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A B S T R A C T

Using a third-party service today requires trusting that it is executing as promised. Meanwhile, the

correct execution of services is regularly impeded by failures, bugs, misconfigurations, operational

mistakes, and insider attacks. Is it possible to verify, instead of trust, that a third-party service

executes correctly?

This dissertation studies this question for two services that execute on remote servers: trans-

parency dictionaries, a foundational infrastructure for end-to-end encryption and other applications,

and event-driven web applications. For each of these two services, we leverage their workloads to

introduce a practical system that allows a verifier to get a strong security guarantee that the service

executes correctly.

In the case of a transparency dictionary, this guarantee is in the form of a cryptographic proof

provided by the service. Producing cryptographic proofs typically requires high resource costs.

This dissertation shows that tailoring the cryptographic tools used by the transparency dictionary

for its use case mitigates these costs and results in a system, Verdict, that scales to dictionaries with

millions of entries while imposing modest overheads on the service and its clients.

In the case of outsourced event-driven web applications, the verifier gets the required guarantee

by replaying the requests on a trusted machine using Karousos, a novel record-replay system in

which the service has the role of the untrusted recorder. Karousos takes advantage of the particular

characteristics of event-driven web applications to enable the replayer (the verifier) to use less

computational resources than the recorder (the service), while imposing tolerable overheads on the
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recorder and keeping communication small.
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1 | I N T R O D U C T I O N

How can we gain assurance that an untrusted service operates as promised?

This question is becoming increasingly relevant as services provided by third parties are be-

coming an integral part of our personal and professional lives. Examples of such services include

authentication, cloud computing, messaging, and software distribution. The convenience of these

services makes them appealing to their users. However, users may not always want to trust that

a service operates as promised: the service might not execute correctly due to internal problems

such as insider attacks [91, 130], bugs [80], misconfigurations [4], unexpected failures [20], and

operational mistakes [11]. Moreover, the service’s incentives may not always align with those of

its clients.

The goal of this dissertation is to develop tools that allow users to detect when a service is not

executing as promised. The problem is execution integrity: giving a verifier assurance that a service

is executing according to a given program. This problem is distinct from but complementary to the

problem of program verification, which is about ensuring that a program meets a given specification.

There is a lot of prior work on this problem (§2.1). However, many previous solutions make

strong assumptions or impose high resource costs on the service or the service’s auditors. In contrast,

we restrict our attention to systems that solve the problem while having the following properties:

1. Strong Model: The security of the system should not rely on any assumptions about the ser-

vice’s failure modes nor require any trusted components in the service’s software and hardware

stack. However, we do assume that the service is computationally bounded and cannot break
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standard cryptographic assumptions.

2. Provable Security: The system’s security properties should be formally defined and proved.

Although security proofs do not provide the certainty of traditional mathematical proofs [94],

we consider them important for two reasons: First, the process of writing rigorous proofs

leads the developer to better understand their system’s properties and, more importantly, it

reveals security problems. Second, a formal proof of a claim is essential to its validation: it is

considerably more difficult to confirm or refute a statement without knowing the arguments

that corroborate it.

3. Practicality: Systems should be able to actually run: the audit procedure should impose rea-

sonable overheads on the service, the amount of communication between the service and the

auditor should be small, and the audit procedure should be less expensive than the execution

at the service.

There are two classes of systems in the literature (§2.1) that provide the above security properties

while targeting general services. However, both achieve practicality only under certain conditions.

The first class comprises systems that employ probabilistic proofs [28, 29, 43, 72, 77, 78, 89,

117]. These are protocols that allow a prover to provide a proof to a verifier that they executed a com-

putation correctly. State-of-the-art probabilistic proof systems provide strong security guarantees

and admit proof sizes and verification times that are sub-linear in the size of the computation. How-

ever, proof generation generally imposes intolerable overheads on the service: it requires explicitly

representing the computation as a static circuit by translating every operation that the computation

does to a number of boolean or arithmetic gates, causing time to turn into space (with bad con-

stants); then, the time to generate a proof scales with the size of this circuit. As a result of high

overheads, the only computations for which this machinery is practical are those that have small

circuit representations.

The second class of systems that can meet our desiderata is inspired by Orochi [146]. In these

systems, verifying that the service executes some workload correctly involves re-executing the
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workload on a trusted executor. This executor is assumed to execute each operation of the program

according to its specification. As opposed to systems that employ probabilistic proofs, these systems

relieve the service and the verifier from the burden of encoding the execution at the service as a

flow through a general purpose circuit. Thus, they are able to satisfy the desired security properties

presented above and impose small overheads on the service, even when the service is executing

legacy programs. However, execution at the verifier requires less computational resources than the

service only if there is redundancy in the execution at the service. In this case, the verifier is able to

save work by deduplicating the execution of identical instructions during re-execution.

In this dissertation, we target two important services. The first service is a transparency dictio-

nary [51, 53, 85, 115, 150]: an untrusted service that maintains a mapping from labels1 to values

that users can query and update. Securing transparency dictionaries is important because they have

been proposed as a foundation for several security-critical applications such as PKIs, end-to-end

encryption (for example, for email or messaging), and software updates. The second service that we

target is an outsourced event-driven web application. This problem is motivated by scenarios where

people run their applications on remote rented servers such as cloud providers. In particular, we are

interested in event-driven web applications due to the popularity that event-driven frameworks such

as Node.js [14] have gained in the area of web development in recent years.

These two services have different program and workload characteristics, which lead us to de-

velop two very different systems: Verdict, a system that employs probabilistic proofs to enable

efficient auditing of transparency dictionaries, and Karousos, an Orochi-inspired system that audits

outsourced event-driven web applications.

Verdict. In a nutshell, Verdict is a transparency dictionary that creates proofs attesting that it

executes all updates and queries correctly. A transparency dictionary executes updates correctly

with respect to an application-dependent function F when it only updates each value associated

1A transparency dictionary is similar to a key-value store, but we avoid using key, since the term has many other
meanings in the cryptography context.
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with a label by applying this function. Moreover, the dictionary executes queries correctly when it

replies to each query with the value associated with the requested label in the dictionary’s state.

Verdict’s update proofs are publicly verifiable, meaning that each client can check these proofs

to get assurance that the dictionary updates its whole state by only applying the function F . Verdict

produces these proofs using probabilistic proofs, yet is able to impose modest proving overheads

on the service.

Verdict owes its efficiency to a novel cryptographic accumulator [35] – a commitment scheme

with support for proving membership of an element against a commitment. The dictionary uses

this accumulator to produce a commitment to its state. This commitment is published on a public

timeline (for example, a public blockchain [151]). Our accumulator yields efficient (O(logn) where

n is the size of the dictionary) proofs of membership and non-membership, which the dictionary

uses to demonstrate correct execution of queries without employing a probabilistic proof system.

Meanwhile, the accumulator is designed so that correct execution of updates can be efficiently

represented as a circuit (≈ 25k gates per update for dictionaries with one billion labels).

Verdict also owes its efficiency to Phalanx, a novel probabilistic proofs system that is optimized

for Verdict’s workloads. Similar to prior work [5, 51, 115] in Verdict, the dictionary does not

execute updates one by one but, instead, works in epochs: during each epoch, the service buffers

all updates that the users request and, at the end of the epoch, it applies them to its state and

produces a proof using Phalanx that it applied all updates correctly. Phalanx is a Succinct Non-

interactive Argument of Knowledge (SNARK) [40, 73, 74], a special type of probabilistic proof

system that yields proofs that are static strings (non-interactive) and have size sub-linear in the

size of the computation (succinct). Phalanx leverages the epoch-based nature of Verdict to admit

amortized constant-sized proofs and verification times. Furthermore, Phalanx leverages the data-

parallel nature of the statement proven in each epoch to reduce proof-generation costs by over an

order of magnitude compared to prior systems [135].

We implement Verdict and show its practicality by evaluating it against state-of-the-art sys-
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tems with similar security properties. Our evaluation shows that Verdict scales to dictionaries with

millions of labels while imposing modest overheads on the service and clients.

Karousos. Karousos is a system that aims to audit event-driven web applications running on remote

servers. It allows a verifier that has the trace of requests to and responses from the server (see prior

work [26, 146] for ways to obtain such a trace) to verify that the remote server operates correctly,

meaning that executing the event-driven application on the inputs (the requests in the trace) produces

the alleged outputs (the responses in the trace). The verifier’s audit relies on untrusted advice that

the server sends to the verifier to help the verifier re-execute correctly and efficiently, meaning

using less computational resources than the server. Efficiency at the verifier is achieved by using

SIMD-on-demand [146]: the verifier re-executes the requests in an accelerated manner by batching

the execution of suitable requests and deduplicating the execution of identical instructions across

each batch.

An essential question that this dissertation studies is at what granularity the verifier should

batch requests. We observe that there is there is a tradeoff between re-execution throughput and

advice size, and each batching granularity corresponds to a point in the tradeoff curve. Karousos

identifies a point that exposes many deduplication opportunities while keeping the advice small: the

verifier batches the execution of requests that have the same tree of events regardless of the order

in which event handlers are executed at the server. To identify this point we rely on an essential

observation: if during execution two operations are guaranteed to be re-executed in the same order,

then these operations can in principle be re-executed at the verifier correctly. Karousos leverages this

observation to introduce a novel record-replay algorithm in which the server dynamically decides

whether to log operations depending on whether the replayer could re-execute them out-of-order.

Additionally, Karousos introduces mechanisms to rule out misbehavior by an untrusted server.

An audit procedure in which the verifier merely re-executes the requests based on the advice

and checks the produced responses against the given trace could be exploited by a misbehaving
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server, leading to the verifier accepting physically impossible executions. Karousos handles server

misbehavior with several techniques for inferring edges (representing ordering) in a graph of alleged

events, and then checking whether this graph is acyclic.

Other than supporting event-driven applications, Karousos makes some first steps in handling

weakly consistent external shared state. Prior work in this area [26, 27, 146], assumes that external

shared state such as databases and KV stores are strictly serializable [123]. However, in practice

many databases default to weak isolation levels and some don’t even offer strict serializability [30].

Specifically, Karousos is able to handle transactional KV stores whose isolation level is serializ-

ability, read committed, or read uncommitted. The main challenge that Karousos has to overcome

is that existing algorithms for testing isolation assume that the verifier knows the actual history of

execution at the KV store. This assumption does not hold in the context of Karousos: the verifier

only has access to an alleged history that the server sends as part of the advice. Karousos responds

to this challenge by running Adya’s checks [16] against the alleged database history, and then

checking the consistency of the contingent history with the rest of the server’s alleged execution.

To evaluate our techniques we implement Karousos as a system that audits Node.js applications

that use MySQL as a transactional KV store. We find that Karousos achieves significant speedups

at the verifier while imposing tolerable overheads to the service.

Roadmap. The rest of this dissertation is organized as follows: Chapter 2 summarizes related

work on execution integrity (§2.1), prior work related to Verdict (§2.2), and prior work related to

Karousos (§2.3). Chapter 3 presents the problem of verifying transparency dictionaries and how

Verdict solves it (§3.1), details Verdict’s cryptographic accumulator (§3.2) and SNARK (§3.3),

and discusses Verdict’s implementation (§3.4) and evaluation (§3.5). Chapter 4 provides necessary

background on verifying outsourced web applications (§4.1) and on event-driven applications (§4.2),

and presents Karousos’s design (§4.3), implementation (§4.4), and evaluation (§4.5). Chapter 5

concludes by discussing the limitations of our work and future directions.

6



2 | R E L AT E D W O R K

We discuss related work on execution integrity in Section 2.1 and evaluate prior systems with respect

with our desiderata (Ch. 1). We discuss previous systems that realize transparency dictionaries in

Section 2.2. Last, we give an overview of systems related to Karousos including record-replay

systems in Section 2.3.

2 . 1 E X E C U T I O N I N T E G R I T Y

Execution integrity – giving a principal assurance that a given program executes correctly – is a

broad topic for which many different solutions have been proposed.

Replication. One possible solution is Byzantine replication [49, 111, 162], a technique with many

applications in distributed systems, including consensus and fault tolerance. When used for exe-

cution integrity, the principal replicates the execution of the program across many machines and

checks that a super-majority of these machines produce the same outputs. However, this requires

trusting that a super-majority of replicas executes fault-free. With a similar assumption that some

nodes must execute fault-free, PeerReview [82] and FullReview [63] provide accountability to gen-

eral distributed systems, by maintaining a log of each node’s inputs and outputs and requiring nodes

to audit each other’s logs to detect misbehaviors.
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Attestation and Enclaves. In attestation, including TPM-based systems [52, 83, 113, 114, 125,

131, 134, 144] and SGX [88]-based systems [24, 32, 87, 132, 141, 143], the remote substrate proves

that it is running the expected software stack. However, this does not guarantee that the remote

program is actually executing faithfully: vulnerabilities in the stack may be exploited to undermine

correct execution. Using an enclave, the principal can place a program’s code and data in a an

encrypted memory region that the CPU hardware isolates strongly from the rest of the machine’s

hardware and software. However, enclaves that provide strong integrity guarantees have limited-

sized memory regions [58] and, thus, cannot accommodate applications that have large memory

needs.

Probabilistic proofs. Execution integrity has received attention from complexity theorists and

cryptographers in the context of probabilistic proofs – which include Interactive Proofs [28, 77, 78]

and Arguments [43, 72, 89, 117]. Probabilistic proof systems were considered wildly impractical

for decades due to their astronomical proof generation and verification costs. However, the past

decade has seen orders of magnitude improvements to their costs [158] which have resulted in

mushrooming implementations (see Thaler’s manuscript for a survey [149, Ch.19]). Despite these

improvements, as we discussed previously (Ch. 1) state-of-the-art probabilistic proof systems still

incur high proving costs.

Re-execution-based audit. Another class of systems [25–27, 64, 81, 146, 155] verify that a remote

program executes correctly given a trace of the program’s inputs/outputs by re-executing the pro-

gram on a trusted executor. Then, they check the trusted executor’s outputs against the given trace.

Among these systems, Orochi [146] and the systems that build atop it [26, 27], are the only ones

in which re-execution is accelerated and, thus, admit audit procedures that require less computa-

tional resources than execution at the remote executor. We review Orochi in Section 4.1. EAR [27]

expands Orochi’s applicability to C++ programs and improves the performance of its verifier by
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letting a developer place portions of an application in an enclave, to reduce the re-execution burden,

under the restriction that the enclave and executing server are co-located. At a lower system level, in

DIVA [25], a trusted checker performs an accelerated re-execution of an untrusted processor core,

but it is geared to uniprocessor systems.

In AVM [81], an untrusted hypervisor records an execution while a trusted replayer uses some-

thing akin to Karousos’s trace, together with VM replay [45, 68], to validate the execution. In

Ripley [155], a web server re-executes client-side code. Dickerson et al. [64] propose a system in

which miners in a blockchain network execute transactions in parallel, and validators verify the

miners’ work by re-executing the transactions in each block deterministically and concurrently. In

all above works, the recorder is untrusted, but the replay is not accelerated.

2 . 2 V E R I F Y I N G T R A N S PA R E N C Y D I C T I O N A R I E S

Verdict is a transparency dictionary that admits publicly verifiable proofs (Ch. 1) with efficient

verifiability, meaning that verifying a batch of operations scales sublinearly with the number of

operations. Moreover, verification does not require a trusted setup. Trusted setup means that a party

(or a group of parties of which at least one is honest) is trusted by all clients. That party produces

public parameters for a proof system using a secret trapdoor. However, anyone with the knowledge

of the trapdoor can forge false proofs.

Transparency Dictionaries. Many prior works provide a transparency dictionary. However, they

either don’t offer public and efficient verifiability, or they require a trusted setup. For example,

CONIKS [115] only provides private-verifiability (each user only verifies a subset of the updates

that the dictionary executes). Very recently, Merkle2 [85] improves on CONIKS by partially proving

that the service updates its state correctly with a publicly-verifiable proof. However, it still produces

a privately-verifiable proof for each update submitted by a client. It is possible to combine all the
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privately-verifiable proofs produced by the untrusted service to construct a publicly-verifiable proof.

However, such a proof would be neither succinct nor efficiently-verifiable. SEEMless [51] provides

publicly verifiable proofs, but does not offer efficient verifiability. Similarly, Keybase [5] main-

tains a key directory and periodically publishes a commitment to its state on a public blockchain.

However, proofs are not publicly verifiable: each user only checks their own updates. It would be

straightforward to modify Keybase to offer public verifiability, by requiring the service to expose to

users the sequence of operations that transformed one state to the other and have each client check

this sequence. However, in this case, the data that each client would need to download and the work

that each client would need to do are impractical. AAD [150] produces publicly-verifiable proofs

with efficient verifiability. However, it requires a trusted setup and imposes high concrete costs on

the service to produce proofs (§3.5). Finally, recent concurrent works [53, 152] explore the use of

SNARKs to reduce costs for clients of transparency dictionaries. However, these solutions incur

high prover costs to produce proofs, and they require a trusted setup.

In verifiable state machines (VSMs), an untrusted service proves the correct execution of state

machine transitions using SNARKs [136]. Due to their generality, VSMs imply transparency dic-

tionaries. However, existing work does not optimize core ingredients to efficiently realize a trans-

parency dictionary. Specifically, several works [44, 71] compose Merkle trees with SNARKs, but

they target general computation. Spice [104, 136] composes a multiset-based data structure with

SNARKs. However, it must treat both reads and writes in a uniform manner, so the high cost of

SNARKs is incurred for both reads and writes. In Verdict, by contrast, reads do not require the use

of SNARKs. Similarly, Ozdemir et al. [122] compose RSA accumulators with SNARKs. However,

as we discuss later (Section 3.2), RSA accumulators require O(n) computation for the service to

respond to a lookup operation over an n-sized dictionary. Also, RSA accumulators require a trusted

setup.

10



Untrusted storage systems. A large body of work offers untrusted storage systems [69, 107, 110,

112, 127]. However, they target scenarios where a small number of clients collectively read and

write data stored at the service. Furthermore, they require clients to effectively execute all updates

processed by the service. Concerto [23] provides a verifiable key-value store that that can be used

to realize an untrusted storage system. However, Concerto’s verifier must replay all operations

executed by an untrusted service. Hence, it does not provide efficient verifiability. Furthermore,

verification requires periodically scanning the entire state maintained by the service.

Blockchain-based solutions. While Verdict shares some of its tools with blockchains, it differs

from them in several respects. First, blockchains employ a single global hashchain to order blocks

of transactions, whereas Verdict uses a hashchain for each user to order updates (§3.1). Second,

while blockchains can be used to build a transparency dictionary [7, 129] (for example, Microsoft’s

ION [7] records operations submitted by users in Bitcoin’s blockchain), to retrieve the latest public

key associated with a particular identity, a client must effectively re-execute all operations in the

order they are recorded on the blockchain. In contrast, with Verdict, an untrusted service provides

a response to a lookup along with a proof. Verdict’s service can equivocate and expose different

commitments to different clients, but this can be prevented by having the service use a blockchain

to disseminate a single sequence of commitments to clients (note that the use of blockchain still

does not require Verdict’s clients to re-execute all operations processed by the system).

Persistent authenticated dictionaries (PADS) [21, 60, 128]. PADS provide specialized data-

structures such as skip-lists and red-black trees. PADs provide succinct proofs for each operation

(logarithmic in the size of the state). However, to prove that a batch of updates were executed

correctly, the proof size grows linearly with the number of updates, similar to the two naive baselines

against which we evaluate Verdict in Section 3.5. In contrast, Verdict uses SNARKs to produce a

succinct proof for a batch of updates.
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2 . 3 V E R I F Y I N G E V E N T- D R I V E N W E B A P P L I C AT I O N S

Record-replay systems. At its core, Karousos is a record-replay system. Record-replay is a vast

area, with several excellent surveys [56, 57, 65]. Karousos supports the combination of an untrusted

recorder, accelerated replay, and executions with concurrency. Only in Karousos and a few works

mention earlier (§2.1) the recorder is untrusted.

Poirot [92] and Shortcut [66] provide an accelerated replayer. In these systems the recorder

captures hints that the replayer uses to re-execute (in Poirot’s case, in a batch, as in Karousos), but

the hints necessitate trust in the recorder.

A large body of record-replay work aims to re-execute concurrent executions while control-

ling the size of advice supplied to the replayer. These works trust the recorder and do not achieve

acceleration. Here, we will specifically cover the works that relate to Karousos’s logging algo-

rithm (§4.3.2); for other record-replay work that targets concurrency, see JaRec [75], Respec [102],

DoublePlay [154], and citations therein.

In Netzer’s work [120], implemented in hardware by FDR [160] (see also [126]), when a data

race occurs, the recorder logs the conflicting operations; the goal is to log a minimal set of such

races. The replayer synchronizes these data races to reproduce the original order. In Bugnet [119],

implemented in software by PinSEL [118] (see also [38, 126]), the recorder applies memory store

operations to main memory and a shadow memory; on a load, if the main and shadow values

disagree, the recorder infers that the memory was concurrently modified (for example by DMA, or

an interrupt), and logs the load. This technique also appears in Jalangi [133], which re-executes

JavaScript and also shares some of Karousos’s approaches to handling calls to native code (§4.4).

These techniques are reminiscent of the way that Karousos decides dynamically whether to log

an access to a program variable. However, they handle only physical concurrency, not concurrency

at the replayer due to out-of-order execution (Ch. 1). Notice that concurrency at the replayer is

strictly harder: if two accesses are not physically concurrent, and hence are reconstructible with
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a traditional re-execution, they could nevertheless be concurrently executed during out-of-order

re-execution, and hence need logging in our context. Furthermore, it’s not clear how to extend these

techniques to ensure consistency in the face of a possibly-cheating server.

Another approach to keep logging small when re-executing concurrent executions is to log

enough information for the replayer to reconstruct a thread schedule equivalent to the original.

In CREW systems [55, 67, 97, 101, 163], the recorder logs, for read operations, a current version

number; for write operations, the recorder logs the number of readers before this write. The replayer

then blocks a given write until all prior readers execute their read. As in Karousos, this approach

has the freedom to re-order concurrent reads. However, CREW reproduces a schedule equivalent

to the original physical one, and thus cannot handle general out-of-order re-execution.

LEAP [86] has a similar log structure to Karousos (§4.3.2), and thus would be amenable to

out-of-order re-execution. However, LEAP trusts the recorder and is not designed to control the size

of the logs. ORDER [161] improves on LEAP; it statically analyzes a program to determine which

accesses need logging. Karousos could borrow these techniques to identify which variables are

accessed by operations that can be re-ordered during re-execution, as this identification is currently

a manual process (§4.4).

Other related techniques. Karousos’s techniques for ensuring well-ordered executions (§4.3.3–

4.3.4) relate to prior work in memory checking and consistency checking, where typically there is a

dependency graph that the checker wants to ensure is acyclic [16, 18, 19, 22, 37, 76, 123, 140, 142,

145]. Karousos also builds explicitly on Adya’s algorithms [16]. Karousos, however, must rely on

untrusted advice separate from the input/output trace (§4.1.1), which complicates validation.

Cobra [147], Elle [93], and Litmus [159] ensure the serializability of an untrusted database, in

setups which are closer to that of Karousos, and (in the case of Cobra and Elle) rely on dependency

graphs. These works, of course, do not validate an entire application, only the database component.

JA R D I S [31] is a time-travel debugger for JavaScript; it allows (among other things) stepping
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from the execution of a callback backward to the handler that registered that callback. To do so,

JA R D I S wraps each handler, to pass in information about where it was registered, enabling the

debugger to “walk up the activation stack.” This is similar to Karousos’s use of handler labels (§4.4).

14



3 | T R A N S PA R E N C Y D I C T I O N A R I E S

This chapter studies the problem of verifying transparency dictionaries.

A distinctive aspect of transparency dictionaries is that they support efficient membership and

non-membership queries. To better articulate the problem and the importance of non-membership

queries, let’s consider the case where the dictionary is used for key transparency.

In this case the dictionary maps unique identities to their public keys (such as RSA encryp-

tion keys), and enables the following message exchange: To send a “top secret” document D to

bob@dom.org, Alice picks a symmetric secret key k, encrypts D using k, and then encrypts k using

the public key(s) associated with bob@dom.org in the transparency dictionary; she then sends both

ciphertexts to bob@dom.org via an untrusted channel (for example, the cloud). However, if the

dictionary can return “rogue” public keys (that is, public keys that Bob does not control), then even

perfect cryptography cannot protect the secrecy of Alice’s document. Non-membership queries are

important for this scenario as well: they allow validating the absence of a label from the dictionary

prior to its insertion. Without validating that each insertion inserts a label that does not already exist,

the service’s dictionary might contain more than one tuple for the bob@dom.org label, allowing the

service to show different tuples to different clients.1

We are interested in building a transparency dictionary that can prove to its clients that it

updates its state correctly, meaning that the service has some application-dependent function and

1There is an orthogonal but important requirement that the service should not be able to equivocate that is, show
different versions of its dictionary to different clients such that each version is well behaved. In general, this is impossible
to prevent with a fully untrusted service [112]. However, in prior systems [51, 115, 150] and this work, if the service
equivocates, it can be eventually detected by clients (§3.1, Appendix A.2).
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only updates each value associated with a label by applying this function on the prior value. In

the context of key transparency, suppose that the first public key registered for bob@dom.org was

legitimate. Then the application update function might require that all subsequent updates must be

authorized using one of the existing public keys.

A natural question here is: how can the untrusted service prove to its clients that it updates its

dictionary correctly? We would like the service’s proofs to be publicly verifiable (Ch. 1), which, in

this context, means that any client can verify independently that the service updates its whole state

correctly regardless of actions of other clients in the system. In the key transparency example, public

verifiability implies that when Alice verifies the service’s proof, she knows that Bob’s key has not

been subverted, even if Bob is offline or fails to actively monitor updates to his own key. Hence,

Alice can safely encrypt sensitive data using the public key the service returns for Bob. Moreover,

we want the system to be practical (Ch. 1). Concretely, we require proofs to be efficiently verifiable:

the cost of verifying proofs should be lower than re-executing requests processed by the service, both

asymptotically and concretely (this also implies that proofs should be succinct). Satisfying the latter

requirement makes it possible for any light client to download and verify proofs. Prior work (§2.2)

do not provide a dictionary abstraction [100], do not support public verifiability [85, 115], and/or

impose significant proving/verification overhead [51, 53, 106, 150, 152].

In contrast, we describe Verdict, the first transparency dictionary with publicly and efficiently

verifiable proofs of correct operation as well as modest proving overheads. Verdict achieves this

by employing SNARKs. As explained in Chapter 1, a SNARK is a cryptographic primitive that

enables a prover to prove that it has executed a computation correctly. In particular, the prover proves

knowledge of a witness to an NP statement by producing a proof such that the size of the proof and

the time to verify it are both sub-linear in the size of the statement.2 Verdict employs SNARKs as

2SNARKs provide an additional property called zero-knowledge, where the verifier learns nothing about the prover’s
witness beyond what is implied by the proven statement. Verdict’s focus is on succinct verification property of SNARKs,
but with modern SNARKs (including the one that Verdict employs), achieving zero-knowledge is “free” in terms of
additional costs to the prover, the verifier, and proof sizes.
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follows. At the end of epoch i, the untrusted service publishes a succinct cryptographic commitment

to Ci the current state of its dictionary. Informally speaking, a cryptographic commitment scheme

enables a sender to commit itself to a value by sending a short commitment and then later reveal

the value. A commitment scheme is binding (that is, the sender cannot reveal a value different from

what it originally committed), and hiding (that is, a commitment does not reveal anything about the

committed value). It also produces a succinct SNARK proof demonstrating that the information

in Ci is a superset of that in the dictionary committed to by Ci−1. Stated at this level, the use of

SNARKs seems like an obvious solution.

Of course, the problem with such an “obvious” solution is well-known (Ch. 1): the resource

costs to produce SNARK proofs are, in general, excessive. However, we address this problem in

our specific context, obtaining orders of magnitude speedups over a naïve application of SNARKs.

First, we design Indexed Merkle Trees, a SNARK-friendly data structure (§3.2) that can be used to

efficiently prove that each value associated with a label is only updated by applying the application-

specific function. Specifically, rather than directly prove (at significant expense) that each update to

a label’s value was applied correctly (§2.2), Verdict uses an Indexed Merkle Tree to maintain, for

each label, an append-only list of updates, which a client can apply locally to arrive at the current

value. To prove that the dictionary is updated correctly, the service proves that the Indexed Merkle

Tree is updated in an append-only fashion [51, 53, 85, 115, 150]: the set of labels in the Indexed

Merkle Tree grows monotonically and so do the lists associated with labels.

Second, we design Phalanx, a new SNARK that leverages Verdict’s particular workload charac-

teristics to significantly drive down costs of the untrusted service and of the clients (§3.3). Specifi-

cally, by leveraging the epoch-based nature of Verdict, Phalanx produces amortized constant-sized

proofs and verification times. Furthermore, it leverages the data-parallel nature of the statement

proven in each round to substantially reduce proof-generation costs. Phalanx may be of independent

interest to other epoch-based services.

We implement Verdict in Rust as a generic library for constructing transparency dictionaries
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(§3.4). To demonstrate the concrete utility of Verdict, we apply it to our running example of key

transparency, creating Keypal, a service for translating user identities to public keys without trusting

the hosting service.

We evaluate Verdict (§3.5) and compare it to three baselines that provide similar security prop-

erties: AAD [150], and two variants of Merkle-Patricia trees. Unlike AAD, Verdict incurs low over-

heads even for large dictionaries with millions of labels, and unlike the Merkle-Patricia baseline,

Verdict produces efficiently-verifiable proofs of correct operation. We also find that our workload-

specific SNARK optimizations improve proving costs by an order of magnitude. Together, when

executing in a single CPU core, Verdict achieves about 4 updates/sec and about 2 inserts/sec, with a

per-epoch (amortized) proof size of 651 bytes and a verification time of about 3 ms (for a dictionary

with 220 label-value tuples); Verdict can achieve about 18–22 updates/sec and 9–11 inserts/sec, with

a per-epoch proof size of 290 bytes and a verification time of 161µs for the same dictionary size

at the cost of deferred guarantees (§3.5). This represents over an order of magnitude improvement

over prior state-of-the-art, general proof systems for stateful services [104, 135, 136, 138] and over

three orders of magnitude improvement over AAD [150].

Despite the fact that Verdict is general, it is optimized for read-heavy workloads; we are in-

terested in read-heavy workloads because they are common in many applications such as key

transparency and certificate transparency. Verdict’s principal limitation is that the service still in-

curs significant CPU costs to produce proofs. Less fundamentally, although the proof-generation

process is highly parallelizable, our current implementation of Verdict does not leverage multi-

ple CPUs. Nevertheless, Verdict makes transparency dictionaries with efficiently-verifiable proofs

affordable.

In summary, Verdict contributes:

1. A transparency dictionary that scales well asymptotically and concretely to large dictionaries.

2. A SNARK-friendly accumulator (Ch. 1) with O(logn) proofs of membership and non-membership.

3. A SNARK that provides amortized constant-sized proofs and verification times and that lever-
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ages particular workload characteristics (for example, computations with repeated substruc-

ture) to speed up proof generation.

3 . 1 T H E V E R D I C T T R A N S PA R E N C Y D I C T I O N A RY

This section introduces the problem of building a dictionary service that can prove its own cor-

rectness with succinct proofs. We then provide an overview of Verdict, a system that meets these

requirements.

3 . 1 . 1 P R O B L E M S TAT E M E N T A N D D E F I N I T I O N S

Our goal is to build Verdict, a service that exposes a dictionary abstraction and can cryptographically

prove to its clients the correctness of every request it executes. Specifically, the service’s state is a

label-value map that clients can query and update: clients can insert a new label-value pair, update

the value associated with an existing label, and look up the value associated with an existing label.

By correct operation, we mean that the value associated with a label is only updated according to an

application-specific function. We refer to this primitive as a transparency dictionary. As a concrete

application of Verdict, we construct Keypal (§3.4), a public key directory that enables clients to

register their public keys under an identifier such that the keys can be retrieved by other clients who

can be assured that the public keys they retrieve are legitimate.

Threat Model. We assume that the service and any subset of clients can misbehave arbitrarily. For

example, the service can misbehave when processing requests, or show different views of its state to

different clients. Furthermore, we assume that the network can arbitrarily duplicate, drop, or reorder

messages. However, we assume that the untrusted service and clients cannot break cryptographic

hardness assumptions. We do not aim to protect against denial of service (an honest service can

use standard techniques, such as rate-limiting or proof-of-work, to defend itself) nor to ensure

19



Clients

c1

c2

c3

Service

label1→⊥

label2→ v2
...

Ci

label1→ F(F(⊥,U1,1),U1,2)

label2→ v′2 = F(v2,U2,1)

...

Ci+1

(Ci,πi)

(label1,{U1,1,U1,2}),

(label2,{U2,1})

(Ci+1,πi+1)

Lookup label2
v′2,πlookup

Figure 3.1: Example showing how Verdict’s service updates its state in epoch i for some application-specific function
F . At the end of epoch i, the service broadcasts a new commitment Ci+1 and a proof πi+1 after incorporating requests
from clients c1 and c2. Later, client c3 can query the server to retrieve the latest value (v′2) associated with label label2.

liveness (although if the service is honest and the network is reliable, then requests from correct

clients will be executed). Finally, we do not aim to prevent all misbehavior from the untrusted

service. Indeed, there are fundamental limits: it is impossible to prevent an untrusted service from

equivocating [112]. However, as in prior work [51, 115], Verdict’s clients can eventually detect

such equivocation through client-side mechanisms (such as gossip), or by requiring the service to

disseminate its commitments and proofs through a public blockchain (Appendix A.2).

More formally, let Di for i ∈ N denote a mapping from labels to values. Labels are bitstrings

and values belong to some domain D that depends on the application. For instance, in the context

of key transparency, each value is a (possibly empty) set of public keys. Also, let Ci be a hiding and

binding commitment to Di. We assume that D0 = ⊥ and that C0 is a well-known commitment to

D0.

Moreover, let F : D×U →D a function that takes as input a label’s old value, a request, and

outputs a new value for the label. When a client wants to update the value v associated with some

label label, it sends a request U ∈ U and the service updates the value associated with label to

F(v,U). Both U and F depend on the application. For example, in the context of key transparency

U = {(t, pk,s)|t ∈ {“revoke”, “add”} and pk is a public key and s is a signature )
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1: procedure F(v: set of keys, (t: op type, pk: public key, s: signature) )
2: // Check that the operation is signed by some key in v
3: assert(∃k ∈ v s.t. VerifySignature((t, pk),k) = true)
4: if t = revoke then
5: return vr pk
6: else
7: // t = add
8: return v∪{pk}

Figure 3.2: Example F in the case of Key Transparency

In this case F validates that s is a valid signature for (t, pk) using one of the existing keys, and

produces a new set of keys by either adding or removing a key from the input set of keys (Figure 3.2).

Let λ denote the security parameter. Throughout this chapter, the depicted asymptotics depend

on λ , but we omit this for brevity.

A transparency dictionary is a tuple of algorithms

(Setup,ApplyUpdates,VerifyUpdates,Lookup,VerifyLookup)

with the following semantics.

• pp← Setup(1λ ,F): Returns public parameters pp used to produce and verify proofs.

• (Dt+1,Ct+1,πt+1)← ApplyUpdates(pp,Dt ,Ct ,U): Takes as input a dictionary Dt , commitment Ct ,

and a sequence of insert/update requests U. Outputs a dictionary Dt+1, a commitment Ct+1 to

Dt+1, and a proof of valid update πt+1.

• {0,1}← VerifyUpdates(pp,Ct ,Ct+1,πt+1): Takes as input a pair of commitments (Ct ,Ct+1), and

a proof of valid update πt+1. Outputs 1 if for each label in the dictionary committed to by Ct+1,

the associated value equals the value associated with the label in Ct , or πt+1 proves the knowledge

of a sequence of requests (U0, . . . ,U`−1) such that F(vi,Ui) = vi+1 for 0≤ i < `, and where v0 is

the value associated with the label in Ct (or ⊥ if the label did not exist in Ct) and v` is the value

associated with the label in Ct+1.

• (v,πlookup)← Lookup(pp,Dt ,Ct , label): Takes as input a dictionary Dt , commitment Ct , and label

label. Outputs a value v, and a proof of valid lookup πlookup.
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• {0,1} ← VerifyLookup(pp,C, label,v,πlookup): Takes as input a commitment C, a label label, a

value v, and a proof πlookup. Outputs 1 if v is the value associated with label in C.

As in prior work [51, 85, 115, 150], the service in a transparency dictionary operates in a

sequence of (fixed) time epochs. In each epoch, the service collects requests submitted by clients,

uses the ApplyUpdates procedure to update its internal state and produce a new commitment and a

proof of valid update, which it publishes to clients. Clients collect the sequence of commitments

and the associated proofs published by the service at each time epoch and use the VerifyUpdates to

check if the service correctly updated its state. Similarly, for lookup requests, the service uses the

Lookup procedure to produce a response along with a proof, which the clients can verify by applying

the VerifyLookup procedure to the proof and the latest service commitment they have received.

We formally define the properties of a transparency dictionary in Appendix A.1 but we summa-

rize them here.

• Completeness. If the service is honest, clients do not reject responses produced by the service.

• Update soundness. The values associated with labels are updated only by applying the function

F .

• Lookup soundness. The service cannot return an incorrect value for any label included in a

commitment.

• Fork consistency. If the service equivocates at some point in time by presenting different se-

quences of commitments to different sets of clients, it cannot undetectably merge their views.

Additionally, we desire the following properties:

• Public verifiability. Any client can check proofs produced by the service to verify that that

values are updated only by applying the function F .

• Efficient verifiability. Compared with re-executing every request processed by the service, the

cost to verify a proof is more resource efficient (in terms of CPU, network bandwidth, storage,

etc.), both asymptotically and concretely. This implies that proofs produced by the service are
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succinct.

3 . 1 . 2 V E R D I C T : A R C H I T E C T U R A L OV E RV I E W

At its core, Verdict utilizes cryptographic SNARKs (Ch. 1) to prove that the untrusted service

correctly maintains its dictionary abstraction. Generically, a SNARK allows a prover to demonstrate

that an arbitrary polynomial relation R(w,x) holds, where w is a (possibly secret) witness, and x is

a public input. The prover produces a proof π such that the size of π and the time to verify it are

both sub-linear in the size of the circuit that computes R.

At the end of epoch t+1, Verdict uses SNARKs to prove that for each (label,v) in the dictionary

committed to by Ct , one of the following holds: either (label,v) exists in the dictionary committed

to by Ct+1; or there is a sequence of requests U0, . . . ,U` such that v′ = F(. . .(F(v,U0) . . . ,U`) and

(label,v′) is in Ct+1.

Implemented in a naïve manner, the approach above would be prohibitively expensive. First,

for each value updated, the service must prove, using an expensive SNARK, that it has faithfully

executed the function F for some sequence of requests U. For example, in the context of a key

directory, when updating a public key associated with an identity, the service must prove that it

knows of valid digitally-signed requests in the sense that the signatures can be verified using one

of the non-revoked keys associated with the identity (Figure 3.2). Verifying such cryptographic

operations via a SNARK is quite costly [62, 104, 122]. Even worse, as described above, to prove

that its O(N) dictionary is updated correctly, the size of the circuit that the service must prove using

a SNARK is Ω(N). In other words, even when the number of values updated in a given epoch is

far less than N, the service’s cost for each epoch is still Ω(N). Finally, even non-cryptographic

computations are costly to prove using SNARKs.

We now discuss how Verdict addresses these issues. Figure 3.3 compares Verdict’s asymptotic

complexity with that of prior work.
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space updates (per-epoch) lookups (per-op)
(life-time) prover proof size verifier prover/proof size/verifier assumption

AAD [150]? N β · log3 n logn logn log2 n q-type
SEEMless [51] N β · logN β · logN β · logN logN CRHF

Verdict N β · logn log(β · logn)/k log(β · logn)/k logn SXDH
Verdict-lazy N β · logn log(β · logn)/k β · logn/k logn DLOG
? Requires a trusted setup

Figure 3.3: Asymptotic costs for updates and lookups under Verdict and its baselines. All costs also depend on the
security parameter λ but we omit this for brevity. β is the number of updates per epoch, n is the maximum number
of labels in the dictionary, ` is the maximum number of operations associated with a label. We let N = n · `. Lookup
responses include an additive cost of Ω(`). Verdict variants use indexed Merkle trees (§3.2) with different variants of
Phalanx (§3.3). k denotes the number of epochs over which costs are amortized (see 3.3.3 for details).

Validating Value Updates via Hashchains. To reduce the service’s overhead, instead of directly

proving that it updates each value by applying F , Verdict employs a simpler and cheaper alternative.

In Verdict, the service maintains for each label an append-only hashchain of requests, where nodes

store the request U as well as the cryptographic hash of the previous node in the chain. For example,

in the context of key transparency, each node in the hashchain is (t, pk,s,h) where t, pk and s are

defined above and h is the hash of the previous node. A hashchain c is valid if each node includes a

correct hash of the previous node.

The service proves that all dictionary updates correspond to applications of the function F

by showing that hashchains are never deleted and that each hashchain grows monotonically. The

service replies to lookup queries with the hashchain c rather than the value v associated with a label.

When a client retrieves a hashchain c associated with a label, it can quickly repeatedly apply F

using the requests recorded in the hashchain to construct the current value v associated with the

label, checking the validity of the cryptographic hashes along the way. This design supports a richer

class of application-specific functions F without requiring the service to prove that it correctly

applies F using SNARKs.

Succinct Commitments and Proofs via Indexed Merkle Trees. Verdict commits to the mapping

from labels to values by committing to the mapping from labels to hashchains. We now discuss

how Verdict commits to the latter so that it can efficiently produce: (i) lookup proofs, and (ii)
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Figure 3.4: Internal State maintained by the service under Verdict. The service commits to the derived dictionary by
publishing the root of the indexed merkle tree. The service replies to lookup proofs with the hashchain that corresponds
to the requested label (if it exists) and (non-)membership proof of the label in the Indexed Merkle Tree.

update proofs. First, Verdict’s service stores the mapping from labels to hashchains in a commodity

storage service. Next, it creates a “derived” dictionary that stores a map from the cryptographic

hash of a label to the cryptographic hash of the last node in the hashchain c associated with the

label. In particular, for each (label,c) tuple in the service’s state, the derived dictionary contains

(H(label),h), where H is a cryptographic hash function and h is the cryptographic hash of the

last node in c. Figure 3.4 shows an example of the state maintained by the dictionary when the

dictionary is used for key transparency.

Observe that to commit to its mapping from labels to hashchains the service only needs to

commit to its derived dictionary. This is because each (label,c) tuple in the derived dictionary

is cryptographically bound (via the collision-resistance of H) to a unique tuple in the original

dictionary. More crucially, this choice ensures that the labels and values that Verdict needs to

commit are constant-sized and in particular short (for example, they are 32 bytes each when using

SHA-256 as the hash function).

To commit to a derived dictionary we design a cryptographic accumulator using textbook Merkle

trees, which we refer to as indexed Merkle trees (§3.2). As we mentioned in Chapter 1, a crypto-
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graphic accumulator is a commitments scheme with support for proving membership of an element

against a commitment. We provide details in Section 3.2; for now, a distinguishing aspect of indexed

Merkle trees is that they support both efficient membership proofs (that is, proofs for statements of

the form (label,v) ∈ C, where (label,v) is a label-value pair and C is a commitment to a dictionary)

and non-membership proofs (that is, proofs for statements of the form (label,v) 6∈ C). In particular,

for a dictionary of size N, it produces O(1)-sized commitments (for instance, they are 32 bytes

when using SHA-256), and O(logN)-sized proofs of membership and non-membership.

Thus, at the end of each epoch, Verdict’s commitment is of size O(1). Furthermore, for a lookup

request issued by a client, πlookup is either a proof of membership (if the hash of the requested

label exists in the derived dictionary) or a proof of non-membership (otherwise). Note that the

indexed Merkle tree itself is stored in a commodity storage service, so producing a lookup proof

does not require the use of SNARKs, so the throughput of the service for lookup operations is

bound purely by the throughput of the underlying storage service to retrieve proofs of membership

(or non-membership).

Another crucial aspect of indexed Merkle trees is that, by leveraging proofs of non-membership,

they provide efficient (O(logN)) proofs of insertion and update.

Condensing Merkle Proofs via SNARKs. As described above, Verdict uses Merkle proofs to

reduce the cost of proving/verifying dictionary updates from Ω(N) to O(log(N)). This improvement

does not lead to efficiently verifiable proofs (§3) as for an epoch that consists of β insert/update

operations, the proof length and verification time are both O(β · logN). Cost-wise, this is equivalent

to requiring the service to broadcast all updates it processes in order to prove that it maintains the

desired append-only properties. Verdict mitigates these costs by employing SNARKs.

Specifically, for β > 0 insert/update operations, the service processes each operation sequen-

tially, and for each operation, the service produces a new commitment and an O(logN)-sized proof.

The untrusted service however does not publish these intermediate commitments nor the O(logN)-
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sized proofs. Instead, it employs SNARKs to prove that it knows indexed Merkle tree proofs that a

verifier would accept, thereby achieving a proof of valid updates whose size and verification time

are both sub-linear in β · logN (Figure 3.3).

As discussed in Section 3.2, our indexed Merkle trees are carefully designed to be SNARK-

friendly.

Accelerating SNARKs in Verdict’s Context. Thus far, Verdict could be instantiated with any

generic SNARK system. However, despite the proof-friendly nature of our indexed Merkle trees,

the costs would still remain high. Hence, we introduce Phalanx, a new SNARK that leverages

particular workload characteristics to provide amortized constant-sized proofs and to reduce proof

generation costs (§3.3 provides details).

3 . 2 I N S TA N T I AT I N G V E R D I C T ’ S C RY P T O G R A P H I C

A C C U M U L AT O R

This section describes the SNARK-friendly accumulator that Verdict employs to maintain state. We

discuss properties that we desire from an accumulator, limitations of existing solutions, and our

design of a Merkle-tree variant that suffices for Verdict.

3 . 2 . 1 R E Q U I R E M E N T S A N D P O S S I B L E I N S TA N T I AT I O N S

Let λ denote the security parameter, and let negl(λ ) denote a negligible function in λ . Let “PPT

algorithms” refer to probabilistic polynomial time algorithms.

A cryptographic accumulator [35] enables a prover to commit to a collection D (for instance, a

dictionary with a set of label-value pairs) by sending a succinct commitment C to a verifier. Such

digests are binding, meaning that it is computationally infeasible to identify a different collection

of items with the same digest. In addition, cryptographic accumulators support succinct proofs of
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membership: for any item (that is, a label-value tuple) x∈D, the prover can produce a succinct proof

π such that an honest verifier accepts π , and for any x 6∈ D and any purported proof π produced by

a PPT algorithm, Pr[the verifier accepts π]≤ negl(λ ).

A classic example of an accumulator is a Merkle tree, where the root of the Merkle tree commits

to items stored at leaf nodes and provides O(logn)-sized proofs of membership, where n is the size

of the collection.

As we discuss in Section 3.1.2, for Verdict, we require accumulators with succinct proofs for

membership, inserts, and updates. Specifically, suppose that the prover commits to its collection D

with a commitment C:

• Proof of insertion. For any x 6∈ D, the prover can produce a new commitment C ′ and prove that

x 6∈ D and C ′ commits to D∪{x} with a succinct proof π such that a verifier accepts π . If x ∈ D

or if C ′ does not commit to D∪{x}, then for any purported proof π produced by a PPT algorithm,

Pr[the verifier accepts π]≤ negl(λ ).

• Proof of update. For any x ∈ D, the prover can produce a new commitment C ′ and prove that

C ′ commits to D∪{x′}−{x} for some x′ with a succinct proof π such that a verifier accepts

π . If C ′ does not commit to D∪{x′}−{x}, then for any purported proof π produced by a PPT

algorithm, Pr[the verifier accepts π]≤ negl(λ ).

Note that an important building block for a proof of insertion is a a proof of non-membership:

for any x 6∈ D, the prover can prove that x 6∈ D by producing a succinct proof π such that the

verifier accepts π , and for any x ∈ D and any purported proof π produced by a PPT algorithm,

Pr[the verifier accepts π]≤ negl(λ ).

In addition to the above properties, we desire a cryptographic accumulator where these proofs

are SNARK-friendly; that is, where the proof verification algorithm can be efficiently encoded in

the input language of a modern SNARK. This can be thought of as an arithmetic circuit over a

large field, although in practice most modern SNARKs use a generalization known as R1CS. The
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membership non-membership/insert/update
instantiation prover proof size verifier prover proof size verifier SNARK friendly?

Merkle trees O(logn) O(logn) O(logn) O(n) O(n) O(n) 3
RSA accumulators O(n) O(1) O(1) O(n) O(1) O(1) 7
Merkle-Patricia trees Θ(logn) Θ(logn) Θ(logn) Θ(logn) Θ(logn) Θ(logn) 7
Merkle-AVL trees O(logn) O(logn) O(logn) O(logn) O(logn) O(logn) 7

Indexed Merkle trees O(logn) O(logn) O(logn) O(logn) O(logn) O(logn) 3

Figure 3.5: Comparison of asymptotic costs of Merkle proofs of membership, non-membership, inserts, and updates
under different instantiations of cryptographic accumulators, where n denotes the number of items in the committed
collection.

efficiency of this encoding matters, since, as described in Section 3.1.2, the Verdict service relies on

SNARKs to condense many insert/update proofs into a single succinct proof of correct operation.

To accomplish this, the service first updates the cryptographic accumulator to produce a sequence

of insert/update proofs, one for each operation. The service then proves that it knows a sequence of

valid proof of insert/updates using a SNARK.

We examine existing accumulators in the literature and folklore. Figure 3.5 summarizes our

findings, where n is the number of items in a collection. Briefly:

• Merkle trees [41, 116] do not support succinct proofs of non-membership nor insertion.

• RSA accumulators [48] support O(1)-sized membership and insert/update proofs, but they im-

pose O(n) costs on the prover to produce them; this is expensive, both asymptotically and con-

cretely. Also, they require a trusted setup as well as big number arithmetic that is inefficient to

encode as an arithmetic circuit.

• Merkle-Patricia trees (or more generally, Sparse Merkle trees) (for example, [51, 61, 99, 121])

support Θ(logn)-sized proofs of membership, non-membership, insertion, and updates. However,

by design, paths in these trees are of variable length, so devising arithmetic circuits to verify

Merkle proofs introduces significant complexity. Of course, one can use fixed-depth trees (for

instance, depth-256) to make them SNARK-friendly, but this incurs over an order of magnitude

higher costs at our collection sizes (220–230 items).

• Like Merkle-Patricia trees, Merkle-AVL trees are not SNARK-friendly as they require rebalanc-
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ing upon insertion of new nodes.

3 . 2 . 2 I N D E X E D M E R K L E T R E E S

We now describe indexed Merkle trees, our SNARK-friendly variant of “textbook” Merkle trees,

with support for efficient non-membership and insertion proofs.

An indexed Merkle tree is a standard Merkle tree in the following way: each item in a collection

is stored at a leaf node in a Merkle tree. This ensures that indexed Merkle trees support O(1)-

sized commitments, O(logn)-sized proofs of membership, and O(logn)-sized proofs of update. To

support O(logn)-sized proofs of non-membership and proofs of insertion, we encode additional

metadata at each leaf node and maintain an invariant upon insertions and updates. We now elaborate.

Suppose that a collection is a set of label-value tuples, where each label and each value is of

a fixed size w. This is the case for Verdict’s derived dictionary (§3.1.2).3 WLOG, we assume that

labels can be sorted (for example, with a bitwise ordering of labels). Unlike a textbook Merkle

tree, a leaf node in an indexed Merkle tree is of the form: 〈active, label,v,next〉, where active is a bit

indicating whether the leaf node holds a valid tuple. If active is 1, then label and v are respectively

the label and its associated value stored at the leaf node, and next is a label in the tree that is larger

than label.

Verifiable Initialization. We now discuss how the prover can initialize an empty indexed Merkle

tree and how the verifier can efficiently compute a commitment to such an empty tree. Suppose

that the indexed Merkle tree maintained by the prover has a capacity of n ≥ 2 (that is, it has n

leaf nodes), where each leaf node stores the same tuple 〈0,0w,0w,0w〉 (we later discuss how the

prover can double the capacity of a Merkle tree and how the verifier can efficiently verify that).

Any verifier—without help from the prover—can compute the root of such a tree with O(logn)

hash computations. WLOG, Verdict designates two labels as reserved: 0w and 1w. These denote
3For other contexts, one can employ the same technique as in Verdict to derive a new collection with fixed-sized

labels and values.
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respectively the lowest and the highest values of labels in the system. Furthermore, the prover picks

a designated leaf node (WLOG, the left-most node in the initial Merkle tree) in the initial indexed

Merkle tree and updates it to hold the following tuple: 〈1,0w,0w,1w〉. The verifier—without help

from the prover—can compute the root of the updated Merkle tree in O(logn) time.

Invariant. A core invariant that an indexed Merkle tree maintains is that for any “active” leaf node

N = 〈1, label,v,n〉, N.n is either: (i) 1w, or (ii) there exists some leaf node in the tree with label N.n

and there are no active leaf nodes in the tree with labels in the range (N.label,N.n). Observe that

this invariant holds for the indexed Merkle tree computed at the end of the initialization step. Below,

we discuss how the invariant holds despite inserting new label-value pairs or updates to existing

label-value pairs.

Proof of Non-Membership. A core building block for proofs of insertion are proofs of non-

membership. To prove the absence of a particular label label in an indexed Merkle tree with

commitment C, the prover furnishes a proof of membership for a unique leaf node with contents

〈1, low,v,high〉 such that low < label < high. This proof can be verified using commitment C. It is

easy to see that this constitutes a proof of non-membership given the invariant stated above.

Maintaining the Invariant. In Verdict, there are only two types of operations.

(1) Updates. For a leaf node N = 〈1, label,v,next〉, updating N.v. This trivially upholds the

desired invariant. The proof of update is a proof of membership of the old leaf node against the old

commitment. Verification involves verifying the proof of membership and then locally computing

an updated commitment using the updated leaf node.

(2) Inserts. As shown in Figure 3.6, to insert a new label-value pair (label,v) into an indexed

Merkle tree, the proof of insertion is produced as follows.

• The prover identifies an “inactive” leaf node;4 that is, a leaf node of the form N = 〈0,0w,0w,0w〉.
4Verdict’s service maintains a separate index of inactive leaf nodes; the choice of which inactive leaf node to use is
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h′ =
H(h′0‖h′1)

h′0 =
H(h′00‖h⊥)

h′00 = H(
active : 1,
label : 0w,
value : 0w,
next : `)

h⊥

h′1 =
H(h10‖h⊥)

h10 = H(
active : 1,
label : `,
value : v,
next : 1w)

h⊥

h =
H(h0‖h1)

h0 =
H(h00‖h⊥)

h00 = H(
active : 1,
label : 0w,
value : 0w,
next : 1w)

h⊥

h1 =
H(h⊥‖h⊥)

h⊥ h⊥

insert label-value pair (`,v)

Figure 3.6: Indexed Merkle trees in action. We depict state changes from inserting a new label-value pair (`,v) to an
empty indexed Merkle tree with capacity 4. The choice of which non-active leaf node holds (`,v) is arbitrary (see the
text for details). h⊥ = H(active : 0, label : 0w,value : 0w,next : 1w). Dotted arrow indicates a leaf’s “pointer” to the
next active label. In the updated tree, to prove non-membership of `′ where `′ < `, the prover presents the leaf node h′00
and its proof of membership.

If this fails, invoke the capacity doubling procedure described below and then retry this step.

• The prover produces a proof of non-membership of label in the indexed Merkle tree, that is, a

unique leaf node N? = 〈1, low,v,high〉 such that low < label < high.

• The prover updates N? to hold the value 〈1, low,val, label〉, and produces a proof of update.

• The prover updates the previously inactive node N to hold 〈1, label,v,high〉, and produces a proof

of update.

Supporting Dynamic Capacity. The number of leaf nodes of an indexed Merkle tree can be

doubled at any time such that a verifier can verify that the new Merkle tree contains all of the

data from the original tree with O(logn) computation. Specifically, given the root r of an existing

2i-sized indexed Merkle tree, the prover and the verifier can compute the (unique) root of the 2i+1-

sized Merkle tree as: hash(r, r′), where r′ is the root of the Merkle tree where all leaf nodes have

the same default value of 〈0,0w,0w,0w〉. Note that r′ can be computed by the verifier using O(i)

hashes. This does not require any precomputation or amortization as the cost is comparable to the

cost of verifying a membership proof, which is logarithmic in the size of the collection.

arbitrary. In particular, note that leaf nodes in an indexed Merkle tree are not sorted, so if a new label falls between two
existing labels in the dictionary, the new label can be inserted at any “inactive” leaf node in the tree.
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3 . 3 R E D U C I N G C O S T S O F S NA R K S W I T H P H A L A N X

In a Verdict epoch with β update operations, the untrusted service produces β indexed Merkle

update proofs. A straightforward approach to prove the correctness of these indexed Merkle proofs

with a SNARK is to use an arithmetic circuit (say of size C) that verifies one update proof, replicate

it β times, and then employ a generic SNARK (such as Spartan [135] or Xiphos [138]) on the

combined circuit. The result would be a prover that runs in time O(C ·β ). The per-epoch proof sizes

and verification times are O(
√

C ·β ) when using Spartan and O(log(C ·β )) when using Xiphos.

To make Verdict concretely efficient, we develop Phalanx, a SNARK that substantially reduces

resource costs imposed by prior SNARKs. Specifically, Phalanx produces (amortized) constant

proof sizes and verification times. Additionally, Phalanx does not require a trusted setup. Given

these, Phalanx is of independent interest (for instance, to other epoch-based services [104, 122]).

3 . 3 . 1 OV E RV I E W O F P H A L A N X

Phalanx targets epoch-based services where the prover in each epoch proves the satisfiability of

the same N-sized circuit (with different witness values). In Verdict, the circuit verifies β indexed

Merkle proofs.

In more detail, Phalanx’s prover and verifier maintain a O(1)-sized running instance, which

collectively represents the circuit satisfiability instances of all prior epochs (the verifier and the

prover initialize the running instance to the first epoch’s instance). At the end of each epoch, the

prover produces an O(1)-sized proof that enables the verifier to combine the circuit satisfiability

instance of that epoch with the running instance; the verifier incurs O(1) computation to update its

running instance. At the end of each epoch, the prover also produces an O(logN)-sized proof to

prove the satisfiability of the running instance. Verifying the logarithmic-sized proof (in addition to

verifying constant-sized proofs for all prior epochs) verifies that the circuit satisfiability instances

from all prior epochs are satisfiable.
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In Verdict’s context, a client must verify constant-sized proofs every epoch, but it need not

verify the logarithmic-sized proof in every epoch. Specifically, a client only needs to verify the

logarithmic-sized proof of the most recent epoch before issuing lookup operations. Furthermore,

in Verdict, we observe that the running instance is data-parallel (as the circuit verifies β indexed

Merkle proofs); Phalanx leverages this to substantially speedup proof-generation costs.

3 . 3 . 2 P R E L I M I N A R I E S

SNARKs. Recall (Ch. 3) that a SNARK is a cryptographic primitive that enables a prover to demon-

strate its knowledge of a witness to an NP statement (such as a circuit satisfiability instance) with a

proof that can be verified in time sub-linear (ideally, polylogarithmic) in the time to check the NP

witness; this also implies that the proof is sub-linear in the size of the NP witness. For our purpose,

SNARKs enable proving the correct execution of (stateful) computations, since those executions

can be represented with NP statements (a formal definition of SNARKs is in Appendix A.1.1)

R1CS. Rank-1 constraint satisfiability (R1CS) is an NP-complete language that generalizes arith-

metic circuits [34, 73, 137]. R1CS is a popular target for toolchains that compile programs in

high-level languages [33, 44, 95, 104, 124, 136, 139, 156]. In more detail, let F denote a finite

field (such as the set {0,1, . . . , p−1} for a large prime p, with addition and multiplication opera-

tions). An R1CS instance is a tuple ((F ,A,B,C,m,n, `),X), where X ∈ F ` is the public input and

output of the instance, A,B,C ∈ Fm×m, m ≥ |X|+1, and there are at most n = Ω(m) non-zero en-

tries in each matrix. A witness W ∈ Fm−`−1 satisfies an R1CS instance ((F ,A,B,C,m,n, `),X) if

(A ·Z) ◦ (B ·Z) = C ·Z, where Z = (W,X,1). In a nutshell, the matrices encode the structure of a

circuit whose gates can compute an arbitrary bilinear operation over Z. We refer to n as the size of

the R1CS instance.
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SIMD R1CS. To capture data-parallel (or SIMD) computations, we introduce a natural extension

of R1CS that we refer to as SIMD R1CS. Informally, SIMD R1CS considers the same circuit

(represented with matrices A,B,C) over β witness vectors {w1, . . . ,wβ} and the corresponding

input/output vectors {x1, . . . ,xβ}, representing β data-parallel units. We assume that β , m, and n

are powers of 2, and ` is even; in practice, this can always be enforced by padding the matrices and

vectors.

More formally, a SIMD R1CS instance is a tuple φ = ((F ,A,B,C,m,n, `,β ),X), where each

of the matrices A,B,C ∈ Fm×m has at most n = Ω(m) non-zero values and X ∈ F ` is the public

input/output. A witness (W,x), where W ∈ F (m−`−1)×β (each column of W is a purported witness

for a separate data-parallel unit) and x ∈ F `×β (each column of x is a purported input/output for a

separate data-parallel unit), satisfies φ if (A ·Z)◦ (B ·Z) =C ·Z, where Z = (W,x,~1)>. In Verdict,

we additionally require IO consistency, that is, that the input of each data-parallel unit is the output

of the previous unit. Without loss of generality, we assume that for each i, |xi| is even and that the

first half of xi and the second half of xi are respectively the input and output of the ith data-parallel

unit. Formally, we require that

xi[`/2 :] = xi+1[: `/2] for all 1≤ i≤ β −1

x1[: `/2] = X[: `/2]

xβ [`/2 :] = X[`/2 :].

(3.1)

3 . 3 . 3 C O N S TA N T P R O O F S I Z E S A N D V E R I F I C AT I O N T I M E S

Phalanx builds on recent work [96] that enables the prover and the verifier to combine two N-sized

R1CS instances into a single N-sized instance with an O(1)-sized proof, such that the prover only

needs to prove the validity of the combined instance. Such a protocol is referred to as a folding

scheme and is used to realize incrementally verifiable computation [153]. We extend prior work [96]

to design a folding scheme for SIMD R1CS. Specifically, in each Verdict epoch, Phalanx’s prover
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and verifier fold a SIMD R1CS instance (encoding the statement proven in the epoch) into a running

instance. Below, we describe details of Phalanx’s folding procedure.

A Folding Scheme for SIMD R1CS. Consider a SIMD R1CS instance

φ = ((F ,A,B,C,m,n, `,β ),X).

While it is unclear how to fold two such instances in general, it is possible to fold two SIMD R1CS

instances with the same structure (that is, the same A,B,C matrices) by first “relaxing” the instance.

Specifically, we define a “slack” matrix E =~0m×β and scalar u = 1 and transform the satisfiability

check into checking

AZ ◦BZ = u ·CZ +E, (3.2)

where Z = (W,x,u)>.

More generally, a relaxed SIMD R1CS instance is a tuple

φ = ((F ,A,B,C,m,n, `,β ),X,E,u)

where F ,A,B,C,m,n, `,β ,X are defined as in the case of SIMD R1CS instances, E ∈ Fm×β and

u ∈ F . A witness (W,x) satisfies φ if

AZ ◦BZ = u ·CZ +E, (3.3)

where Z = (W,x,u)>, and x satisfies IO consistency with respect to X as defined in the case of

SIMD R1CS instances.

Now, given two relaxed SIMD R1CS instances φ1 = ((F ,A,B,C,m,n, `,β ),X1,E1,u1), and

φ2 = ((F ,A,B,C,m,n, `,β ),X2,E2,u2) defined over the same matrices A,B,C with corresponding

witnesses (W1,x1) and (W2,x2), the verifier can fold them into a new instance φ by randomly
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sampling r ∈ F and taking a random linear combination:

φ ← ((F ,A,B,C,m,n, `,β ),X1 + r ·X2,E1 + r ·T + r2 ·E2,u1 + r ·u2)

(W,x)← (W1 + r ·W2,x1 + r · x2)

where T ← AZ1 ◦BZ2 +AZ2 ◦BZ1− u1CZ2− u2CZ1 for Z1 ← (W1,x1,u1) and Z2 ← (W2,x2,u2).

Observe that the resulting instance has the same size and A,B,C matrices as the input instances but

different E matrix that depends on the witnesses of the input instances.

With textbook algebra, it is easy to show that (W,x) satisfies check (3.3) with respect to φ if

(W1,x1) and (W2,x2) satisfy check (3.3) with respect to φ1 and φ2 respectively. Conversely, as with

most batching techniques, soundness holds due to the randomness of the linear combination, which

ensures with high probability that if (W,x) satisfies check (3.3) with respect to φ then (W1,x1) and

(W2,x2) also satisfy check (3.3). The same reasoning holds for IO consistency: if matrices x1 and

x2 both satisfy their respective IO consistency checks with respect to X1 and X2, then a folded input

x← x1 + r · x2

for some randomly sampled r ←R F , also satisfies the IO consistency check with respect to X.

Conversely, if x satisfies the IO consistency check, then it must hold with high probability that both

x1 and x2 also satisfy the input consistency check with respect to X1 and X2.

For efficiency, the prover treats (E1,E2,W1,W2,x1,x2) as the witness and provides additively

homomorphic commitments to these values as part of the instance. Formally, the instance that both

the prover and the verifier hold is a committed relaxed SIMD R1CS instance: a tuple

φ = ((F ,A,B,C,m,n, `,β ),(X,x,E,u,W )

where (F ,A,B,C,m,n, `,β ),X,u are defined as in the case of relaxed SIMD R1CS instances, and

x,E,W are commitments. A witness E,W,x satisfies φ if E is a commitment to E, W is a commit-

ment to W , x is a commitment to x, and (W,x) is a witness that satisfies the relaxed SIMD R1CS

instance ((F ,A,B,C,m,n, `,β ),X,E,u).
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To efficiently fold two committed relaxed SIMD R1CS instances, the prover provides a com-

mitment to T , instead of sending it directly. Then, instead of computing (linearly sized) E, W , and

x, the verifier homomorphically computes commitments to E, W , and x as part of the new instance.

Because the folding scheme is public coin,5 we make it non-interactive via the Fiat-Shamir trans-

form [70]. If the commitments are constant-sized (as is the case with our choice, see §3.3.5), then

Phalanx achieves (per epoch) constant-sized proofs and verification times.

Observe that, as in the case of committed relaxed SIMD R1CS instances, the resulting instance

depends on the witnesses of the input instances. In the context of Verdict, this implies that if the

proving and verifying keys needed to demonstrate the satisfiability of the running instance depend

on the part of the instance that changes at each epoch (for example, E,W ), then new such keys

need to be generated at each epoch. This would be prohibitively expensive. To avoid this cost, in

Verdict, we follow prior work [96] to design a tranpsarent SNARK whose proving and verifying

keys only depend on the part of the instance that remains the same across epochs (that is, the size

of the instance, and the A,B,C matrices).

Bootstrapping and Inter-Epoch IO Consistency. At initialization, the running instance in Pha-

lanx is the committed relaxed SIMD R1CS derived from, first, relaxing the initial Verdict epoch

using default values of u and E (that is, u = 1 and E =~0m×β ) and, then, committing to it. For epoch

i (i≥ 2), the prover and the verifier use the folding scheme described above to fold the SIMD R1CS

instance of epoch i with the running instance. Note that the the instance that is folded into the

running instance is a SIMD R1CS instance, so it is first relaxed by using the default values of u and

E and, then, committed.

In addition to the running instance, the verifier maintains ylast ∈ F `/2, which represents the

output of the last SIMD R1CS instance that was folded. At initialization, ylast = X[`/2 :], where

X is the public input/output of the SIMD R1CS of the first Verdict epoch (the verifier additionally

5An interactive protocol is public coin if the verifier’s challenges are chosen uniformly at random.
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checks that X[: `/2] holds the well-known initial input; for example, in Verdict, X[: `/2] must hold

the Merkle root of an empty indexed Merkle tree of a pre-defined size). In epoch i (where i ≥ 2),

the verifier checks that ylast = φ .X[: `/2], where φ is the SIMD R1CS instance of epoch i, and then

after running the folding procedure, it updates ylast to φ .X[`/2 :].

3 . 3 . 4 P R O V I N G T H E S AT I S F I A B I L I T Y O F R U N N I N G I N S TA N C E

The previous subsection describes how Phalanx’s prover and verifier fold a SIMD R1CS instance

(of each epoch) into a running instance. We now describe how the prover produces a succinct proof

of the satisfiability of the running instance in each epoch. To accomplish this, Phalanx relies on

techniques from Spartan [135].

As background, Spartan [135] combines the sum-check protocol [108] with polynomial com-

mitments [90] to obtain a SNARK. Alternatively, Spartan [135] can be viewed as combining a

public-coin polynomial interactive oracle proof (IOP) [47] for R1CS with polynomial commit-

ments [105]. A polynomial IOP is an interactive proof [77] where in each round the prover sends

a polynomial as an oracle and the verifier may request an evaluation of the polynomial at a point

in its domain. A public-coin polynomial IOP can be compiled into a public-coin interactive argu-

ment of knowledge using a polynomial commitment scheme. Instead of sending a polynomial, the

prover sends a commitment to its polynomial, and when the verifier requests an evaluation of the

polynomial, the prover sends an evaluation along with a proof that the evaluation is consistent with

the prior commitment. The resulting interactive argument can then be turned into a SNARK in

the random oracle model [70]. We refer the reader to prior work [105, 135, 138, 148] for details.

Thaler [148] in particular provides detailed background as well as descriptions of several SNARKs,

including Spartan.

Our main contribution is to provide a polynomial IOP for (committed relaxed) SIMD R1CS,

adapting the polynomial IOP for R1CS from Spartan. To create a new polynomial IOP for com-

mitted relaxed SIMD R1CS, we first encode a committed relaxed SIMD R1CS instance as a set
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of polynomials. For this, we first interpret matrices and vectors as functions that map bits to ele-

ments of F . For example, a vector V of length m over F can be viewed as function with signature:

{0,1}logm→ F . We then take multilinear extensions of these functions. A multilinear extension of

a function is the unique multilinear polynomial whose evaluations match that of the function over

the domain of the function. For example, a multilinear extension of the aforementioned V viewed

as a function is a polynomial Ṽ : F logm→ F , where Ṽ (i) =V (i) for all i ∈ {0,1}logm.

Let Ã, B̃, C̃, represent the multilinear extensions of A,B,C respectively. Consider a purported

witness (W,E,x) ∈ (Fm−`−1×β ,Fm×β ,F `×β ). Let W̃ , Ẽ, x̃ denote the corresponding multilinear

extensions, and let Z̃ denote the multilinear extension of matrix Z = (W,x,~1)>. As part of the

running instance, Phalanx’s prover and verifier hold X, u, and commitments W , E, and x to the

prover’s witness W̃ , Ẽ, and x̃ respectively.

Given these polynomials, we define a polynomial F that evaluates to zero iff a given SIMD

R1CS instance is satisfiable. Let s = logm and c = logβ .

F(k, i) =
(

∑
j∈{0,1}s

Ã(i, j) · Z̃(k, j)
)
·(

∑
j∈{0,1}s

B̃(i, j) · Z̃(k, j)
)
−

u·
(

∑
j∈{0,1}s

C̃(i, j) · Z̃(k, j)
)
+ Ẽ(k, i)

(3.4)

Lemma 1. If (W,x,E) is a satisfying assignment to a committed relaxed SIMD R1CS instance

((F ,A,B,C,m, n, `,β ),(X,x,E,u,W )), then F(k, i) = 0 for all k ∈ {0,1}c and i ∈ {0,1}s.

It is unclear how the prover can efficiently prove that F evaluates to zero over the Boolean

hypercube defined by k and i, so we instead define a multilinear polynomial Q:

Q(t1, t2) = ∑
k∈{0,1}c

∑
i∈{0,1}s

F(k, i) · ẽq((k, i),(t1, t2))

where ẽq is the multilinear extension of the function eq defined as follows: ∀x,y over the domain of

eq, eq(i, j) = 1 if i = j and 0 otherwise.
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Due to the multilinearity of Q and the observation that if Z is a satisfying witness, then Q(k, i) =

0 for all k∈ {0,1}c and i∈ {0,1}s, we have that Q is the zero polynomial iff Z is a satisfying witness.

Therefore, it is sufficient for the prover to prove Q(τ1,τ2) = 0, where τ1,τ2←R F are chosen by

the verifier. Furthermore, the instance to be proven is in a form suitable for the application of the

sum-check protocol [108]: an interactive proof system for proving T = ∑i∈{0,1}s G(i), where G is

an s-variate multivariate polynomial over F and T ∈ F .

Phalanx’s interactive argument proceeds as follows:

1. The verifier sends (τ1,τ2)←R F c×F s.

2. The prover and the verifier use the sum-check protocol to reduce the task of checking

Q(τ1,τ2) = 0

to checking

F(rk,ri) = e

where (rk,ri) ∈ F c+s are chosen by the verifier over the course of the sum-check protocol and

e ∈ F .

3. The prover and the verifier use the sum-check protocol to reduce the task of checking

F(rk,ri) = e

to checking claimed evaluations of Ã, B̃,C̃ at (ri,r j), Ẽ(rk,ri), and Z̃(rk,r j), where r j ∈ F s is

once again sampled by the verifier during the sum-check protocol. The first three are evaluated

by the verifier locally (or by using a (sparse) polynomial commitment scheme [135]).6 The

prover proves evaluations of Ẽ, W̃ , and x̃. Below, we show how the verifier can efficiently

evaluate Z̃(rk,r j) using an evaluation of W̃ and x̃.
6Even in the case the verifier evaluates these polynomials locally, the cost is O(n) and is independent of β , whereas

without a sparse polynomial commitment scheme, Spartan would require O(n ·β ) time.
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Computing Z̃(rk,r j). WLOG, assume that for each k, |W [k]|= |x[k]|+1 = m/2. For all 0≤ k < β

and 0≤ j < m, we have

Zk·m+ j =


x[k ·m/2+ j/2], if j < m/2

W [k ·m/2+ j/2], otherwise
(3.5)

Let b be the binary representation of (k ·m+ j). We use b[i] to refer to the bit i of b with b[0]

corresponding to the MSB. Then by equation (3.5), we have that ∀b ∈ {0,1}c+s

Z[b] =


x[b[0,1, . . . ,(c−1),(c+1), . . . ,(c+ s)]], if b[c] = 0

W [b[0,1, . . . ,(c−1),(c+1), . . . ,(c+ s)]], otherwise

Thus, for the multilinear extensions of Z, W and x:

Z̃(r) =(1− r[c]) · x̃(r[0, . . . ,(c−1),(c+1) . . .])+ r[c] ·W̃ (r[0 . . .(c−1),(c+1) . . .])

Thus, the prover sends an evaluation of W̃ and x̃ at point r′ = r[0, . . . ,(c−1),(c+1), . . .] along with

a proof of correct evaluation. This aids the verifier with completing the final step of the interactive

argument depicted above.

Proving IO Consistency Checks. The prover can send x and the verifier can check: (1) x is

consistent with the commitment x it holds as part of the running instance; (2) x satisfies the desired

IO consistency; and (3) x is consistent with the public input/output X in the running instance.

However, this incurs O(β ) proof sizes and verifier times. Instead, Phalanx does the following: At

the time of folding, instead of committing to x, the prover commits to a “deduplicated version” of

x (which obviates the need to prove check (2)). The prover then uses a simplified Spartan to prove

the knowledge of x such that checks (1) and (3) hold; the prover also proves the evaluation of

the multilinear extension of x necessary to compute Z̃(rk,r j) described above. The proof sizes are

O(log(β )) and verification times requires O(β ) finite field operations. Using sparse polynomial

commitments from Spartan [135], the verification times can also be made O(logβ ) cryptographic
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operations; however, doing so provides benefits only when β is large (for instance, when β > 215).

3 . 3 . 5 P H A L A N X ’ S C O M M I T M E N T S C H E M E A N D P H A L A N X - L A Z Y

Phalanx needs a polynomial commitment scheme. For this, Phalanx uses Dory [103], which re-

sults in the following asymptotics. Phalanx produces O(1)-sized proofs and verification times for

each Verdict epoch (§3.3.3). Furthermore, for proving the running instance (§3.3.4) with β data-

parallel units each of size c, Phalanx produces O(log(c ·β ))-sized proofs that can be verified in

O(log(c ·β )) time.

Another commitment scheme choice is Hyrax-PC [157]. With this choice, Phalanx provides

O(1)-sized proofs and verification times for each Verdict epoch (§3.3.3), as before. However, it

provides a different tradeoff between the proving costs and verification costs of running instances.

Specifically, in the context of Verdict, Phalanx with Hyrax-PC has ≈5× lower proving costs than

Phalanx with Dory. However, proofs of running instances are O(c ·β )-sized and verifying them

takes O(c ·β ) time, which is high. So, they can be verified only infrequently. Given this, we refer

to this variant of Phalanx as “Phalanx-lazy” since it provides deferred guarantees meaning that the

guarantees hold only when clients, in some future epoch, check a succinct proof produced by the

prover.

3 . 4 I M P L E M E N TAT I O N A N D A P P L I C AT I O N S

We implement Verdict in about 7,400 lines of Rust. This consists of an implementation of the

Verdict service, which uses Redis [9] to store its state (a map from labels to append-only hashchains

and an indexed Merkle tree that in turn stores a derived dictionary), and a client library that ex-

poses VerifyUpdates and VerifyLookup procedures to verify proofs produced by the service. This is

about 3,600 lines of Rust. We implement Phalanx as a library by extending libSpartan [10] and

Xiphos [138] with about 6,000 lines of Rust.
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Implementing Verdict requires constructing a SIMD R1CS instance that verifies a batch of

indexed Merkle proofs. However, libSpartan provides only a low-level API that accepts R1CS

matrices, which is unusable for more complex applications such as Verdict. We address this by

leveraging bellman [2, 3], which provides R1CS “gadgets” for hash functions and other primitives

that can be composed and extended to build higher-level apps. Specifically, we implement an

adapter that lets a programmer compose and use existing bellman gadgets with libSpartan; this is

about 1,000 lines of Rust. For the hash function in Verdict’s SIMD R1CS, we use MiMC [17], a

SNARK-friendly hash function.

Application: Key Transparency. As a concrete application of Verdict, we design Keypal, a public-

key directory, where the service’s state is a label-value map in which labels are client identifiers

(such as email addresses) and values are the set of public keys associated with the identifier. Keypal

supports four types of requests from clients: (1) register a new id and associate an initial key, (2) add

a new key to an existing id, (3) revoke a key associated with an existing id, and (4) look up the set of

keys associated with an existing key. For adding or revoking keys, Keypal uses a simple policy that

such requests must be digitally signed by one of the existing, unrevoked keys associated with the

identity. Keypal’s implementation uses Ed25519 signatures [8].

3 . 5 E VA L U AT I O N

Our principal experimental questions are:

• What is Verdict’s performance compared to prior work?

• How do Verdict’s techniques improve its costs?

We run our experiments on Azure Standard F64s_v2 (64 vCPUs, 2.70 GHz Intel(R) Xeon(R)

Platinum 8168, 128 GB RAM) running Ubuntu 18.04. However, we only utilize one CPU core in

our experiments.
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To summarize our results, Verdict’s lookup proofs (a few thousands of bytes) are shorter than

its baselines and their verification is fast (a few milliseconds of CPU-time). Producing succinct

proofs for updates with Verdict takes at most a few minutes (on a single CPU core) even when

the service needs to apply thousands of updates on dictionaries with a million labels. Additionally,

we find that Verdict’s techniques improve over the proving costs of Spartan [135] by an order of

magnitude. Together, Verdict achieves about 4 updates/sec/CPU-core and about 2 inserts/sec/CPU-

core, with a per-epoch (amortized) proof size of 651 bytes and a verification time of about 3 ms (for

a dictionary with 220 label-value tuples); for the same workload, Verdict-lazy achieves about 18–22

updates/per/sec/CPU-core and 9–11 inserts/sec/CPU-core, with a per-epoch proof size of 290 bytes

and a verification time of 161µs at the cost of deferred guarantees. This is over an order of magnitude

improvement over prior state-of-the-art, general proof systems for stateful services [104, 136].

3 . 5 . 1 C O M PA R I S O N W I T H P R I O R W O R K

We compare Verdict and Verdict-lazy with three baselines and use Keypal as the concrete applica-

tion.

The first baseline we compare with is AAD [150], a prior transparency dictionary with asymp-

totic and security properties similar to Verdict. Unlike Verdict, AAD requires a trusted setup.

The second baseline we use is a system in which the service organizes its dictionary in a Merkle-

Patricia tree. In epoch t, the prover sends a commitment Ct to its updated state and the following:

for each update, the label, the new value, the old value (if it exists), and a membership proof. The

verifier uses the membership proof to verify that the old value (or its absence) is consistent with

Ct−1 and the new value is consistent with Ct . We call this baseline Naive.

The third baseline we use is an optimized version of the Naive baseline in which the service

applies a batch of updates at once, and instead of producing a separate proof for each update, it

merges the individual proofs and deduplicates them when possible. We call this baseline Naive++.

Note that Naive and Naive++ are more efficient than prior work such as SEEMless [51], which
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additionally protects privacy, so the service cannot directly send Merkle proofs to clients and hence

incurs additional expense. Similarly, other privately-verifiable works [85, 115] when transformed

to produce publicly-verifiable proofs would incur more expense than Naive and Naive++.

We are interested in the performance of two operations: (1) lookups, and (2) a batch of in-

serts/updates. For lookups, our evaluation metrics are: (a) the size of a lookup proof; and (b) the

verifier’s cost of verifying a lookup proof. For updates, our metrics are: (a) the prover’s cost of

processing a batch of updates and producing an update proof; (b) the size of an update proof; and

(c) the verifier’s cost to verify an update proof. We do not focus on the cost of producing a lookup

proof since in Verdict and the naive baselines, the cost is based purely on the performance of the

underlying storage system used to maintain state (recall that in Verdict, a lookup proof is produced

by retrieving appropriate nodes in an indexed Merkle tree stored in a commodity storage service).

Verdict supports thousands of lookup requests per second on a commodity VM, and it can be scaled

up with standard systems techniques.

To measure the performance of AAD [150], we use its C++ implementation [6]. Unfortunately,

it only supports small dictionaries (for example, 8,192 label-value tuples); for larger dictionaries,

the prover time is several hours or more, so we use results from smaller experiments and the authors’

cost models to extrapolate its costs for larger dictionary sizes. Furthermore, we assume that there is

only one value associated with the requested label as the lookup proof sizes and verification times

grow with the number of operations associated with the requested label. For updates/inserts, AAD’s

performance depends on the number of trees in the forest that comprises the directory, so for a

desired dictionary size, we measure the cost of doubling the dictionary and compute the amortized

per-operation cost (this is optimistic for AAD).

For the naive baselines, we report costs based on microbenchmarks and cost models. We assume

that the Merkle-Patricia trees use SHA-256 for the hash function.
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Figure 3.7: Proof sizes and verification times for lookups, with varying number of labels in a dictionary. Results for
Naive++ and Verdict-lazy are the same as the results for Naive and Verdict respectively, so we do not depict them.

Results for Lookups. Figure 3.7 depicts our results. First, Verdict provides the shortest lookup

proofs. Verdict has 28–29× smaller proofs than AAD. Proofs in the Naive baseline are ≈2.5×

larger than Verdict’s proofs because each membership proof in a Merkle-Patricia tree contains more

data in intermediate nodes.

Second, Verdict’s lookup proof verification times are not the fastest, but they are fast: 2.5–5 ms

for Verdict and tens of microseconds for the naive baselines. This is because the naive baselines

use SHA-256, whereas Verdict uses a SNARK-friendly hash function, which is more expensive on

x86. However, Verdict’s verification times are more than 80× cheaper than AAD’s.

Results for Inserts/Updates. We experiment with Verdict and its baselines using β = 128 with

varying number of labels in the dictionary. To demonstrate scalability, we also experiment with

varying batch sizes for a dictionary with 224 labels. For the latter large-scale experiments, we use

a different VM with larger RAM, which is an Azure Standard E64-16ds_v4 with 504 GB RAM

(we use only one CPU core and its performance is identical to that of the VM listed earlier); also,

Verdict uses < 50% of the available memory in all experiments.

Figure 3.8 depicts our results. We find the following.

Verdict’s per-epoch constant-sized proofs are 651 bytes and take about 3 ms to verify. Verdict’s

logarithmic-sized proofs for the running instance are 26–32 KB for a dictionary with 224 labels,
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Figure 3.8: Per-epoch prover time, proof sizes, and verifier time for updates/inserts. The first row depicts costs for a
batch size of β = 128 with varying number of labels in a dictionary (n), and the second row depicts costs for n = 224

and varying β . For Verdict, the depicted prover time includes the cost of producing both a constant-sized proof and a
logarithmic-sized proof, while the depicted proof sizes and verification times are for the constant sized proofs (since
clients can amortize the the cost of verifying logarithmic-sized proofs); similarly, for Verdict-lazy, we depict per-epoch
costs; §3.5.1 provides details of amortization.

when the batch size varies from β = 27 to β = 213; verifying these proofs takes 44 ms for β = 128

and 77 ms for β = 213.

Recall that Verdict’s clients only need to verify the logarithmic-sized proof of the most recent

epoch (before issuing lookup operations). However, we find that, for a dictionary of size 224, even

if clients check these proofs in every epoch, Verdict’s clients are more efficient than the ones of

Naive and Naive++ (which employ a fast hash function) as long as β ≥ 210. Furthermore, at this

configuration, Verdict’s proof size is over an order of magnitude shorter. Specifically, it is ≈30 KB

whereas Naive’s proof size is≈2.4 MB and Naive++’s proof size is≈1.4 MB. Verdict’s logarithmic-

sized proofs are concretely larger than AAD’s, but Verdict’s clients can incur lower amortized proof

sizes and verification times (for instance, if clients verify these logarithmic-sized proofs after 14

epochs when the batch size is 213). For prover times, Verdict is slower than both Naive and Naive++,

but Verdict is faster than AAD by 2–3 orders of magnitude.
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Verdict-lazy produces shorter per-epoch proofs than Verdict: proofs are 290 bytes and verifica-

tion times are 161µs. However, generating proofs for running instances is over 3× slower than in

Verdict (for example, for dictionaries with 224 labels and β = 128 Verdict-lazy takes takes 303 s

whereas Verdict takes 69 s). Finally, verifying these proofs is slower than in Verdict by over an

order of magnitude: for the aforementioned workload, the verifier under Verdict-lazy takes 29s. So,

unlike Verdict, Verdict-lazy needs hundreds of epochs to achieve faster verification times than the

naive baselines.

Storage Costs. Compared to a baseline that stores only a dictionary, Verdict incurs ≈2× overhead

from maintaining an indexed Merkle tree. This overhead is similar to those of Naive and Naive++,

but much smaller than AAD, Merkle2, CONIKS, or SEEMless. Concretely, for a dictionary with

220 labels, Verdict uses 128 MB to store the indexed Merkle tree. Moreover, Verdict maintains a

hashchain for each label. Each node in the chain is 167 bytes and contains an operation (49 bytes),

a signature (78 bytes), and the hash of the previous node (40 bytes). Finally, for the service to

produce proofs, it stores SNARK parameters. Phalanx’s parameters are smaller than Phalanx-lazy’s

parameters, both asymptotically and concretely. Concretely, for a dictionary with 224 labels and

β = 1024, the parameters are about 103 MB under Phalanx and 2 GB under Phalanx-lazy.

3 . 5 . 2 I M P R O V E M E N T S F R O M V E R D I C T ’ S T E C H N I Q U E S
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Figure 3.9: Prover time, proof sizes, and verifier time under Phalanx and its baseline Spartan [135] for a SIMD R1CS
instance with varying number of insert/update operations on a dictionary with 220 labels (see the text for details).
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Phalanx-eager Phalanx

Prover time 72 s 168 s
Proof size (per-epoch) 26 KB 651 bytes
Verifier time (per-epoch) 44 ms 3.4 ms
Proof size (fixed) N/A 26 KB
Verifier time (fixed) N/A 44 ms

Figure 3.10: Performance of Phalanx-eager and Phalanx for proving a batch of 128 insert/update operations on a
dictionary with 224 labels. See the text for details.

Benefits of Phalanx’s polynomial IOP for SIMD R1CS. We consider a SIMD R1CS instance

where each sub-circuit performs one update/insert operation on a dictionary with 220 labels. We

measure the performance of Phalanx with a varying number of update/insert operations, and our

performance metrics are: (1) the prover time, (2) the proof size, and (3) the verifier time. Our

baseline is Spartan [135]. To focus performance on the polynomial IOP, we configure Phalanx to

use the same polynomial commitment scheme as Spartan, which is Hyrax-PC configured to produce

O(
√

m)-sized commitments for m-sized multilinear polynomials.

Figure 3.9 depicts our results. We find that Phalanx is more efficient than Spartan, with Phalanx’s

prover faster by over an order of magnitude compared to Spartan. Prior to this work, Spartan offers

the fastest zkSNARK [135], so for SIMD computations, Phalanx has the fastest prover.

Cost and benefits of Phalanx’s folding scheme. To evaluate the benefits of Phalanx’s folding

scheme, we consider a variant of Phalanx that proves SIMD R1CS instances but does not employ

Verdict’s folding scheme. We refer to this variant as “Phalanx-eager”. Asymptotically, for an N-

sized SIMD R1CS, the prover times are O(N) under both Phalanx and Phalanx-eager; the proof

sizes and verifier times are O(logN) under Phalanx-eager whereas they are O(1) under Phalanx.

For proving running instances, Phalanx however produces O(logN)-sized proofs that take O(logN)

time to verify, but this cost can be amortized across epochs at each client’s discretion (§3.3.5).

Figure 3.10 depicts our results for applying a batch of 128 inserts/updates on a dictionary with

224 labels (the relative results for other dictionary sizes and batch sizes are similar). Since Phalanx
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must commit to an additional vector T (§3.3.3), its prover incurs higher costs than Phalanx-eager by

about 2.3×. In exchange, the per-epoch verifier time and proof sizes are both lower by over an order

of magnitude under Phalanx compared with Phalanx-eager. Even when accounting for fixed costs

incurred by Phalanx, Phalanx still incurs lower verifier costs and proof sizes than Phalanx-eager as

long as the fixed costs are amortized over ≥ 2 epochs.
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4 | K A R O U S O S

This chapter studies the problem of verifying outsourced event driven web applications. To illustrate

the problem, consider the following realistic scenario.

Cam has source code for a web application (for example, written in Node.js), which Cam has

written or otherwise trusts. Cam deploys that code on a remote server (for example on AWS, Azure,

or GCP). But Cam doesn’t trust the server to execute the application faithfully, meaning according

to its code (see Chapter 1 for sources of unfaithful execution). How can Cam get assurance that the

intended application is executing faithfully?

Orochi [146] explicitly targets Cam’s scenario. In Orochi, a verifier (a machine under Cam’s con-

trol) performs a comprehensive audit. The verifier is given as ground truth a trace [146, §1,§4.1,§7]

of exactly the inputs to, and outputs from, the server (see also [26, 27]). Then, the verifier re-executes

from the inputs in the (trusted) trace, checking that the re-executed outputs match the outputs in

the trace. Crucial to this process is (untrusted) advice that the verifier receives from the server. This

advice enables the verifier to accelerate re-execution versus naive replay, by re-executing requests

in suitable batches, deduplicating instructions that are identical across the batch. The advice also

helps the verifier make sense of concurrent executions.

On the one hand, Orochi inspires us; we borrow the setup just described. On the other hand,

Orochi has a restricted execution model, which limits applicability to a small subset of web appli-

cations. First, each client request in Orochi must be handled within a single execution context, as

in PHP. This rules out web applications that use event-driven frameworks such as Tornado [13],
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Node.js [14], and Phoenix [15]. Without taking a position in the eternal events-versus-threads de-

bate, we note that most modern web application frameworks are written in the event-driven style.

Second, Orochi assumes that little state is shared between execution contexts; if more state were

shared, Orochi’s protocols would require the server to send an impractically large quantity of advice

to the verifier. Third, external state in Orochi, such as a database, is assumed to meet the strong

condition of strict serializability [123]; yet, many external data stores default to weaker isolation

levels and may not even offer strict serializability [30].

Addressing these restrictions introduces new technical problems. Defining and solving them

is the work of this paper, which we do in the context of a system called Karousos. Like Orochi,

Karousos is a record-replay system [56, 57, 65] (§2.3). Karousos makes the following contributions:

A new record-replay technique for event-driven systems, which balances re-execution through-

put and server logging. The more the verifier can batch requests and deduplicate instructions, the

higher the throughput of re-execution. But the more batching is permitted, the more the re-execution

can be reordered versus the original execution. And the more reordering, the more the server has to

log and transmit to the verifier (in the advice) to facilitate faithful re-execution.

Karousos shifts the tradeoff curve and identifies a point on the shifted curve, using several

interlocking ideas. First, Karousos’s verifier batches together requests that induce the same trees

of events (§4.3.1), regardless of the order in which the corresponding handlers were originally

executed. Second, Karousos introduces a notion of R-ordered (§4.3.2): two dependent operations

during execution (for example, a write of a program variable followed by a read of that variable)

are R-ordered if they are guaranteed to be re-executed in that same order. The server then logs only

operations that are not R-ordered. Third, for unlogged operations, the verifier consults a version

history that it constructs while re-executing (§4.3.2).
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Ensuring that re-executions are sensible. Without further mechanism, a misbehaving server

could make the verifier accept executions (as embodied in traces) that are inconsistent with having

executed the original code (§4.3.3, §4.3.4). At a high level, Karousos handles server misbehavior by

requiring that the order in which requests are served, program variables are accessed, and database

accesses are issued are consistent with each other—and with the program. Doing so requires care

because the verifier must check consistency across three sources of ordering, only one of which

(the trace) is trusted; the others must be validated with specific kinds of crosschecks or through the

course of re-execution.

At a lower level, Karousos uses several techniques. For program variables, the Karousos ver-

ifier reconstructs an alleged partial order of variable accesses while re-executing (§4.3.3). For

databases (§4.3.4), the principal correctness conditions are different isolation levels (serializability,

read-committed, and so on). On the one hand, there are algorithms for testing isolation, notably

Adya’s work [16]. On the other hand, these works are predicated on the assumption that database

history and internal state is available to the verifier. The Karousos verifier runs Adya’s algorithms

against an alleged history, thereby contingently justifying that history, and then ensures that the

contingent history is consistent with the rest of the execution.

Proof of correctness. We prove (Appx. B) that Karousos’s algorithms are complete (the verifier

accepts faithful executions) and sound (the verifier rejects unfaithful ones) (§4.1.1).

Implementation. Our implementation of Karousos supports web applications that are written in

Node.js and use MySQL as a transactional key-value store. As we explain later (§4.4), developers

wanting to use our implementation need to annotate portions of their code. Our implementation

supports a core of JavaScript, disallowing certain other constructs.

We have evaluated Karousos on three model web applications (§4.5). For realistic workloads, a

Karousos application has response latencies that are between 1.4–3.5× higher than an unmodified
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baseline; we believe this is a reasonable price to pay for execution integrity. On traces with more

than 50 requests, the Karousos verifier is between 1.3–14× faster than an alternative that sequen-

tially re-executes requests. The advice produced by the Karousos applications are of reasonable size

(200KB to 6MB for 100 requests). Finally, Karousos’s core techniques are key to the re-execution

throughput and the manageable advice size.

These results are encouraging, but Karousos has clear limitations. First, JavaScript workers

are disallowed; this is not fundamental. More fundamentally, timers are disallowed, range queries

on transactional state are not supported, and snapshot isolation is not supported. Addressing these

restrictions would require extending our algorithms and proofs; we leave this to future work. Finally,

at the level of architecture, Karousos verifies only a single web application, not its interactions with

other server-side components such as other web services (at least not in a verifiable way).

The bottom line, however, is that Karousos takes a big step forward: it shows how to get

assurance about the execution of event-driven web applications in realistic scenarios.

4 . 1 S E T U P A N D B A C K G R O U N D

4 . 1 . 1 P R O B L E M : C O M P R E H E N S I V E S E RV E R A U D I T

Here, we define our problem abstractly, to showcase the challenge while avoiding distracting details.

Later (§4.4), we will translate it to event-driven web applications. Our presentation is inspired by,

and has some textual debts to, Orochi [146, §2].

Figure 4.1 depicts the problem. Some principal (like Cam) deploys a program P on an untrusted

server (for example, running on a cloud platform). Clients make requests to the server. Requests

can be concurrent with each other, and P can be a concurrent program. A response is allegedly the

result of invoking P against the corresponding request.

In this setting, the principal has access to a trace of the actual requests and (possibly unfaith-
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Figure 4.1: The problem: efficiently auditing an untrusted server.

ful) responses. The trace is provided by a collector that is computationally less demanding than

the server, and which is assumed to work correctly (see Orochi [146, §1,§4.1,§7], Dog [26], and

EAR [27]) for deployment scenarios for trace collection). We can think of the trace as the ground

truth record of what enters and leaves the server.

The server is supposed to follow a defined reporting procedure during execution, which produces

advice. However, the server is untrusted and could either decline to produce advice, or generate

adversarial advice designed to deceive the system.

Using the (ground truth) trace and the (untrusted) advice, a verifier that the principal controls

periodically conducts an audit, to determine whether the responses in the trace were in fact produced

by executing P on the requests in the trace. A constraint is that the (local) verifier has much less

computational capacity than the (remote) server. Likewise, the verifier and server are connected by

a network with limited capacity. The verifier and the advice should satisfy these properties:

• Completeness. If the server behaved during the time period of the trace (which includes collecting

advice honestly), then the verifier must accept the given trace.

• Soundness. The verifier must reject if the server misbehaved. Specifically, the verifier accepts

only if there is some schedule S of (possibly concurrent) executions, such that: (a) executing the

given program against the inputs in the trace, while following S, reproduces exactly the respective
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outputs in the trace, and (b) S is consistent with the ordering in the trace. (Appendix B.2 states

Soundness precisely.) This property means that the server can pass the audit only by behaving in

a way that is, to external observations, indistinguishable from actually executing the program on

the received requests.

• Efficiency. This means several things in our context. (a) The verifier, being computationally

weaker than the server, needs to perform less computation than the server; in particular, the

work of the verifier should be computationally less costly than naively re-executing each request

in the trace one-by-one. (b) The advice sent from the server to the verifier needs to be kept

small. (c) Advice collection should not significantly impact the server’s response latency. We are

willing to tolerate some computational overhead at the server, as we expect auditability to cost

something.

4 . 1 . 2 O U R S TA R T I N G P O I N T : O R O C H I

As stated in the introduction, Orochi [146] re-executes all requests in a trace, checking that the

produced responses match the outputs in the trace.

Orochi addresses the challenge of a computationally limited verifier by exploiting an aspect

of web applications: many executions follow the same code paths [92, 146]. The Orochi server is

supposed to track control flow, and then specify (in the advice) control flow groups, meaning which

requests have the same control flow as each other. The verifier then re-executes a single control

flow group as a batch, using SIMD-on-demand. If an instruction has the same operands across a

batch, the verifier re-executes that instruction only once, and otherwise executes the opcode for

each request in the batch. This technique is facilitated by a datatype called a multivalue, which

collapses when all of the entries in the multivalue are identical, and expands into a vector when

needed. If the execution within the group diverges, the verifier rejects.

Given batching (which can group together a later request with an earlier one), a read operation

57



may be re-executed before the dictating write operation is re-executed. Consequently, the advice

should tell the verifier how to re-execute the read. Yet, the advice is untrusted; it could be wrong.

This is one way in which Completeness, Soundness, and Efficiency are in tension: the advice is

necessary (for Efficiency and Completeness), but possibly wrong (threatening Soundness).

Orochi’s solution includes a technique called simulate-and-check. The advice allegedly contains,

for each object that is shared among requests, a linear log of the values read and written. When

re-executing a read operation, the verifier feeds that operation from the most recent write, according

to the log. When re-executing a write operation, the verifier checks that the value produced by

re-execution matches what is in that object’s log, thereby validating the values that have fed, or will

feed, reads.

Despite this technique, the server could still arrange responses and advice to cause the verifier

to accept bogus executions [146, §3.4]. Consequently, another technique in Orochi is consistent

ordering verification, in which the verifier builds a graph that includes every operation, request

arrival, and response delivery, with edges indicating various kinds of order (time-order between

requests, program order between operations, operation order from the logs). The verifier then insists

that the graph is acyclic.

Orochi’s techniques provably result in Completeness and Soundness. However, Orochi makes a

number of simplifying assumptions. First, although the server is concurrent, requests themselves

are handled mostly in isolation, in straight-line fashion (with the unrealistic assumption that when

a response is delivered, the request has no further effect). This rules out many web application

architectures and all event-driven frameworks. Second, Orochi’s approach to logging would lead

to unacceptably verbose logs (contra the Efficiency goal; §4.1.1) in a setting where a lot of state

is shared between discrete execution units (for example, program variables that are accessed by

multiple event handlers). Third, external state such as databases must be strongly consistent, and

must be accessed synchronously; this too rules out many deployment scenarios. The sections ahead

delve into the technical work required to relax these assumptions.
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4 . 2 E X E C U T I O N M O D E L

We define an execution model, KEM, for unmodified concurrent web applications. In subsequent

sections we use KEM to describe our core algorithm; the proofs presented in the Appendix also

build on KEM. KEM is intended to capture the semantics of Node.js programs, and it does not

model the behavior of a database or external state store. We defer a discussion of how Karousos

models and handles interactions with databases to §4.3.4. Furthermore, KEM models a runtime

that can have multiple concurrent threads executing at a time. This is more general than the Node.js

runtime (and indeed other JavaScript runtimes) which is single-threaded, allowing us to minimize

assumptions about the runtime.

KEM models the state of a program as a set of variables, a set of zero-or-more pending events

and a set of zero-or-more event handlers. Program code can read or update any in-scope variable.

However, similar to JavaScript, functions and closures capture variables by reference. Consequently,

all variables in scope when a function or closure is defined are in scope for the body of the function;

even local variables might be accessed from multiple functions. As a result, a variable might be

concurrently accessed and updated by multiple concurrent threads. KEM assumes all accesses are

sequentially consistent [98]. This assumption reflects reality: existing JavaScript runtimes, including

Node.js, are single-threaded and most extant JavaScript code is written assuming sequentially

consistent access.

Events in KEM are associated with a name and a type. Multiple events of the same type can

occur during execution, and the set of pending events can contain multiple events of the same type

at a time. Events can be added to the pending events by the runtime or by user code. The runtime

adds I/O events, including ones for new user requests or when a database query has finished running.

Program code can add to the set of pending events by calling a designated emit function. Events

are removed from the set of pending events by the runtime’s dispatch loop: each iteration of the

loop non-deterministically selects an event from the set, removes it from the set, and then uses the
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(r0,h0) (r0,h1)(r0,h2)

(r3,h0) (r3,h3)(r3,h1)

(r2,h0) (r2,h2)(r2,h1)
function h0(arg) {
  // handler for request
  emit(e1, arg);
  if (arg % 2 == 0)
     emit(e2, arg);
}

function h1(arg) {
  // handler for e1
  if (arg % 7 == 0)
     emit(e3, arg)
}

function h2(arg) {
  // handler for e2
  // …
}

function h3(arg) {
  // handler for e3
  // …
} Time

[r0, r2]

[r1]

h0 h2h1

Batch Re-execution Order

h0 h1

(a) Application pseudocode (b) Request execution timeline. (c) Re-execution batches and ordering.

(r1,h0) (r1,h1)
[r3] h0 h1 h3

Figure 4.2: Grouped re-execution in Karousos: (a) Pseudocode for a simple application; (b) An example execution
trace. A directed arrow between handlers h0 and h1 indicates that h0 ≺A h1, that is, the arrows represent the activation
partial order; (c) Re-execution groups and the order in which groups are re-executed. Observe that requests r0 and r2
are batched together for replay despite executing handlers h1 and h2 in different orders.

selected event’s type to identify and call the appropriate event handlers.

As in JavaScript, KEM event handlers are closures. Program code can add and remove handlers

by calling designated register and unregister functions. Both functions take as input an event type

and a closure, which we sometimes refer to, loosely, as the function associated with the event. Event

handlers in KEM can perform computation, modify in-scope variables, emit events and register

or unregister handlers. KEM assumes that event handlers run to completion and that a handler’s

execution is not interrupted when it emits an event. Our exposition uses the term handler activation

to refer to the act of the runtime’s dispatch loop calling an event handler.

Programs in KEM begin execution by calling a designated initialization function. This models

the fact that JavaScript programs, including Node.js programs, generally place initialization code

outside of a function body. We assume that the initialization function is deterministic (and later rely

on this assumption for replay fidelity).

Activation partial order. The execution model described above induces a partial order on handler

activations, A. Given a handler activation h0, define the relation activator(h0) = h1 if and only

if h0 emitted the event e resulted in the activation h1 or h0 issued the I/O request or database

requests whose completion resulted in h1’s activation. Observe that our execution model ensures

that activator(h) 6= h and that a handler activation h has at most one activator. Furthermore, our

definition of the activation relation implies that any handler activation h without an activator (that
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is, 6 ∃h′ s.t. activator(h) = h′) must have been run in response to a user request. For analytical

convenience, we treat the initialization function’s execution as a handler activation I. Furthermore,

we use I as the activator for all user request activations. Thus any handler activation h 6= I has a

unique activator(h) and activator(h) 6= h. Given this definition of the activator relation, we define

the partial order A as the transitive closure of the activator relation. That is, we say (h,h′) ∈ A if

activator(h′) = h or there exists h = h0,h1,h2, . . . ,hn = h′ such that 1≤ i≤ n, activator(hi) = hi−1.

We sometimes write (h,h′) ∈ A as h≺A h′.

One can visualize each user request activation as inducing a tree of handlers, with edges given

by the activator relation.

Related work. KEM extends λJS [79] which provides a semantic model for JavaScript. While λJS

does not model events, prior work [109] shows extensions that model several event-driven frame-

works. Similarly, KEM extends λJS by adding constructs for registering and unregistering event

handlers (or listeners) and for emitting events. Unlike these works, KEM does not make assump-

tions about the order in which event handlers are executed nor about the number of concurrently

executing event handlers. As a result, KEM models a more general execution environment. Thus,

our algorithms, which are designed to check execution integrity for all KEM executions, can be

used with other languages and event-driven frameworks. Furthermore, this generality means that

Karousos can be used even with future Node.js runtimes that adopt different event dispatch loops

or use multiple threads.

4 . 3 AU D I T I N G E V E N T- D R I V E N S E RV E R S

As in Orochi [146] (§4.1.2), the Karousos server collects advice that tells the verifier how to re-

execute groups of requests simultaneously, which the verifier does using the SIMD-on-demand

technique (§4.1.2). Karousos must address a key question: how should it group code to be re-
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executed? There is an essential trade-off: the more batching that is permitted (and hence the more

opportunity for re-execution efficiency), the more there can be reordering in re-execution (relative

to the original execution). However, the more reordering, the more the server has to collect advice

to facilitate faithful replay; for example, if a read of a program variable is re-executed before the

dictating write for that read, then the re-executed read would have to be somehow fed from advice.

To highlight the trade-off, consider two extremes. Karousos could conceivably chop each re-

quest into small pieces, and re-execute structurally identical basic blocks from multiple requests

simultaneously; this would require logging enough information so that each basic block has enough

“context” to be re-executed faithfully. At the other extreme, Karousos could group together only

identical requests that invoke identical handlers in the identical order and do not share state with

each other; this would require essentially no logging.

Karousos aims for the midpoint of this trade-off: we want to enable a lot of reordering (to expose

batching opportunities) while controlling the burden of logging. In the remainder of this section, we

deal with each side of this issue: we describe the choice of batching granularity (§4.3.1) and how

Karousos facilitates faithful replay of operations on program variables (§4.3.2), assuming an honest

server. We then describe how Karousos defends against an untrusted server (§4.3.3). Section 4.3.4

extends the design to transactional state. We will present the key mechanisms abstractly, deferring

concrete details to Section 4.4. Full algorithms, with proofs of correctness, are in the Appendix.

4 . 3 . 1 B AT C H E D R E - E X E C U T I O N I N K A R O U S O S

In Karousos, a re-execution group comprises requests that have the same tree of handlers—that

is, the same A relation (§4.2)—and the same in-handler control flows, meaning that corresponding

handlers in different requests follow the same branches. Re-execution respects the A relation and

program order within a handler but does not respect temporal order. Specifically, later requests can

be re-executed before, or simultaneously with, temporally earlier ones. For example, in Figure 4.2,

r2 is later than r0 and r1, yet r2 is re-executed together with r0 and before r1. Similarly, handlers
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within a request, if not ordered by A, can be reordered during re-execution; for example, (r0,h1)

and (r0,h2) in Figure 4.2.

Section 4.4 describes how the server tracks the A relation and the control flow within a handler.

Having done so, the server places in the advice a tag for each request in the trace (§4.1.1), where

requests with the same tags allegedly belong in the same re-execution group. Of course, the verifier

does not trust that the server is honest about the claimed grouping. However, the verifier expects

the server to include in its advice a description of the activation partial order A, and the verifier

validates that description as it executes.

Specifically, the advice is supposed to include, for each request, a handler log, consisting of en-

tries for each emit, register, and unregister (§4.2) operation. An entry specifies the alleged activator

(the handler), the alleged event, and (for register and unregister) the allegedly registered/unregistered

function. When re-executing an emit, the verifier “trusts” the handler log, which implicitly indicates

which functions are registered for the given event (all functions that have been registered but not

unregistered before the emit). When re-executing register and unregister operations, the verifier

checks that these operations are exactly the ones that appear in the log, thereby vindicating the “trust”

placed in the handler log when re-executing emits. There are additional checks, for example that

all emit entries listed in the handler log correspond to events that materialize during re-execution.

The Appendix contains the full details, including the necessary bookkeeping.

4 . 3 . 2 T R U S T E D R E C O R D E R , O U T- O F - O R D E R R E P L AY

How does Karousos faithfully re-execute reads of program variables? As we saw (§4.3.1), requests

can be re-executed in the opposite order from what happened originally, which means that a read

can be re-executed before the corresponding write. This section assumes that the server is honest.

What the (honest) Karousos server does. As a strawman, the server could include in its advice the

values of all read operations, which the verifier could use to feed each re-executed read operation [86,

63



92, 146] (see also Section 2). However, in logging every read or write of a program variable, this

solution conflicts with the goal of controlling the log size (§4.1.1).

In contrast, the Karousos server decides dynamically whether to actually log a given operation.

Karousos introduces the concept of R-ordered: two operations are R-ordered if one of them is

guaranteed to be re-executed before the other under any possible grouping during re-execution.

(We say that they are R-concurrent if they are not R-ordered.) More formally, we define a partial

order R over operations. We say that (o,o′) ∈ R or o≺R o′ if (a) o was executed as a part of handler

activation h, o′ was executed as a part of handler activation h′, and (h,h′) ∈ A; or (b) o and o′ were

both executed as part of handler activation h and o was executed before o′. Observe that R can

be regarded as the union of A and the program order, and that R is formalizing the constraints on

re-execution that were stated in Section 4.3.1.

With this definition, we can now say what the Karousos server puts in the advice: as depicted

in Figure 4.3, the server logs reads of program variables that are not R-ordered with respect to

the dictating write. The server also logs writes of program variables that are not R-ordered with

respect to the overwritten write; this helps validate executions from untrusted servers, as explained

later (§4.3.3). In both cases, the server logs the function location and value written by the dictating

or predecessor write.

In more detail, the principal (§4.1.1) must statically identify and annotate loggable variables.

A variable is loggable if it might be accessed by R-concurrent operations; each such variable gets a

variable log. If a variable is not loggable, then operations on it are simply re-executed during replay.

If a variable is loggable, then the server logs only if the access is not R-ordered with respect to the

dictating or overwritten write. We note that marking a variable that has no R-concurrent operations

loggable impacts performance but has no effect on Karousos’s soundness or completeness (§4.1.1).

Conversely, not annotating a loggable variable does not impact Karousos’s soundness (all unfaithful

executions will be rejected) but compromises completeness (some faithful executions might not be

accepted).
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1  x = 0;
2  emit(e1); 
3  emit(e2);
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0 h1 {
1  x = x + 1;
2 }

0 h2 {
1  x = x * 3;
2  respond(“OK”);
3 }
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activation h0. activator I.

activation h1. activator h0.

activation h2. activator h0.

Variables

x =  0

x =  1

x =  3 <h2, 1>, read(x) = 1, <h1, 1>
<h2, 1>, write(x) = 3, <h1, 1>

<h1, 1>, write(x) = 1, nil

Figure 4.3: For program variables, Karousos only logs reads and writes that are not R-ordered. Execution points in the
figure are depicted as a <handler, line number> tuple, so <h2, 1> means line 1 in handler h2. When logging reads in a
variable log, the server records the locations of the read and the dictating write. When logging writes, the server records
the locations of the write and the write that is being overwritten.

Re-execution. Re-execution works as follows. For a given program read of a loggable variable, if

the value of that read is indeed in the variable log, then the re-executor feeds the value from the

log to the re-execution. If that read is not in the variable log, then (because the server is assumed

to be honest), the read must be R-ordered with its dictating write. This implies, by definition of

R-ordered, that by the time the read happens, the write was already re-executed, which means that

in principle the read can be fed from that write.

We say “in principle” because Karousos must solve a problem: feeding the re-executed read

with the correct write operation. To illustrate the challenge, consider the naive solution of simply

applying re-executed writes to a reconstructed copy of the variable, and feeding non-logged reads

from that variable. In the re-execution depicted in Figure 4.4, this naive solution would cause h1

to incorrectly read x=3 (the most recently re-executed write) rather than x=0, which is the value

faithful to the original execution (Figure 4.3).

To eliminate this confusion, the Karousos re-executor keeps, for each loggable variable, all

values written during the re-execution, indexed by the identifier of the handler and the operation

number within the handler. We call this versioned variable the variable’s dictionary. Figure 4.4

depicts the technique. The re-executor knows that if a read is unlogged, then originally that read
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<h2, 1>, read(x) = 1
<h2, 1>, write(x)= 3

Re
pl
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 O
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er

0 h0 {
1  x = 0;
2  emit(e1); 
3  emit(e2);
4 }

0 h1 {
1  x = x + 1;
2 }

0 h2 {
1  x = x * 3;
2  respond(“OK”);
3 }

Re-Execution Variable Dictionary

write(x) = 0

read(x) !" 1
write(x) = 3

x@<h0,1>= 0

x@<h2,1>= 3

read(x) !" 0

State Operations

write(x) = 1

activation h0 by I

activation h2 by h0

activation h1 by h0

x@<h1,1>= 1

Read from prev. version Read from log Write to versioned store

<h1, 1>, write(x)= 1

Figure 4.4: Re-execution in Karousos: During re-execution Karousos maintains a dictionary for each variable (the
figure shows the dictionary for x) that contains previous values. Any logged reads return the logged value, while any
unlogged reads use the most recent value (as defined by ≺R) from the variable’s dictionary. The figure depicts an
abridged version of the logs from Figure 4.3. The notation x@<h0, 1> represents, for example, the value of x after line
1 of handler h0 was executed.

must have observed a write that was prior according to R. To find that dictating write, the re-executor

looks for the latest write in the variable’s dictionary, where “latest” refers to the R relation. One can

think of this as starting at the current handler, looking for the last write (if any) to the given variable

by the current handler, and then repeating this step for each successive ancestor in the A tree until

one encounters a write to the variable.

Here is a sketch for why this approach works; a full proof is in the Appendix (§B.3.1). If a read

r is logged, then re-execution of course gets the correct value. If r is not logged, the dictionary

interrogation, to be correct, needs to find the immediately prior causal write w that happened during

the original execution. Meanwhile, we have w ≺R r, otherwise the read would have been logged.

But the dictionary interrogation is following R in reverse. Thus, if the dictionary interrogation stops

at a different write w′ 6= w, then we have w′ ≺R r, which together with w≺R r and the fact that each

operation has exactly one immediate predecessor in R, implies w≺R w′ ≺R r. Now, by definition of

R (activation partial order A and program order), in the original execution, r would have observed

w′ not w, a contradiction.
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0 h0 {
1  x = 1;
2  emit(e1);
3  emit(e2);
4 }

0 h1 {
1  y = x;
2  z = x;
3  respond(y-z);
4 }

0 h2 {
1  x = 2;
2  x = 3;
3 }

Program Observed Re-Execution

<h1, 1> y = 3

<h1, 2> z = 2

<h2, 1> x = 2

<h2, 2> x = 3

<h0,1> x = 1

<h0,2> emit(e1)

<h0, 3> emit(e2)
Read-from

h1 activation
h2 activation

activate h0 activator I.

activate h1 activator h0.
activate h2 activator h0.

<h1, 1> read(x) !" 3 <h2, 2>
<h1, 2> read(x) !" 2 <h2, 1>

<h2, 1> write(x, 2)  <h0, 1>
<h2, 2> write(x, 3)  <h2, 1> 

Claimed Handler & 
Variable Logs

Trace

request /vyz
response 1

Figure 4.5: An example of what the Karousos verifier could observe when re-executing the given program based on
a dishonest server’s advice. Karousos allows out-of-order re-execution by design, and can thus observe the execution
shown. However, this execution is physically impossible: based on the execution model (§4.2) and the possible inter-
leavings, the response should never be positive. So, the verifier ought to reject it.

Discussion. Recall our goal of conserving log space (§4.1.1). First, and most important, the server

places in the variable logs only what is necessary, given the possible reorderings that can happen

from batched re-execution.

Second, we have designed the batching scheme so that logging is infrequently needed. In

particular, looking at a tree of handlers where each handler touches state, a common pattern is that

only the reads are concurrent with each other: consider, for example, an execution with one or more

writes in a handler h, followed by a set of n reads, each in a handler h′i, where h activates each

h′1, . . . ,h
′
n. In this example, there is no logging required because each read is R-ordered: during the

original execution, each read observes a write from h, which is an ancestor of the given h′i. Notice

that the preceding holds regardless of whether the h′i are re-ordered during re-execution. Overall,

this leads to good batching opportunities without much logging (§4.5.4).

4 . 3 . 3 U N T R U S T E D R E C O R D E R , O U T- O F - O R D E R R E P L AY

This section relaxes the assumption of a well-behaved server. To motivate the relevant mechanisms

in Karousos, we will consider several attacks. However, the soundness of the protocol (§4.1.1) is not

based on reasoning about each thing that can go wrong but instead on an end-to-end proof (§B.3.2).

Absent further mechanism, the adversarial server could place arbitrary values in a variable log,
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thereby causing re-executed reads (§4.3.2) to be detethered from the expected program. Thus, the

verifier checks that the values of re-executed writes match alleged writes in the variable log. This is

essentially Orochi’s simulate-and-check (§4.1.2), adapted to Karousos’s log structure.

At this point, one might conclude that the worst the server can do is incriminate itself by failing

to justify an execution. But in fact, by creating both bad advice and bogus outputs, the server

could fool the verifier into accepting impossible executions, with semantically invalid responses.

Figure 4.5 depicts a small example. Other misbehavior is possible too, for example, the server could

arrange for the verifier to wrongly validate “reads from the future”, which would enable the server

to rationalize an allegedly-read but wrong value, provided some later request writes that value to a

shared variable.

To ensure that the executions reproduced by the verifier are physically possible and consistent

with external observations (meaning the trusted trace; §4.1.1), the verifier has a postprocessing

phase, where it creates an execution graph G covering its entire audit. The graph establishes an

alleged ordering among operations, and the verifier checks that it is acyclic. This technique creates

a cycle in the example: (h1,2)→ (h2,2)→ (h1,1). This technique is inspired by other systems,

including Orochi [146] (§4.1.2); see also Section 2. Like Orochi, the Karousos verifier includes

edges for time precedence (referring to the ordering of requests in the trace; §4.1.1) and program

order of operations.

The novel aspects in Karousos are as follows. First, Karousos includes edges that reflect the

alleged activation partial order, A, based on the handler logs (§4.3.1). Second, the Karousos verifier

embeds in G the alleged operation history of all loggable variables. Notice that the history of

accesses to a variable in the original execution should be a write, followed by zero or more reads,

followed by a write, followed again by zero or more reads, and so on. The verifier reconstructs this

partial order from a combination of re-executing and the variable logs.

Specifically, for each loggable variable and each write w to that variable, the verifier main-

tains during re-execution a list of read_observers: all the reads r that observe w in re-execution,
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inferred from the variable log (if r was allegedly not R-ordered with w), or the versioned vari-

able (if r was not present in the variable log). The verifier also maintains for each write w a

write_observer: the write w′ that succeeds w. Because w′ and w might not be R-ordered—and

thus the write_observer of w might not be inferrable from re-execution—write-write pairs are

logged, as stated in Section 4.3.2. Now, after re-executing, the verifier uses these lists to embed

edges in the graph G: WR (read-from edges, using read_observers), WW edges (write-write,

using each write’s write_observer), and RW (anti-dependency edges, connecting a given write’s

read_observers to that write’s write_observer). Intuitively, these edges encode the history

type mentioned in the prior paragraph.

Provided G has no cycles (and together with the verifier’s other checks), the entire execution

(of all requests in the audit) is well-ordered and physically possible, thus meeting the requirement

of soundness (§4.1.1).

4 . 3 . 4 T R A N S A C T I O N A L S TAT E

Model. We consider a transactional key-value store (KV store) that provides one of the following

isolation levels: serializability, read committed, or read uncommitted [30]. Snapshot isolation is

future work (§4). Each request issues operations to the KV store: tx_start, tx_commit, tx_abort,

PUT, or GET. A transaction might be split across multiple handlers, but we assume that if multiple

handlers issue operations on the same transaction, these handlers are not concurrent; in practice,

the principal can efficiently check that the program meets this restriction before outsourcing the

program.

Adya’s isolation testing. To check that an execution is consistent with an isolation level, we build

on Adya’s algorithms [16]. For transactional KV stores, Adya’s algorithms take as input the history

of execution that comprises: (a) the event order at the KV store, which in this paper we call TxOp

order to avoid confusion. This is a partial order of all operations in the KV store that preserves the
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order of operations within each transaction and includes the dictating write for each read, and (b) a

version order: for each key, a total order of all committed values.

To test for an isolation level, these algorithms construct a graph H from the history. This is

distinct from the graph G from earlier (§4.3.3), though both encode kinds of operation orders. The

nodes of H correspond to the committed transactions in the TxOp order. H contains a read-depend

edge 〈T1,T2〉 if some operation in transaction T2 reads from an operation in transaction T1. It

contains a write-depend edge 〈T1,T2〉 if transaction T1 writes some version of a key and transaction

T2 installs the next version. It contains an anti-depend edge 〈T1,T2〉 if transaction T1 reads some

version of a key and transaction T2 installs the next version.

Each isolation level is defined in terms of properties of H and the history. For example, a history

is serializable if: (1) the graph H has no cycles, (2) a committed transaction never reads from an

uncommitted transaction in the TxOp order and (3) if a committed transaction T2 reads a value of a

key that is written by a transaction T1, that value is the last modification (per the version order) that

T1 makes to that key.

Advice collection. To adapt Adya’s algorithms to Karousos, we augment the server’s advice to

include (a) the (alleged) TxOp order at the KV store, and (b) an (alleged) global order of writes

(which implies an Adya version order). The alleged TxOp order is encoded as a list, for each

transaction, of operations and the dictating PUT for each GET; we call such a list a transaction log.

We call the alleged global order of writes, the write order.

Advice validation. The verifier executes Adya’s algorithms on the transaction logs and write

order to provisionally verify the isolation level. Depending on the expected isolation level, the

verifier checks for the relevant phenomena by generating the graph H (see above) and checking

for acyclicity. This verification is provisional because Adya’s algorithms take as input the true

history at the KV store. But the server is untrusted, so the transaction logs and write order may not
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correspond to the true history. The verifier thus needs to perform additional checks, as follows.

First, similar to Section 4.3.3, the verifier ensures that all operations in the transaction logs are

produced during re-execution. Second, the verifier ensures that the transaction logs are well-formed;

specifically the verifier checks, by comprehensively inspecting the transaction logs, that transactions

observe their own writes. Third, the verifier ensures consistency between the transaction logs and

write order by checking that the operations in the write order are the last operations of committed

transactions in the transaction logs.

Finally, the verifier needs to check that the transaction logs correspond to a legal KV store

execution history that is consistent with the rest of the advice. Consider a server that claims that

request r1 issues the following operations, where k is a key in the KV store and x is a program

variable: op1 = GET(k);op2 = write(x,1), and request r2 issues: op3 = read(x);op4 = PUT(k,1).

Additionally, the server claims that the dictating write of op3 is op2 and that op1 reads from op4.

But op3 reading from op2 implies that op2 originally preceded op3, which implies that op1 precedes

op4. Thus, the server is claiming, preposterously, that op1 read from an operation that, according

to the rest of the advice, was executed after it. To detect these types of misbehaviors, the verifier

expands the graph G (§4.3.3) with nodes for external state operations, and adds write-read edges

from PUTs to the corresponding GETs.1

4 . 4 I M P L E M E N TAT I O N

This section describes how the design in Section 4.3 is instantiated in a built system for auditing

Node.js applications that optionally use MySQL as a transactional KV store.

Our system uses a transpiler to reduce the amount of effort that the principal needs to expend

when using Karousos. We implemented our transpiler by extending the Babel [1] JavaScript tran-

1It would be wrong to augment G with write-write edges or read-write edges between external state operations as
Karousos does for program variables (§4.3.3). Program variables are sequentially consistent, whereas external state
operations are more weakly ordered even in valid executions. These types of edges would thus constrain TxOp order
artificially, causing the verifier to mark such executions as invalid, undermining Completeness (§4.1.1).
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spiler, via Babel’s plugin mechanism. Our transpiler supports a core subset of Node.js, however

we currently do not support some features, including JavaScript workers and timers, and monkey

patching.

The transpiler does not entirely automate the process of using Karousos. The principal must: (a)

Identify and annotate all loggable variables (§4.3.2); (b) Change the application to use a Karousos-

provided version of the Knex library for database accesses (the Knex library included with Karousos

is augmented to collect the TxOp order; §4.3.4); and (c) Annotate all handlers that are activated by

user requests (§4.2). One can in principle extend the Karousos transpiler to automate some of these

tasks. Below, we describe implementations of some of Karousos’s mechanisms.

Identifying batches (§4.3.1). Recall that the Karousos server has to group requests (§4.3.1) with

the same A relation and the same control flow within the handlers. To encode the A relation in a

way that is invariant across requests, the server assigns an identifier to each function (functionID),

and computes a handlerID as a digest of the functionID, the event that activates the handler, and

the activator’s handlerID. Notice that a handlerID is unique only within a request, and that if two

requests have the same set of handler IDs, they have the same handler tree. To encode control flow

within a handler, the server (as in Orochi [146, §4.3] and EAR [27, §3.1]) computes a control flow

digest, updating it according to which branches are taken by the handler. Then, the server computes

the top-level tag of a request (§4.3.1) as a digest of all handler IDs and their corresponding control

flow digests.

Accelerated re-execution (§4.1.2, §4.3.1). Karousos borrows SIMD-on-demand (§4.1.2) from

Orochi [146] but implements it differently. Whereas Orochi modified a PHP runtime to expose

multivalue (§4.1.2) versions of primitive types, we use the transpiler to turn program variables into

multivalues.
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Testing A, computing the activator relation (§4.2, §4.3.2). The Karousos server needs an efficient

check of whether two handlers are ordered by A; similarly, the verifier needs to efficiently compute

a handler’s activator, when interrogating the variable dictionary (§4.3.2). For these purposes, the

implemented server assigns a label to each handler so that two handlers are ordered by A iff the

label of the one is a prefix of the other. In contrast to handlerIDs, labels do not correspond across

requests; handler labels encode only enough information to check the A relation and compute

activator. Mechanically, a handler’s label is computed at runtime as parent_label/num where

num is the number children of the parent that have executed so far.

Non-determinism. Node.js programs often use non-deterministic operations, which Karousos

handles as other record-replay systems do [56, 57, 65]: the server records the result of each non-

deterministic operation in the advice, and, during re-execution, the verifier supplies the recorded

information in response to the operation. Karousos does not currently give soundness guarantees

about non-deterministic operations, but prior works show how to implement basic checks of well-

formedness [24, 32, 54, 84, 146, 164].

Transactional state (§4.3.4). Karousos uses MySQL as a transactional KV store by requiring

individual queries to SELECT or UPDATE only a single row, specified by the row’s primary key.

This maps naturally to the abstract PUT-GET interface from Section 4.3.4. The server generates

the transaction log (§4.3.4) by logging operations when they are executed by the application. The

server captures the dictating PUT of each GET operation by storing each row’s last writer in the row

itself. Our implementation obtains the write order (§4.3.4) by repurposing MySQL’s binary log,

or binlog. This involved some engineering work because the binlog, being intended for a different

purpose (state replication), is in an internal format that is not well-documented, and which contains

information that is extraneous for our purposes.
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LOC, challenge, and limitation. Our implementation comprises 16,200 lines of JavaScript. In

addition to the transpiler (6,100 lines), the implementation includes a library of helper functions

used by the transpiled server and verifier (10,000 lines) and a program that periodically processes

the MySQL binlog (100 lines of JavaScript).

Maintaining the activation partial order was a significant source of implementation overheads,

and is also a significant source of runtime overheads (§4.5.1). It requires endowing each handler

activation with knowledge of its activator’s ID, and passing that information to all functions called

by the handler. Meanwhile, many JavaScript functions are implemented in native code, and the

transpiled code cannot change their call signatures or semantics. Our transpiler adopts a variety of

strategies for this purpose.

A limitation is that our implementation assumes that handlers that are registered by the initial-

ization function (§4.2) cannot be unregistered. This is not fundamental and can be addressed by

treating handler registration and unregistration as state operations. Our proofs in Appendix B.3 also

assume this restriction, and thus apply to our current implementation.

4 . 5 E VA L U AT I O N

We evaluate Karousos by answering the following questions:

1. What is the overhead of collecting advice (§4.5.1)?

2. What is the size of the advice that the server sends to the verifier? (§4.5.2)

3. What is the speedup of batching requests during verification when compared to a baseline that

sequentially re-executes requests? (§4.5.3)

4. What is the impact of each of Karousos’s batching and logging techniques on advice size and

verification time? (§4.5.4)

Applications. We evaluate Karousos with three Node.js applications that we developed:
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Inventory management: Users can add new products, change a product’s availability and stock

level, and look up product information. Product information is stored in a database table indexed by

product ID. The application uses a single SQL statement when adding a new product or looking up

information. Updates to product information require issuing a transaction with two SQL statements:

the first reads the existing information and the second updates the information.

Stack dump logging: Users can submit stack dumps, count how many times a stack dump has

been reported, and get a list of unique stack dumps. Stack dumps and the number of times they

have been reported is stored in a database table indexed by their digest. When a stack dump is

submitted, the application checks if it is unique, in which case it adds it to the database. Otherwise

the application increments the number of times the trace has been submitted. The application

maintains a variable containing the set of all digests stored in the database, and uses this set to

implement the list request. In particular, when listing unique traces the application issues a query

for each digest in the set. Thus the application can implement the list request while using the

transactional key-value store interface described in §4.3.4.

Message of the day: Users can retrieve or set a “message of the day” (MOTD). When setting

the MOTD, a user can specify whether the message should be displayed every day or only on a

particular day. Messages and metadata are stored in a local hashmap rather than in the database.

Workloads. We use three types of workloads for each application: (a) read-heavy with 90% read

requests and 10% write requests; (b) write-heavy with 90% write requests and 10% read requests;

and (c) mixed with 50% write requests and 50% read requests. For all three workload types, write

requests for the inventory application are split so that half of them insert a new product and the other

half update information about an existing product. Similarly, across all workloads, write requests to

the stack dump application are split so that 10% of them report a new stack dump and the remaining

90% report a previously reported one. In our experiments, we vary the total number of requests and

the number of concurrent requests. Unless otherwise specified, our graphs show the median from 10
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(c) Stack Dump with write heavy workload

Figure 4.6: Response latency for a Karousos server when compared to an unmodified baseline. Each graph shows total
time taken to execute 140 requests. Across all applications and workloads we observe overheads of 1.4–3.5×.

experiments, and we use errors bars to show 5th and 95th percentile values from these experiments.

Testbed. We run all our experiments on servers equipped with a 3.7GHz Intel(R) Xeon(R) E5-1630

v3 (4-core) CPU with 32GB RAM and 1TB SSD, and running Ubuntu 16.04. We run the server

and verifier using the Node.js v12.20.0 runtime, and use MySQL 8.0.19 as our database server. In

our experiments the database and application are co-located on the same server and use up to 10

concurrent connections.

We use Python scripts to generate the request headers and bodies for our workloads and issue

the requests using wrk [12].

4 . 5 . 1 A D V I C E C O L L E C T I O N O V E R H E A D S

We first evaluate the overhead of advice collection by comparing the response latency of a Karousos

server to that of an unmodified baseline. We believe the reported overheads are reasonable, as we

expect auditability to cost something.

In each experiment, we first warm up the application using 60 requests from the target workload.

We measure the time taken to serve a 140-request trace while varying the number of concurrent

requests. Figure 4.6 depicts the results for two applications. In the MOTD application (Figure 4.6a),

the Karousos server has response latency that is 2.4–2.5× larger than the baseline. A differential

analysis (not shown) indicates that a majority (60–70%) of this overhead is from tracking the
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Figure 4.7: Size of the advice generated by the Karousos server. The reported values are from serving requests from a
mixed workload.

activation partial order (§4.4). The overheads for this application do not vary with the number of

concurrent requests nor across different workloads. Therefore, we show results only from the mixed

workload trace.

In the stack dump application (Figures 4.6b, 4.6c), the Karousos server has response latency

that is between 1.4–3.5× higher than the baseline. As with the MOTD application, a majority of

the overhead is from tracking the activation partial order. In contrast to the MOTD application,

overheads here increase with additional concurrent requests. This is because each request requires

making at least one call to the database, allowing the single-threaded Node.js runtime to switch to

serving other requests. Consequently, Karousos needs to track the activation order for multiple re-

quests simultaneously, and the cost of accessing and maintaining this state increases as the number

of concurrent requests increases. For this application, the mixed workload (Figure 4.6b) has higher

overheads than the write-heavy workload (Figure 4.6c). This is because for the write-heavy work-

load, the database is the bottleneck and Karousos does not add to the database’s query execution

time. In our setup, database updates take nearly an order of magnitude more time than database

reads (∼ 80ms vs ∼ 1ms). We omit results from the inventory application; they are similar to the

stack dump application.
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Figure 4.8: Karousos verification time vs sequentially re-executing the trace. We use the same colors as Figure 4.6. The
results are from a mixed workload run.

4 . 5 . 2 A D V I C E S I Z E

Figure 4.7 quantifies the size of the advice sent by a Karousos server to a Karousos verifier. In this

case we use a workload with no concurrent requests, and measure size as we vary the number of

requests. (Counterintuitively, Karousos’s algorithm ensures that the number of concurrent requests

has no impact on advice size; this is because accesses to state shared between requests are always

R-concurrent, as requests can be arbitrarily re-ordered.)

We use a slight variation on the workload described above when evaluating the stack dump

application: across all workload types any write requests add a new stack dump. We made this

alteration because we found that the MOTD and stack dump applications had identical results

otherwise. We found that, regardless of workload or application, advice size scales linearly with the

number of requests. Handler logs are a majority (70–90%) of the advice. In our experiments advice

sizes ranged from 8KB to 6MB total, with a majority totaling 1MB or less. We believe these sizes

are reasonable in practice. Furthermore, Karousos servers send periodic advice updates to verifiers,

and can thus tradeoff update size for frequency.

4 . 5 . 3 V E R I F I C AT I O N P E R F O R M A N C E

Ideally, we would compare our performance against another verifier that checks execution integrity

without relying on any advice from the untrusted server and without batched re-execution. However,
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we do not know of an existing system that does so. Instead, we use as the baseline the time taken

by the unmodified application to re-execute the trusted trace. This baseline serves as a best-case

estimate for the performance of any verifier that uses re-execution and does not batch requests. We

run this evaluation using the same workload that we used in Section 4.5.2. Figure 4.8 depicts the

results.

Across all applications, the Karousos verifier performs better than the baseline when auditing

traces with 50 or more requests: Karousos re-executes the trace 1.3–14× faster. However, for the

10-request traces, results are equivocal. For MOTD, (Figure 4.8a), the baseline is about 25% faster

than Karousos (∼ 15.5ms vs ∼ 22ms): the overheads from checking and using the advice during

re-execution are larger than the benefits from the limited batching opportunities offered by a short

trace. For the stack dump (Figure 4.8b) and inventory (Figure 4.8c) applications, batching reduces

overheads even for 10-request traces, showing that batching opportunities and overheads differ

across applications and workloads. In practice, we expect that deployed web applications serve sev-

eral clients per second, and thus in the common case, the Karousos verifier will be processing long

traces, with significant opportunity for batching (as also observed by Orochi [146] and Poirot [92]).

4 . 5 . 4 K A R O U S O S L O G G I N G A N D B AT C H I N G T E C H N I Q U E S
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Figure 4.9: A comparison between a naive ad-
vice generation approach that logs all accesses
and Karousos’s dynamic logging.

Karousos logging techniques. Figure 4.9 compares

Karousos’s approach of dynamically deciding what

accesses to log to a naive approach that, for log-

gable variables, logs all accesses, not just R-concurrent

ones (§4.3.2). We use a simple web application that cre-

ates 500 concurrent handlers for each request. All but

one read from a shared variable; the remaining handler

writes the shared variable. We measure log size, varying

the number of times the variable is read (these reads, if
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executed before the write, are not R-concurrent because the given request observes the value writ-

ten by the initializer; §4.2). The figure shows advice sizes for a trace where 30 such requests are

executed. While advice size is constant for the naive approach, it decreases linearly for Karousos

as the write happens later (which suppresses the degree of R-concurrency).
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Figure 4.10: A comparison of Karousos’s ap-
proach of batching requests with different han-
dler execution order to a naive approach.

Karousos batching techniques. We evaluate Karousos’s

approach of placing requests into the same re-execution

group even if they executed handlers in different or-

ders (§4.3.1). We compare re-execution time to a naive

version of the Karousos verifier, which we call K-naive-

batch. K-naive-batch imposes the additional grouping re-

quirement that requests in the same group should have

executed handlers in the same order. Figure 4.10 shows

the time taken to verify the stack dump application on a

trace of 200 requests drawn from the mixed workload, varying the number of concurrent requests.

While the Karousos verifier’s performance does not vary as the degree of concurrency increases,

K-naive-batch takes longer with more concurrent requests, for example 3.6× longer when there

are 20 concurrent requests. This is because a larger number of concurrent requests increases the

likelihood that handlers are re-ordered, decreasing the grouping opportunities for K-naive-batch,

while leaving Karousos unaffected, thus demonstrating the importance of this design decision.
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5 | S U M M A RY A N D N E X T S T E P S

In this dissertation we studied how to audit two essential services: transparency dictionaries and

outsourced event-driven web applications. We introduced Verdict and Karousos, two practical

systems that allow a single principal to verify that the respective services work as promised, without

making any assumptions about the execution at the services or at other auditors.

Specifically, Chapter 3 describes Verdict, a transparency dictionary that proves to its clients

that it is executing faithfully (§3.1) by employing a novel cryptographic accumulator based on

Merkle Trees (§3.2) and a new SNARK tailored to the dictionary’s workloads (§3.3); Verdict scales

to dictionaries with millions of users (§3.4–§3.5). Chapter 4 introduces Karousos, a system that

comprehensively audits remote servers executing event-driven web applications (§4.1) by using a

novel record-replay algorithm. This algorithm accelerates the replayer, balances logging with replay

efficiency (§4.3.1–§4.3.2) and, at the same time, supports an untrusted recorder (§4.3.3). Addition-

ally, Karousos takes some first steps in supporting weakly consistent databases (§4.3.4). Karousos’s

evaluation shows that it achieves an efficient verifier while imposing reasonable overheads on the

service (§4.4–§4.5).

Both Verdict and Karousos have clear limitations (see also §3 and §4) that indicate possible

next steps.

Verdict. Compared to its predecessors, Verdict has lower CPU costs for producing proofs. How-

ever, further mitigating these costs is essential to the adoption of verifiable transparency dictionaries
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in the real world. A possible way do this is to combine Phalanx with a recently proposed accumula-

tor [152] based on Sparse Merkle Trees. This accumulator admits ≈ 20% smaller circuits to verify

updates on large dictionaries than Indexed Merkle Trees (§3.2), but has larger membership proofs

and non-membership proofs.

Moreover, as discussed in Chapter 3, despite the fact that Verdict is highly parallelizable, the cur-

rent implementation of Verdict does not leverage multiple CPUs. Parallelizing the proof generation

process under Verdict is essential for its adoption in the real world where transparency dictionaries

are required to serve millions of requests every minute.

Verdict could also benefit from further reducing the costs of light clients. In Verdict, a light

client that is offline for k epochs needs to do O(k) work when it comes back online to validate the

epochs it missed. It would be desirable to reduce this work to O(1). One could possibly achieve this

without introducing large overheads on the service or requiring a trusted setup using recent work in

the area of recursive arguments [42, 46, 96].

Karousos. Karousos’s current implementation requires the programmer to manually annotate all

loggable variables. This requirement could hinder Karousos’s applicability in the real world as

manual annotation is error-prone. However, we could automate the process of identifying and

annotating loggable variables by using a static analyzer, in particular, escape analysis [86, 161].

Escape analysis is conservative and, thus, could erroneously add annotations to variables that are not

loggable. This does not undermine the security of Karousos (§4.3.2) but might impact the server’s

performance. We leave this direction to future work.

Another limitation of Karousos’s implementation is that it supports only a subset of Node.js,

which means that it cannot be immediately applied to arbitrary applications. Despite the fact that

the subset of Node.js that our current implementation supports is representative, extending our

system to support all Node.js features requires significant programming effort due to the broad set

of supported semantics.
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Karousos takes an important first step in handling weakly consistent shared state, but there

is still a long way to go. First, Karousos does not support Snapshot Isolation (SI) [36], a widely

used isolation level that has better performance than serializability but still avoids most of the

concurrency anomalies that serializability avoids. One way to add support for SI to Karousos, is

to have the verifier use Adya’s algorithms [16]. However, these algorithm require the server to

provide start and commit timestamps for all executed transactions. A potential way to avoid the

overheads of generating and communicating these timestamps is to have the verifier check for

SI using an algorithm that does not depend on timestamps [50, 59]. Furthermore, Karousos only

supports transactional KV stores and not general databases. Extending Karousos to handle general

databases is a challenging problem: it requires developing and implementing an efficient algorithm

to check if predicate-based reads and writes are consistent with an isolation level.

Despite their limitations, Verdict and Karousos make a significant step forward in verifying two

important services while introducing several techniques that may be of independent interest.
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A | V E R D I C T ’ S C O R R E C T N E S S

P R O O F S

This appendix formally defines the correctness properties of a transparency dictionary (§A.1) and

the correctness properties of a SNARK (§A.1.1), and then proves that Verdict satisfies them (§A.2).

A . 1 C O R R E C T N E S S P R O P E R T I E S

We formally define the completeness and soundness properties of a transparency dictionary. In the

definitions, we assume that both the initially empty dictionary D0 =⊥ and its commitment C0 are

well-known. A transparency dictionary satisfies the following properties.

• Update Completeness. Informally, clients do not reject update proofs produced by an honest

service. Formally, for any epoch t, and sequence of update operations U1, . . . ,Ut , and application-

specific update policy F , the following probability is 1:

Pr


pp← Setup(1λ ,F)

∀i < t :

(Di+1,Ci+1,πi+1)← ApplyUpdates(pp,Di,Ci,Ui)

VerifyUpdates(pp,Ci,Ci+1,πi+1) = 1


• Update Knowledge Soundness. Informally, the values are updated only according to an application-

specific function. Formally, for any application-specific update function F and any PPT adversary
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A , there exists an extractor E , such that for any epoch t the following probability is negl(λ ):

Pr



pp← Setup(1λ ,F)

({Ci,πi}1≤i≤t ,v,πlookup, label)←A (pp,ρ)

({Ui}1≤i≤k−1)← E (pp,ρ) for some k ≤ t

∀i < k : vi+1← F(vi,Ui) where v1 =⊥

∀i < t : VerifyUpdates(pp,Ci,Ci+1,πi+1) = 1

VerifyLookup(pp,Ct , label,v,πlookup) = 1

v 6= vk


where ρ denotes the input randomness for adversary A .

• Lookup Completeness. Informally, if the service is honest, then clients accept lookup proofs.

Formally, for any application-specific update policy F , epoch t, label label, and sequence of

requests U1, . . . ,Ut , the following probability is 1:

Pr



pp← Setup(1λ ,F)

∀i < t :

(Di+1,πi+1)← ApplyUpdates(pp,Di,Ci,Ui)

(v,πlookup)← Lookup(pp,Dt ,Ct , label)

VerifyLookup(pp,Ct , label,v,πlookup) = 1


• Lookup Soundness. Informally, the service cannot return an incorrect value for any label in-

cluded in a given commitment. Formally, for any application-specific update policy F , any PPT

adversary A , and epoch t, the following probability is negligible in λ :

Pr



pp← Setup(1λ ,F)

({Ci,πi}1≤i≤t ,v,v′,πlookup,π
′
lookup, label)←A (pp)

∀i < t :

VerifyUpdates(pp,Ci,Ci+1,πi+1) = 1

VerifyLookup(pp,Ct , label,v,πlookup) = 1

VerifyLookup(pp,Ct , label,v′,π ′lookup) = 1

v′ 6= v


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• Fork consistency. Informally, if the service equivocates at some time t by presenting two different

commitments to different sets of clients, it cannot forge a proof that merges the two different

commitments. Formally, for any application-specific update policy F , any PPT adversary A and

epoch t the following probability is negligible in λ :

Pr



pp← Setup(1λ ,F)

({Ci,πi,C ′i ,π
′
i}1≤i<t ,)←A (pp)

∀i < t : VerifyUpdates(pp,Ci,Ci+1,πi+1) = 1

∀i < t : VerifyUpdates(pp,C ′i ,C
′
i+1,π

′
i+1) = 1

∃i < t : Ci 6= C ′i

Ct = C ′t



A . 1 . 1 F O R M A L P R O P E R T I E S O F A Z K S NA R K

To make our proofs self contained, we briefly recall SNARK-related definitions.

A zero-knowledge succinct non-interactive argument of knowledge (zkSNARK [39, 74]) for a

circuit R has the following semantics

• (pp,vp)← Setup(1λ ,R): Returns prover parameters pp and verifier parameters vp used to pro-

duce and verify proofs respectively for circuit R, where λ is the security parameter.

• π ← Prove(pp,X,w): Takes as input IO X and secret witness w and returns a proof π that

R(X,w) = 1.

• {0,1} ← Verify(vp,X,π): Takes as input IO X and proof π and returns 1 if π attests that the

prover knows secret w such that R(X,w) = 1.

and satisfies the following properties:

• Completeness. Informally, a verifier does not reject an honest proof. Formally, for IO X, and
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witness w such that R(X,w) = 1 the following probability is 1:

Pr


(pp,vp)← Setup(1λ ,R)

π ← Prove(pp,X,w)

Verify(vp,X,π) = 1


• Soundness. Informally, if there exists no valid witness, then the prover cannot produce an ac-

cepting proof. Formally, for circuit R, and IO X, if there exists no w such that R(X,w) = 1, then

for any probabilistic polynomial time (PPT) adversary A , the following probability is negl(λ ):

Pr


(pp,vp)← Setup(1λ ,R)

π ′←A (pp,vp,X)

Verify(vp,X,π ′) = 1


• Knowledge Soundness. Informally, if a prover produces an accepting proof, then it must know

a valid witness. Formally, for any circuit R, and PPT adversary A , there exists PPT E such that

the following probability is negl(λ ):

Pr



(pp,vp)← Setup(1λ ,R)

(π ′,X′)←A (pp,vp,ρ)

w← E (pp,vp,π ′,X′,ρ)

Verify(vp,X′,π ′) = 1 and R(X′,w) 6= 1


where ρ is the input randomness for A .

• Zero Knowledge. Informally, the prover does not reveal any information about its witness in the

proof. Formally, for circuit R and (pp,vp)← Setup(1λ ,R), there exists a PPT simulator S such

that for all PPT V ∗ with input randomness ρ , and IO X and witness w such that R(X,w) = 1,

Prove(pp,X,w) is computationally indistinguishable from S (pp,vp,X,ρ).

• Succinctness. For circuit R and for any proof π output by Prove, |π| is sublinear in |R|.
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A . 2 P R O O F S

Verdict’s update and lookup completeness follows in a straightforward manner from its construction.

Below, we prove the soundness properties.

Lemma 2. Verdict is a transparency dictionary that satisfies update knowledge soundness.

Proof. For security parameter λ and for some application-specific update policy F , let pp ←

Setup(1λ ,F). Suppose that PPT adversary A on input pp and some randomness ρ outputs

{Ci,πi}1≤i≤t ,v,πlookup, label

for some epoch t such that

VerifyUpdates(pp,Ci,Ci+1,πi+1) = 1 for all i < t (A.1)

and

VerifyLookup(pp,Ct , label,v,πlookup) = 1. (A.2)

We must show that there exists PPT extractor E that on input pp and ρ , outputs for some k ≤ t

U1, . . . ,Uk−1

such that for vi+1← F(vi,Ui), where v1←⊥, we have that v = vk with probability 1−negl(λ ).

Intuitively, this would mean that the extractor has been able to extract a valid sequence of updates

that, starting from the empty dictionary, result in value v (thus proving the adversary’s knowledge

of such a sequence). To show this, we will first show that E can extract some sequence of requests

by the knowledge soundness of the underlying SNARK. Next, we will show that the sequence of

requests provided in πlookup (and the final resulting value), is valid with respect to the application

specific update policy. Finally, we will show that the requests extracted by E must be equal to the

requests provided in πlookup by the binding property of the indexed Merkle tree, thus showing that

E has indeed extracted a valid sequence of requests.

88



We start by showing that E can extract some sequence of requests: Because Equation A.1 holds

by the knowledge soundness of the underlying SNARK and folding scheme, for label H(label), the

adversary knows a sequence of values U ′1, . . . ,U
′
k′−1 for some k′ < t such that

h′i+1← H(U ′i ,h
′
i)

for all i < k′−1 (where h1 =⊥) such that the indexed Merkle tree with root Ct contains h′k′ under

H(label). Thus, E can extract these U ′i for all i < t.

Next, we show that the sequence of requests provided in πlookup must be valid: Because Equa-

tion A.2 holds, the included hashchain must be well-formed with probability 1− negl(λ ). In

particular, the hashchain contains values U1, . . . ,Uk−1 for some k < t such that

hi+1← H(Ui,hi)

for all i < k−1 such that h1 =⊥ and the indexed Merkle tree with root Ct contains hk under label

H(label). Also, because Equation A.2 holds, we must have that

vi+1← F(Ui,vi)

for all i < k, where v1 =⊥, and that

vk = v. (A.3)

Now, we show that the requests extracted by E must be equal to the requests provided in

πlookup: Because Equation A.1 holds, the insert invariant of the indexed Merkle tree must hold with

probability 1−negl(λ ). In particular, the label H(label) can only be inserted once under a single

leaf node. But from the above reasoning we know that the indexed Merkle tree with root Ct must

contain hk under label H(label), and must contain h′k′ under label H(label). By the binding property

of indexed Merkle trees, this implies that hk = h′k′ . Therefore, by the binding property of H, we

must have that k = k′ and moreover that U ′i =Ui for all i < k with probability 1−negl(λ ). Thus
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we must have

vi+1 = F(U ′i ,vi)

for all i < k. From Equation A.3, we have that vk = v. Thus, the material extracted by E is valid

with probability 1−negl(λ ).

Lemma 3. Verdict is a transparency dictionary that satisfies lookup soundness.

Proof. For security parameter λ and for some application-specific update policy F , let pp ←

Setup(1λ ,F). Suppose that PPT adversary A on input pp outputs

{Ci,πi}1≤i≤t ,v,v′,πlookup,π
′
lookup, label (A.4)

such that

VerifyUpdates(pp,Ci,Ci+1,πi+1) = 1 for all i < t (A.5)

and

VerifyLookup(pp,Ct ,v, label,πlookup) = 1 (A.6)

VerifyLookup(pp,Ct ,v′, label,π ′lookup) = 1. (A.7)

We must show that v′ = v with probability 1−negl(λ ). To do so, we will show that the sequence

of requests provided in πlookup must be equal to the sequence of requests provided in π ′lookup due to

the binding property of indexed Merkle trees.

We first consider the sequence of requests provided in πlookup: Because Equation A.6 holds, the

hashchain included in πlookup contains requests U1, . . . ,Uk−1 for some k < t such that

hi+1← H(Ui,hi)

vi+1← F(Ui,vi)
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for all i < k−1 such that

h1 =⊥ (A.8)

v1 =⊥ (A.9)

vk = v (A.10)

and that the indexed Merkle tree with root Ct contains hk under label H(label).

Symmetrically, we consider the sequence of requests provided in π ′lookup: Because Equation A.7

holds, the hashchain included in π ′lookup contains requests U ′1, . . . ,U
′
k−1 for some k′ < t such that

h′i+1← H(U ′i ,h
′
i)

v′i+1← F(U ′i ,v
′
i)

for all i < k′−1 such that

h′1 =⊥ (A.11)

v′1 =⊥ (A.12)

v′k′ = v′ (A.13)

and that the indexed Merkle tree with root Ct contains h′k′ under label H(label).

Now, we show that the requests provided in πlookup must be equal to the requests provided in

π ′lookup: Because Equation A.5 holds, the insert invariant of the indexed Merkle tree must hold with

probability 1−negl(λ ). In particular, the label H(label) can only be inserted once under a single

leaf node. But from the above reasoning, we know that the indexed Merkle tree with root Ct must

contain hk under label H(label), and must contain h′k′ under label H(label). By the binding property

of indexed Merkle trees, this implies that hk = h′k′ with probability 1− negl(λ ). Therefore, by

the binding property of H, we must have that k = k′ and moreover that U ′i =Ui for all i < k with

probability 1−negl(λ ). By Equations A.10 and A.13, this implies that v = v′.
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Achieving Fork Consistency. We have thus far shown that Verdict satisfies lookup soundness and

update soundness. These do not prevent the service from presenting a stale view of its current state

(for example, an older state that does not include recent updates).

To mitigate this issue, the service can publish its commitments (and proofs) to a public bulletin

board (such as a blockchain). Alternatively, clients can detect inconsistent views via a peer-to-peer

gossip protocol. In the latter case, the service cannot fork the clients’ views indefinitely. But, it does

not prevent the service from quietly forking the clients views for a brief period and later merging

the views by replaying updates from both forks. We prevent this as follows: We require the service

to include in its published commitment Ci not only the root of the indexed Merkle tree but also a

hash hi that is⊥ for i = 0 and H(Ci−1) otherwise where H is a collision resistant hash function. We

also extend VerifyUpdates to check that Ci.hi = H(Ci−1);

Lemma 4. Verdict is a transparency dictionary that satisfies fork consistency.

Proof. Denote Ci.hi as hi and C ′i .hi as h′i Since for all j < t,

VerifyUpdates(pp,C j,C j+1,π j) = 1 (A.14)

and

VerifyUpdates(pp,C ′j ,C j+1,π j+1) = 1 (A.15)

it is sufficient to show that in order for the adversary to produce Ct = C ′t and Ci 6= C ′i for some

i < t, it needs to find a collision for the hash function H.

Equations A.14 and A.15 imply that for all j ≤ t,

h j = H(C j−1)

and

h′j = H(C ′j−1)

If there exists some i < t for which Ci 6= C ′i but Ct = C ′t there exists some k ∈ (i, t) s.t. Ck 6= C ′k
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and Ck+1 = C ′k+1. The latter implies that hk+1 = h′k+1 and, thus, H(Ck) = H(C ′k) as requested.
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B | K A R O U S O S A L G O R I T H M S A N D

C O R R E C T N E S S P R O O F S

This section contains the detailed description of Karousos’s algorithms (§B.1), the formal definition

of the desired correctness properties (§B.2), and the proof that Karousos satisfies these proper-

ties (§B.3)

B . 1 A L G O R I T H M S

In the following, a global handler is a handler that is registered by the initialization function (§4.2).

B . 1 . 1 A N N O TAT I N G L O G G A B L E VA R I A B L E S

The principal annotates a program P (§4.3.2) by identifying all loggable variables S and placing a

special annotation called OnInitialize right after the initialization of each variable v in S.

Then, the Karousos compiler, produces an annotated program Pa by taking the program with

the OnInitialize annotations and doing the following modifications:

• It replaces each read of a variable v that has an OnInitialize annotation (and is, thus, in S) with a

special annotation called OnRead

• Right after each write of a variable v that has an OnInitialize annotation, it places a special

annotation called OnWrite
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We use the term annotated operation to refer to an annotation in Pa along with its corresponding

variable operation if it exists (that is, if the annotation is OnInitialize or OnWrite).

B . 1 . 2 R E Q U E S T I D S , H A N D L E R I D S , VA R I A B L E I D S , A N D

T R A N S A C T I O N I D S

During execution, each request has a globally unique id which we denote rid.

Also, the honest server assigns a handler id to each handler that is running. This handler id

is unique within a request and is a tuple (functionID,parent_hid,opnum) where functionID is a

globally unique identifier of the handler function (piece of code), parent_hid is the id of the handler

that activates this handler and opnum is the index of the event that activates the handler within the

parent handler. For instance, if a handler with functionID f is activated by the third operation of

handler with id hid2, this handler is assigned handler id ( f ,hid2,3). Because each handler function

can only be registered once for each event, handler ids are unique within a request, but not across

requests.

Also, the honest server assigns a globally unique variable ID to each variable, and a globally

unique transaction id to each transaction.

B . 1 . 3 A D V I C E C O L L E C T I O N

The honest server collects the following advice:

• The control flow groupings (C) (§4.3.1).

• The handler logs HLs (§4.3.1): for each request, the ordered log of handler operations that the

request issued. Each entry in the log is one of the kinds below. For all of these, hid is the id of the

handler that issues the operation and opnum is the order of this operation among all operations

that the handler issues:

• register operations are tuples (hid,opnum, functionID,eventNames), where functionID is the
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1: logs are of type (requestid,handlerid,N)→ ({read,write},value,requestid,handlerid,N)
2: READ entries contain references to the write that they observe.
3: WRITE entries contain the value written.
4: procedure OnInitialize(rid,hid,opnum,v)
5: Let v. log← empty VL
6: Let v.value← nil //the most recent written value
7: //Store the most write operation (rid,hid,opnum)
8: Let v.rid← rid
9: Let v.hid← hid

10: Let v.opnum← opnum

11: procedure OnRead(rid,hid,opnum,v)
12: if Rconcurrent((rid,hid,opnum),(v.rid,v.hid,v.opnum)) then
13: //Check that the write that we read from has already been logged. If it has not, log it.
14: if v. log{v.rid,v.hid,v.opnum}= nil then
15: Let v. log{v.rid,v.hid,v.opnum}← (write,v.value,nil,nil,nil)
16: //Log the read
17: Let v. log{rid,hid,opnum}← (read,nil,v.rid,v.hid,v.opnum)

return v

18: procedure OnWrite(rid,hid,opnum,opcontents,v)
19: if Rconcurrent((rid,hid,opnum),(v.rid,v.hid,v.opnum)) then
20: //Check that the write observed by this one has already been logged. If it has not, log it.
21: if v. log{v.rid,v.hid,v.opnum}= nil then
22: Let v. log{v.rid,v.hid,v.opnum}← (write,v.value,nil,nil,nil)
23: //Log the write
24: Let v. log{rid,hid,opnum}← (write,opcontents,v.rid,v.hid,v.opnum)

25: //This write is the most recent write. So set the v fields value,rid,hid,opnum
26: //to those of this write operation.
27: Let v.value← opcontents
28: Let v.rid← rid
29: Let v.hid← hid
30: Let v.opnum← opnum

Figure B.1: Pseudocode for server’s logic on reaching an annotation.

id of the function, and eventNames is the set that contains the names of the events that the

handler is registered for.

• emit operations are tuples (hid,opnum,eventName), where eventName is a string that corre-

sponds to the name of the event. An emit operation activates all functions that are registered

for the event with name eventName (For more details on events and handler operations check

Section 4.2).

• unregister operations are tuples (hid,opnum, functionID,eventName), where functionID is the

id of the function that is unregistered from event name eventName.

• Check operations is a class of operations that inspect the handlers and the events. The server

logs such operations as tuples (hid,opnum,opInfo), where opInfo is the name of the operation
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and any arguments that the operation is called with.

• The variable logs VLs (§4.3.2): We denote the variable log of a variable id v as VLv. VLv is a map

from triplets (request id, handler id, opnum) to tuples of type (t: AccessType, v: Value, prec_rid:

request id, prec_hid: handler id, prec_anum: Int). These are created during execution; on each

variable access, the server follows the algorithms of Figure B.1. AccessType is READ or WRITE.

READ entries contain references to the write that they observe. WRITE entries contain the value

written.

• The transaction logs TXLs (§4.3.4): for each transaction id, an ordered log of all operations that

the transaction executes. Each entry is of the form:

(hid,opnum,optype,key,opcontents)

where

• hid is the id of the handler that executes this operation

• opnum is the order of this operation among all other operations that the handler executes.

• optype is the type of operation, namely tx_start,tx_commit,tx_abort, PUT or GET,

• key is the key for PUT and GET operations and null otherwise.

• opcontents are null except for PUT and GET operations: For PUT operations they are the contents

that are written and for GET operations they are the position in the logs of the write that they

read from.

• writeOrder (§4.3.4): a single log that allegedly reflects the order in which the server applied the

writes to shared external state.

• responseEmittedBy: a map from request ids to tuples (hid,opnum) s.t. the handler with id hid is

the one that sends back the response and opnum is the number of operations that hid had issued

prior to sending the response.

• opcounts: a map from the id (rid,hid) of every handler that is executed to the total number of
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operations that the handler issues (may be zero).

B . 1 . 4 V E R I F I E R

The verifier’s algorithms are in Figures B.2, B.4, B.5, B.6, B.7, B.8, B.9:
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1: Input Trace Tr, Input Advice A, Input Isolation level I
2: Global Graph G

3: Global Map OpMap : (requestid,handlerid,N)→ (“handler_log”,requestid,N)∪ (“tx_log”, txid,N):
4: maps the i-th operation of a handler to the location of this operation in the logs.

5: Global Map activatedHandlers: (rid,hid, i)→ Set of invoked hids:
6: defined over (rid,hid, i) s.t. the i-th operation of handler (rid,hid) is an emit operation (§B.1.3); maps these

triples to the set of hids they invoke.

7: Global Set Committed: a set of tuples (requestid, txid) of purported committed transactions,

8: Global Map ReadMap: Map from write ops to the read ops that read from them

9: Global Set GlobalHandlers: Set of tuples (e, f ) s.t. f is a global handler listening for e

10: Global Map lastModification: Map from (requestid,handlerid,key) to an integer representing the order of the
11: last operation of the transaction that modifies this key among all other operations that the transaction issues
12:
13: procedure Audit
14: Preprocess()
15: ReExec() // Figure B.6
16: Postprocess()
17:
18: procedure Preprocess
19: Check Tr is balanced.
20: Run the initialization phase and log all global handlers.
21: GTr← CreateTimePrecedenceGraph() // See [146, Figure 6]
22: SplitNodes(GTr) // See [146, Figure 5]
23: AddProgramEdges()
24: AddBoundaryEdges() // Figure B.3
25: AddHandlerRelatedEdges() // Figure B.4
26: AddExternalStateEdges() // Figure B.4
27: IsolationLevelVerification() // Figure B.5
28:
29: procedure Postprocess
30: AddInternalStateEdges() // Figure B.9
31: if CycleDetect(G) then REJECT
32:
33: procedure AddProgramEdges
34: //This procedures adds all the nodes of each handler and program edges
35: //between consecutive operations within a handler.
36: for all (rid,hid) in A.opcounts do
37: if rid does not appear in Tr then REJECT
38: //Add the handler end, start nodes
39: G.add_node((rid,hid,0))
40: G.add_node((rid,hid,∞))
41: for i← 1, . . . ,A.opcounts[(rid,hid)] do
42: G.add_node((rid,hid, i))
43: G.add_edge((rid,hid, i−1),(rid,hid, i))
44: G.add_edge((rid,hid,A.opcounts[(rid,hid)]),(rid,hid,∞))

Figure B.2: Pseudocode for verifier’s audit procedure in Karousos.

99



1: // Global Variables are the ones in Figure B.2
2:
3: procedure AddBoundaryEdges
4: // For all (rid,hid) that are request handlers, add edge from (rid,0) to (rid,hid,0)
5: for all (rid,hid) in A.opcounts do
6: if hid.parent_hid = null then
7: G.add_edge((rid,0),(rid,hid,0))
8: // For each rid, (rid,∞) represents delivering the response. For the handler (rid,hidr)
9: // that delivers the response for rid (according to A), add an edge to (rid,∞)

10: // from the operation of hidr just prior to delivering the response, and an edge from (rid,∞) to the
11: // operation of hidr just after delivering the response.
12: for all rid in Tr do
13: if A.responseEmittedBy[rid] = null or A.responseEmittedBy is not of type (handler id, i) where i ∈ N then
14: REJECT
15: Parse A.responseEmittedBy[rid] as (hidr,opnumr)
16: if (rid,hidr,opnumr) /∈ G.Nodes then REJECT
17: G.add_edge((rid,hidr,opnumr),(rid,∞))
18: if opnumr = A.opcounts[(rid,hidr)] then
19: //In this case the handler’s next operation is handler exit
20: G.add_edge((rid,∞),(rid,hidr,∞))
21: else
22: G.add_edge((rid,∞),(rid,hidr,opnumr +1))

Figure B.3: Pseudocode for verifier’s AddBoundaryEdges procedure in Karousos.
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1: // Global Variables are the ones in Figure B.2
2:
3: procedure AddHandlerRelatedEdges
4: //add edges between consecuting operations in handler logs and activation edges
5: for all rid in A.HL do
6: if rid does not appear in Tr then REJECT
7: Registered← new Set()
8: for i← 1, . . . ,A.HLrid.length do
9: op← A.HLrid[i]

10: CheckOpIsValid(rid, op)
11: OpMap[(rid,op.hid,op.opnum)]← (“handler_log”,rid, i)
12: //Add the handler op precedence edge
13: if i 6= 1 then
14: Let prev_op← (rid,HLrid[i−1].hid,HLrid[i−1].opnum)
15: G.add_edge(prev_op,op)
16: if op is a register operation then
17: for all eventName in op.eventNames do
18: Registered.add(eventName,op.functionID)

19: else if op is an unregister operation then
20: Registered.remove(op.eventName,op.functionID)
21: else if op is an emit operation then
22: for all (op.eventName, functionID) in Registered∪GlobalHandlers do
23: hid′← (functionID,op.hid,op.opnum)
24: //Check that the server has reported the activated handler
25: if A.opcounts[(rid,hid′)] = /0 then REJECT
26: activatedHandlers[rid,op.hid,op.opnum].add(hid′)
27: //add the activation edge
28: G.add_edge((rid,op.hid,op.opnum),(rid,hid′,0))
29:
30: procedure AddExternalStateEdges
31: //Bookkeeping for external state and edges described in Section 4.3.4
32: for all (rid, tid) in A.TXL do
33: //Check if the transaction is allegedly committed or not
34: if last operation in the log TXL(rid,tid) is of type commit then
35: Committed.add(rid, tid)
36: Initialize map MyWrites
37: for all i← 1, . . . ,TXL(rid,tid) do
38: Let op← TXL(rid,tid)[i]
39: CheckOpIsValid(rid, op)
40: OpMap[(rid,op.hid,op.opnum]← (“tx_log”, tid, i)
41: if i 6= 1 then
42: if op.optype = GET then
43: Let (ridw, tidw, iw)← op.opcontents
44: Let opw← A.TXL(ridw,tidw)[iw]
45: CheckOpIsValid(rid, opw)
46: G.add_edge((ridw,opw.hid,opw.opnum),(rid,op.hid,op.opnum) //Add a read-from edge
47: // Add this op to the dictating write’s list of readers
48: if opw.optype 6= PUT∨opw.key 6= op.key then REJECT
49: ReadMap[(rid, tidw, iw)].add(rid, tid, i)
50: //Make sure that if it reads a key that it has modified, it reads the last modification
51: if op.key ∈MyWrites∧MyWrites[key] 6= (ridw, tidw, iw) then REJECT
52: else if op.optype = PUT then
53: //update MyWrites
54: MyWrites[op.key]← (rid, tid, i)
55: if (rid, tid) ∈ Committed then
56: lastModification[rid, tid,key]← i
57:
58: procedure CheckOpIsValid(rid: request id, op: operation)
59: if A.opcounts[(rid,op.hid)] = /0 then REJECT
60: if op.opnum < 1∨op.opnum > A.opcounts[(rid,op.hid)]∨OpMap[(rid,op.hid,op.opnum)] exists then
61: REJECT

Figure B.4: Pseudocode for verifier’s AddHandlerRelatedEdges and AddExternalStateEdges in Karousos
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1: // Global Variables are the ones in Figure B.2
2:
3: procedure IsolationLvlVer
4: Initialize DG to an empty graph
5: //Add a node for each committed transaction
6: for all (rid, tid) ∈ Committed do
7: DG.add_node((rid, tid))
8: writeOrderPerKey← ExtractWriteOrderPerKey()
9: if I = READ UNCOMMITTED then

10: AddWriteDependencyEdges(writeOrderPerKey)
11: if CycleDetect(DG) then REJECT
12: else if I = READ COMMITTED then
13: AddWriteDependencyEdges(writeOrderPerKey)
14: AddReadDependencyEdges()
15: if CycleDetect(DG) then REJECT
16: else if I = SERIALIZABILITY then
17: AddWriteDependencyEdges(writeOrderPerKey)
18: AddReadDependencyEdges()
19: AddAntiDependencyEdges(writeOrderPerKey)
20: if CycleDetect(DG) then REJECT
21:
22: procedure ExtractWriteOrderPerKey
23: if writeOrder.length 6= |lastModification| then REJECT
24: Initialize writeOrderPerKey←Map from keys to lists
25: for all (rid, tid, i) in A.writeOrder in order do
26: Let op← TXL(rid,tid)[i]
27: if lastModification[(rid, tid,op.key)] 6= i then REJECT
28: writeOrderPerKey[op.key].append(rid, tid, i)
29: return writeOrderPerKey
30:
31: procedure AddReadDependencyEdges // w-r edges
32: for all (ridw, tidw, iw) in ReadMap do
33: //check that if the write is not the last modification, no committed transaction reads from it
34: if (ridw, tidw, iw) /∈ writeOrder then
35: for all (ridr, tidr, ir) in ReadMap[(ridw, tidw, iw)] do
36: if (ridr, tidr) ∈ Committed then REJECT
37: else
38: for all (ridr, tidr, ir) in ReadMap[(ridw, tidw, iw)] do
39: if (ridw, tidw) ∈ Committed∧ (ridw 6= ridr ∨ tidw 6= tidr) then
40: DG.add_edge(〈(ridw, tidw),(ridr, tidr)〉)
41:
42: procedure AddWriteDependencyEdges(writeOrderPerKey) // w-w edge
43: for all key ∈ writeOrderPerKey do
44: Let o← writeOrderPerKey[key]
45: for j = 1, . . . ,o.length−1 do
46: //check that there’s only one version per transaction
47: DG.add_edge(〈(o[ j].rid,o[ j].tid),(o[ j+1].rid,o[ j+1].tid)〉)
48:
49: procedure AddAntiDependencyEdges(writeOrderPerKey) // r-w edges
50: for all k ∈ writeOrderPerKey do
51: Let o← writeOrderPerKey[k]
52: for j = 1, . . . ,o.length−1 do
53: for all (rid, tid,_) ∈ ReadMap[o[ j]] do
54: Let T1 = (rid, tid) and T2 = (o[ j+1].rid,o[ j+1].tid)
55: if T1 6= T2∧T1 ∈ Committed then
56: DG.add_edge(〈T1,T2〉)

Figure B.5: Pseudocode for verifier’s isolation level verification in Karousos (§4.3.4)
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1: //Global Variables are the ones in Figure B.2
2: procedure ReExec
3: Re-execute Tr in groups according to A.C
4: (1) Initialize a group as follows:
5: Read in inputs for all requests in the group. Let in be these inputs
6: Allocate program structures for each request in the group
7: Initialize active: a queue of tuples (handler id, inputs)
8: Find the functionIDs of the request handlers.
9: if the functionIDs of the request handlers don’t line up across requests then REJECT

10: for all functionID in functionIDs do
11: Let hid← (functionID,null,0)
12: active.Enqueue(hid, in)
13: if ∃rid in the group s.t. A.opcounts[(rid,hid)] = /0 then REJECT
14: (2) Execute the requests in the group with SIMD-on-demand:
15: while active 6= /0 do
16: (a) The runtime picks the next handler c to execute
17: if c 6= null then
18: Compute hid from the functionID of the function, the parent handler and the event.
19: if hid /∈ active then
20: continue;//Do not execute this handler.
21: else
22: Name the handler hid and set the inputs to the ones associated with hid in active
23: Remove hid from active
24: idx[hid]← 1
25: Execute the activated handler for all requests in the group
26: else
27: //Pick the next handler to be executed from active
28: (hid, in)← active.Dequeue
29: idx[hid]← 1
30: Execute the function hid.functionID for all requests in the group with inputs in
31: (b) ReExecute hid for all requests:
32: if execution within the group diverges then REJECT
33: if the group makes an external state operation then
34: optype← the type of state operation
35: for all rid in the group do
36: opcontents, tid, txnum← parameters from execution
37: s← CheckStateOp(rid,hid, idx[hid],optype, tid, txnum,key,opcontents)
38: if optype = GET then
39: state op result← s
40: idx[hid] = idx[hid]+1
41: if the group reaches an annotated operation then
42: For all rid in the group:
43: if opnum > A.opcounts[(rid,hid)] then REJECT
44: if it is a write or initialization then
45: Execute the operation
46: Execute the annotation according to Figure B.8 where opnum is set to idx[hid]
47: idx[hid] = idx[hid]+1
48: if the group makes a handler operation then
49: optype← the type of handler operation
50: for all rid in the group do
51: info← parameters from execution
52: CheckHandlerOp(rid,hid, idx[hid],optype, info)
53: if optype = emit then ActivateHandlers(hid, idx[hid],active)
54: Execute the handler operation
55: idx[hid] = idx[hid]+1
56: if the group sends back a response then
57: if ∃rid in the group s.t. A.responseEmittedBy[rid] 6= (hid, idx[hid]) then REJECT
58: Write out the produced outputs
59: (c) When the execution of the handler hid exits
60: if ∃rid in the group s.t. idx[hid]< A.opcounts[(rid,hid)] then REJECT
61: (3) for all rid in the group do
62: if the produced outputs are not exactly the responses in Tr then REJECT
63: //Check that there are no handlers in the advice that we did not execute
64: if ∃rid s.t. ∃hid : A.opcounts[(rid,hid)] but (rid,hid) was not executed by ReExec then REJECT
65: return ACCEPT

Figure B.6: Pseudocode for verifier’s ReExec in Karousos
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1: //Global Variables are the ones in Figure B.2
2:
3: procedure CheckStateOp(rid,hid,opnum,optype, tid, txnum,key,opcontents)
4: //Simulate and check logic for state operations (§4.1.2, §4.3.4)
5: if opnum > A.opcounts[(rid,hid)] then REJECT
6: Let (t, tidc, txnumc)← OpMap[(rid,hid,opnum)]
7: if t 6= “tx_log”∨ tidc 6= tid∨ txnumc 6= txnum then REJECT
8: Let op← A.TXLridtid[txnum]
9: if op.optype 6= optype∧op.optype 6= tx_abort∧optype 6= tx_commit then REJECT

10: if op.key 6= key then REJECT
11: if optype 6= GET then
12: if op.opcontents 6= opcontents then REJECT
13: else
14: Let (ridw, tidw, iw)← op.opcontents
15: Let opw← A.TXLridw tidw[iw] return opw.opcontents
16:
17: procedure CheckHandlerOp(rid,hid,opnum,optype, info)
18: //Check that the handler operation matches the entry in the logs (§4.3.1)
19: if opnum > A.opcounts[(rid,hid)] then REJECT
20: Let (t,ridc, i)← OpMap[(rid,hid,opnum)]
21: if t 6= “handler_log”∨ ridc 6= rid then REJECT
22: Let op← A.HLrid[i]
23: if info does not match the fields in op then REJECT
24:
25: // The following procedure is called by ReExec while it is executing a control flow group
26: // when it encounters an emit operation.
27: // It checks that all requests in the group induce the same handlers,
28: // and adds the handlers to active.
29: procedure ActivateHandlers(hid, i,active)
30: //Check that (hid, i) activates the same handlers across all requests, according to the advice (§4.3.1)
31: if exist rid1,rid2 in the group s.t. activatedHandlers[rid1,hid, i] 6= activatedHandlers[rid2,hid, i] then REJECT
32: Let in the set of values of the emit operation across all requests.
33: for all hid′ ∈ activatedHandlers[rid,hid, i] for some rid in the group do
34: active.Enqueue(hid′, in)

Figure B.7: Pseudocode for check op routines and activateHandlers routine of Karousos verifier
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1: all_variables←{} // A set of all variables.
2: procedure OnInitialize(rid,hid,opnum,v)
3: Let v. log← VLv.variableID
4: Let v.rid← rid
5: Let v.hid← hid
6: Let v.opnum← opnum
7: Let v.var_dict←{} // Map from rid,hid,opnum to values.
8: Let v.read_observers←{} // maps from a write op to all readers who allegedly observed that op,
9: // based on both server-supplied advice, and re-execution.

10: Let v.write_observer←{} // maps from a write op to 0 or 1 writers who allegedly observed that op,
11: // based on either server-supplied advice or re-execution.
12: Let v.initializer← nil
13: all_variables.insert(v)
14:
15: procedure OnRead(rid,hid,opnum,opcontents,v)
16: if v. log .contains(rid,hid,opnum) then
17: // if a read is logged, then the server was supposed to
18: // have logged the dictating write. So find the dictating
19: // write in the log, and feed its value to the read.
20: op,_,ridop,hidop,opnumop← v. log{rid,hid,opnum}
21: if op is not read or !v. log .contains(ridop,hidop,opnumop) then
22: return nil
23: op,value,_ ,_ ,_← v. log{ridop,hidop,opnumop}
24: if op is not write then
25: return nil
26: v.read_observers{(ridop,hidop,opnumop)}.insert((rid,hid,opnum))
27: return value
28: else
29: //Below FindNearestRPrecedingWrite returns the last write by the nearest ancestor handler
30: //by climbing up the handler tree and checking v.var_dict.
31: Let ridp,hidp,opnump,value← FindNearestRPrecedingWrite(v,rid,hid,opnum)
32: if ridp = nil and hidp = nil then
33: return nil
34: v.read_observers{(ridp,hidp,opnump)}.insert((rid,hid,opnum))
35: return v

Figure B.8: Code that verifier executes upon an annotated operation (§4.3.3), I
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1: procedure OnWrite(rid,hid,opnum,opcontents,v)
2: Let v.var_dict{(rid,hid,opnum)}← opcontents
3: if v. log .contains(rid,hid,opnum) then
4: Let op,value,rido,hido,opnumo← v. log{rid,hid,opnum}
5: if op is not write or value 6= opcontents then
6: return false // Operations or values don’t agree.
7: if rido 6= nil and hido 6= nil and opnumo 6= nil then
8: if v.write_observer{rido,hido,opnumo} 6= nil then
9: return false // Two handlers cannot overwrite the same value.

10: else
11: Let v.write_observer{rido,hido,opnumo}← (rid,hid,opnum)
12: return true
13: else
14: Let (ridp,hidp,opnump,value)← FindNearestRPrecedingWrite(v,rid,hid,opnum)
15: if ridp 6= nil and hidp 6= nil and opnump 6= nil then
16: Let v.write_observer{ridp,hidp,opnump}← (rid,hid,opnum)
17: else
18: Let v.initializer← (rid,hid,opnum)

19: return true

20: procedure AddInternalStateEdges
21: for all v← all_variables do
22: Let (rid,hid,opnum)← v.initializer
23: while rid 6= nil and hid 6= nil and opnum 6= nil do
24: // Add WR (write-read) edges.
25: for all (ridr,hidr,opnumr)← v.read_observers{rid,hid,opnum} do
26: G.add_edge((rid,hid,opnum),(ridr,hidr,opnumr))

27: if v.write_observer{rid,hid,opnum} 6= nil then
28: // Add RW (anti-dependency) edges.
29: for all (ridr,hidr,opnumr)← v.read_observers{rid,hid,opnum} do
30: G.add_edge((ridr,hidr,opnumr),v.write_observer{rid,hid,opnum})

// Add WW edge.
31: G.add_edge((rid,hid,opnum),v.write_observer{rid,hid,opnum})
32: Let (rid,hid,opnum)← v.write_observer{rid,hid,opnum}

Figure B.9: Code that verifier executes upon an annotated operation (§4.3.3) II
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B . 2 C O R R E C T N E S S P R O P E R T I E S

Definition 1 (Request/Response trace Tr). An ordered list of the request and response events. The

events appear in the list in chronological order. A request event is a tuple (REQ,rid,x) where rid

is the request id of the request that was issued and x is the input data. A response event is a tuple

(RESP,rid,y) where rid is the request id of the request that corresponds to this response and y are

the contents of the response.

Definition 2 (Completeness). An advice collection procedure and an audit procedure are defined

to be Complete if the following holds: If the server serves the requests according to the annotated

program Pa and executes the given advice collection procedure, then the given audit procedure

(applied to the resulting trace and advice) passes.

Definition 3 (Request Schedule). A request schedule is an ordered list of request ids that models

the execution schedule. Notice that request ids are permitted to repeat in the schedule.

Definition 4 (Operation-wise execution). Consider a model where, instead of requests arriving

and departing, the executor has access to all request ids in a trace Tr and their inputs. Operation-

wise execution means executing the program P by following a request schedule S; the output of

operation-wise execution is a trace Tr′. Specifically:

• The executor runs the initialization process of P.

• Then, for each request id rid in the request schedule S in order:

• If it is rid’s first appearance, the executor reads in the request’s inputs x, appends (REQ,rid,x)

to Tr′ and initializes the active handlers set of rid with the request handlers for this request

• Otherwise, the executor non-deterministically chooses one of the handlers in the active han-

dlers set of rid and runs it up to and including its next special operation.

After the execution of a request’s handler, the request is held, until the executor reschedules it.
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If a request is scheduled but the request has no active handlers, the executor immediately yields

and chooses the next rid in S.

• At the end, output Tr′.

Our operation-wise execution differs from the one in given in Orochi [146] in that it explicitly

constructs an alternate trace instead of consulting the observed one.

Moreover, because of the non-deterministic choices flagged above, this procedure can produce

multiple output traces for the same starting schedule S.

Definition 5 (OS). For a request schedule S, OS is the set of all possible output traces that Operation-

wise execution on request schedule S can generate.

Definition 6 (Soundness). An advice collection procedure and an audit procedure are defined to

be sound if the following holds: If the given audit procedure accepts a trace Tr and advice A, then

there exists a request schedule S such that Tr ∈ OS.

B . 3 P R O O F S

We need the following definitions:

Definition 7 (R-precedes). An operation op = (rid,hid,opnum) R-precedes an operation op′ =

(rid′,hid′,opnum′), written op <R op′, iff

• rid = rid′ and hid = hid′ and opnum < opnum′, or

• rid = rid′ and hid is an ancestor of hid′ in the handler tree.

Definition 8 (R-ordered, R-concurrent). Two operations op and op′, with op 6= op′, are R-ordered

iff op <R op′ or op′ <R op. They are R-concurrent iff op≮R op′ and op′ ≮R op.

Definition 9 (Op Schedule). An op schedule is a map:

S : N→ requestid× ({0,∞}∪{handlerid× (N∪{∞})})
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For example:

(1,0),(23,0),(1,hid1,0),(23,hid2,0),(1,∞),(1,hid1,1) . . .

where hid1, hid2 are handler ids as defined in Section 3.2 of the paper, and the natural number

domain is implicit in the order.

Definition 10 (Well formed op schedule). An op schedule S is well formed (with respect to a trace

Tr and set of advice A) if:

1. it is a permutation of the graph G that is constructed by Preprocess,

2. it respects program order (that is, if there exists a program edge added by AddProgramEdges or

a boundary edge added by AddBoundaryEdges in G from node n1 to node n2, then n1 appears

before n2 in S), and

3. it respects activation order (that is, if there exists an activation edge from node n1 to node n2

in G, n1 appears before n2 in S)

Remark.. Notice that any topological sort of the graph G constructed by Preprocess in Audit(Tr,A)

is well-formed. This is immediate from the definition.

OOOAudit. This procedure is shown in Figure B.10.

Lemma 5 (Equivalence of well formed op schedules). For all op schedules S1, S2 that are well-

formed (with respect to Tr and advice A)

OOOAudit(Tr,A,S1) = OOOAudit(Tr,A,S2).

Proof. The schedule does not affect the OOOAudit until the line where OOOExec is invoked. So

up until then, either both executions accept or both reject.

Now, assume that OOOExec(S1) and OOOExec(S2) are equivalent, meaning that (a) either both

accept or both reject and (b) they access the same variables setting the initializer, write_observer
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1: //Global Variables are the ones in Figure B.2

2: procedure OOOAudit(op schedule S)
3: Preprocess() // Figure B.2
4: OOOExec(S)
5: Postprocess() // Figure B.2
6:
7: procedure OOOExec(op schedule S)
8: for each op in S do
9: if op = (rid,0) then

10: Read inputs in of the request
11: Allocate program structures
12: active[rid]← new Map
13: Find the functionIDs of the request handlers
14: for all functionID in functionIDs do
15: Let hid← (functionID,null,0)
16: active[rid][hid]← in
17: if A.opcounts[(rid,hid)] = /0 then REJECT
18: else if op = (rid,∞) then
19: Let hid← A.responseEmittedBy[rid].hid
20: Run the handler (rid,hid) until the next event
21: if the next event is not a send response operation then REJECT
22: write out the produced outputs
23: else if op = (rid,hid, i) then
24: if i = 0 then
25: if (hid is not in active[rid]) then REJECT
26: //It is the first operation
27: Set the handler’s inputs to active[rid][hid].
28: Allocate structures for running the handler
29: else if i = ∞ then
30: Run the handler (rid,hid) until the next event
31: if it is not a handler exit operation then REJECT
32: Remove hid from active[rid]
33: else
34: Run the handler (rid,hid) until the next event
35: if the next event is an external state operation then
36: optype← the type of state operation
37: opcontents, tid, txnum← parameters from execution
38: s← CheckStateOp(rid,hid, i,optype, tid, txnum,opcontents)
39: if optype = GET then
40: state op result← s
41: else if the next event is an annotated operation then
42: if it is a write or initialization then
43: Execute the operation
44: Execute the annotation according to Figure B.8 where opnum is set to i
45: else if the next event is a handler operation then
46: info← parameters from execution
47: CheckHandlerOp(rid,hid, i,optype, info)
48: if the event is an emit operation then
49: for all hid′ ∈ activatedHandlers[(rid,hid, i)] do active[rid][hid′]← value of the emit
50:
51: if ∃rid s.t. ∃hid : A.opcounts[(rid,hid)] but (rid,hid) was not executed by OOOExec then REJECT
52: if the produced outputs exactly match the responses in Tr then return ACCEPT
53: return REJECT

Figure B.10: Pseudocode for OOOAudit in Karousos.
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and read_observers of each variable to the same values. Now examine the execution of Postprocess.

(b) implies that the edges that are added to G by AddInternalStateEdges are the same in both

executions and, thus, the constructed graph G is the same in both executions. CycleDetect thus runs

the same in both executions. Therefore, either both executions accept or both reject.

Now we need to prove that OOOExec(S1) and OOOExec(S2) are equivalent: The two schedules

contain the same operations because they are constructed from the same graph G. We need to prove

that each operation is executed in the same way in both executions. We will prove this by induction

on the operations of each request.

1. Fix a request rid.

2. First notice that the only global state that is modified during OOOExec is the active map,

per-variable dictionaries, lists of read_observers, write_observers, and initializer.

3. Base case: Because both schedules are well-formed, the first operation of a request is (rid,0):

none of the data that this execution depends on get modified throughout OOOExec. So the

execution of this operation is independent of its position in the log, and it is executed in the

same way in both executions.

4. Induction: If both executions are about to execute operation k of request rid, and neither has

rejected so far, the execution of operation k will proceed in the same way in both executions.

• Assume that the next operation is (rid,∞): The handler hid which both executions of

OOOExec execute is the one in A.responseEmittedBy. Moreover, because the schedules

are well formed, the latest operation of (rid,hid) that has been executed so far on both

executions is

(rid,hid,A.responseEmittedBy[rid].opnum). Thus, both executions will execute the handler

that allegedly sends back the response, from the (allegedly) last operation prior to the re-

sponse up until the next operation. Because of the induction hypothesis and the fact that the

execution of a handler between operations is deterministic, the two executions will proceed
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in the same way up until right before the next event, producing the same state. Moreover,

the next event will be the same in the two executions. If this event is not the emission of

a response, both executions will reject. Otherwise, because both executions have the same

state, the produced outputs will be the same.

• Operations (rid,hid, i):

• If it is a handler start operation (i = 0) then the executions do not depend on state that is

modified except for the check in line 25. We will show that either both executions accept

or both reject: Assume that this does not hold. Then, without loss of generality assume that

the check passes in OOOExec(S1) and fails in OOOExec(S2). So in OOOExec(S2), hid is

not in active[rid], either because (i) hid was in active[rid] and removed from it, or (ii) hid

was never added to active[rid]. We can rule out case (i) because the only place where

hid could be removed is line 32 which, if it were executed, would mean that (hid,rid,∞)

appears before (hid,rid,0) in S2, which is not possible, since S2 is well-formed and in

particular respects program order. So case (ii) holds.

Now, in OOOExec(S1), hid is in active[rid]. There are two places where hid could have

been inserted: (a) line 16 during execution of (rid,0) or (b) line 49 during the execution

of an emit operation (rid,parent, j). Consider case (a). Because S1 and S2 are well-

formed, (rid,0) appears before (rid,hid,0) in both S1 and S2. Also, as argued above, both

OOOExec(S1) and OOOExec(S2) execute (rid,0) the same way, initializing active[rid]

to the same value. Therefore, if case (a) holds for OOOExec(S1) then correspondingly,

hid would have been inserted in OOOExec(S2) in the same line, in contradiction to case

(ii) above. So case (b) holds.

In this case, because OOOExec(S1) adds hid to active[rid] during the execution of

an emit operation (rid,parent, j) at line 49, hid ∈ activatedHandlers[(rid,parent, j)].

This, in turn, implies that there is an activation edge 〈(rid,parent, j),(rid,hid,0)〉 in

G. So, because S2 is well-formed, operation (rid,parent, j) appears before (rid,hid,0)
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in S2. This means that OOOExec(S2) executes operation (rid,parent, j) prior to exe-

cuting (rid,hid,0) but during its execution it does not add hid to active[rid]. This can

only be the case if during OOOExec(S2), hid /∈ activatedHandlers[(rid,parent, j)]. But

this is impossible because activatedHandlers is the same across both executions (it

is initialized during preprocessing and is not modified after preprocessing), and hid ∈

activatedHandlers[(rid,parent, j)] during OOOExec(S1).

• If it is a handler end operation (i = ∞), the execution does not depend on any objects that

are modified during OOOExec so both executions proceed in the same way.

• If it is an external state operation: same argument as i = ∞.

• If it is an annotated operation (and hence interacting with, the aforementioned per-variable

dictionaries and lists):

• The parameters of the operation are the same across both executions because of the

induction hypothesis and the fact that OOOExec proceeds deterministically from oper-

ation to operation.

• If the operation is in the advice, then the execution proceeds in the same way in both

executions.

• If the operation is not in the advice, then both executions will find the nearest R-

preceding write. Because of the induction hypothesis, and the fact that both schedules

respect activation and program order, the nearest ancestor write will be the same in

both executions, regardless of the order in which concurrent handlers are re-executed.

This means that reading from the nearest ancestor will be the same in both executions

(the same ancestor, the same value read) and, for this operation, both executions will

add the same value to the variable dictionary (if it’s a write operation) and both update

read_observers, write_observer and initializer in the same way.

• If it’s a handler operation: Same argument as i = ∞ and external state.
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B . 3 . 1 C O M P L E T E N E S S

At a high level, we need to show that if the server honestly executes the given program and the

advice collection procedure, producing trace Tr and advice A, then Audit(Tr,A) accepts. We will

do this in two steps:

1. First, we show that for any well-formed op schedule S, OOOAudit(Tr,A,S) accepts (Lemma 6).

2. Next, we establish that Audit(Tr,A) is equivalent to OOOAudit(Tr,A,S′) for a specific well-

formed op schedule S′ (Lemma 7). We take S′ to be the op schedule that results from a

“flattened” batch execution.

Lemma 6 (OOOAudit Completeness). If the executor executes the given program (under the

execution model given in Section 4.2 and the given advice collection procedure, producing trace

Tr and advice A, then for any well-formed op schedule S (with respect to Tr and A), OOOAudit(S)

accepts.

Proof. Because of Lemma 5, it is sufficient to prove that there exists some well-formed op schedule

S′ (with respect to Tr and A) for which OOOAudit(S′) accepts.

We will derive the op schedule S′ from the online execution at the honest server. Define the

following events during online execution:

• A request event happens when a request rid reaches the server, and is notated as (rid,0).

• A response event happens when the server issues a response for a request rid, and is notated as

(rid,∞).

• A handler start event happens when the server starts executing a handler (rid,hid), and is notated

as (rid,hid,0).

• A handler end event happens when the server finishes executing a handler (rid,hid), and is

notated as (rid,hid,∞).
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• A (rid,hid, i) event happens when the server either collects advice associated with a handler op

or a state op, or when the handler executes an annotated operation.

We observe that there exists a partial order in which these events happen during online execution.

The order is partial because some events may happen concurrently from the perspective of the

system; for example, even if the trace shows that a particular event (such as a request’s arrival) is

earlier than another (such as a different request’s arrival or response), the server may have “seen”

those two events in the opposite order. Define a total order on these events by ordering concurrent

events according to Tr if the events are both request/response events and arbitrarily otherwise. Take

the op schedule S′ to be this total order.

Sub-lemma 6.1. S′ is well-formed, with respect to the Trace Tr and advice A produced by the

online execution.

Proof. First, we show that S′ is a permutation of the nodes in graph G. Since the server is honest,

S′ contains exactly one request event and exactly one response event for each request in Tr; so

does G (from the logic of CreateTimePrecedenceGraph and SplitNodes). Moreover, S′ contains

exactly one handler start event and exactly one handler end event for each handler (rid,hid) that is

executed; so does G. This follows from the logic of AddProgramEdges, specifically, lines 39 and 40

of Figure B.2, and the fact that the server faithfully executes the advice collection procedure, and

sets the entries of A.opcounts to exactly the handlers that are executed during online execution. Last,

S′ will contain exactly one entry for each handler operation/state operation/annotated operation that

it executes. Because the honest server faithfully reports A.opcounts, S′ will contain exactly one

(rid,hid, i) for each i < A.opcounts. So will G (line 42 of Figure B.2). S′ contains no other entries

other than the ones above and G contains no other nodes other than the ones above. Thus, S′ is a

permutation of the nodes of G, as required.

Moreover, S′ respects program order (Definition 10): The server faithfully executes the given

program and collects the advice. This means that the relevant order of events within a handler
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implied by the opnum field of the corresponding operations in the logs, and the order of the response

event relative to the other events of the handler that issues the response implied by the contents

A.responseEmittedBy reflect what happened online. As a result, from the logic of AddProgramEdges

of Figure B.2 and AddBoundaryEdges of Figure B.3, the existence of a program edge or boundary

edge 〈n1,n2〉 in G implies that n1 happens before n2 during online execution. Thus, n1 also appears

before n2 in S′, by construction of S′.

Last, we argue that S′ respects activation order (Definition 10). Since S′ reflects the order of

events during online execution, it is sufficient to show that if there exists an activation edge

〈(rid,parent_hid, i),(rid,hid,0)〉

in G, then the emit event e = (rid,parent_hid, i) activates handler (rid,hid) during online execution

(because during a faithful execution a handler cannot start running until after the event that activates

it is emitted). The activation edge is added to G at line 28 of Figure B.4 only if hid.functionID is

registered for the event e according to GlobalHandlers or according to Registered. We will show

that in both cases, hid.functionID is registered for the event e during online execution and, thus,

e activates handler (rid,hid). In the former case, hid.functionID is registered for e at the end of

the initialization procedure at the verifier. Because the initialization procedure is deterministic,

hid.functionID is registered for e at the end of the initialization procedure at the online server and,

because requests don’t modify global handlers, it is still registered when e is emitted, as required.

In the latter case, hid.functionID is registered for e according to Registered only if there exists a

register operation prior to e in HLrid. Because the server executes the advice collection procedure

faithfully, the order of operations in HLrid reflects the order in which they are executed at the online

server. This implies that hid.functionID is registered for e during online execution.

Sub-lemma 6.2. Preprocess passes.

Proof. Consider all the lines in which OOOAudit may reject during Preprocess. We need to show

that if the server is well-behaved then all of the checks pass.
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• Line 19 of Figure B.2: Passes because the honest server always sends back a response for each

request it receives.

• Line 37 of Figure B.2: When the server is honest, it does not execute nor collect advice for any

requests that are not in Tr.

• Lines 14 and 16 of Figure B.3: The honest server executes exactly the requests in Tr and sends

back responses for exactly those requests. Moreover, it faithfully executes the advice collection

procedure setting the contents of A.responseEmittedBy[rid] for each rid that appears in the trace

to a tuple: (hidr,opnumr) s.t. 0≤ opnumr ≤ A.opcounts[(rid,hid)]. Consequently, the check of

line 14 passes. Moreover, notice that because of the logic of AddProgramEdges and the fact

that the honest server correctly sets the A.opcounts, (rid,hidr,opnumr) is added to G before the

check of line 16 which implies that the check passes.

• Line 6 of Figure B.4: Because the server is well-behaved, it never includes a handler operations

log in A for a request that is not in Tr.

• Line 25 of Figure B.4: As argued in the proof of lemma 6.1, if a functionID is registered for an

event e when e is emitted according to Registered or GlobalHandlers during AddHandlerRelated-

Edges, this functionID is registered for e during online execution. This implies that all handler ids

for which line 25 is executed are handler ids that are actually activated by this operation during

online execution. Moreover, the server, being well-behaved, has these ids as keys in A.opcounts.

Thus, the check passes.

• Invocation of CheckOpIsValid in Line 10 of Figure B.4: When the server is honest, it correctly

sets opcounts for each request in Tr and the contents of the logs so that each operation appears

exactly once in the logs. Under these conditions the checks pass.

• Line 48 of Figure B.4: When the server is honest, each GET(key) operation reads the contents

of a PUT(key, ·) operation. Moreover, the honest server correctly logs state operations in A.TXL.

Under these conditions, the check passes.
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• Line 51 of Figure B.4: When the server is well-behaved, the execution at the database is inter-

nally consistent (Section C) meaning that if a transaction modifies a key and later reads it, it reads

its latest modification. Moreover, the well-behaved server correctly sets the opcontents field of

each GET operation to the position of its dictating write in A.TXLs. This implies that for each

GET operation op that appears in some A.TXLt after a PUT operation op′ with op′.key = op.key,

op.opcontents corresponds to the last PUT operation to op.key that precedes op in A.TXLt . Mean-

while, from the logic of AddExternalStateEdges, when a GET operation op∈ A.TXLt is processed,

op.key /∈ MyWrites iff there are no PUT operations to op.key prior to op in A.TXLt . Otherwise,

MyWrites[op.key] is the last PUT operation to op.key that precedes op in A.TXLt . Thus, either

op.key /∈MyWrites or MyWrites[op.key] = op.opcontents. So, the check passes.

• Lines 23 and 27 of Figure B.5: We show that both checks pass by showing that the entries

(rid, tid, i) of A.writeOrder are exactly the set of (rid,hid, i) for which there exists some key

s.t. lastModification[rid, tid,key] = i. First, notice that because the server is well-behaved the

entries (rid, tid, i) of A.writeOrder correspond to the PUT operations that the server applied to

the external state. These are exactly the last modifications of committed transactions: that is, the

PUT operations op s.t. op belongs to a committed transaction and op is the last operation of the

transaction that modifies a key. Moreover, the honest server correctly sets the entries of A.TXLs.

Thus, the entries (rid, tid, i) of A.writeOrder are exactly the operations op = A.TXL(rid,tid)[i] s.t.

(1) the last operation of (rid, tid) is tx_commit, and (2) there exists no j > i s.t. A.TXL(rid,tid)[ j]

is a PUT on op.key. From the logic of AddExternalStateEdges, these are exactly the (rid,hid, i)

s.t. ∃key : lastModification[rid, tid,key] = i, as required.

• Line 36 of Figure B.5: First, observe that from the logic of AddExternalStateEdges, ReadMap

maps each PUT operation that appears in the logs to the set of GET operations that read from

it according to the advice. Thus, to show that this check passes for all GET operations in the

range of ReadMap, we show that for each GET operation op that appears in some A.TXLt either

t /∈ Committed or op.opcontents ∈ A.writeOrder. Observe that this line is executed only when
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the purported isolation is READ COMMITTED or SERIALIZABILITY. Consider the history

of execution (Section C) at the honest server. The history is consistent with the isolation level

and, thus, does not exhibit phenomena G1a and G1b. Consequently, during online execution, GET

operations of committed transactions only read from operations that correspond to last modifi-

cations of committed transactions. These latter operations are exactly the ones that the honest

server places in the A.writeOrder. Thus, GET operations of committed transactions only read

from operations that are in the A.writeOrder. Because the server correctly logs state operations

in A.TXLs, we deduce that for each GET operation op that appears in some A.TXLt either the last

operation in A.TXLt is tx_abort and, thus, t /∈ Committed or op.opcontents ∈ A.writeOrder, as

required.

• Line 11 of Figure B.5: We need to show that if the server is honest, then the graph DG when

this line is executed is acyclic. This line is executed only when the purported isolation level is

READ UNCOMMITTED. Consider the history of execution H at the honest server (Section C).

Because the server is well-behaved, H exhibits READ UNCOMMITTED which implies that

H does not exhibit phenomenon G0: DSG(H) contains no cycles consisting of write depend

edges. We show that DG is acyclic by showing that DG is the subgraph of DSG(H) that con-

tains only write depend edges. First, DG and DSG(H) have the same nodes: DG has a node for

each transaction that commits during online execution whereas DSG(H) has a node for each

transaction in Committed. Because the honest server collects advice for each transaction that it

executes and the last operation of each committed transaction t in A.TXLt is a tx_commit opera-

tion, AddExternalStateEdges adds exactly the transactions that commit during online execution

to Committed (line 35 of Figure B.4). Thus, DG and DSG(H) have the same nodes, as required.

Now we argue that the edges of DG which are the write dependency edges (added at line 47

of Figure B.5) are exactly the write depend edges of DSG(H): Observe that the write depend

edges of DSG(H) are the edges〈t1, t2〉 s.t. t1 writes a key and t2 writes the next version of the

key according to H (Section C). That is, DSG(H) has a write depend edge 〈t1, t2〉 iff there exist
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operations op1 = (t1, i) and op2 = (t2, j) s.t.

1. op1 appears before op2 in the version order of H,

2. op1.key == op2.key, and

3. for each operation op′ that appears between op1 and op2 in the version order of H, the key

that op′ writes is not key.

Moreover, a well-behaved server sets A.writeOrder to the version order of H, and correctly logs

state operations in A.TXLs. Thus, the write depend edges of DSG(H) are exactly the edges 〈t1, t2〉

for which there exist indexes i and j s.t.

1. (t1, i) appears before (t2, j) in A.writeOrder,

2. A.TXLt1[i].key = A.TXLt2 [ j].key, and

3. for each operation (t,k) that appears between (t1, i) and (t2, j) in A.writeOrder, it holds

A.TXLt [k].key 6= A.TXLt1[i].key.

Meanwhile, from the logic of ExtractWriteOrderPerKey, t1 and t2 are consecutive in some

writeOrderPerKey[key] iff they meet the above conditions. Thus, t1 and t2 are consecutive in

some writeOrderPerKey[key] iff 〈t1, t2〉 is a write depend edge of DSG(H). Moreover, from the

logic of AddWriteDependEdges the edges of DG are exactly the edges 〈t1, t2〉 s.t. t1 and t2 are

consecutive in some writeOrderPerKey[key]. Thus, the edges of DG are exactly the write depend

edges of DSG(H), as required.

• Line 15 of Figure B.5: As in the previous case, we need to show that the graph DG when this

line is executed is acyclic. This line is executed only when the purported isolation level is READ

COMMITTED. Consider the history of execution H at the honest server (Section C). Because the

server is well-behaved, H exhibits READ COMMITTED which implies that H does not exhibit

phenomenon G1c: DSG(H) contains no cycles consisting of write depend edges and read depend

edges. We show that DG is acyclic by showing that DG is the subgraph of DSG(H) that contains

the write depend and read depend edges of DSG(H). Specifically, we show:
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1. that DG and DSG(H) have the same nodes,

2. that the write dependency edges of DG (added at line 47 of Figure B.5) are exactly the write

depend edges of DSG(H), and

3. that the read dependency edges of DG (added at line 40 of Figure B.5) are exactly the read

depend edges of DSG(H).

We show 1 and 2 as above (in the the proof that the check at line 11 of Figure B.5 passes). Now

we show 3: First, observe that the read depend edges of DSG(H) are the edges 〈t1, t2〉 s.t. some

operation of t2 reads a value written by t1. Moreover, because the server is well-behaved, the

history H does not exhibit phenomenon G1b: as explained above (in the proof that the checks at

lines 23 and 27 of Figure B.5 pass), this implies that all GET operations of committed transactions

read from operations that are in H’s version order. Thus, the read depend edges of DSG(H) are

the edges 〈t1, t2〉 for which there exist an operation op1 that t1 issues and an operation op2 that t2

issues s.t.

• op2 reads the value written by op1,

• op1 appears in H’s version order,

• t2 commits, and

• t1 6= t2

Because the server is well-behaved, it correctly logs all state operations in the A.TXLs and sets

A.writeOrder to H’s version order. Moreover, as argued above (in the the proof that the check

at line 11 of Figure B.5 passes), when the server is honest, Committed contains exactly the

transactions that commit during online execution. Thus, the read depend edges of DSG(H) are

exactly the edges 〈t1, t2〉 for which there exist operations (t1, i) and (t2, j) s.t.:

• For op = A.TXLt2[ j] it holds that op.optype = GET and op.opcontents = (t1, i),

• (t1, i) ∈ A.writeOrder,

• t2 ∈ Committed, and
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• t1 6= t2

These are exactly the read dependency edges of DG: from the logic of AddExternalStateEdges,

ReadMap maps each PUT operation (t1, i) to the set of all GET operations (t2, j) for which

A.TXLt2[ j].opcontents = (t1, i). Moreover, AddReadDependencyEdges examines all (t1, i) and

(t2, i) for which (t2, j) ∈ ReadMap[(t1, i)] and adds a read dependency edge 〈t1, t2〉 to DG iff

A.TXLt2[ j].opcontents = (t1, i), (t1, i) ∈ A.writeOrder, t2 ∈ Committed, and t1 6= t2. Thus, the

read dependency edges of DG are exactly the read depend edges of DSG(H), as required.

• Line 20 of Figure B.5: As in the previous case, we need to show that the graph DG when

this line is executed is acyclic. This line is executed only when the purported isolation level

is SERIALIZABILITY. Consider the history of execution H at the honest server (Section C).

Because the server is well-behaved, H exhibits SERIALIZABILITY which implies that H does

not exhibit phenomena G1c and G2 and, thus, DSG(H) contains no cycles. We show that DG

is acyclic by showing that DG is exactly DSG(H). Specifically we show 1, 2, and 3 as in the

previous case and, additionally, we show that the anti dependency edges of DG (added at line 56

of Figure B.5) are exactly the anti depend edges of DSG(H): The anti depend edges of DSG(H)

are the edges 〈t1, t2〉 s.t. t1 reads some version of a key and t2 writes the next version of key

according to the H’s version order. Thus, the anti depend edges of DSG(H) are exactly the edges

〈t1, t2〉 for which there exist a transaction t3, and operations op1, op2, and op3 issued by t1, t2, and

t3 respectively:

• op3 appears before op2 in the version order of H,

• op3.key = op2.key,

• for each operation op′ that appears between op3 and op2 in the version order of H, the key that

op′ writes is not op3.key,

• op1 reads the value written by op3,

• t1 6= t2, and
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• t1 commits

Because the server is well-behaved, it correctly logs all state operations in the A.TXLs and

sets A.writeOrder to H’s version order. Moreover, as argued above, when the server is honest

Committed contains exactly the transactions that commit during online execution. Thus, the

anti depend edges of DSG(H) are the edges 〈t1, t2〉 for which there exists a transaction t3 and

operations (t1, i), (t2, j), and (t3,k) s.t.:

• (t3,k) appears before (t2, j) in the version order of H,

• A.TXLt2[ j].keyA.TXLt3[i].key

• for each operation (t, `) that appears between (t3, i) and (t2, j) in A.writeOrder, it holds

A.TXLt [`].key! = A.TXLt3[i].key.

• A.TXLt1[i].optype = GET and A.TXLt1[i].opcontents = (t3, i),

• t1 6= t2

• t1 ∈ Committed

From the logic of AddExternalStateEdges, ExtractWriteOrderPerKey and AddAntiDependen-

cyEdges, these are exactly the anti dependency edges of DG.

Sub-lemma 6.3. The invocation of OOOExec(S′):

• reproduces the program state of online execution

• passes all checks

Proof. Proof outline: Induct on S′:

Base case:. The first operation in S′ has no ancestors in G′. It can only be an operation (rid,0) for

some rid ∈ Tr. OOOExec handles this operation by allocating structures for running and reading

in the inputs. This is the same behavior as online execution. Moreover, OOOExec finds all request
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handlers for rid, computes their handler ids and checks that for each handler id there is an entry in

opcounts (Line 17). This check will pass because the honest server sees the same request handlers

for the request during online execution, computes their handler ids in the same way as the verifier

(the computation is deterministic), and has entries for each of them in opcounts.

Inductive step:. Assume that the claim holds for the first `−1 operations in S′. Let op be the `-th

operation in S′:

• Case I: op = (rid,0): Same reasoning as in the base case.

• Case II: op = (rid,hid,0) where handler (rid,hid) is a request handler (that is, hid.parent_hid =

null): Because S′ obeys program order, this operation appears after (rid,0) and before (rid,hid,∞).

This means that, because this handler is a request handler, when OOOExec executes this op-

eration, hid has already been added to active[rid] in line 16, has not been removed yet, and

active[rid][hid] has been set to the request inputs. Thus, the check of line 25 passes, OOOExec

sets the handler’s inputs to the request inputs and allocates structures for running the handler.

This is the same behavior as online execution.

• Case III: op = (rid,hid, i) where i = 1 and handler (rid,hid) is a request handler (that is,

hid.parent_hid = null) By the induction hypothesis and the fact that S′ obeys program order,

OOOExec and online execution had the same program state at (rid,hid,0). Because the server

is well-behaved, both online execution and OOOExec will take the same next step in terms of

handler op, handler exit event, external state op, or annotated operation. Since the server is

well-behaved and opcounts[rid][hid]> 1, the next operation is a handler op, an external state op,

or an annotated operation in both executions.

• Handler Op: Similar arguments to the ones in case III of Sub-lemma 7b of Orochi [146]. The

determinism of passing from (rid,hid,0) to (rid,hid,1) and the induction hypothesis imply

that the program state of online execution and the program state of OOOExec right before

executing the handler operation are the same. Being well-behaved, the server recorded this op-
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eration correctly in HLrid and this is the operation that the verifier checks in CheckHandlerOp.

Moreover, the contents of the log entry (optype and info) are the ones produced during online

execution and consequently the ones produced during by OOOExec. Under these conditions

CheckHandlerOp passes. Moreover, if the operation is an emit operation, the handler ids in

activatedHandlers are exactly the ones that this operation activated and their inputs in active

will be set to the inputs during online execution.

• External State Op: First, observe that the operation has the same tid and txnum under both

executions: If optype is tx_start then both online execution and OOOExec compute the

same tid as (hid,opnum) and set txnum = 0, as required. Otherwise, because of the induction

hypothesis, both executions have assigned the same tid to this transaction. Meanwhile, the

operations of a transactions are not concurrent meaning that the order of operations within a

transaction is consistent with program order and activation order. Because both online execu-

tion and OOOExec(S′) follow program order and activation order, the transaction tid issues

the same number of operations prior to op under both executions. Thus, txnum is the same

under both executions as required. This implies that during OOOExec(S′), the operation is

checked against the entry in the logs that the honest server records for this operation during

online execution. Moreover, the determinism of passing from (rid,hid,0) to (rid,hid,1) and

the induction hypothesis imply that the program state of online execution and the program

state of OOOExec right before executing the state operation are the same. This implies that

the parameters of the operation (optype,opcontents,key) are the same under both executions

except in the case where optype = tx_commit: in this case the recorded operation in the logs

may be tx_abort because during online execution, the transaction could not successfully

commit. Meanwhile, because the server is well behaved, it correctly logs the operation in

A.TXL(rid,tid). Thus, all checks of CheckStateOp pass. Moreover, the well behaved server cor-

rectly sets the opcontents field of a GET operation to (ridw, tidw, iw) s.t. A.TXL(ridw,tidw)[iw] is

the dictating PUT operation. This implies that the value that OOOExec reads is the one written
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by the dictating PUT, which is the value read at online execution. Thus, the two executions

have the same program state after executing the state operation.

• Annotated Operation: Both online execution and OOOExec execute the operation and call the

annotation with arguments (rid,hid, i) for the same variable v. We will argue that the claim

holds after executing the annotation for any handler hid and any i.

• Initialization: In this case both executions execute the operation and then execute the an-

notation, which performs no checks. Thus, the two executions result in the same program

state.

• Write operation: Both executions execute the operation, assigning the same value to the v,

and then execute the annotation. If during the execution of the annotation by OOOExec the

operation is found in the logs, then the server, being well-behaved, has correctly recorded

the operation in v. log. As a result, all checks of OOOExec pass. Otherwise, the verifier does

no checks.

• Read operation: We need to show that the value that OnRead returns in OOOExec is the

value of v when the annotation is executed by online execution, which is the value written

by its dictating write.

If during the execution of the annotation the read operation is in v. log then the online server,

being well-behaved, has correctly logged both the read operation and its dictating write. As

a result, all checks pass and OnRead sets the value of v to its value during online execution.

We will now argue that OnRead returns the value of v at online execution when the operation

is not in v. log. If the operation is not in v. log, then this is because when the operation is

executed by the honest server, op reads the value written by some operation op′ that is not

R-concurrent with op (Definition 8). Thus, op′ <R op. Meanwhile, because OOOExec(S′)

follows program order and activation order, it executes op′ prior to executing op. Further-

more, from the induction hypothesis, OOOExec(S′) and online execution have the same
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program state when they execute op′, meaning that the parameters of op′ that OOOExec(S′)

records in v.var_dict (at line 2 of Figure B.9) are exactly the parameters of op′ during online

execution. Thus, when OOOExec(S′) executes op, there exists an entry in v.var_dict that

maps op′ to the value written during online execution. If op′ is not the nearest R-preceding

write of op in v.var_dict, then there is a later ancestor, call it op′′, such that op′ was re-

executed before op′′, which was re-executed before op. Since op′ and op′′ R-precede op

and since each handler has only one parent, we must have op′ <R op′′ <R op. But <R never

inverts online execution, so op′′ was also executed in between op′ and op online, in which

case op could not have observed op′ without violating causality. Thus, there is no such op′′.

FindNearestRPrecedingWrite therefore returns op′ and reads the value written by op′ during

online execution, as required.

• Case IV: op = (rid,hid, i) where i ∈ [2,A.opcounts[(rid,hid)]] and handler hid is a request

handler (that is, hid.parent_hid = null) Same arguments as in case III.

• Case V: op = (rid,hid,∞) where hid is a request handler (that is, hid.parent_hid = null) An

argument similar to one made elsewhere (Orochi [146], Sub-lemma 7b, Case II) establishes that

the next operation is handler exit both in online execution and in OOOExec. OOOExec handles

handler exit events in the same way as online execution.

• Case VI: op = (rid,hid,0) where hid is not a request handler. We need to show that the check of

line 25 of Figure B.10 accepts and that the inputs on which the handler is executed by OOOExec

are the ones of online execution. Because (rid,hid) is not a request handler it is activated by some

emit operation op′ during online execution and, since the server is well-behaved, op′ is executed

before op during OOOExec. From the induction hypothesis, the program state of OOOAudit

when it executes op′ is the one of online execution. This implies that if line 49 of Figure B.10

is executed for hid, active[rid][hid] is set to the handler’s inputs according to online execution.

In order for this line to be executed for hid, it must be that hid ∈ activatedHandlers[op′]. This
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can only happen if when op′ is parsed during AddHandlerRelatedEdges hid.functionID is reg-

istered for op′.eventName according to GlobalHandlers or Registered. We will now argue that

this is indeed the case. Because op′ activates (rid,hid) during online execution, hid.functionID

is registered for op′.eventName when op′ is executed at the online server. hid.functionID is

either a global handler, or there exists some operation op′′ executed by the request rid that

registers op′.eventName for hid.functionID during online execution. In the former case per the

determinism of the initialization procedure (op′.eventName,hid.functionID) ∈ GlobalHandlers.

In the latter case, because the server is well-behaved, op′′ appears before op′ in HLrid and

(op′.eventName,hid.functionID) ∈ Registered when op is examined during AddHandlerRelat-

edEdges.

• Case VII: op = (rid,hid, i) where hid is not a request handler and i ∈ [1,A.opcounts[(rid,hid)]].

We can show this using the same arguments as in cases III and IV above.

• Case VIII: op = (rid,hid,∞) where hid is not a request handler. We can show this using the

same arguments as in case V above.

• Case IX: op = (rid,∞). Because S′ is well-formed,

(rid,A.responseEmittedBy[rid].hid,A.responseEmittedBy[rid].opnum)

is the last operation of (rid,A.responseEmittedBy[rid].hid) that OOOExec executes prior to op.

Because the server is well-behaved, it correctly sets the contents of A.responseEmittedBy. Be-

cause of the induction hypothesis, the program state of handler (rid,A.responseEmittedBy[rid].hid)

at the time when op is encountered is the one of online execution. Under these conditions, the

next operation of handler (rid,A.responseEmittedBy[rid].hid) is the issue of the response and the

check of line 21 passes. Moreover, because execution between operations is deterministic, the

produced outputs are the ones of online execution.

Moreover, the check in line 51 passes because S′ being well-formed contains operations for all

(rid,hid) in A.opcounts and, thus, all (rid,hid) ∈ A.opcounts are executed by OOOExec.
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Last, as argued in case IX, all responses will match the ones of online execution and OOOExec

accepts at line 52 of Figure B.10.

Sub-lemma 6.4. Postprocess passes.

Proof. Postprocess rejects only when the graph G has a cycle. So our task is to show that, when the

server is honest, graph G is acyclic. We have already argued (earlier) that the events that happen

during online execution have a partial order. Below, we will show that if there exists an edge 〈n1,n2〉

in G, then n1 precedes n2 in that partial order. Now, if there were a cycle in G, that would imply that

some event precedes itself in the partial ordering, which contradicts the definition of partial order.

Consider the edges that are added to G during Preprocess:

• Procedure SplitNodes: An edge 〈(rid1,∞),(rid2,0)〉 is added to the graph only if the response

for rid1 appears in the trace before the request rid2 is issued. This implies that the response for

rid1 was issued by the server before the request rid2 reached the server. Thus, (rid1,∞) happened

before (rid2,0), as required.

• Line 7 of Figure B.3: An edge 〈(rid,0),(rid,hid,0)〉 is added because hid is a request handler

for rid. All handlers for a request start executing after the request reaches the server, so the event

(rid,0) happened before the event (rid,hid,0) during online execution

• Lines 43 and 44 of Figure B.2: An edge 〈n1,n2〉 is added to the graph because according to the

advice, n1 preceded n2 during the execution of a handler. Because the server is honest, n1 indeed

preceded n2 during online execution.

• Lines 17, 20 and 22 of Figure B.3: For some rid, let hid be the handler that issued the re-

sponse according to responseEmittedBy and n be the last operation of hid prior to issuing the

response according to responseEmittedBy. Because the honest server correctly sets the contents

of responseEmittedBy and send_response is a synchronous operation at the server, these lines

add edges to indicate that a response is issued after n and before the next event of hid during

online execution
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• Line 15 of Figure B.4: such edges are added because according to the advice a handler operation

preceded another handler operation. Since the server is honest, this precedence held during online

execution as well.

• Line 28 of Figure B.4: such an edge 〈(rid,parent_hid,opnum),(rid,hid,0)〉 is added only if

according to the advice the emit operation (rid,parent_hid,opnum) activates handler (rid,hid).

Because the server is well-behaved the emit operation (rid,parent_hid,opnum) activates han-

dler (rid,hid) during online execution, and, because a handler does not start running until the

event that activates it is emitted, the handler start operation (rid,hid,0) happens after operation

(rid,parent_hid,opnum) during online execution as required.

• Line 46 of Figure B.4: Such an edge 〈n1,n2〉 is added only if the operation n2 reads a value

written by operation n1 according to the advice. Because the server is well-behaved, n2 truly

reads from n1 during online execution and, because an operation cannot read from the future,

the operation n1 executes before operation n2 during online execution. Meanwhile, during online

execution, the server collects advice for PUT operations before issuing them to the database and

it collects advice for GET operations after their execution at the database completes. Thus, event

n1 precedes event n2 during online execution, as required.

Now consider the edges added in G during Postprocess. That is, edges added during AddInter-

nalStateEdges.

First, we argue that if at the beginning of Postprocess for two operations n1,n2, there exists some

variable v s.t. v.write_observer{n1}= n2 or n2 ∈ v.read_observers{n1}, then n1 happens before n2

during online execution. We will only argue this in the case where v.write_observer{n1} = n2

because the read_observers case is similar. v.write_observer{n1} can be set to n2 at only two

locations during OOOExec(S′). First, in line 11 of Figure B.9 which is executed if n2 is in the

logs and the server has recorded n1 as the previous write. Because the server is well-behaved, n1

happens before n2 during online execution. Second, in line 16 of Figure B.9, which is executed if
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n1 is identified as the nearest write by some ancestor of n2. In this case n1 appears before n2 in S′.

Because n1 and n2 operate on the same variable and we assume that variables are serializable, n1

and n2 are ordered during online execution and, because S′ follows the order of online execution

on non-concurrent operations, n1 happens before n2 during online execution.

Now, we argue that for each edge 〈n1,n2〉 added during AddInternalStateEdges, it holds that

n1 happens before n2 during online execution. For ww and wr edges, this follows immediately

from our previous argument about write_observer and read_observers: a ww-edge is added iff

v.write_observer{n1}= n2 for some v and a wr edge is added iff n2 ∈ v.read_observers{n1}.

Last, we need to argue this about rw edges. We will do this by contradiction. A rw edge

〈n1,n2〉 can be added to G only if there exists some n /∈ {n1,n2} s.t. n1 ∈ v.read_observers{n} and

v.write_observer{n}= n2. Assume toward a contradiction that n2 happens before n1 during online

execution. Because honest servers don’t allow reads from the future, n1 either (i) reads from n2 or

(ii) reads from some write that happened subsequently to n2.

In case (i), we claim that n1 ∈ v.read_observers{n2}. There are two sub-cases: either n2 is an

ancestor of n1 during online execution, or n2 and n1 are concurrent during online execution. For

the first sub-case: because OOOExec(S′) follows activation order, n2 is an ancestor of n1 during

OOOExec and n1 is added to v.read_observers{n2} at line 34 of Figure B.8. For the second sub-

case: because a faithful server logs concurrent accesses for which at least one is a write, OOOExec

adds n1 to v.read_observers{n2} at line 26 of Figure B.8. Combining n1 ∈ v.read_observers{n2}

with n1 ∈ v.read_observers{n} (from the fact of an rw edge 〈n1,n2〉), we have a contradiction, as

an operation is only added to one v.read_observers.
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In case (ii), there exist n′1, . . . ,n
′
k s.t.

v.write_observer{n2}= n′1

v.write_observer{n′i−1}= n′i,∀i ∈ [2,k]

n1 ∈ v.read_observers{n′k}

Notice that because of our previous argument about write observers, the above equations imply

that n2 happens before n′k during online execution. In order for the rw edge to exist, since n1 can

only appear in one v.read_observers it should hold v.write_observer{n′k} = n2. This implies that

n′k happens before n2 during online execution which is a contradiction.

Lemma 7 (Equivalence of OOOAudit and Audit). If the server executes the given program and

advice collection procedure, producing trace Tr and advice A, then there exists a well-formed op

schedule S′ (with respect to Tr and A) such that Audit(Tr,A) and OOOAudit(Tr,A,S′) are equivalent.

Proof. We use the control flow groupings to create an op schedule S′ as follows: Initially S′ is

empty. For each control flow group C we add each request’s operations in layers as follows:

1. For each request id r in C, append (r,0) to S′

2. Pick some request id rid∗ in the group C

3. Initialize a set R that contains tuples (event name, function ID).

4. Initialize active to the ids of the request handlers of rid∗. .

5. I← active.

6. While active 6= null:

(a) If I 6= null:
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i. Pick some hid from I and remove this hid from I.

ii. If hid /∈ active, go to step 6.

Otherwise, pick some hid from active.

(b) For opnum = 0 . . .A.opcounts[(rid∗,hid)]:

i. For all requests r in the group, append (r,hid,opnum) to S′.

ii. If A.responseEmittedBy[rid∗] = (hid,opnum), then for all requests r in C, append

(r,∞) to S′.

iii. (t,rid∗c , i)← OpMap[(rid∗,hid,opnum)].

iv. if t = “handler_log” and A.HLrid∗[i].optype = register, for all

eventName ∈ A.HLrid∗ [i].eventNames do:

R.add(eventName,A.HLrid∗[i].functionID)

v. if t = “handler_log” and A.HLrid∗[i].optype = unregister,

R.remove(A.HLrid∗[i].eventName,A.HLrid∗[i].functionID)

vi. If (rid∗,hid,opnum) is in activatedHandlers,

A. add all hid′ in activatedHandlers[(rid∗,hid,opnum)] to active.

B. (t,rid∗c , i)← OpMap[(rid∗,hid,opnum)].

C. eventName← A.HLrid∗[i].eventName.

D. For all f s.t. (eventName, f ) ∈ R∪GlobalHandlers, add ( f ,hid,opnum) to I

(c) For all requests r in the group, append (r,hid,∞) to S′.

(d) Delete hid from active

Now we must argue that S′ is well-formed.
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First, we need to show that S′ is a permutation of the nodes of G, that is

G.nodes = set(S′) (B.1)

where set(A) = {a | ∃iA[i] = a}.

We do this through two more relations (B.2) and (B.3). Specifically, we will show: that rela-

tion (B.2) implies (B.1), that relation (B.3) implies relation (B.2), and finally that relation (B.3)

holds. The relations are:

∀rid∗ ∈ R : {n | n ∈ G.nodes∧n.rid = rid∗}= {n | n ∈ set(S′)∧n.rid = rid∗} (B.2)

and

∀rid∗ ∈ R : hid ∈ active⇔ A.opcounts[(rid∗,hid)] 6= null (B.3)

where R is the set of rids picked at step 2 above.

First, we show that relation (B.2) implies relation (B.1): Because the server is well-behaved, two

requests are in the same group only if they activate the same handlers, take the same control flow

path on each handler, and activate the same handlers using corresponding emit operations. Thus,

requests in the same group have the same A.opcounts and the same A.responseEmittedBy, which

implies that they have corresponding nodes in G and corresponding operations in S′. Consequently,

if relation (B.2) holds, then relation (B.1) holds, as required.

Now we show that relation (B.3) implies relation (B.2): Specifically, we show that the backward

direction of relation (B.3) implies that

∀rid∗ ∈ R : {n | n ∈ G.nodes∧n.rid = rid∗} ⊆ {n | n ∈ set(S′)∧n.rid = rid∗}

and that the forward direction implies that

∀rid∗ ∈ R : {n | n ∈ set(S′)∧n.rid = rid∗} ⊆ {n | n ∈ G.nodes∧n.rid = rid∗}

Consider arbitrary rid∗ and denote Grid∗ the set of nodes associated with rid∗, that is {n | n ∈
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G.nodes∧n.rid = rid∗}. Observe that from the logic of AddHandlerProgramEdges, Grid∗ contains

the nodes (rid∗,0),(rid∗,∞) and (rid∗,hid, i), for i = 0, . . . ,A.opcounts[(rid∗,hid)],∞ for all hid s.t.

A.opcounts[(rid∗,hid)] 6= null.

First, we show that when the backward direction of relation (B.3) holds, then each of the nodes

in Grid∗ is added to S′: First, (rid∗,0) is added to S′ at step 1. Second, the backward direction

of relation (B.3) implies that all handler ids that have entries in A.opcounts are added to active.

Moreover, from the logic of step 6a, steps 6b and 6c are executed for each hid ∈ active. Thus,

steps 6b and 6c are executed for each hid s.t. A.opcounts[(rid∗,hid)] 6= null. Thus, for all hid s.t.

A.opcounts[(rid∗,hid)] 6= null the operations (rid∗,hid, i), for i= 0, . . . ,A.opcounts[rid∗][hid],∞ are

added to S′. Last, denote A.responseEmittedBy[rid∗] as (hidr,opnumr). Because the honest server

correctly sets the contents of A.responseEmittedBy, A.opcounts[(rid∗,hidr)] 6= null. Because the

backward direction of relation (B.3) holds, hidr is added to active and step 6b is executed for hidr.

Moreover, because the server is well behaved, opnumr ∈ [0,A.opcounts[(rid∗,hidr)] which implies

that step 6(b)ii is executed for (rid∗,hidr,opnumr) and (rid∗,∞) is added to S′.

Now we show that when the forward direction of relation (B.3) holds, then each of the oper-

ations of S′ associated with rid∗ are in Grid∗ . Assume that the forward direction of relation (B.3)

holds. We will argue that in each of the steps in which an operation is added to S′, the operation

exists in Grid∗ . Operations are added to S′ in steps 1, 6(b)i, 6(b)ii and 6c. Steps 1 and 6(b)ii add

(rid∗,0) and (rid∗,∞) respectively to S′ and each of these operations appears in Grid∗ . Because the

forward direction of relation (B.3) holds, each hid that is added to active has an entry in A.opcounts.

Moreover, steps 6(b)i and 6c are only executed for hid ∈ active and, consequently, these steps add

operations (rid∗,hid, i) s.t. A.opcounts[(rid∗,hid)] 6= null and i = 0, . . . ,A.opcounts[rid∗][hid],∞.

Each of these operations exists in G.

Now we show that relation (B.3) holds. The forward direction holds because an hid is added

to active if it is a request handler or it is in activatedHandlers[rid∗,hid′, i] for some hid′. In the

former case there is an entry in A.opcounts[rid∗] because the server is well-behaved and in the latter

135



there is an entry in A.opcounts[rid∗] because all entries in activatedHandlers are in A.opcounts

as argued in the proof of lemma 6.2. For the backwards direction of (B.3), notice that if hid is

in A.opcounts[rid∗], then because the server faithfully sets the contents of A.opcounts[rid∗], hid is

activated for rid∗ during online execution. If hid is a request handler then it is added to active at

the beginning of the process. Otherwise let op1, . . . ,opn be the sequence of emit operations that

led to the activation of hid during online execution. Because the server correctly logs the handler

operations to reflect what happened during online execution, activatedHandlers[opi] for each i will

contain the handler that emits opi+1. Moreover, op1 is issued by a request handler. Under these

conditions, the above process will add all handlers that execute op1, . . . ,opn to active, will examine

each operation, and when it encounters opn it will add hid to active, as required.

Now, we show that S′ respects program order (Definition 10). This holds by construction: for

each request r, (r,0) appears before any other operation of r in S′, all operations of each handler are

added in ascending order of opnum and (r,∞) is added right after the last operation of the handler

that emits the response prior to emitting the response according to A.responseEmittedBy[r].

Last, we show that S′ respects activation order (Definition 10) as follows: Consider a request

r of a control flow C where rid∗ is the request that “drives” the construction of S′ as above. Let

an activation edge 〈(r,hid, i),(r,hid′,0)〉. We will show that (r,hid, i) appears before (r,hid′,0)

in S′. The existence of this activation edge implies that activatedHandlers[(r,hid, i)] = hid′. Be-

cause an honest server puts in the same group requests that activate the same handlers from cor-

responding operations and, thus, they have the same entries in activatedHandlers we infer that

activatedHandlers[(rid∗,hid, i)] = hid′. This implies that hid′ is added to active after (rid∗,hid, i)

and (r,hid, i) are added to S′. Because the first operation of hid′ is added to S′ after hid is added in

active, we conclude that (r,hid′,0) appears after (r,hid, i) in S′ as required.

Now we need show that OOOAudit(Tr,A,S′) and Audit(Tr,A) are equivalent. The two exe-

cutions are the same except for the following differences between OOOExec and ReExec. These

differences are superficial in terms of affecting the program state of execution and the output:
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1. ReExec checks that the number of operations that each handler issued matches the purported

number of operations in the advice. OOOExec has no such explicit check but it does have an

(rid,hid,∞) case. An argument similar to the one in case (i) of Theorem 10 of Orochi [146]

implies that the difference is superficial.

2. OOOExec executes the requests in a Round-Robin fashion whereas ReExec does SIMD-style

execution. An argument similar to the one in case (ii) of Theorem 10 of Orochi [146] implies

that the difference is superficial.

3. ReExec checks that the execution of requests does not diverge inside each handler. An argu-

ment similar to the one in case (iii) of Theorem 10 of Orochi [146] implies that the difference

is superficial.

4. When OOOExec starts executing a handler, it checks that it is in active. ReExec does not do

this check. The difference is superficial because due to the fact that the server is well-behaved,

the check always passes during OOOExec.

5. ReExec checks that when a group makes an emit operation, all requests in the group activate the

same handlers. This difference does not affect the execution because when the server is honest

all requests in the same group activate the same handlers from corresponding emit operations

which means that requests in the same group have the same entries in activatedHandlers and,

thus, ReExec’s check passes.

6. ReExec keeps track of the number of ops that a handler has executed so far in idx. OOOExec

uses the i field in the op schedule entry as the number of ops that the handler has issued so far.

The difference is superficial: i = idx at all times because idx and i are both the running counter

of operations that the handler has executed so far.

7. When a group sends back a response, ReExec checks that the contents of A.responseEmittedBy

match re-execution. In OOOExec there is no such check, but there is a (rid,∞) case. This

difference is superficial: both executions reject if the contents of A.responseEmittedBy do not
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match the ones produced during re-execution and reject otherwise.

8. ReExec lets the runtime pick the next handler to execute at line 16 of Figure B.6, whereas

OOOExec picks itself the next handler to execute from S′. Observe that from the logic of

ReExec and the way S is constructed, in both cases, the handler that is executed is a handler

whose id is in active. Moreover, the two executions pick the same handler to execute under the

condition that the activated handlers under ReExec are exactly the handlers that are in I when

the operation is added to S′ (during the construction of S′). We now show that this condition

holds: Initially I contains exactly the request handlers of the request which are exactly the

handlers that the request activates under ReExec. Now, we show that the handlers that each emit

operation activates during ReExec are exactly the handlers that are added in I: The handlers

that are activated by each emit operation under ReExec are exactly the handlers registered for

the event by the request and the global handlers registered for the event. Meanwhile, from the

logic of the algorithm that we use to construct S′, and the semantics of handler operations, when

each operation is executed by ReExec, the set of handlers that are registered by the request

contains exactly the entries of R when the operation is added to S′. Thus, the handlers activated

by each emit operation are the ones registered for the emitted event in GlobalHandlers and

the ones in R when the operation is added to S′. These are exactly the handlers that are added

in I when the emit operation is added to S′, as required.

Composing Lemmas 6 and 7, we have proved:

Theorem 1 (Audit Completeness). If the executor executes the given program (under the concur-

rency model given in Section 4.2 of the paper) and the given advice collection procedure, producing

trace Tr and advice A, then Audit(Tr,A) accepts.
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B . 3 . 2 S O U N D N E S S

In the following we assume no external state operations. To show that Definition 6 is satisfied,

we will show that whenever the verifier accepts an input trace Tr and advice A, there exists a well

formed op schedule (with respect to Tr and A) that causes OOOAudit to accept (Lemma 9) which

in turn implies the existence of a request schedule RS s.t. Tr ∈ ORS (Lemma 8).

Lemma 8 (OOOAudit Soundness). Given trace Tr and advice A, if there exists a well-formed

op schedule S for which OOOAudit(Tr, A, S) accepts then there exists a request schedule RS s.t.

Tr ∈ ORS.

Proof. If OOOAudit(Tr,A,S) accepts, then there are no cycles in graph G. We consider an op

schedule S′ that is a topological sort of G in which the order of (rid,0) and (rid,∞) events matches

Tr. We show that such an op schedule exists (Lemma 8.1). S′ is well-formed (which follows from

the remark after Definition 10). Thus, by Lemma 5, OOOAudit(Tr,A,S′) accepts. Then, we define

an execution ActualHandlerOps as in Figure B.11. ActualHandlerOps is the same as OOOExec of

Figure B.10 but:

1. It does fewer checks

2. It constructs a trace Tr′ while it is executing and outputs it

3. It executes handler operations instead of simulating them

4. It skips all annotations. This means that all operations on variables observe the most recently-

written value.

Then, we prove that if OOOAudit(Tr,A,S′) accepts, then ActualHandlerOps(Tr,A,S′) outputs Tr

(Lemma 8.2).

Subsequently, we define an execution Actual as in Figure B.12 that is the same as ActualHan-

dlerOps of Figure B.11 except that it executes external state operations against a database instead

of simulating them by reading from the A.TXLs. Because the execution at the database is non

139



1: //Global Variables are the ones in Figure B.2

2: procedure ActualHandlerOps(op schedule S)
3: Preprocess()
4: return ActualHandlerOpsExec(S)
5:
6: procedure ActualHandlerOpsExec(op schedule S)
7: Tr′← []
8: for each op in S do
9: if op = (rid,0) then

10: Read inputs in of the request from Tr
11: Allocate program structures
12: Tr′.append((REQ,rid, inputs))
13: Find the functionIDs of the request handlers
14: for all functionID in functionIDs do
15: Let hid← (functionID,null,0)
16: Name the instance of the handler hid
17: else if op = (rid,∞) then
18: Let hid← A.responseEmittedBy[rid].hid
19: Run the handler (rid,hid) up to and including the next event
20: if it is not a send response operation then REJECT
21: Tr′.append((RESP,rid,outputs))
22: else if op = (rid,hid, i) then
23: if i = 0 then
24: if (hid is not an activated handler) then REJECT
25: Read in the handler’s inputs and allocate structures for running the handler
26: else if i = ∞ then
27: Run the handler (rid,hid) until the next event
28: if it is not a handler exit operation then REJECT
29: else
30: Run the handler (rid,hid) until the next event
31: if the next event is an external state operation then
32: optype← the type of state operation
33: opcontents, tid, txnum← parameters from execution
34: s← CheckStateOp(rid,hid, i,optype, tid, txnum,key,opcontents)
35: if optype = GET then
36: state op result← s
37: else if the next event is an annotated operation then
38: if it is a write or initialization then
39: Execute the operation and skip the annotation
40: else
41: Return the current value of the variable
42: else if the next event is a handler operation then
43: Execute the handler operation
44: if the operation is an emit operation then
45: for all functions that the operation activates do
46: hid′← (functionID,hid, i)
47: Name the instance of the handler that is activated hid′
48:

return Tr′

Figure B.11: Pseudocode for ActualHandlerOps

deterministic, each GET operation that Actual issues may return more than one outputs meaning

that Actual has many possible output traces.

Then, we show that if ActualHandlerOps(Tr,A,S′) outputs Tr then Tr is a possible output of
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1: //Global Variables are the ones in Figure B.2

2: procedure Actual(op schedule S)
3: Preprocess()
4: return ActualExecS)
5:
6: procedure ActualExec(op schedule S)
7: Tr′← []
8: for each op in S do
9: if op = (rid,0) then

10: Read inputs in of the request from Tr
11: Allocate program structures
12: Tr′.append((REQ,rid, inputs))
13: Find the functionIDs of the request handlers
14: for all functionID in functionIDs do
15: Let hid← (functionID,null,0)
16: Name the instance of the handler hid
17: else if op = (rid,∞) then
18: Let hid← A.responseEmittedBy[rid].hid
19: Run the handler (rid,hid) up to and including the next event
20: if it is not a send response operation then REJECT
21: Tr′.append((RESP,rid,outputs))
22: else if op← (rid,hid, i) then
23: if i = 0 then
24: if (hid is not an activated handler) then REJECT
25: Read in the handler’s inputs and allocate structures for running the handler
26: else if i = ∞ then
27: Run the handler (rid,hid) until the next event
28: if it is not a handler exit operation then REJECT
29: else
30: Run the handler (rid,hid) until the next event
31: if the next event is an external state operation then
32: Execute the state operation against the database
33: else if the next event is an annotated operation then
34: if it is a write or initialization then
35: Execute the operation and skip the annotation
36: else
37: Return the current value of the variable
38: else if the next event is a handler operation then
39: Execute the handler operation
40: if the operation is an emit operation then
41: for all functions that the operation activates do
42: hid′← (functionID,hid, i)
43: Name the instance of the handler that is activated hid′
44:

return Tr′

Figure B.12: Pseudocode for Actual

Actual(Tr,A,S′) (Lemma 8.3).

Last, we show that if one of the possible outputs of Actual(Tr,A,S′) is Tr, then Tr ∈ORS, where

RS is the request schedule derived from S′ by discarding the handler id and opnum components

(Lemma 8.4).
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1: procedure ConstructS(graph G)
2: Initialize S′ to empty, a set frontier to the set of all in-degree 0 nodes of G , and set i = 0;
3: while G is not empty do
4: while there exists a node v in frontier which is not request/response do
5: ProcessFrontier(v, G, S′, frontier);
6: Let u be the node that corresponds to Tr[i] in frontier. If u is not in frontier then REJECT
7: ProcessFrontier(u, G, S′, frontier)
8: i← i+1
9:

10: procedure ProcessFrontier(Graph G, Node v, op Schedule S′, frontier)
11: Remove v from frontier and from G. Also remove the outgoing edges of v from G
12: Append v to S′
13: Add all nodes of G that have in-degree 0 to frontier

Figure B.13: Algorithm for creating S′

Sub-lemma 8.1. If G is acyclic, then there exists a topological sort S′ of G in which the order of

(rid,0) and (rid,∞) events matches Tr.

Proof. In the following we will move between request/response nodes in G (that are also the

entries of the op schedule) and request/response events in Tr. We will say that the node of G that

corresponds to a request event (REQ,rid, ·) (resp., response event (RESP,rid, ·)) in the trace Tr,

is the node (rid,0) (resp., (rid,∞)) of G and vice versa. We sometimes abuse notation by writing

that (rid,0) or (rid,∞) is in the trace instead of specifying that we are referring to the entries that

correspond to these nodes.

We create an ordered list S′ as in Figure B.13.

If the procedure ConstructS of Figure B.13 does not reject, the constructed S′ is a topological

sort of G with the required property: It is a topological sort because a node v is not added to S′ until

after all nodes that have a path to v have been removed from G and added to S′. Moreover, from

construction, nodes that correspond to request/response events are always added in the order that

they appear in Tr.

We now prove that ConstructS of Figure B.13 does not reject. Assume that it does reject. This

can happen only if all nodes in frontier correspond to request/response events (that is, items in Tr)

and none of them is the node u that corresponds to Tr[i]. Claim: There exists a request or response

node v such that v appears in Tr after u yet v has a directed path in to u in G. We now justify this
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Claim. Denote as Gi the graph G at line 3 of Figure B.13 is executed for the i-th iteration. Because

u is in Gi but not in frontier, u has in-degree larger than 0 in Gi. Because Gi is acyclic (being a

subgraph of G), there exists a path in Gi, and hence also in G, to node u from some node v that has

in-degree 0 in Gi. By inspection of the algorithm, v is in frontier. Because all nodes in frontier are

request or response nodes, there exists a j s.t. Tr[ j] corresponds to v. Meanwhile, for j < i, all nodes

that correspond to Tr[ j] are not in Gi (again by inspection of the algorithm). Thus, j > i, which

implies that the node v appears in Tr after u.

In the following, we use v1
G
 v2 to denote that there is a directed path from v1 to v2 in G and

rid1 <Tr rid2 to denote that (RESP,rid1, ·) appears before (REQ,rid2, ·) in the trace Tr. Similar

arguments as in the proof of Lemma 2 of Orochi [146] imply that

(rid1,∞)
G
 (rid2,0)⇐⇒ rid1 <Tr rid2 (B.4)

Now we use this observation to analyze cases:

1. u=(rid1,∞), v=(rid2,0): Because u precedes v in Tr, rid1 <Tr rid2. The right-to-left direction

of relation (B.4) implies that there exists a path from u to v in G. Consequently, G has a cycle,

which is a contradiction.

2. u = (rid1,∞), v = (rid2,∞). From the construction of G, all outgoing edges of v are to nodes

(rid3,0) s.t. rid2 <Tr rid3. Since there exists a path from v to u, there exists a path from some

node v′ = (rid3,0) to u. On the other side,

(a) u = (rid1,∞) appears before v = (rid2,0) in Tr,

(b) Because a request always appears before its corresponding response, (rid2,0) appears

before (rid2,∞) in Tr, and

(c) Since rid2 <Tr rid3, (rid2,∞) appears before (rid3,0) in Tr.

These imply that (rid1,∞) appears before (rid3,0) in Tr and consequently rid1 <Tr rid3 and,

thus, from the right-to-left direction of relation (B.4), there is a path in G from u to v′. Conse-

quently, G has a cycle, which is again a contradiction.
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3. u = (rid1,0), v = (rid2,∞). Since there is a path from v to u in G, the left-to-right direction of

relation (B.4) implies that rid2 <Tr rid1. This implies that v appears before u in Tr, which is a

contradiction.

4. u = (rid1,0), v = (rid2,0). From the construction of G, the only incoming edges to u are from

nodes (rid3,∞) that appear before u in Tr. Thus, v G
 v′ for some v′ = (rid3,∞). Meanwhile, v′

appears before v in Tr (because v′ appears before u and u appears before v), so v′ G
 v, hence a

cycle exists between v and v′, impossible.

.

Sub-lemma 8.2. If OOOAudit(Tr,A,S′) accepts, ActualHandlerOps(Tr,A,S′) outputs the trace Tr.

Proof. First, we show that the two runs have the same program state after each schedule step by

inducting over the sequence S′. Specifically, we show that the executions after processing each

operation (that is, OOOAudit at line 50 and ActualHandlerOps at line 48) preserve the following

invariants:

1. they have the same program state (program state does not include the list of registered handlers,

the list of activated handlers, or the set of emitted events).

2. the set of handler ids in active under OOOExec is exactly the set of handler ids that are

activated under ActualHandlerOps.

Base case: Before processing any operation, the two runs have the same program state (be-

cause we assume that initialization is deterministic), active is empty in OOOAudit and there are

no activated handlers in ActualHandlerOps. Thus, the invariants hold before processing the first

operation of S′. The first operation in S′ has the form (rid,0). Both executions read inputs from Tr,

allocate program structures and, subsequently, perform operations that do not affect program state.

Thus, since both executions start from the same program state, the two executions have the same
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program state after processing op. Moreover, because invariant 2 holds prior to processing op, it

holds after processing op: both executions compute the same handler ids for rid’s request handlers,

which OOOAudit adds to active at line 16 of Figure B.10 and ActualHandlerOps uses to name the

new activated handlers at line 16 of Figure B.11.

Induction step: Consider the i-th operation of S′ and denote it as op. Assume that the invariants

hold for all operations j s.t. j < i. We will show that for any type of op, after processing op the

invariants hold:

• Case op= (rid,0): A similar argument as the one used in the base case implies that the invariants

hold after processing op.

• Case op = (rid,∞): Let hid = A.responseEmittedBy[rid].hid. Since invariant 1 holds, prior to

processing op, the two executions have executed handler (rid,hid) up until the same operation

opl and have the same program state. From the logic of OOOAudit and ActualHandlerOps, the

two executions resume the execution of (rid,hid) from opl until its next special operation. Since

both executions proceed deterministically between operations, the program state of OOOAudit

when it reaches line 21 of Figure B.10 is the same as the program state of ActualHandlerOps

when it reaches line 20 of Figure B.11. This implies that the next operation will be the same

in both executions and, thus, either both checks at the aforementioned lines pass or both fail.

Because the work that the two executions perform past these checks does not affect program

state, we conclude that the two executions have the same program state after op.

Moreover, observe that invariant 2 holds prior to processing op, OOOAudit does not modify

active as part of handling op and ActualHandlerOps does not modify the activated handlers as

part of handling op. These imply that invariant 2 holds after processing op.

• Case op = (rid,hid,0): The two executions handle this operation in the same way except that

OOOExec checks if hid is in active and ActualHandlerOps checks if hid is the name of some

activated handler. Because from the induction hypothesis the ids of all activated handlers of
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ActualHandlerOps are exactly the handler ids in active, either both checks pass or both fail. Thus,

the two executions reach the same program state after processing op. Moreover, invariant 2 holds

prior to processing op and while processing op neither the activated handlers are modified by

ActualHandlerOps nor active is modified by OOOAudit. Thus, invariant 2 holds after processing

op.

• Case op = (rid,hid,∞): The two executions start from the same program state, pick the same

handler, run it until the next event and check that it is a handler exit event. Thus, the two executions

result in the same program state. Moreover, upon reaching the handler exit event, ActualHan-

dlerOps truly executes the handler exit operation, and this operation removes the handler with id

hid from the activated handlers. On the other side, OOOAudit removes hid from active at line 32.

This implies that the invariant holds after processing op.

• Case op = (rid,hid, i) where op is an external state operation: The result follows from the

induction hypothesis, the fact that execution proceeds deterministically between operations and

the fact that both executions handle external state operations in the same way.

• Case op = (rid,hid, i) where op is a handler operation. From the induction hypothesis and

the fact that execution proceeds deterministically between operations we conclude that the two

executions have the same program state right before they process op. The processing of op in

ActualHandlerOps and OOOAudit does not affect program state (which, recall, excludes the set

of registered handlers and emitted events). Thus, invariant 1 holds after processing op.

Now we argue that invariant 2 holds. From the induction hypothesis the invariant holds before

processing op. If op is not an emit operation, ActualHandlerOps does not modify the activated

handlers while processing and OOOAudit does not modify active. Thus, invariant 2 holds after

processing op. On the other hand, assume op is an emit operation. We will argue that the handler

ids that are in activatedHandlers[(rid,hid, i)] (which are the ones added to active by OOOAudit

at line 49) are exactly the ones activated in ActualHandlerOps at lines 45–47 of Figure B.11. Let
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eventName be the event that op emits. Let C be the set of function ids c s.t. (eventName,c) ∈

Registered∪GlobalHandlers when op is processed by AddHandlerRelatedEdges and C′ the set

of function ids that op activates during ActualHandlerOps. In the following we will sometime

abuse notation and refer to the handler’s function as handler.

Claim: C =C′. Denote Cg the set of function ids c s.ts. (eventName,c) ∈GlobalHandlers and Cr

the set of function ids c s.t. (eventName,c) ∈ Registered. Obviously,

C =Cg∪Cr.

Moreover, because each function that op activates during ActualHandlerOps is either a global

handler or a function registered for eventName by rid,

C′ =C′g∪C′r,

where C′g is the set that contains the ids of all global handlers that are registered for event

eventName, and C′r is the set that contains the ids of all functions that are registered for event

eventName over the course of rid. To establish the Claim, we show that Cg =C′g and Cr =C′r:

1. Cg =C′g: First, observe that Cg is exactly the ids of the functions registered for eventName

over the course of the initialization procedure of OOOExec. Because the initialization pro-

cedure is deterministic, it registers the same functions for eventName under both OOOExec

and ActualHandlerOps. Thus, Cg is exactly the ids of the functions registered for eventName

over the course of the initialization procedure of ActualHandlerOps. Because requests don’t

modify global handlers, Cg =C′g.

2. Cr =C′r: C′r contains the ids of the functions that are registered by rid for eventName at the

time when op is executed. Because ActualHandlerOps follows S′, these are exactly the ids

of the functions H s.t.

(a) There exists an operation opr that registers H for eventName and appears before op in

S′, and
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(b) For all operations op′ between opr and op in S′, op′.rid 6= rid or op′ does not unregister

H from eventName.

Meanwhile, the induction hypothesis and the fact that execution proceeds deterministically

between operations imply that OOOExec and ActualHandlerOps have the same program

state right before executing every register and unregister operation that precedes op. This im-

plies that the parameters of each register or unregister operation op′ (these are the functionID

and eventNames for register operations, and functionID and eventName for unregister oper-

ations) are the same under ActualHandlerOps and under OOOExec. Moreover, OOOExec

checks these parameters against the corresponding entry in A.HLrid (line 23 of Figure B.7).

The above implies that C′r contains exactly the function ids c s.t.:

(a) There exists a register operation opr with parameters c and eventNames in A.HLrid that

appears before op in S′ and for which eventName ∈ eventNames, and

(b) For all operations op′ between opr and op in S′, either op′.rid 6= rid or the entry in

A.HLrid that corresponds to op′ is not an unregister operation with parameters c and

eventName.

Meanwhile, because S′ is a topological sort of the graph G and G has edges between con-

secutive handler operations in A.HLrid (line 15 of Figure B.4), the order of the handler ops

of rid in S′ matches their order in A.HLrid. Thus, we conclude that C′r contains exactly the

function ids c s.t.

(a) There exists a register operation opr with parameters c and eventNames in A.HLrid that

appears before op in A.HLrid and for which eventName ∈ eventNames, and

(b) For all operations op′ between opr and op in A.HLrid, op′ is not an unregister operation

with parameters c and eventName.

From the logic of AddHandlerRelatedEdges these function ids are exactly the ones in Cr, as

required.
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Let

Cid = {(functionID,op.hid,op.i) | functionID ∈C}.

By definition of C, Cid is exactly the set of handler ids that AddHandlerRelatedEdges places in

activatedHandlers[(rid,hid, i)] at line 26 of Figure B.4, and, because C = C′, also exactly the

handler ids that ActualHandlerOps uses to name the handlers that op activates at line 47 of

Figure B.11. So, these two sets are equal, as required.

• Case op = (rid,hid, i) where op is an annotated operation. Since in this case the activated

handlers under ActualHandlerOps and active under OOOAudit are not modified, if invariant 2

holds prior to this step, it holds after this step.

Now, we argue that invariant 1 holds. As argued in some of the previous cases, the induction

hypothesis and the determinism of execution between operations implies that the program state

right before op is processed is the same across executions. If the annotated operation is either a

write or initialization, then both executions execute the operation, which results in the same pro-

gram state. Then, OOOAudit executes the annotation, which ActualHandlerOps skips. However,

the annotation does not affect program state on OOOAudit and, consequently, the two executions

have the same program state after executing the annotation, as required. Now, we argue that they

have the same program state when op is a read. In this case, ActualHandlerOps reads the current

value of the variable whereas OOOAudit reads the value returned by the OnRead function of

Figure B.8. We argue that the value of the variable under ActualHandlerOps (which is the most

recent value written) is the value returned from the OnRead annotation in OOOAudit. Let op′ the

write operation that op reads from in OOOAudit and v the variable that these operations access.

We will show that op′ is the most recent write operation to v prior to op in S′. From the logic of

OnRead, op ∈ v.read_observers{op′}. This implies that there exists a read edge 〈op′,op〉 in G.

Moreover, because G contains anti-depend edges and write-depend edges, for any other write

op′′ to v either there exists a path from op′′ to op′ consisting of write-depend edges or there exists
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a path from op to op′′ in which the first edge is an anti-depend edge and the rest are write-depend

edges. Thus, because S′ is a topological sort of G, the last write op to v prior to op in S′ is op′.

Because ActualHandlerOps follows S′, this implies that op′ is the most recent write to v prior to

op and, thus, the value of v under ActualHandlerOps is the value written by op′ as requested.

Since every step preserves program state in the two runs and OOOExec does not reject, Actual-

HandlerOps also does not reject and thus returns a trace Tr′.

Now, we show that Tr′ is a permutation of Tr. First, we argue that Tr and Tr′ contain entries

for the same request ids: This follows from (1) the fact that G’s (rid,0) and (rid,∞) nodes are

exactly those for which rid ∈ Tr (this follows from the logic of CreateTimePrecedenceGraph and

SplitNodes) (2) the fact that S′ is a topological sort of G and (3) that Tr′ has exactly one request

entry for each (rid,0) node in S′ and one response entry for each (rid,∞) node in S′. Moreover, the

request contents of each request in Tr′ are those in Tr because of the logic of lines 10 and 12 of

Figure B.11. Last, because invariant 1 holds, for each rid, the program state of OOOExec at line 21

of Figure B.10 is the same as the program state of ActualHandlerOps when it reaches line 20 of

Figure B.11. This implies that the response contents for rid that ActualHandlerOps writes in Tr′

are those that OOOExec checks against Tr at line 52 of Figure B.10.

Last, from the construction of S′ (lemma 8.1, Figure B.13), the order of (rid,0) and (rid,∞)

operations in S′ corresponds to their order in Tr. Moreover, the order of the operations in Tr′ matches

their order in S′. Consequently the order of operations in Tr′ matches their order in Tr, and Tr′ = Tr

as required.

Sub-lemma 8.3. If ActualHandlerOps(Tr,A,S′) outputs the trace Tr, then Tr is a possible output of

Actual(Tr,A,S′).

Proof. ActualHandlerOps(S′) and Actual(S′) are the same except that Actual does not simulate

external state operations but, instead, it executes them against a database that exhibits the required

isolation level. Observe that the execution of the program under Actual is identical to the execution
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of the program under ActualHandlerOps under the condition that each GET reads the same value

under Actual and under ActualHandlerOps. Thus, if this condition is satisfied, then Actual outputs

Tr, as required. Furthermore, observe that the executions at the database in which the dictating write

of each GET is the one in A.TXLs satisfy this condition. We pick one of these executions and show

that it is is a legal database execution (meaning that its history obeys all rules of definition 11) and

that it is consistent with the required isolation level (Section C). To fully specify this execution we

need to first specify what is the version order of this execution. Second, we need to specify what

happens when the server issues a tx_commit operation: upon a tx_commit operation, the database

can either execute the tx_commit or, if the transaction cannot commit, the database can instead

abort the transaction. We pick the execution whose version order (definition 11) is consistent with

A.writeOrder and whose execution of tx_commit operations is consistent with the A.TXLs.

Consider the TxOp order E in the above execution: First, because Actual follows S′, this TxOp

order is consistent with the order of external state operations in S′. Moreover, the contents of the

entries in E are consistent with the A.TXLs: For tx_commit operations, this follows from the defi-

nition of the execution. For the rest of the parameters, this follows from the fact that the parameters

of the operations under Actual and under ActualHandlerOps are the same, and ActualHandlerOps

checks that these parameters match the ones in A.TXLs. Formally, if the i-th external state operation

of S is op, then for the i-th entry of E it holds:

• if op.optype ∈ {tx_start,tx_commit,tx_abort}, it is (op.rid,op.tid,op.optype),

• if op.optype = PUT, it is (op.rid,op.tid,PUT,op.key,m,op.opcontents), where m is the order of

op among all PUT operations in A.TXLop.ridop.tid,

• if op.optype = GET, it is (op.rid,op.tid,GET,op.key,opw.rid,opw.tid,m), where mw is the order

of opw among all PUT operations in A.TXL(opw.rid,opw.tid) and opw = op.opcontents.

Moreover, the version order is the sequence of operations V s.t. V [i] = (op.rid,op.tid,m) where

op = A.writeOrder[i], and m is the order of op among all PUT operations in A.TXLop.ridop.tid.
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We now show that the history H = (E,V ) satisfies all the constraints of definition 11:

1. Constraint 1a: First, because CheckStateOp at ActualHandlerOps does not reject when called

for external state operations and ActualHandlerOps follows S′, the order of the operations of a

transaction t in S′ is consistent with their order in A.TXLt . This implies that S′ preserves the

order of all operations within the transaction. Because E is consistent with S′, so does E, as

required.

2. Constraint 1b: Because S′ is a topological sort of G and G contains read-from edges (line 46 of

Figure B.4), for each GET operation op in S′, opw = op.opcontents, precedes op in S′. Because

the order of operations in E is consistent with their order in S′, opw precedes op in E, as

required. Furthermore, because the check at line 48 of Figure B.4 passes, opw.key = op.key,

and opw.optype = PUT, as required.

3. Constraint 1c: From the logic of AddExternalStateEdges (Figure B.4), when the i-th operation

op of A.TXLt is examined, MyWrites has an entry for each key for which there exists at least

one PUT operation op′ prior to op in A.TXLt with op′.key = key. Moreover, MyWrites maps

each such key to the latest PUT operation that modifies it according to A.TXLt . Because Actual-

HandlerOps passes, the check at line 51 of Figure B.4 passes which implies that for each op ∈

A.TXLs: if op.optype = GET and op.key ∈MyWrites then op.opcontents = MyWrites[op.key].

Thus, the dictating write of each operation op of transaction t that reads a key that has been

previously modified by t according to A.TXLt , is the operation op′ that last writes this key ac-

cording to A.TXLt . Meanwhile, because CheckStateOp does not reject when called for external

state operations and ActualHandlerOps follows S′, the order of the operations of a transaction

t in S′ is consistent with their order in A.TXLt . Thus, the dictating write of each operation op

of transaction t that reads a key that has been previously modified by t according to S′, is the

last PUT operation op′ issued by t that modifies key according to S′. Furthermore, from the

definition of E, the order of operations is consistent with S′ and the dictating write of each

operation is consistent with the A.TXLs. Thus, E is internally consistent, as required.
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4. The version order V is a list of unique tuples (rid, tid,m) s.t. (rid, tid,m) ∈V iff (a) (rid, tid,

PUT,key,m,v) in E, (b) there exists no (rid, tid,PUT,key,m′, ·) in E with m′ > m, and (c)

(rid, tid,tx_commit) in E: First, observe that V is consistent with A.writeOrder. Further-

more, observe that because the checks at lines 23 and 27 of Figure B.5 pass, the entries in

A.writeOrder are exactly the entries (rid, tid,m) for which there exists some key such that

lastModification[rid, tid,key] = m. Meanwhile, from the logic of AddExternalStateEdges, the

entries in lastModification are exactly the (rid, tid,key) s.t. transaction (rid, tid) modifies key

according to A.TXL(rid,tid) and (rid, tid) ∈ Committed. lastModification maps each such entry

(rid, tid,key) to the index of the last operation that writes key in A.TXL(rid,tid). Furthermore,

from the logic of AddExternalStateEdges, (rid, tid) ∈ Committed iff it issues a tx_commit

operation according to A.TXL(rid,tid). Thus, the entries of lastModification (which correspond

to the entries in the version order) correspond to exactly the PUT operations op s.t. (a) there

exists a transaction (rid, tid) s.t. op ∈ A.TXL(rid,tid), (b) there exists no PUT operation op′ to

op.key that appears after op in A.TXL(rid,tid), and (c) there exists a tx_commit operation in

A.TXLt . Meanwhile, as argued above, the operations in E correspond to exactly the operations

in A.TXLs, and the order of operations in E is consistent with the order of the corresponding op-

erations in A.TXLs. Thus we conclude that the entries in the version order V are exactly the op-

erations (rid, tid,m) s.t. (a) (rid, tid,m) appears in E (b) there exists no (rid, tid,PUT,key,m′, ·)

in E with m′ > m, and (c) (rid, tid,tx_commit) in E, as required.

We now need to show that H = (E,V ) exhibits the required isolation level.

First, observe that:

1. when the isolation level is READ COMMITTED or SERIALIZABILITY, H does not exhibit

phenomena G1a and G1b: Phenomena G1a and G1b require that each read of a committed

transaction in E should read from an operation in V . As argued above, the entries of E cor-

respond to the entries of A.TXLs and the operations in V correspond exactly to the entries

in lastModification. Thus, we need to show that each GET operation in A.TXLt s.t. t’s last
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operation is tx_commit, reads from an entry in lastModification. This is exactly the check

that IsolationLvlVer performs in the case of READ COMMITTED or SERIALIZABILITY in

line 27 of Figure B.5.

2. DSG(H) and DG have the same nodes: DSG(H) contains exactly the transactions that commit

according to H. Meanwhile, from the construction of H, these transactions are exactly the

transactions t s.t. there exists a tx_commit operation in A.TXLt . From the logic of AddExter-

nalStateEdges these are exactly the transactions in Committed which IsolationLvlVer adds to

G. Thus, DSG(H) and DG have the same nodes as required.

3. the edges that AddWriteDependencyEdges adds to DG are exactly the write depend edges

of DSG(H): the write depend edges of DSG(H) are exactly the edges between T1 and T2

s.t. T1 installs a version of some key and T2 installs the next version according to V . On the

other side, from the logic of ExtractWriteOrderPerKey and AddWriteDependencyEdges, the

white dependency edges of DG are exactly the edges 〈T1,T2〉 s.t. T1 installs a version of some

key and T2 installs the next version according to A.writeOrder. Because V exactly matches

the A.writeOrder, we conclude that the write depend edges of DSG(H) are exactly the write

dependency edges of DG.

4. the edges that AddReadDependencyEdges adds to DG are exactly the read depend edges of

DSG(H) when the isolation level is READ COMMITTED or SERIALIZABILITY: Observe

that for these isolation levels, because the history does not exhibit phenomena G1a and G1b,

the dictating write of each GET of a committed transaction is an operation in V . This implies

that the read depend edges of DSG(H) are exactly the edges 〈T1,T2〉 for which there exist oper-

ations op1 ∈ T1 and op2 ∈ T2 s.t. op2 reads from op1 according to E, op1 ∈V and T2 commits

according to E. Meanwhile, V matches A.writeOrder and the dictating writes of operations in

E match A.TXLs from construction. Moreover, the committed transactions according to E are

exactly those in Committed: from the logic of AddExternalStateEdges, Committed contains
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exactly the committed transactions according to A.TXLs and, from the definition of the exe-

cution above, these are exactly the transactions that commit according to E. Thus, the read

depend edges of DSG(H) are exactly the edges 〈T1,T2〉 for which there exist op1 ∈ A.TXLT1

and op2 ∈ A.TXLT2 s.t. op2.opcontents = op1, op1 ∈ A.writeOrder and T2 ∈ Committed. From

the logic of AddExternalStateEdges and AddReadDependencyEdges, these are exactly the

read dependency edges of DG as required.

5. the edges that AddAntiDependencyEdges adds to DG are exactly the anti depend edges of

DSG(H): The anti depend edges of DSG(H) are exactly the edges 〈T1,T2〉 for which there

exists a transaction T3 and operations op1 ∈ T1, op2 ∈ T2, op3 ∈ T3 s.t. the dictating write of

op1 is op3 according to E, T1 commits according to E, and op3 installs a version of a key

and op2 installs the next version according to V . Meanwhile V exactly matches A.writeOrder,

and the dictating writes of GET operations in E exactly match their dictating writes according

to A.TXLs. Last, as argued above Committed contains exactly the committed transactions

according to E. Thus we conclude that the anti depend edges of DSG(H) are exactly the edges

〈T1,T2〉 for which there exists a transaction T3 and operations op1 ∈ A.TXLT1 , op2 ∈ A.TXLT2 ,

op3 ∈ A.TXLT3 s.t. the dictating op1.opcontents = op3, T1 ∈ Committed, and op3 installs a

version of a key and op2 installs the next version according to A.writeOrder. These are exactly

the anti dependency edges of DG as required.

When the required isolation level is READ UNCOMMITTED, H exhibits the isolation level

because it does not exhibit phenomenon G0: First, the results 2 and 3 imply that the subgraph of

DSG(H) that contains only write depend edges is exactly DG. Moreover, DG is acyclic because the

check at line 11 of Figure B.5 accepts. This implies that DSG(H) does not exhibit phenomenon G0

as required.

When the required isolation level is READ COMMITTED, H exhibits the isolation level be-

cause it does not exhibit phenomenon G1: First, result 1 implies that H does not exhibit phenomena

G1a and G1b. Moreover, the results 2, 3, and 4 imply that the subgraph of DSG(H) that contains
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only write depend and read depend edges is exactly DG. Moreover, DG is acyclic because the check

at line 15 of Figure B.5 accepts. This implies that DSG(H) does not exhibit phenomenon G1c, as

required.

When the required isolation level is SERIALIZABILITY, H exhibits the isolation level because

it does not exhibit phenomena G1 and G2: First, result 1 implies that H does not exhibit phenomena

G1a and G1b. Moreover, the results 2, 3, 4, and 5 imply that DSG(H) is DG. Moreover, DG is

acyclic because the check at line 20 of Figure B.5 accepts. This implies that DSG(H) is acyclic and,

thus, does not exhibit phenomena G1c and G2, as required.

Sub-lemma 8.4. If Tr is a possible output of Actual(Tr,A,S′), then Tr is a possible output of

Operation-wise execution on input Tr by following RS.

Proof. Observe that Operation-wise execution is the same as Actual except for the following dif-

ferences:

• Operation-wise executes the program P whereas Actual executes the annotated program Pa.

• All checks in Actual are discarded in Operation-wise.

• Operation-wise is only presented with rids. The most important consequence of this is that

whenever Operation-wise executes a request, it is free to pick which handler to execute from the

activated handlers.

First, observe that Pa differs from P only in that it contains annotations (Section B.1.1). Actual

skips all these annotations which implies that both executions effectively execute P.

Second, observe that since Actual passes all checks, eliminating these checks from Operation-

wise does not affect the flow of execution.

Denote ActualTr the execution of Actual that outputs Tr on input Tr and S′. ActualTr captures

both the execution at the server and the execution at the database. To show that Tr is a possible

output of Operation-wise, we will show that there exists an execution of Operation-wise on input
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Tr and RS that is identical to ActualTr. We do the proof by induction: we show that if ActualTr and

Operation-wise have proceeded in the same way up until the (i−1) step, the next step of ActualTr is

a step that Operation-wise can take that will result in the two executions having the same program

state and database state after step i.

Induction Base. Because initialization is deterministic, ActualTr and Operation-wise have the

same program state prior to executing any operation. Moreover, ActualTr and Operation-wise issue

the same operations to the database during initialization. Thus, there exists an execution of these

operations in the database of Operation-wise that leads to the database state of ActualTr.

Induction Step. Assume that up until the (i−1) step, the two executions have taken identical

steps, they have the same program state, and the same database state. Let the i-th operation of RS

be rid.

If this is the first occurrence of rid in RS, then because RS is constructed from S′ and the first

operation of rid in S′ is (rid,0) (S′ is a topological sort of G and G contains boundary edges) the

ith operation of S′ is (rid,0). Because ActualTr handles (rid,0) operations in the same way that

Operation-wise handles the first occurrence of rid in RS, the two executions will result in the same

state.

Now assume that this is not the first occurrence of rid in RS. Because RS is constructed from the

well formed S′ by dropping all fields other than rid, the corresponding operation in S′ is either of

the form (rid,hid, i) or (rid,∞). In either case, ActualTr “resumes” the execution of a handler that

is activated. Because the two executions are identical up to step i−1, the activated handlers are the

same. This implies that the activated handler that ActualTr picks to execute is an activated handler

in Operation-wise. Thus, Operation-wise can take the same next step as ActualTr executing the

same handler up until its next special operation. Because execution between special operations is

deterministic and does not modify the database state, both executions have the same program state

and database state up until they execute the next special operation. Moreover, the handling of all

special operations other than external state operations is the same in ActualTr and Operation-wise
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and such operations don’t modify database state. Thus, both executions reach the same program

state and database state after step i when the special operation at step i is not a state operation. It

remains to show that ActualTr and Operation-wise reach the same program state and database state

after step i, when the special operation at step i is an external state operation: Because the two

executions have the same program state up until executing the i-th special operation, the parameters

of the state operation are the same across executions and, thus, both executions issue the same

operation to the database. Because two databases that start from the same state and receive the

same operation can execute this operation identically, we conclude that the i-th state operation can

be executed by Operation-wise in the same way that it was executed by ActualTr. In this case, the

database returns the same result under Operation-wise that it returns under ActualTr, and the two

executions have the same program state and database state after executing the i-th operation as

required.

Lemma 9. Given trace Tr and advice A, if Audit(Tr,A) accepts, then there exists a well-formed op

schedule S that causes OOOAudit(Tr,A,S) to accept.

Proof. Use the control flow groupings A.C to construct op schedule S as follows: Initialize S to

empty. Then run Audit(Tr,A) and

• Every time Audit begins re-executing a control flow group t, add to S entries (rid,0) for each

rid in t

• Every time Audit begins re-executing a handler hid for control flow group t, add to S entries

(rid,hid,0) for all rid in t

• Every time a group t does an operation from inside a handler hid (all requests in the group issue

operations together because execution does not diverge), add (rid,hid,opnum) to S for all rid in

t where opnum is the running tally of operations for the handler hid
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• Every time Audit finishes executing a handler hid for requests in group t (all requests finish

executing hid together), add (rid,hid,∞) to S for all rid in t

• Every time the requests in a group t write their outputs (all requests in the group send responses

together because execution does not diverge), add (rid,∞) to S for all rid in t

We now argue that S is well-formed. First, S contains exactly the nodes of G:

• It contains all nodes (rid,0) and (rid,∞) s.t. rid ∈ Tr otherwise the produced outputs are not

exactly the outputs in the trace and ReExec rejects in line 62 of Figure B.6.

• S contains nodes (rid,hid,0),(rid,hid,∞) for each (rid,hid) ∈ A.opcounts: Notice that S con-

tains nodes (rid,hid,0) and (rid,hid,∞) for each (rid,hid) that is executed by ReExec. To show

that these nodes are exactly the handler start and handler end nodes of G (lines 39 and 40 of

Figure B.2) we need to prove that for each rid, the set H of all hid s.t. (rid,hid) in A.opcounts

and the set H ′ of all hid that are executed by ReExec are equal. We show that H ′ ⊆ H and that

H ⊆ H ′.

H ′ ⊆ H: Notice that from the logic of ReExec, H ′ is exactly the hids that are in active during

the execution of the group in which rid belongs to. We will show that for each hid that is

added in active during the execution of rid, opcounts[(rid,hid)] 6= /0. active is initially empty

and entries are added to it in line 12 of Figure B.6 and in ActivateHandlers. In the former

case, ReExec rejects if (rid,hid) is not in opcounts (line 13 of Figure B.6). In the latter case,

hid is added to active from activatedHandlers(rid, ·, ·). Notice that hid can only be added to

activatedHandlers(rid, ·, ·) at line 26 of Figure B.4 after the check at line 25 of Figure B.4 passes.

Thus, for any hid ∈ activatedHandlers(rid, ·, ·), A.opcounts[rid][hid] 6= /0 as required.

H ⊆ H ′: This follows from the fact that ReExec does not reject at line 64 of Figure B.6.

• For each (rid,hid) in A.opcounts it contains all nodes (rid,hid, j) s.t. j∈ [0,A.opcounts[(rid,hid)]].

This follows from the previous bullet and the fact that for each (rid,hid) the value of j in S prior

to the insertion of (rid,hid,∞) is A.opcounts[(rid,hid)]: ReExec does not reject at line 60 of
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Figure B.6 and, thus j ≥ A.opcounts[(rid,hid)]. Moreover, j ≤ A.opcounts[(rid,hid)] because

otherwise ReExec rejects in line 43 of Figure B.6, in CheckStateOp or CheckHandlerOp.

Moreover S respects program order and activation order (Definition 10) because Audit executes

operations according to this order.

Now, we prove that OOOAudit(Tr,A,S) accepts. OOOAudit(Tr,A,S) (Figure B.10) is the same

as Audit(Tr,A) (Figure B.6) except the differences that we describe below. For each of them, we

show that they do not result in different program state or OOOAudit rejecting.

1. ReExec executes the requests in SIMD style whereas OOOExec round-robins the execution

from operation to operation for a group of requests. This does not affect program state; the

flow and ordering is the same across both executions. Thus, the produced output is the same.

2. When ReExec executes a group, it picks the next handler to run from active whereas OOOExec

picks the next handler to run from S. This difference is superficial because S is derived from

ReExec.

3. There is a difference in how handler end events are processed. In OOOExec there is an

(rid,hid,∞) case that checks that the next event is a handler exit operation. In ReExec handler

exit events are processed in case 2c where the number of operations issued by the handler is

checked against A.opcounts (line 60 of Figure B.6). Similar arguments to those made elsewhere

(Orochi [146], lemma 8) establish that this difference is superficial.

4. When OOOExec starts executing a handler, it checks that it is in active. ReExec does not do

this check but picks which handler to run from active. The difference does not result in different

program state because both executions just require that when a handler starts executing, it must

be in active.

5. ReExec keeps track of the number of ops that a handler hid has executed so far in idx[hid].

OOOExec uses the i field in the op schedule entry as the number of ops that the handler

has issued so far. The difference does not result in different program state because both i
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and idx[hid] correspond to the running counter of operations that the handler issues and thus

i = idx[hid] at all times.

6. When a group sends back a response, ReExec checks that the contents of A.responseEmittedBy

match re-execution. In OOOExec there is no such check, but there is a (rid,∞) case. The

difference is superficial; both executions reject if A.responseEmittedBy does not match re-

execution.

161



C | D E F I N I T I O N S O F I S O L AT I O N

L E V E L S A C C O R D I N G T O A D YA

In this section we briefly present Adya’s definitions for consistency models [16]. We should note

that we modify these definitions to make them consistent with our terminology. Additionally, we

modify them to make them suitable for transactional key-value stores; for instance, we erase the

parts of the definitions that refer to predicates.

In order to define the isolation levels, we need the notion of history:

Definition 11. History: A history H captures what happens in the execution of the system. It

consists of:

1. An ordered list of operations (TxOp order E). Each such operation can be:

• (rid, tid,tx_start): transaction start operation for transaction Trid,tid

• (rid, tid,tx_abort) (resp. (rid, tid,tx_commit) ): transaction abort (resp. commit) opera-

tion for transaction Trid,tid

• (rid, tid,PUT,key,m,v): The m-th PUT operation of transaction Trid,tid on key that writes

value v.

• (rid, tid,GET,key,rid′, tid′,m): GET operation of transaction Trid,tid to a data item key that

reads the value that was written by the m-th PUT operation of transaction Trid′,tid′) (that is,

keyrid′,tid′,m)
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The TxOp order must obey the following constraints:

(a) It preserves the order of all operations within a transaction including its commit and abort

operations

(b) A transaction Trid,tid cannot read version keyrid′,tid′ before it has been produced by Trid′,tid′ .

Formally, if an operation (rid, tid,GET,key,rid′, tid′,m) exists in H, it is preceded by

(rid′, tid′,PUT,key,m, · · ·) in H.

(c) If a transaction modifies a key and later reads it, it will observe its last update to the key.

Formally, if an operation (rid, tid,PUT,key,m, · · ·) is followed by an operation (rid, tid,

GET,key,rid′, tid′,m′) in H without the interleaving of an operation (rid, tid,PUT, key,m′′, · · ·),

it should be rid = rid′ and tid = tid′ and m=m′. We call this property internal consistency

2. An order all key versions (version order) V created by committed transactions in E, that is,

a list of unique tuples (rid, tid,m) s.t. (rid, tid,m) ∈V iff (a) (rid, tid, PUT,key,m,v) in E, (b)

there exists no (rid, tid,PUT,key,m′, ·) in E with m′ > m, and (c (rid, tid,tx_commit) in E.

Adya defines the following types of conflicts between different committed transactions:

• Read Depends: A transaction T read depends on transaction T ′ if T reads an object version that

T ′ writes

• Anti Depends: A transaction T anti depends on transaction T ′ if T ′ reads a version of an object

and T writes its next version

• Write Depends: A transaction T write depends on transaction T ′ if T ′ writes a version of an

object and T writes its next version

Given a history H, the Direct Serialization Graph (DSG) arising from H is as follows: Each

node in DSG(H) corresponds to a committed top-level transaction in H and directed edges corre-

spond to read, anti or write conflicts. There is a read/anti/write depend edge from the node that

corresponds to T to the node that corresponds to T ′ if T ′ read/anti/write depends on T .
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With the above definitions in mind we define the following phenomena:

• Phenomenon G0 (Write Cycles). The history H exhibits phenomenon G0 if DSG(H) contains a

directed cycle consisting entirely of write-depend edges.

• Phenomenon G1a (Aborted Reads). The history H exhibits phenomenon G1a if it contains an

aborted transaction T1 and a committed transaction T2 s.t. T2 has read some object modified by

T1.

• Phenomenon G1b (Intermediate Reads). The history H exhibits phenomenon G1b if it contains

a committed transaction T1 that has read a version of an object written by transaction T2 that was

not T2’s final modification of the object.

• Phenomenon G1c (Circular Information Flow). The history H exhibits phenomenon G1c if

DSG(H) contains a directed cycle formed without anti-dependency edges.

• Phenomenon G1. The history H exhibits phenomenon G1 if it exhibits phenomenon G1a or G1b

or G1c

• Phenomenon G2 (Anti-depend cycles). The history H exhibits phenomenon G2 if DSG(H) con-

tains a directed formed from at least one anti-dependency edge. Note that G1c and G2 are

separate: neither implies the other.

Now we define when a history H exhibits each of the isolation levels we support:

• Serializability: H does not exhibit phenomena G1 and G2.

• Read Committed: H does not exhibit phenomenon G1

• Read Uncommitted: H does not exhibit phenomenon G0

In order for an execution of a key value store to be consistent with Isolation Level I, there

should exist a version order s.t. the TxOp order along with this version order define a history H that

exhibits isolation level I.
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