g and A.20a–A.20c). In our programs, we can represent this setting by a syntax

tree containing two or more subtrees, where different constraints are only applied within the

discrete subtrees.

A more complex mixed-constraint setting is to design functional proteins by constraining

one region of the protein design to have the same all-atom positions (including protein side

chains) as a functional site from nature, while allowing the design procedure to freely generate

the remainder of the protein; this design setting is sometimes referred to as functional site

“scaffolding” [159]. Importantly, in contrast to fixed backbone design, in which constraints

are only placed on backbone atomic coordinates, functional site scaffolding requires con-

straints on side-chain atoms as well, since these are critical to achieving function. Because

our optimization procedure produces an all-atom structure prediction at each step of the

optimization, we can readily incorporate this constraint as part of the energy function by

minimizing the all-atom RMSD between the natural and designed atomic coordinates of the

functional site (Methods).

Across functional sites involving sequence-contiguous or -discontiguous residues from a

variety of natural proteins, our algorithm is able to produce designs that scaffold the site

with sub-angstrom RMSD between the experimental and predicted structure in three out of
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five functional sites attempted (Figures 5.2h and A.20d). Moreover, the algorithm produces

designed scaffolds that depart from the native protein (Figure 5.2h). The ability to move

natural functional sites onto designed backbones has many practical applications, including

the design of functional proteins that are smaller or stabler than their natural counterparts.

5.3.3 Symmetric and multimeric group constraints

Beyond proteins containing partial constraints, we next increase the complexity of our

protein designs by generating structures that contain constraints over multiple subunits. A

foundational design task for the generation of idealized, de novo proteins is to constrain

structural symmetry [26, 160]. To generate symmetric proteins, we first enforce the notion

of a repeated unit that is repeated K times when designing a K-fold symmetry (where we

can control the value of K). To guide the optimization toward symmetric structures, we add

various constraints on the distances among the centroids of each repeated unit as part of

the energy function (Methods). In our high-level language, a symmetric protein would be

encoded by repeating the same non-terminal symbol K times (corresponding to the repeated

unit); the symmetry constraint is then placed at the level of the syntax tree containing these

repeated non-terminals (Figure 5.3a).

Using these symmetric constraints, we show that we can program the level of symmetry

within a protein design. When directed to design 3- to 8-fold symmetry, the generative

model produces a diverse set of high-confidence structures (Figures 5.3b, A.21a, and A.21b),

including folds that have common analogs in nature (including coiled-coils, beta propellers,

beta sandwiches, beta barrels, and TIM barrels) as well as highly-idealized designs that

are different from natural structures, including a pentagonal star-shaped protein (with a

TM-score of 0.48 to the nearest PDB structure 3S38; row 1 and column 3 in Figure 5.3b)

and a cube-shape protein (nearest-PDB TM-score of 0.51 to PDB 7DEG; row 2 and column
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Figure 5.3: Programming symmetry and homo-oligomerization. (A) A graphical representation of a program for
designing a single protein chain with 3-fold symmetry based on a repeated subsequence. (B) Example designs
varying fold symmetry from 3- to 8-fold. (C) 1000 randomly sampled symmetric protein designs were “roundtripped”
by sampling ten sequences via ESM-IF1 inverse folding [6] of their backbones followed by ESMFold structure
prediction. The ESMFold pLDDT of the starting backbone is indicated on the horizontal axis. The lowest of the
10 RMSDs comparing the starting and roundtripped backbone atoms is indicated on the vertical axis. Blue lines
indicate density contours and hexagonal bins are darker with greater density. We observed that a more confident
design is associated with roundtrip success. (D) 1,000 randomly sampled inverse folding samples are plotted
according to their ESM-IF1 perplexity on the horizontal axis and their roundtrip RMSD on the vertical axis. We
observed that a lower perplexity sequence is associated with roundtrip success. (E) Example homo-oligomers with
increasing numbers of individual protomers. The tetrameric, hexameric, and octameric oligomers depicted here
form globular polyhedral shapes rather than the rotational symmetry of designs in (B).
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Figure 5.4: Programming two levels of symmetry. (A) A graphical representation of a program for
designing two levels of symmetry in which a homo-oligomeric symmetric dimer represents the top level
of symmetry and each unit within the dimer also has two-fold symmetry. (B) Example oligomers with
two levels of symmetry, in which we procedurally enumerate across a grid in which we vary the top-level
symmetry across the rows and the bottom-level symmetry across the columns. Discrete chains are
indicated by different colors. (C) 1,000 randomly sampled two-level symmetric protein oligomer designs
were “roundtripped” by sampling ten sequences via ESM-IF1 inverse folding [6] of their backbones
followed by ESMFold structure prediction (Methods). The ESMFold pLDDT of the starting backbone is
indicated on the horizontal axis. The lowest of the 10 RMSDs comparing the starting and roundtripped
backbone atoms is indicated on the vertical axis. Blue lines indicate density contours and hexagonal bins
are darker with greater density. We observed that a more confident design is associated with roundtrip
success. (D) 1,000 randomly sampled inverse folding samples are plotted according to their ESM-IF1
perplexity on the horizontal axis and their roundtrip RMSD on the vertical axis. We observed that a
lower perplexity sequence is associated with roundtrip success.
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2 in Figure 5.3b). The highlighted symmetric proteins in Figure 5.3b have nearest-PDB

TM-scores ranging from 0.47 to 0.86, with a median TM-score of 0.64; TM-scores for all seeds

are plotted in Figure A.21c.

To increase our confidence that these idealized structures correspond to valid and des-

ignable backbones, we observe that sampling sequences via inverse folding with the ESM-IF1

and ProteinMPNN models [6, 158] followed by structure prediction of the sequence samples

can reproducibly recover the original backbone geometry (Methods), in many instances with

sub-angstrom backbone-atom RMSD. To increase our confidence that a successful “roundtrip”

through inverse folding indicates designable backbones, we observe that high confidence

designs indicates better roundtrip success (Figures 5.3c and A.21d) and that the ability to

sample a low perplexity sequence also indicates roundtrip success (Figure 5.3d).

Beyond single-chain symmetries, we can also design multimeric proteins similarly. We

enforce the notion of single or multiple chains in our programming language with a “single

chain” constraint that dictates that all terminal elements in a subtree belong to the same chain

(Methods); to design multimeric proteins, we need only remove this constraint. Example

multimeric symmetric proteins involving 4- to 8-mers are provided in Figure 5.3e.

5.3.4 Hierarchical constraints

Formalizing our constraints into a syntax tree naturally enables the specification of hierarchical

constraints, which enables more complex protein designs. As an initial demonstration, guided

by our high-level language’s formalization, we design different levels of symmetry at two

levels of hierarchy, where the lower level of symmetry is specified within a chain and the

upper level of symmetry is specified among protomers in a homo-oligomer (Figure 5.4a). We

procedurally enumerate over examples that range from a dimer of units with 2-fold symmetry

to a tetramer of units with 4-fold symmetry (Figures 5.4b, A.22a, and A.22b). As in the

single-chain symmetric design setting, we observe successful structure prediction roundtrips
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Figure 5.5: Programming complex hierarchical constraints. (A) A graphical representation of a program
for scaffolding three functional sites in which those sites have a 3-fold symmetry. (B) Example 3-fold
symmetric scaffolds for the IL10 and ACE2 binding sites that achieve sub-angstrom RMSD averaged
across the three sites. (C) A graphical representation of a program that specifies an asymmetric protein
complex consisting of two pairs of chains. Each pair is constrained to have 2-fold symmetry between the
constituent chains. Furthermore, each constituent chain itself has 2-fold symmetry. (D) A generated
protein structure as specified by the program depicted in (C). Discrete chains are indicated by different
colors. (E) A generated protein structure as specified by the program depicted in (C) except where
one of the pairs has constituent chains that have three-fold symmetry. Discrete chains are indicated by
different colors. (F) A generated protein structure as specified by the program depicted in (C) except
where one of the pairs is replaced with a symmetric trimer (where each constituent chain in the trimer
has two-fold symmetry). Discrete chains are indicated by different colors.
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through inverse folding, and that both high-confidence predicted structures and low inverse

folding perplexity indicate roundtrip success (Figures 5.4c and 5.4d). Many of the designs

with two levels of symmetry have low overall similarity to structures in the PDB; for example,

a dimer of 2-fold symmetry in which opposing beta sheets form a regular checkerboard

pattern (nearest-PDB TM-score of 0.49 to PDB 3W38; row 1 and column 1 in Figure 5.4b).

The highlighted homo-oligomers of two-level symmetry in Figure 5.4b have nearest-PDB

TM-scores ranging from 0.25 to 0.52, with a median TM-score of 0.48; TM-scores for all seeds

are plotted in Figure A.22c.

Another hierarchical design setting is to combine the function-scaffolding and the symmet-

ric design tasks described above, as some functions are enhanced by repetition of a functional

site; for example, when improving the strength of a binding interaction, multiple binding

sites on a protein could synergize such that the overall binding avidity is greater than the

sum of the individual affinities [172]. This task requires two levels of hierarchy: the top

level specifies symmetry while the bottom level specifies the side-chain atomic coordination

constraint (Figure 5.5a). With this corresponding program, we can generate designs in which

an atomic-level constraint is enforced on multiple functional sites over the protein, the overall

protein organization is constrained to be symmetric, and we can control the level of designed

symmetry (Figures 5.5b and A.23a–A.23c).

We lastly show that we can specify protein designs that have even deeper levels of

hierarchy in their constraints (Figure 5.5c) by designing protein assemblies that combine

both symmetry and asymmetry. For example, we designed a protein complex composed of

four units in which a pair of the chains are symmetric to each other (and each unit internally

has two-fold symmetry) and where another pair of chains are symmetric to each other (and

each unit also internally has two-fold symmetry), but the two pairs are asymmetric to each

other (Figures 5.5c, 5.5d, A.23d, and A.23e). Our high-level programming language readily

enables us to control the complexity of the generated complexes such that, for example, one
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of the pairs consists of chains with three-fold symmetry (Figure 5.5e) or that the complex

consists of five chains (a pair of symmetric chains of two-fold symmetry asymmetrically

complexed with a triple of symmetric chains of two-fold symmetry) (Figure 5.5f). We find

that our optimization procedure can produce designed structures consistent with all of these

hierarchical specifications.

5.4 Related work

This paper is related to classical work that attempts to (i) classify a set of common sequence or

structure motifs [166, 167] and (ii) combine these motifs to generate new proteins [26, 27, 28,

29, 30, 31, 32, 170]. More recently, deep-learning-based methods have increased the complexity

of designable structures [34, 159, 160] and machine-learning-based generative models have

shown increasingly sophisticated design capabilities. These include sequence-based Potts

models and autoregressive language models for designing sequences [173, 77, 174], Markov

Chain Monte Carlo algorithms combined with structure prediction for jointly designing

sequences and structures [34, 159, 160], inverse folding models that use structural backbone

coordinates to design sequences [6, 158], and concurrent work using diffusion models for

designing protein backbones [175, 176]. A key contribution of this study is to combine the

modularity aspired to by classical methods with the power of modern generative models, in

particular leveraging improvements in the accuracy and efficiency of language-model-based

protein structure prediction [171].

5.5 Discussion

In this study, we show that generative artificial intelligence enables high-level programmability

at a new level of combinatorial complexity. We propose a programming language that can
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express high-level programs for the design of proteins at diverse biological scales, including

atomic-level coordinates, secondary structure, and high-level symmetries within single chains

and the units of self-assembling multi-chain complexes. We show that programs written in

the abstract language can be compiled into an energy function and that the corresponding

generative model is capable of fulfilling complex constraints within an overall coherent

structure.

We demonstrate programs of increasing levels of complexity, including the design of

homo-oligomers with two levels of symmetry, symmetric functional scaffolds, and asymmetric

complexes of subunits that themselves have two levels of symmetry. The approach reveals a

large space of idealized protein designs created from top-down design principles. Especially

as the complexity of the constraints increases, many of the corresponding designs are highly

idealized, analogous to the regularity of artificially created machines and systems.

Our computational results using two independent inverse folding methods suggest that

the generated structures are designable, since inverse folding models have demonstrated high

experimental success rates [158]. We are also obtaining data to experimentally validate the

designs.

More broadly, the formalization offered by a high-level programming language enables

logical design principles to be applied to protein design as in other fields of engineering.

This has been especially challenging in biology due to the way that the amino acid sequence

opaquely encodes the structure and function. As protein design moves toward the engineering

of more complex functions, we anticipate that such a system will become increasingly useful.
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6 | Conclusion

This dissertation started with the idea of modeling protein sequences and structures via

four topics. To reiterate, these are (a) learning distributions of protein sequences, (b)

learning distributions of protein structures, (c) predicting protein sequence from a given

protein structure backbone, and (d) predicting the protein structure directly from the protein

sequence alone.

We showed that neural models are capable of modeling proteins holistically. By using a

VQ-VAE, we are able to model the distribution of protein structures. Generating synthetic

data allows us to build models of protein sequences given a structure and achieve state of

the art fixed backbone protein design results. Scaling language models allow us to build

distributions of protein sequences, and building a structure prediction model on top allows

us to make predictions of protein structures given a sequence. These models are shown to

be capable of generalizing outside of natural proteins, to make predictions that cannot be

found in genetic or structural databases. Finally, we jointly design proteins via inverting our

structure prediction model.

Throughout this work, we released a set of open sourced tools to be used by biologists

in downstream applications. ESM-IF1 is an inverse folding model that takes advantage of

additional data to improve on existing models. ESM2 and ESMFold are respectively an

open sourced protein language model and structure prediction model. ESM2 is a capable

representation learning model that can be finetuned on a multitude of tasks such as property
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prediction, mutation effect prediction, binding, and so on. ESMFold has been similarly

integrated into various tools such as HuggingFace and ChimeraX. The speed of the model

enables webservers to provide protein structure predictions almost instantaneously, giving

scientists the unprecedented option of examining a high quality guess at a protein structure

the moment the sequence is known.

ESM2 and ESMFold was very well received by the academic community. To name a few

examples, Zheng et al. [177] incorporates ESM2 to improve fixed-backbone protein design,

and Fang et al. [178] improves protein binding site prediction with ESMFold. ESMFold

has been used in the processes of designing a PD-L1 binder [179], in studying malignant

melanoma [180], identifying the likelihood of a de novo protein design in folding properly

[181], and in studying a RNA virus [182] . ESM embeddings have also been used in B-cell

epitote prediction [183], improving RNA-seq cell embeddings [184], and automated model

building in CryoEM maps [185]. We hope our models will continue to contribute to biology

and eventually lead to improvements in human health and well being.

6.0.1 Future Work

There has been enormous progress on modeling proteins since the start of this dissertation.

We are now able to generate arbitrary protein chains, condition the generation on arbitrary

constraints, and design proteins to perform any function we choose. Using protein language

models, in silico design can progress significantly faster. It would seem to some that protein

modeling is largely a solved science, but in actuality, we still have a lot of work ahead of us.

Protein chains are often the building blocks of large molecular machines. Being capable

of modeling single chains does not allow us to build the complex machines that transcribe

DNA into RNA (DNA Polymerase) or break apart proteins (proteosome). As said in the

introduction, current data sources depend on crystallography, which by nature imposes

that the protein structures must be static. Working on large complexes will necessitate
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improvements in data collection and molecular imaging techniques. Along with complexes, it

is also difficult to produce data for small molecules, DNA, and RNA. Again, better data is

key to learning good distributions over these other molecules that proteins interact with.

Additionally, even though learning sequence distributions over natural sequences correlate

to function, it’s unclear how much this extends to adversarial systems in biology and de

novo proteins. For example, viruses and antibodies are in constant co-evolution with each

other, continually evolving to bypass each other’s attacks and defenses. A fixed point of

"higher function" might not exist for such systems. Additionally, we might want to design

proteins that really break correlation with evolutionary fitness by creating proteins that work

in environments not known to nature. Feedback through wet-lab experimentation will be

important to understand these proteins.

Finally, the explosion in biological data in single cell RNA-seq, cryo EM, and epigenetic

measurements means that there are other modalities to consider in order to better understand

biology. The interactions between genes, proteins, and cellular environments is a web that

cannot be understood through studying proteins alone. Many important diseases are only

understood from interactions between multiple protein targets, and drugs can only be designed

by considering the full system. Studying these other modalities along with protein modeling

will be key to engineering future biological systems.

6.0.2 Retrospective

Work on protein understanding has been continuous since the start of this dissertation. When

I started working on this topic in early 2019, state of the art methods often used the dynamic

programming techniques of MSAs, and protein understanding was restricted to the family of

proteins around a sequence. Structure prediction was still a "grand challenge," and it was

hard to imagine that in a few years, designing proteins with arbitrary constraints can be done

in an afternoon. A PhD student can now create structure prediction models, and generative
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models of protein structures have become easy to build.

However, there’s still a big gap between what can be done on a computer and wet-lab

experimentation. It’s still hard to obtain protein structures for sequences, to perform assays

on arbitrary sequences, and to fully design one that can work as a drug. We are really just

entering into the age where biology is becoming a field of engineering, and I am excited to

see what continued work in this field can bring.
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A | Appendix

A.1 Deep generative models of protein structure

create new and diverse proteins

A.1.1 Training and model details

We train an encoder-decoder convolutional network in almost all cases. In all cases we use a

residual network (resnet) for the encoder. The encoder resnet is a stack of several bottleneck

residual blocks [45] followed by a downsample, repeated 7 times until we obtain a 1× 1 map,

which is fed into the decoder as the initial latent variable. The HVAE and VQ-VAE have

shortcut connections at coarser resolutions from the encoder to the decoder, where each

shortcut connection is either a Vector Quantization layer or stochastic sampling layer via the

reparameterization trick. These intermediate latent variables are output at up to a 32× 32

resolution.

Model selection was done in all cases by a randomized hyperparameter sweep, generating

30 structures, and selecting the model with the lowest Rosetta energy of that model class.

The output of the decoder trunk is always routed to an individual 2 layer MLP to output

the final predictions for each of the distogram and (interresidue or backbone) angle predictions.

Backbone angles are predicted via averaging across the heights and width of the distogram,

and then averaging the logits obtained from each of the height and width predictions.
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Figure A.1: Top Distograms: we filter generations to negative rosetta energy and greater than 1
MR/LR contacts per residue. These are a random sample of such distograms
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Figure A.2: Random distograms: We show a random sample of all generated distograms by each
model
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Figure A.3: Random structures: We show, correspondingly to Figure A.2, the results of constrained
folding on those distograms. We color α-helices red, β-sheets blue, and coils green. Most baseline
generations are unstructed coils.
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We also found that for spatial latent variables, it was important to symmetrize the latent

variables post-hoc, as well as symmetrizing the predictions via a simple average.

We explored the following hyperparameters for all models:

• Architecture (see next paragraphs). This is defined by the number of residual blocks

per resolution (“stack” of residual blocks, between each of the 7 downsampling steps).

• Initial channel dimension (64, 128, 196, 256).

• Most resnets increase in the channel dimension as the encoder decreases in resolution,

and vice versa for the decoder. We varied with which layer to start increasing the

channel dimension. We start doubling the channel dimension at resolution (32× 32,

16× 16,8× 8)

• Parameters in distogram, angle, and sequence prediction branches. We tried a simple

linear model, a MLP, and a few layers of dilated convolutions, as well as varying widths.

We chose the MLP head in all cases.

• Representation of the output space. We also implemented the discrete logistic mixture

distribution from [186], but we choose the typical categorical distribution.

• We use Adam in all cases but sweep across different learning rates. We selected e ∗ 10−4

in all cases, as it seemed to train stably for all models.

Architecture specification In this section, we will specify the encoder and decoder

with a list of 8 numbers, corresponding to the number of bottleneck residual blocks [187]

between the 7 downsampling steps. The first number always refers to the blocks that work

at a 128 × 128 resolution, and the last number always refers to the block that works at a

1× 1 resolution. There is a downsampling operation between the stacks of blocks. We mainly

83



varied whether the majority of the compute is at the coarse or fine resolutions. The final

choices are specified below.

Conv-VAE The encoder is the same as MLP-VAE. The decoder consists of 61 convolutional

blocks of size 3×3. We upsample and replicate the single latent variable to the 128×128 sized

output concatenated with a Sinusoidal positional embedding. This model is 89M parameters.

For MLP-VAE and Conv-VAE baselines, we experimented with annealing the coefficient

on the KL divergence term from 0 at the start of training. We found that annealing was

critical to stable training - the cyclic annealing schedule of [188] was helpful in stable model

training across a range of hyperparameters, so this was used in all models reported, with

4 cycles through the first half of the training. We experimented with large models, batch

sizes, learning rates, and latent variable sizes. We also experimented with VAE variants like

β-VAE [189] and Deterministic Regularized Autoencoders [190], but found little effect on the

generation quality.

MLP-VAE The encoder is a stack of convolutional blocks: [3, 3, 3, 3, 3, 3], with an

intial hidden size of 64 and doubling every time a downsample.

For MLP-VAE, we found it impossible to train with a flattened structure. Taking

inspiration from [46], we run three residual MLP layers, across the height, width, and channel

dimensions. We found that this was able to converge more consistently.

Define an residual MLP block as a sequence of (LayerNorm, Linear, GeLU, Linear)

operations. A MLP stack is 3 MLP blocks, the first over the height dimension, the second

over the width dimension, and the third over the channel dimension.

We upsample and replicate the single latent variable to the 128 × 128 sized output

concatenated with a Sinusoidal positional embedding. The decoder is then 21 MLP stacks

with a hidden dimension of 128. This model is 88M parameters.
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HVAE The HVAE model, results in a step function in generation quality over previous

models, generating a much larger proportion of α-helices.

In order to implement the hierachical VAE as specified in [50, 51], we used an upsampling

convolutional decoder. Between each stack, there is an upsampling operation. In both HVAE

and HVAE-BB, we output a 1× 1 latent variable, and 2 sets of latent variables at a 4× 4

resolution, one at the start of the stack and one at the end.

The encoder for HVAE is [4, 4, 4, 8, 8, 32, 4, 1]. The decoder is [4, 4, 4, 8,

12, 32, 4, 1]. The model is 101M parameters.

The encoder for HVAE-BB is [1, 1, 4, 8, 8, 24, 20, 1]. The decoder is [1, 4, 8,

12, 12, 28, 20, 1]. The model is 115M parameters.

The model architectures were determined via random hyperparameter sweeps as specified

above. We also tried to vary the number of output latent variables, trying up to 20. The

reconstruction loss and ELBO did indeed improve with the number of latent variable scales,

but the generation quality did not.

VQ-VAE Similar to the HVAE, we output a latent variable at specific scales. This latent

variable is quantized through the Vector Quantization layer of [52].

For the decoder, we stack all encoded latent variables, upsampled to the finest resolution

output by the encoder, and run it through the same upsampling convolutional blocks as

described above. We use 512 quantized latent variables with dimensionality 64 in all cases.

For VQ-VAE, the encoder is [2, 2, 2, 2, 2, 2, 2, 1], outputting latent variables at

the 1 × 1 and 32 × 32 scales. The decoder is [4, 4, 4, 4], since the input starts at the

32× 32 scale. The model is 114M parameters.

For VQ-VAE-BB, the encoder is [2, 2, 2, 2, 2, 2, 2, 1], outputting latent variables

at the 1× 1, 4× 4 and 16× 16 scales. The decoder is [4, 4, 4, 4], since the input starts

at the 32× 32 scale. The model is 115M parameters.
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In both cases, for pθ(x), we use an autoregressive, 6 layer vanilla transformer decoder

[89] to learn the prior. We use 6 layers with a channel dimension of 512 over 8 heads. This

worked robustly, so we only searched through dropout in order to better regularize our models.

However, we found that models overfit to the training set provided better generations, so

we report only results with the overfit priors in this work. More exploration to explain this

phenomenon is needed. The learned priors are 20M parameters in all cases.

Training procedure We use stratified sampling at the family level during training.

Stratified sampling has been shown to be critical to training large protein language models,

though we did not explore uniform sampling [16]. We also tested results on fold and

superfamily-level structural heldout sets, though we found that there was too much noise

given the small dataset. Furthermore, since their losses were not correlated to Rosetta folding

energies, so we decided not to report on their exact numerical values.

We fix models to work on 128 length proteins. Larger proteins are ignored, as we theorized

that sequence-level cropping would compromise structural integrity. Smaller proteins are

centered and padded.

Variable length generation We use a heuristic to generate structures of varying

lengths. We fit a head on the amino acid identity of each position, and we train with a

"out-of-bounds" label for padding tokens. Then, during generation, we noticed that the

model consistently generated centered distograms. Therefore, we used the heuristic that the

generated protein starts at the first position when p(out-of-bounds) < .2, and ends at the

last position when p(out-of-bounds) < .2.

Compute Costs To find optimal hyperparameters, we used tens of GPUs for 2 days at a

time. Most models can be trained on a single V100 GPU in a few days. Each FastDesign

decoy takes from 3-6 hours to run on a single core. Therefore, one round of designs for 40

86



generations takes approximately 1,500 CPU days.

A.1.2 Structure generation details

Constraints on interresidue distances and orientations We follow the procedure

of Yang, et al. [25] to incorporate constraints into Rosetta folding, with some variations:

1. Generate constraints given the distogram and interresidue angles. (Renormalize distro-

gram such that the minimum logit is -10).

2. Coarse grained folding (9 independent trajectories using centroid energy function).

Followed by fine grained all-atom fold of all 9 trajectories.

3. Best trajectory selected by Rosetta energy.

Constraints on backbone dihedral angles Some models incorporate constraints

on the backbone dihedral angles rather than the interresidue orientations. We discretize the

phi/psi dihedral angles of the backbone into a 25 by 25 grid. Then 10000 samples are drawn

from the grid, and a Von Mises distribution is fit independently to the marginals for phi and

psi. The constraints are upweighted by a factor of 1000 to balance them with the distance

contraints.

A.1.3 Design Verification

Given a generated structure, first we run FastDesign to generate up to 200 sequences. We

run it with RosettaScripts [191], allowing all amino acids and extra rotamer angles with

ALLAA EX 1 EX_CUTOFF 3. We also use the linear memory interaction graph to conserve

memory, and default databases provided by Rosseta.

We run AlphaFold with default parameters. We randomly choose the predicted LDDT

> 0.7 threshold - on average it means the model should be correct until up to 2Å. Only one
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structure that passes the predicted LDDT > 0.7 threshold did not agree with Alpafold. For

many of the structures that Alphafold was not confident on, we discover close matches in

PDB, so it may be the case that FastDesign was not able to find a suitable sequence for our

generated structure.

Figure 2.6 shows many of the designed structures have very low sequence identity with

Uniref90. These are unfiltered designs, so it is unclear if they are all realizable, although in

Figure 2.5 we show that most structures agreed on by our design and AlphaFold have no

MSAs in common.

A.2 Learning inverse folding from millions of

predicted structures

A.2.1 Additional details on datasets, training procedures, and

model architectures

A.2.1.1 Details on dataset of predicted structures

We used training data from two sources: 1) experimental protein structures from the

CATH 40% non-redundant chain set, and 2) AlphaFold2-predicted structures from UniRef50

sequences. To evaluate the generalization performance across different protein folds, we split

the train, validation, and test data based on the CATH hierarchical classification of protein

structures [87] for both data sources. To achieve that a rigorous structural hold-out, we

additionally use foldseek [5] for pairwise TMalign between the test set the train set.

CATH topology split. Following the structural split methodology in previous work [22,

23, 72], we randomly split the CATH v4.3 (latest version) topology classification codes into

train, validation, and test sets at a 80/10/10 ratio. The CATH [87] structural hierarchy,
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classifies domains in four levels: Class (C), Architecture (A), Topology/fold (T), and Homol-

ogous superfamily (H). The topology/fold (T) level roughly corresponds to the SCOP fold

classification.

Experimental structures. We collected full chains up to length 500 for all domains

in the CATH v4.3 40% sequence identity non-redundant set. The experimental structure

data contained only stand-alone chains and no multichain complexes. As each chain may

be classified with more than one topology codes, we further removed chains with topology

codes spanning different splits, so that there is no overlap in topology codes between train,

validation, and test. This results in 16,153 chains in the train split, 1457 chains in the

validation split, and 1797 chains in the test split.

Predicted structures. We curated a new data set of AlphaFold2 [3]-predicted structures

for a selective subset of UniRef50 (202001) sequences. To prevent information leakage about

the test set from the predicted structures, we proceeded in the following steps.

First, we annotated UniRef50 sequences with CATH classification according to the

Gene3D [88] database, also used by Strokach [72] for data curation. Gene3D represents each

CATH classification code as a library of representative profile HMMs. We searched all HMMs

associated with the validation and test splits against the UniRef50 sequences using default

parameters in hmmsearch [192] and excluded all hits.

Additionally, as AlphaFold2 predictions use multiple sequence alignments (MSAs) as

inputs, we also took precaution to avoid information leakage from sequences in the MSAs.

We created a filtered version of UniRef100 by searching all the validation-split and test-split

Gene3D HMMs against UniRef100 (202001) and excluding all hits. Then, we constructed our

MSAs using hhblits [193] on this filtered version of UniRef100. While this filtering step was

out of precaution, in retrospect it was perhaps unlikely for the MSA inputs to AlphaFold2 to

leak information as the MSAs themselves were not seen during training. The filtering step
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may have negatively impacted the quality of the resulting predicted structures, although

empirically only a very small percentage of MSA sequences were filtered out.

As AlphaFold2 predictions are computationally costly, our budget only allowed for

predicting structures for a subset of the UniRef50 sequences. We ranked UniRef50 sequences

based on the distogram lDDT score, based on distogram predictions from MSATransformer [85],

as a proxy for the quality of predicted structures. While the original distogram lDDT score

(Supplementary Equation 6 in [55]) is based on pairwise distances from native protein

structures, in the absence of native structures we use the argmax of pairwise distances instead,

effectively measuring the “sharpness“ of distograms and prioritizing sharper predictions. In

this order, using AlphaFold2 Model 1 on the filtered UniRef100 MSAs described above, we

obtained predicted structures for the top 12 million UniRef50 sequences under length 500,

roughly 750 times the CATH train set size.

We used the publicly released model weights from AlphaFold2 Model 1 for CASP14 as

a single model, as opposed the 5-model ensemble in [3], to cover more sequences with the

same amount of computing resources. We curated the input MSAs from UniRef100 with

hhblits, with an additional filtering step as described above. To reduce computational costs,

compared to the standard AlphaFold2 protocol, we did not include the UniRef90 jackhmmer

MSAs, or the MGnify and BFD metagenomics MSAs, nor the pdb70 templates. Other than

a reduced inputs, we followed the default settings in AlphaFold2 open source code, using 3

recycling iterations and the default Amber relaxation protocol. Despite the reduced inputs,

the resulting 12 million predicted structures still have high pLDDT scores from AlphaFold,

with 75% of residues having pLDDT above 90 (highly confident).

We found that increasing the predicted data size to up to 1 million structures (75 times

the CATH experimental data size) substantially improves model performance. Beyond 1

million structures, models still benefit from more data but with diminished marginal returns

(Figure 3.6a).
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GVP-GNN GVP-GNN-large GVP-Transformer
GVP-GNN embedding dim (node) (100, 16) (256, 64) (1024, 256)
GVP-GNN embedding dim (edge) (32, 1) (32, 1) (32, 1)
Top K neighbors in GVP-GNN 30 30 30
GVP-GNN encoder layers 3 8 4
GVP-GNN decoder layers 3 8
Transformer embedding dim 512
Feedforward embedding dim 2048
Attention heads 8
Transformer encoder layers 8
Transformer decoder layers 8
Total number of parameters 1M 21M 142M

Batch size (tokens per GPU) 3072 4096 4096
GPUs 1 32 32
CATH:AF2 mixing ratio 1:0 40:1 80:1
Epochs until convergence 84 368 178
Train time per epoch (GPU hours) 0.07 24 88
Total train time (GPU days) 0.2 368 653

Optimizer Adam Adam Adam
Learning rate schedule Constant Inverse square root Inverse square root
Peak learning rate 1.0E-03 1.0E-03 1.0E-03
Initial learning rate 1.0E-07 1.0E-07
Warm-up updates 5000 5000
Gradient clipping 4.0 1

Table A.1: Details on model hyperparameters and training.

Noise on AlphaFold2-predicted backbone coordinates. Even after Amber relax-

ation, the backbone coordinates predicted by AlphaFold2 contain artifacts in the sub-Angstrom

scale that may give away amino acid identities. Without adding noise on predicted structures,

there is a substantial gap between held-out set performance on predicted structures and on

experimental structures. To prevent the model from learning non-generalizable AlphaFold2-

specific rules, we added Gaussian noise at the 0.1A scale on predicted backbone coordinates.

The Gaussian noise improves the invariant Transformer performance but not the GVP-GNN

performance (Supplementary Figure A.3).
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A.2.1.2 Details on span masking

We add a binary feature indicating whether each coordinate is masked or not. In GVP-

Transformer, we exclude the masked nodes in the GVP-GNN encoder layers, and then impute

zeros when passing the GVP-GNN outputs into the main Transformer. Imputing zeros for

missing vector features ensure the rotation- and translation- invariance of the model. In

GVP-GNN, we impute zeros for the input vector features, and in the input graph connect

the masked nodes to the k sequence nearest-neighbors (k = 30) in lieu of the k nearest nodes

by spatial distance.

For span masking, we randomly select continuous spans of up to 30 amino acids until

15% of input backbone coordinates are masked. Such a span masking scheme has shown to

improve performance on natural language processing benchmarks [90]. The span lengths are

sampled from a geometric distribution Geo(p) where p = 0.05 (corresponding to an average

span length of 1/p = 20). The starting points for the spans are uniformly randomly sampled.

Compared to independent random masking, span masking is better for GVP-Transformer

but not for GVP-GNN (Table A.3).

For the amino acids with masked coordinates, we exclude the corresponding nodes from

the input graph to the pre-processing GVP message passing layers, and then impute zeros for

the geometric features when passing the GVP outputs into the main Transformer. Imputing

zeros for missing vector features ensure the rotation- and translation- invariance of the model.

A.2.1.3 Details on model architectures

Autoregressive modeling. GVP-GNN and GVP-Transformer both have encoder-

decoder architectures. The encoder only receives the structural features. The decoder

receives the encoder output along with the one-hot encoding of the amino acids. In the

autoregresive decoder, sequence information only propagate from amino acid i to j for i < j.
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The last decoder layer produces a 20-way scalar output per position and softmax activation

to predict the probabilities for the amino acid identity at the next position in the sequence.

Invariance to rotation and translation. The input features for both GVP-GNN

and GVP-Transformer are translation-invariant, making the overall models also invariant to

translations.

Each GVP-GNN layer is rotation-equivariant, that is, for a vector feature x and any

arbitrary rotation T , Tf(x) = f(Tx). With equivariant intermediate layers and an invariant

output projection layer, GVP-GNN is overall invariant to rotations, since the composition of

an equivariant function f with an invariant function g produces an invariant function g(f(x)).

The GVP-Transformer architecture is also invariant to rotations and translations. The

initial GVP-GNN layers in GVP-Transformer output rotation-invariant scalar features

and rotation-equivariant vector features for each amino acid. To make the overall GVP-

Transformer invariant, we perform a change of basis on GVP-GNN vector outputs to produce

rotation-invariant features for the Transformer. More specifically, for each amino acid, we

define a local reference frame based on the N, CA, and C atom positions in the amino acid,

following Algorithm 21 in AlphaFold2 [3]. We then perform a change of basis according to

this local reference frame, rotating the vector features in GVP-GNN outputs into the local

reference frames of each amino acid. (If GVP-GNN outputs are used directly as Transformer

inputs without this change of basis, the GVP-Transformer model would not be rotation-

invariant.) We concatenate this rotated “local version” of vector features together with the

scalar features as inputs to the Transformer. The concatenated features are invariant to both

translations and rotations on the input backbone coordinates, forming a L×E matrix where

L is the number of amino acids in the protein backbone and E is the feature dimension. For

amino acids with masked or missing coordinates, the features are imputed as zeros.
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Figure A.4: An illustrative example of structural overlap between CATH topology splits. The jack
bean canavalin (PDB code 1DGW; chain Y; red) and the soybean β-Conglycinin (PDB code 1UIJ;
chain B; blue) are assigned different topology codes in CATH (1.10.10 and 2.60.120), but they align
with TM-score 0.94 and CA RMSD 0.7A on a segment of 90 residues. The difference in topology
classifications likely resulted from CATH annotating only a 37-residue mainly helical segment of the jack
bean canavalin as a domain while annotating a longer 176-residue mainly beta sheet segment of the
soybean β-Conglycinin as a domain.

Transformer. We closely followed the original autoregressive encoder-decoder Transformer

architecture [89] except for using learned positional embeddings instead of sinusoidal positional

embeddings, attention dropout, and layer normalization inside the residual blocks (“pre-

layernorm”). For model scaling experiments, we followed the model sizes in [194], and chose

the 142-million-parameter model with 8 encoder layers, 8 decoder layers, 8 attention heads,

and embedding dimension 512 based on the best validation set performance (Figure 3.6c

shows test set ablation).

The GVP-GNN, GVP-GNN-large, and GVP-Transformer models used in the evaluations

in this manuscript are all trained to convergence, with detailed hyperparameters listed in

Table A.1.

A.2.2 TM-score-based test set

In addition to the CATH topology-based test set following previous work [22, 23], we also

create an even more stringent test set based on pairwise TM-score comparison between train
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Figure A.5: Distribution of the highest TM-score from each test example to the train set. For example,
54% of the CATH topology split test set has at least one match in the train set with TM-score above 0.5,
and 27% of the topology split test set has at least one match in the train set with TM-score above 0.6.

Perplexity Recovery %
Model Data Short Single-chain All Short Single-chain All
Structured GNN CATH 10.08 7.04 7.06 27.8% 35.1% 35.4%

GVP-GNN CATH 8.13 5.76 5.86 31.5% 41.1% 40.4%
+ AlphaFold2 9.87 6.61 6.50 26.3% 36.3%. 36.8%

GVP-GNN-large CATH 8.87 6.62 6.68 31.0% 37.2% 37.4%
+ AlphaFold2 7.08 4.46 4.39 34.1% 48.2% 48.7%

GVP-Transformer CATH 8.80 6.78 6.97 28.5% 36.7% 36.3%
+ AlphaFold2 6.99 4.36 4.34 33.0% 48.9% 49.5%

Table A.2: Fixed backbone sequence design performance on the more stringent structurally held-out
test set from CATH v4.3 chains (and its short and single-chain subsets) in terms of per-residue perplexity
(lower is better) and recovery (higher is better).
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and test examples. The CATH topology split does not completely prevent high TM-score

matches between train and test structures. We illustrate such an example in Figure A.4, and

show overall TM-score statistics Figure A.5.

We constructed a TM-score-based test set of 223 proteins with no TMalign matches (TM-

score ≥ 0.5) from the train set, using the foldseek [5] TMalign tool with default parameters

for the pairwise search.

We found that the conclusions about model performance overall remains the same on

this TM-score-based test set as on the CATH topology split test set. For consistency with

prior work, we report metrics on the CATH topology test set in the main manuscript, while

showing metrics on the smaller TM-score-based test set in Table A.2.

A.2.3 Additional results and details

Ablation on noise and masking during training. We found that GVP-Transformer

models trained with Gaussian noise during training perform slightly better at test time

than those trained without (Table A.3). When given full backbone coordinates at test time,

training with span masking only very slightly improves model performance compared to

no masking or to random masking, even though there is a much larger performance gap

between random masking and span masking on regions with masked backbone coordinates

(Figure 3.4).

Dual-state design test set from PDBFlex. We test design performance on multiple

conformations by finding test split proteins with distinct conformations in the PDBFlex

database. From PDBFlex, we looks for experimental structures of protein sequences in the

CATH topology split test set (95% sequence identity or above), and take all paired instances

that are at least 5 angstroms apart in overall RMSD between conformations. We report

perplexity on locally flexible residues (defined as local RMSD above 1 angstrom). To be more
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Perplexity

GVP-Transformer (142M params, mixing ratio 1:40)

Span masking Gaussian noise 4.10
Span masking No noise 4.32
Independent random masking Gaussian noise 4.30
No masking Gaussian noise 4.20

Table A.3: Effects of adding Gaussian noise to predicted structures and effects of span masking during
training, as measured by perplexity on CATH topology split test set.

conservative in our evaluation, we show the better of the two conformations to represent

single-state perplexity in Figure 3.7.

Ablation on the number of GVP-GNN encoder layers in GVP-Transformer.

Increasing the number of GVP-GNN encoder layers improves the overall model perfor-

mance (Figure A.6), indicating that the geometric reasoning capability in GVP-GNN is

complementary to the Transformer layers.

Figure A.6: Effects of varying the number of GVP-GNN pre-processing layers in the GVP-Transformer
model, as measured by perplexity on CATH topology split test set.

Model performance when trained only on predicted structures. When trained

on the 12 million predicted structures without including any of the experimental structures

from CATH in training data, the model performance of GVP-GNN, GVP-GNN-large, and

GVP-Transformer is across the board substantially worse than when trained only on the CATH

structures (Table A.4). This gap is especially pronounced for the larger GVP-GNN-large and

GVP-Transformer models.
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Perplexity
GVP-GNN 6.52
GVP-GNN-large 11.51
GVP-Transformer 10.95

Table A.4: Model performance when trained only using the 12 million predicted structures without
CATH training data, as measured by perplexity on CATH topology split test set.

Pearson correlation
Fold Structured GNN GVP-GNN GVP-GNN-large+AF2 GVP-Transformer+AF2

[22] [13]
ββαββ37 0.47 0.53 0.62 0.70
ββαββ1498 0.45 0.39 0.37 0.33
ββαββ1702 0.12 0.26 0.24 0.22
ββαββ1716 0.47 0.57 0.60 0.58
αββα779 0.57 0.48 0.62 0.64
αββα223 0.36 0.47 0.57 0.55
αββα726 0.21 0.19 0.24 0.26
αββα872 0.23 0.39 0.38 0.42
ααα134 0.36 0.44 0.46 0.50
ααα138 0.41 0.44 0.55 0.58
Average 0.37 0.42 0.47 0.48

Table A.5: Mutation stability prediction performance for small de novo proteins [11], with highest
correlation bolded.
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Figure A.7: Fixed backbone sequence design perplexity for protein complexes. The model is evaluated
on 796 structurally held-out protein complexes. Comparison of conditioning on the backbone coordinates
of individual chains (x-axis) with conditioning on backbone coordinates of the entire complex (y-axis).
Note that for both values perplexity is evaluated on the same chain in the complex. The shift to the
lower right indicates improved perplexity when the model is given the complete structure of the complex.

Stability prediction on de novo small proteins. We predict protein stability on

an experimentally measured stability dataset for de novo small proteins [11]. We use the

relative difference in sequence conditional log-likelihoods as a predictor for stability and

compute Pearson correlation with the mutation effect following [22], assuming that more

stable sequences should score higher in log-likelihoods. For each fold, Rocklin et al. [11] starts

with a reference protein and generates sequence variants with single amino acid substitutions.

We calculate the Pearson correlation between sequence conditional log-likelihood scores and

experimental stability measurements for all designed sequences in each fold. With predicted

structures as additional training data, the GVP-Transformer model improves the pearson

correlation on 8 out of the 10 folds.

Perplexity and sequence recovery of SARS-CoV-2 RBD. We show perplexity

and sequence recovery on the SARS-CoV-2 protein receptor binding domain (RBD) as an

example for inverse folding. The RBD can exist in a closed-state with the RBD down or in an

open-state with the RBD up [7], as illustrated in Figure A.8. The SARS-Cov-2 spike protein
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Receptor-binding SB domain (RBD)

Closed Partially open

Figure A.8: Illustration of the closed and open states of the SARS-CoV-2 spike protein receptor-binding
domain. Cryo-EM structures from [7] (open state: PDB 6XRA; closed state: PDB 6VXX).

Perplexity Recovery %
Open state Closed state Dual-state Open-state Closed state Dual-state

GVP-GNN 4.64 5.13 4.20 45.3% 44.2% 49.7%
GVP-Transformer 4.50 4.96 4.06 49.2% 48.1% 53.6%

Table A.6: Perplexity and sequence recovery on the SARS-Cov-2 spike protein receptor binding domain
(RBD), conditioned on either the closed state, the open state, or both states (illustrated in Figure A.8).
The inputs to inverse folding models consist of the backbone coordinates for the entire spike protein,
while the perplexity evaluation is only on the RBD.

structure has no match with the training data with TM-score above 0.5. The SARS-Cov-2

spike protein has both an open and closed state (open state: PDB 6XRA; closed state: PDB

6VXX). We evaluate perplexity and sequence recovery conditioning on each of the two states

independently and jointly. Conditioning on the open state results in better perplexity and

sequence recovery than conditioning on the closed state. Conditioning on both states gives

improvement in both perplexity and sequence recovery compared to conditioning only on the

open state. See Table A.10 for a list of randomly sampled dual-state sequence designs from

GVP-Transformer as examples.

Predicting RBD-ACE2 binding affinity. We used the binding affinity dataset provided

by Starr et al. [9] (https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS), restricting to

sites within the RBM subsequence. We used the RBD-ACE2 structure determined by Lan
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AUROC

Supervised

3DCNN 0.57
GNN 0.62
ENN 0.57
GVP-GNN 0.68

Transfer GVP-GNN 0.71

Zero-shot

GVP-GNN (chain) 0.58
GVP-GNN (complex) 0.71
GVP-GNN-large+AF2 (chain) 0.61
GVP-GNN-large+AF2 (complex) 0.71
GVP-Transformer+AF2 (chain) 0.60
GVP-Transformer+AF2 (complex) 0.68

Table A.7: Protein complex stability on SKEMPI test set (binary classification of increase in stability on
single-point mutations). Although only trained on single chains, the inverse-folding models generalize to
protein complexes. Giving the full complex as input, complex, improves performance compared to giving
only the chain as input, chain. Zero-shot prediction compared to fully supervised and supervised transfer
learning methods from [12] and [13] trained on the SKEMPI train set.

Spearman correlation (zero-shot)
Evaluation subset ESM-1v GVP-GNN GVP-GNN-large+AF2 GVP-Transformer+AF2
Mutated −0.23 ± 0.03 0.34 ± 0.02 0.29 ± 0.03 0.31 ± 0.03
Designed 0.42 ± 0.02 0.65 ± 0.01 0.72 ± 0.01 0.67 ± 0.02
High-fitness 0.22 ± 0.02 0.13 ± 0.03 0.21 ± 0.03 0.26 ± 0.02
Sampled −0.21 ± 0.03 0.35 ± 0.02 0.30 ± 0.02 0.30 ± 0.03
≥ 2 mutations −0.20 ± 0.03 0.35 ± 0.03 0.29 ± 0.04 0.30 ± 0.02
≥ 3 mutations 0.28 ± 0.03 0.53 ± 0.02 0.62 ± 0.02 0.64 ± 0.02
≥ 8 mutations 0.20 ± 0.03 0.47 ± 0.02 0.53 ± 0.02 0.55 ± 0.02

Table A.8: Zero-shot performance on AAV split [14].
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et al. [10] (PDB: 6M0J). For mutational effect predictions with ESM-1v, ESM-1b, and

ESM-MSA-1b, we scored mutations using the masked-marginal likelihood ratio between the

mutant and wildtype amino acids. To generate the MSA used as input to ESM-MSA-1b, we

searched uniclust30_2017_07 [195] with hhblits [193] (using two iterations and an E-value

cutoff of 0.001) based on the RBD wildtype sequence as the query.

Predicting complex stability changes upon mutations. SKEMPI [94] is a database

of binding free energy changes upon single point mutations within protein complex interfaces.

This database is used as a task in the Atom3D benchmark suite [12] for comparing supervised

stability prediction methods. The task is to classify whether the stability of the complex

increases as a result of the mutation. We compare zero-shot predictions using inverse

folding models to supervised and transfer learning methods [12, 13] on the Atom3D test

set. We find that sequence log-likelihoods from GVP-GNN, GVP-GNN-large, and GVP-

Transformer models are all effective zero-shot predictors of stability changes of protein

complexes (Table A.7), performing comparably to the best supervised method which uses

transfer learning.

Predicting insertion effects on AAV. Using masked coordinate tokens at insertion

regions, inverse folding models can also predict the effects of sequence insertions. Adeno-

associated virus (AAV) capsids are a promising gene delivery vehicle, approved by the US

Food and Drug Administration for use as gene delivery vectors in humans. Focusing on

mutating a 28-amino acid segment, Bryant et al. [80] generated more than 200,000 variants

of AAV sequences with 12–29 mutations across this region, and measured their ability to

package of a DNA payload. This dataset is unique compared to many other mutagenesis

datasets in that most sequences feature random insertions in the 28-amino acid segment, as

opposed to only random substitutions.

We use inverse folding models to predict insertion and substitution effects as follows: For
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each sequence, we input the full backbone coordinates of the wild-type (PDB: 1LP3), and

insert one masked token into the input backbone coordinates for each insertion. Then we

compare the conditional sequence log-likelihood on this input with masks to the conditional

sequence log-likelihood of the wild-type sequence on the wild-type backbone. The difference

in these two conditional log-likelihoods are used as the score for predicting packaging ability.

We report the zero-shot performance on each of the 7 data subsets evaluated in the

FLIP [14] benchmark suite. For amino acid insertions (marked as lowercase letters in the

FLIP data), the corresponding backbone coordinates for those amino acids are marked as

unknown in the input structure. As shown in Table A.8, GVP-Transformer trained with

predicted structures outperforms the sequence-only zero-shot prediction baseline ESM-1v on

6 out of the 7 data subsets. The reported standard deviations are calculated by sampling

different subsets of 10,000 variants from the evaluation data.

For ESM-1v, we scored variant sequences based on the independent marginals formula as

described in Equation 1 from Meier et al. [95], scoring mutations using the log odds ratio at

the mutated position, assuming an additive model when a set of multiple mutations T exist

in the same sequence:

∑
t∈T

log p(xt = xmt
t |xins

\T )− log p(xt = xwt
t |x\T ) (A.1)

where xins
\T in the first term is the wild-type sequence with mask tokens at insertion

positions and x\T in the second term is the wild-type sequence without insertions.

Confusion matrix. We calculated the substitution scores between native sequences and

sampled sequences (sampled with temperature T = 1) by using the same log odds ratio

formula as in the BLOSUM62 substition matrix. For two amino acids x and y, the substitution
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score s(x, y) is

s(x, y) = log

(
p(x, y)

q(x)q(y)

)
, (A.2)

where p(x, y) is the jointly likelihood that native amino acid x is substituted by sampled

amino acid y, q(x) is the marginal likelihood in the native distribution, and q(y) is the

marginal likelihood in the sampled distribution.

Calibration. Calibration curves examines how well the probabilistic predictions of a

classifier are calibrated, plotting the true frequency of the label against its predicted probability.

When computing the calibration curve, for each amino acid, we bin the predicted probabilities

into 10 bins and then compare with the true probability.

Placement of hydrophobic residues. We define the amino acids IVLFCMA as

hydrophobic residues, and inspect the distribution of solvent accessible surface area for both

hydrophobic residues and polar (non-hydrophobic) residues. Solvent accessible surface area

calculated with the Shrake-Rupley (“rolling probe”) algorithm from the biotite package [56]

and summed over all atoms in each amino acid. All models have similar distributions of

accessible surface area for hydrophobic residues, also similar to the distribution in native

sequences (Figure A.11).

Sampling speed. We profile the sampling speed with PyTorch Profiler, averaging over the

sampling time for 30 sequences in each sequence length bucket on a Quadro RTX 8000 GPU

with 48GB memory. For the generic Transformer decoder, we use the incremental causal

decoding implementation in fairseq [15]. For GVP-GNN, we use the implementation from

the gvp-pytorch GitHub repository.
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Figure A.9: Confusion matrix between native sequence and sampled sequences from the model, compared
to BLOSUM62 as reference.
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Figure A.11: The majority of hydrophobic residues are buried, following a long tail accessible surface
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Average sampling time per sequence
Sequence length ≤ 100 100− 200 200− 300 300− 400 400− 500
GVP-GNN (3 layers) 3.7s 9.3s 20.8s 76.9s 150.3s
GVP-GNN-large (8 layers) 6.7s 11.8s 47.5s 90.3s 168.8s
GVP-Transformer (8 layers) 1.5s 2.6s 9.0s 16.2s 26.0s

Table A.9: Average time required for sampling one sequence, using open source implementation of
GVP-GNN and open source implementation of Transformer from fairseq [15].
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A.3 Evolutionary-scale prediction of atomic level

protein structure with a language model

A.3.1 Data

A.3.1.1 Sequence dataset used to train ESM-2

UniRef50, September 2021 version, is used for the training of ESM models. The training

dataset was partitioned by randomly selecting 0.5% (≈ 250,000) sequences to form the

validation set. The training set has sequences removed via the procedure described in Meier

et al. [95]. MMseqs search (-min-seq-id 0.5 -alignment-mode 3 -max-seqs 300 -s 7

-c 0.8 -cov-mode 0) is run using the train set as query database and the validation set as

target database. All train sequences which match a validation sequence with 50% sequence

identity under this search are removed from the train set. The 50% identity threshold is chosen

because the purpose of the validation set is primarily to detect overfitting (as is common

in the machine learning community), rather than to test generalization. Generalization

performance is tested through performance on downstream tasks (such as structure prediction

on the CASP14 and CAMEO test sets).

De-novo designed proteins are filtered out from the pretraining dataset via two filters.

First, any sequence in UniRef50 and UniRef90 that was annotated as “artificial sequence”

by a taxonomy search on the UniProt website, when 2021_04 was the most recent release

(1,027 proteins), was removed. Second, jackhmmer was used to remove all hits around a

manually curated set of 81 de-novo proteins. jackhmmer was run with –num-iter 1 -max

flags, with each of the 81 de-novo proteins as a query and UniRef100 as a search database. All

proteins returned by jackhmmer were removed from both UniRef50 and UniRef90 via their

UniRef IDs (58,462 proteins). This filtering is performed to enable future work evaluating
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the generalization of language models to de-novo sequences.

To increase the amount of data and its diversity, a minibatch of UniRef50 sequences is

sampled for each training update. Each sequence is then replaced with a sequence sampled

uniformly from the corresponding UniRef90 cluster. This allowed ESM-2 models to train on

over 60M protein sequences.

A.3.1.2 Structure training sets for ESMFold

For training ESMFold, we follow the training procedure outlined in Jumper et al. [3]. We find

all PDB chains until 2020-05-01 with resolution less than or equal to 9Å and length greater

than 20. All proteins where over 20% of the sequence is the same residue is not considered.

MMseqs easy-cluster with default parameters is used to cluster resulting sequences at 40%

sequence identity. Only individual chains are used during training, even when the chain is

part of a protein complex. This results in 25,450 clusters covering a total of 325,498 chains.

At training time, each cluster is sampled evenly, and then a random protein is sampled

from each cluster. Rejection sampling is applied to train on longer proteins more frequently,

where protein chains are accepted with probability 1
512

max(min(Nres, 512), 256).

As described in Hsu et al. [6], we generated a set of 13,477,259 structure predictions with

AlphaFold2 using MSAs generated via the process in Rao et al. [85]. The dataset is then

filtered to select only sequences with mean pLDDT > 70. Because of the way the dataset is

constructed, only 1.5% of the dataset is removed with this filter. Additionally, loss is not

calculated for residues with pLDDT < 70. We found that this is necessary to obtain increased

performance using predicted structures. Predicted structures are sampled 75% of the time,

and real structures 25% of the time during training. Data processing is done with Biotite

[56].
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A.3.1.3 Structure validation and test sets

During method development (e.g. hyperparameter selection), we used a temporally held out

validation set obtained from the Continuous Automated Model Evaluation (CAMEO) server

[154] by filtering from August 2021 to January 2022.

We report results by testing 3D structure prediction models on two test sets, both chosen

to be temporally held out from our supervised training set. The first test set is from CAMEO,

consisting of all 194 test proteins from April 01, 2022 through June 25, 2022. Our second

test set consists of 51 targets from the CASP14 competition [155]. For both test sets, metrics

are computed on all modeled residues in the PDB file. The full CASP14 target list is:

T1024, T1025, T1026, T1027, T1028, T1029, T1030, T1031, T1032, T1033, T1034, T1035,

T1036s1, T1037, T1038, T1039, T1040, T1041, T1042, T1043, T1044, T1045s1, T1045s2,

T1046s1, T1046s2, T1047s1, T1047s2, T1049, T1050, T1053, T1054, T1055, T1056, T1057,

T1058, T1064, T1065s1, T1065s2, T1067, T1070, T1073, T1074, T1076, T1078, T1079, T1080,

T1082, T1089, T1090, T1091, T1099.

These is the full extent of the publicly available CASP14 targets as of July 2022.

No filtering is performed on these test sets, as ESMFold is able to make predictions on all

sequences, including the length-2166 target T1044.

A.3.1.4 CAMEO Dataset Difficulty Categories

The CAMEO evaluation places each target into three categories: easy, medium, and hard.

This placement is done based on the average performance of all public structure prediction

servers. Targets are classified as “easy” if the average LDDT is > 0.75, “hard” if the average

LDDT is < 0.5, and “medium” otherwise. In the main text, we report average performance

across all targets in CAMEO. In Table A.14 we provide statistics for each difficulty category.
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A.3.2 Language Models

A.3.2.1 Computing unsupervised contact prediction from language models

We use the methodology of Rao et al. [137] to measure unsupervised learning of tertiary

structure in the form of contact maps. A logistic regression is used to identify contacts. The

probability of a contact is defined as

p(cij) =

(
1 + exp(−β0 −

N∑
l=1

K∑
k=1

βkla
kl
ij )

)−1

(A.3)

where cij is a boolean random variable which is true if amino acids i, j are in contact. Suppose

our transformer has N layers and K attention heads per layer. Then Akl is the symmetrized

and APC-corrected [196] attention map for the k-th attention head in the l-th layer of the

transformer, and aklij is the value of that attention map at position i, j.

The metric we use, long range P@L, for each protein, is defined as the precision of the

top L predicted long range contacts by confidence for a protein of length L. long range is

defined as contacts that are ≥ 24 residues apart in the protein sequence. This is averaged

over each protein that we test over. We also use P@L/5 in some sections of this work, which

computes precision over the top L/5 predictions instead.

The parameters are fit in scikit-learn [197] using L1-regularized logistic regression with λ

= 0.15. The regression is fit using the same 20 protein training set used in Rao et al. [137],

which was simply a random selection from the trRosetta [25] training set. We performed

a variability analysis using 20 bootstrapped samples of 20 training proteins from the total

set of 14862 proteins. The average long range P@L was 0.4287 with a standard deviation of

0.0028. We also performed experiments using larger training sets, but observed no significant

performance change. Given these results, we are confident that selecting a subset of 20

proteins for training provides a good estimate of contact precision performance.
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Unsupervised contact prediction results are reported for the 14842 protein test set used

in Rao et al. [137], which is also derived from the trRosetta training set, excluding the 20

proteins used in fitting the regression. For both training and test a contact is defined as two

amino acids with C-α distance < 8Å.

A.3.2.2 Language model perplexity calculations

Perplexity is a measure of a language model’s fidelity and is defined as the exponential of

the negative log-likelihood of the sequence. Unfortunately, there is no efficient method of

computing the log-likelihood of a sequence under a masked language model. Instead, there

are two methods we can use for estimating perplexity.

First, let the mask M be a random variable denoting a set of tokens from input sequence x.

Each token has a 15% probability of inclusion. If included the tokens have an 80% probability

of being replaced with a mask token, a 10% probability of being replaced with a random

token, and a 10% probability of being replaced with an unmasked token. Let x̂i∈M denote

the set of modified input tokens. The perplexity is then defined as

Perplexity(x) = exp

{
− log p(xi∈M | xj /∈M ∪ x̂i∈M)

}
(A.4)

As the set M is a random variable, this expression is non-deterministic. This makes it a poor

estimate of the perplexity of a single sequence. However, it requires only a single forward pass

of the model to compute, so it is possible to efficiently obtain an estimate of the expectation

of this expression over a large dataset. When reporting the perplexity over a large dataset

(such as our UniRef validation set), this estimate is used.

The second perplexity calculation is the pseudo-perplexity, which is the exponential of the

negative pseudo-log-likelihood of a sequence. This estimate provides a deterministic value for

each sequence, but requires L forward passes to compute, where L is the length of the input
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sequence. It is defined as

PseudoPerplexity(x) = exp

{
− 1

L

L∑
i=1

log p(xi | xj ̸=i)

}
(A.5)

When reporting the perplexity for an individual sequence (e.g. on CASP14 or CAMEO), this

estimate is used. For brevity, we refer to both of these estimates as the “perplexity,” as they

can be interpreted in a similar manner.

A.3.2.3 ESM-2 model architecture

We use a BERT [141] style encoder only transformer architecture [89] with modifications. We

change the number of layers, number of attention heads, hidden size and feed forward hidden

size as we scale the ESM model (Table A.13).

The original transformer paper uses absolute sinusoidal positional encoding to inform the

model about token positions. These positional encodings are added to the input embeddings

at the bottom of the encoder stack. In ESM-1b [16], we replaced this static sinusoidal

encoding with a learned one. Both static and learned absolute encodings provide the model

a very cheap way of adding positional information. However, absolute positional encoding

methods don’t extrapolate well beyond the context window they are trained on. In ESM-2,

we used Rotary Position Embedding (RoPE) [198] to allow the model extrapolate beyond

the context window it is trained on. RoPE slightly increases the computational cost of the

model, since it multiplies every query and key vector inside the self attention with a sinusoidal

embedding. In our experiments, we observed that this improves model quality for small

models. However, we observed that the performance improvements start to disappear as the

model size and training duration get bigger.
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A.3.2.4 Training ESM-2

In ESM-2, we have made multiple small modifications to ESM-1b with the goal of increasing

the effective capacity. ESM-1b had dropout both in hidden layers and attention which we

removed completely to free up more capacity. In our experiments, we did not observe any

significant performance regressions with this change.

We trained most of our models on a network with multiple nodes connected via a network

interface. As the models get bigger, the amount of communication becomes the fundamental

bottleneck for the training speed. Since BERT style models have been shown to be amenable

to very large batch sizes [199], we increased our effective batch size to 2M tokens.

For model training optimization, we used Adam with β1 = 0.9, β2 = 0.98, ϵ = 10−8 and

L2 weight decay of 0.01 for all models except the 15 billion parameter model, where we used

a weight decay of 0.1. The learning rate is warmed up over the first 2,000 steps to a peak

value of 4e-4 (1.6e-4 for the 15B parameter model), and then linearly decayed to one tenth of

its peak value over the 90% of training duration. We trained all models for 500K updates

except the 15B model which we trained for 270K steps. All models used 2 million tokens as

batch size except the 15B model where we used 3.2 million tokens batch size. In order to

efficiently process large proteins, we cropped long proteins to random 1024 tokens. We used

BOS and EOS tokens to signal the beginning and end of a real protein, to allow the model to

separate a full sized protein from a cropped one.

We used standard distributed data parallelism for models up to 650M parameters and

used sharded data parallelism (FSDP) [200] for the 2.8B and 15B parameter models. FSDP

shards model weights and optimization parameters across multiple GPUs, allowing us to

train models that can’t fit into a single GPU memory.

We trained each model over 512 NVIDIA V100 GPUs. ESM2 700M took 8 days to train.

The 3B parameter LM took 30 days. The 15B model took 60 days. All language models
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were trained for 500K updates, except the 15B language model which we stopped after 270K

updates due to computational constraints.

A.3.2.5 ESM-2 ablation experiments

We ran ablation experiments using 150M parameter models trained for 100K steps. Ablations

were performed for RoPE, the training dataset (comparing to the ESM-1b training dataset),

and UniRef90 sampling (Table A.15).

Unsupervised contact prediction results show that both RoPE and newer data significantly

improve the results. We do observe a slight regression when sampling from UniRef90 clusters,

however we believe this difference is small and the UniRef90 cluster sampling is likely to help

for the larger models.

A.3.2.6 Relationship between change in Perplexity and Contact Accuracy

The relationship between improvements in perplexity and improvements in contact accuracy

can be measured via normalized discounted cumulative gain (NDCG). In particular, we

hypothesize that large improvements in perplexity correspond with large improvements in

contact accuracy. We define the change in perplexity as the difference in language model

perplexity for a particular protein sequence between adjacent model sizes. Similarly, we

define the change in contact accuracy as the difference in unsupervised contact precision for a

particular protein sequence between adjacent model sizes. By ranking proteins according to

the change in perplexity, we then compute the NDCG with respect to the change in contact

accuracy. The average NDCG across the five model classes is 0.87.
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Algorithm 1 Folding block.

procedure FoldingBlock(s ∈ RCs×L, z ∈ RCz×L×L, Cs = 1024, Cz = 128)
b← Linear(z)
s← s+MultiHeadSelfAttention(s, bias = b)
s← s+MLP(s)
z ← z + Linear(Concat([OuterProduct(s),OuterDifference(s)]))
z ← z + TriangularMultiplicativeUpdateOutgoing(z)
z ← z + TriangularMultiplicativeUpdateIncoming(z)
z ← z + TriangularSelfAttentionOutgoing(z)
z ← z + TriangularSelfAttentionIncoming(z)
z ← z +MLP(z)
return s, z

end procedure

A.3.3 ESMFold

A.3.3.1 ESMFold model architecture

The ESMFold model uses a simple architecture that leverages the evolutionary information

captured by the language model. The architecture is split into two parts, similarly to

AlphaFold2: a folding module which takes the language model features as input and produces

representations, and a structure module which takes the output from the folding module and

outputs 3d atomic coordinates. For the structure module, we use the equivariant transformer

architecture with invariant point attention proposed in AlphaFold2. For the folding block we

simplify the Evoformer block used in AlphaFold2. No templates are used in ESMFold.

The major change that needs to be made to adapt the Evoformer block to language

model features is to remove its dependence on MSAs. Since MSAs are two dimensional, the

Evoformer employs axial attention [201] over the columns and rows of the MSA. The language

model features are one dimensional, so we can replace the axial attention with a standard

attention over this feature space. The self-attention uses a bias derived from the pairwise

representations. The sequence representation communicates with pairwise representation via

both an outer product and outer difference. Other operations in the Evoformer block are
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Algorithm 2 ESMFold with N folding blocks. ESM_hiddens returns all hidden representa-
tions from an ESM language model. layer_weights contains a trainable weight for each layer
of ESM.

procedure ESMFold(sequence, Cesm = 1280, Cs = 1024, Cz = 128, N = 48, L = Length)
ESMFold(sequence)
s← ESM_hiddens(sequence)
s←(softmax(layer_weights) * s).sum(over layers)
s← MLP(s)
z ← PairwiseRelativePositionalEncoding(L)
for i← 1, . . . , N do

s, z ← FoldingBlocki(s, z)
end for
return StructureModule(s, z)

end procedure

kept the same. We call this simplified architecture the Folding block, described in detail in

Algorithm 1, and shown in Figure 4.2a.

Our final architecture, ESMFold, described in Algorithm 2, has 48 folding blocks. It is

trained for an initial 125K steps on protein crops of size 256, and then fine-tuned with the

structural violation loss for 25K steps, on crop sizes of 384. We use the Frame Aligned Point

Error (FAPE) and distogram losses introduced in AlphaFold2, as well as heads for predicting

LDDT and the pTM score. We omit the masked language modeling loss. Language model

parameters are frozen for training ESMFold. We use the 3B parameter ESM-2 language

model, the largest model that permits inference on a single GPU.

We use a learned weighted sum of ESM embeddings to produce the initial hidden state

into the model. This is then fed through a multi-layer perceptron (MLP). The initial pairwise

state is simply the pairwise relative positional encoding described in Jumper et al. [3]. We

found that using the attention maps initially gives a boost in performance, but this disappears

during training. For experiments that do not use any folding blocks, we use an MLP applied

to the ESM attention maps as input, and add the pairwise relative positional encoding to the

attention map scores. Finally, the StructureModule projects these representations into
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coordinates.

The predicted LDDT head is output from the hidden representation of the Structure-

Module. The predicted TM head uses the pairwise representation z. Finally, we also predict

the distogram, from the same representation.

A.3.3.2 Masked prediction

It is possible to sample alternate predictions from ESMFold by masking inputs to the language

model. We test this procedure with the following protocol: Input 1000 different sequences

into ESMFold with different masking patterns in the language model. The masking patterns

are uniformly sampled, where 0 to 15% of the sequence is masked out. A prediction is made

for each masked sequence, and the sequence with highest pLDDT is chosen as the final model

prediction. On average, applying this procedure only results in a 0.021 LDDT increase on

CAMEO, but on some PDBs can substantially improve the accuracy, e.g. for PDB 6s44,

TM-score improves from 0.81 to 0.94 (Figure A.17).

A.3.3.3 Extracting coordinates from ESM-2

The following methodology is used to project out coordinates from the language model

representations (Figure 4.1, Table A.11). We train an equivariant structure module directly on

top of the frozen ESM representations using a dataset of experimentally determined structures.

The training set is the same as used for ESMFold, and we use the same losses and architecture

as the AlphaFold2 structure module. We initialize the pairwise representation of the structure

module with the output of an MLP that processes the attention maps of the language model.

Note that we do not use the predicted structures dataset as data augmentation in these

experiments; we train the projection only with experimentally determined structures.

As language models grow in size, we find a large increase in LDDT, from 0.48 on the 8M

parameter LM to 0.72 on the 15B parameter LM. This demonstrates that a simple head on
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top of a powerful language model already gives reasonably accurate structure predictions.

A.3.3.4 Timing analysis

We evaluate the speed of the model by testing sequences of varying length on a single NVIDIA

V100 GPU. ESMFold makes a prediction on a protein with 384 residues in 14.2 seconds, 6x

faster than a single AlphaFold2 model. On shorter sequences we see a 60x improvement

(Figure A.13). Note that this excludes the CPU time for MSA and template search, as well

as the 5x from the default ensemble of models used by AlphaFold2. ESMFold can be run

reasonably quickly on CPU, and an Apple M1 Macbook Pro makes the same prediction in

just over 5 minutes.

ESMFold provides multiple options for reducing GPU memory utilization including

chunked attention, mixed precision, and CPU offloading, some of which come at the cost of

inference speed. Combined, the optimizations allow predictions on long sequences (such as

length-2166 CASP14 target T1044) on an NVIDIA V100 GPU.

A.3.4 Metagenomic predictions

A.3.4.1 Folding 617 million sequences from Mgnify

We obtained MGnify [59] version 2022 at 90% sequence similarity (MGnify90). We built a

fault tolerant distributed system with a main node which, via TCP, communicates sequences

to many workers and receives results as folded protein structures. We were able to leverage

the resources of a heterogeneous GPU cluster consisting of P100s, V100s, and A100s of

various configurations. We estimate that on a homogeneous network GPU cluster of V100s,

the entire 620 million sequences would take approximately 28,000 GPU days to fold, which

we were able to do in 2 weeks time. We obtained structure predictions and corresponding

pLDDT values for each of these sequences.
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A.3.4.2 Analysis of folded metagenomics structures

On a random sample of 1M high confidence structures, we used Foldseek search (version

3.915ef7d) [5] to perform an all-by-all structural similarity search against the PDB (as of April

12, 2022) based on TM-score. We use foldseek with default parameters, except increasing

the E-value to 1.0 from the default 1e-3 (foldseek search -e 1.0), to increase recall. We also

used MMseqs2 search (version 13.45111) to perform an all-by-all sequence similarity search

against UniRef90. We use MMseqs2 with default parameters, except that we re-ran MMseqs2

with the most sensitive setting (-s 7.0) for any sequences that returned an empty result, to

increase the recall.

As mentioned in Section 4.4 for 3.4% (33,521 proteins) of the Atlas 1M high confidence

subsample, no significant match is found in UniRef90 with MMseqs2. For reference, a random

subsample of MGnify90, without confidence threshold, has 26.4% (264,075 proteins) without

hits in UniRef90. For this larger set of sequences without close homologs, the predicted

structures, despite being below or stringent confidence threshold, can still be valuable as

they may have regions of well-predicted structure which can be enough to enable discovery of

novel proteins.

To visualize this landscape of 1M MGnify sequences, we first used ESM-1b to embed each

sequence as a 1280-dimensional vector. These embeddings were then visualized using the

umap version 0.5.3, scanpy version 1.9.1, and anndata 0.8.0 Python packages [202, 203, 204],

where dimensionality reduction was applied directly to the embedding vectors (use_rep=‘X’

in scanpy.tl.umap) with default parameters (15-nearest-neighbors graph via approximate

Euclidean distance, UMAP min_dist=0.5).

We further analyzed a random subsample of very high-confidence structures with mean

pLDDT greater than 0.9, corresponding to ∼59K structures. For each of these structures, we

used Foldseek easy-search (–alignment-type 1) to identify similar structures in the PDB. To
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assess the quality of structure predictions with no Foldseek matches, we used full AlphaFold2

with MSAs to also obtain structure predictions, where we picked the top of five relaxed models

ranked by mean pLDDT. We then computed RMSD values of aligned backbone coordinates

and all-atom TM-score between the ESMFold-predicted and AlphaFold2-predicted structures

and found good agreement of the predictions between both methods (Figure A.18).

To select our case studies, we then used blastp version 2.10.0+ to search for similar

sequences in UniRef90 to compute sequence identity. For case-study sequences with no

significant matches in UniRef90, we also used the jackhmmer web server (https://www.ebi.

ac.uk/Tools/hmmer/search/jackhmmer) [161] to manually query four reference proteomes

for similar sequences. Highlighted structure predictions with low similarity to known structures

were manually selected and are summarized in Figure 4.4. For these structures, we also

performed an additional structural similarity search using the Foldseek webserver (https:

//search.foldseek.com/search) with default parameters to identify the closest structures

in PDB100 211201 beyond the TM-score cutoff of 0.5.

A.3.5 Multimer Benchmark

A.3.5.1 Recent-PDB-Multimers

To evaluate ESMFold on protein complexes. We construct an evaluation set using the methods

described in Evans et al. [82]. This dataset consists of targets deposited in the Protein Data

Bank between 2020-05-01 and 2022-06-01. The following filtering steps are performed:

• Complexes must contain more than 1 chain and less than 9 chains.

• Chains with length < 20 residues, or where one residue makes up > 20% of the chain

are excluded.

• Complexes must contain fewer than 1536 residues, excluding chains which fail the
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previous step.

• Each chain is assigned to a 40% overlap cluster using clusters provided by the PDB

• Each complex is assigned a cluster which is the union of chain cluster ids

• From each cluster complex, the example with highest resolution is selected as the

representative

These steps result in a total of 2978 clusters. Predictions are made on the full complex, but

metrics are computed on a per chain-pair basis using the DockQ program [4]. Chain pairs

are greedily selected for evaluation if their pair cluster id has not been previously evaluated.

Chain pairs which DockQ identifies as having no contacting residues in the ground truth are

not evaluated. This results in a total of 3505 unique chain pairs.

A.3.5.2 Multimer Predictions

To predict complexes in the benchmark shown in Figures 4.2d and A.15, we give a residue

index break of 1000 to ESMFold and link chains with a 25-residue poly-glycine linker, which

we remove before displaying. Note that this is using ESMFold out of distribution since single

chains are used during training.

A.3.6 Orphan Proteins

Orphan proteins are sequences with few to no evolutionary homologs in either structure or

sequence databases. Due to a lack of evolutionary information, these sequences can be very

challenging for current structure prediction models. To evaluate ESMFold on orphan proteins,

we construct an orphan protein dataset using the following procedure:

• Select structures deposited in the PDB from 2020-05-01 to 2022-05-01 with resolution

greater than 9Å and at least 20 modeled residues.
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Figure A.12: ESM-2 masked language modeling training curves. Training curves for ESM-2 models
from 8M (highest curve, light) to 15B parameters (lowest curve, dark). Models are trained to 270K
updates. Validation perplexity is measured on a 0.5% random-split holdout of UniRef50. After 270K
updates the 8M parameter model has a perplexity of 10.45, and the 15B model reaches a perplexity of
6.37.

• Cluster at a 70% sequence identity threshold with mmseqs, and select the cluster

representatives.

• Run hhblits for 1 iteration (all other parameters default) against UniRef (2020_06),

select sequences with no hits.

• Run the standard AlphaFold2 MSA generation pipeline against UniRef, MGnify, and

BFD, selecting sequences with < 100 total sequence hits and no template hits with

TM-score > 0.5.

Figure A.19 shows results at different MSA depth thresholds. After filtering, there are

104 sequences with MSA depth ≤ 100, 70 sequences with MSA depth ≤ 10, and 22 sequences

with MSA depth = 1. Beyond the constraint that no template has TM-score > 0.5, no

filtering on the number of templates is performed.
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Figure A.13: ESMFold timing. Comparison to AlphaFold2 and RoseTTAfold. We test the speed of
ESMFold on sequence lengths up to 1024. Note that this comparison is only on the network forward
time, and does not include the cost of the search to generate MSAs. ESMFold performance at low
sequence lengths is dominated by the forward pass of the language model. At high sequence lengths the
O(N3) computation of pairwise representations takes over. Most of ESMFold’s speed advantage comes
from not needing to process the MSA branch. We see an over 60x speed advantage for shorter protein
sequences, and a reasonable speed advantage for longer protein sequences. We do not count Jax graph
compilation times or MSA search times for AlphaFold2, meaning in practice there is a larger performance
difference in the cold start case. We also use an optimized Colabfold 1.3.0 [8] to do speed comparison.
No significant optimization has been performed on ESMFold, and we suspect that further gains can be
made by optimizing ESMFold as well. For RoseTTAfold, the speed of the SE(3) Transformer dominates,
especially at low sequence lengths. The number of SE(3) max-iterations are artificially limited to 20
(default 200) and no MSAs are used as input for these measurements. For RoseTTAfold predictions we
do not include the cost of computing sidechains with PyRosetta.

Figure A.14: ESMFold ablations on CAMEO and CASP14. ESMFold ablations on CAMEO and CASP14
test sets show the largest contributing factors to performance are the language model and the use of
folding blocks. Other ablations reduce performance on CASP14 and CAMEO by 0.01-0.04 LDDT.
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Figure A.15: Comparison of ESMFold and AlphaFold-Multimer on recent-PDB-multimers dataset.
DockQ [4] scores for AlphaFold-Multimer and ESMFold predictions for chain pairs in the Recent-PDB-
Multimers dataset. DockQ qualitative categorizations (left) and quantitative comparison (right) are
provided for all chain pairs. ColabFold [8] was used to generate paired MSAs for each complex using
the ‘paired+unpaired‘ MSA generation setting. UniRef, environmental, and template databases were
used. ESMFold predictions are in the same qualitative DockQ categorization for 53.2% of complexes,
even though ESMFold is not trained on protein complexes. Dataset generation and scoring methodology
described in Appendix A.3.5.1.

Figure A.16: ESMFold calibration with respect to perplexity and pLDDT on CASP14 and CAMEO.
Language model perplexity and ESMFold pLDDT are both well correlated with actual structure prediction
accuracy on CASP14 and CAMEO. Well understood sequences with language model perplexity < 6 are
usually well predicted by ESMFold. The strong correlation between pLDDT and LDDT suggests filtering
predictions by pLDDT will mostly capture well predicted structures.
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Figure A.17: Masked prediction on Cα sequence of PDB 6s44. Left: ESMFold prediction (TM-
score=0.81) on the Cα sequence of PDB 6s44. Right: Best prediction out of 1000 masked sequences
generated via the procedure described in Appendix A.3.3.2. Prediction with highest pLDDT is shown,
and has improved TM-score (Tm-score=0.94).

Figure A.18: Comparison to AlphaFold2 of structurally remote ESMFold predictions. Distributions of
backbone RMSDs (left) and TM-scores (right) of ESMFold-AlphaFold2 predictions of the same sequence,
where the ESMFold prediction has both high confidence (mean pLDDT > 0.9) and low structural
similarity to the PDB (Foldseek closest PDB TM-score < 0.5).

Figure A.19: Comparison of ESMFold and AlphaFold2 on a set of orphan proteins. Performance of
ESMFold and AlphaFold2 on a set of “orphan proteins” - sequences with few sequence or structural
homologs. All compared sequences are temporally held out from the training set. The standard
AlphaFold2 sequence and template search pipeline is used to find homologs (dataset construction
described in Appendix A.3.6). (A) Comparison on natural proteins with various MSA depths. Depth is
the total number of hits across UniRef and metagenomic databases. (B) TM-score comparison of all
individual orphans.
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Model # Params # Updates Validation
Perplexity LR P@L LR P@L/5 CASP14 CAMEO

ESM-2

8M 270K 10.45 0.16 0.28 0.37 0.48
35M 270K 9.12 0.29 0.49 0.41 0.56
150M 270K 8.00 0.42 0.68 0.47 0.63
650M 270K 7.23 0.50 0.77 0.51 0.68
3B 270K 6.73 0.53 0.80 0.51 0.71
8M 500K 10.33 0.17 0.29 0.37 0.48
35M 500K 8.95 0.30 0.51 0.41 0.56
150M 500K 7.75 0.44 0.70 0.49 0.65
650M 500K 6.95 0.52 0.79 0.51 0.70
3B 500K 6.49 0.54 0.81 0.52 0.72
15B 270K 6.37 0.54 0.82 0.55 0.72

ESM-1b 650M — — 0.41 0.66 0.42 0.64
Prot-T5-XL
(UR50) (21) 3B — — 0.48 0.72 0.50 0.69

Prot-T5-XL
(BFD) (21) 3B — — 0.36 0.58 0.46 0.63

CARP (24) 640M — — — — 0.42 0.59

Table A.11: Detailed language model comparison. Comparison at different numbers of parameters and
at different numbers of training updates. Training updates and validation perplexity are not reported
for baseline models, since there is no straightforward comparison. For the number of training updates,
different models use different batch sizes, so the number of sequences seen can vary even if the number
of updates are the same. For validation perplexity, baseline models are not trained on the same dataset,
and do not share a common heldout validation set with ESM-2. Prot-T5 is an encoder-decoder language
model. Only the encoder portion of the model was used in this evaluation, however the number of
parameters reported is the total number of parameters used for training. Unsupervised contact precision
results, in the form of long range precision at L and at L / 5, do allow us to compare all transformer
language models despite variance in training data. However, CARP, a convolution based language model,
does not have attention maps. Note: ESM-1b is evaluated only on sequences of length < 1024, due to
constraints with position embedding.
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MGnify ID Mean
plDDT

ESM-2 (3B)
Perplexity

Foldseek
server
closest

TM-score

Foldseek
server
closest
PDB

Closest
blastp

sequence
identity

(UniRef90)

Closest blastp
sequence (UniRef90)

MGYP000712274586 0.96 3.4 0.45 1ttg_A 54% UniRef90_A0A539E457
Uncharacterized protein

(Acidimicrobiaceae bacterium)

MGYP000911143359 0.90 6.5 0.67 5nni_A 43% UniRef90_A0A7Y5V7P8
Uncharacterized protein

(Flavobacteriales bacterium)

MGYP001220175542 0.94 4.2 0.38 5y1x_A 98%
UniRef90_UPI0013011942

Helix-turn-helix
domain-containing protein

(Caenibacillus caldisaponilyticus)

MGYP001812528822 0.93 4.4 0.39 5hh3_C 50% UniRef90_A0A545U581
Fatty acid desaturase

(Exilibacterium tricleocarpae)

MGYP000706186022 0.92 11.5 0.47 1xks_A 29% UniRef90_A0A6N6S1Z1
Uncharacterized protein
(Candidatus brocadia)

MGYP000279975524 0.93 5.9 0.49 4l5s_B 38% UniRef90_A0A1F4EWL6
Uncharacterized protein

(Betaproteobacteria bacterium)

MGYP004000959047 0.90 7.8 0.80 6bym_A No significant
matches NA

MGYP000936678158 0.95 10.6 0.68 5yet_B No significant
matches NA

Table A.12: Information on highlighted MGnify proteins. MGnify sequence identifiers corresponding
to predicted structures highlighted throughout this study, including the PDB chain and corresponding
TM-score of the closest structure identified by the Foldseek webserver as well as the UniRef90 entry and
sequence identity of the closest sequence identified by blastp (Appendix A.3.4.2).
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8M 35M 150M 650M 3B 15B
Dataset UR50/D UR50/D UR50/D UR50/D UR50/D UR50/D

Number of layers 6 12 30 33 36 48
Embedding dim 320 480 640 1280 2560 5120
Attention heads 20 20 20 20 40 40
Training steps 500K 500K 500K 500K 500K 270K
Learning rate 4e-4 4e-4 4e-4 4e-4 4e-4 1.6e-4
Weight decay 0.01 0.01 0.01 0.01 0.01 0.1

Clip norm 0 0 0 0 1.0 1.0
Distributed backend DDP DDP DDP DDP FSDP FSDP

Table A.13: ESM-2 model parameters at different scales.

Dataset Split Count MSA Depth
(Total)

MSA Depth
(UniRef) ESMFold AlphaFold2 RoseTTAFold

CAMEO
easy 97 21,458 17,627 0.90 0.93 0.89

medium 89 3,032 860 0.79 0.86 0.76
hard 8 328.5 56 0.45 0.62 0.49

CASP14 — 51 1228 161 0.68 0.85 0.81

Table A.14: CAMEO dataset statistics broken down by difficulty class. Median MSA depth is reported
for each difficulty class of the CAMEO dataset, along with mean TM-score for ESMFold, AlphaFold, and
RoseTTAFold. Half of the samples from the CAMEO dataset consist of “easy” examples, which are well
predicted by all models. Differentiation is greater in the “medium” and “hard” classes, which have lower
MSA depth and are better predicted by AlphaFold2. Statistics for CASP14 are provided as a comparison.
MSA depth numbers provided are from the AlphaFold2 MSA generation pipeline.

LR P@L LR P@L/5 Validation Perplexity
Baseline 0.381 0.626 8.42
No RoPE 0.365 0.599 8.62

Older UniRef Data 0.368 0.599 7.98
No UR90 Sampling 0.387 0.631 8.40

Table A.15: ESM-2 architecture ablations.

129



A.4 A high-level programming language for

generative protein design

A.4.1 High-level programming language and energy-based

optimization

A program in our language is fully specified by (1) a syntax tree and (2) a set of constraints.

This program compiles to an energy function, which is used to guide black-box optimization

of a protein sequence while also leveraging its predicted structure.

A.4.1.1 Syntax tree

The syntax tree consists of nonterminal symbols, which we denote as xi, as well as terminal

symbols, which in our examples we denote as uppercase alphabetic characters such as A, B,

C, etc. Each terminal symbol defines a unique protein sequence. The nonterminal symbol x1

is designated as the special start symbol; all programs must have x1. Additional nonterminal

symbols are used to define hierarchical complexity. For example, specifying two levels of

hierarchy requires a nonterminal production rule in addition to a terminal production rule,

for example,

x1 → x2x2 (nonterminal production) and (A.6)

x2 → AA (terminal production rule). (A.7)

In the example above, the x2 nonterminal enables an intermediate level of hierarchy. A

nonterminal can produce any finite-length permutation of higher-numbered nonterminals

(for example, x1 → x2x3 is permitted but not x2 → x1x3 or x2 → x2x3). A nonterminal

can also produce any finite-length permutation of terminals (for example, x1 → AB) or any
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finite-length permutation of mixed terminals and higher-numbered nonterminals (for example,

x1 → x2B or x1 → Bx2).

A complete syntax tree is built by fully expanding the nonterminal x1 into a set of

terminals. The production rules define the connectivity structure of the tree, where the parent

node corresponds to the left side of the production rule and the child node(s) corresponds

to the right side of the production rule. Across the entire syntax tree, each internal node

corresponds to a nonterminal symbol and each leaf corresponds to a terminal symbol. Example

syntax trees are provided in the main text figures.

A.4.1.2 Constraints

A program in our language also requires a set of constraints, where a single constraint is

defined with respect to a single node and all of its descendants in the syntax tree. Note that

this includes constraints on the leaves of the tree (corresponding to the terminal symbols).

More specifically, a constraint is a function that takes as input the (sub)tree, as well as its

corresponding (sub)sequence and (sub)structure, and outputs a real number. For example,

a constraint defined with respect to the node corresponding to x1 simply receives as input

the entire syntax tree, the full-length sequence, and the full protein structure. The same

constraint (i.e., the same function) can be applied to multiple nodes in the tree. We will use

fj(v) to denote a constraint j defined with respect to node v.

A.4.1.3 Compilation of constraints into an energy function

We compile a program into an energy function. In our study, we simply compute a linear

combination of all the constraints in the user-specified set, i.e., E(x) =
∑

v∈V
∑

j fj(v), where

fj(v) is defined as zero when a constraint is not applied to a given node and V denotes the

set of nodes in the syntax tree. In practice, we explicitly keep track of a scalar multiplicative

weight on each constraint, i.e., E(x) =
∑

v∈V
∑

j ajfj(xi). This energy is used in the simulated
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annealing optimization procedure described below. Specific examples of constraint functions

used in our study are also provided below.

Linear combinations work well for our choice of generative model, but in principle any

combination of the energy terms could be used here. For example, if we compiled our

program into an energy function for a generative model that used a reward function (like a

reinforcement learning agent), we might prefer a multiplicative combination of the inverse of

our current energy terms.

A.4.1.4 Simulated annealing

The energy function is used as part of an iterative black-box optimization loop, where over

multiple iterations, a change to a given state (in this case, a protein sequence design) is

accepted with some probability. We use a simulated annealing algorithm in which the

acceptance probability is controlled by a temperature value such that the optimization can

tolerate higher energy changes at the beginning of the optimization before favoring changes

that decrease the energy toward the end of the optimization. In our study, we begin by

initializing the sequence state (one unique sequence per terminal symbol) with uniform

amino-acid probability to a given user-specified length; we also compute an initial structure

prediction from this sequence.

Each iteration proposes a mutation to the protein sequence. To make this proposal,

first, one of the terminal symbols is chosen with uniform probability, and second, one of a

substitution, insertion, or deletion is chosen with some probability (we default to 60%, 20%,

and 20%, respectively). For substitutions and insertions, the new amino acid is chosen with

some probability (unless otherwise specified, we apply uniform probability over a reduced

amino acid alphabet that excludes cysteine). We default to uniform probability over all

possible sequence positions.

The next step in the iteration is to obtain a structure prediction corresponding to the
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sequence with the proposed change. This prediction provides the structural information

that is used to compute the values of the individual constraint functions. These values are

then combined to produce the value of the energy function, as described above. This energy

function is evaluated on the overall design with and without the proposed mutation, which

we denote E
(
x(i)
)

and E(x∗), respectively. The mutation is accepted with probability

min

(
exp

{
1

Ti

(
E(x∗)− E

(
x(i)
))}

, 1

)

where Ti is the temperature parameter at iteration i that decays geometrically over the

optimization. Upon acceptance, the value of x∗ is set to the value of x(i) and the optimization

loop continues. By default, our optimization leverages user-specified values Tmax and Tmin,

with a decay schedule given as

Ti =

(
Tmin

Tmax

)i/M

where M is the user-specified number of annealing steps. We report specific values for Tmax

and M in the experiment descriptions below and default to Tmin = 0.0001.

A.4.1.5 Single chain constraint

Our language accommodates both single- and multi-chain design through the use of a special

“single chain” constraint. By default, without this constraint applied, all terminal symbols are

assumed to correspond to separate chains. When this constraint is applied to a given node, it

constrains all of the terminal symbols to be part of a single chain according to the left-to-right

order defined in the syntax tree. For example, consider a syntax subtree with x2 → x3AB

and x3 → CD productions. A single chain constraint applied to node x2 would create a

chain consisting of a contiguous sequence CDAB. Unlike other constraints, this constraint is

enforced as part of structure prediction, prior to the energy function compilation.
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A.4.2 Constraint implementation

A.4.2.1 ESMFold structure prediction

We obtain all-atom structure predictions using ESMFold [171], where the prediction is made

over the entire protein sequence and is represented as a set of atomic coordinates and their

corresponding residue identities and indices. This predicted structure is the basis for the

structural information passed to each of the specific constraint functions. When a constraint

is defined on a subtree, that constraint only has access to the structural information (atomic

coordinates, etc.) of the sequence encoded by that subtree.

A.4.2.2 Structure prediction confidence (pTM and pLDDT)

ESMFold produces a pTM score, which indicates the model’s confidence in the overall

structure prediction, and a per-atom pLDDT score, which indicates the model’s confidence

in the specific atomic coordinate prediction. The pTM value and the mean of the backbone

pLDDT values are constraints that are meant to steer the optimization toward structures

with higher structure prediction confidence, which is associated with naturally plausible

and designable structures. We use a linear combination of the quantities 1 − pTM and

1− pLDDT (since a higher confidence/lower energy is desirable), with user-specified weights,

as the returned value of the confidence constraint.

A.4.2.3 Surface-exposed hydrophobics

The surface exposed hydrophobics constraint aims to reduce the hydrophobicity of the

protein surface, where high hydrophobicity leads to protein aggregation and insolubility. We

implement this constraint using the Shrake-Rupley “rolling probe” algorithm to determine

the surface exposed atoms [205] as implemented in the biotite Python package version 0.35.0

[56]. We then calculate the fraction of atoms involved in hydrophobic residues that are also
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surface exposed, and we use this fraction as the output of the constraint function.

A.4.2.4 Globularity

It is sometimes desirable to encourage a protein chain to pack into a globular structure.

Our globularity constraint is implemented by computing the centroid of a set of atomic

coordinates, where the globularity constraint function returns the variance of the distances

from all coordinates to this centroid. Intuitively, low variance indicates that all coordinates

that are largely equidistant to the centroid, which is more consistent with globular packing.

A.4.2.5 Secondary structure

The secondary structure constraint steers the energy toward user-defined secondary structure.

To annotate residue secondary structure, we use the P-SEA algorithm [206] as implemented

by the biotite Python package [56]. This constraint function returns one minus the fraction of

residues that belong to the desired secondary structure element (since a higher fraction/lower

energy is desirable).

A.4.2.6 Rotational symmetry

To design symmetry, we first find it helpful to tie the sequence identities across the subse-

quences corresponding to the asymmetric units. The first symmetry we consider is rotational

symmetry, which only consider the centroids of the immediate children of the constraint’s

node; for example, rotational symmetry defined on a node x1 where x1 → x2x3x4 would only

consider the centroids of the individual substructures defined by x2, x3, or x4.

Using the left-to-right order of these children in the production rule, the rotational

symmetry function first computes the distances among adjacent centroids, circularly wrapping

to include the distance between the first and last symbols; for example, rotational symmetry

defined on x1 → x2x3x4 would compute the set of distances among pairs (x2, x3), (x3, x4),
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and (x4, x2). The final value returned by this constraint function is the variance among all

adjacent distances; intuitively, a rotational or ring-like symmetry would have equal distances

among centroids. This rotational symmetry function is adopted from that used by Wicky

et al. [160].

A.4.2.7 Globular symmetry

The globular symmetry constraint is defined on the centroids of the immediate children of the

constraint’s node; for example, globular symmetry defined on a node x1 where x1 → x2x3x4

would only consider the centroids of the individual substructures defined by x2, x3, or x4

(this is similar to rotational symmetry described above). The globularity symmetry function

computes all pairwise distances among centroids and returns the variance of these distances.

In practice, this constraint function is useful for defining symmetry that is not rotational, for

example, the symmetry observed in polyhedral assemblies.

A.4.2.8 All-atom coordination

One approach to designing functional proteins is to constrain (a portion of) the protein to

match the structure of a known functional site in nature. We accomplish this with an all-atom

coordination constraint. This constraint is first defined with respect to a list of atoms from

a native protein structure (outside of our designed protein), which we denote ynative. We

then constrain all of the atoms in the corresponding (sub)tree to match, which we denote

ydesign, as closely as possible, the coordination of the atoms in ynative. We achieve this with

two functions. The first is the constrained root mean square deviation (cRMSD),

cRMSD(ynative, ydesign) =

min
T

(
1

n

n∑
i=1

∥ai(ynative)− T (ai(ydesign))∥22

)1/2

(A.8)
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where T is a structural transformation, ai denotes the atomic coordinates of the ith atom out

of n total atoms considered, and ∥·∥ denotes a vector norm. We implement the structural

alignment using the Kabsch algorithm [207] as implemented by biotite [56]. The second

function for constraining atomic coordination is the distance-matrix RMSD (dRMSD),

dRMSD(ynative, ydesign) = (
2

n(n− 1)

n∑
i=1

n∑
j=1

(dij(ynative)− dij(ydesign))
2

)1/2

(A.9)

where dij is the Euclidean distance between the ith and jth atoms. The returned final value

is a linear combination of the cRMSD and dRMSD values with user-specified weights. In

practice, cRMSD is sometimes excluded (i.e., its weight is set to zero) in conjunction with

dRMSD, as cRMSD alone does not appear sufficiently stable to create a sufficiently smooth

energy landscape.

A.4.2.9 Backbone atom coordination

For a class of design tasks called fixed backbone design, we desire to only constrain the

backbone atoms of the protein structure and have the optimization produce sequences that

match a known backbone. This constraint is largely equivalent to the all-atom constraint

described above, but rather than constraining all atoms (including side chains), this constraint

is only applied to the carbon, α-carbon, and nitrogen atoms in the protein backbone.

A.4.2.10 Surface exposure

In some cases, we desire that a given set of residues be exposed on the surface of the protein

(for example, when scaffolding a protein binding site). As with the hydrophobics constraint,

we leverage the Shrake-Rupley algorithm [205] as implemented by biotite [56]. We then

calculate the fraction of surface exposed atoms within the structure corresponding to the
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constraint’s subtree, and we use one minus this fraction as the output of the function.

A.4.2.11 Length

The length constraint requires a user-specified number of residues. In practice, we can enforce

a hard length constraint by disallowing insertions and deletions during the optimization

procedure, or through a function that returns increasingly high values when a sequence length

goes beyond a user-specified range. In this study, whenever we apply a length constraint we

take the former approach.

A.4.3 Design tasks and experiments

A.4.3.1 Free hallucination

Free hallucination simply requires applying confidence and surface-exposed hydrophobic

constraints to the whole protein, where we place equal weight on each term (pTM, pLDDT,

and hydrophobics). In the experiments described in this study, we ran simulated annealing

over 30,000 iterations with Tmax = 1 across 200 seeds. We also evaluated single-sequence

AlphaFold2 [3] on the final sequences produced by these 200 optimization runs.

A.4.3.2 Fixed backbone design

For fixed backbone design, we apply a weight of 2 on the dRMSD constraint, a weight of

1 on the cRMSD, pTM, and pLDDT constraints, and a weight of 0.5 on the hydrophobics

constraint. As the target backbones, we used the de novo structures with PDB IDs 1QYS,

5L33, 6D0T, 6MRS, 6W3W, and 6WVS. In the experiments described in this study, we ran

simulated annealing over 30,000 iterations with Tmax = 1 across at least 50 seeds for each de

novo backbone.
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A.4.3.3 Secondary structure design

We performed protein design with partial constraints on a protein by constraining the

secondary structure corresponding to different segments of the protein sequence. We place a

weight of 10 on the secondary structure constraint and weights of 1 on pTM, pLDDT and

hydrophobics constraints. Our programs specify the secondary structure corresponding to

two discrete subsequences, where we program (1) all alpha, (2) all beta, and (3) mixed alpha

and beta secondary structure. We ran simulated annealing over 30,000 iterations Tmax = 1

for 10 seeds for each of these three programs (30 optimization trajectories in total).

A.4.3.4 Single functional site scaffolding

To program functional site scaffolding on a de novo backbone, we divide a single-chain

sequence into three segments: a sequence in the middle segment (with an all-atom coordination

constraint and a surface exposure constraint) flanked by two “free” sequences. pTM, pLDDT,

and hydrophobics constraints are also applied to the full protein. We apply a weight of

2 to the cRMSD and dRMSD constraints, and a weight of 1 to the pTM, pLDDT, and

hydrophobics constraints.

We attempted to scaffold five protein binding sites, the first three of which were successfully

scaffolded by Wang et al. [159]:

1. IL10: We used the residue indices 31–40, inclusive, of chain L in the PDB structure

1Y6K, corresponding to the IL10 binding site of IL-10R1 [208].

2. ACE2: We used the residue indices 5–23, inclusive, of chain A in the PDB structure

6M0J, corresponding to the ACE2 binding site of the SARS-CoV-2 spike receptor

binding domain (RBD) [10].

3. C3d: We used the residue indices 104–126 and 170–184, inclusive, of chain A in the
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PDB structure 1GHQ, corresponding to the C3d binding site of complement receptor 2

[209].

4. HA2: We used the residue indices 14–21, 33–42, and 45–49, inclusive, of chain B in

the PDB structure 5JW3, corresponding to the influenza HA2 epitope of the antibody

MEDI8825 [210].

5. RBD: We used the residue indices 439–450 and 498–506, inclusive, of chain C in the

PDB structure 7MMO, corresponding to the SARS-CoV-2 RBD epitope of the antibody

bebtelovimab [211].

We ran simulated annealing over 30,000 iterations with Tmax = 1 for 1,000 seeds for each

of the five binding sites (5,000 optimization trajectories in total).

A.4.3.5 Symmetric and homo-oligomer design

We first program single-chain symmetry using a rotational symmetry constraint applied

to the top-level node. In our program, we also tie the sequences across the subsequences

corresponding to the asymmetric units such that we only use a single terminal symbol; an

example program for designing 3-fold symmetry is provided in Figure 5.3a. We place a weight

of 1 on the symmetry constraint, as well as weights of 1 on pTM, pLDDT, and hydrophobics

constraints. We also place length constraints on the terminal nodes. We specify programs

where we increase the fold-symmetry from 3- to 8-fold. We also vary the lengths that constrain

the terminal symbol such that the full sequence has approximately 200, 300, or 400 residues

(for example, a 200-residue protein with 3-fold symmetry would have length constraints of 66

on its terminal symbols). We ran simulated annealing over 30,000 iterations with a starting

temperature of 1 for 10 seeds for each of the six fold symmetries and each of the three length

constraints (for a total of 180 optimization trajectories).
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We also designed larger homo-oligomers similarly, but removing the single-chain constraint

from the top-level node. We designed trimeric, tetrameric, hexameric, and octameric homo-

oligomers with a globular symmetry constraint applied to the top level node. We placed

a weight of 1 on the symmetry constraint, as well as weights of 1 on pTM, pLDDT, and

hydrophobics constraints. We also placed a weight of 0.1 on globularity constraints that are

applied to each terminal symbol. We applied length constraints such that the full complex

contained 720 residues (for example, the hexamer would consist of length-120 protomers).

We ran simulated annealing over 30,000 iterations with Tmax = 1 for 10 seeds for each of

oligomerization levels (for a total of 40 optimization trajectories).

A.4.3.6 Two-level symmetry design

We program two levels of symmetry using the productions

x1 → x2 · · · (top-level) and (A.10)

x2 → A · · · (bottom-level). (A.11)

In these programs, we place the single-chain constraint on x2, so the final designs are protein

homo-oligomers. We place a globularity symmetry constraint on x1; to control the top-level

symmetry, we repeat x2 according to the desired oligomerization. We place a rotational

symmetry constraint on x2; to control the bottom-level symmetry, we repeat A according to

desired fold symmetry. We also place pTM, pLDDT, and hydrophobics constraints on the

full protein; we place globularity constraints on x2. We compile constraints into an energy

function with weights of 1 on all terms.

We enumerated programs over the grid varying both the top and bottom levels of symmetry

from 2 to 4. We constrained lengths to 200 residues in total for the dimer of 2-fold; length-250

for the dimer of 3-fold; length-400 for the dimer of 4-fold, the trimer of 2-fold, the trimer
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of 3-fold, and the tetramer of 2-fold; length-450 for the trimer of 4-fold and the tetramer of

3-fold; and length-500 for the tetramer of 4-fold. We ran simulated annealing over 30,000

iterations with Tmax = 1 for 10 seeds for each of these programs (for a total of 90 optimization

trajectories).

A.4.3.7 Structural novelty

We quantify a given design for structural novelty by running an exhaustive search over the

PDB version 2022-08 (http://www.rcsb.org/) [81] to find the experimental structure with

the highest TM-score to the designed structure, normalizing by the designed structure length,

using TM-align version 20210107 [1].

A.4.3.8 Inverse folding roundtrip experiments

We assessed the “designability” of a structure prediction produced by our optimization

procedure by “roundtripping” the protein through an inverse folding model. More specifically,

given a predicted structure from our optimization loops, we first use ESM-IF1 [6], an

independently trained inverse folding model, to sample 10 sequences with temperature 0.1

from the backbone coordinates. We then run these sequences through ESMFold and compute

the cRMSD between the starting and the roundtripped backbone atoms of the predicted

structure.

We performed this roundtrip experiment for 1,000 predicted structures that were obtained

by first uniformly sampling one of the 180 symmetric single-chain optimization trajectories

and then uniformly sampling one of the intermediate structure predictions within a given

design loop (i.e., we do not restrict this analysis to the best pLDDT structure over a design

loop, which are highly biased toward high pLDDTs). We report the relationship between

ESM-IF1 perplexities of all sample structures and the corresponding cRMSD values. We

also report the relationship between the pLDDT of the starting structure and the minimum
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RMSD over the structure for the 10 inverse-folded sequences. We also repeated the same

experiment for 1,000 predicted structures that were obtained by first uniformly sampling

over the 90 two-level symmetry optimization trajectories and then uniformly sampling one of

the intermediate structure predictions within a given design loop. We also report the same

metrics as in the single-chain evaluation.

A.4.3.9 Symmetric functional site scaffolding

We designed proteins that symmetrically scaffold multiple functional sites by using the tree

described for the single-site functional scaffold but replicating it according to the desired fold

symmetry and adding a rotational symmetry constraint to the top-level node; an example

program for a 3-fold functional site scaffold can be found in Figure 5.5a. We use weights of

10 on the cRMSD and dRMSD constraints and weights of 1 on the pTM, pLDDT, rotational

symmetry, binding site surface exposure, and hydrophobics constraints. We ran simulated

annealing over 30,000 iterations with a starting temperature of 1 over 20 seeds for the design

of 3-fold scaffolds of the IL10 and ACE2 binding sites described above, as well as 20 seeds for

the design of 5-fold scaffolds of the ACE2 binding site (for a total of 60 optimization loops).

A.4.3.10 Hierarchical asymmetric symmetry design

We increased the level of hierarchical complexity in our programs by designing with three

levels of constraints. The top level specifies two asymmetric subunits. Each asymmetric

subunit itself has two-level symmetry (similar to the setting described above): we specifically

consider the dimer of 2-fold (2x2), the dimer of 3-fold (2x3), and the trimer of 2-fold (3x2).

We write programs consisting of (1) two asymmetric 2x2s complexed together, (2) a 2x2

and a 3x2 complexed together, and (3) a 2x2 and a 2x3 completed together. An example

program for the two asymmetric 2x2s is provided in Figure 5.5c. We use weights of 1 on all

constraints (pTM, pLDDT, hydrophobics, rotational/globular symmetry, and globularity).
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We ran simulated annealing over 30,000 iterations with Tmax = 1 over 10 seeds for each of

the three programs described above (for a total of 30 optimization loops).
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Figure A.20: Additional plots for secondary structure design and functional site scaffolding. (A) ESMFold
pLDDT values for different secondary structure design specifications (10 seeds per specification). A red
line is plotted at pLDDT = 0.7. (B) The fraction of residues that are part of alpha helices for different
secondary structure design specifications (10 seeds per specification). (C) The fraction of residues that
are part of beta sheets for different secondary structure design specifications (10 seeds per specification).
(D) ESMFold pLDDT values for different functional site scaffolding design runs (1,000 seeds per binding
site).
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Figure A.21: Additional plots for the design of symmetric single chains. (A) ESMFold pLDDT values
for different fold symmetry design specifications (30 seeds per specification). A red line is plotted at
pLDDT = 0.7. (B) Ten randomly sampled designs for the design of 5- and 8-fold symmetry. (C)
TM-scores for different fold symmetry design specifications (30 seeds per specification); the TM-score
is between the best design and the closest structure in the PDB. A red line is plotted at TM-score =
0.6. (D) Samples obtained by inverse folding with ProteinMPNN. On the x-axis is the pLDDT of the
designed structure prior to the roundtrip and on the y-axis is the roundtrip RMSD.
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Figure A.22: Additional plots for the design of two-level symmetry. (A) ESMFold pLDDT values
for different two-level symmetry design specifications (10 seeds per specification). A red line is plotted
at pLDDT = 0.7. (B) All ten of the designs of a dimer of 2-fold and of a trimer of 2-fold symmetry.
(C) TM-scores for different two-level symmetry design specifications (10 seeds per specification); the
TM-score is between the best design and the closest structure in the PDB. A red line is plotted at
TM-score = 0.6.
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Figure A.23: Additional plots for multi-level hierarchical design (A) ESMFold pLDDT values for different
binding site scaffolds with fold symmetry (20 seeds per specification). A red line is plotted at pLDDT =
0.7. (B) RMSD values for different binding site scaffolds with fold symmetry (20 seeds per specification).
The mean RMSD is reported across either three or five binding sites. A red line is plotted at pLDDT
= 0.7. (C) Ten randomly sampled designs for the design of 3- and 5-fold symmetric ACE2 binding
site scaffolds. (D) ESMFold pLDDT values for different asymmetric-symmetric design specifications
(10 seeds per specification). A red line is plotted at pLDDT = 0.7. (E) All ten of the designs of an
asymmetric complex of two dimers of 2-fold symmetry.
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