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Abstract

By leveraging advances in deep learning, reinforcement learning (RL) has recently made such ad-

vances that for any task which has a simulator, and thus enables the collection of nearly unlimited

data, it might now be expected to yield superhuman performance. However, many practically

relevant tasks take place in the physical world. Constructing physical simulators of su�cient

�delity and correspondence to transfer is a non-trivial challenge, so for the majority of physical

tasks at least some amount of training on real data is required. Collecting data in the real world

is su�ciently expensive that it makes up much of the cost of training a reinforcement learning

agent.

This thesis focuses on improving the sample e�ciency of reinforcement learning in order to

make them more practical to use on physical systems. It includes three approaches to this goal.

The �rst part studies the data collection process, and in particular the opportunity for exploration

to improve the sample e�ciency of RL. The second part considers the use of representation learn-

ing to improve generalization, and thus sample e�ciency, in reinforcement learning. The third

part examines the o�ine RL setting, which consists of pure policy optimization using a �xed

dataset and therefore does not require additional data collection.

Taken together, this work studies techniques for improving the sample e�ciency of reinforce-

ment learning by collecting data which is more useful and diverse, then learning more from every

sample. It represents an early step on the path to RL as an everyday tool for control of physical

systems.
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1 | Introduction

Reinforcement learning (RL) provides a framework for systems which learn to make decisions un-

der uncertainty about their environment. Such a system must simultaneously determine which

of all possible environments it is interacting with and solve for an optimal strategy in that envi-

ronment. This uncertainty is the core challenge of reinforcement learning, and one of the most

fundamental questions of the �eld is how much experience a learning system requires to resolve

its uncertainty and perform well. We call this the sample complexity of reinforcement learning.

Classically reinforcement learning was restricted to environments with small, countable state

and action spaces.1 In this setting a variety of algorithms were developed with robust guaran-

tees on their performance relative to the ideal policy and on the amount of data required to

approach perfect behavior. Bandit algorithms for environments without temporal dependence

and dynamic programming for those with non-trivial dynamics both yielded practical success.

However, the specter of exponentially-increasing sample complexity limited these approaches to

low-dimensional settings.

The combination of deep learning with reinforcement learning in the last decade has given

rise to the new sub�eld of "deep reinforcement learning", which leverages function approxima-

tion to scale reinforcement learning to tasks with large or uncountable state or action spaces.

Deep reinforcement learning has led to dramatic results across a range of domains, from board

games like Go to complex multiplayer computer games like StarCraft, from controlling automated

balloons to manipulating Rubik’s cubes, and even to abstract tasks like chip design.
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A key unifying feature of these most impressive deep RL results is the availability of simu-

lators. Each of these domains admits the construction of a simulation of su�cient �delity that a

policy may be trained in simulation and then deployed on the real task with little to no �ne tun-

ing. Furthermore, these simulations are inexpensive relative to collecting "real" data, reducing

the cost of training a policy by orders of magnitude. By turning data collection into computation,

simulation freed deep RL from paying attention to sample e�ciency, as it was more important

how computationally fast an algorithm was than how many hours or years of (virtual) experience

it consumed.2

1.1 The Cost of Free Data

Our reliance on simulation comes with hidden costs. Simulation-based RL has generated spec-

tacular results, and simulation should be a primary tool in any e�ort to solve a real-world task.

However, the availability of cheap simulation has shaped what the deep RL community studies by

reinforcing work on simulatable domains and the large-data regime. This has resulted in slower

progress on questions in the sample-limited regime. Sample-e�cient reinforcement learning is

important due to the fundamental scienti�c importance of understanding sample complexity and

the intractibility of simulating every domain of interest.

Sample complexity is foundational. The study of sample complexity in reinforcement learn-

ing addresses fundamental questions about what information is needed to reliably solve a prob-

lem. The observation that realistic, high-dimensional tasks are solvable with small sample sizes

may be surprising, given that there are theoretical lower bounds requiring a number of samples

which is linear in the number of states or exponential in the horizon [Du et al. 2020]. This dis-

agreement requires explanation, and it suggests that real-world problems contain a signi�cant

amount of structure which makes them easier to solve. Understanding this structure in more
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detail, as well as how it interacts with the inductive biases of the function approximators we use,

could lead to signi�cant breakthroughs.

Simulators are expensive. While many simulators already exist that are computationally in-

expensive, many important systems of interest are computationally di�cult to simulate with

su�cient precision for transfer to the real world. Simulations of �uid dynamics, deformable ma-

terials, and large numbers of contacts (to name a few) can be signi�cantly slower than real-time.

Furthermore, the development of new realistic simulators is �nancially expensive not only be-

cause of the engineering of the simulator itself, but additionally due to the need to create and

maintain a close correspondence between the simulation and the physical system of interest.

These costs inhibit the use of simulators for domains which are too complex or too niche.

This thesis consists of work done in the last several years which makes deep RL somewhat

more capable in the sample-limited regime. With this line of work I hope to unlock the wide

range of environments which currently lack high-�delity simulators. Beyond simply enabling

RL in more complex environments, improvements to sample e�ciency has the potential to allow

agents to adapt on the �y to the speci�cs of the environment or objectives they interact with. A

home robot might come to know the best way to pick up your cups, or an automated factory could

produce more rapidly over the course of a production run as the networked assembly arms pool

experience about manipulating each component part. In these settings learning more e�ciently

can be directly translated into consumer experience and dollars saved.

1.2 Elements of Sample-Efficient Learning

Reinforcement learning can be thought of as comprising two distinct processes: data collection

and policy optimization. Data collection, also known as exploration, is when the agent interacts

with the environment in order to gain more information about the optimal policy. Policy opti-
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mization is the process of using data collected from the environment to produce a policy that

achieves as much reward as possible. In order that an RL algorithm overall be sample e�cient,

both exploration and policy optimization must themselves be e�cient.

E�cient exploration means rapidly acquiring information about the optimal policy. This

means collecting data that is diverse, such that valuable states and actions will be quickly un-

covered, but also biasing data collection towards states and actions which are more likely to be

optimal. If done well exploration spans the environment and then collects evidence to allow

the agent to discard poor policies and di�erentiate between actions which are optimal and those

which are merely good.

E�cient policy optimization means squeezing as much performance as possible out of the data

which is currently available. While this is often discussed in the narrow frame of model-free RL,

this process might include building models, learning representations, or even meta-learning. In

principle one might hope to feed some prior beliefs along with whatever data has been collected

from the environment and get back the best policy which is supported by that data. Recent work

in o�-policy RL and the o�ine RL setting have made progress towards this vision, but it remains

some way o�.

1.3 Overview

This thesis consists of work on improving the sample e�ciency of reinforcement learning through

three main directions: (1) collecting more diverse data without confounding policy learning; (2)

learning representations which capture structure in the environment; and (3) studying policy op-

timization in the batch setting to develop policy improvement operators that are robust to limited

data. The motivating challenge through much of this work is robotic manipulation using low-

dimensional positions or high-dimensional images as observations and with continuous-valued

action spaces. However, the �ndings described here are applicable more widely across reinforce-
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ment learning.

The rest of the thesis is organized as follows:

• Chapter 2 introduces background on the problem of sample-e�cient RL and how it relates

to the several settings under which RL has been studied.

• Part I describes the role of exploration in sample-e�cient RL, with Chapter 3 illustrating

how exploration techniques adapted from deep RL to the sample-limited robotic setting

can improve sample e�ciency and performance. This work was previously published as

Whitney et al. [2021a].

• Part II focuses on the role of representation in reinforcement learning, with a discussion

of the value of representation learning more generally in Chapter 4 [Whitney et al. 2021b]

and work on representations for sample-e�cient RL in Chapter 5 [Whitney et al. 2020].

• Part III studies policy optimization in the o�ine setting, �rst describing the impact of over-

paraterized models in o�ine bandit problems in Chapter 6 [Brandfonbrener et al. 2021a],

then studying the repeated application of policy improvement operators in the full o�ine

RL problem in Chapter 7 [Brandfonbrener et al. 2021b].
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Notes

1. Or more accurately, environments admitting assumptions that allow them to be treated as such. A 2-D continuous

state space can be treated as a discrete grid of states with arbitrarily little waste under the assumption that the

environment changes su�ciently slowly, for example.

2. Of course, not everyone in the deep RL community ignores sample e�ciency. Notably many people working on

robotics have maintained remarkable discipline in only running simulated benchmarks for physically plausible

amounts of time, but there is also a small but vibrant community working on reaching human Atari performance

with human-like amounts of experience.
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2 | The Many Settings of

Reinforcement Learning

2.1 Notation

A Markov decision process (MDP)M consists of a tuple (S,A, %, ',W, B0), where S is the state

space,A is the action space, % is the transition function mapping S ×A to distributions on S, '

is the scalar reward function on S × A, W is the discount factor, and B0 is the starting state. Note

that a single start state can be converted to a start distribution by letting % (B0, ·) be independent

of the action taken. An agent interacts with an MDP by producing a policy c at each timestep

and observing the transitions it visits.

The value of a state B for a policy c is the (discounted) sum of future rewards obtained by

running that policy starting from the state B:

+ c (B) = E
0C∼c (·|BC )
BC+1∼% (BC ,0C )

∞∑
C=0

W C'(BC , 0C )
�� B0 = B (2.1)

Similarly the value of a state-action pair (B, 0) is written as

&c (B, 0) = E
0C∼c (·|BC )
BC+1∼% (BC ,0C )

∞∑
C=0

W C'(BC , 0C )
�� B0 = B, 00 = 0 (2.2)
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Any MDP admits a deterministic optimal policy c∗ with corresponding value functions + ∗ and

&∗ such that + ∗(B) > + c (B) for all B and c [Sutton and Barto 2018].

2.2 Discounting and Resets

When W < 1 we say that the setting is discounted, and for W = 1 we say that it is undiscounted. An

environment may have a time limit) such that after every) steps, the state is reset to B0. In this

case we call it episodic. To satisfy the Markov property, episodic environments should include the

current timestep C in the state.

For episodic environments, it is natural to de�ne a policy’s quality in terms of the total re-

ward earned (on average) in a single episode, with discounted environments preferring rewards

obtained earlier in the episode. For non-episodic environments comparisons between policies are

less clear-cut; see Section 2 of Strehl and Littman [2008] for a discussion.

Common practice in deep reinforcement learning is to train agents with discounting and

resets, but not include the timestep in the state observations and simply ignore the transition

from B) to B0. Policies are typically evaluated by the total undiscounted reward in an episode,

despite the con�ict with the training setup. In most cases the rewards are truncated to re�ect

the limited episode duration [Schulman et al. 2017; Fujimoto et al. 2018a; Haarnoja et al. 2018b].

Since the agent is unable to tell when an episode will end, this e�ectively introduces noise into

value prediction targets, and this noise varies by state depending on how often the agent has

ended an episode on that state. In other cases value targets may be bootstrapped from the state

B) as if the environment were not episodic. This has two issues: (1) it introduces bias by treating

an estimate of + (B) ) as the true value, when in some states and environments this estimate may

never be updated; and (2) by pretending the environment has no resets, it introduces a mismatch

between the training and test objectives.3 However, it does not introduce noise.

More fundamentally, practically all discounted policy gradient algorithms drop the discount-
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ing term from the state distribution. Nota and Thomas [2020] show that this results in following

a direction which is not the gradient of any function, and which is not guaranteed to converge to

a good solution with respect to the discounted or undiscounted objectives. While this is deeply

worrying, these methods frequently work well in practice. This may be due to their usage with

overparameterized neural network models, which are largely invariant to a reweighting of the

data [Byrd and Lipton 2018; Brandfonbrener et al. 2021a].

2.3 Defining Sample Complexity

We say that a policy c is Y-optimal if + ∗(B0) 6 + c (B0) + Y. De�ne 0 = �(M, 8) to be the policy

obtained by running the agent (i.e. algorithm) � in the environmentM for 8 timesteps, being

careful to note that the policy 0 is itself a random variable due to the randomness in the expe-

rience collected in those 8 steps. Let the sample complexity of learning a Y-optimal policy onM

with � be the expected number of steps (indexed as 8) such that

+ c8 (B0) < + ∗(B0) − Y, where c8 = �(M, 8). (2.3)

This de�nition is related to those proposed by Fiechter [1994] and Strehl and Littman [2008] for

PAC learning. Sometimes it is also useful to consider the "anytime" performance of an algorithm

� on an MDPM. An algorithm �1 would dominate �2 if ∀8 , +�1 (M,8) (B0) > +�2 (M,8) (B0).

2.4 Online and Deployment Settings

While the overall MDP framework is largely shared in the community, several di�erent objectives

for a learning agent are commonly studied. The online and o�ine settings are perhaps the most

studied in the theory community, but the "learn-and-deploy" setting has the most relevance for

present applications of RL.

9



The online setting. Here an RL agent learns by continually interacting with the environment

with the goal of maximizing the total reward earned across all time. This gives rise to the explore-

exploit tradeo� when acting: at each moment, the agent may choose to take an action which is

uninformative but leads to greater short-term reward, or one which will yield more information

at the cost of lower reward. The objective for this setting is to minimize the rate of accumulation

of regret, which measures the di�erence between the total reward obtained by an optimal policy

and the agent:

!(�,M,) ) = E
[
)∑
8=1

'(B∗8 , 0∗8 ) − '(B8, 08)
]
. (2.4)

This setting is appropriate when an agent is being trained "on the job," where mistakes early in

learning have just as much deleterious e�ect as those made later. In this context, sample e�ciency

controls the total amount of regret the agent will accumulate.

The learn-and-deploy setting. This setting consists of distinct learning and deployment

phases. In the learning phase, the agent is not required to perform well and may collect whatever

data is most informative. In the deployment phase, the policy is �xed and should be as close to

optimal as possible. Note that the policy produced at the end of the training procedure need bear

no resemblance to those used to collect data. For episodic environments, with a training period

consisting of # steps we can write the this objective as

!(�,M, # ) = + ∗(B0) −+ c# (B0), where c# = �(M, # ) (2.5)

Historically this setting has not been much discussed, though it is analagous to the task of best-

arm identi�cation in bandits [Russo 2016; Kaufmann et al. 2016]. It is also related to the iterative

technique of �tted Q iteration [Ernst et al. 2005; Riedmiller 2005].

Crucially, this setting is the one used in practice in nearly every application of reinforcement
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learning. RL algorithms are not yet safe and reliable enough to allow them to update a policy

on the �y, especially with a physical system which may be damaged or cause injury. Further-

more, most works studying RL implicitly provide results in this setting by evaluating according

to a di�erent policy than the one used for training, for example showing learning curves with a

deterministic policy [Mnih et al. 2015b; Lillicrap et al. 2016; Fujimoto et al. 2018a; Haarnoja et al.

2018b]. Comparisons of �nal, large-data performance similarly re�ect this setting [Silver et al.

2016; Vinyals et al. 2019; OpenAI et al. 2019a,b].

In this setting, sample e�ciency re�ects the amount of data the agent needs to collect during

training time before it can perform near-optimally at deployment time.

The offline setting. Also known as the batch setting, this consists only of pure policy op-

timization given a �xed dataset of environment interactions collected by an extrinsic behavior

policy. After learning from this data in whatever way it sees �t, an algorithm produces a �xed

policy with the objective of earning as much reward as possible. Though described as a reinforce-

ment learning setting, it does not include any actual reinforcement as the agent never learns from

its own interactions with the environment. However, this makes the o�ine RL setting uniquely

valuable for isolating how much can be learned from particular data. This setting is also appealing

as it would in principle allow an agent to be trained in a risk-free way by using data collected from

a safe policy, and for free (in terms of samples) if data from one experiment can be repurposed

as training data for another.4 For this setting, sample e�ciency must be rede�ned to include the

behavior policy under which the data was collected. It then re�ects the minimum amount of data

collected under that behavior policy required for a particular algorithm to recover the optimal

policy.5
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Notes

3. This mismatch is decreased if the divergence between the distributions % (B) , c (· | B) )) and B0 is smaller. Like most

problems in RL, it also becomes smaller if smaller discount factors are used. However in general there are actions

which would provide more short-term reward, and thus perform better toward the end of an episode, than the

in�nite-horizon optimal actions.

4. While there are doubtless some settings where this cross-task data reuse is possible, it has quite clear limits. For a

policy to be trained to solve task B using data collected from task A, the policy used for task A would have had to

actually also solve task B. It could have been done piecewise rather than in a single good trajectory, but unless the

tasks are extremely similar it is vanishingly unlikely. Perhaps a more practical application would be to start with a

safe but poor policy for solving a task, then incrementally collect new data, re�ne the policy using o�ine RL, validate

that the new policy is also safe, and then collect data once more.

5. Note that this quantity of data should be expected to be extraordinarily large for most behavior policies.
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Part I

Exploration and Sample E�ciency
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3 | Decoupled Exploration and

Exploitation Policies

3.1 Introduction

Recent progress in reinforcement learning (RL) for continuous control has led to signi�cant im-

provements in sample complexity and performance. While earlier on-policy algorithms required

hundreds of millions of environment steps to learn, recent o�-policy algorithms have brought

the sample complexity of model-free RL in range of solving tasks on real robots [Haarnoja et al.

2018c].

In parallel, a rich literature has been developed for directed exploration in deep reinforcement

learning, inspired in part by the theoretical impact of exploration on sample complexity. The

bulk of these methods fall into the family of bonus-based exploration (BBE) methods, in which

a policy receives a bonus for visiting states deemed to be interesting or novel. BBE algorithms

have enabled RL to solve a variety of long-horizon, sparse-reward tasks, most notably the game

Montezuma’s Revenge from the Arcade Learning Environment (ALE) [Bellemare et al. 2015].

These two sub�elds both aim to minimize the sample complexity of model-free RL, and their

methods are in principle perfectly complementary. O�-policy algorithms extract improved poli-

cies from data collected by (notionally) arbitrary behavior, and their performance is limited only

by the coverage of the data; meanwhile exploration generates data with improved coverage. How-
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ever, to date the impact of directed exploration techniques on sample-e�cient control has been

minimal, with state of the art algorithms using undirected exploration such as maximum-entropy

objectives. In this paper we investigate the missing synergy between o�-policy continuous con-

trol and directed exploration.

We �nd that BBE is poorly suited to the few-sample regime due to slowly-decaying bias in the

learned policy and slow adaptation to the non-stationary exploration bonus. Bias due to optimiz-

ing a reward function other than the task reward leads a policy trained with BBE to exhibit poor

performance until the bonus decays toward zero. Meanwhile, the non-stationary (continually

decreasing) exploration bonus cannot necessarily be optimized by a �xed policy, violating one of

the core assumptions of RL. This leads to slow exploration as the policy adapts only gradually,

especially in the o�-policy case where replay bu�ers will contain stale rewards. These observa-

tions underline research by Taiga et al. [2020] showing that across the ALE, no BBE algorithm

outperforms undirected Y-greedy exploration.

We demonstrate that bias and slow coverage are the culprits of BBE’s lackluster perfor-

mance by proposing a new exploration algorithm, Decoupled Exploration and Exploitation Poli-

cies (DEEP), which addresses these limitations. DEEP decouples the learning of a task policy,

which is trained to maximize the true task reward, and an exploration policy, which maximizes

only the exploration bonus. Both policies are trained o�-policy using data collected according

to the product of the two policy distributions. Unlike the policy learned by BBE, DEEP’s task

policy is always unbiased in the sense that it re�ects the current belief about the optimal action

in each state. Furthermore, this decoupling allows DEEP to aggressively update the exploration

policy without a�ecting the convergence of the task policy, thereby adapting more rapidly to the

changing exploration bonus.

We perform experiments using policies based on Q-learning [Sutton and Barto 2018; Mnih

et al. 2015a] on toy tasks and soft actor-critic (SAC) [Haarnoja et al. 2018c] on larger-scale tasks

from the DeepMind Control Suite [Tassa et al. 2018]. Our results show that on tasks with dense
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rewards and uniform resets, BBE often performs worse than the underlying policy-learning al-

gorithm while DEEP incurs no cost for exploring. On tasks with more natural resets and sparse

rewards, DEEP covers the state space more rapidly than BBE and reaches peak performance in a

fraction of the samples required with undirected exploration. In total, DEEP strictly outperforms

undirected exploration while solving many sparse environments just as fast as dense ones.

3.2 Background

3.2.1 Notation

A Markov decision process (MDP)M consists of a tuple (S,A, %, ',W), whereS is the state space,

A is the action space, % is the transition function mapping S × A to distributions on S, ' is the

scalar reward function on S × A, and W is the discount factor. We use lower-case (B, 0, A ) to

refer to concrete realizations of states, actions, and rewards. We useM5 to denote the MDPM

with the original reward function ' replaced by another function 5 . For convenience we assume

exploration rewards are within [0, 1], and we de�ne Ā = 1/1−W , which is the maximum discounted

value possible.

3.2.2 Bonus-based exploration: a recipe for exploration in deep RL

Bonus-based exploration has emerged as the standard framework for exploration in the deep

reinforcement learning community. In this framework, an agent learns in a sequence of MDPs

M̃ = {M
'̃=
}#==1 where the reward function '̃= changes as a function of each transition. A typical

choice is '̃= = ' + '+= , where '+= is an exploration bonus which measures the “novelty” of a

transition (B, 0, B′) given the history of all transitions up to=. After taking each transition (B, 0, B′),

the reward Ã = '̃= (B, 0, B′) is calculated and the tuple (B, 0, B′, Ã ) is added to a replay dataset � . The

agent optimizes its reward in this (non-stationary) MDP M̃ via some model-free RL algorithm
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operating on the replay dataset. The realization of a particular algorithm in this family amounts to

de�ning a novelty function and picking a model-free RL algorithm [Stadie et al. 2015; Houthooft

et al. 2016; Bellemare et al. 2016; Pathak et al. 2017; Tang et al. 2017; Burda et al. 2018; Machado

et al. 2020]. We illustrate this recipe in Algorithm 1.

Pseudo-counts. Building upon theoretically-motivated exploration methods for discrete envi-

ronments [Strehl and Littman 2008], Bellemare et al. [2016] proposed to give exploration bonuses

based on a pseudo-count function #̂ . A pseudo-count has two key properties. Like a true count,

a pseudo-count increases by 1 each time a state (or state-action pair) is visited. Unlike a true

count, a pseudo-count generalizes across states and actions; that is, when a state B is visited, the

pseudo-count for nearby states B + Y may increase as well.

3.3 Limitations of bonus-based exploration

The bonus-based exploration algorithm, illustrated in Algorithm 1, has two weaknesses which

limit its usefulness for sample-e�cient policy learning.

Bias with finite samples. Because they estimate the optimal policy on the modi�ed MDP

M′, bonus-based exploration algorithms learn biased policies as long as the exploration bonus

is nonzero. According to theory, the exploration bonus should be scaled larger than is done in

practice [Strehl and Littman 2008] and decay slower than 1/# (B) [Kolter and Ng 2009] in order

to guarantee convergence to the optimal policy. This behavior, shown in Figure 3.2, can result

in slow convergence to the optimal policy and substantially biased policies after a practically

feasible number of samples.

Slow adaptation to changing rewards. Algorithms in this family update the policy accord-

ing to the schedule of the underlying model-free RL algorithm – for example at the end of each
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Algorithm 1 Bonus-based exploration
Require: replay dataset � , policy c , bonus '+=

1: = ← 0
2: repeat
3: for one episode do

4: Collect (B, 0, B′, A ) ∼ % (B, c (B))
5: Ã ← A + '+= (B, 0, B′)
6: � ← � ∪ (B, 0, B′, Ã )
7: '+=+1 ← Update('+= , (B, 0, B′))
8: = ← = + 1
9: Train c with samples from �

10: until = = #

Algorithm 2 Decoupled Exploration and Exploitation Policies
Require: replay dataset � , temperature g , task policy ctask, exploration policy cexplore, bonus '+=

1: = ← 0
2: repeat
3: for one episode do
4: Update cexplore onM'+=
5: Set V (0 |B) ∝ ctask(0 |B) · cexplore(0 |B)
6: Collect (B, 0, B′, A ) ∼ % (B, V (B))

7: � ← � ∪ (B, 0, B′, A )
8: '+=+1 ← Update('+= , (B, 0, B′))
9: = ← = + 1

10: Train ctask with samples from �

11: until = = #

Figure 3.1: Comparison of classic bonus-based exploration (BBE) with our method (DEEP). BBE computes
exploration bonuses at the time of visiting a transition, adds them to the real rewards, and uses a replay
bu�er of experience to learn a policy. DEEP separates the exploration policy cexplore from the task policy
ctask, allowing ctask to be an unbiased estimate of the optimal policy throughout training. It always uses
the current exploration reward function '+= when updating the exploration value function, and is fast-
adapting to deal with the non-stationary bonus MDP.
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(b) Coverage

Figure 3.2: Experiments in a 40 × 40 grid-world environment with one goal state, where learning algo-
rithms were warm-started with 20 episodes of data from a skilled policy. (a) With enough signal to find
the goal, DDQN (Double DQN, Hasselt et al. [2016]) alone rapidly converges to the optimal policy. BBE
introduces bias, causing the policy to continually explore. Our method, DEEP, learns the task policy just
as rapidly as DDQN alone. (b) Though it performs well, DDQN simply goes to the goal during each train
episode and does not explore other options. BBE continues to seek out new states at a slow but steady
rate. DEEP explores far more than BBE during data collection despite simultaneously performing just as
well as DDQN at evaluation time.

episode. This works well for the stationary MDPs that these algorithms were developed for, but

the modi�ed MDPM′ which represents the exploration problem is non-stationary. This leads

to an agent which determines the most novel state and then stays there for an entire episode.

This degenerate behavior leads to potentially exploring only a single state per episode instead

of visiting a sequence of new states as the reward function evolves.6 The use of replay bu�ers

compounds this e�ect, since algorithms in this family compute exploration rewards at the time

the transition is collected, rather than when it is used. An algorithm which is unaware of the

non-stationary nature of the MDP will maximize the return on this mixture of reward functions

rather than the reward that incorporates the current bonus, resulting in slow coverage of the

environment. Figure 3.3 shows uniform random actions, BBE, and BBE with the fast adaptation

scheme we propose in Section 3.4.3 all exploring in a 40 × 40 grid-world without rewards. While

BBE covers the state space much faster than undirected exploration, it is unnecessarily slow. See

Appendix 3.A for visualizations.
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Figure 3.3: Pure exploration

3.4 Decoupled exploration for sample-efficient control

In this section, we describe a new algorithm called Decoupled Exploration and Exploitation Poli-

cies (DEEP) which addresses the limitations of BBE. The core insight is that by leveraging o�-

policy RL algorithms, DEEP can learn two policies from the same replay: a task policy ctask,

which maximizes the reward on the original MDPM' , and an exploration policy cexplore, which

maximizes only the reward on the bonus MDPM'+= . This decoupling serves two purposes. First,

it enables good performance even before exploration is complete by using ctask at test time. Sec-

ond, it allows cexplore to be updated aggressively in order to more closely match the non-stationary

bonus MDP; unlike ctask, it is not important that cexplore converge exactly to an optimal policy.

Like BBE, DEEP is a family of algorithms related by their structure; a particular algorithm in

this family consists of a choice of an exploration reward function and an o�-policy RL algorithm

for learning each policy. Throughout this work, we use a pseudo-count based exploration reward.

For discrete tasks we use Double DQN (DDQN, Hasselt et al. [2016]) and Boltzmann policies. For

tasks with continuous actions we use soft actor-critic (SAC) for ctask and a DDQN policy for

cexplore.
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3.4.1 Pseudo-count estimation

Following Bellemare et al. [2016], we use an exploration reward derived from pseudo-counts.

Instead of the high-dimensional pixel observations of the ALE, Control Suite has low-dimensional

(<100-D) observations corresponding to joint and object locations and velocities. This lower

dimensionality renders extracting pseudo-counts from a density estimator unnecessary, and in

our experiments we specify a pseudo-count function based on kernels. For a real-valued state-

action pair G = [B, 0] and a set of previous observations {G8}=8=1, de�ne the pseudo-count of G and

the exploration reward as

#̂= (G) =
=∑
8=1

: (G8, G) '+= (B, 0) = #̂=
(
[B, 0]

)−1/2 (3.1)

where : is a kernel function scaled to have a global maximum : (G, G) = 1. This satis�es the key

requirement for a pseudo-count function, namely that a visit to a state G increases #̂ (G) by 1 and

#̂ (G′) by at most 1 for any other state G′. In our experiments we use a Gaussian kernel (scaled to

have a maximum value of 1) with diagonal covariance. For implementation details see Appendix

3.B.

3.4.2 Separating task and exploration policies

DEEP uses two separate policies. Each is trained o�-policy using transitions sampled from the

replay bu�er; ctask is updated using the rewards from ' logged in the replay, while cexplore is

updated using rewards from '+= . Since ctask is trained only on the rewards for the true task, it is

unbiased in the sense that it re�ects the current best estimate of the optimal policy. This stands

in contrast to BBE policies, which optimize the sum of task and exploration rewards and thus

represent a biased estimate of the optimal task policy until the exploration rewards go to zero.

Our method is agnostic to the choice of algorithm and policy parameterization. However, it will
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be most e�ective with policy learning algorithms that work well when trained far o�-policy and

produce high-entropy policies (e.g. policies which cover all optimal actions). For these reasons

we use the state-of-the-art maximum-entropy algorithm SAC to learn ctask in environments with

continuous actions. For experiments with discrete action spaces we forego explicitly learning the

task policy ctask; instead we learn the task Q-function via DDQN [Hasselt et al. 2016] and de�ne

the task policy as ctask(0 |B;&) ∝ exp(& (B, 0)/g), where g > 0 becomes a hyperparameter – we

refer to the supplementary material for details.

3.4.3 Fast-adapting exploration policy

The non-stationary nature of the exploration reward function poses a challenge to typical model-

free RL algorithms, which assume a �xed reward function. BBE methods update a single policy

using a replay bu�er which, at a step =, contains rewards from a mixture of bonus reward func-

tions {'+1 , . . . , '+= }, computed using di�erent past novelty or count estimates.7 This results in slow

adaptation to the non-stationary objective of exploration. DEEP makes two changes to mitigate

the impact of the non-stationarity in the exploration reward function.

First, DEEP leverages access to '+= to compute exploration rewards when they are needed to

update cexplore rather than when the transition is collected. We choose to use Q-learning rather

than a more sophisticated algorithm in order to learn cexplore as rapidly as possible; with changing

rewards, using a policy to amortize the maximization of a value function as in SAC or DDPG

would slow down learning. We represent cexplore directly as a Boltzmann policy of this exploration

Q-function &explore:

cexplore(0 | B) ∝ exp
{
&explore(B, 0)
gexplore

}
, (3.2)

where gexplore is a temperature hyperparameter.

Second, by decoupling cexplore from ctask, DEEP unlocks the ability to update cexplore more
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aggressively without a�ecting ctask’s convergence to the optimal policy. This enables the explo-

ration policy to more rapidly adapt to the non-stationary exploration reward. In our experiments

we achieve this by using a larger learning rate and more updates per environment step than

is usually done; future work might investigate more sophisticated schemes such as prioritized

sweeping [Moore and Atkeson 1993] or prioritized experience replay [Schaul et al. 2016]. To

improve stability we use DDQN updates and clip Q targets at Ā , the maximum discounted explo-

ration value.

Optimism. Further adapting cexplore to the unique properties of the exploration reward function,

we propose to leverage optimism in its updates and actions. We propose to make &explore opti-

mistic by leveraging the pseudo-count function in a manner similar to that proposed by Rashid

et al. [2020]. We assume that the value function is trustworthy for transitions with very large

counts, and very untrustworthy for transitions with near-zero counts. When the count is zero

we impose an optimistic prior which assumes the transition will lead to a whole episode of novel

transitions; as the count increases we interpolate between this prior and the learned value func-

tion using a weighting function:

&+explore(B, 0) = F (B, 0) ·&explore(B, 0) + (1 −F (B, 0)) · Ā , F (B, 0) =
√
# (B, 0)√

# (B, 0) + 2
(3.3)

where Ā = 1/1−W , is the maximum discounted return in the bonus MDP and 2 is a small constant

representing how many counts’ worth of con�dence to ascribe to the optimistic prior. We use

this optimistic&+explore for computing targets for Bellman updates and for computing cexplore (Eq.

3.4). For details of the implementation of the fast-adapting cexplore, see Appendix 3.C.
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3.4.4 Product distribution behavior policy

A good behavior policy should attempt to explore all of the transitions which are relevant for

learning the optimal policy. This entails a trade-o� between taking actions which are more novel

and ones which are more likely to be relevant to a high-performing policy. DEEP encodes this

by representing the behavior policy as a product of the task policy ctask and the pure-exploration

policy cexplore:

V (0 | B) ∝ ctask(0 | B) cexplore(0 | B). (3.4)

The choice to parameterize V as a factored policy was made for its simplicity and ease of o�-

policy learning. Alternative formulations for making this trade-o� while preserving the unbiased

task policy are possible, and we view the form of our proposed behavior policy as just one option

among many. One alternative would be interleaving the behavior of multiple policies within one

episode, akin to e.g. Scheduled Auxiliary Control [Riedmiller et al. 2018].

In order to approximately sample from this behavior policy, we use self-normalized impor-

tance sampling with ctask as the proposal distribution:

1. Draw : samples 01, . . . , 0: from ctask

2. Evaluate cexplore(08 | B) for each 8 ∈ 1 . . . :

3. Draw a sample from the discrete distribution ? (08) = cexplore(08 | B)/
∑
8 ′ cexplore(08 ′ | B).

Note that since the proposal distribution is ctask, the ctask terms in computing weights cancel and

only the cexplore terms remain. Importance weighting is consistent in the limit of : → ∞ but

introduces bias towards ctask [Vehtari et al. 2015]. With small : , this bias makes it unlikely that V

will select actions that are very unlikely under ctask; roughly speaking, this procedure selects the

“most exploratory” action in the support of the task policy. This may act as a backstop to prevent
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the behavior from going too far outside the task policy to be useful. DEEP works best when ctask

is trained in a way that preserves variance in the policy (e.g. SAC’s target entropy), enabling the

behavior policy to select exploratory actions. In discrete action spaces we additionally use self-

normalized importance sampling – using a uniform proposal over actions – to obtain samples

from ctask in step 1.

3.5 Experiments

In this section we perform experiments to give insight into the behavior of undirected exploration,

BBE, and DEEP. First we perform a set of investigative experiments to probe how DEEP interacts

with environments with di�erent reward structures. Then we perform experiments on pairs of

benchmark continuous control tasks with easy and hard exploration requirements.
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(a) Local optimum environment
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(b) Adversarial environment

Figure 3.4: Two environments illustrating di�erent reward structures. (a) An environment with a locally-
optimal goal (reward 0.1) near the start state. SAC finds this nearby goal, but doesn’t explore far enough
to find the real goal (reward 1.0). When trained with DEEP, it finds the distractor goal but moves on to
the real goal. (b) An adversarial environment for DEEP which has a very small goal state close to the start
state, making it easy to find with random actions but hard with directed exploration.
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3.5.1 Investigative experiments

We construct a simple MuJoCo [Todorov et al. 2012] environment called Hallway to look more

closely at how exploration interacts with reward structure. This environment consists of a long

narrow 2D room with the agent controlling the velocity of a small sphere, which starts each

episode at one end of this hallway. The following two experiments share dynamics and di�er

only in their rewards.

Local optima. A valuable role for exploration is enabling an agent to escape from locally op-

timal behavior. To test this, we add two goal states with shaped rewards to the Hallway environ-

ment. The �rst is close to the start state but only provides reward at most 0.1, while the second is

at the far end of the hallway but provides reward 1.0. Figure 3.4(a) shows that exploration using

DEEP allows the agent to quickly �nd its way to the faraway optimal reward while SAC gets

stuck in the local optimum.

Limitations. DEEP covers states quickly, but there is no such thing as a universally optimal ex-

ploration strategy. For example, there exist environments for which the random walk dynamics of

undirected exploration �nd the optimal strategy faster than uniform state coverage. Figure 3.4(b)

provides one such example: a Hallway environment with a very small goal state close to the start

state. SAC discovers this goal faster than SAC + DEEP, though DEEP does eventually �nd it as

well.

3.5.2 Benchmark experiments

Next we provide experiments based on DeepMind Control Suite [Tassa et al. 2018], a standard

benchmark for continuous control RL algorithms. We introduce versions of several environments

which are modi�ed to remove the accommodations that make them solvable without exploration,
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then provide results of SAC, SAC + BBE, and SAC + DEEP on the original and modi�ed environ-

ments.

3.5.2.1 Results
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(a) Ball-in-cup
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(b) Ball-in-cup explore
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(d) Reacher explore
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(g) Walker
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Figure 3.5: Results on original Control Suite environments (le� in each pair) and modified versions with-
out exploratory resets and rewards (right). Across the original environments, SAC + DEEP performs as well
or be�er than SAC, while SAC + BBE performs much worse on some environments. On the exploration
environments, DEEP + SAC learns much faster than SAC. BBE sometimes provides significant gains over
SAC but sometimes performs worse even on exploration environments.

3.5.2.2 Environments for evaluating exploration

While Control Suite has driven great progress in policy learning, it was not designed to evaluate

an agent’s exploration capabilities; in fact, the included environments were selected to be solvable

by algorithms with only undirected exploration. From that work:

We ran variety of learning agents (e.g. Lillicrap et al. 2015; Mnih et al. 2016) against

all tasks, and iterated on each task’s design until we were satis�ed that [. . . ] the task

is solved correctly by at least one agent. [Tassa et al. 2018]
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Control Suite avoids the need for directed exploration via two mechanisms. First, in many en-

vironments the start state distribution is su�ciently wide (e.g. uniform over reachable states)

to guarantee that any policy will see high-value states.8 Second, some environments have re-

wards shaped to guide the agent towards better performance (e.g. a linearly increasing reward

for forward walking speed).

To construct a benchmark for continuous control with exploration, we selected four en-

vironments with di�erent objectives (manipulation and locomotion, single-objective or goal-

conditional) and observation dimensions (6-24). We then created “exploration” versions of these

environments with restricted start state distributions and sparse rewards. The original environ-

ments and their exploration versions together form a benchmark which measures an algorithm’s

exploration ability and policy convergence. Environment details are in Appendix 3.D and their

implementation is in the supplement.

3.5.2.3 Algorithms

We include experiments on these eight benchmark tasks with three algorithms: SAC [Haarnoja

et al. 2018c] with no additional exploration; BBE with SAC for the policy learner; and DEEP with

SAC for ctask and DDQN for cexplore. BBE and DEEP use the pseudo-count reward described in

Section 3.4.1 and the SAC implementation is that of Yarats and Kostrikov [2020] with no hyper-

parameter changes.

The kernel-based exploration bonus used for BBE and DEEP requires a scaling law to set the

kernel variance as a function of the observation dimension. We adapt the scaling relationship

from [Henderson and Parmeter 2012] (see Appendix 3.B). BBE has an additional hyperparameter

for the scale of the bonus. We performed a sweep with values in {10−2, 10−1, 1, 10} and found that

1 performed best overall. This setting, which makes the maximum bonus equal to the maximum

environment reward, ensures that visiting a new state remains the best option until the true goal

state is discovered. Further implementation details are available in Appendix 3.E. We additionally
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performed an ablation which, like DEEP, learns separate Q functions for the two rewards, but

which learns one policy to maximizes the sum of their Q values. In our experiments (available in

Appendix 3.F) this ablation never outperforms BBE, so for clarity we exclude it here.

Figure 3.6: Results a�er 100 episodes. In this extremely sample-limited regime, exploration speed and
fast policy convergence are both essential. In every environment, SAC with DEEP (blue, right column in
each set of three) performs comparably to or be�er than SAC alone or SAC with BBE.

We present experiments on the original versions of four Control Suite tasks and their ex-

ploration counterparts. The results are shown in Figure 3.5 with the means and 95% con�dence

intervals over 8 seeds. We �nd that across the original environments, DEEP gives similar or

slightly better performance to SAC, while BBE signi�cantly impairs SAC on two of the four envi-

ronments and matches SAC on the other two. Across the exploration environments, DEEP gives

the best performance and sample e�ciency. BBE performs better than SAC alone on two explo-

ration environments and worse than SAC on the other two. Figure 3.6 shows the performance of

each algorithm after only 100 episodes, highlighting the substantial bene�ts from using DEEP in

the few-sample regime.

Overall, SAC + DEEP never performs worse than SAC alone, while yielding substantial im-

provements in environments where rewarding states are harder to discover. BBE’s more mixed

performance provides a possible explanation for the limited in�uence that methods of that family

have had on sample-e�cient continuous control, and perhaps more generally on sample-e�cient

RL. Given that in this setting the addition of BBE is as likely to harm as to help, its lack of adoption
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is unsurprising.

3.6 Related work

Sample-efficient continuous control. Our method leverages progress on sample e�cient

o�-policy RL, as it can be combined with any o�-policy algorithm. A strong line of work has

brought the sample complexity of model-free control within range of solving tasks on real robots

[Popov et al. 2017; Kalashnikov et al. 2018; Haarnoja et al. 2018b; Fujimoto et al. 2018c; Haarnoja

et al. 2018c; Abdolmaleki et al. 2018].

Bonus-based exploration. There have been many bonuses proposed in the BBE framework.

Several works [Stadie et al. 2015; Pathak et al. 2017; Burda et al. 2018] propose to use prediction

error of a learned model to measure a transition’s novelty, with the key di�erences being the

state representation used for making predictions. Houthooft et al. [2016] propose a bonus based

on the information gain of the policy. Bellemare et al. [2016] and others [Ostrovski et al. 2017;

Tang et al. 2017] use continuous count analogues to calculate the count-based bonuses of Strehl

and Littman [2008]. Machado et al. [2020] use the norm of learned successor features as a bonus,

and show that it implicitly counts visits. Unlike previous work, our paper focuses on the updates

and representation of the behavior policy, and DEEP can be used in conjunction with any of

these bonuses. Never Give Up [Badia et al. 2020] uses an episodic exploration bonus and trains

policies with di�erent bonus scales including a task policy. However, it is designed to maximize

asymptotic performance rather than sample e�ciency and does not learn faster than a baseline

early in training.

Optimism. Classic exploration methods [Kearns and Singh 1998; Brafman and Tennenholtz

2002; Strehl and Littman 2008; Jaksch et al. 2008], depend on an optimistically-de�ned model.

Model-free methods with theoretical guarantees [Strehl et al. 2006; Jin et al. 2018] use Q functions
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initialized optimistically. Similar to our Eq. (3.3), Rashid et al. [2020] propose a method for en-

suring optimism in Q learning with function approximation by using a count function. However,

DEEP leaves the task policy unbiased in the few-sample regime by separating the exploration

policy from the task policy.

Temporally-extended actions. A variety of work proposes to speed up n-greedy exploration

via temporally-extended actions which reduce dithering. Some methods [Schoknecht and Ried-

miller 2003; Neunert et al. 2020] propose to bias policies towards repeating primitive actions,

resulting in faster exploration without limiting expressivity. Dabney et al. [2020] describe a

temporally-extended version of n-greedy exploration which samples a random action and a ran-

dom duration for that action. Whitney et al. [2020] use a learned temporally-extended action

space representing the reachable states within a �xed number of steps. While these methods

improve over single-step n-greedy, they are unable to perform directed exploration or discover

faraway states.

Randomized value functions. Modern works [Osband et al. 2016, 2019] extend Thompson

sampling [Thompson 1933] to neural networks and the full RL setting. Relatedly, [Fortunato et al.

2018; Plappert et al. 2018] learn noisy parameters and sample policies from them for exploration.

3.7 Discussion

In this paper we have investigated the potential for directed exploration to improve the sample

e�ciency of RL in continuous control. We found that BBE su�ers from bias and slow state cov-

erage, leading to performance which is often worse than undirected exploration. We introduced

Decoupled Exploration and Exploitation Policies, which separately learns an unbiased task pol-

icy and an exploration policy and combines them to select actions at training time. DEEP pays

no performance penalty even on dense-reward tasks and explores faster than BBE. In our ex-
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periments, DEEP combined with SAC provides strictly better performance and sample e�ciency

than SAC alone. We believe that with its combination of reliable and e�cient policy learning

across dense and sparse environments, SAC + DEEP provides a compelling default algorithm for

practitioners.
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Appendix 3.A Grid-world visualizations

The grid-world environment we use consists of a 40x40 environment with actions up, down, left,

and right, with a single start state in the lower left and a single goal state in the upper right. In

Figure 3.7 we show the state of each algorithm after training on the grid-world for 100 episodes.

While DDQN and BBE have only visited a small fraction of the states, DEEP has covered most of

the environment and will soon solve it. As they continue to run BBE will eventually �nd the goal

while DDQN will not.

A video version of Figure 3.7, which shows its evolution over time, is available in the sup-

plement. We �nd that watching the qualitative behavior of each algorithm can be enlightening.

Note that as the �gures and videos are rendered by sampling states and actions, some noise in

the form of missing states may appear.

Appendix 3.B Pseudo-count implementation

De�ne the Gaussian kernel with dimension 3 as

:Gauss(G, G8) = (2c)−
3
2 det(�)− 1

2 exp
{
−1

2
(G − G8)ᵀ�−1(G − G8)

}
. (3.5)

We can normalize this function to have a maximum at : (G, G) = 1 simply by removing the nor-

malizer (everything outside the exponential) by noting that 40 = 1. This gives the kernel we

use:

: (G, G8) = exp
{
−1

2
(G − G8)ᵀ�−1(G − G8)

}
, (3.6)

where the covariance is a diagonal matrix � = diag(f2
1 , . . . , f

2
3
).

To compute #̂= (B, 0) using this kernel, we perform the following steps:
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(a) DDQN

(b) BBE

(c) DEEP

Figure 3.7: The state of each algorithm a�er 100 episodes in the grid-world environment. Note that the
novelty reward and novelty value shown for DDQN are for visualization purposes only, as the algorithm
does not use them. The “Task value” shown for BBE is the sum of the task and novelty rewards, which BBE
treats as its objective. Un-visited states are marked as zero in each plot. The annotation (max) indicates
that the value shown is the maximum value for any action at that state. “Last trajectory” shows the states
visited in the last training episode. Figures generated by sampling.

1. Normalize B and 0:

B̄ =
B − Smin

Smax − Smin
0̄ =

0 − Amin

Amax − Amin
(3.7)

2. De�ne G = [B̄, 0̄] as the concatenation of the normalized state and action.

3. Compute the kernel from Eq. (3.6) and sum across all of the previous normalized observa-

tions G8 :

#̂= (B, 0) = #̂= (G) =
=∑
8=1

: (G, G8) (3.8)
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For this �nal step, we leverage the MIT-licensed Kernel Operations library (KeOps, Charlier

et al. [2021]), a high-performance GPU-accelerated library for e�cient computation of reduc-

tions on symbolically-de�ned matrices. This substantially outperforms implementations in other

frameworks, including fully-JITted JAX [Bradbury et al. 2018] version, especially as the dimen-

sion of the data grows.

To avoid having to tune the covariance for each environment, we adapt the scaling rule of

[Henderson and Parmeter 2012]. This rule of thumb requires assumptions on the data (notably,

that it comes i.i.d. from a Normal) which are violated in the exploration problem. However, we

�nd this scaling to be useful in practice. The rule of thumb bandwidth for dimension 9 of the data

for a multivariate Gaussian kernel is

ℎ'$)9 =

(
4

2 + 3

) 1
4+3
f̂ 9=
− 1

4+3 , (3.9)

where f̂ 9 is the empirical variance of dimension 9 of the data. Making the assumption that our

states are normalized to be in [−1, 1] and distributed uniformly, we can set f̂ 9 ≈ 0.3. As such, in

every experiment with continuous-valued states, we set the kernel variance for dimension 9 as

f 9 = 0.3
(

4
2 + 3

) 1
4+3
=−

1
4+3 . (3.10)

In experiments we �nd that changes to this scale of less than an order of magnitude make little

di�erence.

Throughout we use 1 for the kernel variance on the action dimensions.

3.B.1 Updating the kernel estimator

Updates to the kernel count estimator consist of appending new normalized observations to the

set {G8}. However, we �nd that computing this kernel becomes prohibitively slow beyond roughly
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100K entries, and our experiments run for up to 1M steps. We take two steps to avoid this slow-

down. Both rely on nonuniform weighting of entries in the observation table when computing

the count, leading us to maintain an additional array of weights in addition to the table of obser-

vations.

Avoiding duplicate entries. If a new observation G has : (G, G8) > 0.95 with some set "

of existing indices, we do not add G to the table, and instead add 1/|" | to each entry 8 ∈ " of

the weights table. In essence, if there is an exact duplicate for G in the table already, we simply

count that existing entry twice. While this is helpful, the probability of observing exact matches

decreases rapidly in the dimension of the observations, so this step plays a limited role.

Evicting previous entries. Once the length of the observations table reaches some maximum

(215 = 32768 in our experiments), we evict an existing entry in the table uniformly at random

when we make a new entry, thus maintaining the table at that maximum size. This introduces

risk that the exploration bonus would not go to zero in the limit of many environment steps,

which we avoid by re-distributing the weight of the evicted observations among those still in the

table. We do this redistribution uniformly; that is, if we evict the entry at location 8 , with weight

F8 , we addF8/(=−1) to the weight of each of the (=−1) other entries. Our reweighting procedure

maintains the same total amount of count when evicting observations and ensures that bonuses

go to zero in the limit of data. In experiments we �nd that the exploration rewards earned when

using a very small observation table (and thus, many evictions) were practically indistinguishable

from using an observation table of unlimited size.

3.B.2 Tabular environments

For the grid-world environment used in Figures 3.2 and 3.3, we use a tabular visit count rather

than pseudo-counts.
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Appendix 3.C Details on rapid Q updates

We aim to rapidly update &explore to maximize reward on the non-stationary exploration MDP

M'+= and thus explore rapidly. This has three components: (1) updating using the current reward

function'+= rather than logged rewards, (2) performing many updates to&explore at every timestep

using a large learning rate, and (3) using an optimistic version of &explore which is aware of the

high value of taking actions that have not yet been explored. However, aggressively updating

&explore poses its own problems; most signi�cantly, Q-learning with function approximation has

a tendency to diverge if updated too aggressively with too few new samples. We use three mod-

i�cations to the typical Bellman update with target networks [Mnih et al. 2015a] to mitigate this

issue while incorporating optimism.

• Soft DoubleDQN update. The DoubleDQN [Hasselt et al. 2016] update reduces over-

estimation in Q-learning by selecting and evaluating actions using di�erent parameters.

We use a soft version of the DoubleDQN update by replacing the max operator with an

exponential-Q policy over uniform random actions using a low temperature.

• Value clipping. To further mitigate the problem of Q-learning overestimation and di-

vergence, we clip the Bellman targets to be within the range of possible Q values for

M'+= . Given that the rewards A+ are scaled to be in [0, 1], any policy would have a value

&explore(B, 0) ∈ [0, Ā ], where Ā = 1/1−W .

• Optimistic targets. We use the optimistic adjustment in Eq. (3.3) when computing targets.

De�ne the softmax-Q policy for some Q function & as

c (0 | B;&) =
exp

{
& (B,0)/g

}∫
A exp

{
& (B,0′)/g 30′

} (3.11)
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which we approximate using self-normalized importance sampling with a uniform proposal dis-

tribution. The target for updating &explore is

~ (B, 0, B′) = clip

(
'+= (B, 0) + W E

0′∼c (·|B ′;&+explore)

[
&+explore(B

′, 0′;\−)
]
, 0, Ā

)
. (3.12)

where'+= (B, 0) is the current exploration bonus, which we recompute at update time;&+explore(B
′, 0′;\−)

is the target network for the exploration value function, with optimism applied. We then mini-

mize the squared error between ~ (B, 0, B′) and &explore(B, 0).

Appendix 3.D Environments for exploration

To enable benchmarking the performance of exploration methods on continuous control, we

constructed a new set of environments. Our motivation comes from the challenges of performing

resets and de�ning shaped rewards in real-world robotics, where it is not possible to measure and

set states exactly. Unlike in simulation, it may be di�cult or impossible to implement uniform

resets of the robot and the objects in the scene; states with a walking robot standing upright

or a block in midair require signi�cant expertise to reach. Similarly many shaped rewards in

simulation rely on precise knowledge of the locations of objects in a scene to provide rewards

corresponding to e.g. an objects distance from a goal. We make modi�cations which capture the

spirit of these real-world constraints, though these exact environments might still be di�cult to

construct in the real world:

• Small reset distributions. Instead of resetting every object in the scene uniformly in the

space, we randomize each object’s con�guration over a smaller set of starting states. This

re�ects some properties of real environments, such as walking robots starting on the ground

instead of midair, or the object in a manipulation task not starting in its goal receptacle.

• Sparse rewards. While dense rewards are di�cult to construct without real-time monitor-
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ing of object positions, sparse rewards are often simpler. A picking task, for example, can

provide a sparse reward simply by checking whether the desired object is inside a recepta-

cle.

As the base environments for our benchmark, we select four tasks from DeepMind Control

Suite [Tassa et al. 2018], an Apache-licensed standard set of benchmarks implemented using the

commercial MuJoCo physics simulator [Todorov et al. 2012]. Denoting the state (observation)

and action dimensions of an environment as dim(S) → dim(A), these environments are:

• Ball-in-cup catch (manipulation, 83 → 23).

• Reacher hard (goal-directed, 63 → 23).

• Finger turn_hard (manipulation, goal-directed, 123 → 23).

• Walker walk (locomotion, 243 → 63).

We modify each environment to remove the accommodations of wide reset distributions and

sparse rewards which make them easy to solve without directed exploration. The new environ-

ments and their changes are as follows:

• Ball-in-cup explore (manipulation, 83 → 23). The original task resets the ball uniformly

in the reachable space, including already in the cup (the goal state). We modify the envi-

ronment to only reset the ball in a region below the cup, as if the ball was hanging and

gently swinging. The original task already has sparse rewards.

• Reacher explore (goal-directed, 63 → 23). The original task samples arm positions and

goal positions uniformly, resulting in the arm being reset very near the goal. We modify

the reset distribution to only include states with the arm mostly extended to the right and

targets opposite it on the left in a cone with angle c/2. Note that this task is somewhat

easier than the original since the policy only needs to navigate between smaller regions
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of the space, but is harder due to the resets not providing exploration. The original task

already has sparse rewards.

• Finger explore (manipulation, goal-directed, 123 → 23). The original task resets the

�nger uniformly, the angle of the spinner uniformly, and the goal location uniformly on

the circle reachable by the tip of the spinner. We modify the environment to reset the

�nger joints each in the quadrant pointing away from the spinner, the spinner pointing

in the downward quadrant, and the target in the upward quadrant. Similarly to Reacher

explore, this task is simpler than the original but harder to explore in. The original task

already has sparse rewards.

• Walker explore (locomotion, 243 → 63). The original environment resets the walker just

above the ground with random joint angles, leading to it frequently starting upright and

in position to begin walking. We modify the environment by allowing time to progress

for 200 steps in the underlying physics (20 environment steps), which is enough time for

the walker to fall to the �oor. This simulates the walker starting in a random lying-down

con�guration. The original rewards include a sparse reward for being upright and above a

certain height and a linear component for forward velocity. We replace the forward velocity

reward with a sparse version which provides reward only when the agent is moving at or

above the target speed.

The code for these environments is included in the supplement.

Appendix 3.E Experimental implementation details

3.E.1 Computing infrastructure

We implemented DEEP using JAX [Bradbury et al. 2018] and the neural network library Flax

[Heek et al. 2020] which is built on it, both of which are Apache-licensed libraries released by
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Google. The SAC implementation we use is from Yarats and Kostrikov [2020] (MIT-licensed), built

on Pytorch [Paszke et al. 2019a] (custom BSD-style license). The experiments in this paper take

about a week to run using 16 late-model NVidia GPUs by running 2-4 seeds of each experiment

at once on each GPU.

3.E.2 Network architectures and training

For the Q networks used as &explore in continuous environments and as the task policy in the

grid-world experiments, we use fully-connected networks with two hidden layers of 512 units

each and ReLU activations. These networks �atten and concatenate the state and action together

to use as input and produce a 1d value prediction. This enables us to use the same networks and

training for discrete and continuous actions rather than using the usual discrete-action trick of

simultaneously producing a Q-value estimate for every action given the state.

These Q networks are trained using the Adam optimizer [Kingma and Ba 2014] with learning

rate 10−3. &explore is updated with two Bellman updates with batch size 128 per environment

step. We update the target network after every environment step for &explore to allow very rapid

information propagation about changing rewards. For the Q network de�ning ctask in the grid-

world we use a learning rate of 10−4 and update the target network after every 50 Bellman updates.

3.E.3 Other hyperparameters

We draw 64 samples from ctask when computing the behavior policy and 64 samples from a

uniform distribution over actions when updating &explore as described in Appendix Section 3.C.

We set the temperature for Boltzmann sampling from all Q-network policies as g = 0.1. &explore

uses a discount W = 0.99.
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Appendix 3.F Additional benchmark results

We performed an experiment to check whether it was simply the separation of learning two

separate Q functions which enabled DEEP’s performance. To do this, we modi�ed SAC + BBE to

learn one Q function for the task reward function and one Q function for the exploration reward

function. The policy was then trained to maximize the sum of those two Q functions. This

baseline, which we call SAC 2Q, performed uniformly worse than SAC + BBE, but we include its

results here for completeness.
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Figure 3.8: SAC 2Q performs uniformly worse than SAC + BBE.
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Notes

6. Some implementations of bonus-based exploration may update the policy within an episode, for example via a single

gradient step per environment step on transitions sampled i.i.d. from a replay. However, such a small update is

typically not enough to change the qualitative behavior of the agent and adapting to the changing MDP has not

been an emphasis in prior work.

7. See e.g. the code from Machado et al. [2020]: https://github.com/mcmachado/count_based_exploration_sr/

blob/master/function_approximation/exp_eig_sr/train.py#L204

8. Some environments, such as Manipulator, additionally start a fraction of episodes at the goal state.
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Part II

Representations and Auxiliary Tasks
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The signi�cance of representation has loomed large in the history of machine learning, espe-

cially in the neural networks community. With a �xed, small hypothesis class, the selection of one

representation or another can be the di�erence between a realizeable solution and an unreach-

able one. For instance, a linear model cannot perform the XOR operation on two variables when

given those raw variables as input. However, given a one-hot representation of which quadrant a

point occupies, the linear model performs perfectly. In classical machine learning with underpa-

rameterized models and global optimization, this was the main role of representation: to permit

or rule out any given solution.

With the advent of large-scale overparameterized models such as deep networks, represen-

tation instead a�ects the sample e�ciency of learning an optimal predictor. In this regime, the

hypothesis class is su�ciently large to �t arbitrary training data to zero loss, so training could in

principle produce any predictor function which �ts that limited sample of data. As the amount

of training data increases this solution set becomes increasingly constrained and (for any rea-

sonable model class) the predictor approaches the true optimal predictor. However, the number

of samples this requires depends on how the inductive bias of the learning algorithm interacts

with the representation of the data. Much work has focused on mapping out the inductive biases

present in deep networks [Soudry et al. 2018; Ulyanov et al. 2018; Rahaman et al. 2019; ?; Shah

et al. 2020]. This work studies a complementary question: what representations match well with

those inductive biases?

This part of the thesis describes this relationship between representation and sample com-

plexity. In the �rst chapter I present two methods for evaluating the quality of a given repre-

sentation using measures based on the amount of information which a predictor extracts from a

dataset. These measures have close parallels to concepts from reinforcement learning, with one

analogous to regret in the online setting and the other analogous to sample complexity in the

train-and-deploy or o�ine settings. In the second chapter I introduce a method for learning rep-

resentations for reinforcement learning which place functionally similar states and actions close
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together. This method results in improved sample e�ciency on a variety of continuous control

problems.
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4 | Evaluating Learned Representations

4.1 Introduction

One of the �rst steps in building a machine learning system is selecting a representation of data.

Whereas classical machine learning pipelines often begin with feature engineering, the advent of

deep learning has led many to argue for pure end-to-end learning where the deep network con-

structs the features [LeCun et al. 2015]. However, huge strides in unsupervised learning [Héna�

et al. 2020; Chen et al. 2020a; He et al. 2019; van den Oord et al. 2018; Bachman et al. 2019; Devlin

et al. 2019; Liu et al. 2019b; Ra�el et al. 2019; Brown et al. 2020] have led to a reversal of this trend

in the past two years, with common wisdom now recommending that the design of most systems

start from a pretrained representation. With this boom in representation learning techniques,

practitioners and representation researchers alike have the question: Which representation is

best for my task?

Learning Evaluation Deployment

Training dataset
Pretext objective

Unknown task datasets
Expensive labels

Evaluation dataset
Quality measure

Data Data Data

Goal Goal Goal
Representation useful for 
many downstream tasks

Choose the best 
representation to deploy

Solve tasks as cheaply 

as possible

Figure 4.1: The representation learning pipeline.

This question exists as the middle step of the representation learning pipeline shown in Fig-

ure 4.1. The �rst step is representation learning, which consists of training a representation
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function on a training set using a pretext objective, which may be supervised or unsupervised.

The second step, which this paper considers, is representation evaluation. In this step, one uses a

measure of representation quality and a labeled evaluation dataset to see how well the represen-

tation performs. The �nal step is deployment, in which the practitioner or researcher puts the

learned representation to use. Deployment could involve using the representation on a stream of

user-provided data to solve a variety of end tasks [LeCun 2015], or simply releasing the trained

weights of the representation function for general use. In the same way that BERT [Devlin et al.

2019] representations have been applied to a whole host of problems, the task or amount of data

available in deployment might di�er from the evaluation phase.

We take the position that the best representation is the one which allows for the most e�cient

learning of a predictor to solve the task. We will measure e�ciency in terms of either number

of samples or information about the optimal predictor contained in the samples. This position is

motivated by practical concerns; the more labels that are needed to solve a task in the deployment

phase, the more expensive to use and the less widely applicable a representation will be. To date

the �eld has lacked clearly de�ned and motivated tools for analyzing the complexity of learn-

ing with a given representation. This work seeks to provide those tools for the representation

learning community.

We build on a substantial and growing body of literature that attempts to answer the question

of which representation is best. Simple, traditional means of evaluating representations, such as

the validation accuracy of linear probes [Ettinger et al. 2016; Shi et al. 2016; Alain and Bengio

2016], have been widely criticized [Héna� et al. 2020; Resnick et al. 2019]. Instead, researchers

have taken up a variety of alternatives such as the validation accuracy (VA) of nonlinear probes

[Conneau et al. 2018; Héna� et al. 2020], mutual information (MI) between representations and

labels [Bachman et al. 2019; Pimentel et al. 2020], and minimum description length (MDL) of the

labels conditioned on the representations [Blier and Ollivier 2018; Yogatama et al. 2019; Voita and

Titov 2020].
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Figure 4.2: Each measure for evaluating representation quality is a simple function of the “loss-data”
curve shown here, which plots validation loss of a probe against evaluation dataset size. Le�: Validation
accuracy (VA), mutual information (MI), and minimum description length (MDL) measure properties of a
given evaluation dataset, with VA measuring the loss at a finite amount of evaluation data, MI measuring
it at infinity, and MDL integrating it from zero to=. This dependence on evaluation dataset size can lead to
misleading conclusions as the amount of available data changes. Middle: Our proposed methods instead
measure the complexity of learning a predictor with a particular loss tolerance. Y sample complexity
(YSC) measures the number of samples required to reach that loss tolerance, while surplus description
length (SDL) integrates the surplus loss incurred above that tolerance. Neither depends on the evaluation
dataset size. Right: A simple example task which illustrates the issue. One representation, which consists
of noisy labels, allows quick learning, while the other supports low loss in the limit of data. Evaluating
either representation at a particular evaluation dataset size risks drawing the wrong conclusion.

We �nd that these methods all have clear limitations. As can be seen in Figure 4.2, VA and MDL

are liable to choose di�erent representations for the same task when given evaluation datasets of

di�erent sizes. Instead we want an evaluation measure which depends on the data distribution, not

a particular evaluation dataset sample or evaluation dataset size. Furthermore, VA and MDL lack

a prede�ned notion of success in solving a task. In combination with small evaluation datasets,

these measures may lead to premature evaluation by producing a judgement even when there is

not enough data to solve the task or meaningfully distinguish one representation from another.

Meanwhile, MI measures the lowest loss achievable by any predictor irrespective of the number

of samples required to learn it or the computational cost to compute it. None of these existing

techniques measure the improved data e�ciency that a good representation can yield, despite

this being one of the primary applications for representation learning.

To eliminate these issues, we propose two measures of representation quality. In both of
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our measures, the user speci�es a tolerance Y so that a population loss of less than Y quali�es

as solving the task. Then the measure computes the cost of learning a predictor which achieves

that loss. The �rst measure is the surplus description length (SDL) which modi�es the MDL to

measure the complexity of learning an Y-loss predictor rather than computing the complexity of

the labels in the evaluation dataset. The second is the Y-sample complexity (YSC) which measures

the sample complexity of learning an Y-loss predictor. These measures resolve the issues with

prior work and provide tools for researchers and practitioners to evaluate the extent to which a

learned representation can improve data e�ciency. Furthermore, they formalize existing research

challenges for learning representations which allow state of the art performance while using as

few labels as possible (e.g. Héna� et al. [2020]).

To facilitate our analysis, we also propose a framework called the loss-data framework, il-

lustrated in Figure 4.2, that plots the validation loss against the evaluation dataset size [Talmor

et al. 2019; Yogatama et al. 2019; Voita and Titov 2020]. This framework simpli�es comparisons

between measures. Prior work measures integrals (MDL) and slices (VA and MI) along the data

axis. Our work proposes instead measuring integrals (SDL) and slices (YSC) along the loss axis.

This illustrates how prior work makes tacit choices about the function to learn based on the

choice of evaluation dataset size. Our work instead makes an explicit, interpretable choice of

what function to learn via the threshold Y and measures the complexity of learning such a func-

tion. We experimentally investigate the behavior of these methods, illustrating the sensitivity of

VA and MDL, and the robustness of SDL and YSC, to evaluation dataset size.

Efficient implementation. To enable reproducible representation evaluation for representa-

tion researchers, we have developed a highly optimized open source Python package at https:

//github.com/willwhitney/reprieve. This package enables construction of loss-data curves

with arbitrary representations and datasets and is library-agnostic, supporting representations

and learning algorithms implemented in any Python ML library. By leveraging the JAX library
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[Bradbury et al. 2018] to parallelize the training of probes on a single accelerator, our package

constructs loss-data curves in around two minutes on one GPU.

4.2 The loss-data framework for representation

evaluation

In this section we formally present the representation evaluation problem, de�ne our loss-data

framework, and show how prior work �ts into the framework.

Notation. We use bold letters to denote random variables. A supervised learning problem is

de�ned by a joint distribution D over observations and labels (X,Y) in the sample space X × Y

with density denoted by ? . Let the random variable D= be a sample of = i.i.d. (X,Y) pairs, realized

by �= = (-=, .=) = {(G8, ~8)}=8=1. This is the evaluation dataset. Let R denote a representation

space and q : X → R a representation function. The methods we consider all use parametric

probes, which are neural networks ?̂\ : R → % (Y) parameterized by \ ∈ R3 that are trained on

�= to estimate the conditional distribution ? (~ | G). We often abstract away the details of learning

the probe by simply referring to an algorithm A which returns a predictor: ?̂ = A(q (�=)).

Abusing notation, we denote the composition ofA with q byAq . De�ne the population loss and

the expected population loss for ?̂ = Aq (�=), respectively as

!(Aq , �
=) = E

(X,Y)
− log ?̂ (Y | X) !(Aq , =) = E

D=
!(Aq ,D=) . (4.1)

The expected population loss averages over evaluation dataset samples, removing the variance

that comes from using some particular evaluation dataset to train a probe. In this section we will

focus on population quantities, but note that any algorithmic implementation must replace these

by their empirical counterparts.
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The representation evaluation problem. The representation evaluation problem asks us to

de�ne a real-valued measurement of the quality of a representation q for solving solving the

task de�ned by (X,Y). Explicitly, each method de�nes a real-valued function <(q,D,A,Ψ) of

a representation q , data distribution D, probing algorithm A, and some method-speci�c set of

hyperparameters Ψ. By convention, smaller values of the measure< correspond to better repre-

sentations. De�ning such a measurement allows us to compare di�erent representations.

4.2.1 Defining the loss-data framework.

The loss-data framework is a lens through which we contrast di�erent measures of representation

quality. The key idea, demonstrated in Figure 4.2, is to plot the loss !(Aq , =) against the evalua-

tion dataset size =. Explicitly, at each =, we train a probing algorithm A using a representation

q to produce a predictor ?̂ , and then plot the loss of ?̂ against =. Similar analysis has appeared

in Voita and Titov [2020]; Yogatama et al. [2019]; Talmor et al. [2019]. We can represent each of

the prior measures as points on the curve at �xed G (VA, MI) or integrals of the curve along the

G-axis (MDL). Our measures correspond to evaluating points at �xed ~ (YSC) and integrals along

the ~-axis (SDL).

4.2.2 Existing methods in the loss-data framework

Nonlinear probes with limited data. A simple strategy for evaluating representations is to

choose a probe architecture and train it on a limited amount of data from the task and represen-

tation of interest [Héna� et al. 2020; Zhang and Bowman 2018]. Each representation is typically

scored by its validation accuracy, leading us to call this the validation accuracy (VA) measure.

This method can be interpreted in our framework by replacing the validation accuracy with the

validation loss and taking an expectation over draws of evaluation datasets of size =. On the
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loss-data curve, this measure corresponds to evaluation at G = =, so that

<VA(q,D,A, =) = !(Aq , =). (4.2)

Mutual information. Mutual information (MI) between a representation q (X) and targets Y

is another often-proposed metric for learning and evaluating representations [Pimentel et al. 2020;

Bachman et al. 2019]. In terms of entropy, mutual information is equivalent to the information

gain about Y from knowing q (X):

� (q (X);Y) = � (Y) − � (Y | q (X)) . (4.3)

In general mutual information is intractable to estimate for high-dimensional or continuous-

valued variables [McAllester and Stratos 2020], and a common approach is to use a very expres-

sive model for ?̂ and maximize a variational lower bound:

� (q (X);Y) > � (Y) + E
(X,Y)

log ?̂ (Y | q (X)) . (4.4)

Since � (Y) is not a function of the parameters, maximizing the lower bound is equivalent to

minimizing the negative log-likelihood. Moreover, if we assume that ?̂ is expressive enough to

represent ? and take = → ∞, this inequality becomes tight. As such, MI estimation can be seen

a special case of nonlinear probes as described above, where instead of choosing some particular

setting of = we push it to in�nity. We formally de�ne the mutual information measure of a

representation as

<MI(q,D,A) = lim
=→∞

!(Aq , =) . (4.5)
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A decrease in this measure re�ects an increase in the mutual information. On the loss-data curve,

this corresponds to evaluation at G = ∞.

Minimum description length. Recent studies [Yogatama et al. 2019; Voita and Titov 2020]

propose using the Minimum Description Length (MDL) principle [Rissanen 1978; Grünwald 2004]

to evaluate representations. These works use an online or prequential code [Blier and Ollivier

2018] to encode the labels given the representations. The codelength ℓ of .= given q (-=) is then

de�ned as

ℓ (.= | q (-=)) = −
=∑
8=1

log ?̂8 (~8 | q (G8)), (4.6)

where ?̂8 is the output of running a pre-speci�ed algorithmA on the evaluation dataset up to el-

ement 8: ?̂8 = Aq (-=1:8, .
=
1:8). This measure can exhibit large variance on small evaluation datasets,

especially since it is sensitive to the (random) order in which the examples are presented. We

remove this variance by taking an expectation over the sampled evaluation datasets for each 8

and de�ne a population variant of the MDL measure [Voita and Titov 2020] as

<MDL(q,D,A, =) = E
[
ℓ (Y= | q (X=))

]
=

=∑
8=1

!(A, 8). (4.7)

Thus,<MDL measures the area under the loss-data curve on the interval G ∈ [0, =].

4.3 Limitations of existing methods

Each of the prior methods, VA, MDL, and MI, have limitations that we attempt to solve with our

methods. In this section we present these limitations.
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4.3.1 Sensitivity to evaluation set size in VA and MDL

As seen in Section 4.2.2, the representation quality measures of VA and MDL both depend on=, the

size of the evaluation dataset. Because of this dependence, the ranking of representations given

by these evaluation metrics can change as = increases. Choosing to deploy one representation

rather than another by comparing these metrics at arbitrary = may lead to premature decisions

in the machine learning pipeline since a larger evaluation dataset could give a di�erent ordering.

A theoretical example. Let B ∈ {0, 1}3 be a �xed binary vector and consider a data generation

process where the {0, 1} label of a data point is given by the parity on B , i.e., ~8 = 〈G8, B〉 mod 2

where ~8 ∈ {0, 1} and G8 ∈ {0, 1}3 . Let .= = {~8}=8=1 be the given labels and consider the following

two representations: (1) Noisy label: I8 = 〈G8, B〉 + 48 mod 2, where 48 ∈ {0, 1} is a random bit with

bias U < 1/2, and (2) Raw data: G8 .

For the noisy label representation, guessing ~8 = I8 achieves validation accuracy of 1 − U for

any =, which, is information-theoretically optimal. On the other hand, the raw data represen-

tation will achieve perfect validation accuracy once the evaluation dataset contains 3 linearly

independent G8 ’s. In this case, Gaussian elimination will exactly recover B . The probability that a

set of = > 3 random vectors in {0, 1}3 does not contain 3 linearly independent vectors decreases

exponentially in = − 3 . Hence, the expected validation accuracy for = su�ciently larger than 3

will be exponentially close to 1. As a result, the representation ranking given by validation ac-

curacy and description length favors the noisy label representation when = � 3 , but the raw

data representation will be much better in these metrics when = � 3 . This can be misleading.

Although this is a concocted example for illustration purposes, our experiments in Section 4.5

validate that dependence of representation rankings on = does occur in practice.
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4.3.2 Insensitivity to representation qality & computational

complexity in MI

MI considers the lowest validation loss achievable with the given representation and ignores any

concerns about statistical or computational complexity of achieving such accuracy. This leads to

some counterintuitive properties which make MI an undesirable metric:

1. MI is insensitive to statistical complexity. Two random variables which are perfectly predic-

tive of one another have maximal MI, though their relationship may be su�ciently complex

that it requires exponentially many samples to verify [McAllester and Stratos 2020].

2. MI is insensitive to computational complexity. For example, the mutual information be-

tween an intercepted encrypted message and the enemy’s plan is high [Shannon 1948; Xu

et al. 2020], despite the extreme computational cost required to break the encryption.

3. MI is insensitive to representation. By the data processing inequality [Cover and Thomas

2006], any q applied to X can only decrease its mutual information with Y; no matter the

query, MI always reports that the raw data is at least as good as the best representation.

4.3.3 Lack of a predefined notion of success

All three prior methods lack a prede�ned notion of successfully solving a task and will always

return some ordering of representations. When the evaluation dataset is too small or all of the

representations are poor, it may be that no representation can yet solve the task (i.e. achieve

a useful accuracy). Since the order of representations can change as more data is added, any

judgement would be premature. Indeed, there is often an implicit minimum requirement for the

loss a representation should achieve to be considered meaningful. As we show in the next section,

our methods makes this requirement explicit.
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4.4 Surplus description length & Y sample complexity

The methods discussed above measure a property of the data, such as the attainable accuracy

on = points, by learning an unspeci�ed function. Instead, we propose to precisely de�ne the

function of interest and measure its complexity using data. Fundamentally, we shift from making

a statement about the inputs of an algorithm, like VA and MDL do, to a statement about the

outputs.

4.4.1 Surplus description length (SDL)

Imagine trying to e�ciently encode a large number of samples of a random variable ewhich takes

values in {1 . . .  } with probability ? (e). An optimal code for these events has expected length9

E[ℓ (e)] = Ee [− log? (e)] = � (e). If this data is instead encoded using a probability distribution

?̂ , the expected length becomes � (e) + �KL
(
? | | ?̂

)
. We call �KL

(
? | | ?̂

)
the surplus description

length (SDL) from encoding according to ?̂ instead of ?:

�KL
(
? | | ?̂

)
= E

e∼?
[log? (e) − log ?̂ (e)] . (4.8)

When the true distribution? is a delta, the entire length of a code under ?̂ is surplus since log 1 = 0.

Recall that the prequential code for estimating MDL computes the description length of the

labels given observations in an evaluation dataset by iteratively creating tighter approximations

?̂1 . . . ?̂= and integrating the area under the curve. Examining Equation (4.7), we see that

<MDL(q,D,A, =) =
=∑
8=1

!(Aq , 8) ≥
=∑
8=1

� (Y | q (X)) . (4.9)

If � (Y | q (X)) > 0, MDL grows without bound as the size of the evaluation dataset = in-

creases.
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Instead, we propose to measure the complexity of a learned predictor ? (Y | q (X)) by comput-

ing the surplus description length of encoding an in�nite stream of data according to the online

code instead of the true conditional distribution.

De�nition 4.1 (Surplus description length of online codes). Given random variables X,Y ∼ D,

a representation function q , and a learning algorithm A, de�ne

<SDL(q,D,A) =
∞∑
8=1

[
!(Aq , 8) − � (Y | X)

]
. (4.10)

This surplus description length beyond the optimal code improves on MDL by being bounded.

However, as discussed in Section 4.3.2 entropy is intractible to estimate, and in practice it is more

relevant to measure the cost of learning a good enough predictor rather than a theoretically

perfect one.

We generalize this de�nition to measure the complexity of learning an approximating condi-

tional distribution with loss Y. This corresponds to the additional description length incurred by

encoding data with the learning algorithm A rather than using a �xed predictor with loss Y.

De�nition 4.2 (Surplus description length of online codes with a speci�ed baseline). Take ran-

dom variables X,Y ∼ D, a representation functionq , a learning algorithmA, and a loss tolerance

Y > � (Y | X). Let [2]+ denote max(0, 2) and then we de�ne

<SDL(q,D,A, Y) =
∞∑
8=1

[
!(Aq , 8) − Y

]
+
. (4.11)

One interpretation of this measure is that it gives the cost (in terms of information) for re-

creating an Y-loss predictor when using the representation q .

In our framework, the surplus description length corresponds to computing the area between

the loss-data curve and a baseline set by~ = Y. Whereas MDL measures the complexity of a sample

of = points, SDL measures the complexity of a function which solves the task to Y tolerance.
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Estimating the SDL. Naively computing SDL would require unbounded data and the esti-

mation of !(Aq , 8) for every 8 . However, any reasonable learning algorithm obtains a better-

generalizing predictor when given more i.i.d. data from the target distribution [Kaplan et al.

2020]. If we assume that algorithms are monotonically improving so that !(A, 8 + 1) 6 !(A, 8),

SDL only depends on 8 up to the �rst point where !(A, =) 6 Y. Approximating this integral can

be done e�ciently by taking a log-uniform partition of the evaluation dataset size and comput-

ing the Riemann sum as in Voita and Titov [2020]. Note that evaluating a representation only

requires training probes, not the large representation functions themselves, and thus has modest

computational requirements. Crucially, if the tolerance Y is set unrealizeably low or the amount

of available data is insu�cient, an implementation is able to report that the given complexity

estimate is only a lower bound.

4.4.2 Y sample complexity (YSC)

In addition to surplus description length we introduce a second, conceptually simpler measure of

representation quality: Y sample complexity.

De�nition 4.3 (Sample complexity of an Y-loss predictor). Given random variables X,Y ∼ D, a

representation function q , a learning algorithm A, and a loss tolerance Y > � (Y | q (X)), de�ne

<YSC(q,D,A, Y) = min
{
= ∈ N : !(Aq , =) ≤ Y

}
. (4.12)

The Y sample complexity measures the complexity of learning an Y-loss predictor by the num-

ber of samples it takes to �nd it. This measure allows the comparison of two representations by

�rst picking a target function to learn (via a setting of Y), then measuring which representation

enables learning that function with less data.

In our framework, sample complexity corresponds to taking a horizontal slice of the loss-data

curve at ~ = Y, analogous to VA’s slice at ~ = =. VA makes a statement about the data (by setting
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=) and reports the accuracy of some function given that data. In contrast, Y sample complexity

speci�es the desired function and determines its complexity by how many samples are needed to

learn it.

Estimating the YSC. Given an assumption that algorithms are monotonically improving such

that !(A, = + 1) 6 !(A, =), YSC can be estimated e�ciently. With = �nite samples in the eval-

uation dataset, an algorithm may estimate YSC by splitting the data into : uniform-sized bins

and estimating !(A, 8:/=) for 8 ∈ {1 . . . :}. By recursively performing this search on the interval

which contains the transition from ! > Y to ! < Y, we can rapidly reach a precise estimate or

report that<YSC(q,D,A, Y) > =.

Using objectives other than negative log-likelihood. Our exposition of YSC uses negative

log-likelihood for consistency with other methods, such as MDL, which require it. However, it

is straightforward to extend YSC to work with whatever objective function is desired under the

assumption that said objective is monotone with increasing data when using algorithm A. A

natural choice in many cases would be prediction accuracy, where a practitioner might target

e.g. a 95% accurate predictor.

4.4.3 Setting Y

A value for the threshold Y corresponds to the set of Y-loss predictors that a representation should

make easy to learn. Choices of Y > � (Y | X) represent attainable functions, while selecting

Y < � (Y | X) leads to unbounded SDL and YSC for any choice of the algorithm A.

For evaluating representation learning methods in the research community, we recommend

using SDL and establishing benchmarks which specify (1) a downstream task, in the form of an

evaluation dataset; (2) a criterion for success, in the form of a setting of Y; (3) a standard probing

algorithmA. The setting of Y can be done by training a large model on the raw representation of
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the full evaluation dataset and using its validation loss as Y when evaluating other representations.

This guarantees that Y > � (Y | X) and the task is feasible with any representation at least as

good as the raw data. In turn, this ensures that SDL is bounded.

In practical applications, Y should be a part of the design speci�cation for a system. As an

example, a practitioner might know that an object detection system with 80% per-frame accuracy

is su�cient and labels are expensive. For this task, the best representation would be one which

enables the most sample e�cient learning of a predictor with error Y = 0.2 using a 0 – 1 loss.

4.5 Experiments

We empirically show the behavior of VA, MDL, SDL, and YSC with two sets of experiments on

real data. These experiments have the following goals:

1. Test whether the theoretical issue of sensitivity to evaluation dataset size for VA and MDL

occurs in practice.

2. Demonstrate that SDL and YSC produce lower bounds when insu�cient data is available

and concrete quantities otherwise.

3. Evaluate whether the computation of SDL and YSC scales to large-scale tasks.

4.5.1 Tasks and representations

For the �rst experiment, shown in Figure 4.3 and Table 4.1, we use the small-scale task of MNIST

classi�cation. We evaluate three representations: (1) the last hidden layer of a small convolu-

tional network pretrained on CIFAR-10; (2) the raw pixels; and (3) the bottleneck of a variational

autoencoder (VAE) [Kingma and Welling 2014; Rezende et al. 2014a] trained on MNIST.

For the second experiment, shown in Figure 4.4 and Table 4.2, we compare the representations

given by di�erent layers of a pretrained ELMo model [Peters et al. 2018]. We use the part-of-
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Figure 4.3: Results using three representations on MNIST. The intersections between curves indicate
evaluation dataset sizes where VA would change its ranking of these representations. Curves are esti-
mated using eight bootstrap-sampled evaluation datasets and initializations at each point to ensure the
measured quantities are close to the expectation.

speech task introduced by Hewitt and Liang [2019] and implemented by Voita and Titov [2020]

with the same probe architecture and other hyperparameters as those works. This leads to a

large-scale representation evaluation task, with 4096-dimensional representation vectors and an

output space of size 48: for a sentence of : words.

In each set of experiments we compute loss-data curves by estimating the expected popu-

lation loss at each evaluation dataset size using a bootstrapped sample from the full evaluation

dataset, reducing the variance of the results. Note that in each experiment we omit MI as for

a �nite evaluation dataset, the MI measure is the same as validation loss. Details of the experi-

ments, including representation training, probe architectures, and hyperparameters, are available

in Appendix 4.A.

4.5.2 Results

These experiments demonstrate that the issue of sensitivity to evaluation dataset size in fact

occurs in practice, both on small problems (Table 4.1) and at scale (Table 4.2): VA and MDL choose

di�erent representations when given evaluation sets of di�erent sizes. Because these measures
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Representation CIFAR Pixels VAE
n

60 VA 0.88 1.54 0.70

MDL 122.75 147.34 93.8

SDL, Y=0.1 > 116.75 > 141.34 > 87.8
YSC, Y=0.1 > 60.0 > 60.0 > 60.0

31936 VA 0.05 0.10 0.13
MDL 2165.1 5001.57 4898.37
SDL, Y=0.1 260.6 1837.08 > 1704.77
YSC, Y=0.1 3395 31936 > 31936.0

Table 4.1: Estimated measures of representation quality on MNIST. At small evaluation dataset sizes,
VA and MDL state that the VAE representation is the best, even though every representation yields poor
prediction quality with that amount of data. Since SDL and YSC have a target for prediction quality, they
are able to report when the evaluation dataset is insu�icient to achieve the desired performance.

are a function of the evaluation dataset size, making a decision about which representation to use

with a small evaluation dataset would be premature.

By contrast, SDL and YSC are functions only of the data distribution, not a �nite sample. Once

they measure the complexity of learning an Y-loss function, that measure is invariant to the size

of the evaluation dataset. Crucially, since these measures contain a notion of success in solving

a task, they are able to avoid the issue of premature evaluation and notify the user if there is

insu�cient data to evaluate and return a lower bound instead.

The part of speech experiment in Figure 4.4 and Table 4.2 demonstrates that SDL and YSC can

scale to tasks of a practically relevant size. This experiment is of a similar size to the widespread

use of BERT [Devlin et al. 2019] or SimCLR [Chen et al. 2020a], and evaluating our measures to

high precision took about an hour on one GPU.
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Figure 4.4: Results using three representations on the part of speech classification task. Loss-data curves
are estimated using four bootstrap-sampled evaluation datasets and network initializations at each point.

4.6 Related work

Representation evaluation methods. Until recently, the standard technique for evaluating

representation quality was the use of linear probes [Kiros et al. 2015; Hill et al. 2016; van den

Oord et al. 2018; Chen et al. 2020a]. However, Héna� et al. [2020] �nd that evaluation with linear

probes is largely uncorrelated with the more practically relevant objective of low-data accuracy,

and Resnick et al. [2019] show that linear probe performance does not predict performance for

transfer across tasks. Beyond linear probes, Zhang and Bowman [2018] and Hewitt and Liang

[2019] show that restrictions on model capacity or evaluation dataset size are necessary to sepa-

rate the performance of randomly- and linguistically-pretrained representations. Voita and Titov

[2020] propose using the MDL framework, which measures the description length of the labels

given the observations. An earlier work by Yogatama et al. [2019] also uses prequential codes

to evaluate representations for linguistic tasks. Talmor et al. [2019] look at the loss-data curve

(called “learning curve” in their work) and use a weighted average of the validation loss at various

training set sizes to evaluate representations.
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ELMo layer 0 1 2
n

461 VA 0.75 0.74 0.87
MDL 884.54 1009.26 1017.72
SDL, Y=0.1 > 478.67 > 528.51 > 561.7
YSC, Y=0.1 > 461 > 461 > 461

474838 VA 0.17 0.08 0.09
MDL 92403.41 52648.50 65468.54
SDL, Y=0.1 > 40882.72 2765.11 7069.56
YSC, Y=0.1 > 474838 237967 474838

Table 4.2: Estimated measures of representation quality on the part of speech classification task. With
small evaluation datasets, MDL finds that the lowest ELMo layer gives the best results, but when the
evaluation dataset grows the outcome changes.

Foundational work. A fundamental paper by Blier and Ollivier [2018] introduces prequential

codes as a measure of the complexity of a deep learning model. Xu et al. [2020] introduce predic-

tiveV-information, a theoretical generalization of mutual information which takes into account

computational constraints, and is essentially the mutual information lower bound often reported

in practice. Work by Dubois et al. [2020] describe representations which, in combination with a

speci�ed family of predictive functions, have guarantees on their generalization performance.

4.7 Discussion

In this work, we have introduced the loss-data framework for comparing representation evalu-

ation measures and used it to diagnose the issue of sensitivity to evaluation dataset size in the

validation accuracy and minimum description length measures. We proposed two measures, sur-

plus description length and Y sample complexity, which eliminate this issue by measuring the

complexity of learning a predictor which solves the task of interest to Y tolerance. Empirically,

we showed that sensitivity to evaluation dataset size occurs in practice for VA and MDL, while

SDL and YSC are robust to the amount of available data and are able to report when it is insu�-
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cient to make a judgment.

Each of these measures depends on a choice of algorithmA, including hyperparameters such

as probe architecture, which could make the evaluation procedure less robust. To alleviate this, fu-

ture work might consider a set of algorithms� = {A8} 8=1 and a method of combining them, such

as the model switching technique of Blier and Ollivier [2018]; Erven et al. [2012] or a Bayesian

prior.

Finally, while existing measures such as VA, MI, and MDL do not measure our notion of the

best representation for a task, under other settings they may be the correct choice. For example,

if only a �xed set of data will ever be available, selecting representations using VA might be a

reasonable choice; and if unbounded data is available for free, perhaps MI is the most appropriate

measure. However, in many cases the robustness and interpretability o�ered by SDL and YSC

make them a practical choice for practitioners and representation researchers alike.
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Appendix 4.A Experimental details

In each experiment we �rst estimate the loss-data curve using a �xed number of dataset sizes =

and multiple random seeds, then compute each measure from that curve. Reported values of SDL

correspond to the estimated area between the loss-data curve and the line ~ = Y using Riemann

sums with the values taken from the left edge of the interval. This is the same as the chunking

procedure of Voita and Titov [2020] and is equivalent to the code length of transmitting each

chunk of data using a �xed model and switching models between intervals. Reported values of

YSC correspond to the �rst measured = at which the loss is less than Y.

All of the experiments were performed on a single server with 4 NVidia Titan X GPUs, and

on this hardware no experiment took longer than an hour. All of the code for our experiments,

as well as that used to generate our plots and tables, is included in the supplement.

4.A.1 MNIST experiments

For our experiments on MNIST, we implement a highly-performant vectorized library in JAX to

construct loss-data curves. With this implementation it takes about one minute to estimate the

loss-data curve with one sample at each of 20 settings of =. We approximate the loss-data curves

at 20 settings of = log-uniformly spaced on the interval [10, 50000] and evaluate loss on the test

set to approximate the population loss. At each dataset size = we perform the same number of

updates to the model; we experimented with early stopping for smaller = but found that it made

no di�erence on this dataset. In order to obtain lower-variance estimates of the expected risk at

each =, we run 8 random seeds for each representation at each dataset size, where each random

seed corresponds to a random initialization of the probe network and a random subsample of the

evaluation dataset.

Probes consist of two-hidden-layer MLPs with hidden dimension 512 and ReLU activations.

All probes and representations are trained with the Adam optimizer [Kingma and Ba 2015] with
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learning rate 10−4.

Each representation is normalized to have zero mean and unit variance before probing to

ensure that di�erences in scaling and centering do not disrupt learning. The representations of

the data we evaluate are implemented as follows.

Raw pixels. The raw MNIST pixels are provided by the Pytorch datasets library [Paszke et al.

2019a]. It has dimension 28 × 28 = 784.

CIFAR. The CIFAR representation is given by the last hidden layer of a convolutional neural

network trained on the CIFAR-10 dataset. This representation has dimension 784 to match the

size of the raw pixels. The network architecture is as follows:

nn.Conv2d(1, 32, 3, 1),

nn.ReLU(),

nn.MaxPool2d(2),

nn.Conv2d(32, 64, 3, 1),

nn.ReLU(),

nn.MaxPool2d(2),

nn.Flatten(),

nn.Linear(1600, 784)

nn.ReLU()

nn.Linear(784, 10)

nn.LogSoftmax()

VAE. The VAE (variational autoencoder; Kingma and Welling [2014]; Rezende et al. [2014a])

representation is given by a variational autoencoder trained to generate the MNIST digits. This

VAE’s latent variable has dimension 8. We use the mean output of the encoder as the represen-

tation of the data. The network architecture is as follows:
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self.encoder_layers = nn.Sequential(

nn.Linear(784, 400),

nn.ReLU(),

nn.Linear(400, 400),

nn.ReLU(),

nn.Linear(400, 400),

nn.ReLU(),

)

self.mean = nn.Linear(400, 8)

self.variance = nn.Linear(400, 8)

self.decoder_layers = nn.Sequential(

nn.Linear(8, 400),

nn.ReLU(),

nn.Linear(400, 400),

nn.ReLU(),

nn.Linear(400, 784),

)

4.A.2 Part of speech experiments

We follow the methodology and use the o�cial code10 of Voita and Titov [2020] for our part of

speech experiments using ELMo [Peters et al. 2018] pretrained representations. In order to obtain

lower-variance estimates of the expected risk at each =, we run 4 random seeds for each represen-

tation at each dataset size, where each random seed corresponds to a random initialization of the

probe network and a random subsample of the evaluation dataset. We approximate the loss-data

curves at 10 settings of = log-uniformly spaced on the range of the available data = ∈ [10, 106].
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To more precisely estimate YSC, we perform one recursive grid search step: we space 10 settings

over the range which in the �rst round saw !(Aq , =) transition from above to below Y.

Probes consist of the MLP-2 model of Hewitt and Liang [2019]; Voita and Titov [2020] and all

training parameters are the same as in those works.

70



Notes

9. Code length in nats due to the base 4 .

10. Code available at https://github.com/lena-voita/description-length-probing.
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5 | Dynamics-Aware Embeddings

5.1 Introduction

In recent years, there has been a lot of excitement around end-to-end model-free reinforcement

learning for control, both in simulation [Lillicrap et al. 2015; Andrychowicz et al. 2018; Haarnoja

et al. 2018b; Fujimoto et al. 2018c] and on real hardware [Kalashnikov et al. 2018; Haarnoja et al.

2018c]. In this paradigm, we simultaneously learn intermediate representations and policies by

maximizing rewards provided by environment. End-to-end learning has one indisputable ad-

vantage: since every component of the system is optimized for the end objective, there are no

sub-optimal modules that limit best-case performance by losing task-relevant information.

Learning only from the target task is however a double-edged sword. When the end objective

provides only weak signal for learning, a policy with a poor representation may require many

samples to learn a better one. By contrast, a policy with a good representation may be able to

rapidly �t a simple function of that representation even with weak signal.

Consider the environment shown in Figure 5.1, and two representations of its state: coor-

dinates and pixels. As a function of the agent’s G coordinate, the value function is simple and

smooth. The coordinate representation has structure which is useful for learning about the task;

namely, points which are close in !2 distance have similar values. By contrast, a pixel repre-

sentation of the agent’s state (below, blue) is practically a one-hot vector. Two states whose G

coordinates di�er by one unit have pixels exactly as di�erent as states which di�er by 100 units.
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V(x)

x

Figure 5.1: A 1D environment. The agent (blue dot) can move continuously le� and right to reach the
goal (gold star).

This illustrates the importance of good representations and the potential of representation learn-

ing to aid RL.

We propose a self-supervised objective for learning embeddings of states and action sequences

such that a pair of states or action sequences will be close together if they have similar outcomes.

This objective simultaneously trains a smooth embedding space for states and a temporally ab-

stract action space for control which is task-independent and generalizes across goals and objects.

We demonstrate the e�ectiveness of our representation learning objective by training the twin

delayed deep deterministic policy gradient algorithm (TD3) [Fujimoto et al. 2018c] with learned

action and state spaces. With a learned representation of temporally abstract actions, our method

exhibits improved sample e�ciency compared to state-of-the-art RL methods on control tasks,

with larger gains on more complex environments. When additionally combined with our learned

state representation, our method allows TD3 to scale to pixel observations. We demonstrate

good performance on a simple family of goal-conditioned 2D control tasks within a few million

environment steps without adjusting any TD3 hyperparameters. This stands in contrast to end-

to-end model-free RL from pixels, which requires extensive tuning [Lillicrap et al. 2015] and on

the order of 100 million environment steps11 [Barth-Maron et al. 2018].
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Figure 5.2: Computational architecture for training the DynE encoders 40 and 4B . The encoders are
trained to minimize the information content of the learned embeddings while still allowing the predictor
5 to make accurate predictions.

5.2 Dynamics-aware embeddings

5.2.1 Notation

We consider the framework of reinforcement learning in Markov decision processes (MDPs).12

We denote the state of an environment (e.g. joint angles of a robot or pixels) by B ∈ S, and

we assume that the states given by the environment satisfy the Markov property. We refer to a

sequence of actions {01, . . . , 0:} ∈ A: using the shorthand a: . We use B′ ∼ T(B, 0) to refer to

the environment’s (stochastic) transition function, and overload it to accept sequences of actions:

BC+: ∼ T(BC , a:C ).

5.2.2 Model and learning objective

We propose that a good representation for reinforcement learning should represent states or

actions close together if they have similar outcomes (resulting trajectories). This allows the agent

to generalize from a small number of samples since each sample accurately re�ects the value of

all the states or actions in its neighborhood. In a Markov decision process the outcome of taking

an action 0 in a state B is summarized by the distribution of resulting states ? (B′|B, 0) = T(B, 0).
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Therefore we construct a method which embeds states and actions such that nearby embeddings

have similar distributions of next states.

Our method, which we call Dynamics-aware Embedding (DynE), learns encoders 4B and 40

which embed a state and action sequence into latent spaces IB ∈ ZB and I0 ∈ Z0 respectively.

These encodings are optimized to form a maximally compressed representation of the su�cient

statistics of ? (B′|B, a:) such that ? (B′|B, a:) ≈ ? (B′|IB, I0). We approximate this by maximizing the

following objective:

L(qB, q0, \ ) = E
B,a: ,B ′∼dc

[
− log? (B′|IB, I0;\ ) predict B′ (5.1)

+ V�KL
(
4B (B;qB) | | N (0, O )

)
compress B (5.2)

+ W�KL
(
40 (a: ;q0) | | N (0, O )

) ]
compress a: (5.3)

where IB ∼ 4B (B), I0 ∼ 40 (a:), and dc is the distribution of transitions under a behavior policy c .

The DynE objective is similar to a V-VAE [Higgins et al. 2017a] for B′ but with a di�erent vari-

ational family; like a V-VAE, it forms a variational lower bound on ? (B′) when V = W = 1. Where

a variational autoencoder [Kingma and Welling 2013; Rezende et al. 2014b] or V-VAE chooses the

variational family to be Q = {@(I |B′)}, we use a factored latent space {IB, I0} and independent

posterior approximations given the previous state and the action: Q = {(@(IB |B), @(I0 |a:))}. This

factorization yields separate encoders for states and actions where the state encoder’s output is

valid for any action and vice versa.

The DynE objective can also be interpreted in the information bottleneck (IB) framework

[Tishby et al. 2000]. In the IB framework term (5.1) is the prediction objective and terms (5.2)

and (5.3) regularize the latent representation to remove all extraneous information. Our con-

struction is nearly identical to the approximate information bottleneck proposed by Alemi et al.

[2016], with the main di�erence being the factorization of the representation into separate state

and action components.
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In our experiments we use an isotropic Normal distribution for ? (B′|IB, I0;\ ) such that term

(5.1) reduces to ‖ 5 (IB, I0;\ ) − B′‖22 where 5 computes the mean. We use diagonal-covariance

Normal distributions for 4B and 40 such that {`B, f2
B } = 4B (B), {`0, f2

0 } = 40 (a:), IB ∼ N(`B, f2
B ),

and I0 ∼ N(`0, f2
0 ). The behavior policy we use for data collection is c = *=8 5 (A).

5.3 Using learned embeddings for reinforcement learning

5.3.1 Decoding to raw actions

In order to be useful for RL, the abstract action space produced by the encoder must be decode-

able to raw actions in the environment. Since the mapping from action sequences to high-level

actions is many-to-one, inverting it is nontrivial. We simplify this ill-posed problem by de�ning

an objective with a single optimum.

Once the action encoder 40 is fully trained, we hold it �xed and train an action decoder 30 to

minimize

L(30) = E
I0∼N(0,O )

[
| |40 (30 (I0)) − I0 | |22 + _ | |30 (I0) | |22

]
(5.4)

The �rst term of this objective ensures that the action decoder 3 is a one-sided inverse of 40;

that is, 40 (30 (I0)) = I0 but 30 (40 (01, . . . , 0:)) ≠ 01, . . . , 0: . The second term of the loss ensures

that 30 is in particular the minimum-norm one-sided inverse of 40 and gives the objective for the

output of 30 a single minimum. Out of all the action sequences which have the same outcome,

the minimum-norm sequence is desireable as it leads to trajectories which are smooth and con-

sume less energy. We choose _ to be small (e.g. 10−2) to ensure that the reconstruction criterion

dominates the optimization.
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5.3.2 Efficient RL with temporal abstraction

Once equipped with a decoder which maps from high-level actions to sequences of raw actions,

we train a high-level policy that solves a task by selecting high-level actions. In this section we

extend the deterministic policy gradient [Silver et al. 2014] family of algorithms to work with

temporally-extended actions while maintaining o�-policy updates and learning from every envi-

ronment step. This allows our method to achieve superior sample e�ciency when working with

high-level actions. In particular, we extend the twin delayed deep deterministic policy gradient

(TD3) algorithm [Fujimoto et al. 2018c] to work with the DynE representation of actions to form

an algorithm we call DynE-TD3.

We �rst describe why DPG requires modi�cations to accommodate temporally-abstracted

actions. One simple approach to combining DynE with DPG would be to incorporate the :-step

DynE action space into the environment to form a new MDP. This MDP allows the use of DPG

without modi�cation; however, it only emits observations once every : timesteps. As a result,

after # steps in the original environment, the deterministic policy ` and critic function & can

only be trained on # /: observations. This has a substantial impact on sample e�ciency when

measured in the original environment.

Instead we require an algorithm which can perform updates to the policy ` and critic & for

every environment step. To do this, we train both ` and & in the abstract action space with

minor changes to their updates. We distinguish these functions which use DynE actions from

their raw equivalents by adding a superscript DynE, i.e. `DynE and &DynE. We augment the critic

function with an additional input, 8 , which represents the number of steps 0 6 8 < : of the current

embedded action I that have already been executed. This forms the DynE-TD3 critic:

&DynE(4B (BC ), IC , 8) =
:−8−1∑
9=0

(
W 9AC+ 9

)
+ W:−8&DynE

(
4B (BC+:−8), `DynE(4B (BC+:−8)), 0

)
(5.5)
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In plain language, the value of being on step 8 of abstract action 4C is the value of �nishing the

remaining (: − 8) steps of IC and then continuing on following the policy. This is similar to the

idea of :-step returns [Sutton and Barto 2018], but with a variable : which depends on the step

within the current plan. Whereas :-step returns would typically require an o�-policy correction

such as Retrace [Munos et al. 2016], conditioning on IC and 8 determines all : − 8 actions in the

return. In e�ect, they remain a single action, making the update valid o� policy. The DynE critic

is trained by minimizing the Bellman error implied by Eq. (5.5).

To update the policy we follow the standard DPG technique of using the gradient of the critic.

We modify the algorithm to take into account that 8 = 0 at the time of issuing a new high-level

action. The gradient of the return with respect to the policy parameters is then

∇\ �c (`DynE
\
) ≈ E

B∼dc

[
∇\`DynE

\
(4B (B)) ∇I&DynE(4B (B), I, 0) |I=`DynE

\
(4B (B))

]
(5.6)

given that data was collected according to a behavior policy c .

5.4 Related work

Successor representations, an inspiration for this work, represent a state by the expected rate of

future visits to other states [Dayan 1993; Kulkarni et al. 2016b; Barreto et al. 2017]. Successor

representations have been demonstrated to be an e�ective model of animal and human learning

[Momennejad et al. 2017; Stachenfeld et al. 2017]. They are also one of the earliest realizations of

the idea of representing each state by its future. Whereas successor representations learn future

occupancy maps for a particular policy, we learn an embedding space where states are close

together if they have similar outcomes for any policy.

Several papers have proposed using (variational) auto-encoders to learn embeddings for ob-
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servations [Lange and Riedmiller 2010; Van Hoof et al. 2016; Higgins et al. 2017b; Caselles-Dupré

et al. 2018]; unlike our work, these models operate on a single observation at a time and do not

depend on the environment dynamics. Forward prediction has also been used as an auxiliary task

to speed RL training [Jaderberg et al. 2016], and Jonschkowski et al. [2017] learn representations

which adhere to physical constraints. Ghosh et al. [2018] propose to learn state embeddings using

the action distribution of a goal-conditioned policy; however, their technique depends on already

having a successful policy. Other work has proposed to use mutual information maximization to

learn embeddings which facilitate exploration via intrinsic motivation [Kim et al. 2018].

Similarly to this work, hierarchical reinforcement learning seeks to learn temporal abstrac-

tions. These abstractions are variously de�ned as skills [Florensa et al. 2017; Hausman et al.

2018], options [Sutton et al. 1999; Bacon et al. 2017], or goal-directed sub-policies [Kulkarni et al.

2016a; Vezhnevets et al. 2017]. Most closely related are SeCTAR [Co-Reyes et al. 2018] and HIRO

[Nachum et al. 2018]. SeCTAR simultaneously learns a generative model of future states and a

low-level policy which can reach those states. HIRO learns a representation of goals such that a

high-level policy can induce any action in a low-level policy. Unlike this work, both SeCTAR and

HIRO learn state-dependent low-level policies, not action representations. Furthermore SeCTAR

assumes the reward function is given ahead of time, and HIRO’s o�-policy performance depends

on an approximate re-labeling of action sequences to train the high-level policy.

Also related are methods which attempt to learn embeddings of single actions to enable ef-

�cient learning in very large action spaces [Dulac-Arnold et al. 2015; Chandak et al. 2019]. In

particular, Chandak et al. [2019] learns a latent space of actions based on the e�ects of an action

on the environment. However, their latent spaces are for a single action and they do not consider

learned state representations. Another related direction is learning embeddings of one or more

actions from demonstrations [Tennenholtz and Mannor 2019]; this embedded action space builds

in prior knowledge from the demonstrator and can allow faster learning.
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5.5 Representation Experiments

In this section we empirically investigate how the learned DynE representations reshape the

problem of reinforcement learning. First we make a connection between temporal abstraction

and exploration, revealing that DynE actions result in better state coverage. Then we probe the

relationship between DynE state embeddings and the task value function.

5.5.1 Temporal abstraction and exploration

When embedding an action sequence, the DynE objective seeks to preserve information about

the outcome of that action sequence (i.e. the change in state), but minimize information about

the original action sequence. As shown in Appendix 5.D, this leads to a representation where all

action sequences which have similar outcomes embed close together. We propose that this tem-

porally abstract action space, where actions correspond to multi-step outcomes, allows random

actions to explore the environment more e�ciently.

We empirically validate the exploration bene�ts of the temporally abstract DynE actions. Fig-

ure 5.3 shows that uniformly sampling a DynE action results in a nearly uniform distribution over

the states reachable within : steps. Over the course of an entire episode, selecting DynE actions

uniformly at random reaches faraway states more often than random exploration with raw ac-

tions. Appendix 5.F shows the qualitative di�erence between random trajectories in the raw and

DynE action spaces, and Appendix 5.C studies the impact of varying : on the performance of a

learned policy.

5.5.2 State representations

The DynE objective compresses states while preserving information about the outcome of taking

any action in that state. If this compression is successful, states which have similar outcomes

80



DynE
Raw
Ratio

-70 -50 -30 -10 10 30 50 70

Distance

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0

1

2

3

4

5

6

7

8

9

10

11

12

13

V
isit ratio

Fr
ac

tio
n 

of
 tr

aj
et

or
ie

s

-0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5

Distance

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

Figure 5.3: The distribution of state distances reached by uniform random exploration using DynE actions
(: = 4) or raw actions in Reacher Vertical. Le�: Randomly selecting a 4-step DynE action reaches a
state uniformly sampled from those reachable in 4 environment timesteps. Right: Over the length of
an episode (100 steps), random exploration with DynE actions reaches faraway states very much more
o�en than exploration with raw actions. The visit ratio shows how frequently DynE exploration reaches
a certain distance compared to raw exploration.

will be close together in embedding space. In an MDP, two states which have identical successor

states have values which di�er by at most the range of the reward function Amax − Amin. While in

general states which lead to merely similar successors may have arbitrarily di�erent value, we

suggest that in many tasks of interest, similar successors may entail similar value.

We investigate whether the DynE state embedding leads to neighborhoods with similar value

in the Reacher Vertical environment. We collect 10K states from a random policy in the environ-

ment and perform dimensionality reduction on three representations of those states: the DynE

embedding of state images, low-dimensional joint states, and pixels. Figure 5.4 shows the results

of this dimensionality reduction, in which every point is colored by its value under a fully-trained

TD3 policy on the low-d states. DynE embeddings have neighborhoods with more similar values

than states or pixels.

5.6 Reinforcement learning experiments

In this section we assess the e�ectiveness of the DynE representations for deep RL, individually

analyzing the contributions of the action and state representations before combining them. First
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Figure 5.4: The relationship between state representations and task value. Each plot shows the t-SNE
dimensionality reduction of a state representation, where each point is colored by its value under a near-
optimal policy. (a) The DynE embedding from pixels places states with similar values close together. (b)
The low-dimensional states, which consist of joint angles, relative positions, and velocities, have some
neighborhoods of similar value, but also many regions of mixed value. (c) The relationship between the
pixel representation and the task value is very complex.

we evaluate the DynE action space on a set of six tasks with low-dimensional state observations,

testing its usefulness across a set of tasks and object interactions. Then, we test the DynE state

space on a set of three tasks with pixel observations. Finally, we combine DynE actions with

DynE observations, verifying that the two learned representations are complementary.

Appendix 5.B provides a full description of hyperparameters and model architectures, and

all of the code for DynE is available on GitHub at https://github.com/dyne-submission/

dynamics-aware-embeddings.

Environments We use six continuous control tasks from two families implemented in the Mu-

JoCo simulator [Todorov et al. 2012] to evaluate our method. Within each family, the task and

observation space change but the robot being controlled stays roughly the same, allowing us to

test the transferrability of the DynE action space between tasks. The Reacher family consists of

three of tasks which involve controlling a 2D, 2DoF arm to interact with various objects. The

7DoF family of tasks from OpenAI Gym [Brockman et al. 2016a] is quite di�cult, featuring three

tasks in which a 3D, 7DoF arm must use di�erent end e�ectors to push or throw various objects

to randomly-generated goal positions. Images and detailed descriptions of both families of tasks
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are available in Appendix 5.A.

5.6.1 Low-dimensional states

For training the DynE action representation we use 100K steps with a uniformly random behavior

policy in the simplest environment in each family with no reward or other supervisory signal.

As this DynE pretraining is unsupervised and only occurs once for each family of environments,

the G axis on these training curves refers only to the samples used to train the policy.13 We

then transfer this action representation to all three environments in the family. When training

DynE-TD3 we use all of the default hyperparameters from the TD3 implementation across all

environments.

We directly test the impact of switching from raw to DynE actions by comparing TD3 to

DynE-TD3. For completeness we compare with two additional state-of-the-art model-free meth-

ods: soft actor-critic (SAC) [Haarnoja et al. 2018b,c] and proximal policy optimization (PPO)

[Schulman et al. 2017]. We also compare with soft actor-critic with latent space policies (SAC-

LSP) [Haarnoja et al. 2018a], an innovative hierarchical method which transforms a low-level

action space into an abstract one by training an invertible low-level policy. In all cases we use the

o�cial implementations141516 and the MuJoCo hyperparameters used by the authors. We also

attempted to compare with the hierarchical method by Nachum et al. [2018], but after several

emails with the authors and dozens of experiments we were unable to get it to converge on tasks

other than those in their paper.

Results Figure 5.5 shows the results of these experiments. Most signi�cantly, they show that

switching from the raw action space (TD3 curve) to the DynE action space results in faster train-

ing and allows TD3 to solve the di�cult 7DoF suite of tasks. We see that the DynE action space

generalizes across several tasks with the same robot, even when interacting with objects unseen

during training. It is especially worth noting that the gains from DynE increase as the tasks be-
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Source tasks Target tasks

7 DoF Pusher 7 DoF Striker 7 DoF Thrower

Reacher Vertical Reacher Turn Reacher Push

DynE-TD3 SAC SAC-LSPPPOTD3

Figure 5.5: Performance of DynE-TD3 and baselines on two families of environments with low-
dimensional observations. Dark lines are mean reward over 8 seeds and shaded areas are bootstrapped
95% confidence intervals. Across all the environments, TD3 learns faster with the DynE action space than
with the raw actions. Within each family of environments, the DynE action space was trained only on
the simplest task (le�).

come harder, maintaining convergence, stability, and low variance in the face of high-dimensional

control with di�cult exploration. Since SAC-LSP [Haarnoja et al. 2018a] performs similarly but

worse than SAC we test it only on the simpler Reacher family of tasks; meanwhile, the PPO curves

do not enter the frame on the Reacher family of tasks due to its poor sample e�ciency.

5.6.2 Pixels

Using the Reacher family of environments we evaluate several state representations by their

e�ectiveness for policy learning with TD3.

We evaluate two established methods for learning representations from single images. “DARLA”

is the Disentangled Representation Learning Agent proposed by Higgins et al. [2017b] with the
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denoising autoencoder loss, which is referred to in that work as V-VAE��� . “VAE” is a standard

variational autoencoder [Kingma and Welling 2013; Rezende et al. 2014b], which has previously

been found to learn e�ective representations for control [Van Hoof et al. 2016]; it is equivalent to

DARLA with the pixel-space loss and V = 1. Since these representations operate on a single frame

at a time, we apply them to the most recent four frames independently and then concatenate the

embeddings before feeding them to the policy. These representations have compressed latent

spaces, but they encode no knowledge of the environment’s dynamics, allowing us to evaluate

the importance of incorporating the dynamics into our embeddings.

Next we evaluate representation learning methods whose objectives incorporate the dynam-

ics. “S-DynE,” for State DynE, is the DynE state embedding 4B , and “SA-DynE” combines the DynE

state and action representations. “S-Deterministic” and “SA-Deterministic” are ablations of the

corresponding DynE methods which have the same forward-prediction objective but no KL or

noise on the latent representations. Comparing the DynE methods to their respective ablations

reveals the contribution of explicitly introducing a compression objective to the latent space.

For training all of the learned representations we use a dataset of 100K steps in each environ-

ment from a uniformly random policy. In every case we train TD3 with the learned representa-

tions using all of the default hyperparameters from the o�cial TD3 implementation.

We compare these representation learning methods with TD3 trained from pixels. As there

are no experiments on pixels in the TD3 paper, we performed extensive search over network

architectures and hyperparameters. We included in our search the con�gurations used in the

pixel experiments of DDPG [Lillicrap et al. 2015] as well as those used in successful discrete-

action RL works from pixels [Schulman et al. 2017; Kostrikov 2018; Espeholt et al. 2018].

Results Figure 5.6 shows the results of these experiments. We �nd that the single-image meth-

ods are unable to solve any of the three tasks from pixels; TD3 from pixels diverges in all cases,

while VAE and DARLA learn gradually at best. If simply reducing the dimension of the states
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Figure 5.6: Performance of TD3 trained with various representations. Learned representations for state
which incorporate the dynamics make a dramatic di�erence. SA-DynE converges stably and rapidly and
achieves performance from pixels that nearly equals TD3’s performance from states. Dark lines are mean
reward over 8 seeds and shaded areas are bootstrapped 95% confidence intervals.

were su�cient to enable e�ective policy training, we would expect good performance from these

methods. S-DynE and S-Deterministic, which incorporate the dynamics into their representation

learning objectives, perform far better. The minimality imposed by the DynE objective allows

S-DynE and SA-Dyne to outperform their deterministic ablations. SA-DynE learns rapidly and

reliably, �nding behaviors which qualitatively solve all three tasks. The improvement of SA-DynE

over S-DynE shows that the state and action representations are complementary.

5.7 Discussion

In this work we proposed a method, Dynamics-aware Embedding (DynE), that jointly learns em-

bedded representations of states and actions for reinforcement learning. Our experiments reveal

that DynE action embeddings lead to more e�cient exploration, resulting in more sample e�-

cient learning on complex tasks, while DynE state embeddings allow unmodi�ed model-free RL

algorithms to scale to pixel observations. When combined, the DynE state and action embeddings

result in stable, sample-e�cient learning of high-quality policies from pixels.
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Appendix 5.A Environment description

(a) ReacherVertical (b) ReacherTurn (c) ReacherPush

Figure 5.7: The Reacher family of environments. ReacherVertical requires the agent to move the tip
of the arm to the red dot. ReacherTurn requires the agent to turn a rotating spinner (dark red) so that
the tip of the spinner (gray) is close to the target point (red). ReacherPush requires the agent to push the
brown box onto the red target point. The initial state of the simulator and the target point are randomized
for each episode. In each environment the rewards are dense and there is a penalty on the norm of the
actions. The robot’s kinematics are the same in each environment but the state spaces are di�erent.

The �rst task family, pictured in Figure 5.7, is the “Reacher family”, based on the Reacher-v2

MuJoCo [Todorov et al. 2012] task from OpenAI Gym [Brockman et al. 2016a]. These tasks form a

simple new benchmark for multitask robot learning. The �rst task, which we use as the “source”

task for training the DynE space, is ReacherVertical, a standard reach to a location task. The

other two tasks are inspired by the DeepMind Control Suite’s Finger Turn and Stacker envi-

ronments, respectively [Tassa et al. 2018]. In ReacherTurn, the same 2-link Reacher robot must

turn a spinner to the speci�ed random location. In ReacherPush, the Reacher must push a block

to the correct random location.

The second task family is the “7DoF family”, which comprises Pusher-v2, Striker-v2, and

Thrower-v2 from OpenAI Gym [Brockman et al. 2016a]. We use Pusher-v2 as the source task.

These tasks use similar (though not identical) robot models, making them a feasible family of

tasks for transfer. They are shown in Figure 5.8.
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(a) Pusher-v2 (b) Striker-v2 (c) Thrower-v2

Figure 5.8: The 7DoF family of environments. Pusher-v2 requires the agent to use a C-shaped end
e�ector to push a puck across the table onto a red circle. Striker-v2 requires the agent to use a flat end
e�ector to hit a ball so that it rolls across the table and reaches the goal. Thrower-v2 requires the agent
to throw a ball to a target using a small scoop. As with the Reacher family, the dynamics of the robot are
the same within the 7DoF family of tasks. However, the morphology of the robot, as well as the object it
interacts with, is di�erent.

5.A.1 Pixels

We use full-color images rendered at 256x256 and resized to 64x64 pixels. In order to allow the

agents to perceive motion, we stack the current frame with the three most recent frames, resulting

in an observation of dimension 12x64x64.

Appendix 5.B Hyperparameters and DynE training

For DynE-TD3 we use all of the default hyperparameters from the TD3 code17 across all tasks. For

all experiments we choose the dimension of the DynE action space to be equal to the dimension

of a single action in the environment. We set the number of actions in the DynE space to be : = 4

for all experiments except Thrower-v2, for which we use : = 8. We use the Adam optimizer

[Kingma and Ba 2014] with learning rate 10−4. All our experiments used recent-model NVidia

GPUs.
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Training on states When computing log-likelihoods we divide by the number of dimensions

in the state in an attempt to make the correct settings ofW invariant to the observation dimension;

the same result could be achieved by multiplying the values of W that we report by the state

dimension and changing the learning rate. With that scaling we set we set our hyperparameters

W = _ = 10−2 across all environments. We concatenate all the joint angles and velocities to

use as the states during representation learning. We preprocess the B, B′ pairs by �rst taking the

di�erence ΔB = B′ − B and then whitening so that ΔB has zero mean and unit variance in each

dimension. This preprocessing encourages the encoder to represent both position and velocity

in the latent space; the scales of these two components are quite di�erent.

We use fully-connected networks for the action encoder 40 and the conditional state predictor

5 . Each function has two hidden layers of 400 units. Training this model should take 5-10 minutes

on GPU.

Training on pixels We train a DynE model for each environment, taking in a stack of frames

and a sequence of : = 4 actions and predicting future states. To speed training we predict only

the two latest frames of the future state (i.e. the picture of the world at time C + : and C + : − 1)

instead of all four. When doing RL we take the state encoder 4B from this model and use it to

preprocess all states from the environment.

We set the dimension of the state embedding IB to 100. We did not try other options, and

given the sensitivity of RL to state dimension a smaller setting would very likely yield faster

learning. We set V = W = 1, at which setting DynE is optimizing a variational lower bound on

? (BC+: |BC , a:). We recommend ensuring that the predictions (not generations) from the model are

correctly rendering all the task-relevant objects; if V and W are too high, the model may incur

lower loss by ignoring details in the image. We use cyclic KL annealing [Liu et al. 2019a] to

improve convergence over a wide range of settings.

We use the DCGAN architecture [Radford et al. 2015] for the image encoder 4B and the pre-
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dictor 5 . The action encoder 40 is fully connected with two hidden layers of 400 units. Training

this model takes 1-2 hours on GPU.

Appendix 5.C Varying levels of temporal abstraction

We study the impact of varying : , the level of temporal abstraction in the DynE action space. We

�nd that increasing : improves performance and learning speed up to a point; beyond this point,

performance degrades. The optimal setting of : will depend on the environment dynamics. We

expect that environments with very slow dynamics will bene�t from a greater degree of temporal

abstraction.
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Figure 5.9: DynE-TD3 results on Reacher Push with varying : . We find that increased temporal abstrac-
tion improves performance up to a point, beyond which the action space is no longer able to represent
the optimal policy and performace degrades. Solid points are the mean reward obtained a�er training for
1M environment steps. Shaded bars represent the min and max performance over 4 seeds.

Appendix 5.D Visualizing the DynE action space

To better understand the structure in the DynE action embedding space, we visualize the rela-

tionship between the outcome of a sequence of actions and the DynE embedding of those actions.

When embedding an action sequence, the DynE objective seeks to preserve information about
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the outcome of that action sequence (i.e. the change in state), but minimize information about the

original action sequence. Therefore we should see that all action sequences which have similar

outcomes embed close together, regardless of the actions along the way. Figure 5.10 investigates

this in a simple Point environment with an easy-to-visualize 2D (G,~) state. For this simple prob-

lem, we see that all pairs of action sequences a:1 and a:2 with similar outcomes are close together in

the embedding space. The correspondence between the two spaces appears to remain strong for

high-dimensional and nonlinear environments, but is much harder to render in two dimensions.

(a) Outcome space (b) DynE action space

Figure 5.10: The mapping between the outcomes and embeddings of action sequences. We sample 10K
random sequences of four actions and evaluate their outcomes in the environment dynamics, measured
by (ΔG,Δ~) = BC+4 − BC . (a) We plot the outcome (ΔG,Δ~) of each action sequence and color each point
according to its location in the plot. (b) We use DynE to embed each action sequence into two dimensions;
each point in this plot corresponds to a point in (a) and takes its color from that corresponding point. The
similarity of the two plots and the smooth color gradient in (b) indicate that DynE is embedding action
sequences according to their outcomes.
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Appendix 5.E Extended results
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Figure 5.11: These plots allow for direct comparison between the methods from pixels (Pixel-TD3, VAE-
TD3, S-DynE-TD3, and SA-DynE-TD3) and our baselines from low-dimensional states (PPO and SAC). The
DynE methods from pixels perform competitively with some baselines from states.

Appendix 5.F Exploration with raw and DynE action

spaces
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(a) Random exploration with raw actions (b) Random exploration with DynE

Figure 5.12: These figures illustrate the way the DynE action space enables more e�icient exploration.
Each figure is generated by running a uniform random policy for ten episodes on a PointMass environ-
ment. Since the environment has only two position dimensions, we can plot the actual 2D position of the
mass over the course of each episode. Le�: A policy which selects actions at each environment timestep
uniformly at random explores a very small region of the state space. Right: A policy which randomly
selects DynE actions once every : timesteps explores much more widely.
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Notes

11. Number of steps required to train D4PG taken from Hafner et al. [2018], as Barth-Maron et al. [2018] does not include

this information.

12. In the interest of space we omit the usual recap of Markov decision processes and reinforcement learning. We refer

the reader to Section 2 of Silver et al. [2014] for notation and background on MDPs.

13. On all environments except the simplest (Reacher Vertical) shifting the DynE-TD3 plot by 100K steps does not a�ect

the ordering of the results.

14. TD3: https://github.com/sfujim/TD3/

15. SAC and SAC-LSP: https://github.com/haarnoja/sac

16. PPO: https://github.com/openai/baselines/tree/master/baselines/ppo2

17. https://github.com/sfujim/TD3
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Part III

Improving Performance with

Batched Data
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Where the �rst two parts of this thesis discuss the full reinforcement learning problem, where

data collection and policy optimization are interleaved, this part focuses on the challenge of policy

optimization alone. To do this, we now switch to the batch or o�ine setting, where �rst a dataset is

collected according to some behavior policy, then an algorithm uses that data to produce the best

policy it can. The o�ine RL setting is ideal for studying how much information about the optimal

policy an agent can gain from a particular sample of data, one of the fundamental questions of

sample complexity in RL. If the challenges inherent in o�ine RL could be overcome, it would also

enable policy learning using logged data alone, without any marginal cost of sample collection

per experiment.

This setting is extremely restrictive due to the di�culty of generalization. When distribution

of the training data places low weight on an action which a learned model estimates to have

high value, it could either be that (i) the action truly is good, or (ii) the estimate is faulty due

to having observed few transitions nearby. Traditional RL approaches resolve this dichotomy

by collecting more data near promising transitions, thereby producing increasingly-con�dent

predictions around desirable regions of the environment. The o�ine setting forces us to grapple

with the limitations of generalization directly, asking "What is the best performance possible

given only this training data?"

This part of the thesis contains two chapters studying the problems of generalization in of-

�ine RL. The �rst chapter discusses how the use of overparameterized models interacts with the

o�ine setting by using the simplest RL problem requiring function approximation: contextual

bandits. The second chapter moves to the full o�ine reinforcement learning setting and studies

how the compounding of errors limits the generalization ability of iterative policy optimization

algorithms. Together these chapters describe the promise and the limitations of reinforcement

learning on logged data, providing a foundation for future work which squeezes as much perfor-

mance improvement as possible out of every sample.
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6 | Offline Contextual Bandits with

Overparameterized Models

6.1 Introduction

The o�ine contextual bandit problem can be used to model decision making from logged data in

domains as diverse as recommender systems [Li et al. 2010; Bottou et al. 2013], healthcare [Prasad

et al. 2017; Raghu et al. 2017], and robotics [Pinto and Gupta 2016]. Prior work on the problem

has primarily focused on underparameterized models with �nite and small VC dimensions. This

work has come from the bandit literature [Strehl et al. 2010; Swaminathan and Joachims 2015a,b],

the reinforcement learning literature [Munos and Szepesvári 2008; Chen and Jiang 2019], and the

causal inference literature [Bottou et al. 2013; Athey and Wager 2017; Kallus 2018; Zhou et al.

2018].

In contrast, the best performance in modern supervised learning is often achieved by mas-

sively overparameterized models that are capable of �tting random labels [Zhang et al. 2016].

Use of such large models renders vacuous the bounds that require a small model class. But, the

massive capacity of popular neural network models is now often viewed as a feature rather than

a bug. Large models reduce approximation error and allow for easier optimization [Du et al.

2018] while still being able to generalize in regression and classi�cation problems [Belkin et al.

2018, 2019]. In this paper, we investigate whether the strong performance of overparameterized
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models in supervised learning translates to the o�ine contextual bandit setting. The main prior

work that considers this setup is [Joachims et al. 2018], which we discuss in detail in Section 6.7.

To formalize the di�erences between the supervised learning and contextual bandit settings,

we introduce a novel regret decomposition. This decomposition shares the approximation and

estimation terms from classic work in supervised learning [Vapnik 1982; Bottou and Bousquet

2008], but adds a term for “bandit” error which captures the excess risk due to only receiving

partial feedback.

We use this framework to address the question: can we use overparameterized models for

o�ine contextual bandits? Or is the bandit error a fundamental problem when we use large

models? We �nd mixed results. Value-based algorithms bene�t from the same generalization be-

havior as overparameterized supervised learning, but policy-based algorithms do not. We show

that this di�erence is explained by a property of their objectives called action-stability. An ob-

jective is action-stable if there exists a single prediction which is simultaneously optimal for any

observed action (where a “prediction” is a vector of state-action values for a value-based objec-

tive or an action distribution for a policy-based objective). Action-stable objectives perform well

when combined with overparameterized models since the random actions taken by the behavior

policy do not change the optimal prediction. However, interpolating an unstable objective results

in learning a di�erent function for every sample of actions, even though the true optimal policy

remains unchanged.

On the theory side, we prove that overparameterized value-based algorithms are action stable

and have small bandit error via reduction to overparameterized regression. Meanwhile we prove

that policy-based algorithms are not action-stable which allows us to prove lower bounds on the

“in-sample” regret and lower bounds on the regret for simple nonparametric models.

Empirically, we demonstrate the gap in both action stability and bandit error between policy-

based and value-based algorithms when using large neural network models on synthetic and

image-based datasets.
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In summary, our main contributions are:

• We introduce the concept of bandit error, which separates contextual bandits from super-

vised learning.

• We introduce action-stability and show that a lack of action-stability causes bandit error.

• We show a gap between policy-based and value-based algorithms based on action-stability

and bandit error both in theory and experiments.

6.2 Setup

6.2.1 Offline contextual bandit problem

First we will de�ne the contextual bandit problem [Langford and Zhang 2008]. Let the context

space X be in�nite and the action spaceA be �nite with |A| =  < ∞. At each round, a context

G ∈ X and a full feedback reward vector A ∈ [Amin, Amax] are drawn from a joint distribution D.

Note that A can depend on G since they are jointly distributed. A policy c : X → P(A) maps

contexts to distributions over actions. An action 0 is sampled according to c (0 |G) and the reward

is A (0), the component of the vector A corresponding to 0. We use “bandit feedback” to refer to

only observing A (0). This contrasts with the “full feedback” problem where at each round the full

vector of rewards A is revealed, independent of the action.

In the o�ine setting there is a �nite dataset of # rounds with a �xed behavior policy V . Then

we denote the dataset as ( = {G8, A8, 08, ?8}#8=1 where ?8 is the observed propensity ?8 = V (08 |G8).

The tuples in the datasets lie in X × [A<8=, A<0G ] × A × [0, 1] and are drawn i.i.d from the joint

distribution induced byD and V . From ( we de�ne the datasets (� for bandit feedback and (� for
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full feedback:

(� = {(G8, A8 (08), 08, ?8)}#8=1, (� = {(G8, A8)}#8=1.

Note that we are assuming access to the behavior probabilities ?8 = V (08 |G8), so the issues that

we raise do not have to do with estimating propensities. We will further make the following

assumption about the behavior.

Assumption 1 (Strict positivity). We have strict positivity of g if V (0 |G) ≥ g > 0 for all 0, G . Thus,

in any dataset we will have ?8 = V (08 |G8) ≥ g > 0.

There is important work that focuses learning without strict positivity by making algorithmic

modi�cations like clipping [Bottou et al. 2013; Strehl et al. 2010; Swaminathan and Joachims

2015a] and behavior constraints [Fujimoto et al. 2018b; Laroche et al. 2019]. However, these

issues are orthogonal to the main contribution of our paper, so we focus on the setting with strict

positivity.

The goal of an o�ine contextual bandit algorithm is to take in a dataset and produce a policy

c so as to maximize the value + (c) de�ned as

+ (c) := E
G,A∼D

E
0∼c (·|G)

[A (0)] .

We will use c∗ to denote the deterministic policy that maximizes+ . Finally, de�ne the& function

at a particular context, action pair as

& (G, 0) := E
A |G
[A (0)] .
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6.2.2 Model classes

The novelty of our setting comes from the use of overparameterized model classes that are capable

of interpolating the training objective. To de�ne this more formally, all of the algorithms we

consider take a model class of either policies Π or & functions Q and optimize some objective

over the data with respect to the model class. Following the empirical work of [Zhang et al. 2016]

and theoretical work of [Belkin et al. 2018] we will call a model class “overparameterized” or

“interpolating” if the model class contains a model that exactly optimizes the training objective.

Formally, if we have data {G8}#8=1 and a pointwise loss function ℓ (G,~), then a model class Π can

interpolate the data if

inf
c∈Π

#∑
8=1

ℓ (G8, c (G8)) =
#∑
8=1

inf
~
ℓ (G8, ~).

This contrasts with traditional statistical learning settings where we assume that the model class

is �nite or has low complexity as measured by something like VC dimension [Strehl et al. 2010;

Swaminathan and Joachims 2015a].

6.2.3 Algorithms

Now that we have de�ned the problem setting, we can de�ne the algorithms that we will analyze.

This is not meant to be a comprehensive account of all algorithms, but a broad picture of the

“vanilla” versions of the main families of algorithms. Since we are focusing on statistical issues

we do not consider how the objectives are optimized.

Supervised learning with full feedback. In a full feedback problem, empirical value maxi-

mization (the analog to standard empirical risk minimization) is de�ned by maximizing the em-
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pirical value +̂� :

+̂� (c ; (� ) :=
1
#

#∑
8=1
〈A8, c (·|G8)〉 (6.1)

c� := arg max
c∈Π

+̂� (c ; (� ) . (6.2)

Policy-based learning. Importance weighted or “inverse propensity weighted” policy opti-

mization directly optimizes the policy to maximize an estimate of its value. Since we only ob-

serve the rewards of the behavior policy, we use importance weighting to get an unbiased value

estimate to maximize. Explicitly:

+̂� (c ; (�) :=
1
#

#∑
8=1

A8 (08)
c (08 |G8)
?8

(6.3)

c� := arg max
c∈Π

+̂� (c ; (�). (6.4)

Note that this is the “vanilla” version of the policy-based algorithm and modi�cations like regu-

larizers, baselines/control variates, clipped importance weights, and self-normalized importance

weights have been proposed [Bottou et al. 2013; Joachims et al. 2018; Strehl et al. 2010; Swami-

nathan and Joachims 2015a,b]. For our purposes considering this vanilla version is su�cient

since as we show in Section 6.4, any objective that takes the form c (08 |G8) 5 (G8, 08, A8, ?8) at each

datapoint will have the same sort of problem with action-stability.

It is important to note that with underparameterized model classes, this algorithm is guar-

anteed to return nearly the best policy in the class. Explicilty, Strehl et al. [2010] prove that for

a �nite policy class Π, with high probability the regret of the learned policy c� is bounded as

$ ( 1
g

√
log |Π |
#
). This is elaborated in Appendix 6.F. However, these guarantees no longer hold in

our overparameterized setting.
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Value-based learning. Another simple algorithm is to �rst learn the& function and then use

a greedy policy with respect to this estimated & function. Explicitly:

&̂(� := arg min
5 ∈Q

#∑
8=1
(5 (G8, 08) − A8 (08))2 (6.5)

c&̂(�
(0 |G) := 1

[
0 = arg max

0′
&̂(� (G, 0′)

]
. (6.6)

This algorithm is sometimes called the “direct method” [Dudík et al. 2011]. The RL literature also

often de�nes a class of model-based algorithms, but in the contextual bandit problem there are

no state transitions so model-based algorithms are equivalent to value-based algorithms.

This algorithm also has a guarantee with small model classes. Explicilty, Chen and Jiang

[2019] prove that for a �nite and well speci�ed model class Q, with high probability the regret of

the learned policy c&̂(� is bounded as $ ( 1√
g

√
log |Q|
#
). This is elaborated in Appendix 6.F. Again,

these guarantees no longer hold in our overparameterized setting.

Doubly robust policy optimization. The class of doubly robust algorithms [Dudík et al. 2011]

does not fall cleanly into the value-based or policy-based bins since it requires �rst learning a

value function and using that to optimize a policy. However, with overparamterized models,

doubly robust learning becomes exactly equivalent to our vanilla value-based algorithm unless

we use cross�tting since the estimated Q values will coincide with the rewards. We prove this

formally in Appendix 6.D where we also show some issues that the doubly robust policy objective

can have with overparameterized models and highly stochastic rewards. For our purposes, we

will only consider the policy-based and value-based approaches since the doubly robust approach

collapses to the value-based approach with overparameterized models.
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6.3 Bandit error

In supervised learning, the standard decomposition of the excess risk separates the approximation

and estimation error [Bottou and Bousquet 2008]. The approximation error is due to the limited

function class and the estimation error is due to minimizing the empirical risk rather than the

true risk. Since the full feedback policy learning problem is equivalent to supervised learning,

the same decomposition applies. Formally, consider a full feedback algorithm A� which takes

the dataset (� and produces a policy c� . Then

E
(
[+ (c∗) −+ (c� )]︸                  ︷︷                  ︸

regret

= + (c∗) − sup
c∈Π

+ (c)︸                 ︷︷                 ︸
approximation error

+E
(
[sup
c∈Π

+ (c) −+ (c� )]︸                      ︷︷                      ︸
estimation error

.

We can instead consider a bandit feedback algorithmA� which takes the dataset (� and produces

a policy c� . To extend the above decomposition to the bandit problem we add a new term, the

bandit error, that results from having access to (� rather than (� . Now we have:

E
(
[+ (c∗) −+ (c�)]︸                  ︷︷                  ︸

regret

= + (c∗) − sup
c∈Π

+ (c)︸                 ︷︷                 ︸
approximation error

+E
(
[sup
c∈Π

+ (c) −+ (c� )]︸                      ︷︷                      ︸
estimation error

+E
(
[+ (c� ) −+ (c�)]︸                  ︷︷                  ︸

bandit error

.

Disentangling sources of error. The approximation error is the same quantity that we en-

counter in the supervised learning problem, measuring how well our function class can do. The

estimation error measures the error due to over�tting on �nite contexts and noisy rewards. The

bandit error accounts for the error due to only observing the actions chosen by the behavior pol-

icy. This is not quite analogous to over�tting to noise in the rewards since stochasticity in the

actions is actually required to have the coverage of context-action pairs needed to learn a policy.

While the standard approximation-estimation decomposition could be directly extended to the

bandit problem, our approximation-estimation-bandit decomposition is more conceptually useful
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since it disentangles these two types of error.

Can bandit error be negative? Usually, we think about an error decomposition as a sum

of positive terms. This is not necessarily the case with our decomposition, but we view this as

a feature rather than a bug. Intuitively, the bandit error term captures the contribution of the

actions selected by the behavior policy. If the behavior policy is nearly optimal and the rewards

are highly stochastic, there may be more signal in the actions selected by the behavior policy than

the observed rewards. Thus over�tting the actions chosen by behavior policy can sometimes be

bene�cial, causing the bandit error to be negative. The two terms disentangle the approximation

error (due to reward noise) from bandit error (due to behavior actions).

6.4 Action-stable objective functions

Consider a simple thought experiment. We collect a contextual bandit dataset (� from a two-

action environment using a uniformly random behavior policy. Then we construct a second

dataset (̃� by evaluating the outcome of taking the opposite action at each observed context.

Since nothing about the environment has changed, we know that the optimal policy remains the

same. Therefore we desire the following property from a bandit objective: there exists a single

model which is optimal (with respect to that objective) on both (� and (̃� . We say that such an

objective is action-stable because it has an optimal policy which is stable to re-sampling of the

actions in the dataset.

More formally, we de�ne action stability pointwise at a datapoint I = (G, A, ?) where A ∈

[Amin, Amax] and ? ∈ Δ is the behavior probability vector in the  -dimensional simplex (recall

that is the number of the actions). Let I (0) denote the datapoint when action0 is sampled so that

I (0) = (G, A (0), ? (0), 0). The objectives for both policy and value-based algorithms decompose

into sums over the data of some loss ℓ (I (0), c (0 |G)) or ℓ (I (0), & (G, 0)).
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Note that the output space of a policy is the simplex so that c (·|G) ∈ Δ , while the output

of a Q function18 is & (G, ·) ∈ R . To allow for this di�erence in our de�nition, we will de�ne a

generic  -dimensional output space Y and its corresponding restriction to one dimension as

Y. So for a policy-based algorithm Y = Δ and Y = [0, 1], while for a value-based algorithm

Y = R and Y = R. Now we can de�ne action-stability.

De�nition 6.1 (Action-stable objective). An objective function ℓ is action-stable at a datapoint

I if there exists ~∗ ∈ Y such that for all 0 ∈ A:

ℓ (I (0), ~∗(0)) = min
~∈Y

ℓ (I (0), ~).

If an objective is not action-stable, a function which minimizes that objective exactly at every

datapoint (G, A (0), ? (0), 0) does not minimize it for a di�erent choice of0. As a direct consequence,

interpolating an unstable objective results in learning a di�erent function for every sample of

actions, even though the true optimal policy remains unchanged.

We �nd that policy-based objectives are not action-stable, while value-based objectives are.

In the next section we will use the instability of policy-based objectives to show that policy-based

algorithms exhibit large bandit error when used with overparameterized models. Our stability

results are stated in the following two Lemmas, whose proofs can be found in Appendix 6.A.

Lemma 6.2 (Value-based stability). Value-based objectives are action stable since we can let ~∗ = A

and this minimizes the square loss at every action.

Lemma 6.3 (Policy-based instability). All policy-based objectives which take the form

ℓ (I (0), c (0 |G)) = 5 (I (0))c (0 |G) are not action-stable at I unless 5 (I (0)) > 0 for exactly one action

0.

These Lemmas tell us that the stochasticity of the behavior policy can cause instability for

policy-based objectives. This is worrisome since one would hope that more stochastic behavior
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policies give us more information about all the actions and should thus yield better policies.

Indeed, this is the case for value-based algorithms as we will see in the next section. But for policy-

based algorithms, stochastic behavior can itself be a cause of over�tting due to the instability of

the objective function.

Stabilizing policy-based algorithms. To avoid this problem in a policy-based algorithm, the

sign of the function 5 (I (0)) must indicate the optimal action. This essentially requires having

access to a baseline function 1 (B) that separates the optimal action from all the others so that

A (0) > 1 (B) if and only if 0 is the optimal action. And then 5 (I (0)) = A (0)−1 (B)
V (0 |B) yields an action-

stable algorithm. This is in general as di�cult as learning the full value function & . One notable

special case is when the bandit problem is induced by an underlying classi�cation problem, so that

only one action has reward 1 and all others have 0. In this case, any constant baseline between

0 and 1 will lead to action stability. This case has often been considered in the literature, e.g. by

Joachims et al. [2018] as we discuss in Section 6.7.

Now that we have built up an understanding of the problem we can prove some formal results

that show how value-based algorithms more e�ectively leverage overparameterized models by

being action-stable.

6.5 Regret bounds

Recall that as explained in Section 6.2, both policy-based and value-based algorithms have re-

gret guarantees when we use small model classes [Strehl et al. 2010; Chen and Jiang 2019]. But,

when we move to the overparameterized setting, this is no longer the case. In this section we

prove regret upper bounds for value-based learning by using recent results in overparameterized

regression. Then we prove lower bounds on the regret of policy-based algorithms due to their

action-instability.
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6.5.1 Value-based learning

In this section we show that value-based algorithms can provably compete with the optimal pol-

icy. The key insight is to reduce the problem to regression and then leverage the guarantees on

overparameterized regression from the supervised learning literature. This is formalized by the

following theorem.

Theorem 6.4 (Reduction to regression). By Assumption 1 we have V (0 |G) ≥ g for all G, 0. Then

with &̂(� as de�ned in (6.5) we have

+ (c∗) −+ (c&̂(� ) ≤
2
√
g

√
E

G,0∼V
[(& (G, 0) − &̂(� (G, 0))2] .

A proof can be found in Appendix 6.B. Similar results are presented as intermediate results in

Chen and Jiang [2019]; Munos and Szepesvári [2008]. The implication of this result that we want

to emphasize is that any generalization guarantees for overparameterized regression immediately

become guarantees for value-based learning in o�ine contextual bandits. Essentially, Theorem

6.4 gives us a regret bound in any problem where overparameterized regression works. The

following results from the overparameterized regression literature demonstrate a few of these

guarantees, which all require some sort of regularity assumption on the true& function to bound

the regression error:

• The results of [Bartlett et al. 2020] give �nite sample rates for overparameterized linear

regression by the minimum norm interpolator depending on the covariance matrix of the

data and assuming that the true function is realizable.

• The results of [Belkin et al. 2019] imply that under smoothness assumptions on& , a partic-

ular singular kernel will interpolate the data and have optimal non-parametric rates. After

applying our reduction, the rates are no longer optimal for the policy learning problem due

to the square root.
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• The results of [Bach 2017] show how choosing the minimum norm in�nite width neural

network in a particular function space can yield adaptive �nite sample guarantees for many

types of underlying structure in the & function.

• The results of [Cover 1968] imply the consistency of a one nearest neighbor regressor when

the rewards are noiseless and & is piecewise continuous. This will contrast nicely with

Theorem 6.6 below.

Each of these guarantees implies a corresponding corollary to Theorem 6.4 resulting in a regret

bound for that particular combination of model and assumptions on & .

6.5.2 Policy-based learning

Now we will show how the policy-based learning algorithms can provably fail because they lack

action-stability. We will do this in a few ways. First, we will show that on the contexts in the

dataset an action-unstable algorithm must su�er regret. This means that we cannot even learn

the optimal policy at the contexts seen during training. Then to deal with generalization beyond

the dataset we will prove a regret lower bound for a speci�c overparameterized model, namely

one nearest neighbor. Finally, we discuss a conjecture that such lower bounds can be extended

to richer model classes like neural networks.

Since we are proving lower bounds, making any more simplifying assumptions only makes

the bound stronger. As such, all of our problem instances that create the lower bounds have only

two actions ( = 2).

Regret on the observed contexts. Before considering how a policy generalizes o� of the

data, it is useful to consider what happens at the contexts in the dataset. This is especially true

for overparameterized models which can exactly optimize the objective on the dataset. To do

this, we will de�ne the value of a policy c on the contexts in a dataset ( (which we will call the
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“in-sample” value) by

+ (c ; () :=
1
#

#∑
8=1
E
A |G8

E
0∼c (·|G8 )

[A (0)] . (6.7)

Then the following Theorem shows that the policy c� learned by the simple policy-based algo-

rithm in Equation (6.4) must su�er substantial regret on ( .

Theorem 6.5 (In-sample regret lower bound). Let = 2 and the policy class be overparameterized.

De�ne ΔA (G) =
��EA |G [A (1) − A (2)]�� as the absolute expected gap in rewards at G . De�ne ?D (G) to be

the probability that the policy-based objective is action-unstable at G . Recall that V (0 |G) ≥ g by

Assumption 1. Then

E
(
[+ (c∗; ()−+ (c� ; ()] ≥ g E

G

[
?D (G)ΔA (G)

]
.

The full proof is in Appendix 6.C. This Theorem tells us that as often as the objective is action-

unstable, we can su�er substantial regret even on the contexts in the dataset. We now o�er some

brief intuition of the proof. When we have two actions and an algorithm is not action-stable at

G , then action chosen by the learned policy c� at G8 is directly dependent on the observed action

08 . Since the behavior V will choose each action with probability at least g by Assumption 1, the

learned policy c� must choose the suboptimal action with probability at least g at G8 . This causes

unavoidable regret for unstable algorithms, as formally stated in Theorem 6.5.

Note that Theorem 6.5 essentially says that action-unstable algorithms convert noise in the

behavior into regret. This is the essential problem with unstable algorithms. Rather than using

stochasticity in the behavior policy to get estimates of counterfactual actions, an action-unstable

algorithm is sensitive to this stochasticity like it is label noise in supervised learning.

In Appendix 6.C.2 we present a result that makes this connection between behavior policy

noise and action-instability more direct. Speci�cally we show a reduction that takes any classi�-
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cation problem and turns it into a bandit problem such that optimizing the policy-based objective

is equivalent to solving a noisy variant of the classi�cation problem. On the contrary, optimizing

the full-feedback objective is equivalent to the noiseless classi�cation problem.

The limitation of this result is that it only applies in-sample and does not rule out that the

model class could leverage its inductive bias to perform well away from the training data. Next

we convert this in-sample regret lower bound into a standard regret lower bound for a particular

simple interpolating model class, the nearest neighbor policy.

Regret with generalization: nearest neighbor models. The above result shows what hap-

pens at the contexts in the dataset ( . It seems that only pathological combinations of model class

and problem instance could perform poorly on ( but recover strong performance o� of the data.

However, it cannot be ruled out a priori if the model class has strong inductive biases to gener-

alize well. In this section we will show that at least for a very simple overparameterized model

class, the generalization of the model does not improve performance.

The following theorem shows that the simplest interpolating model class, a one nearest neigh-

bor rule, fails to recover the optimal policy even in the limit of in�nite data.

Theorem 6.6 (Regret lower bound for one nearest neighbor). Let ΔA = Amax − Amin. Then there

exist problem instances with noiseless rewards where

lim sup
#→∞

E
(
[+ (c� ) −+ (c�)] =

ΔA
2
,

but

lim sup
#→∞

E
(
[+ (c∗) −+ (c� )] = 0.

The proof is in Appendix 6.C. This result shows that using a nearest neighbor scheme to

generalize based on the signal provided by the policy-based objective is not su�cient to learn
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an optimal policy. Importantly, note that since the rewards are noiseless, a nearest neighbor

policy does recover the optimal policy with full feedback and Theorem 6.4 shows that value-

based algorithms also recover the optimal policy in this setting. So, the model class is capable of

solving the problem, it is the action-unstable algorithm that is causing irreducible error.

More complicated model classes. The above result for nearest neighbor models is illustrative,

but does not apply to richer model classes like neural networks. While we were not able to

construct such lower bounds, we conjecture that they do exist and hope that future work can

prove them. We have two reasons to believe that such lower bounds exist. First, Theorem 6.5 is

agnostic to model class. For a policy to perform well despite poor performance in-sample would

require strong inductive biases from the model class. Proving lower bounds requires ruling out

such inductive biases as we have shown for nearest neighbor rules. Second, our empirical results

presented in the next section show that policy-based algorithms have action-instability and high

bandit error with neural networks. The inductive biases are not enough to overcome the poor

in-sample performance.

6.6 Experiments

In this section we experimentally verify that the phenomena described by the theory above extend

to practical settings that go slightly beyond the assumptions of the theory.19 Speci�cally we want

to verify the following with overparameterized neural network models:

1. Policy-based algorithms are action-unstable while value-based algorithms are action-stable.

2. This causes high bandit error for policy-based algorithms, but not value-based algorithms.

We will break the section into two parts. First we consider a synthetic problem using simple

feed-forward neural nets and then we show similar phenomena when the contexts are high-

dimensional images and the models are Resnets [He et al. 2016].
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6.6.1 Synthetic data

First, we will clearly demonstrate action-stability and bandit error in a synthetic problem with

a linear reward function. Speci�cally, we sample some hidden reward matrix \ and then sample

contexts and rewards from isotropic Gaussians:

\ ∼ * ( [0, 1] ×3), G ∼ N(0, �3), A ∼ N(\G, n�3).

Actions are sampled according to a uniform behavior:

0 ∼ V (·|G) = * ({1, . . . ,  }).

For these experiments we set  = 2, 3 = 10, n = 0.1. We take # = 100 training points and

sample an independent test set of 500 points. As our models we use MLPs with one hidden layer of

width 512. In our experience, the �ndings are robust to all these hyperparameters of the problem

so long as the model is overparameterized. Full details about the training procedure along with

learning curves and further results are in Appendix 6.E.
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Figure 6.1: We test action-stability by resampling the actions 20 times for a single dataset of contexts.
Each pixel corresponds to the pair of action seeds 8, 9 and the color shows the TV distance between c8 (·|G)
and c 9 (·|G) on a held-out test set sampled from the data generating distribution. The policy-based algo-
rithms are highly sensitive to the randomly sampled actions.

To con�rm (1) and (2) listed above we conduct two experiments. First, to test the action-

stability of an algorithm with a neural network model, we train 20 di�erent policies on the same
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Figure 6.2: Estimated bandit error by averaging the values calculated on the held-out test sets for 50
independently sampled datasets. Error bars show one standard deviation. While policy-based learning
has high bandit error, value-based learning has essentially zero bandit error.

dataset of contexts and rewards, but with resampled actions. Formally, we sample {G8, A8}#8=1 from

the Gaussian distributions described above and then sample 08 ∼ V (·|G8) with 20 di�erent seeds.

We then train each algorithm to convergence and compare the resulting policies by total variation

(TV) distance. Results are shown in Figure 6.1. We �nd that our results from Section 6.4 are

con�rmed: policy-based algorithms are unstable leading to high TV distance between policies

trained on di�erent seeds while value-based algorithms are stable.

Second, we estimate the bandit error of each algorithm. To do this we train policies to con-

vergence for the policy-based, value-based, and full-feedback objectives 50 independently sam-

pled datasets (where now we also resample the contexts and rewards). For this estimate, we

assume perfect optimization and no approximation error. Each estimate is calculated on a held

out test set. Explicitly, let c 9
�
, c

9

&
, c

9

�
are the policy-based, value-based, and full-feedback policies

trained on dataset ( 9 with seed 9 and corresponding test set ) 9 . Then we estimate bandit error

as 1
�

∑�

9=1+ (c
9

�
;) 9 ) − + (c 9

�
;) 9 ). Similarly, since we know \ we can compute c∗ and use this to

estimate the estimation error. The results shown in Figure 6.2 demonstrate that the policy-based

algorithm su�ers from substantially more bandit error and thus more regret.
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6.6.2 Classification data

Most prior work on o�ine contextual bandits conducts experiments on classi�cation datasets

that are transformed into bandit problems [Beygelzimer and Langford 2009; Dudík et al. 2011;

Swaminathan and Joachims 2015a,b; Joachims et al. 2018; Chen et al. 2019]. This methodology

obscures issues of action-stability because the very particular reward function used (namely 1 for

a correct label and 0 for incorrect) makes the policy-based objective action-stable. However, even

minor changes to this reward function can dramatically change the performance of policy-based

algorithms by rendering the objective action-unstable.

To make a clear comparison to prior work that uses deep neural networks for o�ine contex-

tual bandits like Joachims et al. [2018], we will consider the same image based bandit problem

that they do in their work. Namely, we will use the a bandit version of CIFAR-10 [Krizhevsky

2009].

To turn CIFAR into an o�ine bandit problem we view each possible label as an action and

assign reward of 1 for a correct label/action and 0 for an incorrect label/action. We use two

di�erent behavior policies to generate training data: (1) a uniformly random behavior policy and

(2) the hand-crafted policy used in [Joachims et al. 2018]. We train Resnet-18 [He et al. 2016]

models using Pytorch [Paszke et al. 2019b]. Again full details about the training procedure are in

Appendix 6.E.

As explained in Section 6.4, the policy-based objective is stable if and only if the sign of the

reward minus baseline is an indicator of the optimal action. To test this insight we consider two

variants of policy-based learning: “unstable” where we use a baseline of -0.1 so that the e�ective

rewards are 1.1 for a correct label and 0.1 for incorrect and “stable” where we use a baseline of

0.1 so that the e�ective rewards are of 0.9 and -0.1 to make the objective stable20. Note that this

“stable” variant of the algorithm only exists because we are considering a classi�cation problem.

In settings with more rich structure in the rewards, de�ning such an algorithm is not possible

115



Value-based Unstable
policy-based

Stable
policy-based

0.0

0.1

0.2

0.3

0.4

0.5

R
eg

re
t

Uniform behavior

Value-based Unstable
policy-based

Stable
policy-based

0.0

0.1

0.2

0.3

0.4

0.5
Hand-crafted behavior

Estimation error

Bandit error

Figure 6.3: Estimated regret decomposition on CIFAR with uniform behavior (le�) and the hand-cra�ed
behavior of Joachims et al. [2018] (right). We see that the value-based learning has lowest bandit error and
unstable policy-based learning the most. On the hand-cra�ed dataset the stable policy-based algorithm
performs as well as value-based learning.

and only versions of the unstable algorithm would exist.

We again estimate the regret decomposition as we did with the synthetic data. The di�erence

is that this time we only use one seed since we only have one CIFAR-10 dataset. The results

in Figure 6.3 con�rm the results from the synthetic data. The standard (unstable) policy-based

algorithm su�ers from large bandit error. The value-based algorithm has the best performance

across both datasets although the “stable” policy-based algorithm performs about as well for the

hand-crafted behavior policy.

6.7 Related work

Now that we have presented our results, we will contrast them with some related work to clarify

our contribution.

6.7.1 Relation to propensity overfitting

Swaminathan and Joachims [2015b] introduce what they call “propensity over�tting”. By provid-

ing an example, they show that policy-based algorithms over�t to maximize the sum of propen-

sities (∑8
c (08 |G8 )
?8
) rather than the value when the rewards are strictly positive. They provide a
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motivating example, but no formal de�nition of propensity over�tting and argue that it helps

to describe the gap between supervised learning and bandit learning. In contrast, we introduce

and formally de�ne bandit error, which makes this gap between supervised learning and bandit

learning precise and does not rely on the speci�c algorithm being used. Then we introduce and

formally de�ne action-instability, which explains an important cause of bandit error for policy-

based algorithms when using large models. By mathematically formalizing these ideas we provide

a more rigorous foundation for future work.

6.7.2 Relation to [Joachims et al. 2018]

The main related work that considers o�ine contextual bandits with large neural network models

is Joachims et al. [2018]. Speci�cally, that paper proposes a policy-based algorithm with an ob-

jective of the form: A8 (08 )−_
V (08 |G8 ) c (08 |G8) for some constant baseline _ determined by a hyperparameter

sweep, but motivated by a connection to self-normalized importance sampling.

Our work contrasts with this prior work in two key ways. First, we show that the algorithm

proposed in Joachims et al. [2018] is action-unstable. Speci�cally, our Lemma 6.3 shows that any

policy-based algorithm with an objective of the form
∑
8 5 (I8 (08))c (08 |G8) cannot be action-stable

unless the sign of 5 (I (0)) is the indicator of the optimal action. However, since that paper only

tests the algorithm on classi�cation problems where the rewards are in {0, 1}, any setting of _

between 0 and 1 causes the sign of 5 to indicate the optimal action. The action-stability analysis

shows how this algorithm will struggle beyond the classi�cation setting.

Second, we show that value-based methods provably and empirically work in the overparam-

eterized setting. In contrast, Joachims et al. [2018] does not consider value-based methods. We

show that value-based methods are not a�ected by action-stability issues (Lemma 6.2) and have

vanishing bandit error (Theorem 6.4). We empirically test this conclusion on the same CIFAR-10

bandit problem as Joachims et al. [2018] and �nd that a value-based approach outperforms the

policy-based approach proposed in that paper (Figure 6.3).
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6.7.3 Variance of importance weighting

The importance weighted value estimates used by policy-based algorithms su�er from high vari-

ance due to low probability actions that have very large importance weights. Much prior work

focuses on reducing this variance [Strehl et al. 2010; Bottou et al. 2013; Swaminathan and Joachims

2015a]. In contrast, the issue we consider, action-instability in the overparameterized setting, is

distinct from this variance issue. When the policy class is �exible enough to optimize the objective

at each datapoint, the optimal predictor in that class does not depend on the importance weights.

Meanwhile action-unstable objectives translate stochasticity in the behavior policy into noise in

the objective, causing the over�tting issues that we see in policy-based algorithms. In fact, our

Theorem 6.5 suggests that regret will be worse for more uniform behavior policies when using an

action-unstable objective, even though these may be bene�cial in terms of variance. This is born

out in our experiments where the behavior is usually uniform and known, which is a favorable

setup in terms of the variance of the value estimates, but an unfavorable setup for action-unstable

policy learning algorithms.

6.8 Discussion

We have examined the o�ine contextual bandit problem with overparameterized models. We

introduced a new regret decomposition to separate the e�ects of estimation error and bandit error.

We showed that policy-based algorithms are not action-stable and thus su�er from high bandit

error with stochastic behavior policies. This is borne out both in the theory and experiments.

It is important to emphasize that our results may not apply beyond the setting we consider

in this paper. When there is no strict positivity, there is unobserved confounding, there are con-

tinuous actions, or the model classes are small and misspeci�ed then policy-based learning may

have lower regret and lower bandit error than value-based learning.
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In future work we hope to extend the ideas from the bandit setting to the full RL problem with

longer horizon that requires temporal credit assignment. We predict that action-stability and

bandit error remain signi�cant issues there. We also hope to investigate action-stable algorithms

beyond the simple value-based algorithms we consider here.
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Appendix 6.A Action-stability

Lemma 6.2 (Value-based stability). Value-based objectives are action stable since we can let ~∗ = A

and this minimizes the square loss at every action.

Proof. Consider a datapoint I = (G, A ) which becomes I (0) = (G, 0, A (0)) when we sample action

0 from the behavior. At this datapoint, the value-based objective for an estimated Q function &̂

is

ℓ (I (0), &̂ (G, 0)) = (A (0) − &̂ (G, 0))2 (6.8)

This is minimized at all 0 by &̂ (G, 0) = A (0). So setting ~∗ = &̂ (G, ·) = A , we can exactly minimize

ℓ at I. Since such a ~∗ exists, the objective is by de�nition action-stable. �

Lemma 6.3 (Policy-based instability). All policy-based objectives which take the form

ℓ (I (0), c (0 |G)) = 5 (I (0))c (0 |G) are not action-stable at I unless 5 (I (0)) > 0 for exactly one action

0.

Proof. Consider a datapoint I = (G, A ) which becomes I (0) = (G, 0, A (0), ? (0)) when we sam-

ple action 0 from the behavior with probability ? (0). At this datapoint, a generic policy-based

objective evaluated on a policy ĉ takes the form

ℓ (I (0), ĉ (0 |G)) = 5 (I (0))ĉ (0 |G) (6.9)

As special examples of the function 5 we have the generic policy-based objective from Equation

(6.4) when 5 (I (0)) =
A (0)
? (0) . Moreover we can incorporate any baseline function 1 (G) so that

5 (I (0)) = A (0)−1 (G)
? (0) . This algorithm covers the one presented by Joachims et al. [2018].

Now to prove the claim, we have three cases: (1) 5 (I (0)) < 0 for all 0, (2) 5 (I (0)) > 0 for at

least two actions 01, 02, and (3) 5 (I (0)) > 0 at exactly one action 01. We will show that in cases
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1 and 2 the objective is action-unstable, but in case 3 it is action-stable.

Case 1. Assume that 5 (I (0)) < 0 for all 0. Now for any given 0 to maximize the objective

5 (I (0))ĉ (0 |G) while ensuring that ĉ (0 |G) is a valid probability we must set ĉ (0 |G) = 0. But, if

we set ĉ (0 |G) = 0 for all 0, we no longer have a valid probability distribution, since 0 ∉ Δ .

Thus, we cannot �nd ~∗ ∈ Δ that optimizes the loss at I across all actions, so the objective is

action-unstable.

Case 2. Assume that 5 (I (0)) > 0 for at least two actions 01, 02. Now at 01, 02 the objective

5 (I (0))ĉ (0 |G) is maximized by setting c (0 |G) = 1. However, there is no valid element ~ of Δ 

such that ~ (01) = 1 and ~ (02) = 1. Thus, we cannot �nd ~∗ ∈ Δ that optimizes the loss at I

across all actions, so the objective is action-unstable.

Case 3. Assume 5 (I (0)) > 0 at exactly one action 01. Then at action 01 we can maximize

5 (I (01))ĉ (01 |G) by setting ĉ (01 |G) = 1. And since 5 (I (0)) ≤ 0 for all other actions 0 ≠ 01, we

can maximize 5 (I (0))ĉ (0 |G) by setting ĉ (0 |G) = 0. Now since 1[0 = 01] ∈ Δ , there does exist a

vector ~∗ ∈ Y which exactly optimizes ℓ regardless of which action is sampled. So, the objective

is action-stable if and only if we are in this case. �

Appendix 6.B Value-based learning

Theorem 6.4 (Reduction to regression). By Assumption 1 we have V (0 |G) ≥ g for all G, 0. Then

with &̂(� as de�ned in (6.5) we have

+ (c∗) −+ (c&̂(� ) ≤
2
√
g

√
E

G,0∼V
[(& (G, 0) − &̂(� (G, 0))2] .

Proof. The proof follows directly from linking the subsequent lemmas with ĉ = c&̂(�
and Π be

the set of all policies in Lemma 6.7. �

121



Lemma 6.7 (Mismatch: from MSE to Regret). Assume strict positivity. Let ĉ be the greedy policy

with respect to some &̂ and let Π be any class of policies to compete against, which contains ĉ . Then

sup
c∈Π

+ (c) −+ (ĉ) ≤ 2
√

sup
c∈Π

E
G,0∼D,c

[(& (G, 0) − &̂ (G, 0))2] (6.10)

Proof. We can expand the de�nition of regret and then add and subtract and apply a few inequal-

ities. Let c̄ be the policy in Π which maximizes + . Then

sup
c∈Π

+ (c) −+ (ĉ) = E
G

[
E

0∼c̄ |G
[& (G, 0)] − E

0∼ĉ |G
[& (G, 0)]

]
(6.11)

= E
G

[
E

0∼c̄ |G
[& (G, 0)] − E

0∼ĉ |G
[&̂ (G, 0)] + E

0∼ĉ |G
[&̂ (G, 0)] − E

0∼ĉ |G
[& (G, 0)]

]
(6.12)

≤ E
G

[
E

0∼c̄ |G
[|& (G, 0) − &̂ (G, 0) |] + E

0∼ĉ |G
[|& (G, 0) − &̂ (G, 0) |]

]
(6.13)

≤
√
E
G
E

0∼c̄ |G
[(& (G, 0) − &̂ (G, 0))2] +

√
E
G
E

0∼ĉ |G
[(& (G, 0) − &̂ (G, 0))2] (6.14)

≤ 2
√

sup
c∈Π
E
G

[
E

0∼c |G
[(& (G, 0) − &̂ (G, 0))2]

]
(6.15)

The �rst inequality holds since ĉ maximizes &̂ and by using the de�nition of absolute value, the

second by Jensen, and the third by introducing the supremum. �

Lemma 6.8 (Transfer: from V to c ). Assume strict positivity and take any Q-function &̂ and any

policy c , then

E
G,0∼D,c

[& (G, 0) − &̂ (G, 0))2] < 1
g

(
E

G,0∼D,V
[(& (G, 0) − &̂ (G, 0))2]

)
. (6.16)
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Proof. Let c be any policy. Then

E
G
E

0∼c |G
[(& (G, 0) − &̂ (G, 0))2] =

∫
G

? (G)
∑
0

c (0 |G) (& (G, 0) − &̂ (G, 0))23G (6.17)

=

∫
G

∑
0

c (0 |G) V (0 |G)
V (0 |G)? (G) (& (G, 0) − &̂ (G, 0))

23G (6.18)

<
1
g

∫
G

∑
0

V (0 |G)? (G) (& (G, 0) − &̂ (G, 0))23G (6.19)

=
1
g
E

G,0∼D,V
[(& (G, 0) − &̂ (G, 0))2] (6.20)

where we use a multiply and divide trick and apply the de�nition of strict positivity to ensure

that c (0 |G)
V (0 |G) <

1
g
. �

Appendix 6.C Policy-based learning

6.C.1 In-sample regret

Lemma 6.9. Let Π be an interpolating class and = 2. Then there exists a c� as de�ned in Equation

(6.4) such that

1. the behavior of c� at each datapoint G8 ∈ ( only depends on 08, A8 (08), and ?8

2. c� (·|G8) ∈ {(0, 1), (1, 0)}.

Proof. We will begin by proving part 2. Note that the objective that c� optimizes takes the form
A8 (08 )
?8
c (08 |G8) at each datapoint. Since probabilities are constrained to [0, 1] this is optimized by

c (08 |G8) = 0 if A8 (08 )
?8

< 0 and c (08 |G8) = 1 if A8 (08 )
?8

> 0. Since we have an overparameterized model

class, we know that Π contains a c� that can exactly choose the optimizer at each datapoint. Since

 = 2, once we know c (08 |G8) we immediately have c (0̄8 |G8) = 1−c (08 |G8) (where 0̂8 is the action

that is not equal to 08 ). Thus c� (·|G8) ∈ {(0, 1), (1, 0)}.
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Now part 1 follows directly since the above reasoning showed that c� (·|G8) is de�ned precisely

by the sign of A8 (08 )
?8

and the identity of 08 . �

Theorem 6.5 (In-sample regret lower bound). Let = 2 and the policy class be overparameterized.

De�ne ΔA (G) =
��EA |G [A (1) − A (2)]�� as the absolute expected gap in rewards at G . De�ne ?D (G) to be

the probability that the policy-based objective is action-unstable at G . Recall that V (0 |G) ≥ g by

Assumption 1. Then

E
(
[+ (c∗; ()−+ (c� ; ()] ≥ g E

G

[
?D (G)ΔA (G)

]
.

Proof. By part 1 of Lemma 6.9 and linearity of expectation we can decompose the expected in-

sample value as

E
(
[+ (c∗; () −+ (c� ; ()] = 1

#

#∑
8=1
E

G8 ,A8 ,08

[
E

0∼c∗
E
A |G8
[A (0)] − E

0∼c�
E
A |G8
[A (0)]

]
.

Since the data are iid we further have that

E
(
[+ (c∗; () −+ (c� ; ()] = E

G8 ,A8 ,08

[
E

0∼c∗
E
A |G8
[A (0)] − E

0∼c�
E
A |G8
[A (0)]

]
.

De�ne the event*G,A to be the event that the policy-based objective is action-unstable at G, A .

So ?D (G) = EA |G [1[*G,A ]]. We can split this expectation up into stable and unstable parts by

conditioning on either* G8 ,A8 or*G8 ,A8 , and lower bound the regret on the stable datapoints by 0:

E
(
[+ (c∗; () −+ (c� ; ()] = E

G8 ,A8 |* G8 ,A8
E
08 |G8

[
E

0∼c∗
E
A |G8
[A (0)] − E

0∼c�
E
A |G8
[A (0)]

]
+ E
G8 ,A8 |*G8 ,A8

E
08 |G8

[
E

0∼c∗
E
A |G8
[A (0)] − E

0∼c�
E
A |G8
[A (0)]

]
≥ E
G8 ,A8 |*G8 ,A8

E
08 |G8

[
E

0∼c∗
E
A |G8
[A (0)] − E

0∼c�
E
A |G8
[A (0)]

]
.
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By part 2 of Lemma 6.9 we know that c� (·|G8) is either (1, 0) or (0, 1). Conditioned on the

objective being unstable at G8 and using the fact that there are only two actions, we know that

c� (G8) must be di�erent depending on whether 08 = 1 or 08 = 2. De�ne 01
8,�

to be the action

that c� selects at G8 when 08 = 1 and 02
8,�

the action when 08 = 2. Let 0∗8 be the action chosen by

the deterministic optimal policy c∗ at G8 . Thus we can split the expectation over 08 in the above

expression and then plug in de�nitions to get:

E
(
[+ (c∗; () −+ (c� ; ()] ≥ E

G8 ,A8 |*G8 ,A8

[
V (08 = 1|G8) E

A |G8
[A (0∗8 ) − A (01

8,�)] + V (08 = 2|G8) E
A |G8
[A (0∗8 ) − A (02

8,�)]
]
.

Since we assumed that V (0 |G8) ≥ g for all 0 we can lower bound the above by

E
(
[+ (c∗; () −+ (c� ; ()] ≥ g E

G8 ,A8

[
1[*G8 ,A8 ]

(
E
A |G8
[A (0∗8 ) − A (01

8,�)] + E
A |G8
[A (0∗8 ) − A (02

8,�)]
)]
.

Finally, we note that since 01
8,�

≠ 02
8,�

and there are only 2 actions that the above is precisely

E
(
[+ (c∗; () −+ (c� ; ()] ≥ g E

G8 ,A8

[
1[�G8 ,A8 ] E

A |G8
[A (0∗8 ) − A (0 ≠ 0∗8 )]

]
= g E

G8 ,A8
[1[�G8 ,A8 ]ΔA (G8)]

= g E
G8
[ E
A8 |G8
[1[*G8 ,A8 ]]ΔA (G8)]

= g E
G8
[?D (G8)ΔA (G8)]

= g E
G
[?D (G)ΔA (G)] .

�
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6.C.2 Connection to noisy classification

This section states and proves the Theorem referenced in the main text connecting action-unstable

policy-based learning with noisy classi�cation.

Theorem 6.10 (Noisy classi�cation reduction). Take any noise level [ < 1/2 and any binary

classi�cation problem C consisting of a distribution DC over X and a labeling function ~C : X →

{−1, 1}. There exists an o�ine contextual bandit problem B with noiseless rewards such that

1. Maximizing +̂� in B is equivalent to minimizing the 0/1 loss on a training set drawn from C

where labels are �ipped with probability [.

2. Maximizing +̂� in B is equivalent to minimizing the 0/1 loss on a training set drawn from C

with noiseless training labels.

Proof. First we will construct the bandit problem B with two actions corresponding to the clas-

si�cation problem C. For any constant 2A > 0 we de�ne B by

G ∼ DC, A |G =


2A (1 − [, [) ~C (G) = 1

2A ([, 1 − [) ~C (G) = −1

, V (1|G) =


1 − [ ~C (G) = 1

[ ~C (G) = −1

(6.21)

Now we will show that in this problem, +̂� is equivalent to the 0/1 loss for C with noisy labels.

To do this �rst note that by construction, for G with ~C (G) = 1 we have A (1) |G
V (1|G) =

2A (1−[)
1−[ = 2A

and A (2) |G
V (2|G) =

2A[

[
= 2A , and similarly for G with ~C (G) = −1 we have A (1) |G

V (1|G) =
2A[

[
= 2A and

A (2) |G
V (2|G) =

2A (1−[)
1−[ = 2A .

+̂� (c) =
1
#

#∑
8=1

A8 (08)
c (08 |G8)
V (08 |G8)

=
1
#

#∑
8=1

A8 (08)
V (08 |G8)

c (08 |G8) (6.22)

=
2A

#

#∑
8=1

c (08 |G8) (6.23)

126



This is equivalent to 0/1 loss with noisy labels since V generates 08 according to ~C where the

label is �ipped with probability [.

Now we will show that +̂� is equivalent to the 0/1 loss for C with clean labels. Note that by

construction A (0) |G = 2A[ + c∗(0 |G)2A (1 − 2[). So,

+̂� (c) =
1
#

#∑
8=1
〈A8, c (·|G8)〉 =

2A

#

#∑
8=1
〈[1 + (1 − 2[)c∗(·|G8), c (·|G8)〉 (6.24)

=
2A[

#
+ 2A (1 − 2[)

#

#∑
8=1
〈c∗(·|G8), c (·|G8)〉 (6.25)

This is equivalent to 0/1 loss with noisy labels since c∗ exactly corresponds to ~C . �

6.C.3 Nearest Neighbor

Theorem 6.6 (Regret lower bound for one nearest neighbor). Let ΔA = Amax − Amin. Then there

exist problem instances with noiseless rewards where

lim sup
#→∞

E
(
[+ (c� ) −+ (c�)] =

ΔA
2
,

but

lim sup
#→∞

E
(
[+ (c∗) −+ (c� )] = 0.

Proof. First we need to formally de�ne the nearest neighbor rules that interpolate the objectives

+̂� and +̂� . These are simple in the case of two actions. Let 8 (G) be the index of the nearest
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neighbor to G in the dataset. Then

c� (0 |G) =


1

(
0 = 08 (G) and A8 (G) (08 (G)) > 0

)
or

(
0 ≠ 08 (G) and A8 (G) (08 (G)) ≤ 0

)
0 >Cℎ4AF8B4.

(6.26)

This is saying that c� chooses the same action as the observed nearest neighbor if that reward was

positive, and the opposite action if that was negative. And for the full feedback we just choose

the best action from the nearest datapoint.

c� (0 |G) =


1 0 = arg max0′ A8 (G) (0′)

0 >Cℎ4AF8B4.

(6.27)

Now we can construct the problem instances needed for the Theorem. To construct the ex-

ample, take a bandit problem with two actions (called 1 and 2):

G ∼ * ( [−1, 1]), A |G = (1, 1 + ΔA ), V (1|G) = V (2|G) = 1/2 ∀ G, 0

The true optimal policy has c∗(2|G) = 1 for all G and+ (c∗) = 1+ΔA . The policy with full feedback

c� is to always choose action 2, since every observation will show that action 2 is better.

Now, we will show that in the limit of in�nite data, c� has no regret. Since the rewards are

noiseless, the maximum observed reward at a context is exactly the optimal action at that context.

Thus, we precisely have a classi�cation problem with noiseless labels so that the Bayes risk is 0.

Since we c∗ is continuous, the class conditional densities (determined by the indicator of the

argmax of &) are piecewise continuous. This allows us to apply the classic result of [Cover and

Hart 1967] that a nearest neighbor rule has asymptotic risk less twice the Bayes risk, which in

this case is zero. This means that asymptotically % (c� (0 |G) ≠ c∗(0 |G)) = 0 which immediately
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gives the second desired result of zero regret in the limit of in�nite data under full feedback.

Now we note that since rewards are always positive, we can simplify the de�nition of c� as

c� (0 |G) = 1[0 = 08 (G)] . (6.28)

Then we have that

+ (c� ) −+ (c�) = E
G
[ E
0∼c� |G

[& (G, 0)] − E
0∼c� |G

[& (G, 0)]] (6.29)

= E
G
[ΔA + 1 − (c� (1|G) + c� (2|G) (ΔA + 1))]] (6.30)

= ΔA + 1 − E
G
[1[08 (G) = 1] + (ΔA + 1)1[08 (G) = 2]] (6.31)

Taking expectation over ( we get

E
(
[+ (c� ) −+ (c�)] = E

(
[ΔA + 1 − E

G
[1[08 (G) = 1] + (ΔA + 1)1[08 (G) = 2]]] (6.32)

= ΔA + 1 − E
G
[%( (08 (G) = 1) + (ΔA + 1)%( (08 (G) = 2)]] (6.33)

= ΔA + 1 − E
G
[1
2
+ (ΔA + 1) 1

2
]] (6.34)

=
ΔA
2

(6.35)

This construction did not depend on the size of the dataset, so it is even true as the number of

datapoints tends to in�nity. �
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Appendix 6.D Discussion of doubly robust algorithms

Before going into the comparison, we will de�ne the doubly robust algorithm [Dudík et al. 2011]

in our notation. Speci�cally,

+̂�' (c) :=
#∑
8=1

[∑
0

c (0 |G8)&̂ (G8, 0) +
c (08 |G8)
V (08 |G8)

(A8 (08) − &̂ (G8, 08))
]
, ĉ�' = arg max

c∈Π
+̂�' (c)

(6.36)

As stated in the main text, when we use overparameterized models and train &̂ on the same

data that we use to optimize the policy, then doubly robust methods are equivalent to the vanilla

value-based algorithm. This is formalized in Lemma 6.11 below.

This equivalence can be avoided by using cross�tting so that &̂ is not trained on the same

data as c . However, then it is possible that the doubly robust policy objective becomes action-

unstable. This is true even with access to the true& function, but requires stochastic rewards. To

construct such an example we leverage the stochastic rewards so that instability only occurs at

datapoints where certain reward vectors are sampled. This is shown in Lemma 6.12 below.

One �nal point is to consider the motivation for doubly robust methods. Usually it is moti-

vated by concerns about consistency of the value function estimation or estimation of behavior

policy [Dudík et al. 2011]. However, in our setting we have (1) an overparamterized model class

which is large enough to contain the true value function, and (2) exact access to the behavior

probabilities. So it is not clear why doubly robust methods would be motivated in our setting.

Lemma 6.11 (Equivalence of DR and vanilla VB). When we use overparameterized models and do

not use cross�tting, doubly robust learning from Equation (6.36) is equivalent to vanilla value-based

learning from Equation (6.5).

Proof. When the model for &̂ is overparameterized and trained on the full dataset, we know that
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&̂ (G8, 08) = A8 (08). Thus we get that

+̂�' (c) =
#∑
8=1

[∑
0

c (0 |G8)&̂ (G8, 0) +
c (08 |G8)
V (08 |G8)

(A8 (08) − &̂ (G8, 08))
]

(6.37)

=

#∑
8=1

[∑
0

c (0 |G8)&̂ (G8, 0) +
c (08 |G8)
V (08 |G8)

(0)
]

(6.38)

=

#∑
8=1

∑
0

c (0 |G8)&̂ (G8, 0) (6.39)

With an overparameterized policy class, we can exactly recover the greedy policy relative to &̂

to optimize this objective. �

Lemma 6.12 (Instability of DR). There exist problems with stochastic rewards where even with

access to the exact Q function, the doubly robust policy objective is action-unstable with probability

1/2.

Proof. We need only consider one datapoint since the action-stability property is de�ned on a

per datapoint basis. To make this construction we will consider only two actions.

A |G =


(0, 1) F.?. 1/2

(0,−2) >Cℎ4AF8B4

, V (·|G) = (1/2, 1/2) (6.40)

So, we know that

& (·|G) = (0,−0.5) (6.41)

Now we claim that when the sampled datapoint has A = (0, 1) the doubly robust objective is

action-unstable (and this happens with probability 1/2 by construction). We can explicitly expand
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the DR objective for the policy c at G when action 0 is sampled

ℓ�' (c, G, 0, A ) = c (1|G) · 0 + c (2|G) · (−0.5) + c (0 |G)
1/2 (A (0) −& (G, 0)) (6.42)

So when 0 = 1 we have A (0) = 0 and & (G, 0) = 0 so that

ℓ�' (c, G, 0, A ) = c (2|G) · (−0.5) + 2 · c (1|G) (0 − 0) = c (2|G) · (−0.5) (6.43)

And when 0 = 2 we have A (0) = 1 (because that was the sampled reward) and& (G, 0) = 0 so that

ℓ�' (c, G, 0, A ) = c (2|G) · (−0.5) + 2 · c (2|G) (1 − (−0.5)) = c (2|G) · (2.5) (6.44)

Now, this is clearly action-unstable since the optimizer when 0 = 1 is sampled is c (·|G) = (1, 0)

while when 0 = 2 is sampled we get c (·|G) = (0, 1). �

Appendix 6.E Details of Bandit Experiments

6.E.1 Synthetic data

Data. As described in the main text we sample some hidden reward matrix \ and then sample

contexts and rewards from isotropic Gaussians:

\ ∼ * ( [0, 1] ×3), G ∼ N(0, �3), A ∼ N(\G, n�3).

Actions are sampled according to a uniform behavior:

0 ∼ V (·|G) = * ({1, . . . ,  }).
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We set  = 2, 3 = 10, n = 0.1. For each random seed we take # = 100 training points and

sample an independent test set of 500 points. For experiment 1 we sample \ and one dataset

of G, A tuples, then we sample 20 independent sets of actions. For experiment 2 we sample all

parameters separately to construct each of the 50 datasets.

Model. For policies and Q functions we use a multilayer perceptron with one hidden layer of

width 512 and ReLU activations. The only di�erence between policy and Q architecture is that

the policy has a softmax layer on the output so that the output is a probability distribution.

Learning. We train using SGD with momentum. Learning rate is 0.01, momentum is 0.9, batch

size is 10, and weight decay is 0.0001. We train every model for 1000 epochs decreasing the

learning rate by a factor of 10 after 200 epochs. This trains well past the point of convergence in

our experience.
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Figure 6.4: We show learning curves across each of the twenty di�erent action resampled datasets.

Extended results. Figure 6.4 shows learning curves for each of the twenty di�erent action

datasets from experiment 1. We use “train obj” to refer to the training objective which is squared

error for value-based learning and +̂� for policy-based learning. We use “train value” and “test

value” to refer to+ (c ; () for ( being the train and test sets respectively. We can evaluate the true

value at each datapoint since we know the full reward vector at each datapoint.
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We see that the policy-based objective is dramatically higher than the highest achievable value

due to over�tting of the noise in the actions. The gap between train and test value is mot likely

explained by noise in the contexts sampled in those respective datasets (by chance the test set

has higher value contexts).

6.E.2 CIFAR-10

Data. We use a bandit version of the CIFAR-10 dataset [Krizhevsky 2009]. We split the train

set into a train set of the �rst 45000 examples and validation set of the last 5000. We normalize

the images and use data augmentation of random �ips and crops of size 32. Each of the 10 labels

becomes an action. We de�ne rewards to be 1 for a correct prediction and 0 for an incorrect

prediction. We use two di�erent behavior policies. One is a uniform behavior that selects each

action with probability 0.1 and the other is the hand-crafted behavior policy from [Joachims et al.

2018].

Model. We use a ResNet-18 [He et al. 2016] from PyTorch [Paszke et al. 2019b] for both the

policy and the Q function. The only modi�cation we make to accommodate for the smaller images

in CIFAR is to remove the �rst max-pooling layer.

Learning. We train using SGD with momentum 0.9,a batch size 128, and weight decay of 0.0001

for 1000 epochs. Training takes about 20 hours for each run on an NVIDIA RTX 2080 Ti GPU.

We use a learning rate of 0.1 for the �rst 200 epochs, 0.01 for the next 200, and 0.001 for the last

600. To improve stability we use gradient clipping and reduce the learning rate in the very �rst

epoch to 0.01.

Extended results. Figures 6.5 and 6.6 show learning curves for each of the three algorithms we

consider across each dataset. The labels refer to the same quantities as they did on the synthetic

problem.
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One interesting phenomena is that the unstable policy-based algorithm displays a clear over-

�tting phenomena as we would predict due to the noise in the actions being transferred into

noise in the objective. Since we have strictly positive rewards here, this is also an instance of

“propensity over�tting” [Swaminathan and Joachims 2015b]. As a result, limiting the capacity of

the model class by early stopping could improve performance somewhat. But by limiting capacity

in this way we are exiting the overparameterized/interpolating regime described by Zhang et al.

[2016].
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Figure 6.5: Learning curves on the hand-cra�ed action dataset.
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Figure 6.6: Learning curves on the uniform action dataset.

Appendix 6.F Small model classes

In this section we state and prove theorems that bound each term of our regret decomposition for

each algorithm we consider when we use �nite model classes. Similar results can be shown for
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other classical notions of model class complexity. We include these results for completeness, but

the main focus of our paper is the overparameterized regime where such bounds are vacuous.

Theorem 6.13 (Policy-based learning with a small model class). Assume strict positivity and a

�nite policy class Π. Let YΠ = + (c∗) − supc∈Π+ (c). Denote ΔA = A<0G − A<8= . Then we have that

for any X > 0 with probability 1 − X each of the following holds:

Approximation Error = + (c∗) − sup
c∈Π

+ (c) ≤ YΠ

Estimation Error = sup
c∈Π

+ (c) −+ (c� ) ≤ 2ΔA

√
log(2|Π |/X)

2#

Bandit Error = + (c� ) −+ (c�) ≤
2ΔA
g

√
log(2|Π |/X)

2#

Proof. The bound on approximation error follows directly from the de�nition of YΠ. The bound

on the estimation error follows from a standard application of a Hoe�ding bound on the random

variables -8 = 〈A8, c (·|G8)〉 which are bounded by ΔA and a union bound over the policy class.

The bound on bandit error essentially follows Theorem 3.2 of [Strehl et al. 2010], we include

a proof for completeness:

+ (c� ) −+ (c�) = + (c� ) − +̂� (c�) + +̂� (c�) −+ (c�)

≤ + (c� ) − +̂� (c� ) + +̂� (c�) −+ (c�)

≤ 2 sup
c∈Π
|+ (c) − +̂� (c) |

≤ 2ΔA
g

√
log(2|Π |/X)

2#

The �rst inequality comes from the de�nition of c� . The second comes since both c� , c� ∈ Π.

And the last inequality follows from an application of a Hoe�ding bound on the random variables

-8 = A8 (08) c (08 |G8 )?8
which are bounded by ΔA

g
and a union bound over the policy class. �
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Theorem 6.14 (Value-based learning with a small model class). Assume strict positivity and a �-

nite function classQ which induces a �nite class of greedy policiesΠQ . Let YQ = inf
&̂∈Q EG,0∼D,V [(& (G, 0)−

&̂ (G, 0))2]. Denote ΔA = A<0G − A<8= . Then we have that for any X > 0 with probability 1− X each of

the following holds:

Approximation Error = + (c∗) − sup
c∈ΠQ

+ (c) ≤ 2
√
YQ/g (6.45)

Estimation Error = sup
c∈ΠQ

+ (c) −+ (c� ) ≤ 2ΔA

√
log( |Q|/X)

2#
(6.46)

Bandit Error = + (c� ) −+ (c&̂ ) ≤
10ΔA√
g

√
log( |Q|/X)

#
+ 6

√
ΔA

(
log( |Q|/X)

g#
YQ

)1/4
+ 2

√
YQ/g

(6.47)

Proof. To bound the approximation error, we can let ĉ be the greedy policy associated with a

Q-function &̂ and apply Lemmas 6.7 and 6.8. This gives us

+ (c∗) − sup
ĉ∈ΠQ

+ (ĉ) = inf
&̂∈Q
[+ (c∗) −+ (ĉ)] ≤ inf

&̂∈Q

2
√
g

√
E

G,0∼D,V
[(& (G, 0) − &̂ (G, 0))2] = 2

√
YQ/g .

(6.48)

The bound on the estimation error follows the same as before from standard uniform convergence

arguments.

The bound on the bandit error follows by again applying Lemmas 6.7 and 6.8 and then making

the concentration argument from Lemma 16 of [Chen and Jiang 2019]. Explicitly, our Lemmas

give us

+ (c� ) −+ (c&̂ ) ≤ + (c
∗) −+ (c

&̂
) ≤ 2
√
g

√
E

G,0∼D,V
[(& (G, 0) − &̂ (G, 0))2] . (6.49)
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Then, to bound the squared error term, we can add and subtract:

E
G,0∼D,V

[(& (G, 0) − &̂ (G, 0))2] = E
G,0∼D,V

[(& (G, 0) − &̂ (G, 0))2] − inf
&̄∈Q

E
G,0∼D,V

[(& (G, 0) − &̄ (G, 0))2]

(6.50)

+ inf
&̄∈Q

E
G,0∼D,V

[(& (G, 0) − &̄ (G, 0))2] (6.51)

≤ E
G,0∼D,V

[(& (G, 0) − &̂ (G, 0))2] − inf
&̄∈Q

E
G,0∼D,V

[(& (G, 0) − &̄ (G, 0))2]

(6.52)

+ YQ . (6.53)

Now we want to show that the di�erence in squared error terms concentrates for large # . This is

precisely what Lemma 16 from [Chen and Jiang 2019] does using a one-sided Bernstein inequality.

This gives us for any X > 0 an upper bound with probability 1 − X of

56Δ2
A log( |Q|/X)

3#
+

√
YQ

32Δ2
A log( |Q|/X)

#
(6.54)

Plugging this in and simplifying the constants gives the result. �
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Notes

18. When using neural networks Q is usually implemented as a function of G with  outputs [Mnih et al. 2015a].

19. Code can be found at https://github.com/davidbrandfonbrener/deep-offline-bandits.

20. This corresponds to the optimal value of _ in the experiments of Joachims et al. [2018]. Our “stable” model slightly

outperforms theirs, likely due to a slightly better implementation.
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7 | Offline RL Without Off-Policy

Evaluation

7.1 Introduction

An important step towards e�ective real-world RL is to improve sample e�ciency. One avenue

towards this goal is o�ine RL (also known as batch RL) where we attempt to learn a new policy

from data collected by some other behavior policy without interacting with the environment.

Recent work in o�ine RL is well summarized by Levine et al. [2020].

In this paper, we challenge the dominant paradigm in the deep o�ine RL literature that pri-

marily relies on actor-critic style algorithms that alternate between policy evaluation and policy

improvement [Fujimoto et al. 2018b, 2019; Peng et al. 2019; Kumar et al. 2019, 2020; Wang et al.

2020b; Wu et al. 2019; Kostrikov et al. 2021a; Jaques et al. 2019; Siegel et al. 2020; Nachum et al.

2019]. All these algorithms rely heavily on o�-policy evaluation to learn the critic. Instead, we

�nd that a simple baseline which only performs one step of policy improvement using the behav-

ior Q function often outperforms the more complicated iterative algorithms. Explicitly, we �nd

that our one-step algorithm beats prior results of iterative algorithms on most of the gym-mujoco

[Brockman et al. 2016b] and Adroit [Rajeswaran et al. 2017] tasks in the the D4RL benchmark

suite [Fu et al. 2020].

We then dive deeper to understand why such a simple baseline is e�ective. First, we examine
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what goes wrong for the iterative algorithms. When these algorithms struggle, it is often due to

poor o�-policy evaluation leading to inaccurate Q values. We attribute this to two causes: (1) dis-

tribution shift between the behavior policy and the policy to be evaluated, and (2) iterative error

exploitation whereby policy optimization introduces bias and dynamic programming propagates

this bias across the state space. We show that empirically both issues exist in the benchmark

tasks and that one way to avoid these issues is to simply avoid o�-policy evaluation entirely.

Finally, we recognize that while the the one-step algorithm is a strong baseline, it is not always

the best choice. In the �nal section we provide some guidance about when iterative algorithms

can perform better than the simple one-step baseline. Namely, when the dataset is large and be-

havior policy has good coverage of the state-action space, then o�-policy evaluation can succeed

and iterative algorithms can be e�ective. In contrast, if the behavior policy is already fairly good,

but as a result does not have full coverage, then one-step algorithms are often preferable.

Figure 7.1: A cartoon illustration of the di�erence between one-step and multi-step methods. All algo-
rithms constrain themselves to a neighborhood of “safe” policies around V . A one-step approach (le�)
only uses the on-policy &̂V , while a multi-step approach (right) repeatedly uses o�-policy &̂c8 .

Our main contributions are:

• A demonstration that a simple baseline of one step of policy improvement outperforms more

complicated iterative algorithms on a broad set of o�ine RL problems.

• An examination of failure modes of o�-policy evaluation in iterative o�ine RL algorithms.
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• A description of when one-step algorithms are likely to outperform iterative approaches.

7.2 Setting and notation

We will consider an o�ine RL setup as follows. LetM = {S,A, d, %, ',W} be a discounted in�nite-

horizon MDP. In this work we focus on applications in continuous control, so we will generally

assume that both S and A are continuous and bounded. We consider the o�ine setting where

rather than interacting with M, we only have access to a dataset �# of # tuples of (B8, 08, A8)

collected by some behavior policy V with initial state distribution d . Let A (B, 0) = EA |B,0 [A ] be

the expected reward. De�ne the state-action value function for any policy c by &c (B, 0) :=

E%,c |B0=B, 00=0 [
∑∞
C=0 W

CA (BC , 0C )]. The objective is to maximize the expected return � of the learned

policy:

� (c) := E
d,%,c

[ ∞∑
C=0

W CA (BC , 0C )
]
= E

B∼d
0∼c |B

[&c (B, 0)] . (7.1)

Following Fu et al. [2020] and others in this line of work, we allow access to the environment to

tune a small (< 10) set of hyperparameters. See Paine et al. [2020] for a discussion of the active

area of research on hyperparameter tuning for o�ine RL. We also discuss this further in Appendix

7.C.

7.3 Related work

Most prior work on deep o�ine RL consists of iterative actor-critic algorithms. The primary

innovation of each paper is to propose a di�erent mechanism to ensure that he learned policy

does not stray too far from the data generated by the behavior policy. Broadly, we group these

methods into three camps: policy constraints/regularization, modi�ed of imitation learning, and
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Q regularization:

1. The majority of prior work acts directly on the policy. Some authors have proposed explicit

constraints on the learned policy to only select actions where (B, 0) has su�cient support under

the data generating distribution [Fujimoto et al. 2018b, 2019; Laroche et al. 2019]. Another

proposal is to regularize the learned policy towards the behavior policy [Wu et al. 2019] usually

either with a KL divergence [Jaques et al. 2019] or MMD [Kumar et al. 2019]. This is a very

straighforward way to stay close to the behavior with a hyperparameter that determines just

how close. All of these algorithms are iterative and rely on o�-policy evaluation.

2. [Siegel et al. 2020; Wang et al. 2020b; Chen et al. 2020b] all use algorithms that �lter out dat-

apoints with low Q values and then perform imitation learning. [Wang et al. 2018; Peng et al.

2019] use a weighted imitation learning algorithm where the weights are determined by ex-

ponentiated Q values. These algorithms are iterative.

3. Another way to prevent the learned policy from choosing unknown actions is to incorporate

some form of regularization to encourage staying near the behavior and being pessimistic

about unknown state, action pairs [Wu et al. 2019; Nachum et al. 2019; Kumar et al. 2020;

Kostrikov et al. 2021a]. However, properly being able to quantify uncertainty about unknown

states is notoriously di�cult when dealing with neural network value functions [Buckman

et al. 2020]. Again all of these algorithms are iterative.

Some recent work has also noted that optimizing policies based on the behavior value function

can perform surprisingly well [Gulcehre et al. 2020; Goo and Niekum 2020]. However, these

papers propose complicated variants of the one-step approach involving ensembles, non-standard

regularizers and paraterizations or ensembles and distributional Q functions. In contrast, we

implement the simplest possible one-step algorithms without any modi�cations to the network

architecture or standard regularizers/constraints. Moreover, we focus on providing an analysis

of when and why this simple baseline works.
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There are also important connections between the one-step algorithm and the literature on

conservative policy improvement [Kakade and Langford 2002; Schulman et al. 2015; Achiam et al.

2017], which we discuss in more detail in Appendix 7.B.

7.4 Defining the algorithms

In this section we provide a uni�ed algorithmic template for o�ine RL algorithms as o�ine ap-

proximate modi�ed policy iteration. We show how this template captures our one-step algorithm

as well as a multi-step policy iteration algorithm and an iterative actor-critic algorithm. Then any

choice of policy evaluation and policy improvement operators de�nes one-step, multi-step, and

iterative algorithms.

7.4.1 Algorithmic template

We consider a generic o�ine approximate modi�ed policy iteration (OAMPI) scheme, shown in

Algorithm 3. Essentially the algorithm alternates between two steps. First, there is a policy eval-

uation step where we estimate the Q function of the current policy c:−1 by &̂c:−1 using only the

dataset �# . Implementations also often use the prior Q estimate &̂c:−2 to warm-start the approx-

imation process. Second, there is a policy improvement step. This step takes in the estimated

Q function &̂c:−1 , the estimated behavior V̂ , and the dataset �# and produces a new policy c: .

Again an algorithm may use c:−1 to warm-start the optimization. Moreover, we expect this im-

provement step to be regularized or constrained to ensure that c: remains in the support of V and

�# . Choices for this regularization/constraint are discussed below. Now we discuss a few ways

to instantiate the template.

One-step. The simplest algorithm sets the number of iterations  = 1. We train the policy

evaluation to estimate&V , and then use one of the policy improvement operators discussed below
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Algorithm 3 OAMPI

Require:  , dataset �# , estimated behavior V̂
1: Set c0 = V̂ . Initialize &̂c−1 randomly.
2: for k = 1, . . . , K do
3: Policy evaluation: &̂c:−1 = Q(c:−1, �# , &̂

c:−2)
4: Policy improvement: c: = I(&̂c:−1, V̂, �# , c:−1)

to �nd the resulting c1.

Multi-step. The multi-step algorithm now sets  > 1. The evaluation operator must evaluate

o�-policy since �# is collected by V , but evaluation steps for  ≥ 2 require evaluating policies

c:−1 ≠ V . Each iteration is trained to convergence in both the estimation and improvement steps.

Iterative actor-critic. An actor critic approach looks somewhat like multistep policy itera-

tion, but does not attempt to train to convergence at each iteration. Instead, each iteration con-

sists of one gradient step to update the Q estimate and one gradient step to improve the policy.

Since all of the evaluation and improvement operators that we consider are gradient-based, this

algorithm can adapt the same evaluation and improvement operators used by the multi-step al-

gorithm. Most algorithms from the literature fall into this category [Fujimoto et al. 2018b; Kumar

et al. 2019, 2020; Wu et al. 2019; Wang et al. 2020b; Siegel et al. 2020].

7.4.2 Policy evaluation operators

Following prior work on continuous state and action problems, we always evaluate by simple

�tted Q evaluation [Fujimoto et al. 2018b; Kumar et al. 2019; Siegel et al. 2020; Wang et al. 2020b;

Paine et al. 2020; Wang et al. 2021]. Explicitly the evaluation step for the one-step or multi-step
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algorithms looks like

Q(c:−1, �# , &̂
c:−2) = arg min

&

#∑
8=1

(
A (B8, 08) + W E

0′∼c:−1 |B ′8
& (B′8 , 0′) −& (B8, 08)

)2
, (7.2)

where the right hand side may depend on &̂c:−2 to warm-start optimization. In practice this is

optimized by stochastic gradient descent with the use of a target network [Mnih et al. 2015a]. For

the iterative algorithm the arg min is replaced by a single stochastic gradient step. We estimate

the expectation over next state by a single sample from c:−1 (or from the dataset in the case when

c:−1 = V̂). See [Voloshin et al. 2019; Wang et al. 2021] for more comprehensive examinations of

this evaluation step.

7.4.3 Policy improvement operators

To instantiate the template, we also need to choose a speci�c policy improvement operator I. We

consider the following improvement operators selected from those discussed in the related work

section. Each operator has a hyperparameter controlling deviation from the behavior policy.

Behavior cloning. The simplest baseline worth including is to just return V̂ as the new policy

c . Any policy improvement operator ought to perform at least as well as this baseline.

Constrained policy updates. Algorithms like BCQ [Fujimoto et al. 2018b] and SPIBB [Laroche

et al. 2019] constrain the policy updates to be within the support of the data/behavior. In favor

of simplicity, we implement a simpli�ed version of the BCQ algorithm that removes the policy

correction network which we call Easy BCQ. We de�ne a new policy ĉ"
:

by drawing " samples

from V̂ and then executing the one with the highest value according to &̂V . Explicitly:

ĉ"
:
(0 |B) = 1[0 = arg max

0 9
{&̂c:−1 (B, 0 9 ) : 0 9 ∼ c:−1(·|B), 1 ≤ 9 ≤ "}] . (7.3)
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Regularized policy updates. Another common idea proposed in the literature is to regularize

towards the behavior policy [Wu et al. 2019; Jaques et al. 2019; Kumar et al. 2019; Ma et al. 2019].

For a general divergence � we can de�ne an algorithm that maximizes a regularized objective:

ĉU
:
= arg max

c

∑
8

E
0∼c |B
[&̂c:−1 (B8, 0)] − U� (V̂ (·|B8), c (·|B8)) (7.4)

A comprehensive review of di�erent variants of this method can be found in [Wu et al. 2019]

which does not �nd dramatic di�erences across regularization techniques. In practice, we will use

reverse KL divergence, i.e.  !(c (·|B8)‖V̂ (·|B8)). To compute the reverse KL, we draw samples from

c (·|B8) and use the density estimate V̂ to compute the divergence. Intuitively, this regularization

forces c to remain within the support of V rather than incentivizing c to cover beta.

Variants of imitation learning. Another idea, proposed by [Wang et al. 2018; Siegel et al.

2020; Wang et al. 2020b; Chen et al. 2020b] is to modify an imitation learning algorithm either by

�ltering or weighting the observed actions so as to get a policy improvement. The weighted ver-

sion that we implement uses exponentiated advantage estimates to weight the observed actions:

ĉg
:
= arg max

c

∑
8

exp(g (&̂c:−1 (B8, 08) − +̂ (B8))) logc (08 |B8) . (7.5)

7.5 Benchmark Results

Our main empirical �nding is that one step of policy improvement is su�cient to beat state of

the art results on much of the D4RL benchmark suite [Fu et al. 2020]. This is striking since prior

work focuses on iteratively estimating the Q function of the current policy iterate, but we only

use one-step derived from &̂V . Results are shown in Table 7.1. Full experimental details are in

Appendix 7.C.

As we can see in the table, all of the one-step algorithms usually outperform the best itera-
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Table 7.1: Results of one-step algorithms on the D4RL benchmark. The first column gives the best results
across several iterative algorithms considered in [Fu et al. 2020]. We run 3 seeds and each algorithm is
tuned over 6 values of their respective hyperparameter. We report the mean and standard deviation over
seeds on 100 evaluation episodes per seed. We bold the best result on each dataset and blue any result
where a one-step algorithm beat the best reported iterative result from [Fu et al. 2020]. We use m for
medium, m-e for medium-expert, m-re for medium-replay, r for random, and c for cloned.

Iterative One-step
[Fu et al. 2020] BC Easy BCQ Rev. KL Reg Exp. Weight

halfcheetah-m 46.3 41.9 ± 0.1 52.6 ± 0.2 55.2 ± 0.4 48.4 ± 0.1
walker2d-m 81.1 68.6 ± 6.3 87.2 ± 1.3 85.9 ± 1.4 81.8 ± 2.2
hopper-m 58.8 49.9 ± 3.1 74.5 ± 6.2 83.7 ± 4.5 59.6 ± 2.5

halfcheetah-m-e 64.7 61.1 ± 2.7 78.2 ± 1.6 93.8 ± 0.5 93.4 ± 1.6
walker2d-m-e 111.0 78.5 ± 22.4 112.2 ± 0.3 111.2 ± 0.2 113.0 ± 0.4

hopper-m-e 111.9 49.1 ± 4.3 85.1 ± 2.2 98.7 ± 7.5 103.3 ± 9.1

halfcheetah-m-re 47.7 34.6 ± 0.9 38.3 ± 0.3 41.9 ± 0.5 38.1 ± 1.3
walker2d-m-re 26.7 26.6 ± 3.4 69.1 ± 4.2 74.9 ± 6.6 49.5 ± 12.0
hopper-m-re 48.6 23.1 ± 2.7 78.4 ± 7.2 92.3 ± 1.1 97.5 ± 0.7

halfcheetah-r 35.4 2.2 ± 0.0 5.4 ± 0.3 8.8 ± 3.8 3.2 ± 0.1
walker2d-r 7.3 0.9 ± 0.1 3.7 ± 0.1 6.2 ± 0.7 5.6 ± 0.8
hopper-r 12.2 2.0 ± 0.1 6.6 ± 0.1 7.9 ± 0.7 7.5 ± 0.4

pen-c 56.9 46.9 ± 11.0 65.9 ± 3.6 57.4 ± 3.5 60.0 ± 4.1
hammer-c 2.1 0.4 ± 0.1 2.9 ± 0.5 0.2 ± 0.1 2.1 ± 0.7
relocate-c -0.1 -0.1 ± 0.0 0.3 ± 0.2 0.2 ± 0.1 0.2 ± 0.1
door-c 0.4 0.0 ± 0.1 0.6 ± 0.6 0.2 ± 0.7 0.2 ± 0.3

tive algorithms tested by Fu et al. [2020]. The one notable exception is the case of random data

(especially on halfcheetah), where iterative algorithms have a clear advantage. We will discuss

potential causes of this further in Section 7.7.

To give a more direct comparison that controls for any potential implementation details, we

use our implementation of reverse KL regularization to create multi-step and iterative algorithms.

We are not using algorithmic modi�cations like Q ensembles, regularized Q values, or early stop-

ping that have been used in prior work. But, our iterative algorithm recovers similar performance

to prior regularized actor-critic approaches. These results are shown in Table 7.2.

148



Table 7.2: Results of reverse KL regularization on the D4RL benchmark across one-step, multi-step, and
iterative algorithms. Again we run 3 seeds and 6 hyperparameters and report the mean and standard
deviation across seeds using 100 evaluation episodes.

One-step Multi-step Iterative

halfcheetah-m 55.2 ± 0.4 59.3 ± 0.7 51.2 ± 0.2
walker2d-m 85.9 ± 1.4 74.5 ± 2.8 74.8 ± 0.7
hopper-m 83.7 ± 4.5 54.8 ± 4.3 54.7 ± 1.9

halfcheetah-m-e 93.8 ± 0.5 94.2 ± 0.5 93.7 ± 0.6
walker2d-m-e 111.2 ± 0.2 109.8 ± 0.3 108.7 ± 0.6
hopper-m-e 98.7 ± 7.5 90.6 ± 18.8 94.5 ± 11.9

halfcheetah-r 8.8 ± 3.8 18.3 ± 6.5 21.2 ± 5.2

walker2d-r 6.2 ± 0.7 5.4 ± 0.2 5.4 ± 0.4
hopper-r 7.9 ± 0.7 21.9 ± 8.9 9.7 ± 0.4

Put together, these results immediately suggest some guidance to the practitioner: it is worth-

while to run the one-step algorithm as a baseline before trying something more elaborate. The

one-step algorithm is substantially simpler than prior work, but usually achieves better perfor-

mance.

7.6 What goes wrong for iterative algorithms?

The benchmark experiments show that one step of policy improvement often beats iterative and

multi-step algorithms. In this section we dive deeper to understand why this happens. First,

by examining the learning curves of each of the algorithms we note that iterative algorithms

require stronger regularization to avoid instability. Then we identify two causes of this instability:

distribution shift and iterative error exploitation.

Distribution shift causes evaluation error by reducing the e�ective sample size in the �xed

dataset for evaluating the current policy and has been extensively considered in prior work as

discussed below. Iterative error exploitation occurs when we repeatedly optimize policies against

our Q estimates and exploit their errors. This introduces a bias towards overestimation at each
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step (much like the training error in supervised learning is biased to be lower than the test error).

Moreover, by iteratively re-using the data and using prior Q estimates to warmstart training at

each step, the errors from one step are ampli�ed at the next. This type of error is particular to

multi-step and iterative algorithms.

7.6.1 Learning curves and hyperparameter sensitivity

To begin to understand why iterative and multi-step algorithms can fail it is instructive to look

at the learning curves. As shown in Figure 7.2, we often observe that the iterative algorithm will

begin to learn and then crash. Regularization can help to prevent this crash since strong enough

regularization towards the behavior policy ensures that the evaluation is nearly on-policy.

Figure 7.2: Learning curves and final performance on halfcheetah-medium across di�erent algorithms
and regularization hyperparameters. Error bars show min and max over 3 seeds. Similar figures for other
datasets from D4RL can be found in Appendix 7.D.

In contrast, the one-step algorithm is more robust to the regularization hyperparameter. The

rightmost panel of the �gure shows this clearly. While iterative and multi-step algorithms can

have their performance degrade very rapidly with the wrong setting of the hyperparameter, the

one-step approach is more stable. Moreover, we usually �nd that the optimal setting of the reg-

ularization hyperparameter is lower for the one-step algorithm than the iterative or multi-step

approaches.
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7.6.2 Distribution shift

Any algorithm that relies on o�-policy evaluation will struggle with distribution shift in the eval-

uation step. Trying to evaluate a policy that is substantially di�erent from the behavior reduces

the e�ective sample size and increases the variance of the estimates. Explicitly, by distribution

shift we mean the shift between the behavior distribution (the distribution over state-action pairs

in the dataset) and the evaluation distribution (the distribution that would be induced by the pol-

icy c we want to evaluate).

Prior work. There is a substantial body of prior theoretical work that suggests that o�-policy

evaluation can be di�cult and this di�culty scales with some measure of distribution shift. Wang

et al. [2020a]; Amortila et al. [2020]; Zanette [2021] give exponential (in horizon) lower bounds on

sample complexity in the linear setting even with good feature representations that can represent

the desired Q function and assuming good data coverage. Upper bounds generally require very

strong assumptions on both the representation and limits on the distribution shift [Wang et al.

2021; Duan et al. 2020; Chen and Jiang 2019]. Moreover, the assumed bounds on distribution

shift can be exponential in horizon in the worst case. On the empirical side, Wang et al. [2021]

demonstrates issues with distribution shift when learning from pre-trained features and provides

a nice discussion of why distribution shift causes error ampli�cation. Fujimoto et al. [2018b] raises

a similar issue under the name “extrapolation error”. Regularization and constraints are meant

to reduce issues stemming from distribution shift, but also reduce the potential for improvement

over the behavior.

Empirical evidence. Both the multi-step and iterative algorithms in our experiments rely on

o�-policy evaluation as a key subroutine. We examine how easy it is to evaluate the policies

encountered along the learning trajectory. To control for issues of iterative error exploitation

(discussed in the next subsection), we train Q estimators from scratch on a heldout evaluation
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dataset sampled from the behavior policy. We then evaluate these trained Q function on rollouts

from 1000 datapoints sampled from the replay bu�er. Results are shown in Figure 7.3.

The results show a correlation betweed KL and MSE. Moreover, we see that the MSE generally

increases over training. One way to mitigate this, as seen in the �gure, is to use a large value of

U . We just cannot take a very large step before running into problems with distribution shift.

But, when we take such a small step, the information from the on-policy &̂V is about as useful

as the newly estimated &̂c . This is seen, for example, in Figure 7.2 where we get very similar

performance across algorithms at high levels of regularization.

Figure 7.3: Results of running the iterative algorithm on halfcheetah-medium. Each checkpointed pol-
icy is evaluated by a Q function trained from scratch on heldout data. MSE refers to EB,0∼V [&̂c8 (B, 0) −
&c8 (B, 0)] and KL refers to EB∼V [ !(c (·|B)‖V (·|B)]. Le�: 90 policies taken from various points in train-
ing with various hyperaparmeters and random seeds. Center: MSE learning curves. Right: KL learning
curves. Error bars show min and max over 3 random seeds.

7.6.3 Iterative error exploitation

The previous subsection identi�es how any algorithm that uses o�-policy evaluation is funda-

mentally limited by distribution shift, even if we were given fresh data and trained Q functions

from scratch at every iteration. But, in practice, iterative algorithms repeatedly iterate between

optimizing policies against estimated Q functions and re-estimating the Q functions using the

same data and using the Q function from the previous step to warm-start the re-estimation. This

induces dependence between steps that causes a problem that we call iterative error exploitation.
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Intuition about the problem. In short, iterative error exploitation happens because c8 tends

to choose overestimated actions in the policy improvement step, and then this overestimation

propagates via dynamic programming in the policy evaluation step. To illustrate this issue more

formally, consider the following: at each B, 0 we su�er some Bellman error Yc
V
(B, 0) based on our

�xed dataset collected by V . Formally,

&̂c (B, 0) = A (B, 0) + W E
B ′ |B,0
0′∼c |B ′

[&̂c (B′, 0′)] + Yc
V
(B, 0). (7.6)

Intuitively, Yc
V

will be larger at state-actions with less coverage in the dataset collected by V . Note

that Yc
V

can absorb all noise due to our �nite dataset as well as function approximation error.

All that is needed to cause iterative error exploitation is that the nc
V

are highly correlated across

di�erent c , but for simplicity, we will assume that Yc
V

is the same for all policies c estimated from

our �xed o�ine dataset and instead write YV . Now that the errors do not depend on the policy

we can treat the errors as auxiliary rewards that obscure the true rewards and see that

&̂c (B, 0) = &c (B, 0) + &̃c
V
(B, 0), &̃c

V
(B, 0) := E

c |B0,00=B,0

[ ∞∑
C=0

W CYV (BC , 0C )
]
. (7.7)

This assumption is somewhat reasonable since we expect the error to primarily depend on the

data. And, when the prior Q function is used to warm-start the current one (as is generally the

case in practice), the approximation errors are automatically passed between steps.

Now we can explain the problem. Recall that under our assumption the YV are �xed once

we have a dataset and likely to have larger magnitude the further we go from the support of

the dataset. So, with each step c8 is able to better maximize YV , thus moving further from V and

increasing the magnitude of &̃c8
V

relative to &c8 . Even though &c8 may provide better signal than

&V , it can easily be drowned out by &̃c8
V

. In contrast, &̃V

V
has small magnitude, so the one-step

algorithm is robust to errors21.
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An example. Now we consider a simple gridworld example to illustrate iterative error exploita-

tion. This example �ts exactly into the setup outlined above since all errors are due to reward

estimation so the YV is indeed constant over all c . The gridworld we consider has one determin-

istic good state with reward 1 and many stochastic bad states that have rewards distributed as

N(−0.5, 1). We collect a dataset of 100 trajectories, each of length 100. One run of the multi-step

o�ine regularized policy iteration algorithm is illustrated in Figure 7.4.

Figure 7.4: An illustration of multi-step o�line regularized policy iteration. The le�most panel in each
row shows the true reward (top) or error YV (bo�om). Then each subsequent panel plots c8 (with arrow
size proportional to c8 (0 |B)) over either&c8 (top) or &̃c

V
(bo�om), averaged over actions at each state. The

one-step policy (c1) has the highest value. The behavior policy here is a mixture of optimal c∗ and uniform
D with coe�icient 0.2 so that V = 0.2 ·c∗+0.8 ·D. We set U = 0.1 as the regularization parameter for reverse
KL regularization.

In the example, like in the D4RL benchmark, we see that one step outperforms multiple steps

of improvement. Intuitively, when there are so many noisy states, it is likely that a few of them

will be overestimated. Since the data is re-used for each step, these overestimations persist and

propagate across the state space due to iterative error exploitation. This property of having many

bad, but poorly estimated states likely also exists in the high-dimensional control problems en-

countered in the benchmark where there are many ways for the robots to fall down that are not

observed in the data for non-random behavior. Moreover, both settings have larger errors in ar-
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Figure 7.5: Histograms of overestimation error (&̂c8 (B, 0) − &c8 (B, 0)) on halfcheetah-medium with the
iterative algorithm. Le�: errors from the training Q function. Right: errors from an independently trained
Q function.

eas where we have less data. So even though the errors in the gridworld are caused by noise in

the rewards, while errors in D4RL are caused by function approximation, we think this is a useful

mental model of the problem.

Empirical evidence. In practice we cannot easily visualize the progression of errors. However,

the dependence between steps still arises as overestimation of the Q values. We can track the

overestimation of the Q values over training as a way to measure how much bias is being induced

by optimizing against our dependent Q estimators. As a control we can also train Q estimators

from scratch on independently sampled evaluation data. These independently trained Q functions

do not have the same overestimation bias even though the squared error does tend to increase

as the policy moves further from the behavior (as seen in Figure 7.3). Explicitly, we track 1000

state, action pairs from the replay bu�er over training. For each checkpointed policy we perform

3 rollouts at each state to get an estimate of the true Q value and compare this to the estimated

Q value. Results are shown in Figure 7.5.

7.7 When are multiple steps useful?

So far we have focused on why the one-step algorithm often works better than the multi-step

and iterative algorithms. However, we do not want to give the impression that one-step is always

better. Indeed, our own experiments in Section 7.5 show a clear advantage for the multi-step and
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iterative approaches when we have randomly collected data. While we cannot o�er a precise

delineation of when one-step will outperform multi-step, in this section we o�er some intuition

as to when we can expect to see bene�ts from multiple steps of policy improvement.

As seen in Section 7.6, multi-step and iterative algorithms have problems when they propagate

estimation errors. This is especially problematic in noisy and/or high dimensional environments.

While the multi-step algorithms propagate this noise more widely than the one-step algorithm,

they also propagate the signal. So, when we have su�cient coverage to reduce the magnitude of

the noise, this increased propagation of signal can be bene�cial. The D4RL experiments suggest

that we are usually on the side of the tradeo� where the errors are large enough to make one-step

preferable.

Figure 7.6: Performance of all three algorithms with reverse KL regularization across mixtures between
halfcheetah-random and halfcheetah-medium. Error bars indicate min and max over 3 seeds.

In Appendix 7.A we illustrate a simple gridworld example where a slight modi�cation of

the behavior policy from Figure 7.4 makes multi-step dramatically outperform one-step. This

modi�ed behavior policy (1) has better coverage of the noisy states (which reduces error, helping

multi-step), and (2) does a worse job propagating the reward from the good state (hurting one-

step).

We can also test empirically how the behavior policy e�ects the tradeo� between error and

signal propagation. To do this we construct a simple experiment where we mix data from the

random behavior policy with data from the medium behavior policy. Explicitly we construct a

dataset � out of the datasets �A for random and �< for medium such that each trajectory in �
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comes from the medium dataset with probability ?< . So for ?< = 0 we have the random dataset

and ?< = 1 we have the medium dataset, and in between we have various mixtures. Results

are shown in Figure 7.6. It takes surprisingly little data from the medium policy for one-step to

outperform the iterative algorithm.

7.8 Discussion, limitations, and future work

This paper presents the surprising e�ectiveness of a simple one-step baseline for o�ine RL. We

examine the failure modes of iterative algorithms and the conditions where we might expect

them to outperform the simple one-step baseline. This provides guidance to a practitioner that

the simple one-step baseline is a good place to start when approaching an o�ine RL problem.

But, we leave many questions unanswered. One main limitation is that we lack a clear the-

oretical characterization of which environments and behaviors can guarantee that one-step out-

performs multi-step or visa versa. Such results will likely require strong assumptions, but could

provide useful insight. We don’t expect this to be easy as it requires understanding policy itera-

tion which has been notoriously di�cult to analyze, often converging much faster than the theory

would suggest [Sutton and Barto 2018; Agarwal et al. 2019]. Another limitation is that while only

using one step is perhaps the simplest way to avoid the problems of o�-policy evaluation, there

are possibly other more elaborate algorithmic solutions that we did not consider here. However,

our strong empirical results suggest that the one-step algorithm is at least a strong baseline.
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Appendix 7.A Gridworld example where multi-step

outperforms one-step

As explained in the main text, this section presents an example that is only a slight modi�cation

of the one in Figure 7.4, but where a multi-step approach is clearly preferred over just one step.

The data-generating and learning processes are exactly the same (100 trajectories of length 100,

discount 0.9, U = 0.1 for reverse KL regularization). The only di�erence is that rather than

using a behavior that is a mixture of optimal and uniform, we use a behavior that is a mixture

of maximally suboptimal and uniform. If we call the suboptimal policy c− (which always goes

down and left in our gridworld), then the behavior for the modi�ed example is V = 0.2 ·c−+0.8 ·D,

where D is uniform. Results are shown in Figure 7.7.

Figure 7.7: A gridworld example with modified behavior where multi-step is much be�er than one-step.

By being more likely to go to the noisy states, this behavior policy allows us to get lower

variance estimates of the rewards. Essentially, the coverage of the behavior policy in this exam-

ple reduces the magnitude of the evaluation errors. This allows for more aggressive planning

using multi-step methods. Moreover, since the behavior is less likely to go to the good state, the

behavior Q function does not propagate the signal from the rewarding state as far, harming the
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one-step method.

Appendix 7.B Connection to policy improvement

guarantees

The regularized or constrained one-step algorithm performs an update that directly inherits guar-

antees from the literature on conservative policy improvement [Kakade and Langford 2002; Schul-

man et al. 2015; Achiam et al. 2017]. These original papers consider an online setting where more

data is collected at each step, but the guarantee at each step applies to our one-step o�ine algo-

rithm.

The key idea of this line of work begins with the performance di�erence lemma of [Kakade and

Langford 2002], and then lower bounds the amount of improvement over the behavior policy. De-

�ne the discounted state visitation distribution for a policy c by 3c (B) := (1−W)∑∞C=0 W
CPd,%,c (BC =

B). We will also use the shorthand & (B, c) to denote E0∼c |B [& (B, 0)]. Then we have the perfor-

mance di�erence lemma as follows.

Lemma 7.1 (Performance di�erence, [Kakade and Langford 2002]). For any two policies c and V ,

� (c) − � (V) = 1
1 − W EB∼3c [&

V (B, c) −&V (B, V)] . (7.8)

Then, Corollary 1 from [Achiam et al. 2017] (reproduced below) gives a guarantee for the

one-step algorithm. The key idea is that when c is su�ciently close to V , we can use &V as an

approximation to &c .

Lemma 7.2 (Conservative Policy Improvement, [Achiam et al. 2017]). For any two policies c and
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V , let ‖�Vc ‖∞ = supB |&V (B, c) −&V (B, V) |. Then,

� (c) − � (V) ≥ 1
1 − W EB∼3V

[(
&V (B, c) −&V (B, V)

)
− 2W ‖�Vc ‖∞

1 − W �)+ (c (·|B)‖V (·|B))
]

(7.9)

where �)+ denotes the total variation distance.

Replacing &V with &̂V and the TV distance by the KL, we get precisely the objective that we

optimize in the one-step algorithm. This shows that the one-step algorithm indeed optimizes

a lower bound on the performance di�erence. Of course, in practice we replace the potentially

large multiplier on the divergence term by a hyperparameter, but this theory at least motivates

the soundness of the approach.

We are not familiar with similar guarantees for the iterative or multi-step approaches that

rely on o�-policy evaluation.

Appendix 7.C Experimental setup

7.C.1 Benchmark experiments (Tables 7.1 and 7.2, Figure 7.2)

Data. We use the datasets from the D4RL benchmark [Fu et al. 2020]. We use the latest versions,

which are v2 for the mujoco datasets and v1 for the adroit datasets.

Table 7.3: Hyperparameter sweeps for each algorithm.

Algorithm Hyperparameter set

Reverse KL (U) {0.03, 0.1, 0.3, 1.0, 3.0, 10.0}
Easy BCQ (") {2, 5, 10, 20, 50, 100}
Exponentially weighted (g) {0.1, 0.3, 1.0, 3.0, 10.0, 30.0}

Hyperparameter tuning. We follow the practice of [Fu et al. 2020] and tune a small set of

hyperparameters by interacting with the simulator to estimate the value of the policies learned
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under each hyperparameter setting. The hyperparameter sets for each algorithm can be seen in

Table 7.3.

This may initially seem like “cheating”, but can be a reasonable setup if we are considering

applications like robotics where we can feasibly test a small number of trained policies on the real

system. Also, since prior work has used this setup, it makes it easiest to compare our results if we

use it too. While beyond the scope of this work, we do think that better o�ine model selection

procedures will be crucial to make o�ine RL more broadly applicable. A good primer on this

topic can be found in [Paine et al. 2020].

Models. All of our Q functions and policies are simple MLPs with ReLU activations and 2 hid-

den layers of width 1024. Our policies output a truncated normal distribution with diagonal

covariance where we can get reparameterized samples by sampling from a uniform distribution

and computing the di�erentiable inverse CDF [Burkhardt 2014]. We found this to be more stable

than the tanh of normal used by e.g. [Fu et al. 2020], but to achieve similar performance when

both are stable. We use these same models across all experiments.

One-step training procedure. For all of our one-step algorithms, we train our V̂ behavior

estimate by imitation learning for 500k gradient steps using Adam [Kingma and Ba 2014] with

learning rate 1e-4 and batch size 512. We train our &̂V estimator by �tted Q evaluation with a

target network for 2 million gradient steps using Adam with learning rate 1e-4 and batch size

512. The target is updated softly at every step with parameter g = 0.005. All policies are trained

for 100k steps again with Adam using learning rate 1e-4 and batch size 512.

Easy BCQ does not require training a policy network and just uses V̂ and &̂V to de�ne it’s

policy. For the exponentially weighted algorithm, we clip the weights at 100 to prevent numerical

instability. To estimate reverse KL at some state we use 10 samples from the current policy and

the density de�ned by our estimated V̂ .

Each random seed retrains all three models (behavior, Q, policy) from di�erent initializations.
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We use three random seeds.

Multi-step training procedure. For multi-step algorithms we use all the same hyperparam-

eters as one-step. We initialize our policy and Q function from the same pre-trained V̂ and &̂V

as we use for the one-step algorithm trained for 500k and 2 million steps respectively. Then we

consider 5 policy steps. To ensure that we use the same number of gradient updates on the policy,

each step consists of 20k gradient steps on the policy followed by 200k gradient steps on the Q

function. Thus, we take the same 100k gradient steps on the policy network. Now the Q updates

are o�-policy so the next action 0′ is sampled from the current policy c8 rather than from the

dataset.

Iterative training procedure. For iterative algorithms we again use all the same hyperpa-

rameters and initialize from the same V̂ and &̂V . We again take the same 100k gradient steps on

the policy network. For each step on the policy network we take 2 o�-policy gradient steps on

the Q network.

Evaluation procedure. To evaluate each policy we run 100 trajectories in the environment

and compute the mean. We then report the mean and standard deviation over three training

seeds.

7.C.2 MSE experiment (Figure 3)

Data. To get an independently sampled dataset of the same size as the training set, we use

the behavior cloned policy V̂ to sample 1000 trajectories. The checkpointed policies are taken at

intervals of 5000 gradient steps from each of the three training seeds.

Training procedure. The &̂c8 training procedure is the same as before so we use Adam with

step size 1e-4 and batch size 512 and a target network with soft updates with parameter 0.005.
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We train for 1 million steps.

Evaluation procedure. To evaluate MSE, we sample 1000 state, action pairs from the original

training set and from each state, action pair we run 3 rollouts. We take the mean over the rollouts

and then compute squared error at each state, action pair and �nally get MSE by taking the mean

over state, action pairs. The reported reverse KL is evaluated by samples during training. At each

state in a batch we take 10 samples to estimate the KL at that state and then take the mean over

the batch.

7.C.3 Gridworld experiment (Figure 4)

Environment. The environment is a 15 x 15 gridworld with deterministic transitions. The

rewards are deterministically 1 for all actions taken from the state in the top right corner and

stochastic with distribution N(−0.5, 1) for all actions taken from states on the left or bottom

walls. The initial state is uniformly random. The discount is 0.9.

Data. We collect data from a behavior policy that is a mixture of the uniform policy (with

probability 0.8) and an optimal policy (with probability 0.2). We collect 100 trajectories of length

100.

Training procedure. We give the agent access to the deterministic transitions. The only thing

for the agent to do is estimate the rewards from the data and then learn in the empirical MDP.

We perform tabular Q evaluation by dynamic programming. We initialize with the empirical

rewards and do 100 steps of dynamic programming with discount 0.9. Regularized policy updates

are solved for exactly by setting c8 (0 |B) ∝ V (0 |B) exp( 1
U
&̂c8−1 (B, 0)).
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7.C.4 Overestimation experiment (Figure 5)

This experiment uses the same setup as the MSE experiment. The main di�erence is we also

consider the Q functions learned during training and demonstrate the overestimation relative to

the Q functions trained on the evaluation dataset as in the MSE experiment.

7.C.5 Mixed data experiment (Figure 6)

We construct datasets with ?< = {0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0} by mixing the random and medium

datasets from D4RL and then run the same training procedure as we did for the benchmark ex-

periments. Each dataset has the same size, but a di�erent proportion of trajectories from the

medium policy.

Appendix 7.D Learning curves

In this section we reproduce the learning curves and hyperparameter plots across the one-step,

multi-step, and iterative algorithms with reverse KL regularization, as in Figure 7.2.
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Figure 7.8: Learning curves on the medium datasets.
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Figure 7.9: Learning curves on the medium-expert datasets.

166



Figure 7.10: Learning curves on the random datasets.
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Notes

21. We should note that iterative error exploitation is similar to the overestimation addressed by double Q learning

[Van Hasselt et al. 2016; Fujimoto et al. 2018c], but distinct. Since we are in the o�ine setting, the errors due to

our �nite dataset can be iteratively exploited more and more, while in the online setting considered by double Q

learning, fresh data prevents this issue. We are also considering an algorithm based on policy iteration rather than

value iteration.
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8 | Conclusion

For reinforcement learning to be practical to use on physical systems such as robots, there is no

property more important than sample e�ciency. The work contained in this thesis represents

a small step towards RL algorithms for robotic control that require less data collection. Part I

proposed a new technique for collecting diverse data more rapidly while simultaneously approx-

imating the optimal policy. Part II described the role of representation and inductive bias in

machine learning and proposed a representation learning objective speci�cally designed to im-

prove sample e�ciency in reinforcement learning. Part III studied the problem of �nding as good

a policy as possible given a �xed dataset, examining the limits of reinforcement learning without

data collection. These represent three di�erent thrusts towards sample-e�cient RL: collecting

more informative data, using representations to generalize better, and learning policies without

collecting data at all.

From here there are many exciting future directions. Using the decoupled policy learning

technique from Chapter 3, alternative exploration bonuses could capture prior knowledge about

a task or environment without biasing the �nal policy. This could lead to signi�cantly more

directed exploration, overcoming the need to visit every possible transition in an MDP.

Representation learning for reinforcement learning has seen a �urry of progress after the

publication of Chapter 5. Contrastive methods have seen signi�cant success using explicit rep-

resentation learning or implicitly via data augmentation [Srinivas et al. 2020; Laskin et al. 2020;

Kostrikov et al. 2021b]. Representation learning based on causal principles and invariances have
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also resulted in intriguing possibilities [Zhang et al. 2020, 2021]. A major limitation of the repre-

sentations learned in Chapter 5 is that they are trained on data coming from a uniformly random

behavior policy; by using directed exploration, better representations can be learned, as proposed

in [Yarats et al. 2021].

The batched single-step policy improvement operator discussed in Chapter 7 is conservative,

and thus on its own not ideally suited for settings with data collection. However, by coupling it

with an e�cient directed exploration technique such as the one proposed in Chapter 3, such a

conservative policy improvement could lead to better policy performance on limited data. Future

work may also tackle the problem of accumulating error with iterative policy optimization and

value estimation that we observed in that chapter.

While there is a long way to go before it is practical to train RL agents from scratch on physical

robots, there are many promising avenues before us. The next few years will see reinforcement

learning advance from an interesting research problem to a commonplace tool, and new tech-

niques for sample-e�cient reinforcement learning will play a decisive role.
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