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Abstract

This work is yet another attempt to turn an age-old adage on its head by deriving inspiration

for theoretical research from problems that are germane to practitioners and real-world deploy-

ment. This could be viewed as a departure from the practice of creating real-world solutions that

trace their origin to theoretical research, or ex post facto theoretical analyses of practically de-

ployed solutions that can be rather ad hoc. Specifically, we look at four different problems that are

relevant for practical deployment - random number generation, searching over encrypted data,

and forward-secure group messaging.

RandomnessGeneration The bedrock of cryptography remains high-quality randomness that

helps secure our various applications. This is achieved, in practice, by using a primitive called a

pseudorandom number generator with input (PRNG). The inputs to the PRNGs are sourced from

the physical environment using measures such as temperature and timing of interrupts. PRNGs

convert these inputs into outputs that are uniform, independent, and fresh. It is important to note

that most of these theoretical constructions are seeded. In other words, they require a random

seed to be chosen at setup, and the inputs are required to be independent of this seed. It has also

been shown that these constructions fail if this independence is lost. Unsurprisingly, despite being

borne out by theoretical rigor, these constructions have found few takers in the real world. On the

other hand, constructions in practice are ubiquitous but lack sufficient theoretical justifications.

Each operating system comes equipped with its PRNG software e.g., /dev/random for Linux,
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Yarrow for MacOS, and Fortuna for Windows and these critically rely on cryptographic hash

functions without any reasonable justification, yet they seem “robust”. We confront the question

in this thesis - Can we capture this belief, and theoretically justify the construction choices?

Another closely allied problem is that of PRNGs that are robust against premature-next attacks

(Kelsey et al., FSE’98). In these attacks, an adversary requires the PRNG to produce outputs

before sufficient entropy has been accumulated. To mitigate these attacks there exists two broad

solutions - somehow estimate entropy (deployed in Linux’s /dev/random) or use sophisticated

pool-based approaches as in Yarrow and Fortuna. Hitherto, the only theoretical study in this

class of PRNGs is the work of Dodis et al. (Algorithmica ’17) focused on the seeded setting of

this problem or assumed that the entropy arrived at a constant rate. This considers the seedless

variant of this class of PRNGs.

Formally, the contributions of this thesis in this domain are as follows:

• We put forth new definitions of robustness that enables both seedless PRNGs and primitive-

dependent adversarial sources of entropy. However, to bypass existing impossibility results,

we model a compromise by requiring the adversary to provide sufficient entropy, yet per-

mitting the adversary to evaluate the underlying primitive.

• We also present provably-secure constructions based on hash-function designs where the

underlying primitive are ideal compressing functions, block ciphers, and permutations.

These are natural and practical constructions that can be instantiatedwithminimal changes

to industry-standard hash functions SHA-2 and SHA-3, or HMAC (as used for the key

derivation function HKDF).

• Of independent interest, our constructions can be downgraded to (online) seedless random-

ness extractors. We also show that an extractor based on CBC (which forms the basis of

Intel’s on-chip RNG) is insecure in our model.

• Along the way, we also present two different variants of “robustness” - computational
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(where an adversary makes a bounded number of queries to the ideal primitive) and in-

formation-theoretic (where an adversary makes a bounded number of queries at the begin-

ning, but then there are no limitations after the challenge).

• We have an impossibility result that rules out the existence of seedless PRNGs that achieve

security against premature-next attacks, even in a weak model (i.e., the entropic inputs to

the PRNGs are independent). Note that in this model, there exist seedless PRNGs that are

robust when premature-next attacks are not considered.

• In the face of the previous impossibility result, we take a closer look at the pool-based ap-

proach and we show that (a) under natural conditions (informally, the entropy cannot vary

“wildly” in a single round-robin round) on the entropic input, we can prove the security

of the round-robin entropy accumulating PRNGs such as Fortuna, and (b) the “root pool”

approach (used inWindows 10) is secure for general entropy inputs, provided that the state

of the PRNG is not compromised after startup.

Small-Box Cryptography. A common recipe to build block ciphers seems to involve a small

cryptographic component (called an 𝑆-box) and then iterating this small component across sev-

eral rounds. Unfortunately, there does not exist a rigorous theoretical framework to argue why

this yields a secure construction and it is a longstanding open problem. A key issue lies with

the tools in our arsenal. We typically show that the probability that construction is insecure is

negligible (typically 2−𝑛 where 𝑛 is the size of the component. Indeed, prior approaches to proof

of security – which we dub “big-box cryptography” – always allowed for 𝑛 to be as big as the

security parameter (and note that typical 𝑆-boxes have very small 𝑛). As a direct consequence, we

obtained constructions that did not match any of the specifications of the practical constructions.

Oftentimes, the big-box approach abstracts away the key component that brings hardness to the

table.
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In this work, we introduce a novel paradigm called “small-box cryptography” that provides a

robust framework to justify the security of existing block ciphers. This paradigm, unlike the “big-

box” approach, allows diving deep into existing constructions by idealizing the building block of

size 𝑛 which is small (e.g., 8-to-32-bit 𝑆-box). Through a sequence of clean, rigorous proofs and

hardness conjectures, “small-box cryptography” enables security justifications for actual con-

structions in the real world. We get reasonable hardness estimates by applying our framework to

the analysis of substitution- permutation network (SPN) based ciphers. Further, we also apply the

framework to designing pseudorandom generators (aka stream ciphers). Our approach yields a

simple construction that can be proved secure in the “big-box”-framework, under a well-studied

and widely believed eXact Linear Parity with Noise (XLPN) assumption.

Encrypted Search We find ourselves increasingly storing sensitive documents on the cloud,

where we wish to protect these documents from the wandering eyes of the cloud server. The sim-

ple solution to this problem is to encrypt these files and then store them on the server. The server,

without knowledge of the secret information, is unable to decrypt these files. However, this also

means that the server is unable to search (or perform other operations) on these encrypted doc-

uments which leaves the client with the unfortunate job of downloading the encrypted file, de-

crypting the downloaded file, and then searching over the decrypted contents. Oftentimes, we

outsource the storage of these files because of their size, and therefore, doing this process re-

peatedly is quite expensive. This led to the birth of research on searchable encryption where one

stores an encrypted index 𝐸, along with the encrypted file to help simplify the search process.

Now, if we wanted to search for a keyword 𝑤 in a particular document 𝐷 , the sever is provided

with an “encrypted token” 𝑧𝑤 (which does not reveal information about 𝑤 ) to lookup 𝑧𝑤 in the

encrypted index 𝐸 and simply return the result of this lookup instead.

In this work, we consider the following motivating setting: index-creator(s), using some pub-

licly available information 𝑃𝐾 of the search approver, create an encrypted index 𝐸 for a document
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𝐷 . This index 𝐸 is stored with the storage manager. Later, the storage manager is asked to deter-

mine if a keyword 𝑤 is present in the underlying document. The search approver, approves this

search request, by using the secret information 𝑆𝐾 to generate a token 𝑧𝑤 , that is specific to 𝐷 and

𝑤 . The storage manager uses 𝑧𝑤 to search in 𝐸 to determine if the keyword𝑤 is present in docu-

ment 𝐷 . We build the first sub-linear (possibly constant-time), public-key searchable encryption

scheme in this setting where:

• the storage manager, with knowledge of 𝑧𝑤 , is unaware if 𝑤 ′ ≠ 𝑤 is present in document

𝐷 or if𝑤 is present in document 𝐷′ ≠ 𝐷 ,

• the search approver does not learn any information about 𝐷 , beyond the keyword 𝑤 that

is being searched, and

• the search approver cannot generate a malicious token 𝑧𝑤 that forces the storage manager

to print the incorrect result.

We call this primitive Encapsulated Search Index (ESI). Our ESI scheme can be extended to (𝑡, 𝑛)-

distributed among𝑛 different search approvers such that the scheme is non-interactive, verifiable,

and resilient to any collusion among (𝑡 − 1) malicious search approvers. We also introduce the

notion of delegation where a search approver can delegate the approval to another user without

having to recompute the index. Our solution – which includes public indexing, sub-linear search,

delegation, and distributed token generation – is a commercially available product created by

Atakama.

Updatable Public Key Encryption Forward security (FS) requires that corrupting the current

secret key of the system does not compromise any prior utilization of the system. In the context

of public-key encryption (PKE), this is achieved by dividing time into smaller periods or epochs

where a new secret key is derived from the current secret key while keeping the public key

unchanged. The current realization of FS-PKE requires one to use hierarchical-identity-based
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encryption and is rather complicated. Recent work by Jost et al.(Eurocrypt’19) and Alwen et

al.(CRYPTO’20), motivated by applications to secure group messaging, considered a weakening

of FS-PKE which they called updatable PKE. Specifically, a sender initiates a transition to the next

period by generating an update ciphertext and a new public key. The receiver, on the input of the

update ciphertext, can compute the new secret key which is consistent with the new public key.

Critically, the sender does not know the original secret key of the receiver. Their construction is

provably secure in the random oracle model.

In this dissertation, we introduce the first constructions of the primitive in the standard model

under the DDH Assumption and LWE Assumption, the latter of which is believed to be post-

quantum secure. We take a modular approach to building our schemes by leveraging three key

properties of the underlying PKE scheme - circular security and leakage resilience, key homo-

morphism, and message homomorphism. Indeed, our constructions are much more efficient than

current FS-PKE schemes built from the same assumptions.
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1 | Introduction

A standard paradigm of pedagogy is to translate theoretical framework and results into prac-

tically feasible solutions. Indeed, this has proven fruitful in cryptography, where several deployed

protocols were initially born from theoretical research. Yet, there is undeniable a yawning abyss

between theoretical cryptography and applied cryptography. This dissertation aims to go from

practice to theory, whereby we study problems that practitioners confront through a rigorous

theoretical framework. This dissertation covers three problems that originate from practice, in-

tending to look at solutions to these problems through rigorous theoretical analyses.

The results presented in this dissertation are based on works by Coretti et al. [CDKT19a],

Coretti et al. [CDK+22], Dodis et al. [DKW22a], Dodis et al. [DKW21], and Aronesty et al.

[ACD+22a]. Passages are taken verbatim from these works throughout this dissertation.

1.1 Pseudorandom Number Generation

High-quality randomness is a critical requirement for the security of all commercially de-

ployed cryptographic protocols. News sources are constantly rife with details on the failure of

protocols stemming from poor randomness and choices made in this regard. To solve the practical

problem of generating randomness, we use the primitive known as pseudorandom number genera-

tor with input (PRNG). Informally, they accumulate entropy from various sources in the environ-

ment, such as keyboard presses, the timing of interrupts, temperature sensors, etc., into the state
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of the PRNG. Then, one can extract pseudorandom bits from this high entropic state. All operat-

ing systems come equipped with their version of PRNGs, e.g., /dev/random [Wik21] for Linux,

Yarrow [KSF99] for MacOs/iOS/FreeBSD, and Fortuna [FS03] for Windows [Fer13]. Yet, most

security analyses of these implementations tend to be after-the-fact of commercial deployment

and often throw up glaring issues. For example, Dodis et al.[DPR+13] showed that /dev/random

is not robust. Such work reiterates the need for a substantial theoretical understanding of these

PRNGs to ensure their continued usage is secure, avoiding undesirable surprises.

On the other hand, considering the “simplistic” nature of PRNGs and their heavy usage in

other cryptographic protocols, it is surprising that there has not been sufficient breakthrough

in the standardization of PRNGs [ISO11, Kil11, ESC05, BK12b] when compared with some of

the other primitives (e.g., such as block ciphers [DR02], hash functions [SR12, Div14], stream

ciphers [RB08], public-key encryption [Sho01], digital signatures [KSD13], and authenticated

encryption [AFL16]). Indeed, it is prudent to note that standardized cryptographic PRNG con-

structions are also proposed in an ad-hoc fashion and have been broken later by the collective

analyses of the cryptographic community. The most infamous example is the DualEC PRNG

which was a part of the initial draft of the NIST SP 800-90A standard [BK12b], back in 2005. De-

spite repeated warnings by researchers [SS06, SF07] and its potential for exploitation [CNE+14],

it was finally deprecated by the actions of a whistleblower. Most recently, Woodage and Shumow

[WS19] analyzed the standard with greater care and identified gaps and imprecisions in the re-

maining three recommendations. The earlier work of Shrimpton and Terashima [ST15] identified

lapses in previous analyses, and security proofs for the popular Intel Secure Key Hardware PRNG

introduced in 2011.

The above discussion leads us to our goal of bridging theory and practice on this critical piece

of the cryptography ecosystem, where we wish to design a rigorous, theoretically sound model

of PRNGs that are of immense interest to the practitioners. The model should be permissive

to allow for real-life entropy sources while also restrictive enough to prove the security of the
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constructions formally.

1.1.1 Existing Theoretical Models

A rich body of literature has focused on a formal, theoretical study of PRNGs [BH05, DPR+13,

ST15, DSSW14, GT16, Hut16a]. They differ in details, but for this work, we can look at the crit-

ical unifying principles of these works. On the one hand, they require security against possibly

adversarial entropy sources, provided the adversary infuses the PRNG with sufficient entropy.

On the other hand, they wish to minimize assumptions on the structure of these sources beyond

entropic requirements. Another point to note is that all of these constructions are seeded, i.e., a

seed is somehow randomly chosen at initialization, and the entropy sources are assumed to be

independent of this seed. This assumption was an artifact of the modeling from prior work on ran-

domness extraction, [NZ96] which showed that seeded extractors bypass the impossibility result

of deterministic (i.e., “seedless”) randomness extraction from general entropy sources [CG88].

However, in the context of PRNGs, such modeling seems inherently problematic. To begin

with, one uses PRNG to produce high-quality random bits. Yet, the initialization procedure re-

quires the seed to be chosen randomly, leading to the circular problem of needing random bits to

produce. A simple solution to this problem might be to rely on other methodologies, apart from

PRNGs, to produce this one-time, high-quality random seed. However, the issue of requiring that

the seed be independent of the entropy sources persists. Indeed, it has been shown that if the

inputs were somehow dependent on the seed, the PRNGs would catastrophically fail [DPR+13].

The immediate question is on the likelihood of this event. Unfortunately, it is quite a realistic

scenario. For example, if one were to consider physical events in the computer as the entropy

sources, then an execution of a PRNG operation to produce pseudorandom outputs would trigger

interrupts or other such physical events. Thus, executing the PRNG using the seed triggers events

that can become subsequent inputs to the PRNG. This loss of independence is also of concern in

the context of “premature next”, where the adversary can request outputs from the PRNG, even
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when it has failed to provide entropy adequately. In such a scenario, the adversary can recover

the seed leading to the loss of independence.

This discussion leads us to the following dilemma. To support general entropy sources, one

needs to resort to seeded extraction, as seedless extraction is impossible for such sources. Yet, it is

evident that one has to concede the cons of seeding a PRNG as seeded extraction is only possible

due to this hard-to-realize independence assumption. Through this work, we hope to provide a

meaningful solution to this dilemma.

Seeded PRNGs and Premature Next Attack. We clearly understand how a PRNG should

behave when “sufficient entropy” has been provided. The expectations are that the outputs are

pseudorandom. However, one can consider the situation where the PRNG is expected to produce

pseudorandom outputs before the system has accumulated enough entropy. This situation can

occur at system startup, where we want randomness immediately after startup. One can conceiv-

ably mount an attack where an adversary prematurely requests outputs from the PRNG and then

uses the received output to invert the computation and compromise the security of the PRNG.

Premature Next problem was first proposed as an attack by Kelsey et al. [KSWH98]. Since then,

the only work that solidified the notion of a “robust” PRNG secure against premature-next attacks

was done by Dodis et al. [DSSW17].

1.1.2 Our Approach

In this work, we use cryptographic hash functions as the technical tool, carefully define the

notion of entropy, and leverage some idealized computation models.

Cryptographic Hashing. It is essential to note that all general-purpose software PRNGs and

existing recommendations in PRNG standards critically rely on cryptographic hash functions

(CHF), despite lacking any substantial theoretical justification. One can also provide a more the-
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oretical reason why a CHF might be a natural fit for PRNG construction. Recall that the accu-

mulation function of PRNG (denoted by refresh in the syntax) takes a PRNG state 𝑆 , an entropic

input 𝑋 , and accumulates the entropy into a new state 𝑆′ where 𝑆′, ideally, should have larger

entropy than 𝑆 . This property is commonly referred to as “condensing” in extraction literature,

and Dodis et al. [DRV12] showed that seedless/seed-dependent condensers could only be built

cryptographically using properties of preimage-resistance and collision-resistance. Indeed, even

setting aside a desire for seedless PRNGs (or the more straightforward case of seedless extrac-

tion), the simple property of seedless entropy accumulation appears to require the use of CHF,

along with a supporting justification argument in an idealized model of computation.

Idealized Model of Computation. Consider the more straightforward problem of monolithic

seedless extraction using a cryptographic hash function 𝐺 . We will model this 𝐺 as an ideal

primitive – random oracle – and set 𝑅 = 𝐺 (𝑋 ). Now, note that we have a trivial construction of

a seedless extractor by the following folklore proof (see [DGH+04]): For any source, 𝑋 with min-

entropy 𝛾∗, the probability that the distinguisher D can distinguish 𝐺 (𝑋 ) from a truly random

value is bounded by 𝑞 · 2−𝛾∗ where 𝑞 is the number of queries thatD makes to the random oracle

𝐺 . However, we have implicitly used the fact that the source 𝑋 was neither adversarially chosen

adversary nor did it depend on the random oracle. However, to model reasonable sources arising

from practical implementations, one needs to allow for oracle-dependent sources, i.e., where the

adversary can query the underlying idealized primitive before providing the input.

Min-Entropy Notion. This brings us to the question of how to allow for oracle-dependent

sources reasonably. The naive way that one requires input 𝑋 to have sufficient entropy is not

restrictive enough, for we have the following attack: an adversary samples 𝑋 at random, writes

it down in its state Σ and then provides that as input. 𝑋 has full entropy, but with Σ containing

𝑋 , 𝐺 (𝑋 ) is no longer pseudorandom. The tempting fix is to condition it on Σ, i.e., require that

H∞(𝑋 |Σ) ≥ 𝛾∗. Unfortunately, it still leaves us open for an attack that we call extractor-fixing
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attack. An adversary merely samples 𝑋 several times until we have that the first bit of 𝑋 is 0.

Now, 𝑋 has very high entropy (almost full entropy), but 𝐺 (𝑋 ) is not pseudorandom. Note that

the condition is met even if one requires that H∞(𝑋 |Σ,𝐺) ≥ 𝛾∗. Instead, we simply condition

only on the queries made by the adversary to the random oracle, i.e.,

H∞(𝑋 | (state,L)) ⩾ 𝛾∗ , (1.1)

where L is the input-output list of random oracle queries made by the samplerA to the random

oracle. It is important to stress that our modeling also captures the case when the input 𝑋 is

independent of the oracle by merely setting L = ∅. Finally, our legitimacy condition is much

stronger than the definitions considered by Dodis et al. [DPR+13] and Gazi and Tessaro [GT16].

These works employed the weaker notion of worst-case min-entropy. They defined the final

entropy of the source 𝑋 as the total of worst-case conditional min-entropies of individual blocks

of 𝑋 where the conditioning was on the remaining blocks.

1.1.3 Our Results

The simpler setting of monolithic seedless extraction was a useful toy example to understand

and motivate our new definitions. However, access to such a monolithic random oracle is hard to

realize. Thus, we find most cryptographic hash functions built from (public) compression func-

tions, ciphers, or permutations as the underlying primitive 𝑃 , which have limited input length.

The standard approach is to process an arbitrarily large input of size 𝑚 in smaller 𝑛-bit input

blocks and then accumulate entropy.

• In Section 3.4, we present the more realistic notion of seedless, online extraction. Such

extractors accumulate entropy by processing smaller input blocks of length 𝑚, using an

ideal primitive 𝑃 , and then produce an output once the entire input is processed. We model

security games for both the computational and information-theoretic versions.
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• In Section 3.5.5, we show that the CBCmode of operation is insecure as a seedless extractor

in our framework. This result is critical because CBC is used as the extractor that underpins

the CTR_DRBG construction of NIST SP 800-90A Rev. 1 [BK12a], and also as the extractor for

Intel’s on-chip RNG [M14]. Independently, its securitywas proved byDodis et al. [DGH+04]

when the input was assumed to be independent of the ideal primitive.

• In Section 3.5, we show several feasible online extractors based on SHA-2 and SHA-3 and

prove their security. Given our positive results, it is to be contrastedwith the negative result

for the CBCmode of operation. Our positive results build extractors fromMerkle-Damgård

using a random compression function, Merkle-Damgård with Davies-Meyer compression

function, and from Sponges.

• Our new definitions of robustness enable seedless PRNGs in an idealizedmodel of computa-

tion while allowing for entropy sources that can be dependent on the underlying primitive

and can be adversarial. This modeling is done to bypass the famous impossibility result and

capture a realistic model. To this end, we define a new legitimacy condition that requires

that the adversary provide sufficient entropy, conditioned on its evaluations of the under-

lying primitive. The reader can find these definitions in Section 4.1. The definitions include

two variants of “robustness” - computational and information-theoretic. The former re-

stricts the computational power of the adversary before and after the challenge, while the

latter only restricts the computational power before the challenge. Finally, we include a

comprehensive discussion about how the various definitions in literature compare with

our new definition of robustness in Section 4.4.

• We combine our discussions from seedless extraction and the new robustness definition to

present our provably-secure constructions for fully seedless PRNGs in Chapter 9. These

constructions are built as Merkle-Damgård using a random compression function, Merkle-

Damgård with Davies-Meyer compression function, and from Sponges.
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• In this work, we also present an impossibility result that rules out the existence of seedless

PRNGs that achieve security against premature-next attacks, even in a weak model (i.e., the

entropic inputs to the PRNGs are independent). The attack critically leverages the arrival

of entropy at a languid pace. Therefore, it is natural to look at feasibility results where we

impose conditions on the arrival of this entropy. Our modeling follows the parametrization

of security by 𝛾∗ and 𝛽 , similar to [DSSW17]. If the PRNG has received 𝛾∗ entropy in 𝑇 ∗

steps since the last state compromise, we expect recovery from compromise within 𝛽 · 𝑇 ∗

steps. We show that for any choice of𝛾∗, 𝛽 , an efficient adversary exists providing𝑞 ≥ 𝛾∗2𝛽2

PRNG inputs (each with one independent bit of entropy), which violate the PRNG security

against premature next attacks. Since 𝑞 is typically huge, this rules out any reasonable

settings of 𝛾∗ and 𝛽 .

• It is important to note that we have practical solutions that seem towork against premature-

next calls. On the one hand, we have the pool-based, round-robin approach adopted by

Yarrow [KSF99] and Fortuna [FS03]. On the other, we have Windows 10 [Fer19] which

uses a special “root pool” to solve the problem of initial entropy accumulation when the

computer starts up. This single pool is emptied at exponentially increasing intervals (e.g., at

time 1, 𝛽, 𝛽2, ...) to (heuristically) solve the problem that sometimes the computermight boot

with no good source of randomness for an unknown period. Therefore, we ask ourselves

what meaningful security relaxation would help us prove the security of these construc-

tions, despite the impossibility result even if one were to assume perfect entropy accumula-

tion and extraction. To this end, we define a cleanmodel of seedless (pool-based) schedulers,

extending the corresponding notion of schedulers [DSSW17] to the seedless setting in Sec-

tion 6.3. Intuitively, if we have 𝑘 pools, given each entropic sample𝑋𝑖 , the scheduler decides

which pool in𝑖 ∈ [𝑘] will accumulate this entropy, and, which pool out𝑖 ∈ [𝑘] (if any) will

contribute its accumulated entropy back to the register. Moreover, to model ideal entropy

accumulation and extraction, we assume that the entropy that is thrown to pool 𝑖 simply
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adds up without loss.

• We show in Section 6.4 that the root-pool approach achieves nearly optimal (𝛼, 𝛽)-security

to accumulate entropy at start-up, where 𝛼 ≈ log𝛽 𝑞 (and we can take any integer 𝛽 ≥

2). Plugging in known constructions yields a PRNG in the root-pool model (i.e., in which

we assume that compromise only happens at time 0) that is exponentially better than our

general-scheduler lower bound stating 𝛼𝛽 ≥ √𝑞.

• Finally, in Section 6.5, we show that the round-robin Fortuna construction with 𝑘 ⩾ log𝛽 𝑞

pools achieves (𝛼, 𝛽)-security with 𝛼 ≈ log𝛽 𝑞, provided one uses a more conservative

notion of entropy called 𝑘-smooth entropy.

1.1.4 Related Work

We mention some important categories of related works, in particular concerning seedless

extraction, PRNGs, and their security.

Seeded and Seedless PRNGs. Extending the prior definition of a monolithic PRNG by Barak and

Halevi [BH05], Dodis et al. [DPR+13] introduced the definition of a robust PRNG and presented

an extensive theoretical foundation hitherto missing for this primitive. This work has been ex-

tended by [DSSW14, GT16, Hut16b], with the latter two works being analyzed in the random

permutation model (in addition to the seed). However, none of these works considered a seedless

setting for general entropy sources. Inspired by the work of Coretti et al.[CDKT19a], which forms

a part of this work, there has been additional research on constructions of Seedless PRNGs. Sub-

sequent works by Dodis et al. [DGSX21b, DGSX21a] considered the simple case where the inputs

are independent without assuming ideal primitives.

Extractors and PRNGs in ideal models. Ideal model analysis of extractors and PRNGs was

done by several works [DGH+04, BDPV10, ST15, WS19]. Despite the constructions being explic-

itly seedless, their work assumed that the entropy source was independent of the ideal primitive.
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Note that goal of these papers was not to design theoretically optimal extractors or PRNGs but to

engage in an after-the-fact analysis of the heuristic use of various cryptographic hash functions

and popular modes of operations (such as CBC, HMAC, etc.) for randomness generation and

extraction.

Extraction from Structured Sources. Another popular approach to bypassing the impos-

sibility result was to assume that the entropy source 𝑋 was more structured beyond entropy

(e.g., various bit-fixing, limited dependence sources, from several independent sources)[von51,

CGH+85, Blu86, LLS89, CG85, BIW04, CZ16]. While theoretically elegant and exciting, these are

not amenable for usage in realistic PRNGs. Taking another approach, Barak et al. [BST03] al-

lowed for arbitrary min-entropy sources but assumed that these were sourced from an a-priori

bounded number of distributions. Unfortunately, their construction does not appear helpful for

general-purpose PRNGs. On the one hand, their work focused on “monolithic” extraction, which,

as we argue above, seems to lack a practical basis. On the other, they use the so-called 𝑡-wise in-

dependent hash functions, with a large choice of 𝑡 making it inefficient.

Low-Complexity Samplers. Unlike this work where the entropy sources can run the extractor,

with the definition of legitimacy ruling out the extractor-fixing attack, low-complexity samplers

assume that the entropy source cannot run the extractor even once. Low-Complexity Samplers

were introduced by Trevisan and Vadhan [TV00] and later extended by [KRVZ11]. While inter-

esting in situations where the entropy source is straightforward, we believe that this assumption

is unrealistic for general-purpose PRNGs considered in this work.

Randomness condensers. This approach, formalized byDodis, Ristenpart andVadhan [DRV12],

relaxes the security guarantees of the randomness extractor to only ensure that the output of

the (seedless or “source-dependent-on-seed”) condenser is almost full entropy, despite not being

perfectly uniform. Indeed, this weaker security turns out to be sufficient for several applications,

such as key-derivation schemes for signature schemes. Unfortunately, if we want an extractor
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rather than a condenser—which is essential for general-purpose PRNGs—this approach is not

sufficient.

UCEs and public-seed pseudorandomness. The notion of universal computational extractors

(UCEs) [BHK13], and its generalizations [ST17], study a complementary problem to the one stud-

ied here: how to extract from an entropy source which is only computationally-hard-to-predict,

so it only has “computational entropy”. On a positive, and similar to this work, when instantiated

with constructions from an ideal primitive 𝑃 , a UCE hash function yields a good extractor even

if the inputs to it (the actual source) can be sampled depending on the ideal primitive. The issue,

however, is that the current UCE notion inherently requires a seed, making it inapplicable for the

PRNG scenario. An interesting direction for future research could be to extend our work to deal

with computational entropy by defining and constructing seedless UCEs in idealized models, and

possibly extending them to full-blown seedless PRNGs for computational entropy.

1.2 Small-Box Cryptography

Block ciphers are workhorses of cryptography and are used everywhere. There are a large

number of candidate constructions for this primitive, including the immensely popular and

widely used AES. The key idea of these constructions involves repeating a sequence of invert-

ible transformations over several iterations. There are two approaches to building these block

ciphers: Feistel networks [Fei73] or substitution-permutation networks (SPNs) [Fei73, Sha49].

Feistel networks begin with a keyed pseudorandom function on 𝑛-bit inputs and extend this to

give a keyed pseudorandom permutation on 2𝑛-bit inputs. SPNs start with one or more public

“random permutations” on 𝑛-bit inputs and extend them to give a keyed pseudorandom permu-

tation on𝑤𝑛-bit inputs for some𝑤 .
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1.2.1 Big-Box Cryptography

Ideally, our preference would be for an unconditional justification for this approach of achiev-

ing hardness by iterating a “simple component” over multiple rounds. Unfortunately, such a proof

is not immediate and would certainly imply that 𝑃 ≠ 𝑁𝑃 , solving the famous problem. Instead,

results thus far [MV15] have focused on specific (and limited) security properties of block ci-

phers such as their resistance to specific types of attacks (e.g. linear, differential, etc.) and these

are insufficient to prove the security of real-world constructions of authentication and encryp-

tion that extensively rely on these block ciphers. For example, we need to prove their resistance

to CPA/CCA style attacks and security proofs towards this purpose tend to follow a three-step

framework:

1. Abstraction: a building block 𝑓 inside a single round of the corresponding cipher is ab-

stracted away and idealized.

2. Proof: formally demonstrate the security of this abstracted and idealized block cipher, for

some minimal number of rounds 𝑟 , by using standard reduction techniques.

3. Conjecture: then conjecture that for real-world applications where we have the iteration

over some 𝑟 ′ > 𝑟 where 𝑟 was calculated in the previous step ensures its security. The

conjecture part of this argument stems from the fact that the actual construction of this

building block 𝑓 is typically far from ideal behavior.

This three-step approach is what we dub as big-box cryptography. The first issue one notices is

that the idealization requires the block 𝑓 , of size 𝑛, to be proportional to the length 𝑁 of the block

cipher. The seminal paper by Luby and Rackoff [LR88] showed that a 4-round Feistel network

yields a secure pseudorandom permutation (PRP) for 𝑁 = 2𝑛 bits when we apply the iteration on

𝑛-bit round functions which are independently keyed and modeled as a pseudorandom function.

For the context of SPN ciphers, security poof approaches have abstracted away the substitution-
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permutation structure and viewed the constructions as key-alternating ciphers [EM93, BKL+12,

CS14, HT16]. In other words, the entire SPN layer is replaced by a monolithic public permutation

Π on 𝑁 = 𝑛 bits. This coarse abstraction yields a result that a 𝑟 -round key-alternating cipher is

secure for any 𝑟 ≥ 1, in the random permutation model on 𝑁 bits [EM93, BKL+12, CS14, HT16].

𝑟 = 1 is the setting of the famous Evan-Mansour cipher [EM93]. In the end, our results in the

big-box world have the flavor of exact security bounds that are exponentially small in the block

length 𝑁 = 𝑂 (𝑛) of the cipher and reduce the security of the cipher to this smaller and simpler

idealized building block 𝑓 .

Unfortunately, the coarseness of the abstraction allows for the more interesting (at least in

our opinion) parts of the problem to be lost or ignored. For example, the “meat” of the problem is

building this block 𝑓 and if one needs 𝑓 to be “big” (hence the term “big-box”), it does not convey

anything to the practitioners on how to build this block 𝑓 in real life for no real-life implemen-

tation would meet the expectations of ideal behavior, especially if 𝑓 is expected to be small in

real life. Indeed, the round function of DES or any other Feistel cipher is far from pseudorandom

and the same is true for a 1-round SPN structure being nowhere near the expected behavior of a

PRP. Indeed, the theoretical rounds required are seldom sufficient for secure deployments which

is why we do not have a 1-round SPN cipher or a 4-round Feistel cipher. Further, a poor choice

of the round function can render the entire Feistel network-based block cipher insecure, and ig-

noring the SPN structure by reducing the analysis to a key-alternating cipher ignores the crux of

existing constructions.

To summarize, big-box cryptography provides attractive bounds and can certainly serve as

a sanity check. However, the abstraction is far too coarse that it does not provide any useful

information for practitioners on how to actually build their construction.
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1.2.2 Our Approach

We were motivated by the aforementioned issues with the standard big-box approach, and

our key approach is a new framework which we name “small-box cryptography”. Our framework

consists of two steps:

1. Construction Step. This step itself consists of two components specific to the primitive (e.g.,

block cipher, hash function, etc) we are building: domain extension and hardness amplifica-

tion. Despite being primitive-specific, it is largely syntactic, resulting inmany constructions

that have the potential to be secure in the real world.

2. Analysis Step. This step gives concrete exact security bounds/conjectures for the resulting

constructions. It consists of three parts. The first two parts are information-theoretic and

fully provable.1 They formally analyze the domain extension and hardness amplification

steps above within the existing techniques from “big-box” cryptography. The last step

introduces a new “big-to-small” conjecture, which allows one to lift these big-box results

to meaningful bounds/conjectures about the security of the resulting construction in the

real world. In essence (see Theorem 7.14), this conjecture states, that if a natural-looking

hardness amplification result gave a good security 𝜀 (𝑛) against attackers running in time𝑇

assuming 𝑛, is “large” (𝑛 ≫ log𝑇 , in particular), then the same construction will also have

security 𝜀′(𝑛) ≈ 𝜀 (𝑛) even for much smaller values of 𝑛, although the supporting security

proof critically breaks down in this case.2

1In practice, the hardness amplification step is often used with correlated round keys, using some “key schedule”
heuristic. To model this case, we also need a plausible conjecture that the key schedule step does not violate the
information-theoretic security proven using fully independent round keys.

2As we will see, the “big-to-small” conjecture looks very different from all previous (“big-box”) hardness as-
sumptions, and could be viewed as “one-way function” of small-box cryptography. While the particular conjectures
introduced here might be too strong/aggressive or require further fine-tuning, the framework is general enough
to accommodate future milder variants of this conjecture, still leading to meaningful real-world guarantees, while
addressing the limitations of big-box cryptography.
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Our new3 approach attempts to gomuch deeper inside the existing block cipher constructions,

by only idealizing a small (and, hence, realistic!) building block 𝑓 , such as an 𝑆-box. For example,

let us recall that an SPN cipher on 𝑤𝑛 bit inputs (where 𝑤 is a relatively large constant 𝑤 ⩾ 1),

is computed via repeated invocation of two basic steps: a substitution step in which a public

(unkeyed) “cryptographic” permutation 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 , called an 𝑆-box, is computed in a

blockwise fashion over the 𝑤𝑛-bit intermediate state, and a permutation step in which a keyed

but “non-cryptographic” permutation 𝜋 on {0, 1}𝑤𝑛 is applied, called a 𝐷-box. Since 𝜋 is non-

cryptographic and typically linear, we will not idealize any of its properties, and work with𝐷-box

permutations 𝜋 close to those used in practice. Hence, the only component which can be idealized

is the 𝑆-box 𝑓 , which we will model as a random permutation. Since the input length, 𝑛 of 𝑓 is

small, such idealization is not unreasonable, which means the final construction analyzed is close

to what is used in practice, and certainly captures the heart of the SPN construction: namely, the

actual SPN structure, as opposed to key-alternating ciphers, where this structure is completely

ignored!

Of course, given the huge conceptual advantages of the small-box approach over the big-box

approach in terms of the “abstraction” step, there is an important catch, as otherwise, we would

likely have an unconditional result (and proved 𝑃 ≠ 𝑁𝑃 along the way). The catch is that the

best provable security one can conceivably get with such an approach is only exponential in 𝑛,

as the 𝑆-box was the only idealized source of hardness that we could use. And since 𝑛 ≪ 𝑁 was

very small by design (say, at most 32 in existing constructions), the actual bounds are not useful

for practical use. At first, this admittedly serious deficiency appears to invalidate the whole point

of provable security with this approach, which might have been the reason why so few papers

followed this route before this work. However,

As one of the contributions of this work, we show that the seemingly useless bounds one gets in the

3As we detail in the related work Section 1.2.4, some of our ideas were already used in the prior work, but not in
the totality that we present here.
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“proof” component of the “small-box” approach, can still lead to very reasonable final results,

provided one properly models the “conjecture” component of this approach.

The approach is rather subtle and is carefully explained in Section 7.3. In brief, it formalizes

two clean and explicit hardness conjectures, termed hardness amplification (Conjecture 7.13) and

big-to-small (Conjecture 7.14). The hardness amplification conjecture, which is very plausible and

can be sometimes proven even unconditionally (under appropriate independence assumptions)

using a beautiful hardness amplification result of Maurer, Pietrzak, and Renner [MPR07], states

that the success probability 𝜀 of the distinguisher can be driven down exponentially by cascading

the block cipher with itself.4 Notice, that such cascading is indeed a common practice of every

block cipher design, where increasing the number of rounds (with independent or even correlated

keys) is critical for improving the security of the block cipher. In particular, we can get this success

probability to an extremely low level of 2−𝑤𝑛 by cascading the original cipher 𝑂 (𝑤) times.

However, this conjecture is only meaningful in the “big-box” setting, when the size 𝑛 of our

building block (e.g., 𝑆-box) is larger than the security parameter, as otherwise the exponential

in 𝑛 bounds given by our “proof component” are meaningless. To go back to the small-box case

we care about, we notice that the success probability 2−𝑤𝑛 achieved in the big-box setting after

cascading is also good and meaningful in the small-box case. The big-to-small conjecture states

that even though the hardness amplification argument used to justify this conclusion crucially

relied on the big-box assumption, the conclusion is true even in the small-box case! Unlike the

hardness amplification step, which appears very believable and even unconditionally true in cer-

tain settings, the big-to-small conjecture is completely new and not formally studied. However,

despite being new and rather strong, it allows us to precisely state the kind of “leap of faith” one

would be making when using constant size small-boxes.

We discuss these issues in more detail in Section 7.3, here only stating the result of applying
4While we state this result for block ciphers, the framework of [MPR07] is strong enough to study unconditional

hardness amplification for other primitives, such as PRGs (where one XORs several PRGs with independent seeds).
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the 2 conjectures together. Here 𝑛0 = 𝑛0(𝑎, 𝛼) is the constant defined in the big-to-small conjec-

ture (and could be small; 𝑛0 = 8 in the case of AES), and we also don’t explicitly state if cascading

uses independent or correlated keys/building blocks (which is part of the hardness amplification

conjecture):

Theorem 1.1 (Small-Box Cryptography; Informal). Let𝑇 be the desired attacker time bound, and

assume that 𝑟 -rounds block cipher 𝐸 of length 𝑤𝑛 utilizing idealized block 𝑓 of size 𝑛 is (𝑇, 2−𝛼𝑛)-

secure, as long as 𝑛 > 𝑎 log𝑇 (for some constants𝑎 > 1 and𝛼 < 1). Then, under Conjectures 7.13 and

7.14, for any 𝑛 ⩾ 𝑛0(𝑎, 𝛼), cascading 𝐸 for 𝑐 = 𝑂 (𝑤/𝛼) times will result in a 𝑟 ′ = 𝑂 (𝑤𝑟/𝛼)-round

block cipher 𝐸′ which is (𝑇,𝑂 (𝑇 /2ℓ (𝑛) + 2−𝑤𝑛))-secure,5 where ℓ (𝑛) is the key length of 𝐸′ under to

corresponding cascading step (equal to 𝑐 times the key length of 𝐸 when independent keys are used).

The theorem above formalizes the last, “conjecture” step of small-box cryptography to get the

following conclusion:

Under two clean and explicit hardness conjectures, one can get strong and meaningful security

bounds for popular block ciphers, by obtaining “seeming useless” (𝑇, poly(𝑇 )/2𝑛) security bounds

for reduced-round variants of these ciphers with idealized building blocks of size 𝑛.

Moreover, the small-box approach explicitly explains why the number of rounds 𝑟 ′ used in prac-

tical constructions is noticeably larger than the theoretically predicted number of rounds 𝑟 in the

provably secure step: to drive the success probability of the distinguisher significantly below

the minimum 2−𝑛 level possible with the traditional information-theoretic proof. Thus, we have

eliminated both significant disadvantages of the big-box approach: not guiding how to instanti-

ate the “big” building blocks in practice, and giving inadequately low predictions for the number

of rounds 𝑟 needed for real-world security.
5For simplicity we consider uniform attackers; for other (e.g., non-uniform) models, we can change the conjec-

tured 𝑇 /2ℓ (𝑛) term to reflect the best generic attack in this model; see [CDG18] for such non-uniform bounds for
block ciphers.
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1.2.3 Our Results

We believe our main result is conceptual: bring the attention of the cryptographic to the de-

ficiencies of “big-box” cryptography for the task of designing block ciphers and other symmetric

key primitives, which are usually built from scratch, from very small components such as 𝑆-

boxes. We also introduced a specific framework (which we called small-box cryptography) which

is one concrete attempt to address this problem. This framework yields a rather syntactic way

to derive candidate constructions conjectured to be secure in the real world and then proposes

an explicit way to get concrete security bounds for the resulting constructions: by combining

provably secure domain extension and hardness amplification steps with a new and unstudied

type of hardness assumptions we call “big-to-small” conjectures.

We then apply this framework to the analysis of SPN ciphers (e.g, generalizations of AES),

getting quite reasonable and plausible hardness estimates for the resulting ciphers. We also apply

this framework to the design of stream ciphers. Here, however, we focus on the simplicity of the

resulting construction, for which we managed to find a direct “big-box”-style security justifica-

tion, under a well-studied and widely believed XLPN assumption [JKPT12].

Overall, we certainly hope that our work will initiate many follow-up results in the area

of small-box cryptography, which will both refine the initial heuristics (such as more refined

analogs of our conjectured Theorem 1.1) outlined in this work, and add to a better understanding

of existing symmetric-key constructions, hopefully well beyond block/stream ciphers.

1.2.4 Related Work

There are only a few prior papers looking at provable security of SPNs. The vast majority of

such work analyzes the case of secret, key-dependent 𝑆-boxes (rather than public 𝑆-boxes as we

consider here), and so we survey that work first.

SPNs with secret 𝑆-boxes. Naor and Reingold [NR99] prove security for what can be viewed as
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a non-linear, 1-round SPN. Their ideas were further developed, in the context of domain exten-

sion for block ciphers (see the further discussion below), by Chakraborty and Sarkar [CS06] and

Halevi [Hal07].

Iwata and Kurosawa [IK01] analyze SPNs in which the linear permutation step is based on

the specific permutations used in the block cipher Serpent. They show an attack against 2-round

SPNs of this form, and prove security for 3-round SPNs against non-adaptive adversaries. In

addition to the fact that we consider public 𝑆-boxes, our linear SPN model considers generic

linear permutations and we prove security against adaptive attackers.

Miles and Viola [MV15] study SPNs from a complexity-theoretic viewpoint. Two of their

results are relevant here. First, they analyze the security of linear SPNs using 𝑆-boxes that are not

necessarily injective (so the resulting keyed functions are not, in general, invertible). They show

that 𝑟 -round SPNs of this type (for 𝑟 ≥ 2) are secure against chosen-plaintext attacks.6 They also

analyze SPNs based on a concrete set of 𝑆-boxes, but in this case, they only show security against

linear/differential attacks (a form of chosen-plaintext attack), rather than all possible attacks, and

only when the number of rounds is 𝑟 = Θ(log𝑛).

SPNs with public 𝑆-boxes. The work of Cogliati et al. [CDK+18] analyzed SPNs with public

𝑆-boxes. This work will give us the “domain extension” (𝑛 → 𝑤𝑛) component of our “Analysis

Step” when we apply small-box cryptography to SPNs. Unlike our work, however, the work of

[CDK+18] did not advocate the hardness amplification to go beyond 2−𝑛 security, or derived a

concrete framework to assess the security of SPNs in the real world.

The earlier work by Dodis et al. [DSSL16] studied the indifferentiability [MRH04] of confusion

-diffusion networks, which can be viewed as unkeyed SPNs.

As observed earlier, the Even-Mansour construction [EM93] of a (keyed) pseudorandom per-

mutation from a public random permutation can be viewed as a 1-round, linear SPN in the degen-
6In contrast, [CDK+18] showed that 2-round, linear SPNs are not secure against a combination of chosen-plaintext

and chosen-ciphertext attacks when𝑤 ≥ 2.
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erate case where 𝑤 = 1 (i.e., no domain extension) and all-round permutations are instantiated

using a simple key mixing. Security of the 1-round Even-Mansour construction against adaptive

chosen-plaintext/ciphertext attacks, using independent keys for the initial and final key mixing,

was shown in the original paper [EM93]. Kilian and Rogaway [KR01] and Dunkelman, Keller,

and Shamir [DKS12] showed that security holds even if the keys used are the same. As we men-

tioned, these results are insufficient for us, as we need a much larger (at least security parameter)

domain expansion factor𝑤 .

Cryptanalysis of SPNs. Researchers have also explored cryptanalytic attacks on generic SPNs

[BBK14, BK, BS10, DDKL15]. These works generally consider a model of SPNs in which round

permutations are secret, random (invertible) linear transformations, and 𝑆-boxes may be secret as

well; this makes the attacks stronger but positive results weaker. In many cases the complexities

of the attacks are exponential in 𝑛 (though still faster than a brute-force search for the key), and

hence do not rule out asymptotic security results. On the positive side, Biryukov et al. [BBK14]

show that 2-round SPNs (of the stronger form just mentioned) are secure against some specific

types of attacks, but other attacks on such schemes have been identified [DDKL15].

Hardness Amplification. Harness amplification, tracing its origin back to the seminal paper of

Yao [Yao82], amplifies the security of a given cryptographic primitive, typically by combining 𝑐

independent copies of these primitives, and ensuring that the attacker must break all such copies.

Traditionally, it is studied in the computational setting (e.g. [CRS+07, CHS05, DIJK09, CLLY10,

DNR04, Gol95]), where one starts with (𝑇, 𝜀)-security, and gets (𝑇 ′, 𝜀′)-security, where 𝜀′ ≈ 𝜀𝑐 .

Unfortunately, such complexity-theoretic results, while extremely beautiful, have an inherent

limitation that 𝑇 ′ ⩽ 𝑇𝜀′ ≈ 𝑇𝜀𝑐 . This means that the increased security comes at the price of

a huge degradation in the run-time of the attacker, making these beautiful results completely

useless for small-box cryptography. See [DJMW12] for more discussion.

Fortunately, hardness amplification has also been studied in the information-theoretic set-

ting [MPR07, Tes11], where the attacker is computationally unbounded but has a limited number
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of queries 𝑇 to appropriate idealized oracles. In this setting, the security can be proven without

much degradation in the parameter 𝑇 , and this is the setting we use in our framework.

Random Local Functions. Goldreich [Gol11] suggested designing a one-way function by re-

peatedly applying a certain local predicate 𝑓 (which could be viewed as “𝑆-box”) to carefully cho-

sen subsets of input bits. This influential work led to many follow-up constructions (see [App13]

and references therein) of how to build various “local” cryptographic primitives in this way, and

argue about their security. At a high level, these results could be viewed as a different instanti-

ation of small-box cryptography, which is incomparable to our proposal. Namely, our proposal

focuses on capturing real-world designs where security is obtained by repetition and suggests

modeling 𝑓 as a random function/permutation in the Analysis Step. In contrast, the study of lo-

cal cryptography is more focused on achieving small input locality (which is not our concern), as

a result explicitly trying to avoid naive hardness amplification (which is expensive for locality). In

other words, the two approaches happen to use “𝑆-boxes” for completely different goals. It would

be interesting to see if some interesting connection can be found between the two approaches to

“small-box cryptography”.

1.3 Delegatable Threshold Searchable Encryption

Consider the following motivating application: Alice, working out of a shared desktop where

she cannot store secret keys, wishes to store it instead on a more secure mobile phone. However,

Alice working out of the Desktop generates large documents which need to be indexed separately

and encrypted for storage, with the phone controlling the secure search of any words in the

encrypted documents. Alice additionally wants to store preferably only one key to not waste

storage on a resource-constrained device such as a phone. Indeed, our actual solution will allow

several different parties to generate the index, possibly even outside of the desktop, with the

assumption that the documents are available at the time of indexing, in their entirety. While the
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paradigm of searchable encryption gained steam for the setting of email messages, it is evident

that most documents are immutable and seldom change. One can think of patents, photos, and

resumes where they are available in their entirety for the indexing operation and does not need

an incremental approach to indexing.

To solve this motivating application, we introduce a new primitive known as Encapsulated

Search Index (defined in Section 8.2.1) and it provides the following functionality:

• The phone generates a secret key 𝑆𝐾 and sends the public key to the desktop.

• Given 𝑃𝐾 and a document 𝐷 , we can build an encrypted index 𝐸 (along with an encrypted

version of 𝐷). In addition, we will also have a “compact” handle 𝑐 . Once 𝐸 is built, the

document 𝐷 and any local randomness is erased. The desktop will only have 𝑃𝐾 , 𝐸, and 𝑐

stored.

• Now, a user accessing the desktop wishes to check if a certain document 𝐷 contains a

keyword 𝑤 . A trivial solution would be to decrypt the encrypted version of 𝐷 and check

for keyword𝑤 . However, the goal here is tomake the process simpler and use the encrypted

index 𝐸 to search for the presence of𝑤 .

• The user approaches the phone to authorize a search for𝑤 . However, we wish to keep the

communication between phone and desktop to be minimal. Therefore, rather than sending

the entire encrypted index 𝐸 to the phone (which could be as large as the document 𝐷), the

desktop merely sends𝑤 and the compact handle 𝑐 .

• The phone uses𝑤 , 𝑐 , and the secret key stored to grant a search token 𝑧𝑤 to the desktop.

• We desire privacy, i.e., that the phone does not learn anything beyond 𝑤 from the han-

dle 𝑐 . No information about the index 𝐸, the randomness used, etc. This requirement is

information-theoretic.
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• We desire verifiability, i.e., that the desktop can verify if 𝑧𝑤 is indeed the correct token for

𝑤 . In other words, a malicious phone cannot make the desktop output an incorrect answer

merely a denial of service attack.

• Post verification, the desktop can use 𝐸, 𝑐, 𝑧𝑤 , and 𝑃𝐾 to learn if𝑤 ∈ 𝐷 .

• We desire index privacy, i.e., the token 𝑧𝑤 is specific to the pair (𝐷,𝑤) and therefore the

desktop should not learn information on whether a word 𝑤 ′ ≠ 𝑤 is present in 𝐷 or if 𝑤 is

present in another document 𝐷′ ≠ 𝐷 .

• We desire efficiency, i.e., the overall search process by the desktop should be much faster

than the number of keywords in 𝐷 .

• We desire distribution of the trust, i.e., distribute the search approval process to multiple

devices and search can only happen after we receive a quorum of approval. The resulting

notion of threshold ESI is formalized in Section 8.2.3. This would correspond to the setting

of multiple devices serving the role of the search approver.

• We desire delegation, i.e., given an index 𝐸 for some key-pair (𝑃𝐾, 𝑆𝐾), one should effi-

ciently be able to delegate the search process to another user (𝑃𝐾′, 𝑆𝐾′) without having to

modify 𝐸. We formalize several flavors of such delegatable ESI in Section 8.2.4

• We desire updatability, i.e., update the index 𝐸 by adding or deleting a keyword using just

the token 𝑧𝑤 . We call this an updatable ESI and is formalized in Section 8.2.5.

1.3.1 Our Approach

We begin by looking at a naive solution that will serve as a useful launchpad for our approach.

In the naive solution, we combine a CCA-secure encryption scheme (Gen, Enc,Dec) and a verifi-

able random function𝑉𝑅𝐹 [MRV99, MRV99, Lys02, Dod03, DY05, GNP+15, GRPV20]. The phone
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begins by sampling (𝑃𝐾, 𝑆𝐾) ←$ Gen, and announces 𝑃𝐾 . The desktop, to index a document 𝐷 ,

begins by sampling a VRF key 𝐾 . Then, for every keyword in 𝑤 , it computes 𝑧𝑤 = 𝑉𝑅𝐹𝐾 (𝑤).

Then 𝑧𝑤 can be inserted into a non-private dictionary 𝐸. Note that each 𝑧𝑤 is pseudorandom (and

also distinct w.h.p); thus 𝐸 will not reveal any information about the document 𝐷 beyond the

number of keywords. It also computes the compact handle as 𝑐←$ Enc(𝑃𝐾, 𝐾). Desktop erases

𝐾 and 𝐷 , retaining only 𝐸, 𝑐, 𝑃𝐾 . To authorize a search for a keyword 𝑤 , the desktop communi-

cates 𝑐 and𝑤 to the phone. The phone then decrypts 𝑐 to get VRF key 𝐾 ← Dec(𝑆𝐾, 𝑐) and then

evaluates𝑉𝑅𝐹𝐾 (𝑤) and sends the result to the desktop. The desktop is now capable of searching

the dictionary 𝐸 with this value.

At first glance, this naive solution seems to work and is the solution we need. The communi-

cation sent is independent of the size of the document, and the search is efficient and sub-linear.

Further, 𝑐 is independent of 𝐷 and therefore we have privacy, the pseudorandomness guarantees

index privacy and the verifiable random function gives us verifiability. However, it does not allow

us two key features that we desire - distribution of trust and delegation of search.

• For threshold ESI, achieving “decrypt-then-evaluate-VRF” functionality non-interactively

appears quite difficult. One might be tempted to compose a one-round CCA scheme

[BMW05, BBH06] with a non-interactive threshold VRF as decrypting will give shares of

the key 𝑘 , which you can right away turn to share of 𝑃𝑅𝐹𝑘 (𝑥), maintaining one-round.

Unfortunately, there appear to be only two recent non-interactive threshold VRF schemes

[GLOW20]). Prior work on distributed VRFs was either interactive [Dod03, KM13], or

lacked verifiability [NPR99, AMMR18] or offered no formal model/analysis [Clo, Cor20,

DAO19, Kee20, SJSW19]. Unfortunately, these VRF constructions have the secret key over

the standard group Z𝑝 , whereas the message space of the CCA encryption schemes is in

the target group. Therefore, we need a new non-interactive threshold VRF with secret keys

residing in the target group.
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• For delegatable ESI, our definitions (and the overall application) require an efficient pro-

cedure S-Check(𝑃𝐾1, 𝑐1, 𝑃𝐾2, 𝑐2) to check that the new handle 𝑐2 was indeed delegated

from 𝑐1. The naive delegation scheme of decrypting 𝑐1 to get VRF key 𝑠𝑘 , and then re-

encrypting 𝑠𝑘 with 𝑃𝐾2 does not have such efficient verifiability. We could try to attach

a non-interactive zero-knowledge (NIZK) proof for this purpose, but such proof might be

quite inefficient, especially with chosen ciphertext secure encryptions 𝑐1 and 𝑐2.

Encapsulated VRF. We replace the VRF in the above approach with a new primitive known as

an encapsulated verifiable random function. Intuitively, an EVRF allows the phone to publish a

public key 𝑃𝐾 . The desktop can generate a ciphertext𝐶 and a trapdoor𝑇 , from just 𝑃𝐾 such that

the EVRF value can be computed by the desktop using 𝑃𝐾 and 𝑇 , while the phone can use 𝑆𝐾

and𝐶 to generate the same value. Now, the desktop erases𝑇 after the indexing process. Further,

the phone that produces 𝑦 to authorize the search also produces proof 𝑧 to show that 𝑦 is correct.

1.3.2 Our Results

Our contributions in this domain are as follows:

• We introduce the new primitive known as encapsulated search index (ESI) in Section 8.2.1.

We also present extensions of this primitive that allows for the distribution of trust in Sec-

tion 8.2.3, the delegation of search in Section 8.2.4, and an update of the index in Sec-

tion 8.2.5.

• We introduce a newprimitive of independent interest known as encapsulated verifiable ran-

dom function in Section 8.3.1. We also present natural extensions of this primitive to allow

for non-interactive threshold construction in Section 8.4.1 and delegation in Section 8.5.1.

• We present a generic construction of ESI from any EVRF and a non-private search dictio-

nary in Section 8.3.2 and present security proofs for the same. Further, our generic result
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inherits the properties of threshold and distribution from the EVRF, helping us achieve the

desired ESI extensions.

• We present our construction of the standard EVRF in Section 8.3.4 and of the threshold

EVRF in Section 8.4.2. We also present various flavors of delegatable EVRF in Section 8.5.2,

Section 8.5.3, and Section 8.5.4.

• We prove the security of our EVRFs under a variety of assumptions.

1.3.3 Related Work

If one were to look at the problem of searchable encryption through the roles that are being

played. We have three roles - index creator, search approver, and storage location. We will focus

on the first two, for this case.

Searchable Symmetric Encryption. Searchable Symmetric Encryption (SSE) [DWP00, Goh03,

CM05, CGKO06, DWP00, BC04] was introduced to help solve the problem of searchable encryp-

tion in the symmetric key setting. In this case, we have that the index creator and the search

approver share the same key (or are the same person). In other words, we have a single reader

and a single writer of the index. Of importance is that the sharing of the key helps us unlock the

power of a non-private dictionary and achieve sublinear search time. Additionally, they allow

for “universal indexing” (or “universal searching”) where a single token 𝑧𝑤 for keyword𝑤 is the

same for every document (i.e., there is no document-specific handle that is required). Note that

any “universal indexing” scheme can be made a document-specific indexing scheme by prefixing

the document ID for the indexing of document 𝐷 .

Another important property is the so-called “hidden queries” [DWP00] the idea of “keyword-

privacy”. Formally, the requirement is for an adversary who, given an index 𝐸 and keyword token
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𝑧 is unable to distinguish if 𝑧 is for keyword𝑤0 or𝑤1.7 Importantly, this property is incompatible

with universal indexing, in the public-key setting. An adversary can always generate the index

(which requires only the public key, as discussed below) for some document 𝐷0 containing 𝑤0

and not𝑤1 and then test if 𝑧 works on this index.

Fortunately, for our motivating application, neither of these two properties is required. The

document is available at the time of indexing and therefore a document-specific keyword suffices

and the verifiability property implies that we cannot have keyword privacy. Further, if Alice was

to use SSE to solve the problem, she would have to transmit the entire document to the phone and

then have the phone index and send the index back to the desktop. This is inefficient. The other

option would be for Alice to have the secret key shared with the desktop as well, but then more

trust is needed for the Desktop and also requires a new secret key for every document. In other

words, we see that Alice desires to generate the entire encrypted index 𝐸 on her desktop without

communicating with the phone. The only communication needs to happen with the phone to

authorize searches which naturally implies a public-key cryptography-based solution.

Public Key Encryption with Keyword Search. Public Key Encryption with Keyword Search

(PEKS) [BDOP04, ABC+05, BSNS08, BKOS07, RPSL09, ZLT+20] can be viewed as the public-key

counterpart of SSE. Alice publishes a public-key 𝑃𝐾 which allows anybody to create an encrypted

index for her. In other words, we have several index-creators (i.e., multiple writers) but a single

search approver (i.e., reader). PEKS also requires universal indexing and as remarked earlier

cannot achieve keyword privacy. More importantly, as an artifact of universal indexing, the

system is inherently slow. The only way to test would be to test each “ciphertext” one by one on

whether it matches the keyword being searched. Fortunately, because indexing can be document-

specific ESI helps us achieve sublinear search time.

Summarizing the above discussion (see Table 1.1), we can highlight five key properties of a
7It is important to note that all SSE schemes in the literature do not achieve the strongest possible keyword

privacy and suffer from various forms of information leakage [CGPR15, CGKO06, KPR12].
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given searchable encryption scheme: public-key indexing, sublinear search, universal indexing,

keyword privacy, and index privacy. All of ESI/SSE/PEKS satisfy (appropriate form) of index pri-

vacy and differ— sometimes by choice (ESI) or necessity (PEKS)— in terms of keyword privacy. So

the most interesting three dimensions separating them are public-key indexing, sublinear search,

and universal search, where (roughly) each primitive achieve two out of three. For our purposes,

however, ESI is the first primitive which combines public-key indexing and sublinear search, which

is precisely the setting of our motivating example. This forms the backbone of the commercially

deployed product called Atakama[Ata22].

SSE PEKS ESI
Public-Key Indexing ✗ ✓ ✓

Sublinear Search ✓ ✗ ✓

Universal Index ✓ ✓ ✗

Index Privacy ✓ ✓ ✓

Keyword Privacy ✓ (partial) ✗ (impossible) ✗ (by choice!)

Table 1.1: A comparison of SSE, PEKS, and ESI.

1.4 Updatable Public Key Encryption

For purposes of privacy, forward security refers to the property bywhich a system continually

updates secret information to ensure that a compromise of the secret information at a period 𝑡

does not render any communication in prior periods insecure. This concept was initially proposed

in the context of signatures [] but has grown in its relevance in the context of encryption schemes.

In either regime, one takes time and divides it into smaller periods or epochs with the secret

information continually updated from one period to the next.

Forward Security is easy to achieve in the symmetric-key world, provided the sender and

the receiver can stay synchronized [BY03]. This solution requires the use of a pseudorandom

generator (PRG) 𝐺 , where given the current state 𝑠 , the sender produces (𝑟, 𝑠′) ← 𝐺 (𝑠) to get

the one-time symmetric key 𝑟 and the new state 𝑠′. Then, compromise of 𝑠′ does not render 𝑟 in-
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secure. However, the solution is not that straightforward in the public key encryption scheme.

Forward-Secure PKE. The initial paper of Canetti et al.[CHK03], which is still essentially

state-of-the-art, defined FS-PKE as follows: from an initialized (pk0, sk0) public key-secret key

pair, one can define two synchronized chains pk0 → pk1 → pk2 → . . . and sk0 → sk1 → sk2 →

. . . with the property that they can be independently produced by multiple senders and a single

receiver respectively. The consistency requires that any message encrypted by pk𝑖 is decrypted

correctly by sk𝑖 . Finally, the compromise of sk 𝑗 does not render any message encrypted by pk𝑖

for 𝑖 < 𝑗 , which captures the forward-security requirement. Their work also showed how to

build FS-PKE from the Hierarchical Identity-Based Encryption (HIBE) [HL02, GS02] scheme. This

generic construction implied that with further research on actual constructions of HIBE Schemes

[BB04, CHKP12, BBG05, DG17b, DG17a, BLSV18], we also obtained FS-PKE constructions under

various assumptions. These constructions also included theoretical schemes from fundamen-

tal assumptions, like DDH/CDH, factoring, and super-low-noise LPN [DG17b, DG17a, BLSV18].

Given the wide assortment of FS-PKE constructions, it is important to stress that these are inher-

ently complicated and inefficient compared to actual PKE constructions from the same assump-

tions. Closing this efficiency gap is an open problem.

Updatable PKE. In this work, we look at another approach to achieving forward security in the

public key encryption setting. The primitive, known as Updatable PKE (UPKE), can be viewed as

an attempt at closing the efficiency gap, albeit under a relaxation of FS-PKE. UPKE was proposed

by Jost et al.[JMM19], motivated by independent applications to secure group messaging. It was

later used by Alwen et al.[ACDT20] for their construction of a secure group messaging protocol.

The idea here is that rather than expecting the two synchronized chains to be generated inde-

pendently, a sender initiates a “key update” by sending an “update ciphertext” and updating the

receiver’s public key. Upon processing the update ciphertext, the receiver updates its secret key

with the expectation that the new secret key is consistent with the updated public key. While
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we expect an honest sender to generate good randomness for the update ciphertext, a malicious

sender cannot harm the receiver with bad randomness. Further, an honest sender is guaranteed

that once the receiver updates its secret key using the update ciphertext, compromising the re-

sulting secret key would not render prior communications insecure. It is important to note that

the setting of UPKE assumes an ordered sequence of these update ciphertexts, which the receiver

will then process, and this sequence is available to all senders. This trivially holds for the two-

party setting where all communications are sent by the same sender [JMM19] (similar to the

symmetric-key setting), or we can assume some external serialization mechanism for multiple

sender settings, as seen in the work by Alwen et al. [ACDT20].

Informal Syntax and Security of UPKE. Let us now be more precise. In addition to the stan-

dard algorithms of a PKE - key generation, encryption, and decryption - we have two additional

algorithms Upd-Pk and Upd-Sk.8 A sender runs Upd-Pk on the current public-key pk𝑖−1 to pro-

duce an update ciphertext up𝑖 and a new public key pk𝑖 . Upon receiving this communication, the

receiver runs Upd-Sk on the current secret key sk𝑖−1 and update ciphertext up𝑖 , to produce the

new secret-key sk𝑖 .

The security requirement is that exposure of any key sk𝑖 should not harm the security of mes-

sages encrypted under public keys pk 𝑗 , for any 𝑗 < 𝑖 , provided at least one “good” update happened

from period 𝑗 to 𝑖 . Here, by “good update” we mean that the attacker did not compromise the ran-

domness used by the sender to generate this update. In the earlier works [JMM19, ACDT20], as an

artifact of secure messaging application assumptions, they assumed that the senders were honest,

but the attacker could compromise the randomness used by the sender. However, we look at a

stronger security assumption where we allow for the adversary to provide malicious randomness

for the “bad updates”. To model forward security, our security game allows for the adversary to

provide randomness 𝛿1, . . . , 𝛿𝑞 with the challenger executing the update procedures consistent
8Note that in our discussions we use a different syntax from the earlier works [JMM19, ACDT20], but it is easy

to re-cast our syntax in the context of their syntax.
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with 𝛿1, . . . , 𝛿𝑞 to obtain public key chain pk1, . . . , pk𝑞 and secret key chain sk1, . . . , sk𝑞 . pk𝑞 is

used to encrypt the challenge message𝑚𝑏 . Further, the challenger samples a fresh randomness

𝛿∗ and runs the update procedures concerning this delta to get the new public key pk
∗, up∗, sk∗.

The adversary is now provided with these values and the challenge ciphertext.

Prior Construction of UPKE. Recall that we motivated UPKE to achieve a weaker definition

of FS-PKE while obtaining better efficiency. Indeed, the works of [JMM19, ACDT20] presented a

simple and fast (orders of magnitude faster than HIBE-baed FS-PKE schemes) construction based

on the CDH assumption in the random oracle model (ROM). At its core, they use the standard

hashed ElGamal encryption scheme. Given a public key ℎ = 𝑔𝑠 , we encrypt a message𝑚 as (𝑐 =

𝑔𝑟 ,𝑤 = 𝐻𝑎𝑠ℎ(ℎ𝑟 ) ⊕𝑚). Now, with secret key 𝑠 , one can decrypt as (𝑐,𝑤) outputs 𝑤 ⊕ 𝐻𝑎𝑠ℎ(𝑐𝑠).

For the update procedures, the sender chooses a random exponent 𝛿 , and simply encrypts 𝛿 using

the encryption as mentioned above procedure. Leveraging the homomorphic properties, one can

set the new public key as ℎ′ = ℎ · 𝑔𝛿 , implicitly setting the new secret key as 𝑠′ = 𝑠 + 𝛿 . The

receiver can decrypt the update ciphertext to compute 𝛿 and update the secret key on its end.

If we looked at the security of the hashed ElGamal-based construction [JMM19, ACDT20], the

adversary receives as input sk∗ = 𝑠′ = 𝑠 + 𝛿 (i.e., along with encryption of 𝛿 as up∗). Therefore,

the adversary receives both an encryption of a function of the secret key (𝛿 = 𝑠′−𝑠) and a leakage

of the secret key (𝑠′ = 𝑠 + 𝛿). Fortunately, for a random 𝛿 , 𝑠′ is trivial leakage, while the random

oracle easily handled (so-called) key-dependent-message (KDM) security [BRS03]. Therefore, the

random oracle model is critically used to break the circularity.

This work looks at how to build constructions in the standard model.

1.4.1 Our Approach

We need a construction that handles the leakage of the secret key and the security of the

message dependent on the key. In particular, we will rely on circular-secure encryption schemes
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in the standard model under DDH/LWE (e.g., [BHHO08, ACPS09]) where the key 𝑠 and/or the

updates 𝛿 must consist of “small” values in some larger group Z𝑝 and hence the leakage 𝑠′ = 𝑠 +𝛿 .

However, the leakage will no longer be trivial.9 Luckily, these schemes are also leakage resilient;

hence, this non-trivial leakage does not hurt security. Indeed, our constructions will follow the

following template that builds on a regular PKE that has the following properties:

1. Circular-secure and leakage-resilient (CS+LR): Given encryption of the secret key 𝑠 and any

bounded-entropy leakage on 𝑠 , the scheme is still semantically secure. See Section 9.3 for

the precise definition.

2. Key-Homomorphic: Let (𝑐, pk) be a public key and a ciphertext pair that corresponds to

some secret key sk. Then, given some offset 𝛿 , we can convert them into a public key and

a ciphertext pair (pk′, 𝑐′) that corresponds to the secret key sk
′ = sk + 𝛿 , while preserv-

ing the encrypted message. In other words, we have the following algorithm: (pk′, 𝑐′) ←

𝐾𝐻 (pk, 𝑐;𝛿).

3. Message-Homomorphic: Let 𝑒 be ciphertext encrypting some value 𝑠 . Then, given some

offset 𝑠′, we can convert it into a ciphertext 𝑒′ encrypting 𝑠′ − 𝑠 . In other words, we have

the following algorithm: 𝑒′← 𝑀𝐻 (𝑒; 𝑠′).

Now, we briefly outline our reduction idea though the actual details vary between our construc-

tions. Let us assume that we have a UPKE attacker A, and we will build a CS+LR attacker A′.

Our reduction idea will be for the case where𝑞 = 1, i.e., the adversary provides single randomness

for the update. This is presented in Figure 1.1.
9This is true for the DDH-based scheme of Boneh et al.[BHHO08] since circular security requires encrypting in

the exponent and decryption involves solving discrete log; therefore the encrypted values must be small. This is also
true for the LWE-based scheme, where the secret key must be small for correctness.
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Reduction AUPKE to A𝐶𝑆+𝐿𝑅

CS+LR Game A𝐶𝑆+𝐿𝑅 AUPKE

(pk, sk) ←$ Gen pk

pk

𝛿1,𝑚0,𝑚1

Set leakage:
𝐿(sk;𝛿∗) = sk + 𝛿∗

𝐿,𝑚0,𝑚1

𝑏←$ {0, 1}

𝑐 = Enc(pk,𝑚𝑏)

𝑒 = Enc(pk, sk)

𝐿(sk)

Set:
sk
∗ = 𝐿(𝑠𝑘) + 𝛿1

pk
′, 𝑐∗ ← 𝐾𝐻 (pk, 𝑐;𝛿1)

up
∗ ← 𝑀𝐻 (𝑒;𝛿1)

𝑏 ′

𝑏 ′

Figure 1.1: A reduction idea for building an attacker A𝐶𝑆+𝐿𝑅 against the CS+LR security game for the

underlying PKE, using an attackerA𝑈𝑃𝐾𝐸 that breaks the UPKE security. Here, we set the leakage function
as a probabilistic leakage function sk+𝛿∗ where 𝛿∗ is chosen by the challenger and is unknown toA𝐶𝑆+𝐿𝑅 .
This leakage offset is implicitly set as the final update’s 𝛿∗.
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1.4.2 Our Results

Our main contribution is presenting two efficient UPKE schemes in the standard model from

the DDH and the LWE Assumption.

• First, we show that the BHHO cryptosystem [BHHO08] constructed from the DDH as-

sumption satisfies the properties we need. In their construction, the secret key sk is a

vector 𝒔 ∈ Zℓ𝑝 . It achieves circular security holds as each component of the secret key is

encrypted in the exponent with decryption recovering the secret key by merely the discrete

log. Therefore, it requires that a “short” 𝒔 ∈ {0, 1}ℓ ⊆ Zℓ𝑝 . They also need their message

space to also be a bit string. In our construction, we initialize 𝒔0←$ {0, 1}ℓ . For the update,

we choose offset 𝜹𝑖 ←$ {0, 1}ℓ and is encrypted bit-by-bit in the exponent; the updated se-

cret key will be 𝒔𝑖+1 = 𝒔𝑖 + 𝜹𝑖 where the addition is performed over Z𝑝 . The construction

can be found in Section 9.4. Note that his construction was shown to be circular secure

[BHHO08] and leakage-resilient [NS09]; we show that the two security properties also

hold simultaneously in Section 9.4.2. When we use this scheme as a UPKE, we rely on the

fact that for randomly chosen 𝜹, 𝒔 ∈ {0, 1}ℓ , the leakage value of 𝜹 + 𝒔 (with addition over

Z𝑝 ) only reduces the entropy of 𝒔 by ℓ · log(4/3) ≤ ℓ/2 bits. We prove this as Claim 9.18.

Finally, in Section 9.4.4, we show that the construction is indeed a secure UPKE.

• Second, we show that the dual-Regev cryptosystem [Reg05, GPV08] constructed from the

LWE assumption also satisfies the properties we need. In their construction, the secret

key sk is a vector 𝒔 ∈ Zℓ𝑝 . The construction can be found in Section 9.5. We show that

the construction is CS+LR security, similar to the DDH results, in Section 9.5.2. When we

use this scheme as a UPKE, we encounter the following issue: while the scheme is key-

homomorphic, when we update the key we obtain an incorrect ciphertext distribution –

in particular, the “error term” distribution is perturbed. This necessitates deploying the

“noise smudging” technique (see Lemma 9.2) where we add super-polynomial noise to the
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ciphertext to hide the smaller difference in the error term, which is polynomial.

Our resulting constructions are significantly more efficient and less complicated when compared

to the HIBE schemes from the same assumptions. A rough summary of efficiency, security, us-

ability, and assumptions trade-off for our schemes when compared to previous PKE, UPKE, and

FS-PKE schemes is given in Table 1.2. It is clear from the table that our efficiency falls between

that of PKE and FS-PKE (much closer to the former), we achieve the same (resp. much stronger)

forward security as FS-PKE (resp. PKE), but we do require a stronger synchronization assumption

than FS-PKE.

Factors PKE

UPKE [JMM19, ACDT20]
RO Model

UPKE (this work)
Standard Model FS-PKE

Efficiency Very Efficient ≈ PKE ≈ PKE · 𝜅 Inefficient10
(from HIBE)

Assumptions DDH/CDH,
Factoring, LWE CDH DDH, LWE DDH/CDH,

Factoring, LWE
Forward
Security? No Yes Yes Yes

Synchronization None Strong
(Updates)

Strong
(Updates)

Weak
(Time Periods)

Table 1.2: Comparison of Different Primitives. (𝜅 is the security parameter.)

1.4.3 Related Work

Hierarchical Identity-Based Encryption (HIBE). Canetti et al. [CHK04] showed how to

build FS-PKE (and therefore also UPKE) from any Hierarchical Identity-Based Encryption (HIBE)

[HL02, GS02, BB04, CHKP12, BBG05, DG17b, DG17a, BLSV18].

The HIBE construction from DDH/CDH [DG17b, DG17a, BLSV18] yields an alternate con-

struction of UPKE from DDH/CDH in the standard model. However, this construction is mainly

of theoretical interest and is hugely impractical. Their construction critically relies on complex

garbled circuits that perform public-key operations. In more detail, their construction relies on a

chain of𝑂 (𝜅) garbled circuits for security parameter 𝜅. Now, each of these circuits outputs𝑂 (𝜅)
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special ciphertexts (encrypted labels for next level garbled circuit) with each ciphertext contain-

ing at least 𝑂 (𝜅) group elements. Since this computation is inside a garbled circuit, we are left

with at least another𝑂 (𝜅) overhead on top. This does not account for another𝑂 (𝜅) overhead to

go from HIBE to FS-PKE/UPKE, yielding a total complexity of at least𝑂 (𝜅5). In other words, this

resulting construction is at least 𝑂 (𝜅3) worse than our scheme, ignoring concrete overheads.

On the other hand, building HIBE from LWE [CHKP12, ABB10] yields an alternate construc-

tion of UPKE from LWE in the standard model. The resulting schemes could potentially be pi-

ratically efficient. Yet, our construction is still significantly simpler and more efficient for several

reasons: (1) It does not rely on lattice trapdoors or GPV style pre-image sampling [GPV08], mak-

ing our scheme conceptually simpler and practically more efficient. (2) Our secret key is a single

lattice vector rather than an entire lattice basis. This shortens our secret keys by roughly an

𝑂 (𝜅) factor. (3) We avoid the additional 𝑂 (𝜅) factor overhead in the transformation from HIBE

to FS-PKE/UPKE.

Forward-secure Signatures. Forward-Secure Signatures [And97], much like FS-PKE, re-

quires that any compromise of the current signing key does not enable forgery of messages for

previous periods. In particular, the tree-based FS-signature scheme of Bellare and Miner [BM99]

(later extended by Malkin et al. [MMM02]) inspired the work of HIBE-based FS-PKE of [CHK04].

There are also constructions in the random oracle setting [AR00, IR01, KR03].

Related Key Evolving Encryption Schemes. The works of Jaeger and Stepanovs [JS18] and

Poettering and Rössler [PR18] proposed two related notions of key-updatable PKE scheme. These

constructions provide an even stronger form of key evolution than FS-PKE where key updates

can be labeled by arbitrary, possibly adversarially chosen, strings. These schemes were also built

from HIBE.
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Circular and KDM Secure Encryption Schemes. Circular-secure schemes allow the attacker

to see encryptions of the scheme’s secret key. A natural extension of this notion studies a cycle

of (sk𝑖, pk𝑖) pairs for 𝑖 = 1, . . . , 𝑛 where we encrypt sk𝑖 under pk𝑖 mod 𝑛+1. This was defined as

key-dependent message security (KDM) by Black et al. [BRS03] and as circular security by Ca-

menisch and Lysyanskaya [CL01]. The first cryptosystem in the standard model with proof

of KDM-security under a standard assumption was given by Boneh et al. [BHHO08]. Subse-

quently, constructions from the learning with errors (LWE) [ACPS09] and quadratic residuosity

[BG10] assumptions were proposed. Construction for identity-based KDM-secure encryption

[AP12] was also proposed. While the construction of Boneh et al. [BHHO08] was for affine func-

tions, subsequent “KDM amplifications” transforms extended the class of functions significantly

[BHHI10, BGK11, MTY11, App14].

Leakage-Resilient Encryption Schemes. Most of the security models do not capture possible

side-channel attacks. These attacks are designed to exploit unintended leakage that often stems

from the physical environment. Akavia et al. [AGV09] proposed a realistic framework that aimed

to capture information about the leakage. Subsequent work by Naor and Segev [NS09] analyzed

the resilience of public-key cryptosystems to leakage. An important result was that they showed

the (even slightly optimized version of the) BHHO scheme [BHHO08] was resilient to |sk| (1 −

𝑜 (1)) bits of leakage. Subsequent work [DGK+10] showed the leakage resilience of both the

BHHO scheme and the dual Regev encryption scheme [Reg05, GPV08] in the auxiliary input

model. Brakerski et al. [BLSV18] studied both the leakage resilience and circular security of

anonymous IBE. We point to the survey of leakage resilient cryptography by Kalai and Reyzin

[KR19] for additional work in this domain.

Different “Updatable” Encryption. With an unfortunate naming collision, there has been a

different kind of “updatable encryption schemes” considered in the literature [BLMR13, EPRS17,

LT18, KLR19, BDGJ20, BEKS20]. These are symmetric-key encryption schemes that aim to ac-
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complish key rotation in the cloud, specifically moving the ciphertexts under the old key to the

new key. In particular, these schemes produce multiple encryptions of the same message under

different keys and aim to produce update tokens that allow the update of old ciphertexts, without

leaking the message content. In contrast, updatable schemes in this paper are public-key, encrypt

different messages, and aim to achieve forward security. Thus, the notions are very different

despite the partial naming collision.

1.5 Outline and Motivation of this Work

Our Motivation. As mentioned earlier, this work is an attempt at providing theoretical ap-

proaches and solutions to problems that are inspired by practical applications. To put it suc-

cinctly, the crux of this work is the theory applied to practice-oriented problems. This work is

spread over four parts where each deals with a particular problem that is inspired or of practical

interest. Part I revisits the problem of random number generation. There is a rich literature of

theoretical work in this domain and an equal quantity of practical constructions of PRNGs. How-

ever, there is a gap. The theoretical constructions are not deployed in practice, and theoretical

proofs of security for the real-world constructions are lacking on various axes. We aim to bridge

this gap through this work. Part II focuses on the problem of understanding the security of a key

symmetric-key component of block ciphers, specifically AES. There is a large body of literature

that has taken an assortment of approaches to prove the security of such block ciphers. However,

these analyses have either been too coarse to capture actual constructions, or abstracted away

key components that have resulted in “proofs of security” of insecure constructions. This work

introduces a new framework that provides concrete (and plausible) security estimates for block

ciphers. Part IV, perhaps, provides the most tangibly practical result where the protocol analyzed

is a commercially available product. We motivate a new slant to the problem of searchable en-

cryption by introducing new primitives to solve this problem. Finally, in Part III we look at the
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problem of forward-secure encryption and its simpler case of updatable public key encryption

(UPKE). UPKE, as a primitive, plays a key role in the practical problem of secure groupmessaging,

as proposed by Alwen et al. [ACDT20]. The focus of this work is to look at solutions that are (a)

secure against quantum adversaries, and (b) do not rely on the random oracle model. While our

results in this setting might not be available for immediate deployment owing to large parameter

sizes, we do present a recipe or a framework to build UPKE from standard public-key encryption

that satisfies some properties.

Outline. In Chapter 2, we present some preliminaries. In Chapter 3, we discuss seedless ex-

traction. In Chapter 4, we introduce the primitive known as seedless pseudorandom number

generators with input and formally define the security of this primitive. We also define inter-

mediate security definitions and prove how these different intermediate definitions compose for

the overall security. In Chapter 5, we present our constructions of seedless PRNGs and prove

their security, in various idealized models of computation. Finally, in Chapter 6, we look at the

problem of achieving security against premature next attacks when using seedless PRNGs. Our

results include both an impossibility result and various positive results that have a direct impact

on our understanding of actual PRNGs that form a part of various operating systems. In Chap-

ter 7, we introduce a new framework that can be used to provide concrete hardness estimates for

block ciphers. In Chapter 9, we introduce a new primitive that helps achieve sublinear search

time, in the public-key setting for the problem of searchable encryption. We also present other

primitives and extensions in this chapter. Finally, in Chapter 6, we revisit the primitive known as

updatable public key encryptions, presenting candidate constructions in the standard model.
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2 | Preliminaries

2.1 Notation

Let PPT denote probabilistic polynomial time. We denote by 𝜅 the security parameter. We

denote by negl(𝜅) a function that is negligible in the security parameter 𝜅. Additionally, when

we say that a value 𝑍 is “negligible”, it implies that 𝑍 < negl(𝜅).

Definition 2.1 (Negligible Function). A function negl is negligible iff ∀𝑐 ∈ N, ∃𝑛0 ∈ N such that

∀𝑛 ≥ 𝑛0, negl(𝑛) < 𝑛−𝑐 .

For a distribution 𝑋 , we use 𝑥 ←$ 𝑋 to denote that 𝑥 is a random sample drawn from the

distribution 𝑋 . For a set 𝑆 we use 𝑥 ←$ 𝑆 to denote that 𝑥 is chosen uniformly at random from

the set 𝑆 . We denote by𝑈𝑑 the uniform distribution over {0, 1}𝑑 .

2.1.1 Information-Theoretic Notations

• The statistical distance of two random variables 𝑋 and 𝑌 is

SD (𝑋,𝑌 ) = 1
2

∑︁
𝑥

|Pr[𝑋 = 𝑥] − Pr[𝑌 = 𝑦] | .

• The prediction probability of a random variable 𝑋 is Pred(𝑋 ) := max𝑥 Pr[𝑋 = 𝑥], and we

also denote Pred(𝑋 |𝑦) := max𝑥 Pr[𝑋 = 𝑥 |𝑌 = 𝑦].
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• The conditional version of prediction probability is defined as

Pred(𝑋 |𝑌 ) := E𝑦←𝑌
[
Pred(𝑋 |𝑦)

]
.

• The (average-case) conditional min-entropy is

H∞(𝑋 |𝑌 ) = − log(Pred(𝑋 |𝑌 )) .

2.1.2 Security Games

All of the security properties considered in this paper are captured by considering a game

between a challenger and an attacker A, both of which may have access to an ideal primitive 𝑃 .

The goal of the attacker is to guess a random bit 𝑏 chosen by the challenger, who offers a set of

oracles to the attacker to aid with this task. The advantage of A is defined as

2 ·
�� Pr[A wins] − 1/2

�� ,
where the probability is over the randomness of A, of the challenger, and of the ideal primitive.

The cases where 𝑏 = 0 and 𝑏 = 1 are referred to as the real world and the ideal world, respectively.

One may equivalently consider A’s advantage at telling these two worlds apart, i.e.,

�� Pr[A = 1|𝑏 = 0] − Pr[A = 1|𝑏 = 1]
�� .
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Part I

Random Number Generation, Revisited
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3 | Seedless Extraction and Key

Derivation

This chapter is based on joint work with Sandro Coretti, Yevgeniy Dodis, and Stefano Tessaro

that appeared in CRYPTO 2019 [CDKT19a]. Some passages are taken verbatim from the full

version of this paper [CDKT19b].

We begin by looking at the problem of extraction, i.e., producing uniformly random bits from

weak high-entropy sources. Extraction can be seen as corresponding to the post-compromise

security of PRNGs, and as such it will be implied by PRNG robustness (as defined in Section 4.1.2).

The definition of extraction security in Section 3.2 considers the entropy of the attacker’s input

to the extractor conditioned on the attackers state and the queries made to an ideal primitive 𝑃 .

A definition is provided for computational or information-theoretic security. IT extractors differ

from computational ones in that the output of the extractor remains random even if the attacker,

after providing the input, is given the entire function table of the underlying ideal primitive. That

is, IT extractors achieve so-called everlasting security (cf. works in the hybrid bounded-storage

model by Harnik and Naor [HN06]).

Section 3.3 considers extracting with amonolithic random oracle. The corresponding security

proofs (for the computational and IT cases) are instructive for understanding the actual PRNG

constructions provided in Section 5. Since considering a monolithic oracle is not motivated by

any hash function used in practice, Section 3.4 introduces the concept of online extraction. An
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online extractor accumulates the entropy of its inputs in an internal state, from which uniform

randomness can be produced. Finally, in order to illustrate the non-triviality of online extraction,

Section 3.5.5 shows that extractors based on the popular CBCmode are not suitable for extraction.

Due to their importance, Section 3.5.6 briefly discusses key-derivation functions (KDFs) and

analyzes the Extract-then-PRF paradigm (on which the widely used HKDF is based) put forth by

Krawczyk [Kra10] in the seedless setting.

3.1 Preliminaries

3.1.1 The H-Coefficient Techniqe

When considering an adaptive distinguisher D that tries to tell apart two different worlds,

usually termed real and ideal experiments, the H-coefficient technique [Pat09] is a handy tool for

analyzing the distinguishing advantage of D.

The H-coefficient technique considers transcripts between distinguisher D and the chal-

lenger. These transcripts are partitioned into two groups: the good transcripts and the bad tran-

scripts. For good transcripts 𝜏 , an H-coefficient proof will commonly derive a lower bound on

the ratio of the probability of 𝜏 occurring in the real world and that of 𝜏 occurring in the ideal

world. For bad transcripts, which are normally defined as the transcripts for which said lower

bound cannot be derived, one upper bounds the probability that they occur. This latter bound

can be proved in the ideal world, which usually greatly simplifies the derivation.

Transcripts. The interaction of D with either the real or the ideal experiment produces a

transcript 𝑇 that contains the queries made by D and the corresponding answers given by the

challenger. For a fixed transcript 𝜏 , denote by p0(𝜏) and p1(𝜏) the probabilities that the real and

ideal experiments, respectively, the challenger produces the answers in 𝜏 if asked the queries in
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𝜏 .1 Similarly, the behavior of a distinguisher D is described by a function pD (𝜏) that assigns

to 𝜏 the probability that D produces the queries in 𝜏 if given the answers in 𝜏 . Observe that,

therefore, the probability of a particular transcript 𝜏 occurring in an interaction of D with the

real experiment is Pr[𝑇0 = 𝜏] = pD (𝜏) · p0(𝜏) and, similarly, Pr[𝑇1 = 𝜏] = pD (𝜏) · p1(𝜏) for the

ideal world. In the following, denote by Tthe set of all transcripts 𝜏 .

Bounding the distinguishing advantage. The distinguishing advantage ofD is upperbounded

by the statistical distance

SD (𝑇0,𝑇1) =
∑︁
𝜏∈T

max {0, Pr[𝑇1 = 𝜏] − Pr[𝑇0 = 𝜏]}

=
∑︁
𝜏∈T

max {0, pD (𝜏) · p1(𝜏) − pD (𝜏) · p0(𝜏)}

=
∑︁
𝜏∈T

pD (𝜏) · p1(𝜏)
(
1 − p0(𝜏)

p1(𝜏)

)
=

∑︁
𝜏∈T

Pr[𝑇1 = 𝜏]
(
1 − p0(𝜏)

p1(𝜏)

)
. (3.1)

Suppose that for some set Γ ⊆ Tof good transcripts, a lower bound

p0(𝜏)
p1(𝜏)

≥ 1 − 𝜀

is known for all 𝜏 ∈ Γ and some 𝜀 ≥ 0. Then, (3.1) becomes

∑︁
𝜏∈T

Pr[𝑇1 = 𝜏]
(
1 − p0(𝜏)

p1(𝜏)

)
≤

∑︁
𝜏∈Γ

(
1 − p0(𝜏)

p1(𝜏)

)
+

∑︁
𝜏∈T\Γ

Pr[𝑇1 = 𝜏]

≤ 𝜀 + Pr[𝑇1 ∈ T\ Γ] ,

where transcripts 𝜏 ∈ T\ Γ are commonly referred to as bad transcripts. Given the above, apply-
1Observe that p0 (𝜏) and p1 (𝜏) depend only on the corresponding experiment and are independent of D.
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ing the H-coefficient technique entails defining a set of good transcripts, bounding the fraction

above, and showing that bad transcripts are unlikely. Note that the latter can be done in the ideal

experiment, which is usually considerably easier than doing so in the real experiment.

Theorem 3.1 (H-coefficient method). For two experiments described by p0(·) and p1(·), respec-

tively, if there exists a set Γ ⊆ Tand 𝜀, 𝛿 ≥ 0 satisfying

1. (ratio analysis) p0(𝜏)/p1(𝜏) ≥ 1 − 𝜀 for all 𝜏 ∈ Γ and

2. (bad event analysis) Pr[𝑇1 ∉ Γ] ≤ 𝛿 ,

then the distinguishing advantage of any distinguisher D is bounded by 𝜀 + 𝛿 .

3.1.2 Information-Theoretic Preliminaries

The collision probability of a random variable𝑋 is defined simply asColl(𝑋 ) := ∑
𝑥 Pr[𝑋 = 𝑥]2.

Moreover, let Coll(𝑋 |𝑦) := ∑
𝑥 Pr[𝑋 = 𝑥 |𝑌 = 𝑦]2, and define the conditional collision probability

Coll(𝑋 |𝑌 ) := E𝑦←𝑌
[
Coll(𝑋 |𝑦)

]
.

The following two propositions relate the statistical distance from uniform to the collision

probability. The first is well known and at the core of the proof of the leftover hash lemma [ILL89];

the latter is proved for self-containment.

Proposition 3.2. For any random variable 𝑋 with size-𝑁 range, and a uniformly distributed 𝑈

with the same range,

SD (𝑋,𝑈 ) ≤ 1
2
√︁
𝑁 · Coll(𝑋 ) − 1 .

Proposition 3.3. Let 𝐹 be chosen uniformly at random from a set F . Then, for any random variable

𝑋 with size-𝑁 range (arbitrarily correlated with F ), and a uniformly distributed 𝑈 with the same
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range, independent of 𝐹 ,

SD ((𝑋, 𝐹 ), (𝑈 , 𝐹 )) ≤ 1
2
√︁
𝑁 · Coll(𝑋 |𝐹 ) − 1 .

Proof. By Proposition 3.2,

SD ((𝑋, 𝐹 ), (𝑈 , 𝐹 )) ≤ 1
2
√︁
𝑁 |F | · Coll(𝑋, 𝐹 ) − 1 .

Moreover,

Coll(𝑋, 𝐹 ) =
∑︁
𝑥,𝑓

Pr[(𝑋, 𝐹 ) = (𝑦, 𝑓 )]2

=
1
|F |

∑︁
𝑓

Pr[𝐹 = 𝑓 ]
∑︁
𝑥

Pr[𝑋 = 𝑥 |𝐹 = 𝑓 ]2

=
Coll(𝑋 |𝐹 )
|F | ,

from which the proposition follows. □

The following proposition will also be useful.

Proposition 3.4. Consider two random variables 𝑋 and 𝑌 with identical range and let E and E′ be

events on their respective probability spaces. Assume Pr[E] = Pr[E′], then

SD (𝑋,𝑌 ) ≤ SD (𝑋 |E, 𝑌 |E′) + Pr[E] .
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Proof. Observe that

SD (𝑋,𝑌 ) =
1
2

∑︁
𝑥

|𝑃𝑋 (𝑥) − 𝑃𝑌 (𝑦) |

=
1
2

∑︁
𝑥

���𝑃𝑋 |E (𝑥)Pr[E] + 𝑃𝑋 |E (𝑥)Pr[E] − 𝑃𝑌 |E ′ (𝑥)Pr[E′] − 𝑃𝑌 |E ′ (𝑥)Pr[E′]���
≤ Pr[E] · 1

2

∑︁
𝑥

��𝑃𝑋 |E (𝑥) − 𝑃𝑌 |E ′ (𝑥)�� + Pr[E] · 12 ∑︁
𝑥

���𝑃𝑋 |E (𝑥) − 𝑃𝑌 |E ′ (𝑥)���
≤ SD (𝑋 |E, 𝑌 |E′) + Pr[E] .

□

3.2 Definition

In a model with idealized primitive 𝑃 (chosen from some set P), seedless extractors are al-

gorithms ext𝑃 : X → Y with oracle access to 𝑃 . The security definition for such extractors

considers a two-stage attacker A = (A1,A2), where both parts have access to 𝑃 . The first stage

A1 outputs a value 𝑥 and some state information 𝜎 forA2. The second stage takes an input𝑦 ∈ Y

and outputs a single bit (i.e., it acts as a distinguisher).

For an attacker A, denote by L1 and L2 the (random variables corresponding to) the lists of

the 𝑃-queries made by A1 and A2, respectively.

Definition 3.5. An attacker A = (A1,A2) is called a 𝑞-attacker if |L1 ∪ L2 | ≤ 𝑞 always; it is

called a 𝑞-IT-attacker if |L1 | ≤ 𝑞 always.

That is, for IT-attackers the second stage A2 may make an arbitrary number of queries to 𝑃 .

Equivalently, A2 can be thought of as being given the entire function table of 𝑃 .

The security game for seedless extractors in the 𝑃-model roughly requires that if the extractor

is given a high-entropy input byA1, thenA2 cannot tell the extractor output apart from a random

value in Y, even given the state information 𝜎 and access to 𝑃 . Formally, it proceeds as follows:
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1. The challenger chooses 𝑏 ← {0, 1} and 𝑃 ← P uniformly at random.

2. A1 gets access to 𝑃 and produces (𝜎, 𝑥) ← A𝑃
1 .

3. The output of the extractor is computed as 𝑦0 ← ext
𝑃 (𝑥). Moreover, the challenger picks a

value 𝑦1 ← Y uniformly at random.

4. The second-stage attackerA2 is given 𝜎 and 𝑦𝑏 and outputs a decision bit 𝑏′← A𝑃
2 (𝜎,𝑦𝑏).

The attacker wins if and only if 𝑏′ = 𝑏.

The advantage of A in this extraction game is denoted by Advext,𝑃
ext
(A).

An attacker has to satisfy a legitimacy condition. Intuitively, this condition requires that the

output 𝑋 of A1 have high min-entropy even conditioned on the state information Σ and the list

of queries L1.2

Definition 3.6. An attacker A = (A1,A2) is said to be 𝛾∗-legitimate if, in the extraction game

above,

H∞(𝑋 |ΣL1) ≥ 𝛾∗ .

The above finally leads to the following definition of seedless extractor in the 𝑃-model:

Definition 3.7. An algorithm ext
𝑃 : X → Y with oracle access to 𝑃 is a seedless (𝛾∗, 𝑞, 𝜀)-(IT-

)extractor in the 𝑃-model if for every 𝛾∗-legitimate 𝑞-(IT-)attacker A,

Advext,𝑃
ext
(A) ≤ 𝜀 .

3.3 Seedless Extraction with a Monolithic Random Oracle

For instructive purposes it is useful to consider monolithic extraction, i.e., the case where the

ideal primitive 𝑃 itself is used as an extractor. To exemplify this, assume 𝑃 is a random oracle, i.e.,
2Note, in the extraction game the definition of L1 is the same in the real and the ideal worlds. For our future

definitions of PRNGs, however, it will be important that the notion of legitimacy is defined in the ideal world (i.e.,
conditioned on 𝑏 = 1).
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a function 𝐺 : {0, 1}𝑚 → {0, 1}𝑛 chosen uniformly at random. Then, the monolithic extractor is

defined as follows:

Construction 1 (Monolithic extractor). The monolithic seedless extractor mono
𝐺 : {0, 1}𝑚 →

{0, 1}𝑛 using a random oracle 𝐺 : {0, 1}𝑚 → {0, 1}𝑛 is defined by

mono
𝐺 (𝑥) := 𝐺 (𝑥) .

Theorem 3.8 (Monolithic seedless extraction). Construction mono is a (𝛾∗, 𝑞, 𝜀)-extractor in the

𝐺-model for

𝜀 ≤ 𝑞

2𝛾∗
.

The proof of Theorem 3.8 is a straight-forward application of the H-coefficient technique. The

idea is to first show that unless A1 or A2 queries the input 𝑥 provided by A1, the real and ideal

worlds (i.e., the cases where 𝑏 = 0 and 𝑏 = 1, respectively) are indistinguishable. That is, the

corresponding ratio of transcript probabilities is 1. Transcripts where 𝑥 is in the query list are

defined to be bad transcripts, and the second part of the proof shows that bad transcripts are

unlikely to occur due to the legitimacy ofA. The latter proof crucially relies on the fact that the

H-coefficient technique enables performing the bad-event analysis in the ideal world.

Proof. Consider a transcript of the interaction between an attacker A = (A1,A2) and the chal-

lenger of the extraction game (as defined in Section 3.2). It consists of

• the input 𝑥 provided by A1,

• the value 𝑦∗ output by the game (which is either the output 𝑦0 of the extractor on 𝑥 or a

uniformly random value from {0, 1}𝑛), and

• the query/answer list 𝐿 = 𝐿1 ∪ 𝐿2 of A1’s and A2’s interaction with 𝐹 .
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That is 𝜏 = (𝑦∗, 𝑥, 𝐿). A bad transcript occurs when A1 or A2 queries 𝐹 at input 𝑥 , i.e., when 𝐿

contains a pair of the form (𝑥, ∗). In order to apply Theorem 3.1, one merely needs to bound the

probability ratio for good transcripts (Lemma 3.9) and the probability of a bad transcript occurring

in the ideal world, i.e, for 𝑏 = 1 (Lemma 3.10). □

Lemma 3.9 (Ratio analysis). For all good transcripts 𝜏 ,

p0(𝜏)
p1(𝜏)

= 1 .

Proof. Fix a good transcript 𝜏 and consider first p1(𝜏). Since in the ideal world 𝑦∗ is sampled

uniformly,

p1(𝜏) = 𝑝𝐿 · 2−𝑛 ,

where 𝑝𝐿 denotes the probability that a uniform random function is consistent with the queries

in 𝐿. In the real world,

p0(𝜏) = 𝑝𝐿 · 𝑞𝜏 ,

where𝑞𝜏 is the probability that 𝐹𝐿 (𝑥) = 𝑦∗ over a function 𝐹𝐿 that is sampled uniformly at random

conditioned on being consistent with 𝐿. Since 𝜏 is a good transcript, 𝐹𝐿 is not constrained by 𝐿 at

coordinate 𝑥 , and, hence, 𝑞𝜏 = 2−𝑛 . □

Remark 1. In the above proof, note that 𝑝𝐿 does not include the probability that 𝑥 appears in

the transcript. Recall from Section 3.1.1 that the behaviors p(𝜏) are the probabilities that the

experiment produces the answers in 𝜏 when given the queries in 𝜏 (and the value 𝑥 is a query by

the distinguisher).

Lemma 3.10 (Bad event analysis). For the set B of bad transcripts (as defined above),

Pr[𝑇1 ∈ B] ≤
𝑞

2𝛾∗
.
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Proof. Recall that by the 𝛾∗-legitimacy of A = (A1,A2),

H∞(𝑋 |ΣL1) ≥ 𝛾∗ .

Observe that in the ideal world, the output of the extraction game is a uniformly random value𝑌 ∗,

which is independent of the input𝑋 produced byA1. The sampling order of the ideal experiment

can therefore be changed to be the following:

1. Sample 𝐹 uniformly at random.

2. Run A1 until it outputs 𝜎 and 𝑥 , thereby also generating the list of queries 𝐿1.

3. Choose 𝑦∗ uniformly at random.

4. Run A2 on input (𝜎,𝑦∗), letting it make additional queries 𝐿2.

5. Resample the input 𝑋 conditioned on (Σ,L1) = (𝜎, 𝐿1).

Note that since the conditioning includes L1,A1 makes the same queries, 𝐿1, during the first run

and the resampling process. Moreover, since conditioned on the values of (Σ,L1), 𝑋 and L2 are

independent, the min-entropy condition holds for L = L1 ∪L2, the list of all queries made byA

during the experiment, as well. That is,

H∞(𝑋 |ΣL) ≥ 𝛾∗ .

Thus, the probability that the resampled input 𝑋 is contained in any query in the list 𝐿 is at most

𝑞 · 2−𝛾∗ . □

Parameter choices. In terms of concrete parameters, observe the following for the construc-

tions towards monolithic seedless extraction from above:

• Computational: If we let 𝑛 = 512 and 𝑞 = 280. We would need 𝛾∗ ≈ 160 to get 80 bits of

security.
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• Information Theoretic: We let 𝑛 = 512. We also approximate 1/(1 − 𝜌) ≤ 2, very

generously Then, if we set for example 𝑞 = 280. We would need the entropy loss, i.e,

𝛾∗ = 160 for 80 bits of security.

Theorem 3.11 (Monolithic seedless IT-extraction). Constructionmono is a (𝛾∗, 𝑞, 𝜀)-IT-extractor

in the 𝐺-model for

𝜀 ≤ 1
2

√︄
2−(𝛾∗−𝑛)

1 − 𝜌 + 𝜌 ,

where 𝜌 = 𝑞/2𝛾∗ .

The proof of Theorem 3.11 proceeds by bounding the statistical distance ofA2’s views in the

real and ideal experiments via the corresponding collision probabilities (as done in the proof of the

left-over hash lemma). In the proofs of the actual PRNG constructions in the following sections,

bounding said collision probabilities constitutes the bulk of the proof and is quite involved.

Proof. Consider the extraction game corresponding to Definition 3.7 (cf. Section 3.2). Since A2

gets to make an unbounded number of queries to the random oracle 𝐺 , one may equivalently

consider the game where A2 simply gets the entire function table of 𝐺 as input. Therefore, the

distinguishing advantage of A2 is upper bounded by

SD ((Σ, 𝑌0,L1,𝐺), (Σ, 𝑌1,L1,𝐺)) ,

where Σ is (the random variable corresponding to) the state information output byA1,𝑌0 = 𝐺 (𝑋 ),

𝑌1 a uniform random string, and L1 the query/answer list by A1.

Let E be the event that A1 does not query the value 𝑋 it provides as input to the extractor.

Observe that this event can be defined in both the real (𝑏 = 0) and ideal (𝑏 = 1) experiments.

In the ideal experiment, the probability of E not occurring is easy to bound: Since 𝑌1 is uni-

formly random and independent of 𝑋 , consider the following equivalent way of sampling a tuple

(Σ, 𝑋,𝑌1,L1,𝐺):
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1. Sample 𝑌1 and 𝐺 uniformly at random.

2. Run A𝐺
1 to produce Σ, �̃� , and L1.

3. Rerun A𝐺
1 with fresh randomness, but conditioned on the state information being Σ and

the queries being L1. This results in a new value 𝑋 .

4. Output (Σ, 𝑋,𝑌1,L1,𝐺).

It is easily seen that the distribution produced via resampling is identical to that of the actual

experiment.

Note that for particular values 𝜎 and 𝐿1,

Pr[E|𝜎𝐿1] ≤ 𝑞 · Pred(𝑋 |𝜎𝐿1) ,

which can be easily seen due to the alternative sampling above. Hence, taking expectations,

Pr[E] ≤ 𝑞 · Pred(𝑋 |ΣL1) ≤ 𝑞 · 2−𝛾∗ ,

using the 𝛾∗-legitimacy of A in the last step.

Using Proposition 3.4, one obtains

SD ((Σ, 𝑌0,L1,𝐺), (Σ, 𝑌1,L1,𝐺)) ≤ SD ((Σ, 𝑌0,L1,𝐺) |E, (Σ, 𝑌1,L1,𝐺) |E) + 𝑞 · 2−𝛾
∗
.

In order to bound the statistical distance conditioned on E, condition additionally on arbitrary

values 𝑧 = (𝜎, 𝐿1) (with non-zero probability given E). Observe that under such conditioning, 𝐺

is chosen uniformly at random from all functions consistent with 𝐺 . Using Proposition 3.3, one

bounds the desired statistical distance as

SD ((𝑌0,𝐺) |𝑧E, (𝑌1,𝐺) |𝑧E) ≤
1
2
√︁
2𝑛 · Coll(𝑌0 |𝐺𝑧E) − 1 .
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To bound the collision probability Coll(𝑌 |𝐺𝑧E), consider the following experiment:3

1. Sample 𝐺 uniformly at random consistent with 𝐿1.

2. Sample inputs 𝑋 ← A𝐺
1 and 𝑋 ′← A𝐺

1 independently but conditioned on 𝑍 = 𝑧 and E.

3. Compute 𝑌0 ← mono
𝐺 (𝑋 ) and 𝑌 ′0 ← mono

𝐺 (𝑋 ′) respectively.

The collision probability Coll(𝑌 |𝐺𝑧) is therefore equal to

Pr[𝑌0 = 𝑌 ′0] ≤ Pr[𝑋 = 𝑋 ′] + Pr[𝑌 = 𝑌 ′|𝑋 ≠ 𝑋 ′]

in the experiment above. The former term is at most 𝑝𝑧 := Pred(𝑋 |𝑍 = 𝑧, E). For the latter term,

consider arbitrary 𝑥 ≠ 𝑥′. Since neither 𝑥 nor 𝑥′ is covered by 𝐿1, 𝑌0 = 𝑌 ′0 occurs with probability

2−𝑛 . Hence,

SD ((𝑌0,𝐺) |𝑧E, (𝑌1,𝐺) |𝑧E) ≤
1
2
√︁
2𝑛 (𝑝𝑧 + 2−𝑛) − 1 ≤

1
2
√︁
2𝑛𝑝𝑧 .

Using Jensen’s inequality, one obtains

SD ((𝑌0,𝐺) |𝑧E, (𝑌1,𝐺) |𝑧E) ≤
1
2
√︁
2𝑛 · Pred(𝑋 |𝑍E)

≤ 1
2

√︄
2−(𝛾∗−𝑛)

(1 − 𝜌) ,

3Observe that, in general, Coll(𝑈 |𝑉 ) is equal to the probability that𝑈 = 𝑈 ′ in the experiment where one jointly
samples𝑈 and 𝑉 , and then resamples𝑈 ′ conditioned on the value of 𝑉 .
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where the last inequality follows from

Pred(𝑋 |𝑍 ) ≥
∑︁
𝑧

Pr[𝑍 = 𝑧 ∧ E] · 𝑝𝑧

= Pr[E] ·
∑︁
𝑧∈E

Pr[𝑍 = 𝑧 ∧ E]
Pr[E] · 𝑝𝑧

= Pr[E] · Pred(𝑋 |𝑍E) .

and Pred(𝑋 |𝑍 ) ≤ 2−𝛾∗ , by the legitimacy of A. □

3.4 Online Extraction

In practice it is uncommon to assume access to a monolithic random oracle. Instead, practical

hash functions are usually built from (public) compression functions, ciphers, or permutations.

These underlying primitives 𝑃 have limited input length and will therefore not be able to process

inputs of arbitrary length 𝑚. Therefore, extractors (and PRNGs) should be designed in such a

way that they can process short𝑚-bit input blocks (e.g.,𝑚 = 256, 512, 1600) and accumulate their

entropy in the internal state.

An “accumulating” extractor satisfies ext satisfies the same security Definition 3.7, but its

syntax can be thought of as two algorithms ext = (refresh, finalize), where refresh accumulates

entropy in an internal state and finalize produces the extractor output from the current state.

Definition 3.12. An online extractor construction consists of two algorithms ext = (refresh,

finalize), where

• refresh takes a state 𝑠 and an input 𝑥 ∈ {0, 1}𝑚 and produces a new state 𝑠′← refresh
𝑃 (𝑠, 𝑥),

and

• finalize takes a state 𝑠 and produces an output 𝑦 ∈ {0, 1}𝑟 , i.e., 𝑦 ← finalize
𝑃 (𝑠).
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An online extractor processing𝑚-bit inputs and producing 𝑟 -bit output is called a (𝑚, 𝑟 )-online

extractor.

The security definition for online extractors additionally considers the number ℓ of times refresh

is called by the attacker, i.e., it considers (𝑞, ℓ)-attackers.

Definition 3.13. An algorithm ext
𝑃 : X → Y defined by two algorithms ext = (refresh, finalize)

with oracle access to 𝑃 is an (𝛾∗, 𝑞, ℓ, 𝜀)-(IT-)online extractor in the 𝑃-model if for every 𝛾∗-legiti

-mate (𝑞, ℓ)-(IT-)attacker A,

Advext,𝑃
ext
(A) ≤ 𝜀 .

Now, we will present the constructions of such online extractors where such online extractors

can be obtained fromMerkle-Damgård with a random compression function, fromMerkle-Damg

ård with the Davies-Meyer compression function, and from Sponges. Indeed, PRNGs can be built

much like these online extractors and will be discussed in subsequent chapters. In addition, we

will also consider the HMAC construction as a seedless extractor. HMAC is roughly based on

Merkle-Damgård, but it has a few modifications/additions that are unnecessary for extraction.

However, due to its wide-spread use, we point out how to modify the Merkle-Damgård proofs

to obtain a security statement for HMAC. These constructions are pictorially represented in Fig-

ure 3.1.

Finally, we will also look at the extractor built using the CBC paradigm (which can be thought

of as an “extreme sponge”) and mount an attack to show that such a construction does not lead

to a secure online extractor.

3.5 Constructions of Online Extractors

This section presents three simple, intuitive, and —most importantly— practical online-extrac

-tor constructions:
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• a construction based on theMerkle-Damgård paradigm using a public fixed-length compres-

sion function;

• a construction based on theMerkle-Damgård paradigm using the Davies-Meyer compression

function (as in SHA-2), which is built from any public block cipher; and

• a construction based on the Sponge paradigm (as in SHA-3), which uses a public permuta-

tion.

For extractors based on the MD paradigm, there are in fact two constructions: one achieving

normal, computational security and one achieving information-theoretic (IT) security. As with

PRNGs, there is also an IT candidate based on Sponges, but its security analysis is left for future

work.

3.5.1 Extractors from Merkle-Damgård

An online extractor can be obtained from a compression function 𝐹 as follows:4

Construction 2 (Online extractor fromMerkle-Damgård). The (𝑚,𝑛)-online extractor construc-

tionMD = (refresh, finalize) based onMerkle-Damgård with a compression function 𝐹 : {0, 1}𝑛×

{0, 1}𝑚 → {0, 1}𝑛 is defined as follows:

• refresh
𝐹 (𝑠, 𝑥) = 𝐹 (𝑠, 𝑥), and

• finalize
𝐹 (𝑠) = 𝑠 .

The security of Construction 2 is proved in the 𝐹 -model, where 𝐹 is a uniformly random function.

The theorem below is identical to Lemma 5.2.
4To reduce notational clutter, the algorithms refresh and finalize of the extractor constructions are not “branded”

with the design name. There will be no ambiguity as to which construction is meant in any place in this paper.

59



Theorem 3.14 (Online extractor from Merkle-Damgård). Construction 2 is a (𝛾∗, 𝑞, 𝜀)-online ex-

tractor in the 𝐹 -model for

𝜀 ≤ 𝑞2 + 𝑞ℓ + ℓ2
2𝑛

+ 2𝑞
2𝛾∗

.

An IT-secure online extractor based on Merkle-Damgård can be obtained if the finalize function

simply truncates the state:

Construction 3 (IT online extractor fromMerkle-Damgård). The (𝑚, 𝑟 )-IT-online extractor con-

struction MD𝑟 = (refresh, finalize) based on Merkle-Damgård with a compression function 𝐹 :

{0, 1}𝑛 × {0, 1}𝑚 → {0, 1}𝑛 is defined as follows:

• refresh
𝐹 (𝑠, 𝑥) = 𝐹 (𝑠, 𝑥), and

• finalize
𝐹 (𝑠) = 𝑠 [1..𝑟 ].

The security of Construction 3 is proved in the 𝐹 -model, where 𝐹 is a uniformly random function.

To state the theorem for the IT construction, for an integer ℓ , let

𝑑′(ℓ) = max
ℓ ′∈{1,...,ℓ}

|{𝑑 ∈ N : 𝑑 |ℓ′}| .

Observe that, asymptotically,𝑑′(ℓ) grows very slowly, i.e., as ℓ𝑜 (1) . Furthermore, let 𝐹 be a random

compression function. The following theorem is equivalent to Lemma 5.10.

Theorem 3.15 (IT online extractor fromMerkle-Damgård). Construction 3 is a (𝛾∗, 𝑞, 𝜀)-IT-online

extractor in the 𝐹 -model, where

𝜀 ≤ 1
2

√︄
2𝑟−𝛾∗

(1 − 𝜌) + ℓ · 𝑑
′(ℓ) · 2

𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2𝑞

22𝑟

22𝑛
+ 𝜌 ,

where 𝜌 =
𝑞2

2𝑟 .
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3.5.2 Extractors from Merkle-Damgård with Davies-Meyer

The Davies-Meyer compression function maps two inputs 𝑎 ∈ {0, 1}𝑚 and 𝑏 ∈ {0, 1}𝑛 to an

𝑛-bit string

𝐸 (𝑏, 𝑎) ⊕ 𝑎 ,

where 𝐸 is an arbitrary block cipher (where 𝑏 is the key and 𝑎 the input).5 Correspondingly, an

online extractor can be obtained from 𝐸 as follows:

Construction 4 (Online extractor fromMD-DM). The (𝑘, 𝑛)-online extractor constructionDM =

(refresh, finalize) based on Merkle-Damgård with Davies-Meyer (MD-DM) uses a cipher 𝐸 :

{0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 and is defined as follows:

• refresh
𝐸 (𝑠, 𝑥) = 𝐸 (𝑥, 𝑠) ⊕ 𝑠 , and

• finalize
𝐹 (𝑠) = 𝑠 .

The security of Construction 4 is proved in the 𝐸-model, where 𝐸 is a cipher chosen uniformly at

random from the set of all ciphers and can be queried in both the forward and backward direction.

The theorem below is identical to Lemma 5.19

Theorem 3.16 (Online extractor from MD-DM). Construction 4 is a (𝛾∗, 𝑞, 𝜀rob)-robust online ex-

tractor in the 𝐸-model for

𝜀rob ≤
𝑞2 + 2(𝑞ℓ + ℓ2)

2𝑛
+ 4𝑞
2𝛾∗

.

An IT-secure online extractor based on MD-DM can be obtained if the finalize function simply

truncates the state:

Construction 5 (IT online extractor from MD-DM). The (𝑘, 𝑟 )-IT-online construction DM𝑟 =

(refresh, finalize) using Merkle-Damgård with Davies-Meyer (MD-DM) uses a block cipher 𝐸 :

{0, 1}𝑘 × {0, 1}𝑛 → {0, 1}𝑛 and is defined as follows:
5A (block) cipher is an efficiently computable and invertible permutation 𝐸 (𝑘, ·) : {0, 1}𝑛 → {0, 1}𝑛 for every key

𝑘 ∈ {0, 1}𝑛 .
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• refresh
𝐸 (𝑠, 𝑥) = 𝐸 (𝑥, 𝑠) ⊕ 𝑠 , and

• finalize
𝐸 (𝑠) = 𝑠 [1..𝑟 ].

The security of Construction 5 is proved in the 𝐸-model, where 𝐸 is a cipher chosen uniformly at

random from the set of all ciphers and can be queried in both the forward and backward direction.

Let 𝑑′(ℓ) be defined as in Section 5.1. The following theorem is equivalent to Lemma 5.27.

Theorem 3.17 (IT online extractor from MD-DM). Construction 5 is a (𝛾∗, 𝑞, 𝜀rob)-IT-online ex-

tractor in the 𝐸-model, where

Advrec-IT,𝛾
∗

DM
(A) ≤ 1

2

√︄
2𝑟−𝛾∗

(1 − 𝜌) + ℓ · 𝑑
′(ℓ) 2𝑟

2𝑛−1
+ 64ℓ42𝑟

22𝑛−2
+ 16ℓ2𝑞22𝑟

22𝑛−2
+ 𝜌 .

where 𝜌 =
𝑞2

2𝑟 .

3.5.3 Extractors from Sponges

Let 𝑛 ∈ N and 𝑛 = 𝑟 +𝑐 . In the following, for an 𝑛-bit string 𝑠 , let 𝑠 = 𝑠 (r) ∥𝑠 (c) be decomposition

of 𝑠 into an 𝑟 -bit and 𝑐-bit string. An online extractor using the Sponge paradigm can be obtained

from a permutation 𝜋 as follows:

Construction 6 (Online extractor from Sponges). The Sponge-based online-extractor construc-

tion Spg = (refresh, finalize) uses a permutation 𝜋 : {0, 1}𝑛 → {0, 1}𝑛 to absorb and produce 𝑟 -bit

inputs and outputs, respectively, and is defined as follows:

• refresh
𝜋 (𝑠, 𝑥) = 𝜋 (𝑠 ⊕ 𝑥 ∥0𝑐), and

• finalize
𝜋 (𝑠) = 𝑠 [1..𝑟 ].

Observe that for Sponge-based extractors, even the computational variant needs to truncate the

state, otherwise the output of the extractor could be inverted by the attacker, which renders the

constructions insecure.
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The security of Construction 6 is proved in the 𝜋-model, where 𝜋 is a uniformly random

permutation, which can be queried in both the forward and backward direction. The proof of the

following theorem follows along similar lines as that of Lemma 5.36.

Theorem 3.18 (Online extractor from Sponges). Construction 6 is a (𝛾∗, 𝑞, ℓ, 𝜀)-online extractor in

the 𝜋-model for

𝜀 ≤ 2 ·
(
𝑞 + 𝑞ℓ + ℓ2

2𝑛
+ 𝑞

2

2𝑐
+ 𝑞

2𝛾∗
)
.

Observe that the bound in Theorem 5.30 is only reasonablewhen 𝑐 is large enough, whichmatches

the fact that CBC-based online extractors—which correspond to the case 𝑐 = 0, are not secure.

As pointed out before, the IT-secure online extractor based on Sponge would be similar to the

computational variant. We reproduce the definition for completeness.

Construction 7 (IT Online extractor from Sponges). The Sponge-based IT-online-extractor con-

struction Spg = (refresh, finalize) uses a permutation 𝜋 : {0, 1}𝑛 → {0, 1}𝑛 to absorb and produce

𝑟 -bit inputs and outputs, respectively, and is defined as follows:

• refresh
𝜋 (𝑠, 𝑥) = 𝜋 (𝑠 ⊕ 𝑥 ∥0𝑐), and

• finalize
𝜋 (𝑠) = 𝑠 [1..𝑟 ].

The security of Construction 7 is proved in the 𝜋-model, where 𝜋 is an ideal permutation

chosen uniformly at random from the set of all permutations and can be queried in both the

forward and backward direction. The following theorem is equivalent to Lemma 5.39.

Theorem 3.19 (IT online extractor from Sponges). Construction 7 is a (𝛾∗, 𝑞, 𝜀rob)-IT-online ex-

tractor in the 𝜋-model, where

Advrec-IT,𝛾
∗

Spg
(A) ≤ 1

2

√︄
2𝑟−𝛾∗

(1 − 𝜌) +
ℓ · (ℓ + 𝑞)

2𝑐−1
+ 𝜌 .

where 𝜌 =
𝑞2

2𝑐 .
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3.5.4 Extractors from HMAC

In practice, uniformly random key material is often derived from high-entropy inputs (re-

sulting, e.g., from a key-agreement protocol) using a key-derivation function (KDF). A common

paradigm, suggested by Krawczyk [Kra10], to construct KDFs is to combine an extractor with

a variable-length pseudorandom function (VL-PRF). The most widely used KDF is HKDF, which

uses the HMAC mode of operation for compression functions (CF) to instantiate both the extrac-

tor and the VL-PRF. This section considers the security of HMAC as a seedless extractor w.r.t. the

new legitimacy condition put forth by this work. Together with a VL-PRF, the seedless HMAC

extractor can then be used to build a KDF. A full treatment of seedless KDFs is deferred to future

work.

HMAC. HMAC is similar to Merkle-Damgård, but requires additional CF calls, designed to pre-

vent extension attacks when HMAC is used as a PRF. Concretely, for a compression function

𝐹 : {0, 1}𝑛 × {0, 1}𝑚 → {0, 1}𝑛 , the HMAC construction takes a key 𝑘 ∈ {0, 1}𝑚 as well as inputs

𝑥1, . . . , 𝑥ℓ ∈ {0, 1}𝑚 and outputs6

HMAC(𝑘, 𝑥1, . . . , 𝑥ℓ) := MD
𝐹 (𝑘 ⊕ opad,MD

𝐹 (𝑘 ⊕ ipad, 𝑥1, . . . , 𝑥ℓ)) ,

where ipad ≠ opad ∈ {0, 1}𝑚 are arbitrary constants. HMAC can be used as seedless extractor

by fixing, say, 𝑘 := 0. That is, the online extractor based on HMAC would be defined as follows:

Construction 8 (Online extractor from HMAC.). The (𝑚,𝑛)-online extractor construction

HMAC = (refresh, finalize) based on HMAC with a compression function 𝐹 : {0, 1}𝑛 × {0, 1}𝑚 →

{0, 1}𝑛 is defined as follows:

• the initial state is 𝑠0 = 𝐹 (0, ipad);
6The IV to the Merkle-Damgård construction is 0.
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• refresh
𝐹 (𝑠, 𝑥) = 𝐹 (𝑠, 𝑥); and

• finalize
𝐹 (𝑠) = 𝐹 (𝐹 (0, opad), 𝑠).

The security of Construction 2 is proved in the 𝐹 -model, where 𝐹 is a uniformly random function.

Theorem 3.20 (Online extractor from HMAC). Construction 8 is a (𝛾∗, 𝑞, 𝜀)-online extractor in the

𝐹 -model for

𝜀 ≤ 𝑞2 + 𝑞 + 𝑞ℓ + ℓ2
2𝑛

+ 2𝑞
2𝛾∗

.

Proof (sketch). To prove the security of HMAC as an extractor according to Definition 3.7, one

first considers a hybrid experiment, in which the output of the extractor is computed as

𝐹 (𝐹 (0, opad),𝑈 ) ,

for a value chosen uniformly at random. The indistinguishability of the original extraction game

and the hybrid experiment is established via a simple hybrid argument: essentially, the reduction

(to the security of MD as an extractor) simply prepends a block ipad to the inputs 𝑥1, . . . , 𝑥ℓ , and

upon receiving a value 𝑦, it additionally computes 𝐹 (𝐹 (0, opad), 𝑦). It is easily seen that adding

ipad to the input does not affect the conditional entropy of the input—and therefore the legitimacy

of the reduction.

Finally, it is easily seen that in the hybrid experiment, the advantage of any attacker is zero

unless it queries 𝐹 (𝐹 (0, opad),𝑈 ), which happens with probability at most 𝑞/2𝑛 . □

An IT-secure online extractor based on Merkle-Damgård can be obtained if the finalize function

additionally truncates the output:

Construction 9 (IT online extractor from HMAC.). The (𝑚, 𝑟 )-IT-online extractor construction

HMAC
′ = (refresh, finalize) based on HMAC with a compression function 𝐹 : {0, 1}𝑛 × {0, 1}𝑛 →

{0, 1}𝑛 is defined as follows:
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• the initial state is 𝑠0 = 𝐹 (0, ipad);

• refresh
𝐹 (𝑠, 𝑥) = 𝐹 (𝑠, 𝑥); and

• finalize
𝐹 (𝑠) = 𝐹 (𝐹 (0, opad), 𝑠) [1..𝑟 ].

The security of Construction 9 is proved in the 𝐹 -model, where 𝐹 is a uniformly random function.

To state the theorem for the IT construction, for an integer ℓ , let

𝑑′(ℓ) = max
ℓ ′∈{1,...,ℓ}

|{𝑑 ∈ N : 𝑑 |ℓ′}| .

Observe that, asymptotically,𝑑′(ℓ) grows very slowly, i.e., as ℓ𝑜 (1) . Furthermore, let 𝐹 be a random

compression function. The following theorem is equivalent to Lemma 5.10.

Theorem 3.21 (IT online extractor from HMAC). Construction 9 is a (𝛾∗, 𝑞, 𝜀)-IT-online extractor

in the 𝐹 -model, where

𝜀 ≤ 1
2

√︄
2𝑟−𝛾∗

(1 − 𝜌) + ℓ · 𝑑
′(ℓ) · 2

𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2𝑞2 · 2

𝑟

22𝑛
+ (𝑞 + ℓ + 2) · 2

𝑟

2𝑛
+ 𝜌 ,

where 𝜌 =
𝑞2

2𝑛 .

Proof. We define a few random variables which we will be using in our proofs.

• 𝐹 a randomly chosen compression function, to which the adversary is given access. We use

𝐹 both for the oracle itself, as well as for the random variable describing the entire function

table.

• ℓ : Number of blocks input to the challenge oracle (which is a random variable itself, we

overload notation here, using the same letter we use in the bound on ℓ in the lemma state-

ment).

• 𝑋 = (𝑋 1, . . . , 𝑋 ℓ): the blocks input to the challenge oracle.
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• �̃�ℓ : output of HMAC
′. Let us remind ourselves that this is 𝑠 truncated to 𝑟 bits (the output

of finalize);

• 𝑍 = (Σ,L, 𝑆0): “side information” where Σ is the attacker state before challenge, L is the

attacker query/answers to 𝐹 before challenge, 𝑆0 is the initial state provided by A;

• 𝑈𝑟 : uniform 𝑟 -bit string.

• 𝑆 : the state of the extractor. For the purposes of this proof, we will be using 𝑆 to indicate

the state of the extractor that is the input to finalize.

The advantage of the adversary A in the online extractor game is bounded by

SD

(
(�̃�ℓ , 𝑍, 𝐹 ), (𝑈𝑟 , 𝑍, 𝐹 )

)
. Therefore, it is sufficient to upper-bound just that. The reason follows

from the fact that 𝑍 contains the state of the attacker Σ just before it makes the challenge query.

This means that A cannot tell apart real from random.

Much like the earlier proofs, we define an event E where the answers to the 𝐹 -queries by

A are distinct when truncated to the first 𝑟 bits. Note that there are a maximum of 𝑞 queries in

this list. As pointed out earlier E has the same probability of occurring in either experiment,

since the experiments are identical up to the point when this event is defined. Therefore, by

Proposition 3.4,

SD

(
(�̃�ℓ , 𝑍, 𝐹 ), (𝑈𝑟 , 𝑍, 𝐹 )

)
≤ SD

(
(�̃�ℓ , 𝑍, 𝐹 ) |E, (𝑈𝑟 , 𝑍, 𝐹 ) |E

)
+ 𝑞

2

2𝑟
;

For convenience we let 𝜌 := 𝑞2/2𝑟 for the remainder of the proof. In order to bound the statistical

distance conditioned on E, we can rewrite the same as as

SD

(
(�̃�ℓ , 𝑍, 𝐹 ) |E, (𝑈𝑟 , 𝑍, 𝐹 ) |E

)
=

∑︁
𝑧∈E

Pr[𝑍 = 𝑧 |E] · SD
(
(�̃�ℓ , 𝐹 ) |𝑧, (𝑈𝑟 , 𝐹 ) |𝑧

)
, (3.2)
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where 𝑧 ∈ E is to denote that the sum is taken over all side informations 𝑍 = 𝑧, satisfying E.7

Define 𝑝𝑧 := Pred(𝑋 |𝑍 = 𝑧), and observe that

E𝑧 [𝑝𝑧] = Pred(𝑋 |𝑍 ) ≤ 2−𝛾
∗
,

where the latter inequality follows from the assumption H∞(𝑋 |𝑍 ) ≥ 𝛾∗. Moreover,

H∞(𝑋 |𝑍E) ≥ 𝛾∗ − log(1 − 𝜌)−1 ,

which is due to

Pred(𝑋 |𝑍 ) ≥
∑︁
𝑧∈E

Pr[𝑍 = 𝑧] · 𝑝𝑧

= Pr[E] ·
∑︁
𝑧∈E

Pr[𝑍 = 𝑧]
Pr[E] · 𝑝𝑧

= Pr[E] · Pred(𝑋 |𝑍E) .

From Lemma 3.22 we prove below, we will get,

SD

(
(�̃�ℓ , 𝐹 ) |𝑧, (𝑈𝑟 , 𝐹 ) |𝑧

)
≤ 1

2

√︂
2𝑟𝑝𝑧 + ℓ · 𝑑′(ℓ) ·

2𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2𝑞2 · 2

𝑟

22𝑛
+ (𝑞 + ℓ + 2) · 2

𝑟

2𝑛
.

Using Jensen’s inequality, (3.2) becomes, for 𝛼 = 2𝑟 and

𝛽 = ℓ · 𝑑′(ℓ) · 2𝑟2𝑛 + 64ℓ
4 · 2𝑟

22𝑛 + 16ℓ
2𝑞2 · 2𝑟

22𝑛 + (𝑞 + ℓ + 1) ·
2𝑟
2𝑛 ,

SD

(
(�̃�ℓ , 𝐹 ) |E, (𝑈𝑟 , 𝐹 ) |E

)
≤ 1

2

√︃
𝛼Pred(𝑋 |LE) + 𝛽

≤ 1
2

√︄
2𝑟−𝛾∗

(1 − 𝜌) + ℓ · 𝑑
′(ℓ) · 2

𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2𝑞2 · 2

𝑟

22𝑛
+ (𝑞 + ℓ + 2) · 2

𝑟

2𝑛
.

7Therefore E can be omitted in the conditioning of the statistical distance.
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□

Lemma 3.22. For 𝑧 ∈ E and the random variables as defined earlier,

SD

(
(�̃�ℓ , 𝐹 ) |𝑧, (𝑈𝑟 , 𝐹 ) |𝑧

)
≤ 1

2

√︂
2𝑟𝑝𝑧 + ℓ · 𝑑′(ℓ) ·

2𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2𝑞2 · 2

𝑟

22𝑛
+ (𝑞 + ℓ + 2) · 2

𝑟

2𝑛
.

Proof. Fix 𝑧 = (𝜎, 𝐿, 𝑠0). When we condition on 𝑧, it becomes evident that 𝐹 is uniformly dis-

tributed over all functions that agree with 𝐿. We now use Proposition 3.3 to get that:

SD

(
(�̃�ℓ , 𝐹 ) |𝑧, (𝑈𝑟 , 𝐹 ) |𝑧

)
≤ 1

2

√︃
2𝑟 · Coll(�̃�ℓ |𝐹𝑧) − 1 . (3.3)

To bound the collision probability, we consider the following experiment:

• choose 𝐹 uniformly consistent with 𝐿

• sample inputs 𝑋 = (𝑋 1, . . . , 𝑋 ℓ) and 𝑋
′
= (𝑋 ′1, . . . , 𝑋

′
ℓ ′) independently but conditioned on

𝑍 = 𝑧.

• compute 𝑆 , 𝑆′ as the refresh evaluations with 𝐹 of inputs 𝑋 and 𝑋
′
respectively.

• compute �̃�ℓ and �̃� ′ℓ as the truncated HMAC
′ evaluations with 𝐹 of 𝑋 and 𝑋

′
, i.e �̃�ℓ =

𝐹 (𝐹 (0, opad), 𝑆) [1..𝑟 ] and �̃� ′ℓ = 𝐹 (𝐹 (0, opad), 𝑆′) [1..𝑟 ]

We first condition on the event E that 𝐹 (0, opad) ≠ 𝐹 (0, ipad). Then, we bound the probability

that �̃�ℓ = �̃� ′ℓ in this modified experiment which is conditioned on E as

Pr[�̃�ℓ = �̃� ′ℓ ] ≤
1
2𝑛
+ Pr[𝑋 = 𝑋

′] + Pr[�̃�ℓ = �̃� ′ℓ |𝑋 ≠ 𝑋
′]8 . (3.4)

Now, the first term reduces to at most 𝑝𝑧 . Towards bounding the second term, we fix arbitrary

inputs 𝑥 ≠ 𝑥′ of lengths ℓ and ℓ′, respectively. We also assume, wlog, that the evaluation of 𝑥′

is not completely covered by 𝐿; otherwise it would violate the collision-freeness of 𝐿. Let 𝑥𝑘+1
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be the first block of 𝑥 not covered by 𝐿 and similarly 𝑥′𝑘+1 for 𝑥 ′ . We let 𝑘 = ℓ if all blocks are

covered. We now use the results of Lemma 3.23 to upperbound Pr[�̃�ℓ = �̃� ′ℓ ]. This concludes the

proof. □

Lemma 3.23. For fixed inputs 𝑥 ≠ 𝑥′ and the random variables as defined earlier,

Pr[�̃�ℓ = �̃� ′ℓ ] ≤
ℓ · 𝑑′(ℓ)

2𝑛
+ 64ℓ4

22𝑛
+ 16ℓ2𝑞2

22𝑛
+ 𝑞 + ℓ + 1

2𝑛
+ 1
2𝑟
.

Proof. Upon fixing it to be arbitrary inputs, we can drop the conditioning on 𝑋 ≠ 𝑋
′
. In this

setting, we can condition on the equality of 𝑆 and 𝑆′ as follows:

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[𝑆 = 𝑆′] + Pr[�̃�ℓ = �̃� ′ℓ |𝑆 ≠ 𝑆′] . (3.5)

Let us take a look at the first term. Notice that this is the collision probability of 𝑆 when run

on two fixed inputs 𝑥 and 𝑥′. In other words, this proof is similar to the bounding of collision

probability of truncated outputs ofMDwhen run on𝑋 with side information 𝑧. We now proceed

to construct the structure graph as done in the Proof of Lemma 5.11. The key difference here is that

we need the structure graph to be colliding, i.e Pr[𝑆 = 𝑆′] = Pr[𝐺𝐹 (𝑥, 𝑥′) ∈ Coll𝐿 (𝑥, 𝑥′)] where

Coll𝐿 (𝑥, 𝑥′) are the set of colliding structure graphs. We now use the results of Lemmas 5.15, 5.16

and 5.17 to conclude that:

Pr[𝑆 = 𝑆′] ≤ ℓ · 𝑑
′(ℓ)

2𝑛
+ 64ℓ4

22𝑛
+ 16ℓ2𝑞2

22𝑛
. (3.6)

Again, we look at the second term. We can fix the values to be arbitrary 𝑠 ≠ 𝑠′. Note that

conditioning could impact the randomness of the function 𝐹 . However, when we run on fixed

inputs 𝑥, 𝑥′. This would mean that 𝐹 is uniformly random conditioned on the set of queries in 𝐿

and the set of evaluations of 𝑥 , 𝑥′ resulting in states 𝑠, 𝑠′ respectively. In this setting, define a bad
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event as an event E such that the final output are not the same. Therefore, we can bound:

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[�̃�ℓ = �̃� ′ℓ |E] + Pr[¬E] ≤
1
2𝑟
+ 𝑞 + ℓ + 1

2𝑛

where the last inequality is a result of Lemma 5.14.

We can look at Pr[¬E] as conditioned on an event that the output of 𝐹 (0, opad) collides with

one of the other atmost𝑞+ℓ values corresponding to the𝐿 and the evaluations of the inputs. When

this output does not collide, then the final output is freshly sampled and by the randomness of 𝐹

we get that the final outputs can collide with probability at most 1
2𝑛 . Furthermore, the probability

that output of 𝐹 (0, opad) collides is 𝑞+ℓ2𝑛 . This concludes the proof.

□

3.5.5 CBC-Based Extractors Are Insecure

A natural candidate for an online seedless extractor is using a permutation in CBC mode. A

CBC-based extractor construction uses a permutation 𝜋 : {0, 1}𝑛 → {0, 1}𝑛 to absorb 𝑛-bit inputs.

Its refresh function is defined as

refresh
𝜋 (𝑠, 𝑥) = 𝜋 (𝑠 ⊕ 𝑥) .

However, it turns out that this approach does not lead to a secure extractor. This section presents a

simple attack against CBC-based extractors. The attack works irrespective of how the finalization

function is defined.

Theorem 3.24 (Attack against CBC Extractors). Let refresh as defined above. There exists an

ℓ-legitimate 𝑞-attacker A with black-box access to a function finalize, such that for all CBC =

(refresh, finalize)

Advext,𝜋
CBC
(A) = 1 − 2−(𝑟−1) ,
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where 𝑟 is the output length of the extractor, 𝑞 = 2ℓ + 2𝛼 , and 𝛼 is the query complexity of finalize.

The idea of the attack is to have the attacker create the 𝑖th input block as either 𝜋 𝑖 (0𝑛) ⊕ 𝜋 𝑖 (1𝑛) or

0, each with probability 1/2.9 After ℓ such steps, the attacker will have provided ℓ bits of entropy

(even conditioned on its 𝜋-queries), but only a single bit will have accumulated in the state, which

will be 𝜋 𝑖 (0𝑛) or 𝜋 𝑖 (1𝑛), each with probability 1/2.

Proof. Consider a two-stage attacker A = (A1,A2). A1 works as follows:

1. Initially, set 𝑎 = 0𝑛 and 𝑏 = 1𝑛 .

2. For blocks 𝑖 = 1 to ℓ :

(a) Set 𝑥𝑖,0 = 0 and 𝑥𝑖,1 = 𝑎 ⊕ 𝑏. Choose random bit 𝛽 ← {0, 1} and set 𝑥𝑖 = 𝑥𝑖,𝛽 .

(b) Set 𝑎 ← 𝜋 (𝑎) and 𝑏 ← 𝜋 (𝑏).

3. Set state information to 𝜎 ← (𝑎, 𝑏). In particular, forget all values 𝑥𝑖,𝑏 and all values of 𝛽 .

Return 𝜎 and 𝑥 = (𝑥1, . . . , 𝑥ℓ).

A2, given 𝜎 = (𝑎, 𝑏) and 𝑦 as input, proceeds as follows:

1. Compute finalize(𝑎) and finalize(𝑏). If either of them equals 𝑦, return 0; else, return 1.

Assume the initial state of the extractor is 0𝑛 . In order to understand the attack, consider the

state of the extractor after XORing the first input 𝑥1: it is either 0𝑛 or 1𝑛 , each with probability

1/2. After applying refresh, which consists of just applying 𝜋 to the state, the new state is either

𝜋 (0𝑛) or 𝜋 (1𝑛), again with probability 1/2 each.

The second input 𝑥2 is either 0𝑛 or 𝜋 (0𝑛) ⊕𝜋 (1𝑛); XORing it to the state results in either 𝜋 (0𝑛)

or 𝜋 (1𝑛). After applying refresh, the new state is 𝜋2(0𝑛) or 𝜋2(1𝑛). Extending this argument to all

ℓ inputs, the state of the extractor after absorbing them is either 𝑎 = 𝜋 ℓ (0𝑛) or 𝑎 = 𝜋 ℓ (1𝑛). After

calling finalize, the state is either finalize(𝑎) or finalize(𝑏). Therefore, in the real world (𝑏 = 0),
9Here, 𝜋𝑖 denotes the 𝑖-fold application of 𝜋 .
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A2 will always output 0, whereas in the ideal world (𝑏 = 1) this will only happen with probability

at most 2−(𝑟−1) .

In terms of efficiency, observe thatA1 makes 2ℓ queries to 𝜋 , andA2 makes twice the number

𝛼 of 𝜋-queries required to evaluate a call to finalize.

Finally, in order to show that A is legitimate, observe first that the state 𝜎 can be computed

from the queries made byA1. It easily seen that given only the queries, the vector 𝑥 = (𝑥1, . . . , 𝑥ℓ)

has ℓ bits of entropy. □

3.5.6 Seedless HKDF

This section heuristically argues about the standard-model security of the well-known HKDF

key-derivation function (KDF). KDFs are used in practice to derive random-looking key material

from high-entropy sources. For self-containment this section first presents the syntax of and a

security definition for KDFs.

HKDF [Kra10] is a generic KDF construction based on an extractor and a pseudorandom

function (PRF), where both the extractor and the PRF are instantiated with HMAC. The original

HKDF construction is seeded since the extractor used is seeded. This section presents an unseeded

version of HKDF by using a seedless extractor instead. HMAC is analyzed as extractor and PRF in

the ideal model with a random compression function. By combining the standard-model versions

of the extractor and the PRF (based, e.g., on the Davies-Meyer compression function), one obtains

a KDF in the standard model.

Syntax. A seedless key-derivation function (SL-KDF) KDF is an algorithm that takes as input

• source material 𝑥 ∈ {0, 1}𝑚 ,

• context information 𝑐 , as well as

• a desired output length 𝑜
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and outputs an 𝑜-bit string

𝑦 ← KDF(𝑥, 𝑐, 𝑜) .

Security. The security definition for seedless KDFs—in the standard model—considers a two-

stage attackerA = (A1,A2). The first stageA1 outputs a value 𝑥 and some state information 𝜎

forA2. The second stage attackerA2, based on 𝜎 , may make particular queries (described below)

and outputs a single bit at the end. Formally, the game proceeds as follows:

1. The challenger chooses 𝑏←$ {0, 1}.

2. A1 produces (𝜎, 𝑥) ←$A1.

3. The second-stage attacker A2 is given 𝜎 and may make construction queries (𝑐, 𝑜), which

are answered by KDF(𝑥1, . . . , 𝑥ℓ , 𝑐, 𝑜) if 𝑏 = 0, and by a uniformly random value in {0, 1}𝑜

if 𝑏 = 1. A2 is restricted to a single query for every value 𝑐 .

4. At the end, A2 outputs a decision bit 𝑏′ and wins the game if and only if 𝑏′ = 𝑏.

The advantage of A in this extraction game is denoted by Advkdf
KDF
(A).

An attacker A = (A1,A2) is called an (F ,𝑇 , 𝑞)-attacker if (1) the distribution of the values

(𝜎, 𝑥) produced by A1 is from a class of distributions F , (2) A2 runs in time at most 𝑇 , and

(3) makes at most 𝑞 queries to the KDF. The above leads to the following definition of seedless

key-derivation functions in the standard model:

Definition 3.25. An algorithm KDF is a (F ,𝑇 , 𝑞, 𝜀)-SL-KDF if for every (F ,𝑇 , 𝑞)-attacker A,

Advkdf
KDF
(A) ≤ 𝜀 .

Pseudorandom functions. A variable-length pseudorandom function (VL-PRF) is a function

PRF(𝑘, 𝑐, 𝑜) that, on a uniformly random key, is computationally indistinguishable from a truly
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random function that produces outputs of the desired length. Specifically, the security of a VL-

PRF can be captured in the 𝑃-model by giving an attackerA access to 𝑃 and allowing it to make

construction queries to either PRF(𝑘, ·, ·) on a random key or to a truly random function that

outputs a random and independent value from {0, 1}𝑜 for every input (𝑐, 𝑜); A is restricted to

make at most one construction query for every value 𝑐 . Function PRF is called a (𝑝, 𝑞, 𝜀)-VL-PRF

in the 𝑃-model if an attacker making at most 𝑝 queries to 𝑃 and at most 𝑞 construction queries

has advantage at most 𝜀 of in telling PRF apart from a random function in the above experiment.

Similarly, one can define a (𝑇, 𝑞, 𝜀)-VL-PRF in the standard model, where 𝑇 is the running time

of A.

Extract-then-expand KDFs andHKDF. Seedless KDFs can be generically built by composing

a seedless extractor ext with a variable-length PRF PRF as follows:

KDF(𝑥, 𝑐, 𝑜) := PRF(ext(𝑥), 𝑐, 𝑜) .

Observe that the definition of seedless extractor (Definition 3.7) can be modified to a standard-

model definition of (F ,𝑇 , 𝜀)-extractors (similarly to Definition 3.25):

Definition 3.26. An algorithm ext is a seedless (F ,𝑇 , 𝜀)-extractor if for every (F ,𝑇 )-attacker

A,

Advext
ext
(A) ≤ 𝜀 .

The following theorem by [Kra10] is easy to prove (for most reasonable function classes F ).

Theorem 3.27. Let ext be a seedless (F ,𝑇 , 𝜀)-extractor and let PRF be a (𝑇 ′, 𝑞′, 𝜀′)-VL-PRF. Then,

KDF as defined above is a seedless (F ,min(𝑇,𝑇 ′), 𝑞, 𝜀 + 𝜀′)-KDF.

Recall that HKDF instantiates both the extractor and the VL-PRF with HMAC (cf. Section 3.5.4).

The security of HKDF as a KDF can be argued heuristically in the standardmodel as follows: First,
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one infers the standard-model security of HMAC as an extractor—from Theorem 3.20. In particu-

lar, the heuristic assumption is that the extractor security of HMAC in the random-compression-

function model implies security of HMAC in the standard model against all distributions from

the class Fpractice of sources encountered in practice. Second, one infers the standard-model se-

curity of HMAC as a VL-PRF—from the well-known fact that HMAC is a good VL-PRF in the

random-compression-function model.

If the composed construction is not a secure standard-model KDF, then this would constitute

a natural counterexample to the random-oracle methodology: by virtue of Theorem 3.27, either

HMAC is not a good standard-model extractor (but secure in the idealized model), or HMAC is

not a good standard-model VL-PRF (but secure in the idealized model). Such a non-contrived

counterexample would be a remarkable breakthrough in the area of ideal-model security proofs.
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Figure 3.1: Four online computational extractors are represented in this diagram. These are based on:

(a)Merkle-Damgård with a random compression function; (b) Merkle-Damgård with Davies-Meyer;

(c) Sponge; and (d) HMAC.

Each extractor is shown to process inputs𝑥1 . . . 𝑥ℓ (calls to refresh) to compute the output𝑦 (call to finalize).

The IT variant truncates the output 𝑦 and returning the first 𝑟 bits. However, note that the Sponge con-

struction needs a truncated output even for the computational variant.
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4 | Seedless Pseudorandom Number

Generation

This chapter is based on joint work with Sandro Coretti, Yevgeniy Dodis, and Stefano Tessaro

that appeared in CRYPTO 2019 [CDKT19a]. Some passages are taken verbatim from the full

version of this paper [CDKT19b].

4.1 Pseudorandom Number Generators with Input

A pseudorandom number generator with input (PRNG) is a stateful cryptographic primitive. It

gradually accumulates entropy in its state by absorbing inputs and can be used to output pseu-

dorandom bits once the entropy of the state is sufficiently high. Moreover, it is both forward

and backward secure, i.e., past outputs remain random upon future state compromise, and, by

absorbing sufficient amounts of entropy, a PRNG can recover from state compromise.

This section introduces a novel security definition for PRNGs that differs from previous no-

tions in several crucial ways. Specifically, a comparison to the original robustness notion by Dodis

et al.[DPR+13], based on work by Barak and Halevi [BH05], as well as to an adaptation of it by

Gazi and Tessaro [GT16] for idealized models is provided in Appendix 4.4.

Much like our two notions of security for extractors, in this section we define computational

PRNGs and information-theoretically secure (IT) PRNGs. IT PRNGs differ from computational
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PRNGs in that once the attacker stops interactingwith the PRNG, the output of the PRNG remains

random even if the attacker is given the entire function table of the underlying ideal primitive.

That is, IT PRNGs achieve so-called everlasting security (cf. works in the hybrid bounded-storage

model by Harnik and Naor [HN06]). This distinction is analogous to that between seedless ex-

tractors and IT seedless extractors (cf. Section 3).

4.1.1 Syntax

A PRNG consists of two algorithms: one for absorbing new inputs and one for producing

pseudorandom outputs. Formally, it is defined as follows:

Definition 4.1 (Syntax of PRNGs). A pseudorandom number generator with input (PRNG) is a pair

of algorithms PRNG = (refresh, next) having access to an ideal primitive 𝑃 and sharing an 𝑛-bit

state 𝑠 , where

• refresh takes a state 𝑠 and an input 𝑥 ∈ {0, 1}𝑚 and produces a new state 𝑠′← refresh
𝑃 (𝑠, 𝑥),

and

• next takes a state 𝑠 and produces a new state and an output 𝑦 ∈ {0, 1}𝑟 , i.e, (𝑠′, 𝑦) ←

next
𝑃 (𝑠).

A PRNG processing𝑚-bit inputs and producing 𝑟 -bit output is called a (𝑚, 𝑟 )-PRNG.

4.1.2 Security Game

Robustness game. PRNGs are expected to satisfy the so-called robustness property, which cap-

tures the properties discussed at the beginning of Section 4.1. The corresponding security game

is depicted in Figure 4.1. The game initially chooses a random bit 𝑏 and initializes the state of the

PRNG to 0𝑛 . Subsequently, it offers the following oracles to A:
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Game PRNG Robustness Game Oracles

init

𝑠 ← 0𝑛
𝑏←$ {0, 1}

adv − refresh(𝑥)

𝑠 ← refresh
𝑃 (𝑠, 𝑥)

𝑏←$ {0, 1}

next − ror
(𝑠,𝑦0) ← next

𝑃 (𝑠)
𝑦1←$ {0, 1}𝑟
return 𝑦𝑏

get-next /get-next
∗

(𝑠,𝑦) ← next
𝑃 (𝑠)

return 𝑦

get − state
return 𝑠

set − state(𝑠∗)
𝑠 ← 𝑠∗

Figure 4.1: Oracles for the PRNG Robustness Game

• adv − refresh(𝑥) calls the refresh procedure to absorb 𝑥 ∈ {0, 1}𝑛 into the internal state of

the PRNG;

• get-next and get-next∗allow the attacker to get pseudorandom outputs by calling the next

procedure on the current state and returning the output 𝑦. The difference between the two

oracles is that get-next is supposed to be called only when the state has high entropy,

whereas get-next∗can be called prematurely, i.e., before the state has absorbed enough ran-

domness for the next function to output pseudorandom values (cf. definition of legitimate

attackers below).

• next-ror works like the get-next -oracles, except that it creates a challenge, i.e., if 𝑏 = 1,

it outputs a uniform random value 𝑦1 ∈ {0, 1}𝑟 instead of the PRNG output 𝑦0.

• get-state and set-statemodel state compromises by letting the attacker learn the current

state or set it to an arbitrary value, respectively.

The advantage of A in the robustness game is denoted by Advrob,𝑃
PRNG
(A).

Canonical attackers. It will be useful to define to following notion of canonical attackers:

Consider the interaction of an attacker A with the robustness game. The following events are

called entropy drains:

• the beginning of the game,

• calls to get-state or set-state, and
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• calls to get-next
∗.

In other words, entropy drains are the events that cause the PRNG state to lose its entropy,

which includes premature calls to next. An attackerA is said to be canonical if it does not make

get-next
∗ queries nor the following query pattern: an entropy drain followed by one or more

adv-refresh queries, followed by a get-state query.

Considering canonical attackers only is without loss of generality. This is because the above

sequence of queries can be simulated by the attacker by making a get-state query right away

and computing the output of get-state or get-next∗ itself. In particular, for every attacker A,

there exists a canonical attacker A with the same advantage. All attackers in the remainder of

this work are therefore assumed to be canonical.

Legitimate attackers. In order to obtain a sensible definition devoid of trivial attacks, attack-

ers must satisfy a “legitimacy” condition. The condition roughly requires that an attacker only

ask for challenges when it has sufficient amount of uncertainty about the PRNG’s internal state.

Towards formalizing the legitimacy condition, consider the interaction of A with a variant

of the robustness game defined as follows: Whenever oracles next-ror or get-next are called,

instead of evaluating next, the game simply uses two uniformly random and independent values

(𝑠,𝑦) as the output of next.

Observe that this variant of the robustness game, called the legitimacy game corresponds to

an interaction between A and an ideal PRNG, which produces perfect randomness. Moreover,

the legitimacy game is construction-independent.

In the legitimacy game, define now the following random variables immediately before A

makes the 𝑖th call to oracle get-next or next-ror :

• L𝑖 : the list of 𝑃-queries by A and the corresponding answers;

• Σ𝑖 : the state of A;
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• 𝑋 𝑖 : vector of inputs provided by A since the the most recent entropy drain (MRED); and

• 𝑆𝑖 : the state of the PRNG immediately after the MRED.

The legitimacy condition requires that A provide inputs that have high min-entropy even con-

ditioned on its current state, the queries so far, and the state of the PRNG after the MRED.

Definition 4.2 (Legitimate attackers). An attacker A is said to be 𝛾∗-legitimate if for all 𝑖 ,

H∞(𝑋 𝑖 |Σ𝑖L𝑖𝑆𝑖) ≥ 𝛾∗ ,

where MREDs are defined as above.

In order to capture IT-legitimate attackers (against IT PRNGS), the set of entropy drains is ex-

tended to include

• calls to get-next and next-ror .

With this definition of MRED and notation analogous to that in the previous definition, IT-

legitimate attackers are defined as follows:

Definition 4.3 (Legitimate IT attackers). An attacker A is said to be 𝛾∗-IT-legitimate if for all 𝑖 ,

H∞(𝑋 𝑖 |Σ𝑖L𝑖𝑆𝑖) ≥ 𝛾∗ ,

w.r.t. the extended definition of MRED.

Robust PRNGs. We are now ready to quantify the efficiency of attacker A, and to define our

final notion of PRNG robustness.

Definition 4.4 (Attacker efficiency). An attacker is called a (𝑞, 𝑡, ℓ)-attacker if

• 𝑞 is the maximum number of 𝑃-queries it makes,
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• ℓ is the maximum number of adv-refreshcalls between any entropy drain and successive

call to either next-ror or get-next , and

• 𝑡 is the maximum total number of calls to any oracle in the robustness game other than

adv-refresh.

An attacker is called a (𝑞, 𝑡, ℓ)-IT-attacker if it satisfies the above conditions butmakes an arbitrary

number of queries to 𝑃 after the interaction with the challenger ends.

Definition 4.5 (Robustness of PRNGs). A PRNG construction PRNG = (refresh, next) with

oracle access an ideal primitive 𝑃 is (𝛾∗, 𝑞, 𝑡, ℓ, 𝜀)-(IT-)robust in the 𝑃-model if for every 𝛾∗-(IT-

)legitimate (𝑞, 𝑡, ℓ)-(IT-)attacker,

Advrob,𝑃
PRNG
(A) ≤ 𝜀 .

Observe that online extractors (cf. Definition 3.12) are a special case of robust PRNGs. In terms

of construction, the PRNG next algorithm can be replaced by finalize, which simply discards the

state output by next. If then the PRNG robustness game is relaxed such that the only queries the

attacker can make are (a) arbitrarily many queries to adv-refresh followed by (b) 𝑡 = 1 query to

next-ror , one obtains a notion equivalent to Definiton 3.7.

4.2 Intermediate Computational PRNG Security Notions

In keeping with tradition in PRNG literature, it is useful to define two simple properties called

recovering and preserving. Recovering security requires that that if after an entropy drain, suffi-

cient amount of entropy has been absorbed into the PRNG state, the output of the next function

look random. Preserving security asks that after absorbing adversarially chosen inputs, a high-

entropy state not become compromised, and the output of the next function after the absorption

look random.

83



Extraction Security Next Security Maintaining Security

Robustness

Recovering Security Preserving Security

Figure 4.2: This figure represents the implication relations between the different intermediate notions of

security. The filled arrows stand for a generic proof, while the unfilled arrows represent a construction-

specific proof.

Recovering and preserving security can be shown to generically (i.e., for any PRNG construc-

tion) imply robustness. In order to establish these two properties themselves, it helps to introduce

three further properties called extraction, maintaining, and next security:

• Extraction security: show that the PRNG state is indistinguishable from a uniform one

after sufficient amounts of entropy have been absorbed;

• Maintaining security: show that the PRNG state is indistinguishable from a uniform one

if it is random initially and arbitrary inputs are absorbed;

• Next security: show that the output of the next function is indistinguishable from a ran-

dom value if it is called on a random input.

For each PRNG construction considered in this work, extraction and next security imply recover-

ing security, andmaintaining and next security imply preserving security. These proofs, however,
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Game The PRNG Recovering Security Game

init

𝑏←$ {0, 1}
chall(𝑠0, 𝑥1, . . . , 𝑥ℓ )
for 𝑖 = 1, . . . , ℓ do

𝑠𝑖 ← refresh(𝑠𝑖−1, 𝑥𝑖)
if 𝑏 = 0 then

return next(𝑠ℓ )
else

(𝑠,𝑦) ←$ {0, 1}𝑛+𝑟
return (𝑠,𝑦)

Figure 4.3: Oracles for PRNG Recovering Security game.

are not generic and must be repeated for each PRNG construction. Figure 4.2 illustrates these im-

plications.

4.2.1 Recovering and Preserving Security

As stated above, it is useful to define two simple properties called recovering and preserving,

which together generically imply robustness via a hybrid argument.

Recovering security. The intuition behind Recovering security is that if after an entropy

drain, sufficient amount of entropy (from the perspective of the attacker) has been absorbed into

the state, then the output of next is indistinguishable from a uniformly random value in {0, 1}𝑛+𝑟 .

The corresponding game is depicted in Figure 4.3. It lets the attacker specify an initial state

𝑠0 and a vector of inputs 𝑥1, . . . , 𝑥ℓ ; the inputs are then absorbed one-by-one, and next is called

on the resulting state. The game returns the output of next if 𝑏 = 0 and a uniform value if 𝑏 = 1.

The advantage of an attacker A in the recovering game is denoted by Advrec,𝑃
PRNG
(A).

Similarly to the robustness game, an attacker has to satisfy a legitimacy condition. In partic-

ular, A is 𝛾∗-legitimate if

H∞(𝑋1, . . . , 𝑋ℓ |ΣL𝑆0) ≥ 𝛾∗ ,

where
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• Σ is the state of A just before the call to chall,

• L is the list of query and answers A has made to 𝑃 up to the call to chall, and

• 𝑆0 is the initial state that the adversary provides.

For the recovering game, 𝑞 again denotes the maximum number of 𝑃-queries thatA makes, and

ℓ is the maximum number of blocks with which it calls oracle chall; a corresponding attacker is

referred to as (𝑞, ℓ)-attacker.

Definition 4.6. A PRNG construction PRNG = (refresh, next) is said to be (𝛾∗, 𝑞, ℓ, 𝜀)-recovering

in the 𝑃-model if for every 𝛾∗-legitimate (𝑞, ℓ)-attacker,

Advrec,𝑃
PRNG
(A) ≤ 𝜀 .

Preserving security. At a high level, preserving security requires that by absorbing adver-

sarially chosen inputs, a high-entropy state cannot become compromised, and the output of next

after the absorption is indistinguishable from a uniformly random value in {0, 1}𝑛+𝑟 .

The corresponding game is depicted in Figure 4.4. It lets the attacker specify a vector of inputs

𝑥1, . . . , 𝑥ℓ ; the inputs are then absorbed into a randomly chosen state one-by-one, and next is called

on the resulting state. The game returns the output of next if 𝑏 = 0 and a uniform value if 𝑏 = 1.

The advantage of an attacker A in the preserving game is denoted by Advpre,𝑃
PRNG
(A). There is no

legitimacy constraint on A; the parameters 𝑞 and ℓ are defined as before for a (𝑞, ℓ)-attacker.

Definition 4.7. A PRNG construction PRNG = (refresh, next) is said to be (𝑞, ℓ, 𝜀)-preserving in

the 𝑃-model if for every (𝑞, ℓ)-attacker,

Advpre,𝑃
PRNG
(A) ≤ 𝜀 .
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Game The PRNG Preserving Security Game

init

𝑠0←$ {0, 1}𝑛
𝑏←$ {0, 1}

chall(𝑥1, . . . , 𝑥ℓ )
for 𝑖 = 1, . . . , ℓ do

𝑠𝑖 ← refresh(𝑠𝑖−1, 𝑥𝑖)
if 𝑏 = 0 then

return next(𝑠ℓ )
else

(𝑠,𝑦) ←$ {0, 1}𝑛+𝑟
return (𝑠,𝑦)

Figure 4.4: Oracles for PRNG Preserving Security game.

Recovering and preserving imply robustness. As mentioned above, in order to establish

robustness of a PRNG construction, it suffices to prove that it is both recovering and preserving.

Theorem 4.8. Consider a PRNG construction PRNG = (refresh, next) for which refresh makes 𝛼

𝑃-calls and next makes 𝛽 𝑃-calls. Furthermore, assume PRNG is both

• (𝛾∗, 𝑞, ℓ, 𝜀rec)-recovering and

• (𝑞, ℓ, 𝜀pre)-preserving

in the 𝑃-model. Then, PRNG is also (𝛾∗, 𝑞, 𝑡, ℓ, 𝜀rob)-robust in the 𝑃-model, where

𝜀rob ≤ 𝑡 · (𝜀rec + 𝜀pre) .

For the proof of Theorem 4.8, consider a 𝛾∗-legitimate (canonical) (𝑞, 𝑡, ℓ)-attacker A. The proof

is through a series of hybrid games, where the advantage ofA in the final game is easily seen to

be 0. In order to define the hybrids, let a nice next query be either get-next or next-ror . A nice

next query is • recovering if it is the first such query after the MRED and • preserving otherwise.

Define the hybrid rob𝑖 to be the robustness game for PRNG where for first 𝑖 nice next queries,

the output of next is replaced by a uniform random string of length 𝑛 + 𝑟 . Moreover, consider an

intermediate hybrid rob𝑖+ 12 , where the challenger also replaces the output of next with a random

string if the (𝑖 + 1)st query is preserving.
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Denote by 𝜂𝑖 the probability that A outputs 1 when interacting with hybrid rob𝑖 . In the

following, preserving security will be used to argue the indistinguishability of hybrids rob𝑖 and

rob𝑖+ 12 (Claim 4.9), and recovering security (Claim 4.10) for rob𝑖+ 12 and rob𝑖 .

Claim 4.9. For all 𝑖 = 0, . . . , 𝑡 , |𝜂𝑖 − 𝜂𝑖+ 12 | ≤ 𝜀pre.

Proof. The two hybrids only differ in the case when (𝑖 + 1)st next query is preserving. Hence,

assume that the adversary A ensures that the (𝑖 + 1)st query is indeed preserving, which serves

to maximize its advantage. Consider the following attackerA′ against the preserving security of

PRNG: Initially, A′ sets

• 𝑏←$ {0, 1},

• 𝑠 ← 0𝑛 ,

• 𝑗 ← 0, and

• 𝜒 ← 𝜆, where 𝜆 is the empty string.

Then, A′ runs A, simulating all oracle calls made by A answering the queries from A as fol-

lows: At all times, 𝑃-queries by A are simply forwarded by A′ to its own 𝑃-oracle and back.

Furthermore, while 𝑗 ≤ 𝑖:

• adv − refresh(𝑥): A′ simply ignores the query.

• set − state(𝑠′): A′ just sets 𝑠 ← 𝑠′.

• get − state: A′ returns 𝑠 .

• get − next or next − ror: A′ chooses (𝑠,𝑦) ←$ {0, 1}(𝑛+𝑟 ) uniformly at random, increments

𝑗 ← 𝑗 + 1, and returns 𝑦.

Once 𝑗 = 𝑖 + 1, A′ simulates the oracles as follows:

• adv − refresh(𝑥): A′ appends 𝑥 to 𝜒 , i.e., 𝜒 ← 𝜒 | |𝑥 .
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• set − state(𝑠′): A′ sets 𝑠 ← 𝑠′.

• get − state: A′ returns 𝑠 .

• get − next: A′ calls its challenge oracle to obtain (𝑠,𝑦) ←chall(𝑠, 𝜒), increments 𝑗 ← 𝑗 +1,

and returns 𝑦.

• next − ror: A′ calls its challenge oracle to obtain (𝑠,𝑦0) ←chall(𝑠, 𝜒), increments 𝑗 ← 𝑗+1.

It then chooses 𝑦1←$ {0, 1}𝑟 and returns 𝑦𝑏 .

Subsequently, i.e., once 𝑗 > 𝑖 + 1, A′ uses the state 𝑠 returned by chall and its 𝑃-access to keep

simulating the oracles consistent with rob𝑖+1. In the end, A′ outputs whatever A outputs.

Let the challenge bit of the challenger for A′ be 𝑏. Note that when 𝑏 = 0, A′ perfectly

simulates hybrid rob𝑖+ 12 for A. Similarly, if 𝑏 = 1, A′ perfectly simulates hybrid rob𝑖+1 for A.

(Recall that A is canonical.) □

The next step is to show that the hybrids rob𝑖+ 12 and rob𝑖+1 are indistinguishable from each other.

Claim 4.10. For all 𝑖 = 0, . . . , 𝑡 − 1, |𝜂𝑖+ 12 − 𝜂𝑖+1 | ≤ 𝜀rec.

Proof. The two hybrids only differ in the case when (𝑖 + 1)st next query is recovering. Hence,

assume that the adversary A ensures that the (𝑖 + 1)st query is indeed recovering, which serves

to maximize its advantage. Consider the following attackerA′ against the recovering security of

PRNG: Initially, A′ sets

• 𝑏←$ {0, 1},

• 𝑠 ← 0𝑛 ,

• 𝑗 ← 0, and

• 𝜒 ← 𝜆, where 𝜆 is the empty string.
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Then, A′ runs A, simulating all oracle calls made by A answering the queries from A as fol-

lows: At all times, 𝑃-queries by A are simply forwarded by A′ to its own 𝑃-oracle and back.

Furthermore, while 𝑗 ≤ 𝑖:

• adv − refresh(𝑥): A′ simply ignores the query.

• set − state(𝑠′): A′ just sets 𝑠 ← 𝑠′.

• get − state: A′ returns 𝑠 .

• get − next or next − ror: A′ chooses (𝑠,𝑦) ←$ {0, 1}(𝑛+𝑟 ) uniformly at random, increments

𝑗 ← 𝑗 + 1, and returns 𝑦.

Once 𝑗 = 𝑖 + 1, A′ simulates the oracles as follows:

• adv − refresh(𝑥): A′ appends 𝑥 to 𝜒 , i.e., 𝜒 ← 𝜒 | |𝑥 .

• set − state(𝑠′): A′ sets 𝑠 ← 𝑠′.

• get − state: A′ returns 𝑠 .

• get − next: A′ calls its challenge oracle to obtain (𝑠,𝑦) ←chall(𝑠, 𝜒), increments 𝑗 ← 𝑗 +1,

and returns 𝑦.

• next − ror: A′ calls its challenge oracle to obtain (𝑠,𝑦0) ←chall(𝑠, 𝜒), increments 𝑗 ← 𝑗+1.

It then chooses 𝑦1←$ {0, 1}𝑟 and returns 𝑦𝑏 .

Subsequently, i.e., once 𝑗 > 𝑖 + 1, A′ uses the state 𝑠 returned by chall and its 𝑃-access to keep

simulating the oracles consistent with rob𝑖+1. In the end, A′ outputs whatever A outputs.

Let the challenge bit of the challenger for A′ be 𝑏. Note that when 𝑏 = 0, A′ perfectly

simulates hybrid rob𝑖+ 12 for A. Similarly, if 𝑏 = 1, A′ perfectly simulates hybrid rob𝑖+1 for A.

(Recall that A is canonical.)
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It remains to argue that A′ is 𝛾∗-legitimate. To that end, recall from Section 4.1.2 that the

legitimacy condition is defined in the legitimacy game. Observe in particular, that up to the time

A′ makes its challenge queries, A’s view is exactly as it would be in the legitimacy game, in

which one considers the following random variables immediately before A makes the 𝑖th call to

oracle get-next or next-ror :

• L𝑖 : the list of 𝑃-queries by A and the corresponding answers;

• Σ𝑖 : the state of A;

• 𝑋 𝑖 : vector of inputs provided by A since the the most recent entropy drain (MRED); and

• 𝑆𝑖 : the state of the PRNG immediately after the MRED.

In a similar fashion, consider the following random variables pertaining toA′ just before its call

to the challenge oracle:

• 𝑋 , the input vector A′ provides to chall;

• Σ, the state of A′ just before the call to chall;

• L, the list of 𝑃-queries and answers by A′ before the call to chall; and

• 𝑆0; the state A′ provides to chall.

That is, it needs to be established that

H∞(𝑋 |ΣL𝑆0) ≥ 𝛾∗ . (4.1)

using the argument of the 𝛾∗-legitimacy of A,

H∞(𝑋 𝑖 |Σ𝑖L𝑖𝑆𝑖) ≥ 𝛾∗ .
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First, it is easily verified that 𝑆 = 𝑆𝑖 . Second, observe that Σ only needs to contain, in addition to

Σ𝑖 , the values of 𝑏 and 𝑗 , which are clearly independent of 𝑋 . Third, clearly L = L𝑖 . Finally, note

that 𝑋 = 𝑋 𝑖 . From the preceding, (4.1) follows. □

4.2.2 Extraction, Maintaining, and Next Security

Extraction security. Extraction security requires that after absorbing blocks with high joint

entropy, the state of the PRNG be indistinguishable from a uniformly random one. The corre-

sponding game is a variant of the game for recovering security (cf. Figure 4.3) in which next is

not applied to 𝑠ℓ ; instead, 𝑠ℓ or a uniformly random value is output, depending on whether 𝑏 = 0

or 𝑏 = 1.

The legitimacy of an attacker A as well as parameters 𝑞 and ℓ are defined identically to the

recovering game (cf. Section 4.1.2); the advantage of A against extraction security of PRNG in

the 𝑃-model is denoted by Advext,𝑃
PRNG
(A).

Maintaining security. Maintaining security is a variant of the preserving game (cf. Figure 4.3)

in which next is not applied to 𝑠ℓ ; instead, 𝑠ℓ or a uniformly random value is output, depending

on whether 𝑏 = 0 or 𝑏 = 1. The parameters 𝑞 and ℓ are defined identically to the preserving game

(cf. Section 4.1.2); the advantage of A against maintaining security of PRNG in the 𝑃-model is

denoted by Advmtn,𝑃
PRNG
(A).

Next security. Next security requires that the output of the next function on a uniformly

random state be indistinguishable from a uniformly random string. That is, an attackerA, making

at most 𝑞 queries to the ideal primitive 𝑃 , tries to distinguish next
𝑃 (𝑆) from𝑈𝑛+𝑟 for a uniformly

random 𝑆 ∈ {0, 1}𝑛 . Denote by Advnext,𝑃
PRNG
(A) the advantage of A.
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Game The PRNG Recovering Security Game

init

𝑏←$ {0, 1}
chall(𝑠0, 𝑥1, . . . , 𝑥ℓ )
for 𝑖 = 1, . . . , ℓ do

𝑠𝑖 ← refresh(𝑠𝑖−1, 𝑥𝑖)
if 𝑏 = 0 then

return next(𝑠ℓ )
else

(𝑦) ←$ {0, 1}𝑟
return (0𝑛, 𝑦)

Figure 4.5: Oracles for PRNG Recovering Security game.

4.3 Intermediate IT PRNG Security Notions

Similarly to the computational case, it is useful to consider a simplified security notion, recov-

ering security, for IT PRNGs. Recall that for the computational case, recovering security requires

that the output of the next function next look random once sufficient amounts of entropy have

been accumulated in the PRNG’s state. In the IT case, the requirement is relaxed by only re-

quiring that the output be indistinguishable from (0𝑛,𝑈𝑟 ). That is, call to next always resets the

PRNG state to 0𝑛 . This is without loss, as the definition of legitimacy considers every call to next

an entropy drain.

The IT recovering game is represented in Figure 4.5. The advantage of an attacker A in this

game is denoted by Advrec-IT,𝑃
PRNG

(A). An attacker A in this game is 𝛾∗-legitimate if

H∞(𝑋1, . . . , 𝑋ℓ |ΣL𝑆0) ≥ 𝛾∗ ,

where

• Σ is the state of A just before the call to chall,

• L is the list of query and answers A has made to 𝑃 up to the call to chall, and

• 𝑆0 is the initial state that the adversary provides.
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A (𝑞, ℓ)-IT-attacker here is one that can make at most 𝑞 queries to 𝑃 before its challenge (and

arbitrarily many afterwards), and such that the input to chall consists of at most ℓ blocks.

Definition 4.11. A PRNG construction PRNG = (refresh, next) is said to be (𝛾∗, 𝑞, ℓ, 𝜀)-IT-

recovering in the 𝑃-model if for every 𝛾∗-IT-legitimate (𝑞, ℓ)-IT-attacker,

Advrec-IT,𝑃
PRNG

(A) ≤ 𝜀 .

Observe that the definition of recovering security for IT PRNGs is—up to syntactical differences—

equivalent to the security of the PRNG as an extractor, which is obtained by replacing the PRNG

next algorithm by an algorithm finalize that simply discards the state output by next. In other

words, an IT-robust PRNG can be viewed as an IT-secure online extractor. In particular, the

following theorem is in principle little more than just a union bound.

Theorem 4.12. Let PRNG = (refresh, next) be a PRNG for which refreshmakes 𝛼 𝑃-calls and next

makes 𝛽 𝑃-calls. Let the PRNG be (𝛾∗, 𝑞, ℓ, 𝜀rec)-IT-recovering in the 𝑃-model. Then, PRNG is also

(𝛾∗, 𝑞, 𝑡, ℓ, 𝜀rob)-IT-robust in the 𝑃-model, where

𝜀rob ≤ 𝑡 · 𝜀rec .

As seen in the proof of Theorem 4.8, define the hybrid rob𝑖 to be the IT-robustness game for

PRNG where for first 𝑖 nice next queries, the output of next is replaced by a uniform random

string of length 𝑛 + 𝑟 . We denote by 𝜂𝑖 the probability that A outputs 1 when interacting with

hybrid rob𝑖 .

Claim 4.13. For all 𝑖 = 0, . . . , 𝑡 − 1, |𝜂𝑖 − 𝜂𝑖+1 | ≤ 𝜀rec.

The proof of Claim 4.13 is completely analogous to that of Claim 4.10 and is therefore omitted.
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4.4 Comparison to Previous PRNG Security Notions

Overview. The first robustness notion for PRNGs was proposed by Barak and Halevi [BH05]

and required that PRNGs be:

• resilient, i.e., the attacker cannot predict the output of the PRNG even if he can influence

the inputs;

• forward secure, i.e., upon state compromise, previous outputs of the PRNG remain random;

and

• post-compromise secure, i.e., if sufficient entropy is absorbed into the PRNG state, the out-

puts regain security.

The definition was developed further in a crucial way by Dodis et al.[DPR+13], who considered

the setting where entropy only gradually accumulates in the state (as opposed to the model in

[BH05], where inputs are required to have high entropy in order to recover from compromise. In

order to analyse constructions such as sponges, Gazi and Tessaro [GT16] extended the robustness

definition further to a setting with a public random permutation.

Distribution samplers. In order to capture distributions for which the PRNG is expected to be

robust, Dodis et al.[DPR+13] considered distribution samplers Sam, which with every input 𝑥𝑖 for

the PRNG would also provide an entropy estimate 𝛾𝑖 and a leakage value 𝑧𝑖 . A sampler was con-

sidered legitimate if every input 𝑥𝑖 has the promised min entropy 𝛾𝑖 even conditioned on all other

inputs (i.e., past and future) aswell as on all values𝛾 𝑗 and 𝑧 𝑗 . A very important consequence of this

definition is that (it can be shown that) extraction with such a sampler Sam is impossible without

a randomly chosen seed about which the sampler has no information. Dodis et al.provided a con-

struction that uses such a seed and whose refresh function actually is information-theoretically

secure. However, security completely breaks down as soon as the sampler can depend on the seed,
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which is why said construction was deemed unsuitable by practitioners since seed-independence

of the input may not be guaranteed in practice.

In an effort to analyze more practical constructions Gazi and Tessaro [GT16] extended the

robustness notion to incorporate ideal primitives. In particular, for their analysis of Sponge,

they considered samplers Sam𝜋 with oracle access to a random permutation 𝜋 and required an

entropy notion related to that above, but required, informally, that inputs be unpredictable even

if in addition to the above, one also conditions on the queries by the sampler (albeit the sampler is

allowed private queries for every input it generates). While the extension to ideal models allows to

analyze constructions used in practice, the work by Gazi and Tessaro does not solve the need for

a seed (about which Sam
𝜋 has no information), without which the aforementioned impossibility

still holds.

Main differences between existing notions and the new one. The new definition put

forth in this work differs from previous ones in several ways: First, the legitimacy notion is such

that there is no need for a seed. Second, because of that, the sampler and the distinguisher are

merged into a single attacker, which would not be possible with the previous notions due to

the need to hide the seed from Sam. Third, the new legitimacy notion measures not the sum of

entropies of particular blocks conditioned on each other, but the entropy of an entire sequence

of inputs as a whole. Finally, the new notion dispenses with the need for entropy estimates by

simply only considering attackers that provide inputs for which the average min-entropy at cer-

tain points is high enough conditioned on the state and the queries of the attacker. Observe that

the entropy estimates were originally introduced to circumvent the impossibility of randomness

estimation, which would have been needed in reductions to computationally secure primitives

(such as using a PRG for the next function). Hence, entropy estimates were an unnatural artifact

of the definition anyway.
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5 | Constructions of Seedless PRNGs

This chapter is based on joint work with Sandro Coretti, Yevgeniy Dodis, and Stefano Tessaro

that appeared in CRYPTO 2019 [CDKT19a]. Some passages are taken verbatim from the full

version of this paper [CDKT19b].

This section presents three simple, intuitive, and—most importantly—practical PRNG con-

structions:

• a construction based on theMerkle-Damgård paradigm using a public fixed-length compres-

sion function;

• a construction based on theMerkle-Damgård paradigm using the Davies-Meyer compression

function (as in SHA-2), which is built from any public block cipher; and

• a construction based on the Sponge paradigm (as in SHA-3), which uses a public permuta-

tion.

For PRNGs based on theMD paradigm, there are in fact two constructions: one achieving normal,

computational PRNG security and one achieving information-theoretic (IT) security.

For the reader’s convenience, Appendix 3.5 states the corresponding online extractor con-

structions along with the security bounds—for applications where extraction is sufficient.
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5.1 PRNGs from Merkle-Damgård

5.1.1 Computational PRNGs from Merkle-Damgård

A PRNG can be obtained from a compression function 𝐹 as follows (cf. Figure 5.1):1

Construction 10 (PRNG fromMerkle-Damgård). The (𝑚, 𝑟 )-PRNG constructionMD = (refresh,

next) based on Merkle-Damgård with a compression function 𝐹 : {0, 1}𝑛 × {0, 1}𝑚 → {0, 1}𝑛 is

defined as follows:2

• refresh
𝐹 (𝑠, 𝑥) = 𝐹 (𝑠, 𝑥), and

• next
𝐹 (𝑠) = (𝐹 (𝑠, 0), 𝐹 (𝑠, 1)∥ · · · ∥𝐹 (𝑠, 𝑟/𝑛)).

The security of Construction 10 is proved in the 𝐹 -model, where 𝐹 is a uniformly random function.

Theorem5.1 (Robustness ofMerkle-Damgård PRNGs). Construction 10 is a (𝛾∗, 𝑞, 𝑡, ℓ, 𝜀rob)-robust

PRNG in the 𝐹 -model for

𝜀rob ≤ 2𝑡 ·
(
𝑞2 + 𝑞ℓ + ℓ2

2𝑛
+ 𝑞

2𝛾∗
)
,

where 𝑞 = 𝑞 + 𝑟/𝑛 + 1.

Note that iteratively absorbing some input blocks 𝑥1, . . . , 𝑥ℓ via refresh, starting with a state 𝑠0

is identical to applying the Merkle-Damgård construction to the input with initialization vector

(IV) 𝑠0, which is denoted byMD
𝐹
𝑠0 (𝑥1, . . . , 𝑥ℓ) in the remainder of this section.

As outlined in Section 4.2, the idea of the proof is to first establish extraction, maintaining, as well

as next security, and to then show that extraction and next security imply recovering security and
1To reduce notational clutter, the algorithms refresh and next of the PRNG constructions are not “branded” with

the design name. There will be no ambiguity as to which construction is meant in any place in this paper.
2The integer arguments to the compression function are to be naturally mapped to {0, 1}𝑛 .
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that maintaining and next security imply preserving security. More precisely, the proof proceeds

as follows:

• Extraction security: In order to establish extraction security using the H-coefficient

method (cf. Theorem 3.1 in Section 3.1.1), one first defines bad transcripts as transcripts

for which the attacker has queried 𝐹 on all coordinates needed to evaluate the PRNG on

the inputs it provided.

For good transcripts, there is at least one missing 𝐹 query to obtain the output of the PRNG.

The probability ratio is lower bounded by arguing that the output of the PRNG looks ran-

dom to the attacker unless there is a collision among the remaining 𝐹 queries.

The probability of bad transcripts is upper bounded in the ideal world (𝑏 = 1). The proof

uses the legitimacy of the attacker in a resampling argument to argue that it is unlikely that

the attacker makes all the queries necessary to evaluate the PRNG on the inputs it provides.

Special care has to be taken to handle collisions in the 𝐹 queries.

• Maintaining security: The corresponding proof also employs the H-coefficient method,

but is considerably more straightforward. A bad transcript is a transcript for which the ini-

tial (random) state of the PRNG appears in the 𝐹 -queries. The ratio is bounded analogously

to the extraction proof, and bounding the probability of a bad transcript is trivial.

• Next security: This is again a simple H-coefficient proof, which amounts to showing that

unless the attacker queries 𝐹 on an input (𝑠, ∗), where 𝑠 is the (random) state to which next

is applied, the output of next looks random.

• Recovering security: Showing that the Merkle-Damgård construction achieves recover-

ing security is a simple hybrid argument: First, one uses extraction security to argue that

the state after absorbing the inputs can be replaced by a random value. Second, using next

security, one argues that the output of next on said random value looks random.
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• Preserving security: Proving preserving security is also a simple hybrid argument: First,

one uses maintaining security to argue that the state after absorbing the inputs can be

replaced by a random value. Second, using next security, one argues that the output of

next on said random value looks random.

The final bound in Theorem 5.1 follows by applying Theorem 4.8.

5.1.1.1 Extraction Security

Lemma 5.2 (Extraction security). The advantage of any 𝛾∗-legitimate (𝑞, ℓ)-attacker A against

extraction security ofMD is bounded by

Advext,𝐹
MD
(A) ≤ 𝜀ext

MD
(𝛾∗, 𝑞, ℓ) :=

𝑞2 + 𝑞ℓ + ℓ2
2𝑛

+ 2𝑞
2𝛾∗

.

Proof. In order to prove Lemma 5.2 using the H-coefficient method, consider a transcript3

𝜏 = (𝑠∗, 𝑠0, 𝑥1, . . . , 𝑥ℓ , 𝐿)

of the interaction between the A and the extraction game, where 𝑠∗ is the value returned by the

game, 𝐿 is the set of queries to the oracle made by the adversary A, and where 𝑠0 is the initial

state and 𝑥1, . . . , 𝑥ℓ the inputs provided by A. Let ℓ′ ≥ 0 be maximal such that

((𝑦𝑖−1, 𝑥𝑖), 𝑦𝑖) ∈ 𝐿

for some values 𝑦0, 𝑦1, . . . , 𝑦ℓ ′ with 𝑦0 = 𝑠0. A transcript 𝜏 is called a bad transcript if ℓ′ = ℓ ;

otherwise, 𝜏 is called good.

In order to apply Theorem 3.1, one merely needs to bound the probability ratio for good
3In order to keep notation simple, ℓ—here and in the following—is the number of inputs in a particular 𝜏 , not the

upper bound from Lemma 5.2.
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transcripts (Lemma 5.3) and the probability of a bad transcript occurring in the ideal world, i.e,

for 𝑏 = 1 (Lemma 5.4). □

Lemma 5.3 (Ratio analysis). For all good transcripts 𝜏 ,

p0(𝜏)
p1(𝜏)

≥ 1 − 𝑞ℓ + ℓ
2

2𝑛
.

Proof. Fix a good transcript 𝜏 and consider first p1(𝜏). Since in the ideal world 𝑠∗ is sampled

uniformly,

p1(𝜏) = 𝑝𝐿 · 2−𝑛 ,

where 𝑝𝐿 denotes the probability that a uniform random function is consistent with the queries

in 𝐿. In the real world,

p0(𝜏) = 𝑝𝐿 · 𝑞𝜏 ,

where 𝑞𝜏 is the probability that MD
𝐹𝐿
𝑠0 (𝑥1, 𝑥2, . . . , 𝑥ℓ) = 𝑠∗ over a function 𝐹𝐿 that is sampled

uniformly at random conditioned on being consistent with 𝐿.

It remains to derive a lower bound on 𝑞𝜏 . To that end, observe that due to 𝜏 being a good

transcript, ℓ′ < ℓ . Hence, 𝑞𝜏 is the probability (over 𝐹𝐿) that

𝑌ℓ := MD
𝐹𝐿
𝑦ℓ ′
(𝑥ℓ ′+1, . . . , 𝑥ℓ) = 𝑠∗ .

Consider the intermediate chaining values 𝑌ℓ ′+1, . . . , 𝑌ℓ−1 and, for 𝑖 = ℓ′ + 1, . . . , ℓ − 1, define the

event FRESHi that 𝑌𝑖 is fresh, i.e., there is no query ((𝑌𝑖, ∗), ∗) ∈ 𝐿 and 𝑌𝑖 ≠ 𝑌𝑗 for 𝑗 < 𝑖 . Let,

FRESH :=
ℓ−1⋂
𝑖=ℓ ′+1

FRESHi .

Then,

Pr[𝑌ℓ = 𝑠∗ |FRESH] = 2−𝑛
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since the conditioning implies that 𝐹 (𝑌ℓ−1, 𝑥ℓ) is freshly sampled and, hence, 𝑌ℓ is a uniformly

random value. Moreover,

Pr

[
FRESHi

����� 𝑖−1⋂
𝑘=ℓ ′+1

FRESHk

]
≤ 𝑞 + ℓ

2𝑛

as there are at most 𝑞 + ℓ non-fresh values by the time 𝑌𝑖 is sampled. Here, the notation𝐴 denotes

the complement of an event 𝐴. Therefore,

Pr[FRESH] ≥ 1 − 𝑞ℓ + ℓ
2

2𝑛
,

and, finally,

𝑞𝜏 ≥ Pr[FRESH] · Pr[𝑌ℓ = 𝑠∗ |FRESH]

≥
(
1 − 𝑞ℓ + ℓ

2

2𝑛

)
· 2−𝑛 ,

which implies
p0(𝜏)
p1(𝜏)

≥ 1 − 𝑞ℓ + ℓ
2

2𝑛
.

□

Lemma 5.4 (Bad event analysis). For the set B of bad transcripts (as defined above),

Pr[𝑇1 ∈ B] ≤
2𝑞
2𝛾∗
+ 𝑞

2

2𝑛
.

Proof. Observe that in the ideal world, the output of the extraction game is a uniformly random

value 𝑠∗, which is independent of the initial state 𝑆0 and the inputs𝑋1, . . . , 𝑋ℓ . The sampling order

of the ideal experiment can therefore be changed to be the following:

1. Sample 𝐹 uniformly at random.
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2. Run A until it outputs (𝑠0, 𝑥1, . . . , 𝑥 ℓ̃), thereby also generating the state 𝜎 and the list of

queries 𝐿0 before the challenge.

3. Choose 𝑠∗ uniformly at random.

4. Continue running A on 𝜎 and 𝑠∗, letting it make additional queries 𝐿1.

5. Resample the inputs (𝑋1, . . . , 𝑋ℓ) conditioned on (Σ,L0, 𝑆0) = (𝜎, 𝐿0, 𝑠0).

Remember that L is the random variable for the set of queries made while 𝐿 is a particular value

that the random variable takes. Observe that since the conditioning includes L0, A makes the

same queries, 𝐿0, during the first run and the resampling process. Moreover, since conditioned

on (Σ,L0, 𝑆0), (𝑋1, . . . , 𝑋ℓ) and L1 are independent, the min-entropy condition holds for L =

L0 ∪ L1, the list of all queries made by A during the experiment, as well. That is,

H∞(𝑋1, . . . , 𝑋ℓ |ΣL𝑆0) ≥ 𝛾∗ .

Let E be the event that there exists a collision in L, i.e., two or more queries have the same

answer. Note that

Pr[𝑇1 ∈ B] ≤ Pr[𝑇1 ∈ B|E] + Pr[E] ≤ Pr[𝑇1 ∈ B|E] +
𝑞2

2𝑛
.

Towards bounding Pr[𝑇1 ∈ B|E], consider now a particular triple 𝑧 = (𝜎, 𝐿, 𝑠0) ∈ E, which is

shorthand for 𝐿 being collision-free. Define a potential chain as values 𝑦0, 𝑦1, . . . , 𝑦ℓ for some ℓ

such that 𝑦0 = 𝑠0 and

((𝑦𝑖−1, 𝑣𝑖), 𝑦𝑖) ∈ 𝐿 .

for 𝑖 = 1, . . . , ℓ and some values 𝑣1, . . . , 𝑣ℓ . Observe that without collisions, 𝐿 can contain at most

𝑞 potential chains. Clearly, conditioned on 𝑍 = 𝑧, 𝑇1 ∈ B if and only if for some potential chain,
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𝑋𝑖 = 𝑣𝑖 for all 𝑖 = 1, . . . , ℓ . Hence, by the legitimacy of A,

Pr[𝑇1 ∈ B|𝑍 = 𝑧] ≤ 𝑞 · 𝑝𝑧 ,

where 𝑝𝑧 := Pred(𝑋 |𝑍 = 𝑧). In expectation,

Pr[𝑇1 ∈ B|E] =
∑︁
𝑧∈E

Pr[𝑍 = 𝑧 |E] · Pr[𝑇1 ∈ B|𝑍 = 𝑧]

≤
∑︁
𝑧∈E

Pr[𝑍 = 𝑧 |E] · 𝑞 · 𝑝𝑧

= 𝑞 · Pred(𝑋 |𝑍E)

≤ 𝑞 · Pred(𝑋 |𝑍 )
1 − 𝑞2/2𝑛

≤ 𝑞

(1 − 𝑞2/2𝑛) · 2𝛾∗ ≤
2𝑞
2𝛾∗

,

using that4 𝑞2/2𝑛 ≤ 1/2 and where the penultimate inequality is due to

Pred(𝑋 |𝑍 ) ≥
∑︁
𝑧∈E

Pr[𝑍 = 𝑧] · 𝑝𝑧

= Pr[E] ·
∑︁
𝑧∈E

Pr[𝑍 = 𝑧]
Pr[E] · 𝑝𝑧

= Pr[E] · Pred(𝑋 |𝑍E) .

□

4This can always be assumed as the bound would otherwise be vacuous.
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5.1.1.2 Maintaining Security

Lemma 5.5 (Maintaining security). The advantage of any (𝑞, ℓ)-attacker A against maintaining

security is bounded by

Advmtn,𝐹
MD
(A) ≤ 𝜀mtn

MD
(𝑞, ℓ) :=

𝑞ℓ + ℓ2
2𝑛

+ 𝑞
2𝑛
.

Proof. To bound the advantage of an attackerA at guessing 𝑏 via an H-coefficient proof, consider

a transcript

𝜏 = (𝑠∗, 𝑠0, 𝑥1, . . . , 𝑥ℓ , 𝐿)

between A and the maintaining game, where 𝑠∗ is the output of the game and 𝐿 are the queries

made byA. A transcript is bad if there is a query of the type ((𝑠0, ∗), ∗) ∈ 𝐿 and good otherwise.

The probability of a bad transcript occurring in the 𝑏 = 1 case is clearly at most |𝐿 |/2𝑛 . Moreover,

for good transcripts 𝜏 ,

p1(𝜏) = 2−2𝑛 · 𝑝𝐿 ,

where 𝑝𝐿 denotes the probability that a uniform random function is consistent with the queries

in 𝐿. Furthermore, by an argument similar to that in the proof of Lemma 5.3,

p0(𝜏) ≥
(
1 − 𝑞ℓ + ℓ

2

2𝑛

)
· 2−2𝑛 · 𝑝𝐿 .

The lemma follows by applying Theorem 3.1. □

5.1.1.3 Next Security

Lemma 5.6 (Next security). The advantage of any 𝑞-attacker A against next security is bounded

by

Advnext,𝐹
MD
(A) ≤ 𝜀next

MD
(𝑞) :=

𝑞

2𝑛
.
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Proof. For a straight-forward H-coefficient proof, consider the transcript

𝜏 = (𝑠, 𝑠∗, 𝐿) ,

where 𝑠 is the initial state, 𝑠∗ is the input given to A, and 𝐿 are the queries A makes to 𝐹 . A

transcript is bad if 𝐿 contains a query of the form ((𝑠, ∗), ∗) and good otherwise. It is easily seen

that for good transcripts, the probability ratio is 1, whereas, in the ideal world, where A’s view

is completely independent of 𝑆 , the probability of a bad event is at most 𝑞/2𝑛 . □

5.1.1.4 Recovering Security

In the following, let 𝜀ext
MD
(𝛾∗, 𝑞, ℓ) and 𝜀next

MD
(𝑞) be as in Lemmas 5.2 and 5.6. Extraction and next

security together imply recovering security:

Lemma 5.7 (Recovering Security). For every 𝛾∗-legitimate (𝑞, ℓ)-attacker A,

Advrec,𝐹
MD
(A) ≤ 𝜀ext

MD
(𝛾∗, 𝑞 + 𝑟/𝑛 + 1, ℓ) + 𝜀next

MD
(𝑞 + 𝑟/𝑛 + 1) .

Proof. For𝑏 ∈ {0, 1}, denote by𝐻𝑏 the recovering experiment conditioned on the secret bit having

the value 𝑏. Moreover, define a hybrid experiment 𝐻 1
2
in which the challenge oracle returns

next
𝐹 (𝑈𝑛) to A. By the triangle inequality, to prove the lemma, it suffices to bound the distance

between experiments 𝐻0 and 𝐻 1
2
and 𝐻 1

2
and 𝐻1.

• Towards bounding the distance between 𝐻0 and 𝐻 1
2
, consider the following attacker Aext

against extraction security of MD: Aext runs A answering its oracle queries by passing

queries to 𝐹 . At some point,A outputs (𝑠0, 𝑥1, ...., 𝑥ℓ). Aext forwards (𝑠0, 𝑥1, 𝑥2, ..., 𝑥ℓ) to the

challenger. Aext receives 𝑠∗ as response from the challenger. Aext now computes next on

the input 𝑠∗, by making 𝑟/𝑛 + 1 additional queries to the primitive, on the inputs (𝑠∗, 𝑖) for

𝑖 = 0, 1, . . . , 𝑟/𝑛. It forwards to A the values (𝐹 (𝑠∗, 0), 𝐹 (𝑠∗, 1) | | . . . | |𝐹 (𝑠∗, 𝑟/𝑛)). It proceeds
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to respond toA’s oracle calls as before and waits forA’s guess bit. It merely forwards the

same bit as its guess to the challenger.

When the challenger’s bit is 0, Aext perfectly simulates towards A the distribution 𝐻0.

When the challenger’s bit is 1, A is given next(𝑈𝑛). This corresponds to the hybrid dis-

tribution 𝐻 1
2
. Moreover, it is easily seen that if A is 𝛾∗-legitimate, so is Aext. Thus, the

advantage of A in distinguishing hybrids 𝐻0 and 𝐻 1
2
is upper-bounded by the advantage

of Aext in the extraction game which is 𝜀ext
MD
(𝛾∗, 𝑞 + 𝑟/𝑛 + 1, ℓ).

• Towards bounding the distance between 𝐻 1
2
and 𝐻1, consider the following attacker Anext

against next security ofMD: Anext runsA answering its oracle queries by passing queries

to 𝐹 . When A outputs (𝑠0, 𝑥1, ...., 𝑥ℓ), Anext returns its own distinguishing challenge, con-

tinuing to answer oracle queries for A. In the end, it outputs A’s guess bit.

It is straight-forward to verify thatAnext perfectly simulates𝐻 1
2
toA when given next𝐹 (𝑈𝑛)

and 𝐻1 when given𝑈𝑛+𝑟 . Thus, the advantage ofA in distinguishing hybrids 𝐻 1
2
and 𝐻1 is

upper-bounded by the advantage of Anext in the next game, which is 𝜀next
MD
(𝑞 + 𝑟/𝑛 + 1).

□

5.1.1.5 Preserving Security

In the following, let 𝜀mtn
MD
(𝑞, ℓ) and 𝜀next

MD
(𝑞) be as in Lemmas 5.5 and 5.6. Maintaining and next

security together imply preserving security:

Lemma 5.8 (Preserving Security). For every (𝑞, ℓ)-attacker A,

Advpre,𝐹
MD
(A) ≤ 𝜀mtn

MD
(𝑞 + 𝑟/𝑛 + 1, ℓ) + 𝜀next

MD
(𝑞 + 𝑟/𝑛 + 1) .

Proof. For𝑏 ∈ {0, 1}, denote by𝐻𝑏 the preserving experiment conditioned on the secret bit having

the value 𝑏. Moreover, define a hybrid experiment 𝐻 1
2
in which the challenge oracle returns
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next
𝐹 (𝑈𝑛) to A. By the triangle inequality, to prove the lemma, it suffices to bound the distance

between experiments 𝐻0 and 𝐻 1
2
and 𝐻 1

2
and 𝐻1.

• Towards bounding the distance between 𝐻0 and 𝐻 1
2
, consider the following attacker Amtn

against maintaining security ofMD: Amtn runsA answering its oracle queries by passing

queries to 𝐹 . At some point, A outputs (𝑥1, ...., 𝑥ℓ). Amtn forwards (𝑥1, 𝑥2, ..., 𝑥ℓ) to the

challenger. Amtn receives 𝑠∗ as response from the challenger. Amtn now computes next on

the input 𝑠∗, by making 𝑟/𝑛 + 1 additional queries to the primitive, on the inputs (𝑠∗, 𝑖) for

𝑖 = 0, 1, . . . , 𝑟/𝑛. It forwards to A the values (𝐹 (𝑠∗, 0), 𝐹 (𝑠∗, 1) | | . . . | |𝐹 (𝑠∗, 𝑟/𝑛)). It proceeds

to respond toA’s oracle calls as before and waits forA’s guess bit. It merely forwards the

same bit as its guess to the challenger.

When the challenger’s bit is 0, the Amtn perfectly simulates towards A the distribution

𝐻0. When the challenger’s bit is 1, A is given next(𝑈𝑛). This corresponds to the hybrid

distribution 𝐻 1
2
. Thus, the advantage of A in distinguishing hybrids 𝐻0 and 𝐻 1

2
is upper-

bounded by the advantage of Amtn in the extraction game which is 𝜀mtn
MD
(𝑞 + 𝑟/𝑛 + 1, ℓ).

• Towards bounding the distance between 𝐻 1
2
and 𝐻1, consider the following attacker Anext

against next security ofMD: Anext runsA answering its oracle queries by passing queries

to 𝐹 . When A outputs (𝑥1, ...., 𝑥ℓ), Anext returns its own distinguishing challenge, contin-

uing to answer oracle queries for A. In the end, it outputs A’s guess bit.

It is straight-forward to verify thatAnext perfectly simulates𝐻 1
2
toA when given next𝐹 (𝑈𝑛)

and 𝐻1 when given 𝑈𝑛+𝑟 . Thus, the advantage of A in distinguishing hybrids 𝐻0, 𝐻 1
2
is

upper-bounded by the advantage of Anext in the next game which is 𝜀next
MD
(𝑞 + 𝑟/𝑛 + 1).

□
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𝑥𝑖

0
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𝑟/𝑛
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𝑠′

𝑦

refresh next

𝑠

𝑥𝑖

refresh next

𝑟

𝑛 − 𝑟

𝑦

0𝑛
𝑠′

𝐹

𝐹

𝐹

𝐹

𝐹

Figure 5.1: Procedures refresh (processing a single-block input 𝑥𝑖 ) and next of Merkle-Damgård PRNG

constructionswith compression function 𝐹 . Left: Computationally secure Construction 10; right: IT secure

Construction 11.

5.1.2 IT PRNGs from Merkle-Damgård

An IT-robust PRNGbased onMerkle-Damgård can be obtained if the next function simply outputs

the truncated state (and outputs 0𝑛 as the new state):

Construction 11 (IT-PRNG from Merkle-Damgård). The (𝑚, 𝑟 )-PRNG constructionMD𝑟 =

(refresh, next) based on Merkle-Damgård with a compression function 𝐹 : {0, 1}𝑛 × {0, 1}𝑚 →

{0, 1}𝑛 is defined as follows:

• refresh
𝐹 (𝑠, 𝑥) = 𝐹 (𝑠, 𝑥), and

• next
𝐹 (𝑠) = (0𝑛, 𝑠 [1..𝑟 ]).

The security of Construction 11 is proved in the 𝐹 -model, where 𝐹 is a uniformly random function.
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To state the theorem for the IT construction, for an integer ℓ , let

𝑑′(ℓ) = max
ℓ ′∈{1,...,ℓ}

|{𝑑 ∈ N : 𝑑 |ℓ′}| .

Observe that, asymptotically,𝑑′(ℓ) grows very slowly, i.e., as ℓ𝑜 (1) . Furthermore, let 𝐹 be a random

compression function.

Theorem 5.9 (IT-Robustness of Merkle-Damgård PRNGs). Construction 11 is a (𝛾∗, 𝑞, 𝑡, ℓ, 𝜀rob)-

IT-robust PRNG in the 𝐹 -model, where

𝜀rob-it ≤
𝑡

2

√︄
2𝑟−𝛾∗

(1 − 𝜌) + ℓ · 𝑑
′(ℓ) · 2

𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2 · 𝑞

22𝑟

22𝑛
+ 𝑡𝜌 ,

for 𝜌 =
𝑞2

2𝑟 where 𝑞 = 𝑞 + 𝑡ℓ .

The theorem will be a direct consequence of the following lemma, and Theorem 4.12 above,

which adds a multiplicative factor 𝑡 to obtain the bound in the theorem.

Lemma 5.10. For every 𝛾∗-IT-legitimate (𝑞, ℓ)-attacker in the ideal compression function model,

Advrec-IT,𝛾
∗

MD𝑟
(A) ≤ 1

2

√︄
2𝑟−𝛾∗

(1 − 𝜌) + ℓ · 𝑑
′(ℓ) · 2

𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2𝑞

22𝑟

22𝑛
+ 𝜌 ,

where 𝜌 =
𝑞2

2𝑟 .

Before we turn to a proof, we note the challenges here. In particular, the core of the proof

will be to show a bound on the collision probability of the output of next for a random compres-

sion function 𝐹 , which in turn will reduce to outputting the truncation of the output of the MD

construction. This problem resembles that studied by [DGH+04] and by [GPR14]. However, the

difficulty here is that we need to consider the set of queries previously done by the adversary

A. This will significantly complicate the proof—we also modify slightly the graph-theoretic for-
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malization adopted by these previous works to something more amenable to our more complex

setting.

Proof of Lemma 5.10. We define a few random variables which we will be using in our proofs.

• 𝐹 a randomly chosen compression function, to which the adversary is given access. We use

𝐹 both for the oracle itself, as well as for the random variable describing the entire function

table.

• ℓ : Number of blocks input to the challenge oracle (which is a random variable itself, we

overload notation here, using the same letter we use in the bound on ℓ in the lemma state-

ment).

• 𝑋 = (𝑋 1, . . . , 𝑋 ℓ): the blocks input to the challenge oracle.

• �̃�ℓ : output of MD𝑟 . Let us remind ourselves that this is 𝑠 truncated to 𝑟 bits (the output of

next);

• 𝑍 = (Σ,L, 𝑆0): “side information” where Σ is the attacker state before challenge, L is the

attacker query/answers to 𝐹 before challenge , 𝑆0 is the initial PRNG state provided by A;

• 𝑈𝑟 : uniform 𝑟 -bit string.

The advantage of the adversaryA in the recovering game is bounded by SD
(
(�̃�ℓ , 𝑍, 𝐹 ), (𝑈𝑟 , 𝑍, 𝐹 )

)
.

Therefore, it is sufficient to upper-bound that. The reasoning is quite simple. Note that𝑍 contains

the state of the attacker Σ just before it makes the challenge query. This means that A cannot

tell apart real from random.

We also define an event E where the answers to the 𝐹 -queries byA are distinctwhen truncated

to the first 𝑟 bits. Note that there are a maximum of 𝑞 queries in this list. We would like to point

out that E has the same probability of occurring in either experiment, since the experiments are
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identical up to the point when this even is defined. Therefore, by Proposition 3.4,

SD

(
(�̃�ℓ , 𝑍, 𝐹 ), (𝑈𝑟 , 𝑍, 𝐹 )

)
≤ SD

(
(�̃�ℓ , 𝑍, 𝐹 ) |E, (𝑈𝑟 , 𝑍, 𝐹 ) |E

)
+ 𝑞

2

2𝑟
;

For convenience we let 𝜌 := 𝑞2/2𝑟 for the remainder of the proof. In order to bound the statistical

distance conditioned on E, we can rewrite the same as as

SD

(
(�̃�ℓ , 𝑍, 𝐹 ) |E, (𝑈𝑟 , 𝑍, 𝐹 ) |E

)
=

∑︁
𝑧∈E

Pr[𝑍 = 𝑧 |E] · SD
(
(�̃�ℓ , 𝐹 ) |𝑧, (𝑈𝑟 , 𝐹 ) |𝑧

)
, (5.1)

where 𝑧 ∈ E is to denote that the sum is taken over all side informations 𝑍 = 𝑧, satisfying E.5

Define 𝑝𝑧 := Pred(𝑋 |𝑍 = 𝑧), and observe that

E𝑧 [𝑝𝑧] = Pred(𝑋 |𝑍 ) ≤ 2−𝛾
∗
,

where the latter inequality follows from the assumption H∞(𝑋 |𝑍 ) ≥ 𝛾∗. Moreover,

H∞(𝑋 |𝑍E) ≥ 𝛾∗ − log(1 − 𝜌)−1 ,

which is due to

Pred(𝑋 |𝑍 ) ≥
∑︁
𝑧∈E

Pr[𝑍 = 𝑧] · 𝑝𝑧

= Pr[E] ·
∑︁
𝑧∈E

Pr[𝑍 = 𝑧]
Pr[E] · 𝑝𝑧

= Pr[E] · Pred(𝑋 |𝑍E) .

5Therefore E can be omitted in the conditioning of the statistical distance.
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From Lemma 5.11 we prove below, we will get,

SD

(
(�̃�ℓ , 𝐹 ) |𝑧, (𝑈𝑟 , 𝐹 ) |𝑧

)
≤ 1

2

√︂
2𝑟𝑝𝑧 + ℓ · 𝑑′(ℓ) ·

2𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2𝑞2 · 2

𝑟

22𝑛
.

Using Jensen’s inequality, (5.1) becomes, for 𝛼 = 2𝑟 and 𝛽 = ℓ · 𝑑′(ℓ) · 2𝑟2𝑛 + 64ℓ
4 · 2𝑟

22𝑛 + 16ℓ
2𝑞2 · 2𝑟

22𝑛 ,

SD

(
(�̃�ℓ , 𝐹 ) |E, (𝑈𝑟 , 𝐹 ) |E

)
≤ 1

2

√︃
𝛼Pred(𝑋 |LE) + 𝛽

≤ 1
2

√︄
2𝑟−𝛾∗

(1 − 𝜌) + ℓ · 𝑑
′(ℓ) · 2

𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2𝑞

22𝑟

22𝑛
.

□

Lemma 5.11. For 𝑧 ∈ E and the random variables as defined earlier,

SD

(
(�̃�ℓ , 𝐹 ) |𝑧, (𝑈𝑟 , 𝐹 ) |𝑧

)
≤ 1

2

√︂
2𝑟𝑝𝑧 + ℓ · 𝑑′(ℓ) ·

2𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2𝑞2 · 2

𝑟

22𝑛
.

Proof. Fix 𝑧 = (𝜎, 𝐿, 𝑠0). Observe that, conditioned on 𝑧, 𝐹 is distributed uniformly over the set of

all functions that agree with 𝐿. Thus, by Proposition 3.3,

SD

(
(�̃�ℓ , 𝐹 ) |𝑧, (𝑈𝑟 , 𝐹 ) |𝑧

)
≤ 1

2

√︃
2𝑟 · Coll(�̃�ℓ |𝐹𝑧) − 1 . (5.2)

To bound the collision probability, we consider the following experiment:

• choose 𝐹 uniformly consistent with 𝐿

• sample inputs 𝑋 = (𝑋 1, . . . , 𝑋 ℓ) and 𝑋
′
= (𝑋 ′1, . . . , 𝑋

′
ℓ ′) independently but conditioned on

𝑍 = 𝑧.

• compute �̃�ℓ and �̃� ′ℓ as the truncated MD evaluations with 𝐹 of 𝑋 and 𝑋
′
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Then, we bound the probability that �̃�ℓ = �̃� ′ℓ in this experiment as

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[𝑋 = 𝑋
′] + Pr[�̃�ℓ = �̃� ′ℓ |𝑋 ≠ 𝑋

′] . (5.3)

Clearly, the former is at most 𝑝𝑧 . To bound the latter, we fix arbitrary inputs 𝑥 ≠ 𝑥′ of lengths ℓ

and ℓ′, respectively. We also assume, wlog, that the evaluation of 𝑥′ is not completely covered by

𝐿; due to the collision-freeness of 𝐿. Let 𝑥𝑘+1 be the first block of 𝑥 not covered byL and similarly

𝑥′𝑘+1 for 𝑥 ′ . We let 𝑘 = ℓ if all blocks are covered.

The structure graph. We will now model the evaluation producing �̃�ℓ and �̃� ′ℓ as a (labeled)

graph process. In particular, let us define for convenience

𝑥 (𝑖) :=


𝑥𝑖 𝑖 ≤ ℓ

𝑥′(𝑖−ℓ) otherwise

for all 𝑖 = 1, . . . , ℓ + ℓ′, and we let ℓ̃ = ℓ + ℓ′.

For a given compression function 𝐹 (consistent with 𝐿), first define a labeled (multi-)graph

𝐻𝐹 (𝑥 ,𝑥 ′) = (V, E .L) vertex set V ⊆ {0, 1}𝑛 . Each edge will have a label L(𝑒) = (𝑥, 𝑐) – where

𝑥 ∈ {0, 1}𝑚 and 𝑐 ∈ {red, blue}. Now we add edges as follows, allowing replications of edges (we

will then explain below how to remove duplicates). We will implicitly defineV as the set of 𝑛-bit

strings which are endpoint to an edge:

Blue edges. For every ((𝑥,𝑦), 𝑦′) in 𝐿 we add an edge (𝑦,𝑦′) with label (𝑥, blue), and refer to

such edges as the blue edges.
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Red edges. Define

𝑠𝑖 :=



0𝑛 𝑖 = 0

𝐹 (𝑠𝑖−1, 𝑥𝑖) 1 ≤ 𝑖 ≤ ℓ

𝐹 (0𝑛, 𝑥′1) 𝑖 = ℓ + 1

𝐹

(
𝑠𝑖−1, 𝑥

′
(𝑖−ℓ)

)
ℓ + 2 ≤ 𝑖 ≤ ℓ̃ .

Now for 𝑖 = 1, . . . , ℓ , we add edge (𝑠𝑖−1, 𝑠𝑖) with label (𝑥𝑖, red), unless the edge (𝑠𝑖−1, 𝑠𝑖) is

already present with label (𝑥𝑖, 𝑐) for 𝑐 ∈ {blue, red}. We add the edge (0𝑛, 𝑠ℓ+1) with label

(𝑥′1, red), unless the edge (𝑠𝑖−1, 𝑠𝑖) is already present with label (𝑥′1, 𝑐) for 𝑐 ∈ {blue, red}.

Finally, we add each (𝑠𝑖−1, 𝑠𝑖) for 𝑖 = ℓ + 2, . . . , ℓ̃ with label (𝑥′𝑖, red), unless the edge (𝑠𝑖−1, 𝑠𝑖)

is already present with label (𝑥′𝑖, 𝑐) for 𝑐 ∈ {blue, red}. We refer to these edges we added as

the red edges.

Note in particular that we may have two identical edges 𝑒1 and 𝑒2, but in this case they will

have labels (𝑥1, 𝑐1) and (𝑥2, 𝑐2) with 𝑥1 ≠ 𝑥2, and moreover, at least one of them is red by our

assumption on 𝐿.

Definition 5.12. The structure graph of 𝐺𝐹 = 𝐺𝐹 (𝑥 ,𝑥 ′) = (V, E,L) is the graph obtained from

𝐻𝐹 as follows. We first look at all isomorphic graphs to 𝐺𝐹 with vertices {0, . . . , |V| − 1} such

that 0𝑛 is mapped to 0. We then pick the lexicographically first such graph.6

Let G𝐿 (𝑥, 𝑥′) be the set of all 𝐺𝐹 (𝑥, 𝑥′) for an 𝐹 compatible with 𝐿. Note that 𝐺𝐹 will have

two (possibly overlapping) paths starting from 0 with edges labeled by 𝑥 and 𝑥′, containing blue

and red edges. We say that 𝐺𝐹 is colliding if these two paths end in the same vertex, and let

Coll𝐿 (𝑥, 𝑥′) ⊆ G𝐿 (𝑥, 𝑥′) be the set of colliding structure graphs.

Definition 5.13 (Accidents). Let now B be the set of vertices of the sub-graph of𝐺𝐹 induced by

the blue edges, plus 0. We now traverse the path induced by 𝑥 , and then the path induced by 𝑥′.
6Indeed, the actual labeling of graphs will not matter below.
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Each time we encounter a vertex which is not in B, we add it to it. Each time we encounter a

vertex which is already in B, we say that an accident has occurred. We let Acc(𝐺𝐹 ) be the number

of accidents in 𝐺𝐹 .

We also let G𝑎
𝐿
(𝑥, 𝑥′) to be the set of 𝐻 ∈ G𝐿 (𝑥, 𝑥′) with Acc(𝐻 ) = 𝑎. We state the following

lemmas.

Lemma 5.14. Let 𝐹 be sampled randomly consistent with 𝐿, and 𝑥 ≠ 𝑥′. Then, let �̃�ℓ and �̃� ′ℓ be

values obtained after truncating at the end of the MD evaluations on inputs 𝑥 and 𝑥′ respectively.

Then,

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[𝐺𝐹 (𝑥, 𝑥′) ∈ Coll𝐿 (𝑥, 𝑥′)] +
1
2𝑟
.

Proof. We rewrite Pr[�̃�ℓ = �̃� ′ℓ ] as:

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[𝐺𝐹 (𝑥, 𝑥′) ∈ Coll𝐿 (𝑥, 𝑥′)] + Pr[�̃�ℓ = �̃� ′ℓ |𝐺𝐹 (𝑥, 𝑥′) ∉ Coll𝐿 (𝑥, 𝑥′)]

We take a closer look at the latter term. Note that the graph is a fixed graph and it has no collision

at the end nodes. We proceed to assign random, yet distinct values to the vertices. These are

chosen from {0, 1}𝑛 . Note that it is sufficient to look at the two output vertices locally without

looking at the global state. There are 2𝑛 (2𝑛 − 1) pairs of values for these output vertices such that

these values are distinct. However, of these, 2𝑟2𝑛−𝑟 (2𝑛−𝑟 − 1) have values which are equal in the

first 𝑟 bits and yet are distinct 𝑛-bit strings. Therefore,

Pr[�̃�ℓ = �̃� ′ℓ |𝐺𝐹 (𝑥, 𝑥′) ∉ Coll𝐿 (𝑥, 𝑥′)] ≤
2𝑟2𝑛−𝑟 (2𝑛−𝑟 − 1)

2𝑛 (2𝑛 − 1)

=
2𝑛−𝑟 − 1
2𝑛 − 1

≤ 2𝑛−𝑟

2𝑛
=

1
2𝑟
.
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Putting it together, we have:

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[𝐺𝐹 (𝑥, 𝑥′) ∈ Coll𝐿 (𝑥, 𝑥′)] +
1
2𝑟
. (5.4)

□

Lemma 5.15. Let 𝐹 be sampled randomly consistent with 𝐿, and 𝑥 ≠ 𝑥′. Let 𝐻 ∈ G𝐿 (𝑥, 𝑥′). Then,

Pr[𝐺𝐹 (𝑥, 𝑥′) = 𝐻 ] =
1

2𝑛·Acc(𝐻 )
.

Proof. We have two messages 𝑥 ≠ 𝑥′ and let 𝑥 (𝑖) be as defined before. We have a randomly

sampled 𝐹 which is consistent with 𝐿. Let us assume that the values 𝑆1, . . . , 𝑆ℓ̃ are revealed to us

stepwise. 𝑆𝑖 is the random variable representing the vertex after block 𝑖 . Let 𝐺𝐹 = 𝐺𝐹 (𝑥, 𝑥′). We

define a consistency notion as follows: 𝐺𝐹 is consistent with a given graph 𝐻 after step 𝑖 ≤ ℓ̃ ,

denoted by Cons𝑖 if the structure graphs𝐺 (𝑖)𝐹 and 𝐻 (𝑖) are equal as triples (V, E .L) where𝐺 (𝑖)
𝐹

is

the graph𝐺𝐹 obtained after the first 𝑖 blocks are processed. We define 𝐻 (𝑖) similarly. We assume

that Cons𝑖 is true for some 𝑖 . We now bound Pr[Cons𝑖+1 |Cons𝑖]. We look at the step 𝑖 + 1 in 𝐻

and there are three possibilities on how the edge for message block 𝑥 (𝑖+1) looks:

• Fresh: It arrives at a new vertex which is not present in 𝐻 (𝑖) .

• Determined: It follows an existing edge, i.e there exists a label for the edge of the form

(𝑥 (𝑖+1), .)

• Accident: It causes an accident. In this case, 𝐺 (𝑖+1)
𝐹

will only be consistent if the edge cor-

responding to 𝑥 (𝑖+1) lands on the same vertex as in 𝐻 (𝑖+1) . Note that this accident is a

fresh-evaluation, i.e the output is not determined in the first 𝑖 steps and is therefore chosen

randomly from 2𝑛 values. In other words, Pr[Cons𝑖+1 |Cons𝑖] = 1
2𝑛 in this case.
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Note that the third case happens Acc(𝐻 ) times. Therefore, we have:

Pr[𝐺𝐹 (𝑥, 𝑥′) = 𝐻 ] = Pr[Consℓ̃] ≤
1

2𝑛·Acc(𝐻 )
.

The latter inequality arises by upper-bounding Pr[Cons𝑖+1 |Cons𝑖] with 1 in the case of Fresh and

Determined edges. □

Lemma 5.16. Let 𝐹 be sampled randomly consistent with 𝐿, and 𝑥 ≠ 𝑥′. Then,

Pr[Acc(𝐺𝐹 ) ≥ 2] ≤ 64ℓ4

22𝑛
+ 16ℓ2𝑞2

22𝑛
.

Proof. We define G𝑎
𝐿
, as before, to be the set of all structure graphs containing exactly 𝑎 accidents.

Pr[Acc(𝐺𝐹 ) ≥ 2] =
∞∑︁
𝑎=2

Pr[Acc(𝐺𝐹 ) ≥ 2]

=

∞∑︁
𝑎=2

∑︁
𝑔∈G𝑎

𝐿

Pr[𝐺𝐹 = 𝑔]

≤
∞∑︁
𝑎=2

|G𝑎
𝐿
|

2𝑛·𝑎
.

The last step follows from Lemma 5.15. Observe that for fixed base graph and fixed messages,

entire graph is defined by list of accidents. Each accident is defined by an edge (𝑖, 𝑗), where there

are ℓ̃ := ℓ + ℓ′ choices for 𝑖 and ℓ̃ + 𝑞 for 𝑗 . Thus, there are at most (ℓ̃ (ℓ̃ + 𝑞))𝑐 graphs with 𝑎

accidents.

Pr[Acc(𝐺𝐹 ) ≥ 2] ≤
∞∑︁
𝑎=2

|G𝑎
𝐿
|

2𝑛·𝑎

≤
∞∑︁
𝑎=2

(
ℓ̃ (ℓ̃ + 𝑞)

2𝑛

)𝑎
≤

(
ℓ̃ (ℓ̃ + 𝑞)

2𝑛

)2
≤ 4ℓ̃4

22𝑛
+ 4ℓ̃2𝑞2

22𝑛
≤ 64ℓ4

22𝑛
+ 16ℓ2𝑞2

22𝑛
.
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where we assume ℓ̃ ≤ 2ℓ □

Note that 𝐻 ∈ Coll𝐿 = Coll𝐿 (𝑥, 𝑥′) necessarily implies Acc(𝐻 ) ≥ 1. We can then say, for

𝐺𝐹 = 𝐺𝐹 (𝑥, 𝑥′),

Pr[𝐺𝐹 ∈ Coll𝐿] ≤ Pr[𝐺𝐹 ∈ Coll𝐿 ∧ Acc(𝐺𝐹 ) = 1] + Pr[Acc(𝐺𝐹 ) ≥ 2]

≤
��
Coll𝐿 ∩ G1

𝐿

��
2𝑛

+ 64ℓ4

22𝑛
+ 16ℓ2𝑞2

22𝑛

. (5.5)

by Lemmas 5.15 and 5.16. We are going to upper bound the number of graphs in Coll𝐿 ∩ G1
𝐿
.

We reduce handling the case of a general 𝐿 now to the simpler case where 𝐿 = ∅, so that we

can resort to the counting argument of [GPR14].

Now, let𝐺 ∈ Coll𝐿 ∩G1
𝐿
(𝑥, 𝑥′). Let E𝐵 be the set of all blue edges which are on the 𝑥 - and the

𝑥′-paths. Moreover, let E′
𝐵
⊆ E𝐵 be the set of all initial blue edges, i.e., the set of blue edges on

these paths which are not preceded by any red edge. We prove the following lemma.

Lemma 5.17. If 𝐺 ∈ Coll𝐿 ∩ G1
𝐿
(𝑥, 𝑥′), then E′

𝐵
= E𝐵

Proof. We prove by contradiction by assuming that this is not true. In other words, there exists

at least one edge 𝑒 ∈ E𝐵 \ E′𝐵 . We now proceed to show that this necessarily leads to at least two

collisions, contradicting𝐺 ∈ Coll𝐿 ∩ G1
𝐿
(𝑥, 𝑥′). Wlog, assume that this lies on the 𝑥 path, and let

𝑒𝑖 = (𝑢𝑖, 𝑣𝑖) be the first such edge. Then, this edge must be preceded by a red-edge, 𝑒𝑖−1. Then,

clearly this implies that the graph contains at least one accident.

Now, let us take a look at the 𝑥′ path. We have, by our definition of 𝐺 (it is in the set Coll𝐿),

that there should exist a path from 𝑒𝑖 to the end point of the 𝑥′ path. We will sketch a proof to

show that this is not possible without having a second collision. We take a look at this path from

𝑒𝑖 to the end point of 𝑥′, 𝑉 ′.

• The path is of entirely blue edges.
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We look at the edge into 𝑉 ′ on the 𝑥′ path. Note that this cannot be a new blue edge as

it would violate the no-collision constraint on 𝐿. If this was a red edge we have a second

collision, by our definition. The only option is to take the same blue edge as on the 𝑒𝑖-path.

In other words, the penultimate vertex on 𝑒𝑖-path and 𝑥′ path are the same. We can argue

similarly for the penultimate vertex by showing that the edges into them should be the

same blue edge on both the paths. Working backwards we arrive at the point 𝑢𝑖 . Thus,

we have shown that the message blocks corresponding to the edges along the path from

𝑒𝑖 to 𝑉 ′ is the same on both 𝑥 and 𝑥′. We have also assumed that 𝑒𝑖 is the first non-initial

blue edge. In other words, the path before 𝑒𝑖 should be all red. Since 𝑥 ≠ 𝑥′, there should

be a block before 𝑒𝑖 which would differ in the message and hence this would constitute a

collision on the red edges. Therefore, in this case it is impossible to have the final outputs

to be the same without causing a second collision.

• The path is of entirely red edges.

The argument is similar to the previous case. The only difference is that the 𝑥′-path could

take a blue edge into the 𝑒𝑖-path. However, this would still constitute a new collision. The

same reasoning follows giving us the same conclusion.

• The path is mixed red and blue edges.

We have already shown that if a blue edge follows a red edge on the path then it is a

collision. We can therefore assume that the set of blue edges occur together, followed by

the set of red edges. The reasoning is pretty similar to the previous two cases.

In other words, a graph 𝐺 cannot be in Coll𝐿 and G1
𝐿
(𝑥, 𝑥′) when there exist non-initial blue

edges. □

The direct consequence of Lemma 5.17 is that the number of colliding structure graphs with

one accident is the same even if we remove all the non-initial blue edges. In addition, removing
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the initial blue edges will also not decrease the number of colliding graphs with one accident.

This is true because the initial blue edges can be replaced by red edges without increasing the

number of accidents by the properties of 𝐿. In other words, if we define 𝐿′ ⊆ 𝐿 to be the set of

queries which define the initial blue edges, we have

��
Coll𝐿 ∩ G1

𝐿 (𝑥, 𝑥
′)
�� = ��

Coll𝐿′ ∩ G1
𝐿′ (𝑥, 𝑥

′)
�� ≤ ��

Coll∅ ∩ G1
∅ (𝑥, 𝑥

′)
�� ≤ ℓ𝑑′(ℓ) . (5.6)

where the last inequality is from [GPR14]. Here 𝑑′(𝑛) is defined as follows:

𝑑′(𝑛) := max
𝑛′∈{1,...,𝑛}

|{𝑑 ∈ N : 𝑛′ mod 𝑑 = 0}| .

Combining Equations 5.4, 5.5 and 5.6 we get,

Pr[�̃�ℓ = �̃� ′ℓ ] ≤
1
2𝑟
+ ℓ · 𝑑

′(ℓ)
2𝑛

+ 64ℓ4

22𝑛
+ 16ℓ2𝑞2

22𝑛

Substituting the above value in Equations 5.2 and 5.3, we get:

SD

(
(�̃�ℓ , 𝐹 ) |𝑧, (𝑈𝑟 , 𝐹 ) |𝑧

)
≤ 1

2

√︂
2𝑟𝑝𝑧 + ℓ · 𝑑′(ℓ) ·

2𝑟

2𝑛
+ 64ℓ4 · 2

𝑟

22𝑛
+ 16ℓ2𝑞2 · 2

𝑟

22𝑛
.

This concludes the proof of Lemma 5.11 □

5.1.3 Parameter choices

In terms of concrete parameters, observe the following for theMerkle-Damgård constructions

above:

• Computational PRNG: If one were to use SHA-512 as compression function with𝑛 = 512,

and, moreover, choose 𝑟 = 𝑛. We let 𝑡 = 1, 𝑞 = 280 and let 𝛾∗ = ℓ . This assumes that we

get at least one bit of entropy from each block. We would need 𝛾∗ ≈ 160 to get 80 bits of
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security.

• IT PRNG: For example, assume SHA-512’s compression function is used, i.e., 𝑛 = 512. If

we let 𝑟 = 256, then we get (we also approximate 1/(1 − 𝜌) ≤ 2, very generously)

𝜀rob-it ≤
𝑡

2

√︂
2257−𝛾∗ + ℓ · 𝑑

′(ℓ)
2256

+ 𝑡 𝑞
2

2256
,

We let ℓ = 𝛾∗. Then, if we set for example 𝑞 = 280. We would need the entropy loss, i.e,

𝛾∗ − 𝑟 = 162 for 80 bits of security.

5.2 PRNGs from Merkle-Damgård with Davies-Meyer

The Davies-Meyer compression function maps two inputs 𝑎 ∈ {0, 1}𝑚 and 𝑏 ∈ {0, 1}𝑛 to an

𝑛-bit string

𝐸 (𝑏, 𝑎) ⊕ 𝑎 ,

where 𝐸 is an arbitrary block cipher (where 𝑏 is the key and 𝑎 the input).7

5.2.1 Computational PRNGs from Merkle-Damgård with Davies-Meyer

Now, a PRNG can be obtained from 𝐸 as follows (cf. Figure 5.2):

Construction 12 (PRNG from MD-DM). The (𝑛, 𝑟 )-PRNG construction DM = (refresh, next)

based on Merkle-Damgård with Davies-Meyer (MD-DM) uses a cipher 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 →

{0, 1}𝑛 and is defined as follows:8

• refresh
𝐸 (𝑠, 𝑥) = 𝐸 (𝑥, 𝑠) ⊕ 𝑠 , and

• next
𝐸 (𝑠) = (𝐸 (0, 𝑠) ⊕ 𝑠, 𝐸 (1, 𝑠) ⊕ 𝑠 ∥ · · · ∥𝐸 (𝑟/𝑛, 𝑠) ⊕ 𝑠).

7A (block) cipher is an efficiently computable and invertible permutation 𝐸 (𝑘, ·) : {0, 1}𝑛 → {0, 1}𝑛 for every key
𝑘 ∈ {0, 1}𝑛 .

8The integer arguments to the cipher are to be naturally mapped to {0, 1}𝑛 .
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The security of Construction 12 is proved in the 𝐸-model, where 𝐸 is a cipher chosen uniformly at

random from the set of all ciphers and can be queried in both the forward and backward direction.

Theorem 5.18 (Robustness of MD-DM PRNGs). Construction 12 is a (𝛾∗, 𝑞, 𝑡, ℓ, 𝜀rob)-robust PRNG

in the 𝐸-model for

𝜀rob ≤ 4𝑡 ·
(
𝑞2 + 𝑞ℓ + ℓ2

2𝑛
+ 𝑞

2𝛾∗
)
,

where 𝑞 = 𝑞 + 𝑟/𝑛 + 1.

Note that iteratively absorbing some input blocks 𝑥1, . . . , 𝑥ℓ via refresh, starting with a state 𝑠0

is identical to applying the MD-DM construction to the input with initialization vector (IV) 𝑠0,

which is denoted byMD-DM𝐸
𝑠0 (𝑥1, . . . , 𝑥ℓ) in the remainder of this paper.

The robustness of the MD-DM PRNG construction is proved along similar lines as that of the MD

construction with a random compression function (cf. Section 5.1.1). It is highly recommended to

read that proof first. The proof again establishes extraction, maintaining, and next security, before

showing that these imply recovering and preserving security. The final bound in Theorem 5.1

follows by applying Theorem 4.8.

5.2.1.1 Extraction Security

Lemma 5.19 (Extraction security). The advantage of any 𝛾∗-legitimate (𝑞, ℓ)-attacker A against

extraction security of DM is bounded by

Advext,𝐸
DM
(A) ≤ 𝜀ext

MD
(𝛾∗, 𝑞, ℓ) :=

𝑞2 + 2(𝑞ℓ + ℓ2)
2𝑛

+ 4𝑞
2𝛾∗

.

Proof. The transcript has the identical format as previously, i.e.,

𝜏 = (𝑠★, 𝑠0, 𝑥1, . . . , 𝑥ℓ , 𝐿)

except that 𝐿 is now the set of 𝐸-queries. To define bad transcripts, let ℓ′ ≥ 0 be maximal such
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that

((𝑥𝑖, 𝑦𝑖−1), 𝑦𝑖 ⊕ 𝑦𝑖−1) ∈ 𝐿

for some values 𝑦0, 𝑦1, . . . , 𝑦ℓ ′ with 𝑦0 = 𝑠0. A transcript 𝜏 is a bad transcript if

• ℓ′ = ℓ or

• ℓ′ = ℓ − 1 and there exists a query ((𝑥ℓ , ∗), 𝑦ℓ−1 ⊕ 𝑠★) ∈ 𝐿.

As before, to apply Theorem 3.1, one merely needs to bound the probability ratio for good tran-

scripts (Lemma 5.20) and the probability of a bad transcript occurring in the ideal world, i.e, for

𝑏 = 1 (Lemma 5.21). □

Lemma 5.20 (Ratio analysis). For all good transcripts 𝜏 ,

p0(𝜏)
p1(𝜏)

≥ 1 − 2(𝑞ℓ + ℓ2)
2𝑛

.

Proof. As in Section 5.1, for a good transcript,

p1(𝜏) = 𝑝𝐿 · 2−𝑛 and p0(𝜏) = 𝑝𝐿 · 𝑞𝜏 ,

where 𝑝𝐿 denotes the probability that a uniform random cipher is consistent with the queries in

𝐿 and where 𝑞𝜏 is the probability that

MD-DM𝐸𝐿
𝑠0 (𝑥1, 𝑥2, . . . , 𝑥ℓ) = 𝑠★

over a cipher 𝐸𝐿 that is sampled uniformly at random conditioned on being consistent with 𝐿.

To derive a lower bound on 𝑞𝜏 , due to 𝜏 being a good transcript, it suffices to consider the two

cases

(1) ℓ′ ≤ ℓ − 2 and
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(2) ℓ′ = ℓ − 1.

For (1), 𝑞𝜏 is the probability (over 𝐸𝐿) that

𝑌ℓ := DM
𝐸𝐿
𝑦ℓ ′
(𝑥ℓ ′+1, . . . , 𝑥ℓ) = 𝑠★ .

Consider the intermediate chaining values 𝑌ℓ ′ = 𝑦ℓ ′, 𝑌ℓ ′+1, . . . , 𝑌ℓ−1 (defined via evaluations of 𝐸).

Moreover, let 𝐿ℓ ′, 𝐿ℓ ′+1, . . . , 𝐿ℓ−2 be the set of points at which 𝐸 is defined after evaluating these

intermediate values, i.e., 𝐿ℓ ′ := 𝐿 and

𝐿𝑖 := 𝐿𝑖−1 ∪ {((𝑥𝑖, 𝑌𝑖−1), 𝑌𝑖 ⊕ 𝑌𝑖−1)}

for 𝑖 = ℓ′ + 1, . . . , ℓ − 2. Furthermore, for a set �̃� of 𝐸-queries define the sets Free-In�̃� of free inputs

and Free-Out�̃� of free outputs, i.e.,

𝑦 ∈ Free-In�̃� :⇐⇒ ((∗, 𝑦), ∗) ∉ �̃� and 𝑦 ∈ Free-Out�̃� :⇐⇒ ((∗, ∗), 𝑦) ∉ �̃� .

Finally, for 𝑖 = ℓ′ + 1, . . . , ℓ − 2, define the event FRESHi that 𝑌𝑖 is a fresh input, i.e.,

𝑌𝑖 ∈ Free-In𝐿𝑖−1 .

However, for𝑌ℓ−1, let FRESHℓ−1 be the event not only that𝑌ℓ−1 ∈ Free-In𝐿ℓ−2 but also that𝑌ℓ−1⊕𝑠★

is a free output, i.e.,

𝑌ℓ−1 ⊕ 𝑠★ ∈ Free-Out𝐿ℓ−2 .

Let,

FRESH :=
ℓ−1⋂
𝑖=ℓ ′+1

FRESHi .
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Then, on the one hand,

Pr[𝑌ℓ = 𝑠★|FRESH] = Pr[𝐸 (𝑥ℓ , 𝑌ℓ−1) = 𝑌ℓ−1 ⊕ 𝑠★|FRESH]

=
1

|Free-Out𝐿ℓ−2 |
≥ 1

2𝑛

since the conditioning implies that (𝑥ℓ , 𝑌ℓ−1) is a fresh input to 𝐸 and that 𝑌ℓ−1 ⊕ 𝑠★ actually is in

Free-Out𝐿ℓ−2 . On the other hand, in order to bound

Pr

[
FRESHℓ−1

����� ℓ−2⋂
𝑘=ℓ ′+1

FRESHk

]
,

observe that, for any values 𝑦ℓ ′+1, . . . , 𝑦ℓ−2 consistent with the conditioning, FRESHℓ−1 is violated

if9

𝐸𝐿 (𝑥ℓ−1, 𝑦ℓ−2) ∈ Free-In𝐿ℓ−2 ⊕ 𝑦ℓ−2

or

𝐸𝐿 (𝑥ℓ−1, 𝑦ℓ−2) ∈ Free-Out𝐿ℓ−2 ⊕ 𝑦ℓ−2 ⊕ 𝑠★ .

The probability that the former condition is violated is at most

|Free-Out𝐿ℓ−2 ∩ Free-In𝐿ℓ−2 ⊕ 𝑦ℓ−2 |
|Free-Out𝐿ℓ−2 |

≤
|Free-In𝐿ℓ−2 ⊕ 𝑦ℓ−2 |
|Free-Out𝐿ℓ−2 |

≤ 𝑞 + ℓ
2𝑛 − (𝑞 + ℓ) .

The same bound via a similar argument is obtained for the latter condition as well as

Pr

[
FRESHi

����� 𝑖−1⋂
𝑘=ℓ ′+1

FRESHk

]
≤ 𝑞 + ℓ

2𝑛 − (𝑞 + ℓ)

9Using the notation 𝐴 ⊕ 𝑏 = {𝑥 ⊕ 𝑏 | 𝑥 ∈ 𝐴}.
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for 𝑖 = ℓ′ + 1, . . . , ℓ − 2. Therefore,

Pr[FRESH] ≥ 1 − 𝑞ℓ + ℓ2
2𝑛 − (𝑞 + ℓ) ,

and, finally,

𝑞𝜏 ≥ Pr[FRESH] · Pr[𝑌ℓ = 𝑠★|FRESH]

≥
(
1 − 𝑞ℓ + ℓ2

2𝑛 − (𝑞 + ℓ)

)
· 2−𝑛 ,

for case (1). For case (2), note that due to ℓ′ = ℓ−1, (𝑥ℓ , 𝑦ℓ−1) is a fresh input to 𝐸, and, furthermore,

𝑦ℓ−1 ⊕ 𝑠★ ∈ Free-Out𝐿 . Thus, in this case the probability that 𝑌ℓ = 𝑠★ is at least 2−𝑛 .

Combining both cases, case (1) dominating, one obtains

p0(𝜏)
p1(𝜏)

≥ 1 − 𝑞ℓ + ℓ2
2𝑛 − (𝑞 + ℓ) ≥ 1 − 2(𝑞ℓ + ℓ2)

2𝑛
,

using that 𝑞 + ℓ ≤ 2𝑛−1, an assumption one may always make since the bound in the lemma is

vacuous otherwise. □

Lemma 5.21 (Bad event analysis). For the set B of bad transcripts (as defined above),

Pr[𝑇1 ∈ B] ≤
4𝑞
2𝛾∗
+ 𝑞

2

2𝑛
.

Proof. The same resampling approach as in the proof of Lemma 5.4 applies here as well. However,

the collisions require additional care. Two queries 𝐸 queries ((𝑘,𝑢), 𝑣) and ((𝑘′, 𝑢′), 𝑣′) are said

to collide if

𝑣 ⊕ 𝑢 = 𝑣′ ⊕ 𝑢′ .

It is easily verified that the probability, over 𝐸, that any two such queries collide is at most (2𝑛 −
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1)−1. Let E be the event that there exists such a collision in L. Note that

Pr[𝑇1 ∈ B] ≤ Pr[𝑇1 ∈ B|E] + Pr[E] ≤ Pr[𝑇1 ∈ B|E] +
𝑞2

2𝑛
.

Towards bounding Pr[𝑇1 ∈ B|E], consider a triple 𝑧 = (𝜎, 𝐿, 𝑠0) ∈ E, which, once more, is short-

hand for 𝐿 being collision-free. Define a potential chain as ℓ , for some ℓ , values 𝑦0, 𝑦1, . . . , 𝑦ℓ such

that 𝑦0 = 𝑠0 and, for some values 𝑘1, . . . , 𝑘ℓ ,

(a) ((𝑘𝑖, 𝑦𝑖−1), 𝑦𝑖 ⊕ 𝑦𝑖−1) ∈ 𝐿 for 𝑖 = 1, . . . , ℓ or

(b) ((𝑘𝑖, 𝑦𝑖−1), 𝑦𝑖 ⊕ 𝑦𝑖−1) ∈ 𝐿 for 𝑖 = 1, . . . , ℓ − 1 and ((𝑘ℓ , 𝑦ℓ), 𝑦ℓ−1 ⊕ 𝑠★) ∈ 𝐿.10

Without collisions, 𝐿 can contain at most 2𝑞 potential chains; this can be proved by induction:

Consider a set collision-free set 𝐿′ of 𝐸-queries and assume that the number of potential chains is

at most 2|𝐿′|. Consider an additional query ((𝑘,𝑢), 𝑣) that does not cause a collision; it may only

(but need not) create a new potential chain in two ways:

• 𝑢 = 𝑣′ ⊕𝑢′: this corresponds to extending in the sense of (a) above and can only be true for

a single previous query ((𝑘′, 𝑢′), 𝑣′) if 𝐿 is collision-free;

• 𝑣 = 𝑣′ ⊕ 𝑢′ ⊕ 𝑠★: this corresponds to creating a chain of type (b) and, again, can only hold

for one query ((𝑘′, 𝑢′), 𝑣′) ∈ if 𝐿 is collision-free.

Summarizing, the new query creates at most two new potential chains.

Clearly, conditioned on 𝑍 = 𝑧, 𝑇1 ∈ B if and only if for some potential chain, 𝑋𝑖 = 𝑘𝑖 for all

𝑖 = 1, . . . , ℓ . Hence, by the legitimacy of A,

Pr[𝑇1 ∈ B|𝑍 = 𝑧] ≤ 2𝑞 · 𝑝𝑧 ,
10Observe that in case (b) the “intuitive chain” goes up to 𝑦ℓ−1 but 𝑦ℓ is not part of it.
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where 𝑝𝑧 := Pred(𝑋 |𝑍 = 𝑧). The remainder of the proof proceeds in the exact same fashion as

the proof of Lemma 5.4. □

5.2.1.2 Maintaining Security

Themaintaining security of the Davies-Meyer PRNG constructionDM is proved along similar

lines as that of the MD construction with a random compression function. This section discusses

the few differences.

Lemma 5.22 (Maintaining security). The advantage of any (𝑞, ℓ)-attackerA against maintaining

security is bounded by

Advmtn,𝐸
DM
(A) ≤ 𝜀mtn

DM
(𝑞, ℓ) :=

2(𝑞ℓ + ℓ2)
2𝑛

+ 𝑞
2𝑛
.

Proof. Similarly to Lemma 5.5, maintaining security is shown via an H-coefficient proof. Once

more, one considers transcripts

𝜏 = (𝑠★, 𝑠0, 𝑥1, . . . , 𝑥ℓ , 𝐿) ,

with the difference that 𝐿 refers to 𝐸-queries here. A bad transcript contains a query of the type

((∗, 𝑠0), ∗) ∈ 𝐿. Again, the probability of a bad transcript occurring in the 𝑏 = 1 case is at most

|𝐿 |/2𝑛 , and for good transcripts,

p1(𝜏) = 2−2𝑛 · 𝑝𝐿 and p0(𝜏) ≥
(
1 − 2(𝑞ℓ + ℓ2)

2𝑛

)
· 2−2𝑛 · 𝑝𝐿 ,

where the latter follows via an argument similar to that in the proof of Lemma 5.20. □
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5.2.1.3 Next Security

Next security of DM is defined and proved in a fashion analogous to the case with a random

compression function.

Lemma 5.23 (Next security). The advantage of any 𝑞-attackerA against next security is bounded

by

Advnext,𝐸
DM
(A) ≤ 𝜀next

DM
(𝑞) :=

𝑞

2𝑛
.

Proof. For a straight-forward H-coefficient proof, consider the transcript

𝜏 = (𝑠, 𝑠★0 , 𝑠★1 , . . . , 𝑠★𝑟/𝑛, 𝐿) ,

where 𝑠 is the initial state, the values 𝑠★𝑖 are the input toA, and 𝐿 are the queriesA makes to 𝐹 . A

transcript is bad if 𝐿 contains a query of the form ((𝑖, 𝑠), ∗) or ((𝑖, ∗), 𝑠 ⊕ 𝑠★𝑖 ) for some 𝑖; otherwise,

𝜏 is called good. It is easily seen that for good transcripts, the probability ratio is at least 1, and,

in the ideal world, whereA’s view is completely independent of 𝑆 , the probability of a bad event

is at most 𝑞/2𝑛 . □

5.2.1.4 Recovering Security

In the following, let 𝜀ext
DM
(𝛾∗, 𝑞, ℓ) and 𝜀next

DM
(𝑞) be as in Lemmas 5.19 and 5.23. Once more,

extraction and next security together imply recovering security:

Lemma 5.24 (Recovering Security). For every 𝛾∗-legitimate (𝑞, ℓ)-attacker A,

Advrec,𝐸
DM
(A) ≤ 𝜀ext

DM
(𝛾∗, ℓ, 𝑞 + 𝑟/𝑛 + 1) + 𝜀next

DM
(𝑞 + 𝑟/𝑛 + 1) .

The proof of the lemma is completely analogous to that of Lemma 5.7 and is omitted.
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𝑠

𝑥𝑖

...

𝑠′

𝑦

𝐸

refresh next

refresh next

𝑟

𝑛 − 𝑟

𝑦

0𝑛
𝑠′

0

𝐸

1

𝐸

𝑟/𝑛

𝐸

𝑠

𝑟/𝑛

𝐸

Figure 5.2: Procedures refresh (processing a single-block input 𝑥𝑖 ) and next of Merkle-Damgård PRNG

constructions with the Davies-Meyer compression function based on a block cipher 𝐸. Left: Computa-

tionally secure Construction 12; right: IT secure Construction 13.

5.2.1.5 Preserving Security

In the following, let 𝜀mtn
MD
(𝑞, ℓ) and 𝜀next

MD
(𝑞) be as in Lemmas 5.5 and 5.6. Maintaining and next

security together imply preserving security:

Lemma 5.25 (Preserving Security). For every adversary A,

Advpre,𝐸
DM
(A) ≤ 𝜀mtn

DM
(𝑞 + 𝑟/𝑛 + 1, ℓ) + 𝜀next

DM
(𝑞 + 𝑟/𝑛 + 1) .

The proof of the lemma is completely analogous to that of Lemma 5.8 and is omitted.
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5.2.2 IT PRNGs from Merkle-Damgård with Davies-Meyer

In the IT-secure variant of the MD-DM construction, refresh remains the same, but next will

truncate the input state to 𝑟 bits, which it outputs, and then zero out the state.

Construction 13 (IT-PRNG fromMD-DM). The (𝑛, 𝑟 )-PRNG constructionDM𝑟 = (refresh, next)

using Merkle-Damgård with Davies-Meyer (MD-DM) uses a block cipher 𝐸 : {0, 1}𝑘 × {0, 1}𝑛 →

{0, 1}𝑛 and is defined as follows:

• refresh
𝐸 (𝑠, 𝑥) = 𝐸 (𝑥, 𝑠) ⊕ 𝑠 , and

• next
𝐸 (𝑠) = (0𝑛, 𝑠 [1..𝑟 ]).

The security of Construction 13 is proved in the 𝐸-model, where 𝐸 is a cipher chosen uniformly at

random from the set of all ciphers and can be queried in both the forward and backward direction.

Let 𝑑′(ℓ) be defined as in Section 5.1.

Theorem 5.26 (IT-Robustness of MD-DM PRNGs). Construction 13 is a (𝛾∗, 𝑞, 𝑡, ℓ, 𝜀rob)-IT-robust

PRNG in the 𝐸-model, where

𝜀rob-it ≤
𝑡

2

√︄
2𝑟−𝛾∗

(1 − 𝜌) + ℓ · 𝑑
′(ℓ) 2𝑟

2𝑛−1
+ 64ℓ4 · 2𝑟

22𝑛−2
+ 16ℓ2𝑞2 · 2𝑟

22𝑛−2
+ 𝑡𝜌 ,

for 𝜌 =
𝑞2

2𝑟 where 𝑞 = 𝑞 + 𝑡ℓ

Our robustness proof for this construction uses the analysis from Section 5.1.2. The intuition here

is that the structure graphs were defined for a compressing function 𝐹 and we instantiate it with

a Davies-Meyer construction and extend the arguments. However, there is a subtle difference

because of the underlying primitive. In Davies-Meyer the primitive is an ideal cipher. Thus,

we state and prove Lemma 5.29 which is the counterpart of Lemma 5.15 for the Davies-Meyer

instantiation. We then apply the results of Lemma 5.29 in the proofs of Lemma 5.16 and results

from [GPR14] to prove Theorem 5.18.
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Proof. The proof follows from Lemma 5.27 and Theorem 4.12. □

Lemma 5.27. For every 𝛾∗-IT-legitimate (𝑞, ℓ)-attacker, in the ideal cipher model,

Advrec-IT,𝛾
∗

DM
(A) ≤ 1

2

√︄
2𝑟−𝛾∗

(1 − 𝜌) + ℓ · 𝑑
′(ℓ) 2𝑟

2𝑛−1
+ 64ℓ42𝑟

22𝑛−2
+ 16ℓ2𝑞22𝑟

22𝑛−2
+ 𝜌 .

where 𝜌 =
𝑞2

2𝑟

Proof. The arguments for this proof is similar to the proof of Lemma 5.10. As before we define

the random variables �̃�ℓ , 𝑍, Σ,𝑈𝑟 . The difference arises in the definition of 𝑍 = (Σ,L, 𝑆0). We

define the L as follows: If L′ is the set of queries made by A to the ideal cipher 𝐸, then for

every ((𝑥,𝑦), 𝑧) ∈ L′, add ((𝑥,𝑦), 𝑧 ⊕ 𝑦) to L. This is to ensure that the L is consistent with the

evaluation of Davies-Meyer on the input (𝑥,𝑦). We now upper-bound the adversary A in the

IT-recovering game by showing an upperbound for SD
(
(�̃�ℓ , 𝑍, 𝐸), (𝑈𝑟 , 𝑍, 𝐸)

)
.

We also define the event E which denotes the eventwhenL entries are distinctwhen truncated

to the first 𝑟 bits. Note that there are a maximum of𝑞 queries in this list. Wewould like to point out

that E has the same probability of occurring in either experiment. Therefore, by Proposition 3.4,

SD

(
(�̃�ℓ , 𝑍, 𝐸), (𝑈𝑟 , 𝑍, 𝐸)

)
≤ SD

(
(�̃�ℓ , 𝑍, 𝐸) |E, (𝑈𝑟 , 𝑍, 𝐸) |E

)
+ 𝑞

2

2𝑟
;

We let 𝜌 := 𝑞2/2𝑟 for the remainder of the proof. In order to bound the statistical distance condi-

tioned on E, we can rewrite the same as

SD

(
(�̃�ℓ , 𝑍, 𝐸) |E, (𝑈𝑟 , 𝑍, 𝐸) |E

)
=

∑︁
𝑧∈E

Pr[𝑍 = 𝑧 |E] · SD
(
(�̃�ℓ , 𝐸) |𝑧, (𝑈𝑟 , 𝐸) |𝑧

)
, (5.7)

where 𝑧 ∈ E is to denote that the sum is taken over all side informations 𝑍 = 𝑧, satisfying E.11

11Therefore E can be omitted in the conditioning of the statistical distance.
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We define 𝑝𝑧 := Pred(𝑋 |𝑍 = 𝑧), and as shown in Lemma 5.10, we have

H∞(𝑋 |𝑍E) ≥ 𝛾∗ − log(1 − 𝜌)−1 ,

From Lemma 5.28 we get,

SD

(
(�̃�ℓ , 𝐸) |𝑧, (𝑈𝑟 , 𝐸) |𝑧

)
≤ 1

2

√︂
2𝑟𝑝𝑧 + ℓ · 𝑑′(ℓ)

2𝑟

2𝑛−1
+ 64ℓ4 2𝑟

22𝑛−2
+ 16ℓ2𝑞2 2𝑟

22𝑛−2

Using Jensen’s inequality, (5.7) becomes, for 𝛼 = 2𝑟 and 𝛽 = ℓ ·𝑑′(ℓ) · 2𝑟
2𝑛−1 +64ℓ

4 · 2𝑟
22𝑛−2 +16ℓ

2𝑞2 · 2𝑟
22𝑛−2 ,

SD

(
(�̃�ℓ , 𝐸) |E, (𝑈𝑟 , 𝐸) |E

)
≤ 1

2

√︃
𝛼Pred(𝑋 |LE) + 𝛽

≤ 1
2

√︄
2𝑟−𝛾∗

(1 − 𝜌) + ℓ · 𝑑
′(ℓ) 2𝑟

2𝑛−1
+ 64ℓ4 2𝑟

22𝑛−2
+ 16ℓ2 𝑞

22𝑟

22𝑛−2
.

□

Lemma 5.28. For 𝑧 ∈ E and the random variables as defined earlier,

SD

(
(�̃�ℓ , 𝐸) |𝑧, (𝑈𝑟 , 𝐸) |𝑧

)
≤ 1

2

√︂
2𝑟𝑝𝑧 + ℓ · 𝑑′(ℓ)

2𝑟

2𝑛−1
+ 64ℓ4 2𝑟

22𝑛−2
+ 16ℓ2𝑞2 2𝑟

22𝑛−2

Proof. We fix 𝑧 = (𝜎, 𝐿, 𝑠0). We have that 𝑧, 𝐸 is distributed uniformly over the set of all ideal

ciphers that agree with 𝐿. Thus, by Proposition 3.3,

SD

(
(�̃�ℓ , 𝐸) |𝑧, (𝑈𝑟 , 𝐸) |𝑧

)
≤ 1

2

√︃
2𝑟 · Coll(�̃�ℓ |𝐸𝑧) − 1 . (5.8)

To bound the collision probability, we consider the following experiment:

• choose 𝐸 uniformly consistent with 𝐿

• sample inputs 𝑋 = (𝑋 1, . . . , 𝑋 ℓ) and 𝑋
′
= (𝑋 ′1, . . . , 𝑋

′
ℓ ′) independently but conditioned on
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𝑍 = 𝑧.

• compute �̃�ℓ and �̃� ′ℓ as the truncated MD evaluations with 𝐸 of 𝑋 and 𝑋
′

Now, we have that:

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[𝑋 = 𝑋
′] + Pr[�̃�ℓ = �̃� ′ℓ |𝑋 ≠ 𝑋

′] . (5.9)

Clearly, the former is at most 𝑝𝑧 . To get a bound on the second term, we proceed to fix arbitrary

inputs 𝑥 ≠ 𝑥′ of lengths ℓ and ℓ′, respectively. This is similar to the process that is adopted in

the proof of Lemma 5.11. We construct a similar Structure Graph. Note that in Lemma 5.11, we

assumed that the primitive was a compressing function. In particular, Davies Meyer is also a

compressing function. Therefore, we can define similar structure graph for this construction by

viewing 𝐹 (𝑦, 𝑥) := 𝐸 (𝑥,𝑦) ⊕ 𝑦. From Lemma 5.14 we get the following result:

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[𝐺𝐹 (𝑥, 𝑥′) ∈ Coll𝐿 (𝑥, 𝑥′)] +
1
2𝑟
.

However, the proof of Lemma 5.15 changes. We prove a corresponding Lemma as follows:

Lemma 5.29. For an 𝐸 sampled randomly consistent with 𝐿 with 𝐹 defined as above, and 𝑥 ≠ 𝑥′.

Let 𝐻 ∈ G𝐿 (𝑥, 𝑥′). Then,

Pr[𝐺𝐹 (𝑥, 𝑥′) = 𝐻 ] =
1

2(𝑛−1)·Acc(𝐻 )
.

Proof. We have two messages 𝑥 ≠ 𝑥′ and let 𝑥 (𝑖) be as defined before. We have a randomly

sampled 𝐸 which is consistent with 𝐿. The proof is similar to Lemma 5.15. However, the proof

differs in the case of a colliding edge, i.e the edge causes an accident. In this case,𝐺 (𝑖+1)
𝐹

will only

be consistent if the edge corresponding to 𝑥 (𝑖+1) lands on the same vertex as in 𝐻 (𝑖+1) . However,

the evaluation is not a random function 𝐹 which chooses a value, uniformly at random, from 2𝑛
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values. The evaluation is dependent on the definition of the ideal cipher 𝐸. The output in this case

is chosen, from aminimum of 2𝑛−𝑞−𝑖 values. In other words, Pr[Cons𝑖+1 |Cons𝑖] ≤ 1
2𝑛−𝑞−𝑖 ≤

1
2(𝑛−1)

in this case. Note that the third case happens Acc(𝐻 ) times. Therefore, we have:

Pr[𝐺𝐹 (𝑥, 𝑥′) = 𝐻 ] = Pr[Consℓ̃] ≤
1

2(𝑛−1)·Acc(𝐻 )
.

□

Applying this Lemma to the proof of Lemma 5.16 and the result from [GPR14], we get:

SD

(
(�̃�ℓ , 𝐸) |𝑧, (𝑈𝑟 , 𝐸) |𝑧

)
≤ 1

2

√︂
2𝑟𝑝𝑧 + ℓ · 𝑑′(ℓ)

2𝑟

2𝑛−1
+ 64ℓ4 2𝑟

22𝑛−2
+ 16ℓ2𝑞2 2𝑟

22𝑛−2
.

□

5.2.3 Parameter Choices

In terms of concrete parameters, observe the following for the PRNG constructions from

Merkle-Damgård with Davies-Meyer above:

• Computational PRNG: SHA-512 is a 512-bit block cipher algorithm that encrypts 512

bit hash value using the input as key. Therefore, we let 𝑛 = 512 and set 𝑟 = 𝑛. We let

𝑡 = 1, 𝑞 = 280 and let ℓ = 𝛾∗. This assumes that we get at least one bit of entropy from each

block. We would need 𝛾∗ ≈ 163 to get 80 bits of security.

• IT PRNG: We again let 𝑛 = 512. If we let 𝑟 = 256, then we get (we also approximate

1/(1 − 𝜌) ≤ 2, very generously)

𝜀rob-it ≤
𝑡

2

√︂
2129−𝛾∗ + ℓ · 𝑑

′(ℓ)
2127

+ 𝑡 𝑞
2

2128
,
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We let ℓ = 𝛾∗. Then, if we set for example 𝑞 = 280. We would need the entropy loss, i.e,

𝛾∗ − 𝑟 = 162 for 80 bits of security.

5.3 PRNGs from Sponges

Let 𝑛 ∈ N and 𝑛 = 𝑟 +𝑐 . In the following, for an 𝑛-bit string 𝑠 , let 𝑠 = 𝑠 (r) ∥𝑠 (c) be decomposition

of 𝑠 into an 𝑟 -bit and 𝑐-bit string.

5.3.1 Computational PRNGs from Sponges

A PRNG using the Sponge paradigm can be obtained from a permutation 𝜋 as follows (cf.

Figure 5.3):

Construction 14 (PRNG from Sponges). The Sponge-based PRNG construction Spg = (refresh,

next) uses a permutation 𝜋 : {0, 1}𝑛 → {0, 1}𝑛 to absorb and produce 𝑟 -bit inputs and outputs,

respectively, and is defined as follows:

• refresh
𝜋 (𝑠, 𝑥) = 𝜋 (𝑠 ⊕ 𝑥 ∥0𝑐), and

• next
𝜋 (𝑠) = (𝜋 (𝑠) ⊕ 0𝑟 ∥𝑠 (c), 𝑠 (r)).

The next function design is due to Hutchinson [Hut16a], who simplified a proposal by Gazi and

Tessaro [GT16]. Recall that the Merkle-Damgård constructions have a “parallel” next function

in order to produce 𝑟/𝑛 blocks of random output with 𝑟/𝑛 + 1 calls to the ideal primitive, where

the additional call is used to produce a new state. Were it not for this optimization, on order

to obtain 𝑟 bits of output, one would have to apply the next function 𝑟/𝑛 times in a row, which

would results in twice the number of ideal-primitive calls.

The next function for Sponges, on the other hand, only makes a single call to the ideal prim-

itive to produce both a new state and the random output. Therefore, no parallel next function is

provided for the Sponge-based PRNG.
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The security of Construction 14 is proved in the 𝜋-model, where 𝜋 is a uniformly random

permutation, which can be queried in both the forward and backward direction.

Theorem 5.30 (Robustness of Sponge PRNGs). Construction 14 is a (𝛾∗, 𝑞, 𝑡, ℓ, 𝜀rob)-robust PRNG

in the 𝜋-model for

𝜀rob ≤ 4𝑡 ·
(
𝑞2 + 𝑞ℓ + ℓ2

2𝑛
+ 𝑞

2𝛾∗
+ 𝑞

2

2𝑐

)
,

where 𝑞 = 𝑞 + 𝑟/𝑛 + 1.

Remark 2. Observe that the bound in Theorem 5.30 is only reasonable when 𝑐 is large enough,

which matches the fact that CBC-based PRNGs—which correspond to the case 𝑐 = 0, are not

secure.

Note that iteratively absorbing some input blocks 𝑥1, . . . , 𝑥ℓ via refresh, starting with a state 𝑠0 is

identical to applying the Sponge construction to the input with initialization vector (IV) 𝑠0, which

is denoted by Sponge
𝜋
𝑠0
(𝑥1, . . . , 𝑥ℓ) in the remainder of this section.

The proof of the robustness of the Sponge PRNG construction follows the same outline as that

of the MD construction (cf. Section 5.1.1). It is highly recommended to read that proof first. One

crucial difference between theMerkle-Damgård constructions and Sponges is that Sponges do not

satisfy extraction/maintaining security (with good parameters). For example, given the state of a

Sponge PRNG after absorbing a single (possibly high-entropy) input, a simple inverse query to 𝜋

results in a value of the form 𝑎∥0𝑐 , which is unlikely to happen in the ideal world (𝑏 = 1). This is

handled by explicitly introducing a “hit” probability, i.e., the probability that the attacker queries

𝜋−1 on the final state of the Sponge. Recovering and preserving security are then established

by arguing that the hit probability is low when next is applied to the state. The final bound in

Theorem 5.30 follows by applying Theorem 4.8.
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5.3.1.1 Extraction Security

The extraction security of the Sponge PRNG construction is defined and proved along similar

lines as that of the previous constructions. This section discusses the differences. Denote by

Advinv,𝜋
Spg
(A) the probability that A queries 𝜋−1 on the value 𝑠★ returned by the challenger.

Lemma 5.31 (Extraction security). The advantage of any 𝛾∗-legitimate (𝑞, ℓ)-attacker A against

extraction security of DM is bounded by

Advext,𝜋
Spg
(A) ≤ 𝜀ext

Spg
(𝛾∗, ℓ, 𝑞) :=

𝑞 + 2(𝑞ℓ + ℓ2)
2𝑛

+ 2𝑞
2𝛾∗
+ 𝑞

2

2𝑐
+ Advinv,𝜋

Spg
(A) .

In the following, for convenience, let

𝛿ext
Spg
(𝛾∗, ℓ, 𝑞) :=

𝑞 + 2(𝑞ℓ + ℓ2)
2𝑛

+ 2𝑞
2𝛾∗
+ 𝑞

2

2𝑐
.

Proof. The transcript has the identical format as previously, i.e.,

𝜏 = (𝑠★, 𝑠0, 𝑥1, . . . , 𝑥ℓ , 𝐿)

except that 𝐿 is now the set of 𝜋-queries. To define bad transcripts let ℓ′ ≥ 0 be maximal such

that there exist (𝑢𝑖, 𝑣𝑖) ∈ 𝐿 with 𝑢1 = 𝑠0 ⊕ 𝑥1∥0𝑐 and

𝑢𝑖 = 𝑣𝑖−1 ⊕ 𝑥𝑖 ∥0𝑐

for 𝑖 = 2, . . . , ℓ − 1. A transcript 𝜏 is a bad transcript if

• (hit) (∗, 𝑠★) ∈ 𝐿 or

• (chain) ℓ′ = ℓ .
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As before, to apply Theorem 3.1, one merely needs to bound the probability ratio for good tran-

scripts (Lemma 5.32) and the probability of a bad transcript occurring in the ideal world, i.e, for

𝑏 = 1 (Lemma 5.33). □

Lemma 5.32 (Ratio analysis). For all good transcripts 𝜏 ,

p0(𝜏)
p1(𝜏)

≥
(
1 − 2(𝑞ℓ + ℓ2)

2𝑛

)
.

Proof. As in Section 5.1, for a good transcript,

p1(𝜏) = 𝑝𝐿 · 2−𝑛 and p0(𝜏) = 𝑝𝐿 · 𝑞𝜏 ,

where 𝑝𝐿 denotes the probability that a uniform random permutation is consistent with the

queries in 𝐿 and where 𝑞𝜏 is the probability that

Sponge
𝜋𝐿
𝑠0
(𝑥1, 𝑥2, . . . , 𝑥ℓ) = 𝑠★

over a permutation 𝜋𝐿 that is sampled uniformly at random conditioned on being consistent with

𝐿.

To derive a lower bound on 𝑞𝜏 , note that due to 𝜏 being a good transcript ℓ′ < ℓ . Hence, 𝑞𝜏 is

the probability (over 𝜋𝐿) that

𝑉ℓ := Sponge
𝜋𝐿
𝑣ℓ ′
(𝑥ℓ ′+1, . . . , 𝑥ℓ) = 𝑠★ .

Consider the intermediate values𝑈ℓ ′+1,𝑉ℓ ′+1,𝑈ℓ ′+2,𝑉ℓ ′+2, . . . ,𝑉ℓ−1,𝑈ℓ , where

𝑈ℓ ′+1 = 𝑣ℓ ′ ⊕ 𝑥ℓ ′+1∥0𝑐
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and

𝑈𝑖 = 𝑉𝑖−1 ⊕ 𝑥𝑖 ∥0𝑐

for 𝑖 = ℓ′ + 2, . . . , ℓ as well as

𝑉𝑖 = 𝜋 (𝑈𝑖)

for 𝑖 = ℓ′ + 1, . . . , ℓ − 1. Define, for 𝑖 = ℓ′ + 1, . . . , ℓ , the event FRESHi that

• 𝑈𝑖 is fresh, i.e., there is no query of type (𝑈𝑖, ∗) ∈ 𝐿 and𝑈𝑖 ≠ 𝑈 𝑗 for 𝑗 < 𝑖 , and

• 𝑉𝑖−1 is not a hit, i.e., 𝑉𝑖 ≠ 𝑠★;

observe that FRESHℓ ′+1 is always true due to the maximality of ℓ′ and the fact that 𝜏 is a good

transcript. Let,

FRESH :=
ℓ⋂

𝑖=ℓ ′+1
FRESHi .

Then,

Pr[𝑉ℓ = 𝑠★|FRESH] ≥ 2−𝑛

since the conditioning implies that 𝑈ℓ is a fresh input and therefore 𝑉ℓ is chosen uniformly form

a set of size at most 2𝑛 , which contains 𝑠★ due to 𝜏 being a good transcript and no hits occurring

while evaluating the intermediate values.

Moreover, observe that if 𝑈𝑖−1 is a fresh input, the probability that 𝑉𝑖−1 hits is at most (2𝑛 −

(𝑞 + ℓ))−1, and the probability that𝑈𝑖 is not fresh is at most (𝑞 + ℓ) (2𝑛 − (𝑞 − ℓ))−1 as there are at

most 𝑞 + ℓ non-fresh values when𝑈𝑖 is sampled uniformly from a set of size at least 2𝑛 − (𝑞 + ℓ).

Hence,

Pr

[
FRESHi

����� 𝑖−1⋂
𝑘=ℓ ′+1

FRESHk

]
≤ 𝑞 + ℓ + 1

2𝑛 − (𝑞 + ℓ) ,

and

Pr[FRESH] ≥ 1 − 𝑞ℓ + ℓ2 + ℓ
2𝑛 − (𝑞 − ℓ) ,
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and, finally,

𝑞𝜏 ≥ Pr[FRESH] · Pr[𝑌ℓ = 𝑠★|FRESH]

≥
(
1 − 𝑞ℓ + ℓ2 + ℓ

2𝑛 − (𝑞 − ℓ)

)
· 2−𝑛 ,

which implies
p0(𝜏)
p1(𝜏)

≥ 1 − 𝑞ℓ + ℓ2
2𝑛 − (𝑞 − ℓ) ≥ 1 − 2(𝑞ℓ + ℓ2)

2𝑛
.

□

Lemma 5.33 (Bad event analysis). For the set B of bad transcripts (as defined above),

Pr[𝑇1 ∈ B] ≤
2𝑞
2𝛾∗
+ 𝑞
2𝑛
+ 𝑞

2

2𝑐
+ Advinv,𝜋

Spg
(A) .

Proof. The same resampling approach as in the proof of Lemma 5.4 applies here as well. First,

observe that a hit occurs if either one of the forward queries returns 𝑠★ or if the attacker makes

a backward query on 𝑠★. Hence, the probability of a hit is at most

𝑞

2𝑛
+ Advinv,𝜋

Spg
(A) .

Consider the following directed graph 𝐺 = (𝑉 , 𝐸) based on the query set 𝐿:

• the nodes are the capacity parts that appear in 𝐿, i.e.,

𝑉 = {𝑣 (c) | (𝑣, ∗) ∈ 𝐿 ∨ (∗, 𝑣) ∈ 𝐿} ;

• two nodes are connected by a labeled edge if a corresponding query has been made, i.e.,

𝐸 = {(𝑢 (c), 𝑣 (c), 𝑙) | (𝑢, 𝑣) ∈ 𝐿 ∧ 𝑙 = 𝑢 (r) ⊕ 𝑣 (r)} .
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𝐿 is called collision-free if there is at most one path with unique labels from 𝑠
(c)
0 to every other

node in 𝐺 . Let E be the event that 𝐿 is not collision-free. Note that

Pr[𝑇1 ∈ B] ≤ Pr[𝑇1 ∈ B|E] + Pr[E] ≤ Pr[𝑇1 ∈ B|E] +
𝑞2

2𝑐
.

Towards bounding Pr[𝑇1 ∈ B|E], consider a triple 𝑧 = (𝜎, 𝐿, 𝑠0) ∈ E, which, once more, is

shorthand for 𝐿 being collision-free. Define a potential chain to be, for some ℓ , any sequence

(𝑢1, 𝑣1), . . . , (𝑢ℓ , 𝑣ℓ) ∈ 𝐿 such that 𝑢1 = 𝑠0 ⊕ 𝜇1∥0𝑐 and

𝑢𝑖 = 𝑣𝑖−1 ⊕ 𝜇𝑖 ∥0𝑐

for 𝑖 = 2, . . . , ℓ − 1 and some values 𝜇1, . . . , 𝜇ℓ . Note that (𝑢 (c)1 , 𝑣
(c)
1 ), . . . , (𝑢

(c)
ℓ
, 𝑣
(c)
ℓ
) describe a

path from 𝑠
(c)
0 to 𝑣 (c)

ℓ
with labels 𝜇1, . . . , 𝜇ℓ . Hence, that for a collision-free 𝐿, there are at most 𝑞

potential chains.

Clearly, conditioned on 𝑍 = 𝑧, 𝑇1 ∈ B if and only if for some potential chain, 𝑋𝑖 = 𝜇𝑖 for all

𝑖 = 1, . . . , ℓ . Hence, by the legitimacy of A,

Pr[𝑇1 ∈ B|𝑍 = 𝑧] ≤ 𝑞 · 𝑝𝑧 ,

where 𝑝𝑧 := Pred(𝑋 |𝑍 = 𝑧). The remainder of the proof proceeds in the exact same fashion as

the proof of Lemma 5.4. □

5.3.1.2 Maintaining Security

The maintaining security of the Sponge PRNG construction Spg is proved along similar lines

as that of the previous constructions. This section discusses the differences.

Lemma 5.34 (Maintaining security). The advantage of any (𝑞, ℓ)-attackerA against maintaining
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security is bounded by

Advmtn,𝜋
Spg
(A) ≤ 𝜀mtn

Spg
(𝑞, ℓ) :=

2(𝑞ℓ + ℓ2)
2𝑛

+ 2𝑞
2𝑛
+ Advinv,𝜋

Spg
(A) .

In the following, for convenience, let

𝛿mtn
Spg
(𝛾∗, ℓ, 𝑞) :=

2(𝑞ℓ + ℓ2)
2𝑛

+ 2𝑞
2𝑛

.

Proof. Similarly to the preceding maintaining proofs, maintaining security of Spg is shown via

an H-coefficient proof. Once more, one considers transcripts

𝜏 = (𝑠★, 𝑠0, 𝑥1, . . . , 𝑥ℓ , 𝐿) ,

where 𝐿 refers to 𝜋-queries here. In a bad transcript, 𝐿 contains a query of the type

• (𝑠0, ∗), which happens (with in the case 𝑏 = 1) with probability at most |𝐿 |/2𝑛 since 𝑠0 is

completely independent of A’s view, or

• (∗, 𝑠★), which happens (in the case 𝑏 = 1) with probability |𝐿 |/2𝑛 via a forward query or

with probability Advinv,𝜋
Spg
(A) via a backward query.

As for good transcripts

p1(𝜏) = 2−2𝑛 · 𝑝𝐿 and p0(𝜏) ≥
(
1 − 2(𝑞ℓ + ℓ2)

2𝑛

)
· 2−2𝑛 · 𝑝𝐿 ,

where the latter follows via an argument similar to that in the proof of Lemma 5.32. □
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5.3.1.3 Next Security

Recall that the next function next of the Sponge construction computes, on an input state 𝑠0,

(𝑠,𝑦) = next
𝜋 (𝑠0) = (𝜋 (𝑠0) ⊕ 0𝑟 ∥𝑠 (c)0 , 𝑠

(r)
0 ) ,

where 𝑠 is the new state and 𝑦 is the output. Next security demands that if 𝑠0 is chosen uniformly

at random, then the output of next be indistinguishable from 𝑈𝑛+𝑟 to an attacker A making at

most to 𝑞 queries to 𝜋 . Denote by Advnext,𝜋
Spg
(A) the advantage of A.

Lemma 5.35 (Next security). The advantage of any 𝑞-attackerA against next security is bounded

by

Advnext,𝜋
Spg
(A) ≤ 𝜀next

Spg
(𝑞) :=

2𝑞
2𝑐
.

Proof. For a simple H-coefficient proof, consider a transcript

𝜏 = (𝑠 (c)0 , 𝑠★, 𝑦★, 𝐿),

where 𝑠0 is the initial state, 𝑠★ is the new state, 𝑦★ is the output value, and 𝐿 are the queries to 𝜋 .

A bad transcript is a transcript with a query of the type

• (𝑦★∥𝑠 (c)0 , ∗) ∈ 𝐿 or

• (∗, 𝑠★ ⊕ 0𝑟 ∥𝑠 (c)0 ) ∈ 𝐿.

Since the view of A in the ideal world, where A’s view is independent of 𝑠 (c)0 , the probability of

a bad transcript is at most 2𝑞/2𝑐 .

For a good transcript, observe that

p1(𝜏) = 2−𝑐 · 2−𝑟 · 2−𝑛 · 𝑝𝐿 ,
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where 𝑝𝐿 denotes the probability that a uniform random permutation is consistent with the

queries in 𝐿. Moreover,

p0(𝜏) = 2−𝑐 · 2−𝑟 · 𝑞𝜏 · 𝑝𝐿 .

Note that since 𝜏 is a good transcript, (𝑦★, 𝑠 (c)0 ) is a fresh input to 𝜋 and 𝑠 ⊕0𝑟 ∥𝑠 (c)0 is still available;

hence 𝑞𝜏 ≥ 2−𝑛 . □

5.3.1.4 Recovering Security

In the following, let 𝜀ext
Spg
(𝛾∗, 𝑞, ℓ) and 𝜀next

Spg
(𝑞) be as in Lemmas 5.31 and 5.35. Once more,

extraction and next security together imply recovering security:

Lemma 5.36 (Recovering Security). For every 𝛾∗-legitimate (𝑞, ℓ)-attacker A,

Advrec,𝜋
Spg
(A) ≤ 𝛿ext

Spg
(𝛾∗, ℓ, 𝑞 + 𝑟/𝑛 + 1) + 𝑞 + 𝑟/𝑛 + 1

2𝑛
+ 2 · 𝜀next

Spg
(𝑞 + 𝑟/𝑛 + 1) .

Proof. As in the proof of Lemma 5.7 consider, for 𝑏 ∈ {0, 1}, the recovering experiment 𝐻𝑏 con-

ditioned on the secret bit having the value 𝑏. Moreover, again define a hybrid experiment 𝐻 1
2
in

which the challenge oracle returns next𝜋 (𝑈𝑛) to A.

• The distance between 𝐻0 and 𝐻 1
2
is bounded by a similar reduction Aext to extraction se-

curity as in Lemma 5.7. Hence, it is at most

𝜀ext
Spg
(𝛾∗, ℓ, 𝑞 + 𝑟/𝑛 + 1) ≤ 𝛿ext

Spg
(𝛾∗, ℓ, 𝑞 + 𝑟/𝑛 + 1) + Advinv,𝜋

Spg
(Aext) .

In order to bound the probability of a hit in the ideal world of extraction security, one

analyses this event in a hybrid world similar to 𝐻1. By next security and the fact that hit

occurs with probability at most (𝑞 + 𝑟/𝑛 + 1) · 2−𝑛 in 𝐻1 in that hybrid,

Advinv,𝜋
Spg
(Aext) ≤

𝑞 + 𝑟/𝑛 + 1
2𝑛

+ 𝜀next
Spg
(𝑞 + 𝑟/𝑛 + 1) .
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𝑠

𝑥𝑖

𝜋

refresh next

𝑦𝑟

𝑐
𝜋 𝑠′ 𝑠

𝑥𝑖

𝜋

refresh

𝑦𝑟

𝑐
0𝑛

𝑠′

next

Figure 5.3: Procedures refresh (processing a single-block input 𝑥𝑖 ) and next of Merkle-Damgård PRNG

constructions with compression function 𝐹 . Left: Computationally secure Construction 10; right: IT can-

didate Construction 11.

• By an argument similar to that in Lemma 5.7, one uses next security to show that the

advantage of A in distinguishing hybrids 𝐻 1
2
and 𝐻1 is upper-bounded by 𝜀next

MD
(𝑞).

□

5.3.1.5 Preserving Security

In the following, let 𝜀mtn
Spg
(𝑞, ℓ) and 𝜀next

Spg
(𝑞) be as in Lemmas 5.31 and 5.35. Once more, main-

taining and next security together imply preserving security:

Lemma 5.37 (Preserving Security). For every (𝑞, ℓ)-attacker A,

Advpre,𝜋
Spg
(A) ≤ 𝛿mtn

Spg
(ℓ, 𝑞 + 𝑟/𝑛 + 1) + 𝑞 + 𝑟/𝑛 + 1

2𝑛
+ 2 · 𝜀next

Spg
(𝑞 + 𝑟/𝑛 + 1) .

The proof proceeds similarly to that of Lemma 5.36—except that reductions to maintaining secu-

rity are made instead of extraction security—and is omitted.

5.3.2 IT PRNGs from Sponges

In the IT variant of the Sponge construction, refresh remains the same, but next will truncate

the input state to 𝑟 bits, which it outputs, and then zero out the state.
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Construction 15 (IT-PRNG from Sponges). The Sponge-based PRNG construction Spg𝑟 =

(refresh, next) uses a permutation 𝜋 : {0, 1}𝑛 → {0, 1}𝑛 to absorb and produce 𝑟 -bit inputs and

outputs, respectively, and is defined as follows:

• refresh
𝜋 (𝑠, 𝑥) = 𝜋 (𝑠 ⊕ 𝑥 ∥0𝑐), and

• next
𝜋 (𝑠) = (0𝑛, 𝑠 [1..𝑟 ]).

An IT-PRNG based on the Sponge paradigm is a modification of the computational variant where

the output of next is merely the truncated state to the first 𝑟 bits along with 0𝑛 as the new state.

Theorem 5.38 (IT-Robustness of Sponge PRNGs). Construction 15 is a (𝛾∗, 𝑞, 𝑡, ℓ, 𝜀rob)-IT-robust

PRNG in the 𝜋-model for

𝜀rob-it ≤
𝑡

2

√︄
2𝑟−𝛾∗

(1 − 𝜌) +
ℓ · (ℓ + 𝑞)

2𝑐−1
+ 𝑡𝜌 ,

for 𝜌 =
𝑞2

2𝑐 where 𝑞 = 𝑞 + 𝑡ℓ

In this section, we take a look at the proof of robustness for the IT-PRNG based on the Sponge

construction.

Lemma 5.39. For every 𝛾∗-IT-legitimate (𝑞, ℓ)-attacker, in the ideal permutation model,

SD

(
(�̃�ℓ , 𝜋) |E, (𝑈𝑟 , 𝜋) |E

)
≤ 1

2

√︄
2𝑟−𝛾∗

(1 − 𝜌) +
ℓ · (ℓ + 𝑞)

2𝑐−1
+ 𝜌 .

where 𝜌 =
𝑞2

2𝑐

Proof (of Lemma 5.39). We define a few random variables which we will be using in our proofs.

• 𝜋 : a randomly chosen permutation, to which the adversary is given access. We use 𝜋 both

for the oracle itself, as well as for the random variable describing the entire function table.
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• ℓ : Number of blocks input to the challenge oracle (which is a random variable itself, we

overload notation here, using the same letter we use in the bound on ℓ in the lemma state-

ment).

• 𝑋 = (𝑋 1, . . . , 𝑋 ℓ): the blocks input to the challenge oracle.

• �̃�ℓ : output of MD𝑟 . Let us remind ourselves that this is 𝑠 truncated to 𝑟 bits (the output of

next);

• 𝑍 = (Σ,L, 𝑆0): “side information” where Σ is the attacker state before challenge, L is the

attacker query/answers to 𝜋 before challenge , 𝑆0 is the initial PRNG state provided by A;

• 𝑈𝑟 : uniform 𝑟 -bit string.

The advantage of adversary A in the recovering game is bounded by SD

((
�̃�ℓ , 𝑍, 𝜋

)
, (𝑈𝑟 , 𝑍, 𝜋)

)
.

Therefore, it is sufficient to upper-bound that. The reasoning is quite simple. Note that𝑍 contains

the state of the attacker Σ just before it makes the challenge query. This means that A cannot

tell apart real from random. For ease of this discussion we define the idea of supernode. State

nodes have values in {0, 1}𝑛 . They are clustered to supernodes where a super node with label in

{0, 1}𝑐 contains all state nodes having that same values in the last c bits. Therefore, there are 2𝑐

supernodes with each having 2𝑟 state nodes.

We also define an event E where the queries in 𝐿 land do not collide on the last 𝑐 bits of

other elements. This is true even for inverse queries, i.e 𝜋−1(𝑣) should result in a new supernode.

We would like to point out that E has the same probability of occurring in either experiment,

since the experiments are identical up to the point when this event is defined. Therefore, by

Proposition 3.4,

SD

(
(�̃�ℓ , 𝑍, 𝜋), (𝑈𝑟 , 𝑍, 𝜋)

)
≤ SD

(
(�̃�ℓ , 𝑍, 𝜋) |E, (𝑈𝑟 , 𝑍, 𝜋) |E

)
+ 𝑞

2

2𝑐
;

149



For convenience we let 𝜌 := 𝑞2

2𝑐 for the remainder of the proof. In order to bound the statistical

distance conditioned on E, we can rewrite the same as as

SD

(
(�̃�ℓ , 𝑍, 𝜋) |E, (𝑈𝑟 , 𝑍, 𝜋) |E

)
=

∑︁
𝑧∈E

Pr[𝑍 = 𝑧 |E] · SD
(
(�̃�ℓ , 𝜋) |𝑧, (𝑈𝑟 , 𝜋) |𝑧

)
, (5.10)

where 𝑧 ∈ E is to denote that the sum is taken over all side informations 𝑍 = 𝑧, satisfying E.12

Define 𝑝𝑧 := Pred(𝑋 |𝑍 = 𝑧), and observe that

E𝑧 [𝑝𝑧] = Pred(𝑋 |𝑍 ) ≤ 2−𝛾
∗
,

where the latter inequality follows from the assumption H∞(𝑋 |𝑍 ) ≥ 𝛾∗. Moreover,

H∞(𝑋 |𝑍E) ≥ 𝛾∗ − log(1 − 𝜌)−1 ,

which is due to

Pred(𝑋 |𝑍 ) ≥
∑︁
𝑧∈E

Pr[𝑍 = 𝑧] · 𝑝𝑧

= Pr[E] ·
∑︁
𝑧∈E

Pr[𝑍 = 𝑧]
Pr[E] · 𝑝𝑧

= Pr[E] · Pred(𝑋 |𝑍E) .

From Lemma 5.40 we prove below, we will get,

SD

(
(�̃�ℓ , 𝜋) |𝑧, (𝑈𝑟 , 𝜋) |𝑧

)
≤ 1

2

√︂
2𝑟𝑝𝑧 +

ℓ · (ℓ + 𝑞)
2𝑐−1

.

12Therefore E can be omitted in the conditioning of the statistical distance.
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Using Jensen’s inequality, (5.10) becomes, for

SD

(
(�̃�ℓ , 𝜋) |E, (𝑈𝑟 , 𝜋) |E

)
≤ 1

2

√︂
2𝑟Pred(𝑋 |LE) + ℓ · (ℓ + 𝑞)

2𝑐−1

≤ 1
2

√︄
2𝑟−𝛾∗

(1 − 𝜌) +
ℓ · (ℓ + 𝑞)

2𝑐−1
.

□

Lemma 5.40. For 𝑧 ∈ E and the random variables as defined earlier,

SD

(
(�̃�ℓ , 𝜋) |𝑧, (𝑈𝑟 , 𝜋) |𝑧

)
≤ 1

2

√︂
2𝑟𝑝𝑧 +

ℓ · (ℓ + 𝑞)
2𝑐−1

.

Proof. We fix 𝑧 = (𝜎, 𝐿, 𝑠0). We have that 𝑧, 𝜋 is distributed uniformly over the set of all ideal

permutations that agree with 𝐿. Thus, by Proposition 3.3,

SD

(
(�̃�ℓ , 𝜋) |𝑧, (𝑈𝑟 , 𝜋) |𝑧

)
≤ 1

2

√︃
2𝑟 · Coll(�̃�ℓ |𝜋𝑧) − 1 . (5.11)

We consider the following experiment to bound the collision probability:

• choose 𝜋 uniformly consistent with 𝐿

• sample inputs 𝑋 = (𝑋 1, . . . , 𝑋 ℓ) and 𝑋
′
= (𝑋 ′1, . . . , 𝑋

′
ℓ ′) independently but conditioned on

𝑍 = 𝑧.

• compute �̃�ℓ and �̃� ′ℓ as the Sponge evaluation of 𝑋 and 𝑋
′

Now, we have that:

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[𝑋 = 𝑋
′] + Pr[�̃�ℓ = �̃� ′ℓ |𝑋 ≠ 𝑋

′] . (5.12)

By definition, we have that the former term is 𝑝𝑧 . We take a closer look at the latter term. We fix

arbitrary inputs 𝑥 and 𝑥′. Let the length of them be ℓ and ℓ′ respectively. We also assume, wlog,
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that the evaluation of 𝑥′ is not completely covered by 𝐿; due to the collision-freeness of 𝐿. Let

𝑥𝑘+1 be the first block of 𝑥 not covered by L and similarly 𝑥′𝑘+1 for 𝑥 ′ . We let 𝑘 = ℓ if all blocks

are covered. We then apply Lemma 5.41 to conclude the proof. □

Lemma 5.41. Let 𝜋 be sampled randomly consistent with 𝐿, and 𝑥 ≠ 𝑥′. Then, let �̃�ℓ and �̃� ′ℓ be

values obtained after truncating at the end of the Sponge evaluations on inputs 𝑥 and 𝑥′ respectively.

Then,

Pr[�̃�ℓ = �̃� ′ℓ ] ≤
ℓ̃ (𝑞 + ℓ̃)
2𝑛−1

+ 1
2𝑟
.

Proof. We denote by Coll𝐿 (𝑥, 𝑥′) the event that the sponge evaluation on inputs 𝑥, 𝑥′ collide at

the final state node, for a permutation 𝜋 sampled consistently with 𝐿. We rewrite Pr[�̃�ℓ = �̃� ′ℓ ] as:

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[Coll𝐿 (𝑥, 𝑥′)] + Pr[�̃�ℓ = �̃� ′ℓ |Coll𝐿 (𝑥, 𝑥′)]

We take a closer look at the latter term. Note that the evaluation of the inputs is fixed and it

has no collision at the end nodes. We proceed to assign random, yet distinct values to the final

state nodes. These are chosen from {0, 1}𝑛 . Note that it is sufficient to look at the two output

vertices locally without looking at the global state. There are 2𝑛 (2𝑛 − 1) pairs of values for these

output vertices such that these values are distinct. However, of these, 2𝑟2𝑛−𝑟 (2𝑛−𝑟 −1) have values

which are equal in the first 𝑟 bits and yet are distinct 𝑛-bit strings. Therefore,

Pr[�̃�ℓ = �̃� ′ℓ |Coll𝐿 (𝑥, 𝑥′)] ≤
2𝑟2𝑛−𝑟 (2𝑛−𝑟 − 1)

2𝑛 (2𝑛 − 1)

=
2𝑛−𝑟 − 1
2𝑛 − 1

≤ 2𝑛−𝑟

2𝑛
=

1
2𝑟
.
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Putting it together, we have:

Pr[�̃�ℓ = �̃� ′ℓ ] ≤ Pr[Coll𝐿 (𝑥, 𝑥′)] +
1
2𝑟
. (5.13)

Nowwe bound the value of Pr[Coll𝐿 (𝑥, 𝑥′)]. Consider the intermediate evaluations starting from

𝑘 + 1. These are the inputs not covered by the list 𝐿. Define them as: 𝑈𝑘+1,𝑉𝑘+1, . . . ,𝑈ℓ̃ ,𝑉ℓ̃ such

that:

𝑈𝑘+1 = 𝑠𝑘 ⊕ 𝑥𝑘+1 | |0𝑐

and for 𝑖 = 𝑘 + 2, . . . , ℓ̃ ,

𝑈𝑖 = 𝑉𝑖−1 ⊕ 𝑥𝑖 | |0𝑐 .

In addition, for 𝑖 = 𝑘 + 1, . . . , ℓ̃

𝑉𝑖 = 𝜋 (𝑈𝑖) .

For 𝑖 = 𝑘 + 1, . . . , ℓ̃ , denote by FRESHi be the event𝑈𝑖 is fresh, i.e, 𝜋 (𝑈𝑖) has not yet been defined.

It is clear that FRESHk+1 is true. Let

FRESH =

ℓ̃−1⋂
𝑖=𝑘+1

FRESHi

Then,

Pr[Coll𝐿 (𝑥, 𝑥′)] ≤ Pr[Coll𝐿 (𝑥, 𝑥′) |FRESH] + Pr[FRESH]

Clearly the former term is,

Pr[Coll𝐿 (𝑥, 𝑥′) |FRESH] ≤
1

2𝑛 − ℓ̃ − 𝑞

Given that FRESHi−1 is true, this implies that 𝑉𝑖−1 = 𝜋 (𝑈𝑖−1) was freshly chosen. Therefore, for

FRESHi to be false, 𝑉𝑖−1 must have been chosen such that 𝑈𝑖 = 𝑉𝑖−1 ⊕ 𝑥𝑖 is not fresh. Remember
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that, 𝑉𝑖−1 would have been uniformly sampled from at least 2𝑛 − 𝑞 − ℓ̃ values. Therefore,

Pr[FRESHi |
𝑖−1⋂
𝑗=𝑘+1

FRESHj] ≤
(𝑞 + 𝑖)

2𝑛 − ℓ̃ − 𝑞
.

In other words, Pr[FRESH] ≤ (ℓ̃−1) (𝑞+ℓ̃−1)2𝑛−1 . □

5.3.3 Parameter Choices

In terms of concrete parameters, observe the following for the PRNG constructions from

Sponges above: above:

• Computational PRNG: SHA-3 like parameters have 𝑛 = 1600 and 𝑐 = 1024. We let

𝑡 = 1, 𝑞 = 280 and let ℓ = 𝛾∗. This assumes that we get at least one bit of entropy from each

block. We would need 𝛾∗ ≈ 163 to get 80 bits of security.

• IT PRNG: We let 𝑛 = 1600 and 𝑐 = 1024. In addition, we let 𝑡 = 1 and 𝑞 = 280. We also let

ℓ = 𝛾∗. Therefore, we incur an entropy loss of 160 bits to get 80 bits of security.
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6 | On Seedless PRNGs and Premature

Next

This chapter is based on joint work with Sandro Coretti, Yevgeniy Dodis, Noah Stephens-

Davidowitz, and Stefano Tessaro that appeared in ITC 2022 [CDK+22]. Passages are taken verba-

tim from this paper. The chapter considers the security of seedless PRNGs against premature next

attacks [KSWH98]. The idea behind such an attack is that next—the algorithm extracting pseudo-

random bits from the PRNG state—is called before the state has accumulated sufficient entropy.

In Section 6.1, we look at the problem in greater detail and discuss the current state of the art,

prior to this dissertation. In Section 6.2, we see an impossibility result for the existence of seed-

less PRNGs which are “premature-next” robust. In Section 6.3, we define seedless schedulers and

motivate a need for relaxing the security definition. In Section 6.4 we look at one such relaxation

and in Section 6.5 we look at the other relaxation. In both these cases, we show a lower-bound

for security and present constructions that match this lower bound.

6.1 The Premature Next Problem

The resulting output will therefore not be fully random, and an adversary can potentially use

the output of many such calls to recover the state. We adopt the notion of robustness against

premature-next attacks as defined by Dodis et al. [DSSW17]. Their work generalized and ana-

155



lyzed a key technique tomitigate such attacks that originated in the designs of the Yarrow [KSF99]

and Fortuna [FS03] PRNGs. Roughly, the key idea is that the entropic inputs to the PRNG are

carefully distributed to several “smaller” PRNGs, which we refer to as pools, and, with different

frequencies, these pools are used to randomize a register from which random bits are extracted.

(We formalize this approach in detail below.) While both Yarrow and Fortuna use deterministic

scheduling strategies to assign entropic inputs to a pool and to decide when each pool contributes

to the register, the provable robustness against premature-next attacks is achieved in [DSSW17]

by relying on a random seed (independent from the inputs) to ensure that the entropy received

from the adversary is roughly evenly distributed among the pools.

It is not hard to see that the fixed pool assignment schedule adopted by Yarrow/Fortuna cannot

be robust against premature next attacks without extreme restrictions on the adversaries (e.g., the

constant rate restriction). However, other seedless strategies are possible (e.g., one could assign

entropic inputs to pools chosen depending on the inputs themselves, or some previous inputs; or

one might try to divide each input up into smaller pieces in some way; or one might not use pools

at all), and the larger question remains on the feasibility of a seedless PRNG which is robust, even

with premature next calls. One of course should exercise some care, a fully secure deterministic

PRNG cannot exist (regardless of premature-next attacks) for the same reasons deterministic ex-

traction is impossible. So, we must make some restrictions on the input distributions provided by

the adversary. For this reason, in the following section, we will focus on the case of independent

inputs, for which deterministic extraction is–in principle–possible.

6.2 Impossibility of “Premature Next” Robust Seedless

PRNGs

Even in this setting, the main result of this section is an impossibility result. (So, the fact that

we restrict our attention to independent inputs simply makes our result stronger.) Specifically,
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we show that it is impossible to have such a seedless PRNG which is robust against premature

next attacks, even in a setting where the entropic inputs are independent. Before we present our

result, which is stated below as Theorem 6.5, we introduce some more syntax and definitions.

6.2.1 Pseudorandom Number Generators with Input

In this section, we will briefly recall the syntax of this primitive, as discussed in Chapter 4.

Syntax. A PRNG is a stateful cryptographic primitive that accumulates entropy by absorbing

inputs which it then uses to produce pseudorandom bits when the entropy of its state is high. A

PRNG consists of two algorithms as defined below:

Definition 6.1 (Syntax of PRNGs). A pseudorandom number generator with input (PRNG) is a pair

of algorithms PRNG = (refresh, next) sharing a 𝑛-bit state 𝑠 , where

• refresh takes a state 𝑠 and an input 𝑥 ∈ {0, 1}𝑚 and produces a new state 𝑠′ = refresh(𝑠, 𝑥),

and

• next takes a state 𝑠 and produces a new state and an output 𝑦 ∈ {0, 1}𝑟 , i.e, (𝑠′, 𝑦) = next(𝑠).

A PRNG processing𝑚-bit inputs and producing 𝑟 -bit output is called a (𝑚, 𝑟 )-PRNG.

For our impossibility result, we will focus on (1, 1)-PRNG. This is without loss of generality,

as we could always buffer 𝑚 such entropic inputs before applying a “bigger” refresh call on 𝑚

such bits, and impossibility for 1 output bit implies that for 𝑟 ⩾ 1 output bits.

Security. In Chapter 4, we looked at the robustness security game, without support for Prema-

ture Next (ROB). For purposes of this paper, we will focus on robustness security with Premature

Next (NROB), as defined in Figure 6.1. While we adapt the original definition from [DSSW17] to

the seedless setting, we note that we present a highly simplified security game that is enough to

provide for our impossibility result. (We also leave out some functionality that is not necessary
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for the attacker in our impossibility result, which again simply makes our impossibility result

stronger.)

Most significantly, we assume that all of the samples provided by the attacker are indepen-

dent from each other (which makes out impossibility much result stronger). Formally, attacker

outputs a distribution𝑋𝑖 for the next entropic sample, and the security game independently sam-

ples a concrete value 𝑥𝑖 ←$ 𝑋𝑖 from this distribution, without giving any side information back

to the attacker. This allows for much simpler accounting for entropy, — by simply adding indi-

vidual entropy of samples 𝑋𝑖 produced by the attacker, — without worrying about (quite subtle)

conditional entropy of such samples.

In more detail, NROB game allows adversary to access to the following oracles:

• get-next allows the attacker to get pseudorandom outputs by calling the next procedure

on the current state and returning the output 𝑦.

• next-ror creates a challenge, i.e., if 𝑏 = 1, it outputs a uniform random value 𝑦1 ∈ {0, 1}

instead of the PRNG output 𝑦0. Here, the PRNG output is second part of the output of next

procedure.

• get-state models state compromises by revealing the value of the state.

Definition 6.2 (Definition of an Attacker). An attackerA is called a (𝑞, 𝜏)-attacker if it provides

at most 𝑞 input distributions for refresh and runs in time at most 𝜏 .

For security, the game keeps track of the entropy counter 𝑐 which counts the entropy the

attacker injected into the system since the latest compromise. When 𝑐 reaches a critical value 𝛾∗,

we would like our PRNG to recover. However, instead of demanding immediate recovery (like in

the simpler robustness game ROB discussed in Chapter 4), we allow a factor of 𝛽 gap. Concretely,

if entropy 𝛾∗ took 𝑇 ∗ steps to accumulate, we demand recovery by time 𝑇 ⩽ 𝛽𝑇 ∗.
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Game The PRNG Robustness∗ Game

NROB

𝜎 = ⊥; 𝑠 = 0; 𝑐 = 0
𝑏←$ {0, 1}; corrupt = true

𝑇 = 0;𝑇 ∗ = 0
for 𝑖 = 1, . . . , 𝑞 do

(𝜎,𝑋𝑖) ←$Aget−next,get−state,next−ror(𝜎)
𝑥𝑖 ←$ 𝑋𝑖
𝑠 = refresh(𝑠, 𝑥𝑖)
𝑐 = 𝑐 + H∞(𝑋𝑖)
𝑇 = 𝑇 + 1
if 𝑐 ≥ 𝛾∗ then

if 𝑇 ∗ = 0 then

𝑇 ∗ = 𝑇
if 𝑇 ≥ 𝛽𝑇 ∗ then

corrupt = false

𝑏 ′←$A(𝜎)

get − next
(𝑠,𝑦) = next(𝑠)
return 𝑦

next − ror
(𝑠,𝑦0) = next(𝑠)
𝑦1←$ {0, 1}𝑟
if corrupt = true then

return 𝑦0
return 𝑦𝑏

get − state
𝑐 = 0 ; corrupt = true

𝑇 = 0;𝑇 ∗ = 0
return 𝑠

Figure 6.1: The Robustness Game with Premature Next Calls NROB(𝛾∗, 𝛽, 𝑞).

Definition 6.3. The advantage of a (𝑞, 𝜏)-attacker A in the NROB(𝛾∗, 𝛽, 𝑞) game is denoted by

AdvNROB
PRNG
(A). Further, we say that PRNG is (𝛾∗, 𝛽, 𝑞, 𝜖, 𝜏)-secure if for any (𝑞, 𝜏)-attacker A,

AdvNROB
PRNG
(A) ≤ 𝜖

6.2.2 Impossibility Result

The idea of our attack is that the adversary provides bit inputs such that every 𝑛 inputs has

one bit of entropy. Further, the premature next call will reveal information about this bit. We will

prove the result through a series of lemmas. As mentioned before, we will assume that the inputs

and the outputs are merely bits.

In the remainder of this section, wewill workwith a function 𝑓PRNG : {0, 1}𝑛×{0, 1}𝑛 → {0, 1},

for PRNG = (refresh, next). This function 𝑓PRNG(𝑠, 𝑥) represents the application of 𝑛 iterated

refresh calls, starting from an initial state 𝑠 with input 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}, before finally applying

next to produce an output bit 𝑦, or more formally:
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𝑓PRNG(𝑠, 𝑥1 | | . . . | |𝑥𝑛):

for 𝑖 = 1 to 𝑛

𝑠 = refresh(𝑠, 𝑥𝑖)

(𝑠,𝑦) = next(𝑠)

return 𝑦

This is equivalent to applying one “big-refresh” before one next, as indicated before. Further, we

write 𝑥−𝑖 for 𝑥1 | | . . . | |𝑥𝑖−1 | |𝑥𝑖+1 | | . . . | |𝑥𝑛 , i.e., the binary string 𝑥 , except for the 𝑖-th bit. Then, we

can define 𝑥−𝑖,𝜒 to be the string where the 𝑖-th bit is set to 𝜒 , i.e.

𝑥−𝑖,𝜒 := 𝑥1, . . . , 𝑥𝑖−1, 𝜒, 𝑥𝑖+1, . . . , 𝑥𝑛

For any function𝑔 and any 𝑖 , we abuse notation andwrite𝑔(𝑥−𝑖,𝜒 ) as a shorthand for𝑔(𝑥1 | | . . . | |𝑥𝑛)

where 𝑖-th bit is 𝜒 . We will also use𝑋 to denote the random variable corresponding to 𝑥1 | | . . . | |𝑥𝑛

and use 𝑋−𝑖 to denote the random variable corresponding to 𝑥−𝑖 .

Lemma 6.4. There exists a randomized 𝑂 (𝑛2) algorithm Find𝑔 with oracle access to any function

𝑔 : {0, 1}𝑛 → {0, 1}, such that with probability at least 1− 2−𝑛 (over the coins Find𝑔), Find𝑔 outputs

(𝑖, 𝑧) which satisfies precisely one of the following two (disjoint) properties:

• 𝑖 = 0, 𝑧 ∈ {0, 1}, and Pr[𝑔(𝑈𝑛) = 𝑧] ≥ 0.6.

• 1 ≤ 𝑖 ≤ 𝑛, 𝑧 ∈ {0, 1}𝑛−1 and 𝑔(𝑥−𝑖,0) ≠ 𝑔(𝑥−𝑖,1) where 𝑥−𝑖 = 𝑧.

(In other words, Find𝑔 either discovers that 𝑔(𝑈𝑛) is biased, or it identifies two 𝑛-bit strings that differ

in a single bit such that 𝑔 returns different values on these two strings.)

Proof. The algorithm Find𝑔 is defined in Figure 6.2. The Find𝑔’s output satisfies case 2 unless ,

after 𝑛2 tries, the algorithm fails to find a value in the first loop. Further, in the second loop, the

algorithm merely outputs the majority element.
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Analysis of First for Loop. Let us look at trying to determine 𝑖, 𝑧 such that it satisfies the

second property. To this end, we will rely on results from graph theory. Specifically, we will use

the edge isoperimetric inequality for a Hypercube graph [HLW06, §4], which we recall (in our

context) below.

For our setting, we have a Hypercube graph 𝑄𝑛 = (𝑉 , 𝐸) where each vertex corresponds to a

binary vector of length 𝑛, i.e., |𝑉 | = 2𝑛 . Further 𝐸 is the set of all edges that connects (𝒖, 𝒗) if the

Hamming distance between 𝒖 and 𝒗 is exactly 1. This gives us that: |𝐸 | = 𝑛 · 2𝑛−1. Now, we are

interested in edges between a vertex 𝒖 and 𝒗 if 𝑔(𝒖) ≠ 𝑔(𝒗). Now, for any set 𝑆 of size 𝑘 ≤ 2𝑛−1,

the number of “cut” edges 𝐶 from the set to its compliment is bounded by the isoperimetric

inequality [HLW06, §4.2.1] as follows:

𝐶 ≥ 𝑘 · (𝑛 − log2 𝑘) ⩾ 𝑘

However, now we need to determine how many 𝒖 ∈ 𝑉 exists such that 𝑔(𝒖) = 0 (or 1). If,

0.4 ≤ E[𝑔(𝑈𝑛)] ≤ 0.6, then we know that there exists 0.4 · 2𝑛 vectors 𝒖 with 𝑔(𝒖) = 0 and a

similar number for 𝑔(𝒖) = 1.

Therefore, the probability of choosing the desired edge is at least:

𝑘

𝑛 · 2𝑛−1 ≥
0.4 · 2𝑛
𝑛 · 2𝑛−1 =

0.8
𝑛

In other words, the probability that a randomly chosen edge is the desired edge occurs with

probability 𝑝 ≥ 0.8/𝑛. Therefore, one can simply pick an edge 𝑒 ∈ 𝐸, uniformly at random, and

then test to see if it is the desired edge. Now, if one were to do 𝑛2 such tests, we get:

Pr[𝑔(𝑥−𝑖,0) ≠ 𝑔(𝑥−𝑖,1)] > 1 − 2−𝑛
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Algorithm Find𝑔

for 𝑖 = 1 to 𝑛2:
Pick an edge (𝒖, 𝒗) ∈ 𝐸, uniformly at random.
Use oracle access to 𝑔 to compute 𝑔(𝒖) and 𝑔(𝒗).
if 𝑔(𝒖) ≠ 𝑔(𝒗) then

Find 𝑖 such that 𝑢𝑖 ≠ 𝑣𝑖 .
By definition, there exists a unique 𝑖 that satisfies this condition.
return (𝑖, 𝑢−𝑖)
break

for 𝑖 = 1 to 120 · 𝑛:
𝑐𝑜𝑢𝑛𝑡 = 0
Sample 𝒙 ← {0, 1}𝑛
Compute 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 𝑔(𝒙)

if 𝑐𝑜𝑢𝑛𝑡 > 𝑛/2 then 𝑧 = 1
else 𝑧 = 0
return (0, 𝑧)

Figure 6.2: Description of Find𝑔.

This math follows from the fact that the probability of failure of algorithm is:

(
1 − 0.8

𝑛

)𝑛2
≤ 𝑒−0.8𝑛 < 2−𝑛

Note that this result only follows if 0.4 ≤ E[𝑔(𝑈𝑛)] ≤ 0.6.

Analysis of Second for Loop. However, ifE[𝑔(𝑈𝑛)] < 0.4 orE[𝑔(𝑈𝑛)] > 0.6, thenwe know that

the distribution, is biased either in favor of 0 or 1. If it is biased in favor of 1 (i.e., E[𝑔(𝑈𝑛)] > 0.6),

thenwe know that > 0.6·2𝑛 inputs 𝒙 will evaluated to 1 or < 0.4·2𝑛 . In otherwords, the probability

of success 𝑝 > 0.6. Therefore, one can apply Chernoff bounds, to get that Pr[𝑔(𝑈𝑛) = 𝑧] ≥ 0.6

with probability 1 − 2−𝑛 .

The correctness of Find𝑔 follows from our earlier discussion. It is easy to see that Find𝑔 runs

in time 𝑂 (𝑛2) as the lines inside the first for loop take constant time if one were to sample the

edge by picking 𝑖 and 𝑥−𝑖 . □

Theorem 6.5. There is no (𝛾∗, 𝛽, 𝑞, 0.1, 𝜏)-secure PRNG for𝛾∗𝛽 <
√
𝑞 and 𝜏 ≥ Ω((𝑡next+𝑡refresh) ·𝑛3)

where 𝑛 = 𝛾∗ · 𝛽 and 𝑡next and 𝑡refresh are the time required to compute next and refresh respectively.
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Proof. We will use the Find𝑔 algorithm defined in Lemma 6.4 to create an adversaryA that wins

the NROB(𝛾∗, 𝛽) security game. The pseudocode for the adversary is provided in Figure 6.3. A

will set 𝑔(𝒙) = 𝑓 (𝑠, 𝑥1 | | . . . | |𝑥𝑛) for the current state 𝑠 and 𝑛 = 𝛾∗ · 𝛽 . A is aware of the very first

state 𝑠 . The attacker then runs Find𝑔 on this function 𝑔.

𝑖 = 0. If, Find𝑔 returns (𝑖, 𝑧) such that 𝑖 = 0, then A simply calls get − state, and then provides

uniform bit 𝑛 = 𝛾∗𝛽 times. Note that the invocation of get − state is critical to reset the counters

of𝑇 and𝑇 ∗ to 0. This will leave us with𝑇 ∗ = 𝛾∗𝛽 and the attacker is required to break the scheme

within another 𝛽 steps. After the 𝑛 input distributions, A then invokes next − ror to receive

its challenge. If its challenge is equal to 𝑧, then we know that 𝑏 = 0, indicating it is the real

distribution and not the random distribution.

𝑖 ≠ 0. However, if 𝑖 ≠ 0, then the A writes down 𝑧 in its state, and then provides the entropy in

𝑥𝑖 . It then makes a “premature” call to get-next , which reveals the actual input bit 𝑥𝑖 , helpingA

recover the state. This process is repeated 𝛾∗ times to provide 𝛾∗ bits of entropy. We keep doing

this for 𝛾∗2𝛽2 steps, and then, request next-ror . However, with knowledge of the state, due to

premature next, A knows the challenge and therefore wins with a non-negligible advantage.

In other words, we have an attacker which can break this scheme, with non-negligible prob-

ability, if 𝑞 > 𝛾∗2𝛽2. □

Note, that when 𝑞 < 𝛾∗𝛽 , every PRNG is vacuously secure as there is no need for recovery:

at least 𝛾∗ steps are needed to inject the required 𝛾∗ bits of entropy, and the attacker simply runs

out of refresh calls to trigger the security requirement. This, of course, assumes ideal entropy

accumulation.

6.2.3 Towards Positive Results

The impossibility is, of course, artificial, but it raises questions about how to overcome it,

even assuming ideal entropy accumulation and extraction. In Section 6.3 we abstract the no-
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Algorithm A

Set 𝑠 = 0
𝜎 = ⊥
𝑡 = 0
while 𝑡 ≤ 𝛾∗2𝛽2

Set 𝑔(𝒙) = 𝑓 (𝑠, 𝒙)
(𝑖, 𝑧) ← Find𝑔
if 𝑖 = 0 then

Invoke get-state to get the current state 𝑠∗. // This resets 𝑇 = 0.
for 𝑗 = 1 to 𝑛:

Output 𝑋𝑡+𝑗 = 𝑈1 // H∞(𝑋𝑡+𝑗 ) = 1.
Invoke next-ror for challenge 𝛿
if 𝛿 = 𝑧 then return 0
else return 1

else

Set 𝑋𝑡+𝑖 = 𝑈1 // H∞(𝑋𝑡+𝑖) = 1.
Use 𝑧 to set 𝑋𝑡+𝑘 for 𝑘 ≠ 𝑖 . // H∞(𝑋𝑡+𝑘 ) = 0 for 𝑘 ≠ 𝑖 .
Invoke get-next to get output 𝑦.
Let 𝑎−𝑖 = 𝑧
if 𝑔(𝑎−𝑖,0) = 𝑦 then 𝑥𝑡+𝑖 = 0
else 𝑥𝑡+𝑖 = 1
for 𝑖 = 1 to 𝛼𝛽

𝑠 = refresh(𝑠, 𝑥𝑡+𝑖)
(𝑠,𝑦) = next(𝑠)
𝑡 = 𝑡 + 𝛼𝛽

Invoke next-ror for challenge 𝛿
if next(𝑠) = (·, 𝛿) then return 0
else return 1

Figure 6.3: Pseudocode for A for Theorem 6.5.

tion of the scheduler which models security against premature next attacks using multiple pools

which assume to accumulate entropy optimally (which abstracts away entropy accumulation and

extraction).

In this setting, we will first analyze a single-pool scheduler scheme for the special “root pool”

in Section 6.4. This scheme uses a single pool with exponentially decaying time intervals to drain

this pool, but the rate of such recovery will depend on the entropy rate counted from the boot time

(as opposed to the latest compromise in the general notion). The latter point is why we don’t

want to use this one-pool scheme for the general-purpose PRNG, where we would like to recover

from compromise no matter when it happens.

For such scenarios, we revisit the round-robin Fortuna scheduler, where [DSSW17] observe
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that this scheme provably overcomes our impossibility result, by assuming all entropy comes at

a fixed (but unknown) rate. Instead, in Section 6.5 we significantly generalize this positive result.

The idea is to redefine the notion of entropy we use in a way that makes it more restrictive than

traditional (min-) entropy, but not as restrictive as assuming fixed constant rate.1 Intuitively,

our notion of entropy will not allow attacks where the entropy varies too widely within a given

round-robin (but can change from one round-robin to another) — in a sense that the attacker

will get almost no credit for high-entropy samples when there is at least one low entropy sample

within a given round-robin.

6.3 Seedless Scheduler

For the remainder of this paper, we will assume ideal accumulation and extraction. Further,

rather than working with entropy, we will employ the notion of a sequence of weights 𝒘 =

(𝑤1, . . . ,𝑤𝑞) where the weights have been normalized so that𝑤𝑖 ∈ [0, 1] and a pool is “full” when

it has accumulated weight 1. (Specifically, to move between the weight𝑤𝑖 and the entropy 𝛾 , one

should multiply by the entropy 𝛾∗
rob

required for a single pool to recover.) See [DSSW17].

6.3.1 Syntax of a Scheduler

We define the syntax of the scheduler below. Note that this scheduler is deterministic and

oblivious, i.e., it does not depend on the actual input or its entropy.

Definition 6.6 (Syntax of Scheduler). A (𝑘, 𝑞)-scheduler is a deterministic algorithm SC that

produces 𝑞 pairs: {(in𝑖, out𝑖)}𝑞𝑖=1 where in𝑖 ∈ [𝑘], out𝑖 ∈ [𝑘] ∪ {⊥} for 𝑖 = 1, . . . , 𝑞.

Note that, when the number of “pools”𝑘 is not critical to be specified explicitly, a deterministic

(𝑘, 𝑞)-scheduling scheduler can be thought of as a sequence of values {empty}𝑞
𝑖=1 corresponding

1We also note that the results about fast entropy accumulation in the register [DGSX21a] might justify why our
new (more restrictive) notion of entropy might be reasonable to expect in practice.
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Construction: Premature-Next Robust PRNG

refresh
∗(𝑥, 𝑠)

Parse 𝑠 as (𝑠0, . . . , 𝑠𝑘−1, 𝜌)
in, out← SC()
𝑠in ← refresh(𝑠in, 𝑥)
(𝑠out, 𝑅) ← next(𝑠out)
𝜌 ← 𝜌 ⊕ 𝑅
return 𝑠 = (𝑠0, . . . , 𝑠𝑘−1, 𝜌)

next
∗(𝑠)

Parse 𝑠 as (𝑠0, . . . , 𝑠𝑘−1, 𝜌)
(𝑌, 𝜌) ← 𝐺 (𝜌)
return

(
𝑠 = (𝑠0, . . . , 𝑠𝑘−1, 𝜌), 𝑌

)

Figure 6.4: Construction of 𝐺 = (refresh∗, next∗).

to the time at which each input 𝑖 with weight𝑤𝑖 is emptied. More formally, we can define:

empty𝑖 := min { 𝑗 : 𝑗 > 𝑖 ∧ out 𝑗 = in𝑖}

6.3.2 Seedless PRNG, with Premature Next

Before we venture into the security of such a scheduler, it would be prudent to take a step back

and look at an informal composition of a seedless scheduler with PRNGs that are not resilient to

premature next in order to achieve security with premature next. Indeed, it is also equally im-

portant to frame our composition results, in the face of the impossibility result from Section 6.2.2

(and also the unrestricted scheduler impossibility later in this section). This is precisely the rea-

son why we do not state a formal composition theorem, as it is vacuous for the most general

case. However, the composition is still robust for restricted notions of scheduler security to yield

relaxed forms of PRNG security with premature next.

The composition relies on seedless PRNGs which are not secure with premature next. These

are typically parametrized by just 𝛾∗, which is the minimum entropy needed for the PRNG to

begin producing pseudorandom outputs (as discussed in Chapter 4). In essence, these have 𝛼 = 𝛾∗

and 𝛽 = 1 with a reset of all counters when an adversary invokes get − next with corrupt = true.

The instantiation of this PRNG can be any of the constructions from Chapter 4 or from the work

of Dodis et al. [DGSX21b]. Such a PRNG, secure without premature next and parametrized by
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𝛾∗ is combined with a scheduler. The goal of a scheduler would be to ensure that the input, as it

arrives, is allocated a particular pool such that:

• With “enough entropy”, a pool is filled, i.e., accumulates 𝛾∗ amount of entropy.

• This pool will be emptied within “sufficient time”, to recover from compromise.

We will formalize these notions of “enough entropy” and “sufficient time” in the next section.

Formally, we define a seedless PRNG, with construction as follows:

• Let SC be a scheduler with 𝑘 pools.

• Let 𝐺𝑖 = (refresh𝑖, next𝑖) be seedless PRNGs with input, for 𝑖 = 0, . . . , 𝑘 − 1. For simplicity,

we will assume that each 𝐺𝑖 is (𝑚, 𝑟 )-PRNG. These are PRNGs which are not secure with

premature next calls, as seen in Chapter 4.

• Let 𝑮 : {0, 1}𝑚 → {0, 1}2𝑚 be a pseudorandom generator (without input).

Then, we construct a PRNG with input 𝐺 (SC, {𝐺𝑖}𝑘−1𝑖=0 , 𝑮) = (refresh
∗, next∗) as shown in Fig-

ure 6.4, where the scheduler mandates which pool𝐺in to use (via refresh) to accumulate entropy

from a new sample, and which pool 𝐺out (if any) to “empty” (via next) into the main register 𝜌

for 𝑮 .

6.3.3 Security of a Scheduler

We will define different notions of security for a scheduler. As with PRNGs, (𝑘, 𝑞)-scheduler

security model is parameterized by two parameters 𝛼, 𝛽 . Informally, it states that if the adversary

chooses to provide 𝛼 units of fresh entropy (i.e., a sequence of𝑤𝑖 values that sum up to 𝛼) within

a time 𝑡 ≤ 𝑞/𝛽 , then we guarantee recovery within time 𝛽 · 𝑡 ≤ 𝑞. Formally,

Definition 6.7 (General Security of Scheduler). A (𝑘, 𝑞)-scheduler is (𝛼, 𝛽)-general-secure if if

∀𝑡0, 𝑡 such that 𝑡1 = 𝑡0 + 𝛽 · 𝑡 ≤ 𝑞, and ∀ weights 𝑤1, . . . ,𝑤𝑞 ∈ [0, 1] such that
∑𝑡
𝑖=1𝑤𝑡0+𝑖 ≥ 𝛼 ,
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the scheme recovers from the compromise in time 𝑡0 + 𝛽𝑡 where recovery occurs if ∃ 𝑗 ∈ [𝑘] and

∃ 𝑇 ∈ [𝑡0 + 1, 𝑡0 + 𝛽 · 𝑡] such that:

1. out𝑡0+1, . . . , out𝑇−1 ≠ 𝑗 (pool 𝑗 has not been emptied before time 𝑇 );

2. out
𝑇
= 𝑗 (pool 𝑗 is emptied at time 𝑇 ); and

3. (pool 𝑗 has filled) ∑︁
𝑡0<𝑖≤𝑇
in𝑖= 𝑗

𝑤𝑖 ≥ 1 .

6.3.4 Impossibility Result

We can show that, for general security, there exists an impossibility result. Specifically, we

will show that for any 𝑘 ∈ N, there exists a choice of 𝑞 such that any (𝑘, 𝑞)-scheduler is not

(𝛼, 𝛽)-secure. In other words, for a suitable choice of 𝑞, one can break the scheduler to never

recover from compromise for any 𝛼, 𝛽 . Note that this is incomparable to the earlier impossibility

result discussed in Section 6.2.2 as this assumes the existence of pools.

Theorem 6.8. For any 𝑘 ∈ N, there exists 𝑞∗ = 𝛼2𝛽2 such that a given (𝑘, 𝑞)-scheduler is not

(𝛼, 𝛽)-secure for any 𝑞 ≥ 𝑞∗.

Proof. The attack works as follows: we will provide 𝛼 entropy, in 𝛼2𝛽 steps. The security require-

ment is that recovery needs to happen within time 𝛼2𝛽2. Recall that recovery occurs if there is a

pool that is emptied within 𝛼2𝛽2 which has total entropy of 1.

More formally, let 𝐼 𝑗 denote the 𝑗-th interval, of length 𝛼𝛽 starting from 0. This leads us to

two cases:

• ∃ 𝑗∗ such that no pool is emptied within 𝐼 𝑗∗ . Formally, there exists no time step 𝑖 with

empty𝑖 ∈ 𝐼 𝑗∗ .
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Then, set 𝑡0 = 𝛼𝛽 ( 𝑗∗ − 1) − 1. After this state compromise, we provide a sequence of 1s of

length 𝛼 , which will set 𝑇 ∗ = 𝛼 and expect recovery in time 𝑡0 + 𝛽𝑇 ∗ = 𝛼𝛽 𝑗∗ − 1, which

is still inside the interval 𝐼 𝑗∗ . However, we assumed no pool is emptied within 𝐼 𝑗∗ , so no

recovery can be possible.

• ∀𝑗 , ∃𝑖 such that empty𝑖 ∈ 𝐼 𝑗 , meaning at least one pool is emptied within all 𝛼 intervals 𝐼 𝑗 .

Set 𝑡0 = 0. Then, for 𝑗 = 1, . . . , 𝛼 , pick one ℓ such that emptyℓ ∈ 𝐼 𝑗 . Set,𝑤ℓ to be 1−𝜖 for some

arbitrarily small 𝜖 (remaining weights are 0). At the end of this process, the adversary has

provided almost 𝛼 entropy, but there is no recovery, as all of these entropies are completely

wasted. By making 𝜖 arbitrarily small, the result follows.

□

The consequence of this impossibility result is the following: there exists input weight se-

quence 𝒘 such that, irrespective of the number of pools, we can inject entropy at a slow rate,

such that no scheduler is general-secure. It also implies that we need to make some relaxations

to achieve usable security results.

6.4 Reboot Secure Schedulers

The first relaxation corresponds to the situation when the system is just rebooted, i.e., we

are at 𝑡0 = 0. We will call this as the “reboot security” of a scheduler. This corresponds to the

situation when you just turn on the computer. For this case, we can have a much simpler and

better RNG, having only one pool. Like Fortuna, this pool is emptied every 𝛽𝑖 steps for gradually

increasing values of 𝑖 = 0, 1, 2, . . ., where 𝛽 is a small integer (Windows 10 uses 𝛽 = 3).

Definition 6.9 (Reboot Security of Scheduler). A (𝑘, 𝑞)-scheduler is (𝛼, 𝛽)-reboot-secure if for

𝑡0 = 0, ∀𝑡 such that 𝑡1 = 𝑡0 + 𝛽 · 𝑡 ≤ 𝑞, and ∀ weights 𝑤1, . . . ,𝑤𝑞 ∈ [0, 1] such that
∑𝑡
𝑖=1𝑤𝑡0+𝑖 ≥ 𝛼
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the scheme recovers from the compromise in time 𝑡0 + 𝛽𝑡 , where the definition of recovery is as

defined in Definition 6.7.

The composition of such a reboot-secure scheduler with our “not-premature-next” PRNGs

will trivially yield a “premature-next” boot PRNG, i.e., the PRNG that is used at the time when

the system is booting up.

We start with a lower bound on reboot-security, irrespective of the number of pools 𝑘 .

Theorem 6.10. For a (𝑘, 𝑞)-scheduler to be (𝛼, 𝛽)-reboot secure, 𝛼 ≥ ⌊log𝛽 (𝑞) − log log𝑞⌋ − 1 (i.e.,

𝑞 ≤ 𝛼𝛽𝛼 )

For simplicity let us assume that 𝑞 = 𝛼𝛽ℓ+1, for some ℓ > 0. Then, divide the time from 𝛼 + 1

to 𝑞 into intervals of the following form: (𝛼𝛽𝑖−1, 𝛼𝛽𝑖] for 𝑖 = 1 to ℓ + 1. We have the following

claim:

Claim 6.11. For any (𝛼, 𝛽)-reboot secure scheduler with corresponding emptying sequence

empty1, . . . , empty𝑞 and any 𝑖 ∈ [ℓ], there must exist a 𝑡 such that empty𝑡 ∈ (𝛼𝛽𝑖, 𝛼𝛽𝑖+1]. (In

other words, there must be a pool that is first emptied after roughly 𝛽𝑖 steps for every 𝑖 .)

Proof. We prove this by induction. Define 𝑡 to be the time within which the adversary provides

𝛼 entropy, i.e.,
𝑡∑︁
𝑖=1

𝑤𝑖 ≥ 𝛼

where these𝑤𝑖 are adversarially chosen. Since𝑤𝑖 ≤ 1, we get that 𝑡 ≥ 𝛼 .

Let us assume to the contrary that there is no emptying in the interval (𝛼, 𝛼𝛽]. Now, if adver-

sary chooses 𝑡 = 𝛼 . Then, this scheme would never recover as there is no empty in the interval

(𝛼, 𝛼𝛽]

Now, let us assume that there is an empty in intervals, (𝛼, 𝛼𝛽], (𝛼𝛽, 𝛼𝛽2], . . . , (𝛼𝛽𝑖−1, 𝛼𝛽𝑖]. We

will now show that there needs to be an empty in the interval (𝛼𝛽𝑖, 𝛼𝛽𝑖+1]. To this end, assume

to the contrary. Now, note that the adversary can provide the entropy in such a way that every

170



empty in the preceding intervals empties out 1 − 𝜖 , without recovering. This is similar to the

attack detailed in the proof of Theorem 6.8. Further, if 𝑡 = 𝛼𝛽𝑖 , the scheme has not recovered in

time 1 to 𝑡 and because it has no empty in (𝛼𝛽𝑖, 𝛼𝛽𝑖+1] it can never hope to recover in time either.

Therefore, there is an empty in the interval (𝛼𝛽𝑖, 𝛼𝛽𝑖+1]. □

Proof of Theorem 6.10. From Claim 6.11, we get that there are at least ⌊log𝛽 (𝑞/𝛼)⌋ distinct emp-

ties, and there needs to be entropy of 1 emptied in each of these empties. By Pigeonhole Princi-

ple, we will need 𝛼 ≥ ⌊log𝛽 (𝑞/𝛼)⌋ to have any hope of recovery, which implies 𝛼 ≥ ⌊log𝛽 (𝑞) −

log log𝑞⌋ − 1. □

We now give a scheme that nearly matches the lower bound. This scheme uses the same

strategy as Windows 10’s “Root RNG” which is used at system startup [Fer19].

Construction 16 (Reboot Scheme). The scheme has 𝑘 = 1. in𝑖 = 0 for 𝑖 = 1, . . . , 𝑞.

out𝑖 =


0 if 𝑖 = 𝛽 𝑗

⊥ else

In other words, ∀𝑖 ∈ [𝛽 𝑗−1, 𝛽 𝑗 ), empty at time 𝛽 𝑗 .

Theorem 6.12. Construction 16 is (𝛼, 𝛽)-reboot secure for 𝑞 = 𝛼𝛽𝛼 (i.e., 𝛼 ≈ log𝛽 𝑞 − log log𝑞).

Proof. Define 𝑡 to be the time within which the adversary provides 𝛼 entropy, i.e.,

𝑡∑︁
𝑖=1

𝑤𝑖 ≥ 𝛼

where these 𝑤𝑖 are adversarially chosen. It is clear that 𝑡 ≥ 𝛼 , as we need at least 𝛼 steps to

provide 𝛼 entropy when𝑤𝑖 ∈ [0, 1].

Let 𝑖 be such that 𝛼 ∈ (𝛽𝑖−1, 𝛽𝑖]. Now, it is clear that if 𝑡 = 𝛼 , then the empty at 𝛽𝑖 will

ensure recovery from compromise. We can induct similar to the proof of Claim 6.11 to get that if
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𝑡 ∈ [𝛽ℓ−1, 𝛽ℓ) for some ℓ ≥ 𝑖 , then there ∃ 𝑗 ∈ [𝛽ℓ−1, 𝛽ℓ) such that𝑤 𝑗 = 1 (or possibly a set of such

𝑗 ’s which sum up to 1), which is emptied at 𝛽𝑖 , thus recovering from compromise. Specifically,

if we have 𝑡 ∈ [𝛽ℓ−1, 𝛽ℓ), then at each of the preceding ℓ − 1 intervals (each with an empty), A

provides 1−𝜖 entropy, for some arbitrarily small 𝜖 . This gives a total of almost ℓ−1 entropy across

these intervals. Therefore, it follows that the remainder of 𝛼 − ℓ + 1 > 1 needs to be provided

between𝑤𝛽ℓ−1 and𝑤𝑡 to hit 𝛼 and all of these are emptied at 𝛽ℓ , recovering from compromise. □

6.5 Repeat Secure Schedulers

A general secure scheme is a stronger model of security than the reboot model. This follows

because the value of 𝑡0 is also the choice of the adversary, in addition to the choice of 𝑡 . However,

the impossibility result from Theorem 6.8 imply a need for relaxation.

Round-Robin Schedulers. Simple round-robin schedulers achieve very good 𝛼 ≈ log𝛽 (𝑞) for

the special cases when all of the 𝑤𝑡 are equal to some (unknown, adversarially chosen) value 𝑤 ,

i.e.,

𝑤1 = 𝑤2 = . . . = 𝑤𝑞 = 𝑤

and setting the number of pools 𝑘 ≈ log𝛽 (𝑞) (so 1 or 2 pools are too little). 𝛽 is a smaller integer

usually 2 or 3 in practice, as in [FS03, DSSW17]. More formally, such schedulers simply set

in𝑡 = 𝑡 mod 𝑘

As for out𝑡 , this is set to ⊥ inside one round (i.e. 𝑡 mod 𝑘 ≠ 0). At the the of each round, when

𝑡 = 𝑘ℓ , one looks at the largest index 𝑖 ⩾ 0 such that 𝛽𝑖 divides ℓ . Then out empties the 𝑖-th pool:

out𝑡 = 𝑖
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Remark 3. There is a marginal gain in efficiency when we empty all pools ≤ 𝑖 , instead of just the

𝑖-th pool. In other words, out is a set, rather than a single index. However, for our analysis below,

we will continue to work with the assumption that a single pool is emptied. (More generally, we

do not make much of an attempt to optimize the parameters that we achieve. See [DSSW17] for

an optimized version of similar construction.)

𝑘-smooth Seqences. Ourmain observation is that we can significantly extend the constant-rate

analysis as follows. The idea is to allow support any constant rate within a round-robin (rather

than go for a constant (but unknown) rate scheduler). This constant can change arbitrarily once

the next round-robin is started. Namely, we don’t have to fix the same constant for all 𝑞 entropies

but can change it every 𝑘 ≪ 𝑞 steps. In practice, this means that while the quality of entropy can

change over time, we heuristically assume that it changes rather smoothly, and we rarely have

huge jumps within a given round-robin.

Definition 6.13 (Repeating Sequences). 𝒘 = (𝑤1, . . . ,𝑤𝑞) with 0 ≤ 𝑤𝑖 ≤ 1 is called 𝑘-repeating

if𝑤 𝑗𝑘+1 = 𝑤 𝑗𝑘+2 = . . . = 𝑤 𝑗𝑘+𝑘 for 𝑗 = 0, . . . , 𝑡 − 1 where 𝑞 = 𝑘 · 𝑡

Definition 6.14 (Repeat Security of Scheduler). A (𝑘, 𝑞)-scheduler is (𝛼, 𝛽, 𝑘)-repeat-secure if

∀ 𝑡0, 𝑡 such that 𝑡1 = 𝑡0 + 𝛽 · 𝑡 ≤ 𝑞, and ∀ 𝑘-repeating weights 𝑤1, . . . ,𝑤𝑞 ∈ [0, 1] such that∑𝑡
𝑖=1𝑤𝑡0+𝑖 ≥ 𝛼 the scheme recovers from the compromise in time 𝑡0 + 𝛽𝑡 , where the definition of

recovery is as defined in Definition 6.7.

To achieve such repeating sequences, we take any standard 𝒘 = (𝑤1, . . . ,𝑤𝑞) and apply a

𝑘-flattening, as defined below.

Definition 6.15 (𝑘-Flattening). Given a sequence ®𝑤 = (𝑤1, . . . ,𝑤𝑞) and a number 𝑘 ⩾ 1, where

for simplicity of notation let us assume 𝑞 = 𝑘𝑡 , we define 𝑘-smooth flattening of ®𝑤 to be ®𝑤 ′ =

(𝑤 ′1, . . . ,𝑤 ′𝑞), where for any round-robin 𝑗 ∈ {0, . . . 𝑡 − 1} and 𝑖 ∈ {1 . . . 𝑘}, we let

𝑤 ′
𝑗𝑘+𝑖 = min( 𝑤 𝑗𝑘+1, 𝑤 𝑗𝑘+2, . . . , 𝑤 ( 𝑗+1)𝑘 )
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Intuitively, we change the entropy𝑤 𝑗 to the smallest of 𝑘 surrounding entropies inside a given

round-robin. Of course, 𝑘 = 1 corresponds to 𝑤 ′𝑡 = 𝑤𝑡 , but we already know that 1 pool is not

enough (as this would give a general scheduler for the unrestricted entropy setting). For larger 𝑘 ,

however, the flattened values could be noticeably lower than the original. For example, if 𝑘 = 3

and ®𝑤 = {1, 1/2, 1/3, 1/4, 1/5, 1/6}, the 3-flattening of ®𝑤 is ®𝑤 ′ = {1/3, 1/3, 1/3, 1/6, 1/6, 1/6}. Of

course, for a constant rate𝑤1 = . . .𝑤𝑞 = 𝑤 , 𝑘-flattening does not change anything, which explains

why our results below naturally generalize the constant-rate analysis from the work of Dodis et

al. [DSSW17].

Jumping ahead, wewill see that the Fortuna scheduler is “secure” for any (normalized) entropy

sequence ®𝑤 , with the understanding that the attacker gets “entropy credit” within a single round-

robin equals to 𝑘 times the lowest entropy value in contributes within this round.

New Result. Now, we show that while the original (𝛼, 𝛽)-definition above cannot be achieved

when applied to ®𝑤 itself, the analysis for constant-rate schedulers works for general entropy

sequences, provided we simply apply it to 𝑘-flattening of ®𝑤 (where 𝑘 ≈ log𝛽 𝑞 is the number of

pools) instead of ®𝑤 itself! Namely, a given round only gets “credit” for the smallest entropy (times

𝑘) it contributed to any of the 𝑘 pools. So we do not give the adversary credit if it wildly changes

the entropy values within a given round.

We now present our construction, which is parameterized by the number of pools 𝑘 and a

base 𝑏. One typically takes 𝑏 = 2 or 𝑏 = 3, and, e.g., 𝑘 = 32 or 𝑘 = 64 in practice, and works for

𝑞 ≤ 𝑏𝑘 .

Construction 17 (Smooth scheduler). Consider the following (𝑘, 𝑞 := 𝑏𝑘)-scheduler for integers

𝑏 ≥ 2 and 𝑘 ≥ 1:

• in𝑖 = 𝑖 mod 𝑘
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•

out𝑖 =


⊥ if 𝑖 mod 𝑘 ≠ 0

𝑗 if 𝑖 = 𝑘ℓ

where 𝑗 ≥ 0 is the largest 𝑗 such that ℓ mod 𝑏 𝑗 = 0 for 𝑖 = 𝑘ℓ

We now prove that this scheduler is secure (against 𝑘-repeating sequences). For simplicity, we

make little attempt to optimize the parameters. See [DSSW17] for a carefully optimized version

of this result for the special case where the entropy rate is constant (i.e., the case of 𝑞-repeating

weights).

Theorem 6.16. For any integers 𝑏 ≥ 2 and 𝑘 ≥ 1, Construction 17 is (𝛼, 𝛽, 𝑘)-repeat-secure for

𝛼 := 3𝑘 − 2 ≈ 3 log𝑏 𝑞; and 𝛽 := 2𝑏
(
1 + 𝑘

𝛼

)
≈ 8𝑏

3
=
8
3
· 𝑞1/𝑘

In particular, for 𝑘 = log𝑏 𝑞 and 𝑞 ⩾ 𝑏2, we have 𝛼 ⩽ 3 log𝑏 𝑞 and 𝛽 ⩽ 3𝑏.

Notice, this result explains how the recovery factor 𝛽 shrinks very quickly as we increase the

number of pools 𝑘 , starting with (roughly) 𝑞 all the way down to being a constant. In particular,

𝛽 becomes constant once the number of pools becomes logarithmic in 𝑞.

Moreover, up to constant factors in 𝛼 and 𝛽 (which, again, we do not attempt to optimize),

Theorem 6.16 is tight. In particular, [DSSW17, Proposition 1] proved that even in the “constant-

rate” case of𝑞-repeatingweights, no scheduler can be (𝛼, 𝛽)-securewith𝛼𝛽 ≤ log𝑒 𝑞−log𝑒 log𝑒 𝑞−

1. And our scheduler matches this bound (up to a constant factor) when 𝑏 = 𝑂 (1) and 𝑘 =

𝑂 (log𝑞).

Proof of Theorem 6.16. Let𝑤1, . . . ,𝑤𝑞 be 𝑘-repeating. Let 𝑡0 and 𝑡 be such that (1) 𝑡0 + 𝛽𝑡 ≤ 𝑞; and

(2)
𝑡∑︁
𝑖=1

𝑤𝑡0+𝑖 ≥ 𝛼 .
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We wish to show that in this case the scheduler recovers before time 𝑡0 + 𝛽𝑡 , i.e., that there exists

a 𝑗 ∈ [𝑘] and 𝑇 ∈ [𝑡0 + 1, 𝑡0 + 𝛽𝑡] such that (1) out
𝑇
= 𝑗 ; (2) out𝑡0+1, . . . , out𝑇−1 ≠ 𝑗 ; and (3)

∑︁
𝑡0<𝑖≤𝑇
in𝑖= 𝑗

𝑤𝑖 ≥ 1 .

Indeed, we take 𝑗 to be minimal such that out𝑡0+1, . . . , out𝑡0+𝑡 ≠ 𝑗 . In particular, notice that

after pool 𝑗 ′ is emptied, pool 𝑗 ′ + 1 is not emptied for the next 𝑘 (𝑏 𝑗 ′ − 1) steps. And, similarly,

after pool 𝑗 ′ + 1 is emptied, pool 𝑗 ′ is not emptied for the next 𝑘 (𝑏 𝑗 ′ − 1) steps. It follows that

𝑏 𝑗−1 ≤ 𝑡/𝑘 + 1. Since the pool 𝑗 ′ is emptied at least once in every 2𝑘𝑏 𝑗 ′ steps, it follows that we

must have out
𝑇
= 𝑗 for some 𝑇 − 𝑡0 ≤ 2𝑘𝑏 𝑗 ≤ (2𝑡 + 2𝑘)𝑏 ≤ 2𝑏 (1 + 𝑘/𝛼)𝑡 , where in the second

inequality we have used the fact that𝑤𝑖 ≤ 1, which implies that 𝑡 ≥ 𝛼 . In particular, 𝑇 ≤ 𝑡0 + 𝛽𝑡 ,

as needed.

And, since the𝑤𝑖 are 𝑘-repeating, we must have

∑︁
𝑡0<𝑖≤𝑇
in𝑖= 𝑗

𝑤𝑖 ≥
∑︁
𝑡0<𝑖⩽𝑇

∑︁
𝑡0<𝑖≤𝑡0+𝑡
in𝑖= 𝑗

𝑤𝑖 ≥
∑︁

𝑡 ′0<𝑖≤𝑡
′
0+𝑡
′

in𝑖= 𝑗

𝑤𝑖 =
1
𝑘
·

∑︁
𝑡 ′0<𝑖≤𝑡 ′0+𝑡 ′

𝑤𝑖 ,

where 𝑡 ′0 := ⌈𝑡0/𝑘⌉𝑘 ≥ 𝑡0 and 𝑡 ′ := ⌊𝑡/𝑘⌋𝑘 ≤ 𝑡 . And, since𝑤𝑖 ≤ 1, we trivially have that

∑︁
𝑡 ′0<𝑖≤𝑡 ′0+𝑡 ′

𝑤𝑖 ≥
∑︁

𝑡0<𝑖≤𝑡0+𝑡
𝑤𝑖 − 2𝑘 + 2 ≥ 𝛼 − 2𝑘 + 2 .

Therefore, ∑︁
𝑡0<𝑖≤𝑡0+𝑡
in𝑖= 𝑗

𝑤𝑖 ≥
𝛼

𝑘
− 2 + 2/𝑘 ≥ 1 ,

as needed. □
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Part II

Small-Box Cryptography
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7 | Small-Box Cryptography

This chapter is based on joint work with Yevgeniy Dodis and Daniel Wichs that appeared

in ITCS 2022 [DKW22a]. Passages are taken verbatim from this work. This work considers

the new theoretical approach called as “small-box cryptography”. This is to be contrasted with

traditional cryptography which we dub as “big-box cryptography”. The underpinning of “big-box

cryptography” is the approach of reducing security to some assumption.

Indeed, we begin this chapter by applying such a “big-box” to build a construction of a PRG

in Section 7.1. We then apply our small-box framework to build a PRG in Section 7.2. The con-

struction matches the construction from the previous section. We finally conclude this chapter by

applying the small-box framework to substitution-permutation networks (SPNs) in Section 7.3.

7.1 Applying Big-Box Cryptography to PRGs

In this section, we present our construction of a pseudorandom generator. We then prove its

security under the eXact Linear Parity with Noise (XLPN) assumption. The construction, by itself,

may not be the best PRG construction from this assumption, as it relies on large public parameters,

which is unnecessary if one’s goal to build a “big-box” PRG from XLPN. Of course, our point

is to explicitly build and analyze cryptographic primitives from a “small” (but still polynomial

size) S-box, which naturally mandates seemingly large parameters when viewed from the big-

box perspective. Hence, the main purpose of our PRG construction is to introduce the small-box
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framework, before we look at the more complicated example of block ciphers in Section 7.3. In

particular, unlike the case of block ciphers, the example will be simple enough that we can directly

apply the “big-box” analysis to it (in the common reference string model, modeling our S-box).

7.1.1 Syntax and Security of PRG

A PRG is a primitive that is often used to produce random-looking string from a short, ran-

domly chosen seed.

Definition 7.1 (Pseudorandom Generator). Let 𝑛 ∈ N be the security parameter. Then, an effi-

ciently computable function𝐺 : {0, 1}𝑛 → {0, 1}ℓ (𝑛) for ℓ (𝑛) > 𝑛 is an (𝑇, 𝜖)-secure PRG if for all

adversaries A running in time 𝑇 , the following holds:����Pr[]𝑠 ← 𝑈𝑛 [A(𝐺 (𝑠)) = 1] − Pr[]𝑅 ← 𝑈ℓ (𝑛) [A(𝑅) = 1]
���� ≤ 𝜖

7.1.2 Our Construction

Recall, the goal of small-box cryptography is to analyze the direct construction of various

primitives from “small” (constant- or polynomial-, but not exponential-) sized 𝑆-boxes. In the

case of a PRG, it is natural to think of such an S-box as a Boolean function 𝑓 modeled as a

random function in the analysis. This is without loss of generality, as any non-Boolean S-box

𝑓 ′ : {0, 1}𝑎 → {0, 1}𝑏 is equivalent to a Boolean S-box 𝑓 : {0, 1}𝑎+log𝑏 → {0, 1}, where 𝑓 (𝑥 ∥𝑖)

represents the 𝑖-th output bit of 𝑓 ′(𝑥). Further, it will be convenient for the notation to write the

domain of this Boolean function as {0, 1}𝑛+log ℓ , where ℓ is the desired output of our PRG, and 𝑛

is the “small” leftover part. E.g., when 𝑛 = 8 and ℓ = 256, we get (still “small”) 16-to-1 S-box.

For our “big-box” analysis, it will also be convenient to define a truth-table matrix for 𝑓 as an

ℓ ×𝑁 matrixM, and think of this matrix as public parameters (or common random string, 𝑐𝑟𝑠) of

our PRG construction:
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M =

©«

𝑓 (1 ∥ 0) . . . 𝑓 (𝑁 ∥ 0)

𝑓 (1 ∥ 1) . . . 𝑓 (𝑁 ∥ 1)
...

. . .
...

𝑓 (1 ∥ ℓ − 1) . . . 𝑓 (𝑁 ∥ ℓ − 1)

ª®®®®®®®®¬
where 𝑁 = 2𝑛 .

Let F = {𝑓 : {0, 1}𝑛+log ℓ → {0, 1}} be the set of all “S-box” functions 𝑓 above. We now define

a family of PRGs G = {�̃� 𝑓 : {0, 1}𝑛𝑐 → {0, 1}ℓ | 𝑓 ← F }, which takes an additional “hardness”

parameter 𝑐 , and will expand a 𝑐𝑛-bit input 𝑥 = (𝑥1, . . . , 𝑥𝑐) into an ℓ-bit output 𝑦 as follows:

𝑦 = �̃� 𝑓 (𝑥1, . . . , 𝑥𝑐) =

©«

𝑓 (𝑥1 ∥ 0) ⊕ 𝑓 (𝑥2 ∥ 0) ⊕ . . . ⊕ 𝑓 (𝑥𝑐 ∥ 0)

𝑓 (𝑥1 ∥ 1) ⊕ 𝑓 (𝑥2 ∥ 1) ⊕ . . . ⊕ 𝑓 (𝑥𝑐 ∥ 1)
...

𝑓 (𝑥1 ∥ ℓ − 1) ⊕ 𝑓 (𝑥2 ∥ ℓ − 1) ⊕ . . . ⊕ 𝑓 (𝑥𝑐 ∥ ℓ − 1)

ª®®®®®®®®¬
Note on parameters. We need ℓ ≥ 𝑛𝑐 + 1 in order to ensure that our PRG is expanding, which

lower bounds the domain length of the 𝑆-box by (𝑛 + log(𝑛𝑐 + 1)) = 𝑂 (log 𝑐), if we think of

𝑛 = 𝑂 (log 𝑐). This is still a pretty good trade-off. Indeed, in both of our big- and small-box

analyses (done in Sections 7.1.3 and 7.2), 𝑐 will be the “security” parameter of the construction.

So our security will scale — under appropriate hardness assumptions — exponentially in 𝑐 . While

the bit-size of the 𝑆-box input has only logarithmic dependence on the security parameter 𝑐 . In

particular, while the overall size of the S-box ℓ · 2𝑛 ≈ 𝑐 · (𝑛2𝑛) is noticeably greater than the PRG

input size 𝑐 · (𝑛+ log ℓ) ≈ 𝑐 · (𝑛+ log 𝑐), it is still polynomial in the security parameter 𝑐 (assuming

𝑛 = 𝑂 (log 𝑐)), and can be read by the attacker in its entirety.
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7.1.3 Big-Box Analysis of �̃�

In this section, we will undertake a big-box analysis of �̃� by proving its security from well-

studied assumption, a variant of the LPN problem. The variant we consider is called the Exact

LPN problem. This was first proposed and employed in proof of security by Jain et al. [JKPT12].

Much like the original LPN problem, the XLPN problem has a search and a decisional variant. It

has been shown that the search variant of this problem is equivalent to the search version of the

original LPN problem. Additionally, the hardness of the decisional XLPN problem is polynomially

related to the search LPN problem.

Definition 7.2 (Decisional Exact LPN (XLPN) Assumption). For 0 < 𝜏 < 1
2 , 𝑞,𝑚 ∈ N, the (𝑞,𝑚)-

XLPN𝜏 problem is (𝑇, 𝜖)-hard if for every adversary A running in time 𝑇 , the following holds:����Pr[]s,A, x [
A(A,A⊤s ⊕ x) = 1

]
− Pr[]A, y [A(A, y) = 1]

���� ≤ 𝜖
where s ← Z𝑚2 , A ← Z

𝑚×𝑞
2 , x ← Z𝑞2,𝑐 and y ← Z𝑞2. Here, Z

𝑞

2,𝑐 is the uniform distribution of 𝑞

dimension binary vectors of weight 𝑐 = 𝜏 · 𝑞.

To this end, we will prove the following theorem:

Theorem 7.3. Under the (𝑞 = 𝑁,𝑚 = 𝑁 − ℓ)-XLPN𝜏 assumption, the family of PRGs G = {�̃� 𝑓 :

{0, 1}𝑛𝑐 → {0, 1}ℓ |𝑓 ← F } is secure and provided 𝑐 = 2𝑛 · 𝜏 and ℓ ≥ 𝑛𝑐 + 1, for 0 < 𝜏 < 1
2 .

Discussion on parameters. Note that the length doubling PRG has an error-rate of 1/𝑂 (log𝑛),

which is worse than a constant, but much better than 1/𝑂 (
√
𝑁 ) needed for public-key encryption.

Finally, by suitably setting the parameters, we get the following result:

Corollary 7.4. For any polynomial 𝑁 , let ℓ = 𝑁 /2 and 𝑐 = ℓ/(2 log𝑁 ) = 𝑁 /(4 log𝑁 ). Then,

there exists a family of length-doubling PRG under the (𝑁, 𝑁 /2)-XLPN𝜏 assumption where 𝜏 =

1/𝑂 (log𝑁 ).
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Before we look at the proof, we discuss some instructive intuitions for the proof. Recall that

in the PRG security game, the adversaryA either receives �̃� (𝑿 ) for𝑿 ← {0, 1}𝑛𝑐 or y← {0, 1}ℓ .

To break this game,A would have to identify 𝑐 values 𝑥1, . . . , 𝑥𝑐 that evaluates to the output that

it has received, and in this setting y is a set of ℓ parity check equations.

In other words, if A finds a vector x ∈ Z𝑁2 such that 𝑤𝑡 (x) = 𝑐 and Mx = y, then with high

probability, A received the real value and not the random value.

With this insight, it is useful to view this problem via the context of linear binary codes. In

such a case, M can be considered as a parity check matrix and y is the syndrome of x. However,

this only works if M is of full row rank. Recall that a matrix M has a full row rank. if each of

the rows of the matrix is linearly independent. Fortunately, we know that with overwhelming

probability, a randomly sampled binary matrix has full rank.

In other words, given a random parity-check matrix M of size ℓ × 𝑁 , we need to decode a

random error vector x, from the ℓ parity check equations, i.e., Mx = y, such that 𝑤𝑡 (x) = 𝑐 .

Further, we get that
(𝑁
𝑐

)
< 2ℓ =⇒ 𝑐 log𝑁 < ℓ < 𝑁

Finally, given a parity-checkmatrixM, one can efficiently calculate a corresponding generator

matrix A. Note that A ∈ Z(𝑁−ℓ)×𝑁2 andMA⊤ = 0, by definition.

Proof. With the above intuition, we can prove the hardness amplification result through a se-

quence of hybrids, and reducing the problem to a variant of the LPN problem. In the proof we

denote the uniform distribution of binary vectors of length 𝑁 and weight 𝑐 by Z𝑁2,𝑐 .

Hybrid 𝐻0. A receives Mx for x← Z𝑁2,𝑐 and M← Zℓ×𝑁2 .

Hybrid𝐻1. A receivesMx⊕MA⊤swhere A is the generator matrix corresponding to the parity

check matrixM← Zℓ×𝑁2 . A ∈ Z(𝑁−ℓ)×𝑁2 , s← Z𝑁−ℓ2 , and x← Z𝑁2 with𝑤𝑡 (x) = 𝑐

Note that Hybrids𝐻0 and𝐻1 are identically distributed because of the property thatMA⊤ = 0

Hybrid 𝐻2. A receives Mx ⊕ MA⊤s where M is the parity check matrix corresponding to the

generator matrix A← Z(𝑁−ℓ)×𝑁2 s← Z𝑁−ℓ2 , and x← Z𝑁2 with𝑤𝑡 (x) = 𝑐
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Note that the difference between Hybrids 𝐻1 and 𝐻2 only lies in the order of sampling M,A.

In 𝐻1, we sample M and then compute A, while in 𝐻2 we do the opposite.

Hybrid 𝐻3. A receives Me where M is the parity check matrix corresponding to the generator

matrix A← Z(𝑁−ℓ)×𝑁2 and e← Z𝑁2 .

Claim 7.5. If (𝑁,𝑚 = 𝑁 − ℓ)-XLPN𝜏 is (𝑡, 𝜖)-hard, then the distinguishing advantage between

𝐻2 and 𝐻3 for any PPT adversary A is at most 𝜖 provided 𝑐 = 𝑁 · 𝜏

Proof. Let us assume that there isA2 that can distinguish between 𝐻2 and 𝐻3. We will construct

A1 that uses A2 to win the ranked LPN game.

Challenger samples A ← Z(𝑁−ℓ)×𝑁2 , s ← Z𝑁−ℓ2 , and x ← Z𝑁2 with 𝑤𝑡 (x) = 𝑐 . It then sets

e0 = A⊤s ⊕ x and e1 ← Z𝑁2 . It tosses a bit and sends to A1, (A, e = e𝑏). A1 then generates the

corresponding PCM M for A and runs A2 on Me. It is easy to verify that if 𝑏 = 0, A1 simulates

perfectly 𝐻2 and if 𝑏 = 1, it simulates 𝐻3 perfectly. A1 merely forwards A2’s guess as its own.

This concludes the proof. □

Hybrid 𝐻4. A receivesMe where M← Zℓ×𝑁2 and e← Z𝑁2 .

Note that the difference between hybrids 𝐻3 and 𝐻4 is again the order of sampling. In the

former, A is sampled and thenM is computed, whereas in the latter M is directly sampled.

Hybrid 𝐻5. A receives y← Zℓ2

Hybrids 𝐻4, 𝐻5 are identically distributed and therefore are statistically indistinguishable.

□

7.2 Applying Small-Box Cryptography to PRGs

In the previous section, we presented the construction of a PRG, using an idealized primitive

𝑓 , and proved its security under the XLPN assumption. In this section, we arrive at the same
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construction, but by religiously following the small-box framework. Recall, our recipe for small-

box cryptography consists of two steps — the construction step and then the analysis step, each of

which consists of several small steps. We detail each below.

7.2.1 Construction Step

The construction step of small-box cryptography consists of two smaller sub-steps: domain

extension and hardness amplification. Although both of these steps are primitive-specific (e.g.,

different fromPRGs and block ciphers), they are largely syntactic and require little-to-no technical

expertise.

Domain Extension Step. Normally, the ideal object (S-box) gives a direct construction of the

given primitive, but for “tiny” input/output domain. For example, in the PRG case the S-box

𝑓 : {0, 1}𝑛+log ℓ → {0, 1} is a trivial “PRG” from (𝑛 + log ℓ) bits to 1 bit. Of course, being non-

expanding, this is not interesting in terms of functionality, but it will be obviously “secure” when

we think of 𝑛 as “big” and 𝑓 as a “big” random oracle in subsequent sections.

To make the primitive interesting in terms of functionality even in the small-box world, the

purpose of the domain extension step is to amplify the length of either the input, the output, or

both to be large even in the “small” box world. In the case of PRG, the interesting parameter is the

desired PRG output length ℓ , which we think as “big”.1 So our goal here is to extend the output

domain from {0, 1} to {0, 1}ℓ .

In the big-box world, one would amplify the output size by a factor of ℓ by expanding the PRG

seed length by a factor of ℓ and concatenating the ℓ outputs of the base PRG. Here we do almost

the same thing, except we don’t need to pay in the seed length, and use our idealized modeling of

our base PRG 𝑓 as a random oracle rather than a “mere” PRG. This is consistent with the design

intuition that a good S-box has all the idealized properties one would need for the construction
1This explains our strange-looking choice of notation to denote the input length of our S-box as (𝑛 + log ℓ) rather

than just ℓ . Of course, this is just matter of convenience of notation: if the 𝑆-box size was 𝑛′, we would have to
subtract log ℓ from it, and instead assume 𝑛′ = log ℓ + 𝑛 for a new parameter 𝑛.
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to work. Namely, we can construct the range-extended PRG 𝐺 as follows: 𝐺 : {0, 1}𝑛 → {0, 1}ℓ :

𝐺 (𝑥) = (𝑓 (𝑥 ∥ 0), . . . , 𝑓 (𝑥 ∥ ℓ − 1)) (7.1)

where ∥ denotes concatenation. Intuitively, we simply “waste” log ℓ bits of the seed to enumerate

over the ℓ desired output bits.

Hardness Amplification Step. As we can see, the improved functionality — in this case, output

size — came at the expense of decreased security (which is, of course, expected). For the PRG

example above, the seed length was (𝑛 + log ℓ) bits, but now is only 𝑛 bits, which means it is

definitely easier to break (we will formalize this quantitatively in Section 7.2.2).

The goal of the hardness amplification step is to amplify security — not just to the level we

started from — but hopefully well beyond, so that we can afford to make 𝑛 “small” and still have

good looking security bound (this is somewhat subtle, and will be explained in the analysis step

in Section 7.2.2). The hardness amplification step is usually parameterized by the hardness pa-

rameter 𝑐 , which we can also think of as a security parameter of our final construction. For the

case of PRGs, the standard hardness amplification is simply the bit-wise XOR operation, applied

to 𝑐 independent copies of our (already “domain-extended”) PRG. Intuitively, while each individ-

ual PRG might only be slightly secure, by XOR-ing 𝑐 independent copies the potential biases of

the final PRG decay exponentially in 𝑐 . This was formally analyzed in the computational setting

by Dodis et al. [DIJK09] and in the information-theoretic setting by Maurer et al. [MPR07].

With this in mind, we can define the following PRG �̃� : {0, 1}𝑛𝑐 → {0, 1}ℓ :

�̃� (𝑥1, . . . , 𝑥𝑐) = 𝐺 (𝑥1) ⊕ . . . ⊕ 𝐺 (𝑥𝑐)
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This PRG can also be rewritten as follows, if we unwrap the definition of𝐺 fromEquation (7.1):

�̃� (𝑥1, . . . , 𝑥𝑐) =

©«

𝑓 (𝑥1 ∥ 0) ⊕ 𝑓 (𝑥2 ∥ 0) ⊕ . . . ⊕ 𝑓 (𝑥𝑐 ∥ 0)

𝑓 (𝑥1 ∥ 1) ⊕ 𝑓 (𝑥2 ∥ 1) ⊕ . . . ⊕ 𝑓 (𝑥𝑐 ∥ 1)
...

𝑓 (𝑥1 ∥ ℓ − 1) ⊕ 𝑓 (𝑥2 ∥ ℓ − 1) ⊕ . . . ⊕ 𝑓 (𝑥𝑐 ∥ ℓ − 1)

ª®®®®®®®®¬
(7.2)

This is the same construction as the one in Section 7.1.2, but now obtained using two relatively

syntactic steps. In each step, we intuitively think of 𝑓 as a “big” random oracle to justify the

soundness of this step (and we formalize this below), but the actual construction makes sense

even in the “small-box” world! This dichotomy will be the point of the analysis step we present

in the next section.

7.2.2 Analysis Step

On a high-level, the analysis step of small-box cryptography will consist of two components.

The first component is provable, typically information-theoretically. It involves the analysis of the

security of the final object (�̃� , in the case of PRG, or SPN cipher in the case of block ciphers) in the

corresponding idealized model for the building block 𝑓 (random oracle model, in the case of PRG,

and random permutation model in the case of SPNs). The proof will critically use the assumption

that the size of 𝑓 is larger than the running time𝑇 of the attackerA so thatA cannot query 𝑓 on

all inputs. However, the final security bound one gets will be “syntactically meaningful” even in

the small-box world, when the size of 𝑓 becomes polynomial. Then the second component of the

analysis will involve a new type of conjecture, which we term Big-to-Small conjecture, which was

never considered prior to this work, and which allows one to get good exact security bounds for

the final construction in the small-box world. We detail these below for the simple case of PRGs.
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Idealized Big-box Proof. Here we are arguing the security of our final PRG �̃� in the random

oracle model for the S-box 𝑓 . Normally, one would try to do it modularly, by separately analyzing

the domain extension step, followed by the hardness amplification step. Indeed, this is how we

will do the analysis in the case of SPNs, where a direct analysis of the entire construction appears

extremely cumbersome. Here, however, the PRG construction is so simple, that we do a direct

proof for the security of �̃� in the random oracle model for 𝑓 .

Recall that in the basic PRG security game, an adversary has to distinguish between �̃� (𝑥) and

a random ℓ-bit string, for a random seed 𝑥 = (𝑥1, . . . , 𝑥𝑐), by making at most 𝑞 queried to the

random oracle 𝑓 . We obtain the following simple lemma:

Lemma 7.6. Let 𝑓 : {0, 1}𝑛+log ℓ → {0, 1} be modeled as a random oracle. Then, �̃� : {0, 1}𝑛𝑐 →

{0, 1}ℓ is (𝑞/𝑁 )𝑐-secure PRG where 𝑁 = 2𝑛 , and 𝑞 is the number of oracle queries made to 𝑓 .

Proof. Let us define the variable𝑞 𝑗 to be the number of calls to 𝑓 of the form 𝑓 (·, 𝑗) for 𝑗 = 0, . . . , ℓ−

1. Let 𝑥1, . . . , 𝑥𝑐 be 𝑛-bit strings, randomly sampled as the seeds. Now, define an event 𝐵𝑎𝑑 𝑗 as the

event that a PPT attackerA invoked 𝑓 (𝑥1, 𝑗), . . . , 𝑓 (𝑥𝑐, 𝑗). Now, note that the the probability that

A invoked exactly one of these seeds with 𝑗 is at most 𝑞 𝑗/2𝑛 . Therefore, Pr[[]𝐵𝑎𝑑 𝑗 ] ≤ (𝑞 𝑗/2𝑛)𝑐 .

Define by E the event that any of 𝐵𝑎𝑑1, . . . , 𝐵𝑎𝑑ℓ−1 occurred. Then, we know that

Pr[[]E] =
ℓ−1∑︁
𝑗=0

Pr[[]𝐵𝑎𝑑 𝑗 ] =
1
𝑁 𝑐

ℓ−1∑︁
𝑗=0
𝑞𝑐𝑗 ≤

( 𝑞
𝑁

)𝑐
Now, note that if E did not happen, then the adversary has no distinguishing advantage between

real or random. Therefore, the distinguishing advantage of A in the PRG game is (𝑞/𝑁 )𝑐 . □

Removing the dependence on 𝑞 in 𝜖 . We need one other syntactic, but extremely important

step. For reasons to be clear when we move to the Big-to-small conjecture, we cannot afford to

have a dependence on a number of oracle queries 𝑞 in our security bound for 𝜖 . Instead, we will

re-write our bound, but in a way that pushed the dependence on 𝑞 into the lower bound for the S-
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box input parameter 𝑛. Concretely, if we (temporarily) assume that 𝑛 ⩾ 10 log𝑞 (or, equivalently,

𝑞 ⩽ 2𝑛/10), then 𝜖 (𝑛) ⩽ 2−0.9𝑛𝑐 = 𝑁 −0.9𝑐 .

Finally, we will now no longer assume that the attacker A is computationally unbounded,

but instead upper bound its running time by some parameter 𝑇 ⩾ 𝑞, and say that our PRG is

(𝑇, 𝜀)-secure if no such attacker can break it with an advantage more than 𝜖 . With this change,

we get the following restatement on our bound in Lemma 7.6 which will be convenient for our

Big-to-small conjecture.

Theorem 7.7. If 𝑛 ⩾ 10 log𝑇 and 𝑓 : {0, 1}𝑛+log ℓ → {0, 1} is modeled as a random oracle, then

�̃� : {0, 1}𝑛𝑐 → {0, 1}ℓ given in Equation (7.2) is a (𝑇, 𝑁−0.9𝑐)-secure PRG, where 𝑁 = 2𝑛 .

Big-to-Small Conjecture. Our analysis in the sections thus far have assumed that 𝑛 is suf-

ficiently large, i.e., “big 𝑛”. Formally, Theorem 7.7 assumed that 𝑛 > 10 log𝑇 . However, the

construction of �̃� is interesting even when 𝑛 is much smaller. Indeed, we only need 𝑐𝑛 < ℓ to

get a meaningful expansion. Moreover, even the final security bound 𝑁 −0.9𝑐 is pretty good (while

not established, of course!) for quire reasonable values of 𝑛 and 𝑐 . For example, setting 𝑐 = 𝑛 = 8

and ℓ = 128, we get a PRG with seed length 𝑐𝑛 = 64, output length ℓ = 128, and conjectured

security (2−64)−0.9 ≈ 2−57, from a reasonably small Boolean 𝑆-box on 15 bits (or, equivalently,

a more “balanced” S-box from 12-to-8 bits, which is quite reasonable to build). This would be

fantastic, if true!

Of course, such security makes no sense, as it does not depend on the running time 𝑇 of the

distinguisher. Indeed, we could have replaced 𝑛 ⩾ 10 log𝑇 with the bound 𝑛 ⩾ 1000000 log𝑇 , and

basically get optimal security ≈ 2−𝑛𝑐 using a 𝑐𝑛-bit seed, without doing any work. Nevertheless,

we conjecture that bounds such as the one in Theorem 7.7 are hopefully meaningful for real-

world security of the corresponding ciphers, provided one also includes some term corresponding

to “brute-force attacks” running in time 𝑇 . For example, the best generic (non-uniform) attacks

against PRGs with 𝑐𝑛-bit key [DTT10] have an advantage roughly 𝑇 /𝑁 𝑐/2 using non-uniform
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attackers using time and space 𝑇 .

A particularly strong Big-to-small conjecture2 would then state that the best way to attack

constructions of the typewe present is either by doing a brute-force searchwith advantage𝑇 /𝑁 𝑐/2

ignoring the fine-grained structure of our PRG, or we could have a generic attack on the structure

of our PRG, ignoring its key size. And since with such a strong conjecture we have 𝑇 /𝑁 𝑐/2 ≫

𝑁 −0.9𝑐 , we are effectively saying that the brute-force attack is the best we can do for our cipher.

Of course, we could make weaker conjectures, and perhaps invest more time in the crypt-

analysis of the resulting cipher. But the “mega-conjecture” of our approach is as follows:

Big-to-Small (Meta-)Conjecture: If the idealized big-box analysis shows (𝑇, 𝑁−𝛼𝑐)-hardness

when 𝑛 > 𝑎 log𝑇 (for some 𝑎 > 1 and 𝛼 < 1) for the 𝑐-time iterated construction of a given primitive,

then the construction is also (𝑇, 𝑁−𝛼𝑐 + 𝜖 (𝑇 ))-secure for any 𝑛 ⩾ 𝑛0, where 𝑛0 = 𝑛0(𝑎, 𝛼) ≪ log𝑇 is

a constant, and 𝜖 (𝑇 ) accounts for a term involving a brute-force search component in time 𝑇 .

Conjecture 7.8 (Big-to-Small Conjecture; Informal). Assume a PRG 𝐺′ of seed length ℓ (𝑛) is

(𝑇, 𝜖′(𝑛))-secure, where 𝜀′(𝑛) > 𝑇 /2ℓ (𝑛) , when using ideal building component of length 𝑛 ⩾ 𝑎 log𝑇

(for some 𝑎 > 1). Then, for some constant 𝑛0 = 𝑛0(𝑎), the “scaled down” version of𝐺′ of seed length

ℓ (𝑛0) using building block 𝑓 of size 𝑛 ⩾ 𝑛0 is still (𝑇,𝑂 (𝜀′(𝑛))-secure.

We defer a more precise discussion on such a conjecture, its practicality, and its impact after

a similar analysis of SPNs in Section 7.3.3, as this is our most interesting case.

We note, however, that we would not be surprised that such a strong conjecture could be

false in its generality. For example, analogous conjecture is clear false for related unpredictabil-

ity primitives, such as one-way functions (OWF) constructed using direct product with inde-

pendent inputs: 𝐹 (𝑥1, . . . , 𝑥𝑤 ) = 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑤 ). Namely, when scaling the input length 𝑛 to

OWF 𝑓 from security parameter to constant, we clearly make the resulting combined function
2Of course, we have no chance of proving such a conjecture, as it clearly implies one-way functions.
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𝐹 insecure, by iterative inverting each 𝑥𝑖 one by one. However, it currently appears that fund-

ing natural counter-examples for indistinguishability primitives (like PRGs and block ciphers) is

quite non-obvious, even if one starts with artificial constructions not motivated by what is done

in practice. Moreover, once the corresponding primitive is built using the natural hardness am-

plification step applied 𝑐 times (e.g., cascade for block ciphers, or XOR for PRGs), the big-to-small

conjecture becomes quite plausible. Indeed, we believe it could be true (while beyond our reach

formally), at least with a weaker security term 𝑁 −𝑎
′𝑐 for 𝑎′ < 𝑎 (when the non-cascaded version

has security 𝑁 −𝑎). Further, the we would not be surprised if the brute-force component 𝜖 (𝑇 )

could be improved by future cryptanalysis to be somewhat below the naive brute-force search.

To sum up, while many aspects of our framework are still being nailed down, we hope this

work will motivate further explorations of small-box cryptography, including its promise and

limitations.

7.3 Applying Small-Box Cryptography to SPNs

As our next result, we demonstrate the use of our framework to obtain concrete security

bounds for SPN block ciphers.3 In Section 7.3.1 we remind the reader of the syntax of (linear)

SPNs. In Section 7.3.2we showhowwe can obtain essentially the same construction by combining

a “domain extension step” with the “hardness amplification” step. Namely, the former could be

viewed as reduced-round SPN for which we will use the results of [CDK+18], which showed

that 3-round linear SPNs achieve𝑂 (𝑇 2/2𝑛) security in the random permutation model (as a way

to model the 𝑆-box, and under pretty mild restrictions on the linear 𝐷-box design). As stated

before, a 𝐷-box is keyed, non-cryptographic permutation on𝑤𝑛 bits. The latter step of “hardness

amplification” could be viewed as cascading the cipher with independent (or correlated) keys to

increase the number of rounds to get below 2−𝑛 security barrier (in the “big-box” world). These
3Although we only apply our result to the SPN design, the discussion below is rather general, and can be applied

to any 𝑟 -round design 𝐸 which uses some idealized building block 𝑓 of (potentially small) size 𝑛.
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analyses are done in Sections 7.3.3. Finally, Section 7.3.3 formalizes an appropriate “big-to-small”

conjecture to go to the “small-box” world, and Section 7.3.4 brings everything together to justify

Theorem 1.1 and get the concrete (conjectured) security bounds advertised in the Introduction.

7.3.1 Pseudorandom Permutations and SPNs

PseudorandomPermutation. We now look at the security of a Pseudorandom Permutation

(PRP).

Definition 7.9 (Pseudorandom Permutation). Let 𝑛 ∈ N be the security parameter. Then, an

efficiently computable keyed-permutation 𝐸𝑘 : {0, 1}𝑛 → {0, 1}𝑛 where 𝑘 ← {0, 1}𝑠 is an (𝑇, 𝜖)-

secure PRP if for all adversaries A running in time 𝑇 , the following holds:����Pr[]𝑘 ← {0, 1}𝑠 [
A𝐸𝑘 (·) () = 1

]
− Pr[]𝑃 ← P

[
A𝑃 (·) () = 1

] ���� ≤ 𝜖
where P is the set of all permutations over {0, 1}𝑛 . Note that if the construction uses an ideal

object, then A gets oracle access to this primitive as well.

Substitution-Permutation Networks. A substitution-permutation network (SPN) is a keyed

permutation defined by the two transformations that it repeatedly invokes. The first transfor-

mation is what is called an “𝑆”-box where one computes, block by block, a public, cryptographic

permutation. The second transformation uses a keyed, non-cryptographic permutation. The re-

peated invocation is determined by the rounds of the SPN. In addition, the distribution of the

keys for the keyed-permutation is also included in this definition, though in practice, the keys

are actually derived from a single master key through a key schedule.

Formally, an 𝑟 -round SPN taking inputs of length𝑤𝑛where𝑤 ∈ N is thewidth of the network,

is defined by:

1. 𝑟 + 1 keyed permutations {𝜋𝑖 : 𝐾𝑖 × {0, 1}𝑤𝑛 → {0, 1}𝑤𝑛}𝑟𝑖=0,
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2. a distribution K over 𝐾0 × · · · × 𝐾𝑟 , and

3. a permutation 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 .

The actual construction is as follows:

• 𝑥1 := 𝜋0(𝑘0, 𝑥).

• For 𝑖 = 1 to 𝑟 do:

1. 𝑦𝑖 := 𝑆 (𝑥𝑖), where 𝑆 (𝑥 [1] ∥ · · · ∥ 𝑥 [𝑤])
def
= 𝑓 (𝑥 [1]) ∥ · · · ∥ 𝑓 (𝑥 [𝑤]).

2. 𝑥𝑖+1 := 𝜋𝑖 (𝑘𝑖, 𝑦𝑖).

• The output is 𝑥𝑟+1.

where (𝑘0, . . . , 𝑘𝑟 ) ∈ 𝐾0 × · · · × 𝐾𝑟 are the round keys and 𝑥 ∈ {0, 1}𝑤𝑛 is the input.

Note that if 𝑓 is efficiently invertible and each 𝜋𝑖 is efficiently invertible (given the appropriate

key), then one can simply reverse the process, given the round keys, to obtain the original input

𝑥 .

Linear SPNs. In practice, majority of SPNs are what we call linear. Such SPNs correspond to the

settingwhere the𝐷-Boxes (i.e., the keyed permutations 𝜋𝑖 ) are defined as follows: 𝜋𝑖 (𝑘𝑖, 𝑦) = 𝑘𝑖+𝑦,

where each 𝑘𝑖 = 𝑇𝑖 (𝑘) with𝑇𝑖 being a linear transformation, and 𝑘 being the “main” key. A simple

example of such linear SPN corresponds to the case there each𝑇𝑖 is the identity function, meaning

the original key 𝑘 = (𝑘0, . . . , 𝑘𝑟 ) is (𝑟 +1)𝑤𝑛-bit long, and consists of (𝑟 +1) independent sub-keys

of length 𝑤𝑛 each. However, we could have more compact key schedules 𝑇 = (𝑇0, . . . ,𝑇𝑟 ), where

the main key 𝑘 will be much smaller (and each function 𝑇𝑖 possibly expanding). Indeed, such

linear SPNs were analyzed by Cogliati et al. [CDK+18] (see Lemma 7.10 and Lemma 7.11 below).

Figure 7.1 is a pictorial representation of a 3-round Linear SPN with unspecified linear trans-

formations 𝑇0,𝑇1,𝑇2,𝑇3.
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𝑤𝑛-bit input

𝑓 𝑓 𝑓 𝑓𝑓𝑓 𝑓 𝑓 𝑓𝑓

𝑓 𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓

𝑛-bit 𝑓 -box input

𝑓 𝑓𝑓𝑓𝑓 𝑓 𝑓𝑓𝑓𝑓

𝑘0 = 𝑇0(𝑘)

𝑘1 = 𝑇1(𝑘)

𝑘3 = 𝑇3(𝑘)

𝑘2 = 𝑇2(𝑘)

Figure 7.1: A 3-round Linear SPN with key schedule (𝑇0,𝑇1,𝑇2,𝑇3) expanding 𝑘 to rounds keys

(𝑘0, 𝑘1, 𝑘2, 𝑘3), where 𝑘𝑖 = 𝑇𝑖 (𝑘) for 𝑖 = 0, 1, 2, 3

7.3.2 Construction Step

In this section, we show how the defined SPN can be “syntactically" obtained through a pro-

cess of two steps — domain extension and hardness amplification.

Domain Extension Step. In this step, we view the 𝑆-box as an idealized block (random permuta-

tion), and our goal is to find the minimal number of rounds 𝑟 for which SPNs (with appropriately

chosen linear 𝐷-boxes) are (𝑇, 2−Ω(𝑛))-secure in the random permutation model. This is exactly

the question studied by [CDK+18], who showed that minimal such 𝑟 = 3, and we will use their

concrete results in Section 7.3.3.
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Hardness Amplification Step. First, since we are in the big world, we imagine the size 𝑛 of the

“small-box” 𝑓 is made large enough so that exponential in 𝑛 security is meaningful. For example,

one could imagine SPN ciphers with large 𝑆-boxes (say, of several hundred bits long), even though

they yield block ciphers of much higher block length𝑤𝑛 than we might need (say, thousand bits

or more). Then one can ask the question if the security of such “blown up” ciphers (still with

idealized 𝑓 ) gets significantly better when one starts to increase the number of rounds 𝑟 well

beyond what is needed for their minimal security, by cascading the block cipher with itself, with

independently generated keys. This is exactly the question of hardness amplification of block

ciphers studied by [MPR07, Tes11]; their result states that by cascading 𝑐 independent, (𝑇, 𝜀)-

secure ciphers, one still gets (𝑇, 𝜀′)-security which decays exponentially in 𝑐: 𝜀′ ≈ 𝜀𝑐 , but for

our purposes any weaker exponential dependence on 𝑐 (e.g., 𝜀′ = 𝜀𝑐/100) will be enough to get a

meaningful result, at the price of lesser efficiency. We give amore precise analysis in Section 7.3.3.

In summary, by doing this 𝑐-cascading step applied to the basic 3-round SPN predicted secure

by [CDK+18] in the big-box world, we effectively obtain 3𝑐-round SPN, which was exactly our

goal.

7.3.3 Analysis Step

Soundness of Domain Extension. As our next step, we analyze the soundness of hardness

amplification in the big-box world, when we still model 𝑓 as a “big” ideal object. As for the PRG

case, we do it in the information-theoretic setting, where the running time of the attacker is

unbounded, and only the number of oracle queries 𝑞 is still bounded. Unlike the PRG case, the

direct analysis of both domain extension and hardness amplification together appears extremely

involved. Instead, we do it in a modular fashion, starting with the analysis of domain extension.

Fortunately for us, this question has been studied by Cogliati et al.[CDK+18]. They study the

security of an SPN as a strong-pseudorandom permutation. Specifically, they show that a 2-round

SPN is insecure with linear 𝐷-boxes but a 3-round SPN is secure, with caveats. Formally, these
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are the results for the 3-Round SPN which we present here, without proof. We invite the readers

to refer to the original work for a complete discussion on the two Lemmas that we will use below.

Lemma 7.10 (Security of 3-Round SPN, Corollary 1 [CDK+18]). For𝑤 > 1, there exists a 3-round

linear SPN 𝑘0 = 𝑘3 = 𝑘 for uniform 𝑘 ∈ {0, 1}𝑤𝑛 and set 𝑘1 = 𝑘2 = 0𝑤𝑛 which is 𝜖 (𝑞) = 𝑂 (𝑞2/2𝑛)-

secure, where 𝑞 is the number of queries made by the distinguisher.

Lemma 7.11 (Security of 3-Round SPN, Corollary 2 [CDK+18]). Let𝑤 > 1, 𝑘′ be a uniform 𝑛-bit

key, and 𝑎𝑖 for 𝑖 = 1, . . . ,𝑤 are distinct non-zero elements of finite field F = GF(2𝑛). Then, there exists

a 3-round linear SPN with 𝑘0 [𝑖] = 𝑘3 [𝑖] = 𝑎𝑖 · 𝑘′, 𝑘1 = 𝑘2 = 0𝑤𝑛 which is 𝜖 (𝑞) = 𝑂 (𝑞2/2𝑛)-secure.

Lemma 7.10 deals with the minimal security of the 3-round scheme. However, one can reduce

the key length from𝑤𝑛 to 𝑛 (saving a factor of𝑤 ), and Lemma 7.11 shows such reduction in key

length still leaves the construction almost as secure, by utilizing a more aggressive key schedule.

Provable Hardness Amplification with Independent Keys. We begin by unconditionally

proving the hardness amplification that we need (under appropriate independence assumptions)

using a beautiful hardness amplification result of Maurer, Pietrzak, and Renner [MPR07]. This is

proved for a cascade of 𝑐 block ciphers 𝐸1, . . . , 𝐸𝑐 which use both independent keys and indepen-

dent ideal components 𝑓 . For the case of SPNs, this means independent 𝑆-boxes with independent

round keys. (We comment on how to relax this assumption later in the section.)

In the language of [MPR07], imagine we have two indistinguishable “random systems” 𝐹 and

𝐻 , where:

• 𝐹 provides two oracles, where the first oracle is the ideal building block 𝑓 of length 𝑛, and

the second oracle is the (keyed) block-cipher construction 𝐸 𝑓
𝑘
utilizing 𝑓 as an oracle and

using a secret key 𝑘 . Denote such block cipher by 𝐸 = 𝐸
𝑓

𝑘
, and 𝐹 = (𝑓 , 𝐸). Note, both

forward and backward queries to 𝐸 are allowed (and the same is true for 𝑓 when 𝑓 is a

random permutation 𝑆-box).
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• 𝐻 provides two oracles, where the first oracle is still the ideal building block 𝑓 of length

𝑛, but the second oracle is a random independent 𝑤𝑛-bit permutation 𝑃 . Denote such 𝐻 =

(𝑓 , 𝑃). Note, both forward and backward queries to 𝑃 are allowed (and the same is true for

𝑓 when 𝑓 is a random permutation 𝑆-box).

Assume further that no computationally unbounded distinguisher 𝐷 making at most 𝑞 queries

to either 𝐹 or 𝐻 (for simplicity we do not split 𝑞 into the number of primitive queries to 𝑓 and

construction queries to either 𝐸 or 𝑃 ) can distinguish 𝐹 from 𝐻 with advantage greater than

𝜀 = 𝜀 (𝑞). Let us denote this by Δ𝑞 (𝐹, 𝐻 ) ⩽ 𝜀.

Now, let 𝐹1, . . . , 𝐹𝑐 be 𝑐 independent copies of 𝐹 , and 𝐻1, . . . , 𝐻𝑐 be 𝑐 independent copies of

𝐻 . Let 𝐶 be the construction such that, for 𝐿1, . . . , 𝐿𝑐 being each either 𝐹𝑖 or 𝐻𝑖 , 𝐶 (𝐿1, . . . , 𝐿𝑐)

implements 𝑐+1 oracles, as follows. If we let 𝐿𝑖 = (𝑓𝑖, 𝑄𝑖) (where𝑄𝑖 is either a random permutation

𝑃𝑖 or 𝐸𝑖 ), then

𝐶 (𝐿1, . . . , 𝐿𝑐) = (𝑓1, ..., 𝑓𝑐, 𝑄1 ◦𝑄2 ◦ ... ◦𝑄𝑐)

where ◦ is the composition of permutations. Namely,𝐶 is the 𝑐-time cascade of the 𝑐 block ciphers

𝐸𝑖 or random permutations 𝑃𝑖 , which also provides oracle access to the 𝑐 independent building

blocks 𝑓1, . . . , 𝑓𝑐 . Let us also denote the 𝑐-cascade of our 𝑐 block ciphers by 𝐸′ = 𝐸1 ◦ · · · ◦ 𝐸𝑐 ,

and the 𝑐-cascade of random permutations 𝑃𝑖 by 𝑃 ′ = 𝑃1 ◦ · · · ◦ 𝑃𝑐 , which by itself is just another

random permutation.

It is easy to see that this construction𝐶 has a property that is called neutralizing by [MPR07]:

whenever at least one of the𝐻𝑖 ’s is such that 𝐿𝑖 = 𝐻𝑖 (the ideal system), meaning that𝑄𝑖 is a fresh

random permutation 𝑃𝑖 , then

𝐶 (𝐿1, .., 𝐿𝑐) = (𝑓1, ...., 𝑓𝑐, 𝑃 ′) = 𝐶 (𝐻1, ..., 𝐻𝑐),

because the composition becomes random if at least one of the permutations is random. Under
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such conditions, the amplification result proven in [MPR07] states that

Δ𝑞 (𝐶 (𝐹1, . . . , 𝐹𝑐),𝐶 (𝐻1, ..., 𝐻𝑐)) = Δ𝑞 ((𝑓1, ...., 𝑓𝑐, 𝐸′), (𝑓1, ...., 𝑓𝑐, 𝑃 ′))

⩽ 2𝑐−1𝜖𝑐 < (2𝜀)𝑐 (7.3)

We can now apply Equation (7.3) to the 3-round linear SPN construction, where the building

block 𝑓 is an 𝑛-bit random permutation, and the security value 𝜀 (𝑞) = 𝑂 (𝑞2/2𝑛) is established

by Lemma 7.10. We then get that the resulting 3𝑐-round SPN construction uses 𝑐 independent

𝑆-boxes 𝑓1 . . . 𝑓𝑐 (one per each 3 rounds) and 𝑐 independent 𝑤𝑛-bit keys 𝐾1 . . . 𝐾𝑐 , and achieves

(𝑞, 𝜀′𝑐 (𝑞))-security against 𝑞 queries (to either the construction of the 𝑆-boxes), where 𝜀′𝑐 (𝑞) =

𝑂 ((𝑞2/2𝑛)𝑐).

In fact, to reach the same conclusion with a shorter key length, we could use Lemma 7.11 in

place of Lemma 7.10. In this case, we get the final key of length only 𝑐𝑛 ≪ 𝑐𝑤𝑛, so we save the

domain expansion factor 𝑤 . Thus, although we still need 𝑐 independent 𝑆-boxes, for now, this

version and could be viewed as a relatively advanced form of key scheduling, with very strong

provable security guarantees.

Removing the dependence on 𝑞 in 𝜖 . As with the case of PRGs, we cannot use these results as

is, and need to do some manipulation of the bounds to move the dependence on the number of

queries 𝑞 from 𝜖 on 𝑞 to the size of the 𝑆-box 𝑓 . Let𝑛 ⩾ 20(log𝑞+1) (or, equivalently, 2𝑞2 ⩽ 2𝑛/10).

Then 2𝜖 (𝑛) = 2𝑞2/2𝑛 = 2−0.9𝑛 , and hence 𝜀′𝑐 (𝑞) ⩽ (2𝜖 (𝑛))𝑐 = 2−0.9𝑛𝑐 = 𝑁 −0.9𝑐 .

Finally, we will now no longer assume that the attacker A is computationally unbounded,

but instead upper bound its running time by some parameter𝑇 ⩾ 𝑞, and say that our SPN cipher

is (𝑇, 𝜀)-secure if no such attacker can break it with an advantage more than 𝜖 . With this change,

we get the following restatement on our bound above.

Theorem7.12. If𝑛 ≥ 20(log𝑇+1), then the 3𝑐-round SPN construction using 𝑐 independent 𝑆-boxes

and 𝑐 independent (either𝑤𝑛-bit or 𝑛-bit, depending on variant) round keys is (𝑇, 𝑁−0.9𝑐)-secure.
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Conjectured Hardness Amplification with Correlated Keys. Unfortunately, the hardness

amplification result of [MPR07] crucially relies on the complete independence of the 𝑐 𝑆-boxes

𝑓1, . . . , 𝑓𝑐 and 𝑐 independent round keys. In particular, unlike the much simpler PRG setting,

where we managed to analyze the whole PRG construction in one go, for the case of SPNs, we

currently cannot prove such strong results when the 𝑆-boxes are shared across the cascade, or

keys are more correlated. The best provable result in this setting is the “computational hardness

amplification” of Tessaro [Tes11], but that comes with huge degradation in the number of oracle

queries 𝑞 allowed by the “cascade distinguisher”, leading to concrete bounds which are not useful.

In general, though, we would like to apply an appropriate hardness amplification step in

practical settings, where different cascading ciphers use correlated rather than independent keys

(via a key schedule used in most actual designs), or when correlated or even identical building

blocks 𝑓 (e.g., 𝑆-boxes) are used in different cascaded ciphers. For such pragmatic settings, we do

not have any provable results such as [MPR07], and hence we state the hardness amplification

step as a “conjecture” rather than “theorem” below. In particular, the concrete choice of cascading

(not spelled out in the statement) is part of the conjecture. For simplicity, we also choose the final

security level we desire to be 2−𝑤𝑛 , which is definitely enough for practical use, but the statement

easily extends to any security level below 2−𝑛 .

Conjecture 7.13 (Hardness Amplification; Informal). Let 𝑇 be the desired attacker time bound,

and assume that 𝑟 -rounds block cipher 𝐸 of length𝑤𝑛 utilizing idealized block 𝑓 of size𝑛 is (𝑇, 2−𝛼𝑛)-

secure, as long as 𝑛 > 𝑎 log𝑇 (for some constants 𝑎 > 1 and 𝛼 < 1). Then, provided 𝑛 > 𝑎 log𝑇 ,

cascading 𝐸 for 𝑐 = 𝑂 (𝑤/𝛼) times will result in a 𝑟 ′ = 𝑂 (𝑤𝑟/𝛼)-round block cipher 𝐸′ which is

(𝑇,𝑂 (𝑇 /2ℓ (𝑛) + 2−𝑤𝑛))-secure, where ℓ (𝑛) is the key length of 𝐸′ under to corresponding cascading

step (equal to 𝑐 times the key length of 𝐸 when independent keys are used).

Ignoring the cost of the brute-force key search (against uniform attackers, for simplicity)

𝑇 /2ℓ (𝑛) (which is expected to be negligible for our choice of parameters), the hardness amplifica-

tion conjecture states that using a building block 𝑓 of size 𝑛 would yield better-than-exponential-
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in-𝑛 security 2−𝑤𝑛 for sufficiently many more (still constant, assuming expansion 𝑤 = 𝑂 (1))

rounds, provided the box size 𝑛 is sufficiently large.

Big-to-Small Conjecture. But now it seems natural to assume/conjecture that such a final

result not only holds for “big” 𝑛 butmight even be true for “small” 𝑛! Namely, back to the original

small-box 𝑓 , we can reasonably conjecture security 2−𝑤𝑛 (plus brute-force search) for a sufficiently

large constant number of rounds 𝑟 ′ = 𝑂 (𝑟𝑤) without assuming that this is only true when𝑛 is large.

Namely, the amplified security level 2−𝑤𝑛 is so good even if 𝑛 is small, that we optimistically hope

that it holds even in the small-box world, even though the supporting hardness amplification

argument is no longer valid.

As discussed in Section 7.2.2, we will propose one of the strongest variants of such a con-

jecture. The motivation behind such a strong variant is that it gives us great security in case it

happens to be true for practically used ciphers. As before, the conjecture will give a meaning-

ful result for our purposes as long as one can decrease the size 𝑛 of the ‘small-box” below the

threshold of log𝑇 , for 𝑇 independent of 𝑛. The constant 𝑛0 = 𝑛0(𝑎) below could be really small

(e.g., 𝑛0 = 8 in the case of AES), and is part of the conjecture. We also notice that we are not

making this conjecture for all (even potentially artificial) block ciphers 𝐸′, but only for specific

𝐸′ resulting from applying the hardness amplification step to the basic block cipher 𝐸 (for which

we get our provably secure results).

Conjecture 7.14 (Big-to-Small Conjecture; Informal). Assume a block cipher 𝐸′ with key length

ℓ (𝑛) is (𝑇, 𝜀′(𝑛))-secure, where 𝜀′(𝑛) > 𝑇 /2ℓ (𝑛) , when using ideal building component of length

𝑛 ⩾ 𝑎 log𝑇 (for some 𝑎 > 1). Then, for some constant 𝑛0 = 𝑛0(𝑎), the “scaled down” version of 𝐸′

using building block 𝑓 of size 𝑛 ⩾ 𝑛0 is still (𝑇,𝑂 (𝜀′(𝑛))-secure.

We discuss this very strong conjecture below but notice that Conjectures 7.13 and 7.14 im-

mediately imply the statement of Theorem 1.1 from the Introduction.

How Reasonable is “Big-to-Small” Conjecture? At first, this conjecture seems like a com-
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plete “cheat”, as we simply assume that the conclusions attained by some security arguments

crucially relying on the big-box assumption 𝑛 ≫ log𝑇 , might still hold in the small-box world

when 𝑛 is a constant. But let us observe a couple of things. First, we already mentioned that

we do not need such a strong conjecture: many weaker conjectures will yield meaningful vari-

ants of Theorem 1.1, provided they allow one to decrease the size 𝑛 of the “small-box” below the

threshold value log𝑇 . Second, since the construction of 𝐸′ is the same for all 𝑛, it is natural that

its security smoothly changes with 𝑛, without any huge jumps at certain levels, as long as the

exhaustive key search is infeasible (this is why we assumed 𝜀′(𝑛) > 𝑇 /2ℓ (𝑛)). In particular, under

this reasonable assumption, we certainly allow the assumed success probability 𝜀′(𝑛) to grow as

the box 𝑓 becomes smaller. So the only really big assumption is the fact that we kept the running

time of the attacker at the same level𝑇 , even though when𝑇 becomes larger than 2𝑛 , the attacker

can suddenly evaluate our ideal component 𝑓 (e.g., 𝑆-box) on all 2𝑛 inputs. Third, given our cur-

rent inability to built unconditionally block ciphers from only small components, it seems that

some kind of “big-to-small” conjecture must be required, but we tried to make it as crisp and clean

as we could, while additionally proving as many things around it as possible with the existing

techniques. And, finally, the kinds of constructions we get when applying this conjecture to the

SPN ciphers are exactly the SPN ciphers used in practice, and believed to be secure. So one can

use this conjecture as a clean and formal way to isolate exactly the kind of “leap of faith” we are

making in the real world in assuming these ciphers are secure.

Aside from these reasonable, but still rather limited, justifications at this stage we don’t have

any other theoretical justification for this strong “Big-to-Small Conjecture”, and view this as an

exciting direction for future research. In particular, given that coupling this strong conjecture

with (rather mild and believable) hardness amplification step gives us the amazing conclusion of

Theorem 1.1, which in turn implies plausible security for many SPN-based ciphers, we believe

studying this new and non-standard conjecture is extremely reasonable and well-motivated.
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7.3.4 Putting the Pieces Together

As mentioned earlier, Dodis et al.[CDK+18] proved results that addressed the problem of “do-

main extension” of block ciphers. In particular, they showed that a 3-round SPN is (𝑇, 2−𝛼𝑛)-

secure when 𝑛 > 2 log𝑇 /(1 − 𝛼) (so that 𝑇 2/2𝑛 ⩽ 2−𝛼𝑛). Thus, cascading it 𝑐 times gives us

3𝑐-round SPN with conjectured (𝑇,𝑇 /2ℓ (𝑛) + 2−Ω(𝑐𝑛))-security, where ℓ (𝑛) is our final key length,

and this is true even for small values of𝑛 (governed by constant𝑛0 which is part of the conjecture).

To get this close to the practical SPN designs, let us write 𝑇 = 2𝑡 , and assume we use correlated

key schedule with final key length ℓ (𝑛) = 𝑤𝑛, and, for simplicity, ideal hardness amplification is

true even with best possible 𝛼 ≈ 1. Then we get (very ambitious) conjectured (2𝑡 , 2𝑡−𝑤𝑛 + 2−𝑐𝑛)-

security in 3𝑐 rounds. In particular, optimistically setting 𝑛 = 8 and𝑤𝑛 = 128 for the case of AES,

we could get ambitious (2𝑡 , 2𝑡−128 + 2−8𝑐)-security in 3𝑐 rounds. Assume 𝑐 ⩽ 8 and 𝑡 = 64 is good

enough for practical use, we simplify this to an amazingly simple, but powerful, conclusion of

our small-box cryptography framework:

3𝑐-round variant of 128-bit AES with 8-bit 𝑆-boxes which is (264, 2−8𝑐)-secure

In particular, setting 𝑐 = 10/3, would already yield respectable one-in-hundred-million security

in 10 rounds (the number of real AES rounds), while setting 𝑐 = 8 would give excellent 2−64

security in 24 rounds.

While the above “back-of-the-envelope” calculations were a bit ad hoc and likely quite op-

timistic, they demonstrate several very attractive features of our framework, especially in com-

parison to its “big-box” counterpart. First, such calculations can be easily made (although more

research is needed in estimating or conjecturing the right constants hidden/underspecified in

Theorem 1.1). Second, such calculations give meaningful conjectured security of actually used

ciphers. Third, for the first time, we see that our conjectured bounds — even when ambitiously

good —were on the pessimistic side, predicting either more rounds or a lower level of conjectured

security than what is believed in practice. This is exactly what we expect from a sound theory,
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as we don’t want such a theory to make predictions contradicted by reality.
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Part III

Searchable Encryption
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8 | Searchable Encryption

This chapter is based on joint workwith Erik Aronesty, David Cash, YevgeniyDodis, Daniel H.

Gallancy, Christopher Higley, and Oren Tysor that appeared in PKC 2022 [ACD+22a]. Passages

are taken verbatim from the full version of this paper [ACD+22b]. This chapter considers the

problem of searchable encryption, in the public-key setting.

8.1 Preliminaries

Before we look at the construction, we will briefly state the necessary mathematical back-

ground. In Section 8.1.1, we will define bilinear maps and bilinear groups. In Section 8.1.2 we will

look at the various hardness assumptions that we use in this work.

8.1.1 Bilinear groups.

We use bilinear maps in our constructions.1 We briefly review their properties in this section.

Interested readers can refer [DBS04] for a more comprehensive treatment.

Consider two (multiplicative) cyclic groups 𝐺 and 𝐺1 of prime order 𝑝 . Let 𝑔 be a generator

of𝐺 . Roughly speaking, a mapping is bilinear if it is linear with respect to each of its variables:

Definition 8.1. An (admissible) bilinear map is a map 𝑒 : 𝐺 × 𝐺 ↦→ 𝐺1 with the following

properties:
1For simplicity of exposition, we will use symmetric bilinear maps. However, all our assumptions and construc-

tions easily extend to the asymmetric variant; see [BF03].
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1. Bilinear: for all 𝑢, 𝑣 ∈ 𝐺 and 𝑥,𝑦 ∈ Z, we have 𝑒 (𝑢𝑥 , 𝑣𝑦) = 𝑒 (𝑢, 𝑣)𝑥𝑦 .

2. Non-degenerate: 𝑒 (𝑔,𝑔) ≠ 1.

3. Computable: there is an efficient algorithm to compute 𝑒 (𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝐺 .

We say that a group 𝐺 is bilinear if the group action in 𝐺 is efficiently computable and there

exists a group 𝐺1 and an admissible bilinear map 𝑒 : 𝐺 × 𝐺 ↦→ 𝐺1. Henceforth, we shall use

𝐺∗ to stand for 𝐺\{1𝐺 }. Such maps can be constructed from Weil and Tate pairings on elliptic

curves or abelian varieties [BF03, JN01, Gal01]. DDH is easy in Bilenear groups. Given two

group elements 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏 ∈ 𝐺 , we define the DH(𝐴, 𝐵) = DH(𝑔𝑎, 𝑔𝑏) = 𝑔𝑎𝑏 ∈ 𝐺 . Note

that an admissible bilinear map provides an algorithm for solving the decisional Diffie-Hellman

problem (DDH) in 𝐺 . Specifically, to determine whether (𝑔,𝐴, 𝐵, 𝑅) is a DDH tuple, meaning

check if 𝑅 = DH(𝐴, 𝐵). Indeed, 𝑅 = DH(𝐴, 𝐵) iff 𝑒 (𝐴, 𝐵) = 𝑒 (𝑔, 𝑅), which is efficiently checkable

in bilinear groups.

8.1.2 Complexity assumptions

We now state the hardness assumptions on which our constructions are based. In what fol-

lows, we let 𝐺 be a bilinear group of prime order 𝑝 , and let 𝑔 be its generator.

8.1.2.1 Bilinear Diffie-Hellman Assumption

Our basic and unidirectional EVRF constructions will rely on the Bilinear Decisional Diffie-

Hellman (BDDH) assumption from the original Boneh-Franklin paper [BF03]. The BDDH prob-

lem on 𝐺 asks: given
(
𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑟

)
∈ (𝐺∗)4 as input, distinguish the value 𝑒 (𝑔,𝑔)𝑎𝑏𝑟 from random

element ℎ←$𝐺1. Formally, an algorithm B has advantage 𝜖 in solving BDDH in 𝐺 if���Pr [
B(𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑟 , 𝑒 (𝑔,𝑔)𝑎𝑏𝑟 ) = 1

]
− Pr

[
B(𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑟 , 𝑔1) = 1

] ��� ≤ 𝜖,
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where the probability is over the internal coin tosses of A and the choice of 𝑎, 𝑏, 𝑟 ∈ Z∗𝑝 and

𝑔1 ∈ 𝐺1.

Definition 8.2. (BDDH assumption) We say that BDDH assumption holds in G if every PPT

algorithm B has advantage at most 𝜖 (𝑘) = negl(𝑘) in solving the BDDH problem in 𝐺 .

8.1.2.2 Extended BDDH assumption

Our one-time bidirectional delegatable EVRF construction will rely on the extended Bilinear

Decisional Diffie-Hellman (eBDDH) that we introduce, where the attacker is additionally given

the value 𝑔1/𝑎 ∈ 𝐺∗. Formally, an algorithm B has advantage 𝜖 in solving eBDDH in 𝐺 if���Pr [
B(𝑔,𝑔1/𝑎, 𝑔𝑎, 𝑔𝑏, 𝑔𝑟 , 𝑒 (𝑔,𝑔)𝑎𝑏𝑟 ) = 1

]
− Pr

[
B(𝑔,𝑔1/𝑎, 𝑔𝑎, 𝑔𝑏, 𝑔𝑟 , 𝑔1) = 1

] ��� ≤ 𝜖,
where the probability is over the internal coin tosses of A and the choice of 𝑎, 𝑏, 𝑟 ∈ Z∗𝑝 and

𝑔1 ∈ 𝐺1.

Definition 8.3. (eBDDH assumption) We say that extended eBDDH assumption holds in G if

every PPT algorithm B has advantage at most 𝜖 (𝑘) = negl(𝑘) in solving the eBDDH problem in

𝐺 .

8.1.2.3 Inversion-Oracle BDDH assumption

Our multi-time bidirectional delegatable EVRF construction will rely on the inversion-oracle

Bilinear Decisional Diffie-Hellman (iBDDH) that we introduce, where the attacker is additionally

given the oracle O𝑎 (ℎ) = ℎ1/𝑎 ∈ 𝐺∗. Formally, an algorithm B has advantage 𝜖 in solving iBDDH

in 𝐺 if ���Pr [
BO𝑎 (·) (𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑟 , 𝑒 (𝑔,𝑔)𝑎𝑏𝑟 ) = 1

]
− Pr

[
BO𝑎 (·) (𝑔,𝑔𝑎, 𝑔𝑏, 𝑔𝑟 , 𝑔1) = 1

] ��� ≤ 𝜖,
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where the probability is over the internal coin tosses of A and the choice of 𝑎, 𝑏, 𝑟 ∈ Z∗𝑝 and

𝑔1 ∈ 𝐺1.

Definition 8.4. (iBDDH assumption) We say that inversion-oracle BDDH assumption (iBDDH)

holds in G if every PPT algorithm B has advantage at most 𝜖 (𝑘) = negl(𝑘) in solving the iBDDH

problem in 𝐺 .

Clearly, iBDDH assumption is stronger than eBDDH (as 𝑔1/𝑎 = O𝑎 (𝑔)), which in turn is

stronger than the well believed BDDH assumption.

iBDDH =⇒ eBDDH =⇒ BDDH

These assumptions can be proven secure in the Generic Group Model. We now present an

analysis of the iBDDH assumption in the generic group model.

Now, we examine the iBDDH assumption in the generic group model [Sho97]. In the generic

group model, elements of 𝐺,𝐺1 are encoded as unique random strings. We define an injective

function 𝜃 : Z𝑝 ↦→ {0, 1}∗ which maps 𝑎 ∈ Z𝑝 to the string encoding of the group element 𝑔𝑎 ∈ 𝐺 .

Similarly, we define 𝜃1 : Z𝑝 ↦→ {0, 1}∗ for 𝐺1. The encodings are such that non-group operations

are meaningless. Typically, there exist three oracles - one which computes the group action in

𝐺 , another which computes the group action in𝐺1, and a third that compute the bilinear pairing

𝑒 : 𝐺 ×𝐺 ↦→ 𝐺1. In our case, there exists a fourth oracle that models the inversion oracle O𝑎 (·).

Theorem 8.5. LetA be an algorithm that solves the iBDDH problem. Assume that 𝑎 ∈ Z∗𝑝 , 𝑏, 𝑐, 𝑟 ∈

Z𝑝 , and the encoding functions 𝜃, 𝜃1 are chosen at random. IfA makes at most 𝑞𝐺 queries to the four
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oracles, then�����������
Pr


AO𝑎 (·)

©«
𝑝, 𝜃 (1),

𝜃 (𝑎), 𝜃 (𝑏), 𝜃 (𝑐),

𝜃1(Γ0), 𝜃1(Γ1)

ª®®®®®®¬
= 𝛽

�����
𝛽 ← {0, 1};

𝑎 ← Z∗𝑝, 𝑏, 𝑐, 𝑟 ← Z𝑝,

Γ𝛽 = 𝑎𝑏𝑐, Γ1−𝛽 = 𝑟


− 1
2

�����������
≤ 2 · (𝑞𝐺 + 6)2(𝑞𝐺 − 3)

𝑝

Proof. Instead of letting A interact with the actual oracles, we play the following game.

We begin by maintaining two dynamic lists 𝐿, 𝐿′. Informally, 𝐿 contains the information that

A has garnered about group elements in 𝐺 , while 𝐿′ contains information about those elements

in 𝐺1. Formally, we have

𝐿 = {(𝐹𝑖, 𝑠𝑖) : 𝑖 = 0, . . . , 𝑡 − 1},

𝐿1 = {(𝐹 ′𝑖 , 𝑠′𝑖 ) : 𝑖 = 0, . . . , 𝑡 ′ − 1}.

Here 𝑠𝑖, 𝑠′𝑖 ∈ {0, 1}∗ are random encodings and

𝐹𝑖, 𝐹
′
𝑖 ∈ Z𝑝 [𝐴, 𝐵,𝐶,𝐴−1, Γ0, Γ1] are multivariate Laurent polynomials in 𝐴, 𝐵,𝐶, 𝐴−1, Γ0, Γ1. Note

that this is a departure from typical modeling which models 𝐹𝑖 as polynomials with only positive

degree elements. However, we need Laurent polynomials here to capture the inversion oracle.

In the beginning of the game, the lists are initialized as follows: 𝐹0 = 1, 𝐹1 = 𝐴, 𝐹2 = 𝐵, 𝐹3 = 𝐶 ,

𝐹 ′0 = Γ0, 𝐹
′
1 = Γ1. The corresponding encodings are set to arbitrary distinct strings in {0, 1}∗. At

this state, the lists have sizes 𝑡 = 4, 𝑡 ′ = 2. The total length of lists at a step 𝜏 ≤ 𝑞𝐺 in the game

must satisfy:

𝑡 + 𝑡 ′ = 𝜏 + 6, (8.1)

and it is easy to note that this condition is met at the start of the game.

We start the game by providing A with encodings 𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠′0, 𝑠
′
1. Algorithm A begins to
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make oracle queries and we respond as follows:

• Group Actions: A provides a multiply/divide bit and two operands 0 ≤ 𝑖, 𝑗 < 𝑡 correspond-

ing to two encodings 𝑠𝑖, 𝑠 𝑗 . We first compute 𝐹𝑡 = 𝐹𝑖 ± 𝐹 𝑗 depending on the choice of the

bit. We then check to see if ∃ℓ < 𝑡 such that 𝐹ℓ = 𝐹𝑡 . If yes, we set 𝑠𝑡 = 𝑠ℓ . Otherwise, we

set 𝑠𝑡 to a random string in {0, 1}∗ \ {𝑠0, . . . , 𝑠𝑡−1}. Then increment 𝑡 by 1 and return 𝑠𝑡 to

A. Similarly, we handle operations in 𝐺1, except that the operation is on the other list 𝐿′.

• Bilinear Pairing: A provides 0 ≤ 𝑖, 𝑗 < 𝑡 ′ indicating operands 𝑠𝑖, 𝑠 𝑗 . First compute 𝐹 ′
𝑡 ′ =

𝐹𝑖 · 𝐹 𝑗 . We then check to see if ∃ℓ < 𝑡 ′ such that 𝐹 ′ℓ = 𝐹
′
𝑡 ′ . If yes, we set 𝑠

′
𝑡 ′ = 𝑠

′
ℓ . Otherwise,

we set 𝑠′
𝑡 ′ to a random string in {0, 1}∗ \ {𝑠′0, . . . , 𝑠′𝑡 ′−1}. Then increment 𝑡 ′ by 1 and return

𝑠′
𝑡 ′ to A.

• Inversion Oracle: A provides 0 ≤ 𝑖 < 𝑡 indicating operand 𝑠𝑖 . First compute 𝐹𝑡 = 𝐹𝑖/𝐴. We

then check to see if ∃ℓ < 𝑡 such that 𝐹ℓ = 𝐹𝑡 . If yes, we set 𝑠𝑡 = 𝑠ℓ . Otherwise, we set 𝑠𝑡 to a

random string in {0, 1}∗ \ {𝑠0, . . . , 𝑠𝑡−1}. Then increment 𝑡 by 1 and return 𝑠𝑡 to A.

After making at most 𝑞𝐺 queries, A halts with a guess 𝛽 ∈ {0, 1}. Then we choose 𝑎 ←

Z∗𝑝, 𝑏, 𝑐, 𝑟 ← Z𝑝 . Then, consider Γ𝛽 ← 𝑎𝑏𝑐 , Γ1−𝛽 ← 𝑟 for both choices of 𝛽 . By sampling the

values only after A’s guess bit, the simulation does not reveal anything about 𝛽 , unless our in-

determinates give rise to some non-trivial equality relation for the sampled values. Specifically,

A wins the game if for any 𝐹𝑖 ≠ 𝐹 𝑗 or any 𝐹 ′𝑖 ≠ 𝐹
′
𝑗 , one of the following conditions hold:

1. 𝐹𝑖 (𝑎, 𝑏, 𝑐, 𝑎−1, 𝑎𝑏𝑐, 𝑟 ) − 𝐹 𝑗 (𝑎, 𝑏, 𝑐, 𝑎−1, 𝑎𝑏𝑐, 𝑟 ) = 0

2. 𝐹𝑖 (𝑎, 𝑏, 𝑐, 𝑎−1, 𝑟 , 𝑎𝑏𝑐) − 𝐹 𝑗 (𝑎, 𝑏, 𝑐, 𝑎−1, 𝑟 , 𝑎𝑏𝑐) = 0

3. 𝐹 ′𝑖 (𝑎, 𝑏, 𝑐, 𝑎−1, 𝑎𝑏𝑐, 𝑟 ) − 𝐹 ′𝑗 (𝑎, 𝑏, 𝑐, 𝑎−1, 𝑎𝑏𝑐, 𝑟 ) = 0

4. 𝐹 ′𝑖 (𝑎, 𝑏, 𝑐, 𝑎−1, 𝑟 , 𝑎𝑏𝑐) − 𝐹 ′𝑗 (𝑎, 𝑏, 𝑐, 𝑎−1, 𝑟 , 𝑎𝑏𝑐) = 0
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Let us look at the degree of the polynomials. For all 𝑖 , deg(𝐹𝑖) ≤ 𝑡 − 3, and deg(𝐹 ′𝑖 ) ≤ 2(𝑡 − 3).

In other words, each 𝐹𝑖 is a polynomial in 𝐴, 𝐵,𝐶,𝐴−1, 𝐴𝐵𝐶, 𝑅 whose degree is at most 𝑡 − 3.

Consider the polynomial: 𝑓𝑖 = 𝐹𝑖 · 𝐴𝑡−4. Note that 𝑓𝑖 is a polynomial only in 𝐴, 𝐵,𝐶,𝐴𝐵𝐶, 𝑅 and

deg(𝑓 ′) ≤ 𝑡 − 3. Further, every root of 𝐹𝑖 is a root of 𝑓𝑖 and there are at most 𝑡 − 3 roots of

𝑓𝑖 . Similarly, consider the polynomial 𝑓 ′𝑖 = 𝐹 ′𝑖 · 𝐴2𝑡−8. The degree of 𝑓 ′𝑖 is at most 2𝑡 − 6 and

every root of 𝐹 ′𝑖 is a root of 𝑓
′
𝑖 , and there are at most 2𝑡 − 6 roots of 𝑓 ′𝑖 . We can therefore apply

Schwartz-Zippel Lemma [Sch80] to get that for all 𝑖, 𝑗 , Pr[[]𝐹𝑖 − 𝐹 𝑗 = 0] ≤ Pr[[] 𝑓𝑖 − 𝑓 𝑗 = 0] ≤

(𝑡 − 3)/𝑝, Pr[[]𝐹 ′𝑖 − 𝐹 ′𝑗 ] ≤ Pr[[] 𝑓 ′𝑖 − 𝑓 ′𝑗 = 0] ≤ 2(𝑡 − 3)/𝑝 . Therefore, A’s advantage is:

𝜀 ≤ 2 ·
((
𝑡

2

)
𝑡 − 3
𝑝
+

(
𝑡 ′

2

)
2 · (𝑡 − 3)

𝑝

)
< (𝑡 + 𝑡 ′)2 · 2 · (𝑡 − 3)

𝑝

< (𝑞𝐺 + 6)2 ·
2 · (𝑡 − 3)

𝑝

< (𝑞𝐺 + 6)2 ·
2 · (𝑞𝐺 − 3)

𝑝
= 𝑂

(
𝑞3
𝐺

𝑝

)
□

8.2 Encapsulated Search Index

We begin by formally introducing the new primitive of standard Encapsulated Search Index

in Section 8.2.1, defining its syntax and security. We then present extensions to this primitive,

adding features such as distribution (section 8.2.3), delegatability (section 8.2.4), and updatability

(section 8.2.5).
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8.2.1 Standard Encapsulated Search Index

For visual simplicity, for the remainder of this section we will use upper-case letters (𝐷, 𝐸,𝑌 , etc.)

to denote objects whose size can depend on the size of document𝐷 (with the exception of various

keys 𝑆𝐾, 𝑃𝐾 , etc.), and by lower-case letters (𝑐, 𝑠, 𝑟, 𝑧,𝑤 , etc.) objects whose size is constant.

In the definition below, we let 𝑘 be a security parameter, PPT stand for probabilistic polyno-

mial-time Turing machines, poly(𝑘) to denote a polynomial function, and negl(𝜅) to refer to a

negligible function in the security parameter 𝑘 .

Definition 8.6. An Encapsulated Search Index (ESI) is a tuple of PPT algorithms

ESI = (KGen, Prep, Index, S-Split, S-Core, Finalize) such that:

• (𝑃𝐾, 𝑆𝐾) ←$ KGen(1𝜅): outputs the public/secret key pair.

• (𝑠, 𝑐) ←$ Prep(𝑃𝐾): outputs compact representation 𝑐 , and trapdoor 𝑠 .

• Index(𝑠, 𝐷) = 𝐸: outputs the encrypted index 𝐸 for a document 𝐷 using the trapdoor 𝑠 .

• S-Split(𝑃𝐾, 𝑐′) = 𝑟 ′: outputs a handle 𝑟 ′ from the representation 𝑐′.

• S-Core(𝑆𝐾, 𝑟 ′,𝑤) = 𝑧′: outputs a partial result 𝑧′ from the handle 𝑟 ′.

• Finalize(𝑃𝐾, 𝐸′, 𝑐′, 𝑧′,𝑤) = 𝛽 ∈ {0, 1,⊥}: outputs 1 if the word 𝑤 is present in the original

document 𝐷 , 0 if not present, and ⊥ if the partial output 𝑧′ is inconsistent.

Before we define the security properties, it is useful to define the following shorthand functions:

• BldIdx(𝑃𝐾, 𝐷) = (Index(𝑠, 𝐷), 𝑐), where (𝑠, 𝑐) ←$ Prep(𝑃𝐾).

• S-Prove(𝑃𝐾, 𝑆𝐾, 𝑐,𝑤) = S-Core(𝑆𝐾, S-Split(𝑃𝐾, 𝑐),𝑤).

• Search(𝑃𝐾, 𝑆𝐾, (𝐸, 𝑐),𝑤) = Finalize(𝑃𝐾, 𝐸, 𝑐, S-Prove(𝑆𝐾, 𝑐,𝑤),𝑤).

We require the following security properties from this primitive:
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1. Correctness: with prob. 1 (resp. (1 − negl(𝜅))) over randomness of KGen and Prep, for

all documents 𝐷 and keywords𝑤 ∈ 𝐷 (resp. 𝑤 ∉ 𝐷):

Search(𝑃𝐾, 𝑆𝐾,BldIdx(𝑃𝐾, 𝐷),𝑤) =


1 if𝑤 ∈ 𝐷

0 if𝑤 ∉ 𝐷

2. Uniqueness: there exist no values (𝑃𝐾, 𝐸, 𝑐, 𝑧1, 𝑧2,𝑤) such that 𝑏1 ≠ ⊥, 𝑏2 ≠ ⊥ and 𝑏1 ≠ 𝑏2,

where:

𝑏1 = Finalize(𝑃𝐾, 𝐸, 𝑐, 𝑧1,𝑤); 𝑏2 = Finalize(𝑃𝐾, 𝐸, 𝑐, 𝑧2,𝑤)

3. CCA Security: We require that for any PPT algorithmA = (A1,A2) the following holds,

whereA does not make the query S-Prove(𝑃𝐾, 𝑆𝐾, 𝑐∗,𝑤) with𝑤 ∈ (𝐷1 \𝐷2) ∪ (𝐷2 \𝐷1)

and |𝐷1 | = |𝐷2 |, for variables 𝑆𝐾, 𝑐∗, 𝐷1, 𝐷2,𝑤 defined below:

Pr


𝑏 = 𝑏 ′

(𝑃𝐾, 𝑆𝐾) ←$ KGen(1𝜅);

(𝐷1, 𝐷2, 𝑠𝑡) ←$AS-Prove(𝑃𝐾,𝑆𝐾,·,·)
1 (𝑃𝐾);

𝑏←$ {0, 1};

(𝐸∗, 𝑐∗) ←$ BldIdx(𝑃𝐾, 𝐷𝑏);

𝑏 ′←$AS-Prove(𝑃𝐾,𝑆𝐾,·,·)
2 (𝐸∗, 𝑐∗, 𝑠𝑡)


≤ 1

2
+ negl(𝜅)

4. Privacy-Preserving 2: We require that for any PPT Algorithm A = (A1,A2) which out-

puts documents 𝐷1, 𝐷2 such that |𝐷1 | = |𝐷2 | for variables 𝐷1, 𝐷2 defined below, the follow-
2It is easy to see that our syntax guarantees that any ESI construction is unconditionally Privacy-Preserving

(even with knowledge of 𝑆𝐾 ), for the simple reason that Prep that produces 𝑐 does not depend on the input docu-
ment 𝐷 . Thus, we will never explicitly address this property, but list it for completeness, as it is important for our
motivating application.
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ing holds:

Pr


𝑏 = 𝑏 ′

(𝑃𝐾, 𝑆𝐾) ←$ KGen(1𝜅);

(𝐷1, 𝐷2, 𝑠𝑡) ←$A1(𝑃𝐾, 𝑆𝐾);

𝑏←$ {0, 1};

(𝐸∗, 𝑐∗) ←$ BldIdx(𝑃𝐾, 𝐷𝑏);

𝑏 ′←$A2(𝑐∗, 𝑠𝑡)


≤ 1

2
+ negl(𝜅)

Remark 4. We want to ensure that an honest representation 𝑐1 will not collide with another

honest representation 𝑐2. With this, we can ensure that honestly generated documents do not

conflict. If there is a non-trivial chance of such a collision, then one can simply generate 𝑐2 until

collision with the challenge 𝑐1. With this collision, and with knowledge of trapdoor 𝑇2, one can

trivially break security.

Remark 5. For efficiency, we will want Search to run in time 𝑂 (log𝑁 ) or less, where 𝑁 is

the size of the document 𝐷 . In fact, our main construction will have S-Prove run in time 𝑂 (1),

independent of the size of the document, and Finalize would run in time at most 𝑂 (log𝑁 ),

depending on the non-cryptographic data structure we use.

8.2.2 Extensions to ESI

Threshold ESI. We extend the definition of the standard Encapsulated Search Index to achieve

support for distributed token generation. To do this, we introduce a new algorithm called

KG-Verify that aims to verify if the output of theKGen algorithm is correct, and replace Finalize

with two more fined-grained procedures S-Verify and S-Combine. The formal discussion about

the syntax and security of this primitive can be found in Section 8.2.3.

Delegatable ESI. We can also extend the definition of the standard Encapsulated Search Index

to achieve support for delegation. Informally, Encapsulated Search Index is delegatable if there
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are two polynomial-time procedures S-Del, S-Check that work as follows: S-Del that achieves

the delegation wherein it takes as input a representation 𝑐 corresponding to one key pair and pro-

duces a representation 𝑐′ corresponding to another key pair; S-Check helps verify if a delegation

was performed correctly. The formal discussion about the syntax and security of this primitive,

including several definitional subtleties, can be found in Section 8.2.4.

Updatable ESI. We can further extend the definition of the standard Encapsulated Search Index

to support a use-case where one might want to remove a word, or add a word to the document 𝐷 ,

without having to necessarily recompute the entire index. To achieve this, we need an additional

algorithm called Update that can produce a new index 𝐸′ after performing an action relating to

word 𝑤 in original index 𝐸, using the same token 𝑧𝑤 used for searching. The formal discussion

about the syntax and security of this primitive can be found in Section 8.2.5.

8.2.3 Threshold Encapsulated Search Index

Definition 8.7. A (𝑡, 𝑛)-threshold Encapsulated Search Index (TESI) is a tuple of PPT algorithms

TESI = (KGen,KG-Verify, Prep, Index, S-Split, S-Core, S-Verify, S-Combine) such that:

• (𝑃𝐾, SK = (𝑠𝑘1, . . . , 𝑠𝑘𝑛),VK = (𝑣𝑘1, . . . , 𝑣𝑘𝑛)) ←$ KGen(1𝜅, 𝑡, 𝑛): outputs the public key

𝑃𝐾 , a vector of secret shares SK, and public key 𝑃𝐾 .

• KG-Verify(𝑃𝐾,VK) = 𝛽 ∈ {0, 1}: verifies that the output of KGen is indeed valid.

• (𝑠, 𝑐) ←$ Prep(𝑃𝐾): outputs compact representation 𝑒 , and trapdoor 𝑠 .

• Index(𝑠, 𝐷) = 𝐸: outputs the encrypted index 𝐸 for a document 𝐷 using the trapdoor 𝑇 .

• S-Split(𝑃𝐾,𝑛, 𝑐′) = (𝑟 ′1, . . . , 𝑟 ′𝑛): outputs 𝑛 handles 𝑟 ′1, . . . , 𝑟
′
𝑛 from 𝑐′.

• S-Core(𝑠𝑘𝑖, 𝑟 ′𝑖 ,𝑤) = 𝑧′𝑖 : outputs partial result on input 𝑥 using handle 𝑟 ′𝑖 and secret key

share 𝑠𝑘𝑖 .
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• S-Verify(𝑃𝐾, 𝑣𝑘𝑖, 𝑧′𝑖 ,𝑤) = 𝛽 ∈ {0, 1}: verifies that the share 𝑧′𝑖 produced by party 𝑖 is valid.

• S-Combine(𝑃𝐾, 𝐸′, 𝑐′, 𝑧′𝑖1, . . . , 𝑧
′
𝑖𝑡
,𝑤) = 𝛽 ∈ {0, 1}: uses the partial shares to determine if the

word𝑤 is present in 𝐷 or not 3.

Before we define the security properties, it is useful to define the following shorthand functions:

• BldIdx(𝑃𝐾, 𝐷) = (Index(𝑠, 𝐷), 𝑐) where (𝑠, 𝑐) ←$ Prep(𝑃𝐾).

• S-Prove(SK, 𝑖, 𝑐,𝑤) = S-Core(𝑠𝑘𝑖, 𝑟𝑖,𝑤) where 𝑟1, . . . , 𝑟𝑛 = S-Split(𝑃𝐾, 𝑛, 𝑐)

• Search(SK, 𝑖1, . . . , 𝑖𝑡 , (𝐸, 𝑐),𝑤): For 𝑗 = 1, . . . , 𝑡 let 𝑧𝑖 𝑗 = S-Prove(SK, 𝑖, 𝑐,𝑤).

Output ⊥ if, for some 1 ≤ 𝑗 ≤ 𝑡 , S-Verify(𝑃𝐾, 𝑣𝑘𝑖 𝑗 , 𝑧𝑖 𝑗 ,𝑤) = 0.

Otherwise, output S-Combine(𝑃𝐾, 𝐸, 𝑐, 𝑧𝑖1, . . . , 𝑧𝑖𝑡 ,𝑤).

We require the following security properties from this primitive:

1. Correctness:

(a) with prob. 1 over randomness of (𝑃𝐾, SK,VK) ←$ KGen(1𝜅, 𝑡, 𝑛),

KG-Verify(𝑃𝐾,VK) = 1.

(b) with prob. 1 (resp. (1 − negl(𝜅))) over randomness of KGen and Prep, for all docu-

ments 𝐷 and keywords𝑤 ∈ 𝐷 (resp. 𝑤 ∉ 𝐷):

Search(SK, 𝑖1, . . . , 𝑖𝑡 , BldIdx(𝑃𝐾, 𝐷),𝑤) =


1 𝑤 ∈ if 𝐷

0 𝑤 if ∉ 𝐷

2. Uniqueness: there exist no values (𝑃𝐾,VK, 𝐸, 𝑐, 𝑍1, 𝑍2,𝑤) where

𝑍1 = ((𝑖1, 𝑧𝑖1), . . . , (𝑖𝑡 , 𝑧𝑖𝑡 )) and 𝑍2 = (( 𝑗1, 𝑧 𝑗1), . . . , ( 𝑗𝑡 , 𝑧 𝑗𝑡 )). st
3Without loss of generality, we will always assume that all the 𝑡 partial evaluations 𝑧𝑖 satisfy

S-Verify(𝑃𝐾, 𝑣𝑘𝑖 , 𝑧 ′𝑖 ) = 1 (else, we output ⊥ before calling S-Combine).
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(a) Gen-Vfy(𝑃𝐾,VK) = 1,

(b) for 𝑘 = 1, . . . , 𝑡 :

• S-Verify(𝑃𝐾, 𝑣𝑘𝑖𝑘 , 𝑧𝑖𝑘 ,𝑤) = 1.

• S-Verify(𝑃𝐾, 𝑣𝑘 𝑗𝑘 , 𝑧 𝑗𝑘 ,𝑤) = 1,.

(c) and

S-Combine(𝑃𝐾, 𝐸, 𝑐, 𝑧𝑖1, . . . , 𝑧𝑖𝑡 ,𝑤) ≠ S-Combine(𝑃𝐾, 𝐸, 𝑐, 𝑧 𝑗1, . . . , 𝑧 𝑗𝑡 ,𝑤)

3. CCA Security: We require that for any PPT algorithm A = (A0,A1,A2) the following

holds, whereA does not make the query S-Prove(SK, 𝑗, 𝑐∗,𝑤) with𝑤 ∈ (𝐷1 \𝐷2) ∪ (𝐷2 \

𝐷1), |𝐷1 | = |𝐷2 | and 𝑗 ∉ {𝑖1, . . . , 𝑖𝑡−1}, for variables SK, 𝑖1, . . . , 𝑖𝑡−1, 𝑐∗, 𝐷1, 𝐷2 defined below:

Pr


𝑏 = 𝑏′

{𝑖1, . . . , 𝑖𝑡−1, 𝑠𝑡} ←$A0(1𝜅, 𝑡, 𝑛)

(𝑃𝐾, SK,VK) ←$ KGen(1𝜅, 𝑡, 𝑛);

(𝐷1, 𝐷2, 𝑠𝑡) ←$AS-Prove(SK,·,·,·)
1 (𝑃𝐾,VK, SK′, 𝑠𝑡);

𝑏←$ {0, 1}; (𝐸∗, 𝑐∗) = BldIdx(𝑃𝐾, 𝐷𝑏);

𝑏′←$AS-Prove(SK,·,·,·)
2 (𝐸∗, 𝑐∗, 𝑠𝑡)


≤ 1

2
+ negl(𝜅)

where SK′ = (𝑠𝑘𝑖1, . . . , 𝑠𝑘𝑖𝑡−1).

4. Privacy-Preserving: We require that for any PPTAlgorithmA = (A1,A2) which outputs

documents 𝐷1, 𝐷2 such that |𝐷1 | = |𝐷2 | for variables 𝐷1, 𝐷2 defined below, the following

holds:
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Pr


𝑏 = 𝑏′

(𝑃𝐾, SK,VK) ←$ KGen(1𝜅, 𝑡, 𝑛);

(𝐷1, 𝐷2, 𝑠𝑡) ←$A1(𝑃𝐾, SK,VK);

𝑏←$ {0, 1};

(𝑐∗, 𝐸∗) = BldIdx(𝑃𝐾, 𝐷𝑏);

𝑏′←$A2(𝑐∗, 𝑠𝑡)


≤ 1

2
+ negl(𝜅)

It is again easy to see that the above primitive is unconditionally Privacy-Preserving, even with

knowledge of SK, since Prep that produces 𝑒 does not depend on the input document 𝐷 .

8.2.4 Delegatable Encapsulated Search Index

In this section, we extend the definition of the standard Encapsulated Search Index to achieve

delegatability. Our definition will capture 3 security levels. Similar levels of security will also

appear in the DEVRF definition (discussed in Section 8.5.1).

Definition 8.8. An Encapsulated Search Index ESI = (KGen, Prep, Index, S-Split, S-Core,

Finalize) is also delegatable if there exists polynomial-time procedure S-Del, S-Check such that:

• S-Del(𝑆𝐾1, 𝑐1, 𝑆𝐾2) = 𝑐2: outputs a representation 𝑐2 corresponding to key pair (𝑃𝐾2, 𝑆𝐾2)

from a representation 𝑐1 corresponding to key pairs (𝑃𝐾1, 𝑆𝐾1).4

• S-Check(𝑃𝐾1, 𝑐1, 𝑃𝐾2, 𝑐2) = 𝛽 ∈ {0, 1}:

Before we define the security properties, it is useful to define the following shorthand functions:

• BldIdx(𝑃𝐾, 𝐷) = (Index(𝑠, 𝐷), 𝑐) where (𝑠, 𝑐) ←$ Prep(𝑃𝐾).

• S-Prove(𝑆𝐾, 𝑐,𝑤) = S-Core(𝑆𝐾, S-Split(𝑃𝐾, 𝑐),𝑤).

• Search(𝑆𝐾, (𝐸, 𝑐),𝑤) = Finalize(𝑃𝐾, 𝐸, 𝑐, S-Prove(𝑆𝐾, 𝑐,𝑤),𝑤).
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Game CCA Security Game Oracles

Reg(1𝜅)
⊲ Registration Oracle

𝑞 = 𝑞 + 1
(𝑃𝐾𝑞, 𝑆𝐾𝑞) ←$ KGen(1𝜅)
record (𝑞, 𝑃𝐾𝑞, 𝑆𝐾𝑞)
return (𝑞, 𝑃𝐾𝑞)

HProve(𝑖, 𝑐,𝑤)
⊲ Honest Evaluation Oracle

if 1 ≤ 𝑖 ≤ 𝑞 then

return S-Prove(𝑆𝐾𝑖 , 𝑐,𝑤)

HDel(𝑖, 𝑐, 𝑗)
⊲ Honest Delegation Oracle

if 1 ≤ 𝑖, 𝑗 ≤ 𝑞 then

return 𝑐2 = S-Del(𝑆𝐾𝑖 , 𝑐, 𝑆𝐾 𝑗 )

OutDel(𝑖, 𝑐, 𝑆𝐾)
⊲ Out-Delegation Oracle

if 1 ≤ 𝑖 ≤ 𝑞 then

return 𝑒 ′ = S-Del(𝑆𝐾𝑖 , 𝑐, 𝑆𝐾)

InDel(𝑆𝐾, 𝑐, 𝑗)
⊲ In-Delegation Oracle

if 1 ≤ 𝑗 ≤ 𝑞 then

return 𝑒 ′ = S-Del(𝑆𝐾, 𝑐, 𝑆𝐾 𝑗 )

Figure 8.1: The list of oracles that an adversaryA has access to in the CCA security game. Here 𝑐 is the

compact representation.

In addition to the standard Encapsulated Search Index properties of Correctness,Uniqueness,

and Privacy-Preserving, we require the following security properties from a delegatable En-

capsulated Search Index:

1. Delegation-Completeness: for any valid (𝑃𝐾1, 𝑆𝐾1), (𝑃𝐾2, 𝑆𝐾2), and compact represen-

tation 𝑐1

S-Del(𝑆𝐾1, 𝑐1, 𝑆𝐾2) = 𝑐2 =⇒ S-Check(𝑃𝐾1, 𝑐1, 𝑃𝐾2, 𝑐2) = 1

2. Delegation-Soundness: for any valid (𝑃𝐾1, 𝑆𝐾1), (𝑃𝐾2, 𝑆𝐾2), encrypted index 𝐸, and com-

pact representations 𝑐1, 𝑐2

S-Check(𝑃𝐾1, 𝑐1, 𝑃𝐾2, 𝑐2) = 1 =⇒ ∀𝑤 Search(𝑆𝐾1, 𝐸, 𝑐1,𝑤) = Search(𝑆𝐾2, 𝐸, 𝑐2,𝑤)

3. CCA Security: We require that for any PPT algorithm A = (A1,A2), with access to the

oracles as defined in Figure 8.1 which outputs documents 𝐷1, 𝐷2 such that |𝐷1 | = |𝐷2 | for

variables𝐷1, 𝐷2 defined below, andwhere legality ofA and appropriate delegation oracle(s)
4By default, this algorithm takes as input the secret key of the other party. We can consider a publicly-delegatable

algorithm that takes as input only the public key of the second party.
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are defined separately, the following holds:

Pr


𝑏 = 𝑏′

(1, 𝑃𝐾1) ←$ Reg(1𝜅);

(𝐷1, 𝐷2) ←$AReg,HProve,O
1 (𝑃𝐾1);

𝑏←$ {0, 1};

(𝐸∗, 𝑐∗) = BldIdx(𝑃𝐾, 𝐷𝑏);

𝑏′←$AReg,HProve,O
2 (𝐸∗, 𝑐∗)


≤ 1

2
+ negl(𝜅)

(a) Basic CCA Security: O = {HDel}.

Legality of A: no call to HProve(𝑖, 𝑐,𝑤) st

S-Check(𝑃𝐾1, 𝑐
∗, 𝑃𝐾𝑖, 𝑐) = 1 and𝑤 ∈ (𝐷1 \ 𝐷2) ∪ (𝐷2 \ 𝐷1).

(b) Uni CCA Security: O = {HDel,OutDel}.

Legality of A: no call to HProve(𝑖, 𝑐,𝑤) or OutDel(𝑖, 𝑐, ∗) st

S-Check(𝑃𝐾1, 𝑐
∗, 𝑃𝐾𝑖, 𝑐) = 1 and𝑤 ∈ (𝐷1 \ 𝐷2) ∪ (𝐷2 \ 𝐷1).

(c) Bi CCA Security: O = {HDel,OutDel, InDel}.

Legality of A: no call to HProve(𝑖, 𝑐,𝑤) or OutDel(𝑖, 𝑐, ∗) st

S-Check(𝑃𝐾1, 𝑐
∗, 𝑃𝐾𝑖, 𝑐) = 1 and𝑤 ∈ (𝐷1 \ 𝐷2) ∪ (𝐷2 \ 𝐷1).

Remark 6. It is easy to see thatDelegation-Completeness andDelegation-Soundness imply

Delegation-Correctness which is defined as follows: for any valid (𝑃𝐾1, 𝑆𝐾1), (𝑃𝐾2, 𝑆𝐾2), and

compact representation 𝑐1

S-Del(𝑆𝐾1, 𝑐1, 𝑆𝐾2) = 𝑐2 =⇒ ∀𝑤 Search(𝑆𝐾1, 𝐸, 𝑐1,𝑤) = Search(𝑆𝐾2, 𝐸, 𝑐2,𝑤)
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8.2.5 Updatable Encapsulated Search Index

Another useful extension to Encapsulated Search Index would be to support operations that

help update the index. However, note that the process of updating should not reveal information

about the underlying keywords. To achieve this, we extend the standard definition.

Definition 8.9. An Encapsulated Search Index ESI = (KGen, Prep, Index, S-Split, S-Core,

Finalize) is also updatable if there exists polynomial-time procedures Update such that:

• 𝐸′ ∪ ⊥←$ Update(𝐸, 𝑐,𝑤, 𝑧, action), where action ∈ {add, remove}.

In addition to the standard Encapsulated Search Index properties of Correctness, Uniqueness,

CCA Security and Privacy-Preserving, we require the following security properties from an

updatable Encapsulated Search Index:

Update Correctness: over the randomness of KGen, Prep, Index, for any document 𝐷0, update

sequence (action1,𝑤1), . . . , (action𝑞,𝑤𝑞) and keyword 𝑤 , the following holds with probability

(1 − negl(𝜅)):

• Let (𝑐, 𝐸0) ← BldIdx(𝑃𝐾, 𝐷0).

• For 𝑖 = 1 to 𝑞, let:

– 𝑧𝑖 = S-Prove(𝑆𝐾, 𝑐,𝑤𝑖);

– 𝐸𝑖 = Update(𝐸𝑖−1, 𝑐,𝑤𝑖, 𝑧𝑖, action𝑖);

– 𝐷𝑖 be correct update of 𝐷𝑖−1 following action𝑖 on𝑤𝑖 .

• Then Search(𝑆𝐾, (𝐸𝑞, 𝑐),𝑤) =


1 if𝑤 ∈ 𝐷𝑞

0 if𝑤 ∉ 𝐷𝑞
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8.3 Encapsulated Verifiable Random Functions (EVRFs)

Asmentioned earlier, we use a new primitive called Encapsulated Verifiable Random Function

to build the encapsulated search index. In this section, we begin by introducing this primitive in

section 8.3.1. In Section 8.3.3, we present an overview of extensions to this primitive. Later

sections in paper contained detailed expositions on the extensions.

8.3.1 Standard EVRFs

Intuitively, an EVRF allows the receiver Alice to publish a public key 𝑃𝐾 and keep secret key

𝑆𝐾 private so that any sender Bob can use 𝑃𝐾 to produce a ciphertext 𝐶 and trapdoor key 𝑇 in a

way such that for any input 𝑥 , the correct VRF value 𝑦 on 𝑥 can be efficiently evaluated in two

different ways:

(a) Alice can evaluate 𝑦 using secret key 𝑆𝐾 and ciphertext 𝐶 .

(b) Bob can evaluate 𝑦 using trapdoor 𝑇 .

In addition, for any third party Charlie who knows 𝐶 , 𝑃𝐾 and 𝑥 :

(c) Alice can produce a proof 𝑧 convincing Charlie that the value 𝑦 is correct.

(d) Without such proof, the value 𝑦 will look pseudorandom to Charlie.

Definition 8.10. An Encapsulated Verifiable Random Function (EVRF) is a tuple of PPT algorithms

EVRF = (Gen, Encap,Comp, Split,Core, Post) such that:

• Gen(1𝜅) → (𝑃𝐾, 𝑆𝐾): outputs the public/secret key pair.

• Encap(𝑃𝐾) → (𝐶,𝑇 ): outputs ciphertext 𝐶 and trapdoor 𝑇 .

• Comp(𝑇, 𝑥) = 𝑦: evaluates EVRF on input 𝑥 , using trapdoor 𝑇 .
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• Split(𝑃𝐾,𝐶′) = 𝑅′: outputs a handle from full ciphertext 𝐶′.

Note, this preprocessing is independent of the input 𝑥 , can depend on the public key 𝑃𝐾 ,

but not on the secret key 𝑆𝐾 .5

• Core(𝑆𝐾, 𝑅′, 𝑥) = 𝑧′: evaluates partial EVRF output on input 𝑥 , using the secret key 𝑆𝐾 and

handle 𝑅′.

• Post(𝑃𝐾, 𝑧′,𝐶′, 𝑥) = 𝑦′ ∪ ⊥: outputs either the EVRF output from the partial output 𝑧′, or

⊥.

Before we define the security properties, it is useful to define the following shorthand functions:

• Prove(𝑃𝐾, 𝑆𝐾,𝐶, 𝑥) = Core(𝑆𝐾, Split(𝑃𝐾,𝐶), 𝑥)

• Eval(𝑃𝐾, 𝑆𝐾,𝐶, 𝑥) = Post(𝑃𝐾, Prove(𝑆𝐾,𝐶, 𝑥),𝐶, 𝑥)

We require the following security properties:

1. Evaluation-Correctness: with prob. 1 over randomness of Gen and Encap, for honestly

generated ciphertext 𝐶 and for all inputs 𝑥 ,

Comp(𝑇, 𝑥) = Eval(𝑃𝐾, 𝑆𝐾,𝐶, 𝑥)

2. Uniqueness: there exist no values (𝑃𝐾,𝐶, 𝑥, 𝑧1, 𝑧2) st𝑦1 ≠ ⊥, 𝑦2 ≠ ⊥, and 𝑦1 ≠ 𝑦2 where

𝑦1 = Post(𝑃𝐾, 𝑧1,𝐶, 𝑥), 𝑦2 = Post(𝑃𝐾, 𝑧2,𝐶, 𝑥)

3. Pseudorandomness under Core ($-Core): for any PPT algorithmA = (A1,A2), where
5The algorithm Split is not technically needed, as one can always set 𝑅 = 𝐶 . In fact, this will be the case for

our EVRF in section 8.3.4. However, one could envision EVRF constructions where the Split procedure can do a
non-trivial (input-independent) part of the overall Prove = Core(Split) procedure, and without the need to know
the secret key 𝑆𝐾 . This will be the case for some of the delegatable EVRFs we consider in Section 8.5.1.
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A does not make query (𝐶, 𝑥) to Prove(𝑃𝐾, 𝑆𝐾, ·, ·), for variables 𝑆𝐾,𝐶, 𝑥 defined below,

the following holds:

Pr


𝑏 = 𝑏 ′

(𝑃𝐾, 𝑆𝐾) ←$ Gen(1𝜅);

(𝐶,𝑇 ) ←$ Encap(𝑃𝐾);

(𝑥, 𝑠𝑡) ←$AProve(𝑃𝐾,𝑆𝐾,·,·)
1 (𝑃𝐾,𝐶);

𝑦0 = Comp(𝑇, 𝑥); 𝑦1←$ {0, 1} |𝑦0 | ;

𝑏←$ {0, 1}; 𝑏 ′←$AProve(𝑃𝐾,𝑆𝐾,·,·)
2 (𝑦𝑏, 𝑠𝑡)


≤ 1

2
+ negl(𝜅)

We present a construction of our EVRF in section 8.3.4.

Remark 7. We note that any valid ciphertext 𝐶 implicitly defines a standard verifiable random

function (VRF). In particular, the value 𝑧 = Prove(𝑆𝐾,𝐶, 𝑥) could be viewed as the VRF proof,

which is accepted iff Post(𝑃𝐾, 𝑧,𝐶, 𝑥) ≠ ⊥.

Remark 8. We reiterate that our pseudorandomness definition does not give the attacker “un-

guarded” access to theCore procedure, but only “Split-guarded” access to Prove = Core(Split).

This difference does not matter when the Split procedure just sets 𝑅 = 𝐶 . However, when Split

is non-trivial, the owner of 𝑆𝐾 (Alice) can only outsource it to some outside server (Charlie) if it

trusts Charlie and the authenticity (but not privacy) of the channel between Alice and Charlie.

8.3.2 Generic Construction of Encapsulated Search Index

Non-private Dictionary Data Structure. Our generic construction will use the simplest

kind of non-cryptographic dictionary which allows one to preprocess some set 𝐷 into some data

structure 𝐸 so that membership queries 𝑤 ∈ 𝐷 can be answered in sub-linear time in 𝑁 = |𝐷 |.

In particular, a classic instantiation of such a dictionary could be any balanced search trees with

search time𝑂 (log𝑁 ). If a small probability of error is allowed, we could also use faster data struc-

tures, such as hash tables [CLRS09], Bloom filters [Blo70, PPR05, NY15] or cuckoo hash [PR04],
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Construction: Generic ESI

KGen(1𝜅)
Run (𝑃𝐾, 𝑆𝐾) ←$ EVRF.Gen(1𝜅).
return 𝑃𝐾, 𝑆𝐾 .

Prep(𝑃𝐾)
Run (𝐶,𝑇 ) ←$ EVRF.Encap(𝑃𝐾).
return 𝑐 = 𝐶 and 𝑠 = 𝑇 .

Index(𝑠, 𝐷)
for 𝑤 ∈ 𝐷 do

Compute 𝑦𝑤 = EVRF.Comp(𝑠,𝑤).
Compute 𝑌 = {𝑦𝑤 |𝑤 ∈ 𝐷}.
Run 𝐸 = DS.Construct(𝑌 ).
return 𝐸.

S-Split(𝑃𝐾, 𝑐 ′)
Run EVRF.Split(𝑃𝐾, 𝑐 ′) = 𝑟 ′.
return 𝑟 ′.

S-Core(𝑆𝐾, 𝑟 ′,𝑤)
Run EVRF.Core(𝑆𝐾, 𝑟 ′,𝑤) = 𝑧 ′.
return 𝑧 ′.

Finalize(𝑃𝐾, 𝐸 ′, 𝑐 ′, 𝑧 ′,𝑤)
Run EVRF.Post(𝑃𝐾, 𝑧 ′, 𝑐 ′,𝑤) = 𝑦 ′.
if 𝑦 ′ = ⊥ then

return ⊥.
else

return DS.Find(𝐸 ′, 𝑦 ′).

Figure 8.2: Generic ESI = (KGen, Prep, Index, S-Split, S-Core, Finalize).

whose search takes expected time 𝑂 (1). The particular choice of the non-cryptographic dictio-

nary will depend on the application, which is a nice luxury allowed by our generic composition.

Formally, a non-private dictionary DS = (Construct, Find) is any data structure supporting

the following two operations:

• 𝐸 = Construct(𝐷): outputs the index 𝐸 on an input document 𝐷 .

• Find(𝐸,𝑤) → {0, 1}: outputs 1 if 𝑤 is present in 𝐷 , and 0 otherwise. We assume perfect

correctness for𝑤 ∈ 𝐷 , and allow negligible error probability for𝑤 ∉ 𝐷 .

Our Composition. We show that Encapsulated Search Index can be easily built from any such

non-cryptographic dictionary DS = (Construct, Find) and and EVRF = (Gen, Encap,Comp,

Split,Core, Post). This composition is given below in Construction 8.2.

Efficiency. By design, the Search operation of our composition inherits the efficiency of the

non-cryptographic dictionary DS. In particular, it is 𝑂 (log |𝐷 |) with standard balanced search

trees and could become potentially 𝑂 (1) with probabilistic dictionaries, such as hash tables or

Bloom filters.

Security Analysis. The Correctness and Uniqueness properties of the above construction

trivially follows from the respective properties of the underlying EVRF and 𝐷𝑆 . In particular, we

get negligible error probability for 𝑤 ∉ 𝐷 either due to unlikely EVRF collision between 𝑦𝑤 and
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𝑦𝑤 ′ for some𝑤 ′ ∈ 𝐷 , or a false positive of the 𝐷𝑆 .

Theorem8.11. If EVRF satisfies the $-Core property, then Encapsulated Search Index isCCA secure.

Further, if the EVRF (resp. DS ) is threshold and/or delegatable (resp. updatable; see Remark 9), the

resulting ESI inherits the same.

Proof. The proof is through a sequence of Hybrids where at each step we replace the index cor-

responding to a word𝑤 ∈ (𝐷1 \𝐷2) ∪ (𝐷2 \𝐷1) with a random index, one by one. Recall that the

process of building an index is to use the keyword as the input to the EVRF, making the output

of the EVRF as the index. The key idea behind the proof is that only these words can help distin-

guish the two documents and the adversary is prevented from receiving computation of S-Prove

on these words. Thus, the EVRF of these words is never realized by the adversary. Let 𝐻𝑖 be the

distribution where the first 𝑖 distinguishing words in 𝐷1 have been replaced by a random string

and call the resulting encrypted index 𝐸𝑖 . We will show that ifA can distinguish between 𝐻𝑖 and

𝐻𝑖+1, then we can construct an adversary B that can win in the EVRF security game.

Formally, let A = (A1,A2) be a PPT attacker trying to distinguish between hybrids 𝐻𝑖 and

𝐻𝑖+1, having advantage 𝜖 . A is given public key 𝑃𝐾 (for unknown 𝑆𝐾 ) and oracle access to

S-Prove(𝑆𝐾, ·, ·). In addition, the challenge index is either 𝐸𝑖 or 𝐸𝑖+1.

Using this attackerA, we now define a PPT attackerB which will break the $−Core property

of 𝐸𝑉𝑅𝐹 . B is given the value 𝑃𝐾 , challenge ciphertext 𝐶 , and oracle access to Prove. Note that

S-Prove and Prove are identical functions for our construction.

Definition of BProve(𝑆𝐾,·,·) (𝑃𝐾,𝐶).

• Setup: B provides to A the 𝑃𝐾 value.

• Queries to S-Prove(𝑆𝐾, ·, ·): B receives inputs (𝑐𝑖,𝑤𝑖)

– Uses its access to Prove queries to receive the output of Prove(𝑆𝐾, 𝑐𝑖,𝑤𝑖) = 𝑧𝑖 .

– Responds to A with 𝑧𝑖 after recording (𝑐𝑖,𝑤𝑖, 𝑧𝑖) in a table 𝑇 .
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– B uses table𝑇 to verify thatA is not querying S-Prove on a distinguishing word𝑤𝑖 .

• Challenge Query: B receives two documents 𝐷1, 𝐷2. It identifies the set of distinguishing

words𝑊 , i.e.,𝑊 = (𝐷1 \ 𝐷2) ∪ (𝐷2 \ 𝐷1). Let𝑊 = {𝑤 ′1, . . . ,𝑤 ′𝑚}. B tests the legality of A

using 𝑇 . If the test passes, then for𝑤 ∈ 𝐷 , do the following:

– If𝑤 ∈ {𝑤𝑖+2, . . . ,𝑤𝑚} or𝑤 ∉𝑊 , then

∗ Query oracle Prove with input (𝐶,𝑤) to receive as output

𝑧 = Core(𝑆𝐾, Split(𝑃𝐾,𝐶),𝑤)

∗ Compute Post(𝑃𝐾, 𝑧,𝐶, 𝑥) = 𝑦.

∗ Add 𝑦 to 𝑌 .

– If𝑤 ∈ {𝑤1, . . . ,𝑤𝑖}, then:

∗ Pick 𝑦 at random.

∗ Add 𝑦 to 𝑌 ,

– If𝑤 = 𝑤𝑖+1, then:

∗ B uses𝑤𝑖+1 as its challenge word. It receives as response 𝑦𝑖+1.

∗ Add 𝑦𝑖+1 to 𝑌 .

Run DS.Construct(𝑌 ) = 𝐸∗. Set 𝑐∗ = 𝐶 . Forward (𝐸∗, 𝑐∗) to A.

• Finish: Let A return 𝑏′ as its guess. It forwards 𝑏′ as its guess.

Analysis of Reduction. If the challenger’s bit was 0, then B simulates the distribution 𝐻𝑖

perfectly, where the first 𝑖 distinguishing words are indexed by a random value. If the challenger’s

bit was 1, thenB simulates the distribution𝐻𝑖+1 perfectly where the first 𝑖+1 distinguishingwords

are indexed by a random value. Therefore, the advantage of B in distinguishing between real or

random value is same asA’s advantage in distinguishing between hybrids 𝐻𝑖 and 𝐻𝑖+1 (which is

𝜖). □

226



Remark 9. It is easy to see that our construction of Encapsulated Search Index (Construction 8.2)

can be made updatable if the underlying data structure supports the addition and removal. For-

mally the DS also has the following additional operation:

• DS.Modify(𝐸,𝑤, action) → 𝐸′: adds/removes 𝑤 to/from the index 𝐸 when action =

add/remove, and outputs the new index 𝐸′ .

Then, the Update(𝐸, 𝑐,𝑤, 𝑧, action) algorithm can be defined as follows:

• Compute EVRF.Post(𝑃𝐾, 𝑧, 𝑐,𝑤) = 𝑦.

• If 𝑦 = ⊥, return ⊥.

• Otherwise, return 𝐸′ = DS.Modify(𝐸,𝑦, action)

8.3.3 Extensions to EVRFs

The generic construction of ESI from Section 8.3.2 can be extended to achieve the various

extensions of ESI, as defined in Section 8.2. We do this by extending the EVRF definitions, and

instantiating each ESI with its corresponding EVRF and inheriting the required functionality.

Threshold EVRF. In the earlier definition, we had a single secret key 𝑆𝐾 . With possession of this

secret key, one can evaluate the EVRF on any input 𝑥 . Therefore, it becomes imperative to protect

the key from leakage. Indeed, it is natural to extend our early definition to cater to the setting of

a distributed evaluation of the EVRF. The key difference in the definition of threshold EVRF from

the earlier definition is that the Post algorithm is now formally split into the share verification

algorithm Shr-Vfy and the final evaluation algorithm Combine. The formal discussion about

the syntax and security of this primitive can be found in Section 8.4.1.

Remark 10. It is easy to see that our construction of Encapsulated Search Index (Construc-

tion 8.2) inherits the different properties of the underlying encapsulated verifiable random func-
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tion. In other words, by using TEVRF, one can construct a threshold Encapsulated Search Index

by suitably mapping the functions as follows:

• KG-Verify(𝑃𝐾,VK) = Gen-Vfy(𝑃𝐾,VK)

• S-Verify(𝑠𝑘𝑖, 𝑧′𝑖 ,𝑤) = Shr-Vfy(𝑠𝑘𝑖, 𝑧′𝑖 ,𝑤)

• S-Combine(𝑃𝐾, 𝐸′, 𝑐′, 𝑧′𝑖1, . . . , 𝑧
′
𝑖𝑡
,𝑤): run

𝑦′ = Combine(𝑃𝐾, 𝑐′, 𝑧′𝑖1, . . . , 𝑧
′
𝑖𝑡
,𝑤)

and then output DS.Find(𝐸′, 𝑦′)

Therefore, Theorem 8.11 can be extended to say that if TEVRF satisfies the $-DCore property,

then we have a CCA secure threshold Encapsulated Search Index.

Delegatable EVRF. Next, we extend the definition of standard EVRFs to the setting where the

EVRF owner could delegate its evaluation power to another key. Recall that a standard EVRF has

the following algorithms: Gen, Encap, Comp, Split,Core, Post. Delegation, therefore, implies

that one can convert a ciphertext 𝐶1 for key pair (𝑃𝐾1, 𝑆𝐾1) to ciphertext 𝐶2 for a different key

pair (𝑃𝐾2, 𝑆𝐾2) which encapsulates the same VRF, i.e.,

∀𝑥 , Eval(𝑃𝐾1, 𝑆𝐾1,𝐶1, 𝑥) = Eval(𝑃𝐾2, 𝑆𝐾2,𝐶2, 𝑥) (8.2)

where Eval(𝑃𝐾, 𝑆𝐾,𝐶, 𝑥) = Post(𝑃𝐾, Prove(𝑆𝐾, 𝑐, 𝑥),𝐶, 𝑥). The formal discussion about the syn-

tax and security of this primitive can be found in Section 8.5.1.

Remark 11. It is easy to see that our construction of Encapsulated Search Index (Construc-

tion 8.2) inherits the different properties of the underlying encapsulated verifiable random func-

tion. In other words, by using a DEVRF, one can construct a delegatable Encapsulated Search

Index by suitably mapping the functions as follows:
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Construction: Standard EVRF

Gen(1𝜅)
Sample 𝑎 ∈𝑟 Z∗𝑝
Compute 𝐴 = 𝑔𝑎 ∈ 𝐺 .
return 𝑆𝐾 = 𝑎 and 𝑃𝐾 = (𝑔,𝐴).

Encap(𝑃𝐾)
Parse 𝑃𝐾 = (𝑔,𝐴).
Sample 𝑟 ∈𝑟 Z∗𝑝 .
Compute 𝑅 = 𝑔𝑟 , 𝑆 = 𝐴𝑟 .
return 𝐶 = 𝑅, 𝑇 = (𝑅, 𝑆).

Comp(𝑇, 𝑥)
Parse 𝑇 = (𝑅, 𝑆).
Compute 𝑦 = 𝑒 (𝐻 (𝑅, 𝑥), 𝑆).
return 𝑦.

Split(𝑃𝐾,𝐶 ′)
Parse 𝑃𝐾 = (𝑔,𝐴), 𝐶 ′ = 𝑅′.
return 𝑅′.

Core(𝑆𝐾,𝐶 ′, 𝑥)
Parse 𝑆𝐾 = 𝑎,𝐶 ′ = 𝑅′.
Compute 𝑧 = 𝐻 (𝑅′, 𝑥)𝑎 .
return 𝑧.

Post(𝑃𝐾, 𝑧,𝐶 ′, 𝑥)
Parse 𝑃𝐾 = (𝑔,𝐴), 𝐶 ′ = 𝑅′
if 𝑒 (𝑧, 𝑔) ≠ 𝑒 (𝐻 (𝑅′, 𝑥), 𝐴) then

return ⊥.
else

Compute 𝑦 ′ = 𝑒 (𝑧, 𝑅′).
return 𝑦 ′.

Figure 8.3: Standard EVRF = (Gen, Encap,Comp, Split,Core, Post).

• S-Del(𝑆𝐾1, 𝑐1, 𝑆𝐾2) = Del(𝑆𝐾1, 𝑐1, 𝑆𝐾2)

• S-Check(𝑃𝐾1, 𝑐1, 𝑃𝐾2, 𝑐2) = Same(𝑃𝐾1, 𝑐1, 𝑃𝐾2, 𝑐2)

In addition, the Encapsulated Search Index also achieves different levels of CCA security based

on the security level of $-Core property of the delegatable EVRF.

8.3.4 Standard EVRF

We now present the standard EVRF construction, presented in Figure 8.3.

Security Analysis. To check Evaluation-Correctness, we observe that 𝐴𝑟 = 𝑔𝑎𝑟 = 𝑅𝑎 , and

by the bilinearity we have:

Comp(𝑇 = (𝑅, 𝑆), 𝑥) = 𝑒 (𝐻 (𝑅, 𝑥), 𝑆) = 𝑒 (𝐻 (𝑅, 𝑥), 𝐴𝑟 )

From our earlier observation, we get that:

𝑒 (𝐻 (𝑅, 𝑥), 𝐴𝑟 ) = 𝑒 (𝐻 (𝑅, 𝑥), 𝑅𝑎) = 𝑒 (𝐻 (𝑅, 𝑥)𝑎, 𝑅) = 𝑒 (𝑧, 𝑅)

This is the same as Post(𝐴,Core(𝑎, Split(𝐴, 𝑅), 𝑥), 𝑅, 𝑥) which concludes the proof.
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To prove Uniqueness, consider any tuple (𝑃𝐾 = 𝐴,𝐶 = 𝑅, 𝑥, 𝑧1, 𝑧2). Further, let 𝑦1 =

Post(𝐴, 𝑧1, 𝑅, 𝑥) and 𝑦2 = Post(𝐴, 𝑧2, 𝑅, 𝑥). If 𝑦1 ≠ ⊥ and 𝑦2 ≠ ⊥, then we have that 𝑒 (𝑧1, 𝑔) =

𝑒 (𝐻 (𝑅, 𝑥), 𝐴) = 𝑒 (𝑧2, 𝑔). From definition of bilinear groups, we get that 𝑧1 = 𝑧2. Consequently,

𝑦1 = 𝑒 (𝑧1, 𝑅) = 𝑒 (𝑧2, 𝑅) = 𝑦2.

Theorem 8.12. The standard EVRF given in Figure 8.3 satisfies the $-Core property under the

BDDH assumption in the random oracle model.

Proof. Let A = (A1,A2) be a PPT attacker against the $-Core property of EVRF, having ad-

vantage 𝜖 . A is given the public key 𝐴 = 𝑔𝑎 (for unknown 𝑎), challenge ciphertext 𝑅 = 𝑔𝑟 (for

unknown 𝑟 ), and oracle access to Prove, which is equal toCore due to empty Split step. Namely,

A has access toCore(𝑎, ·, ·): on query (𝑅′, 𝑥′),A gets 𝑧′ = 𝐻 (𝑅′, 𝑥′)𝑎 . A then outputs challenge 𝑥 ,

gets back a value 𝑦 which is either 𝑒 (𝐻 (𝑅, 𝑥)𝑎, 𝑅) = 𝑒 (𝐻 (𝑅, 𝑥), 𝑔)𝑎𝑟 or uniform over𝐺1, and has to

tell which without asking its Core(𝑎, ·, ·) oracle on the challenge (𝑅, 𝑥). Additionally, A expects

to have oracle access to the random oracle 𝐻 : {0, 1}∗ → 𝐺 , and values 𝑔, 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏, 𝑅 = 𝑔𝑟

(for unknown 𝑎, 𝑏, 𝑟 ), and a challenge 𝑔1, which is either 𝑒 (𝑔,𝑔)𝑎𝑏𝑟 or uniform in 𝐺1. There is no

random oracle for B.

Definition of B(𝑔,𝐴, 𝐵, 𝑅, 𝑔1). Run A = (A1,A2) as follows:

• Setup: Pass 𝑃𝐾 = 𝐴 and challenge ciphertext 𝐶 = 𝑅 to A1.

• Queries to 𝐻 : let 𝑞 be the upper bound on the number of queries to Core made by A.

B will maintain a table 𝑇 — initially empty — of the form {((𝑅𝑖, 𝑥𝑖), 𝛽𝑖, 𝑐𝑜𝑖𝑛𝑖)}, where 𝑖 is

the index of the query to 𝐻 incremented with each query, (𝑅𝑖, 𝑥𝑖) in the input to the query

(inputs not of this form are consistently answered at random), and the meaning of 𝛽𝑖 ∈ Z𝑝

and 𝑐𝑜𝑖𝑛𝑖 ∈ {0, 1} will be explained below:

1. If (𝑅𝑖, 𝑥𝑖) was already made, meaning there is 𝑗 < 𝑖 such that (𝑅𝑖, 𝑥𝑖) = (𝑅 𝑗 , 𝑥 𝑗 ) and

((𝑅 𝑗 , 𝑥 𝑗 ), 𝛽 𝑗 , 𝑐𝑜𝑖𝑛 𝑗 ) ∈ 𝑇 , then respond with:
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𝐻 (𝑅𝑖, 𝑥𝑖) = 𝑔𝛽 𝑗 if 𝑐𝑜𝑖𝑛 𝑗 = 0, and with 𝐻 (𝑅𝑖, 𝑥𝑖) = 𝐵𝛽 𝑗 if 𝑐𝑜𝑖𝑛 𝑗 = 1.

2. Otherwise, flip a fresh 𝑐𝑜𝑖𝑛𝑖 ∈ {0, 1} such that Pr[[]𝑐𝑜𝑖𝑛𝑖 = 1] = 1/𝑞, sample random

𝛽𝑖 ←$ Z𝑝 , add the tuple ((𝑅𝑖, 𝑥𝑖), 𝛽𝑖, 𝑐𝑜𝑖𝑛𝑖) to 𝑇 , and respond with:

𝐻 (𝑅𝑖, 𝑥𝑖) = 𝑔𝛽𝑖 if 𝑐𝑜𝑖𝑛𝑖 = 0, and with 𝐻 (𝑅𝑖, 𝑥𝑖) = 𝐵𝛽𝑖 if 𝑐𝑜𝑖𝑛𝑖 = 1.

• Queries to Core: Given query (𝑅′, 𝑥′) to Core, check if A made the 𝐻 -query (𝑅′, 𝑥′) by

checking if there exists 𝑗 such that (𝑅′, 𝑥′) = (𝑅 𝑗 , 𝑥 𝑗 ) and ((𝑅 𝑗 , 𝑥 𝑗 ), 𝛽 𝑗 , 𝑐𝑜𝑖𝑛 𝑗 ) ∈ 𝑇 . If such

query was not made, make this query forA following the normal𝐻 -query simulation strat-

egy above. In either case, retrieve the record ((𝑅 𝑗 , 𝑥 𝑗 ), 𝛽 𝑗 , 𝑐𝑜𝑖𝑛 𝑗 ) ∈ 𝑇 with (𝑅′, 𝑥′) = (𝑅 𝑗 , 𝑥 𝑗 ).

Respond as follows:

If 𝑐𝑜𝑖𝑛 𝑗 = 1, abort the simulation, outputting a random bit 𝑏′ ∈𝑟 {0, 1}.

Otherwise, we know 𝐻 (𝑅′, 𝑥′) = 𝑔𝛽 𝑗 , so B outputs partial output 𝑧′ = 𝐴𝛽 𝑗 .

(Notice, 𝑧′ = 𝐴𝛽 𝑗 = 𝑔𝑎𝛽 𝑗 = 𝐻 (𝑅′, 𝑥′)𝑎 , for unknown 𝑎.)

• Challenge query: When A1 produces challenge 𝑥 , produce answer 𝑦 as follows. Check

if A1 made the 𝐻 -query (𝑅, 𝑥) by checking if there exists 𝑗 such that (𝑅, 𝑥) = (𝑅 𝑗 , 𝑥 𝑗 )

and ((𝑅 𝑗 , 𝑥 𝑗 ), 𝛽 𝑗 , 𝑐𝑜𝑖𝑛 𝑗 ) ∈ 𝑇 . If such query was not made, make this query for A fol-

lowing the normal 𝐻 -query simulation strategy above. In either case, retrieve the record

((𝑅 𝑗 , 𝑥 𝑗 ), 𝛽 𝑗 , 𝑐𝑜𝑖𝑛 𝑗 ) ∈ 𝑇 with (𝑅, 𝑥) = (𝑅 𝑗 , 𝑥 𝑗 ). Respond as follows:

If 𝑐𝑜𝑖𝑛 𝑗 = 0, abort the simulation, outputting a random bit 𝑏′ ∈𝑟 {0, 1}.

Otherwise, we know 𝐻 (𝑅, 𝑥) = 𝐵𝛽 𝑗 , and B will output challenge 𝑦 = 𝑔
𝛽 𝑗
1 .
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(Notice, 𝑦0 = Eval(𝑎, 𝑅, 𝑥) = 𝑒 (𝐻 (𝑅, 𝑥)𝑎, 𝑅) = 𝑒 (𝐵𝛽 𝑗𝑎, 𝑔𝑟 ) = (𝑒 (𝑔,𝑔)𝑎𝑏𝑟 )𝛽 𝑗 .)

• Finish: If the simulation did not fail, and A produces a guess 𝑏′, B outputs the same 𝑏′.

Analysis of the Reduction. Assume the advantage ofA is 𝜖 , and let us denote by 𝜖′ the advan-

tage of B. We will argue that 𝜖′ > 𝜖/3𝑞, which would complete the proof, since 𝑞 is polynomial.

Let use define “failure event” 𝐹 to be that B had to abort the simulation of A, either during one

of the Core queries (if 𝑐𝑜𝑖𝑛 𝑗 = 1), or when simulating the challenge (if 𝑐𝑜𝑖𝑛 𝑗 = 0). Recall, if 𝐹

happens, B still outputs a random bit 𝑏′, which has 1/2 chance to be equal to the challenge 𝑏. Let

us also define “success probability” 𝛾 ∈ [0, 1] as Pr[[]¬𝐹 ] = 𝛾 . Notice,

1
2
+ 𝜖′ = Pr[[]𝑏 = 𝑏′]

= Pr[[]𝐹 ] · Pr[[]𝑏 = 𝑏′ | 𝐹 ] + Pr[[]¬𝐹 ] · Pr[[]𝑏 = 𝑏′ | ¬𝐹 ]

= (1 − 𝛾) · 1
2
+ 𝛾 · Pr[[]𝑏 = 𝑏′ | ¬𝐹 ]

=
1
2
+ 𝛾 ·

(
Pr[[]𝑏 = 𝑏′ | ¬𝐹 ] − 1

2

)
Thus, to complete our proof that 𝜖′ > 𝜖/3𝑞, it suffices to show the following two claims:

Claim 8.13. 𝛾 = Pr[[]¬𝐹 ] > 1
3𝑞 .

Claim 8.14 (2). Pr[[]𝑏 = 𝑏′ | ¬𝐹 ] = 1
2 + 𝜖 .

Proof of Claim 8.13. We see that in order forB not to abort the simulation, all random bits 𝑐𝑜𝑖𝑛 𝑗

have to be equal to 0 (each independently happens with probability 1 − 1/𝑞) when simulating at

most 𝑞 Core queries, and also the “challenge” coin 𝑐𝑜𝑖𝑛 𝑗 should be 1 (independently happens

with probability 1/𝑞, since none of the Core queries used the challenge (𝑅, 𝑥)). This means that,

overall,

𝛾 ⩾

(
1 − 1

𝑞

)𝑞
· 1
𝑞
>

1
3𝑞
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completing the proof. □

Proof of Claim 8.14. We claim that when B successfully completes the simulation, he perfectly

simulates the run of A. More precisely, in this case the run of B with challenge bit 𝑏 = 0 is

identical to the run ofA with challenge bit 𝑏 = 0, and the same for 𝑏 = 1. This will complete the

proof, as then

Pr[[]𝑏 = 𝑏′ | ¬𝐹 ] = Pr[[]A wins] = 1
2
+ 𝜖

To see this, first we notice that all the queries to 𝐻 are answered at random irrespective of the

value of the 𝑐𝑜𝑖𝑛 𝑗 , since both distributions 𝑔𝛽 𝑗 and 𝐵𝛽 𝑗 are perfectly uniform when 𝛽 𝑗 ←$ Z𝑝 .

Second, we already saw that when all Core queries are answered, each partial answer 𝑧′ is

correct, as 𝑧′ = 𝐴𝛽 𝑗 = 𝑔𝑎𝛽 𝑗 = 𝐻 (𝑅′, 𝑥′)𝑎 (for correct, although unknown, 𝑎). Finally, let use look

at the challenge query (𝑅, 𝑥). Since the simulation succeeded, we know 𝐻 (𝑅, 𝑥) = 𝐵𝛽 𝑗 , for some

fresh and random 𝛽 𝑗 ∈ Z𝑝 . This means the correct output 𝑦0 = Eval(𝑎, 𝑅, 𝑥) = 𝑒 (𝐻 (𝑅, 𝑥)𝑎, 𝑅) =

𝑒 (𝐵𝛽 𝑗𝑎, 𝑔𝑟 ) = (𝑒 (𝑔,𝑔)𝑎𝑏𝑟 )𝛽 𝑗 . Our simulator B responded with 𝑔𝛽 𝑗1 , where 𝑔1 is its own challenge.

Thus:

When 𝑏 = 0, we have 𝑔1 = 𝑒 (𝑔,𝑔)𝑎𝑏𝑟 , meaning that 𝑦0 = 𝑔
𝛽 𝑗
1 indeed.

When 𝑏 = 1, 𝑔1 ∈𝑟 𝐺1, which means that the response 𝑔𝛽 𝑗1 is identically distributed with a

uniform answer 𝑦1 ∈𝑟 𝐺1, as needed.

This completes the proof of Claim 8.13 and Theorem 8.12. □

8.4 Threshold Encapsulated Verifiable Random Functions

In this section, we formally introduce the primitive known as a Threshold EVRF in Sec-

tion 8.4.1. We then present a construction of Threshold EVRF in Section 8.4.2 .
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8.4.1 Definition of Threshold (or Distributed) EVRFs

Definition 8.15. A (𝑡, 𝑛)-Threshold EVRF is a tuple of PPT algorithms TEVRF = (Gen,Gen-Vfy,

Encap,Comp, Split,D-Core,

Shr-Vfy, Combine) such that:

• (𝑃𝐾, SK = (𝑠𝑘1, . . . , 𝑠𝑘𝑛),VK = (𝑣𝑘1, . . . , 𝑣𝑘𝑛)) ←$ Gen(1𝜅, 𝑡, 𝑛): outputs the public key 𝑃𝐾 ,

a vector of secret shares SK, and public shares VK.

• Gen-Vfy(𝑃𝐾,VK) = 𝛽 ∈ {0, 1}: verifies that the output of Gen is indeed valid.

• (𝐶,𝑇 ) ←$ Encap(𝑃𝐾): outputs ciphertext 𝐶 and trapdoor 𝑇 .

• Comp(𝑇, 𝑥) = 𝑦: evaluates EVRF on input 𝑥 , using trapdoor 𝑇 .

• Split(𝑃𝐾,𝑛,𝐶′) = (𝑅′1, . . . 𝑅′𝑛): outputs 𝑛 handles 𝑅′1, . . . , 𝑅
′
𝑛 from full ciphertext 𝐶′.

• D-Core(𝑠𝑘𝑖, 𝑅′𝑖 , 𝑥) = 𝑧′𝑖 : evaluates EVRF share on input 𝑥 , using handle 𝑅′𝑖 and secret key

share 𝑠𝑘𝑖 .

• Shr-Vfy(𝑃𝐾, 𝑣𝑘𝑖, 𝑧′𝑖 , 𝑥) = 𝛽 ∈ {0, 1}: verifies that the share produced by the party 𝑖 is valid.

• Combine(𝑃𝐾,𝐶′, 𝑧′𝑖1, . . . , 𝑧
′
𝑖𝑡
, 𝑥) = 𝑦′: uses the partial evaluations 𝑧′𝑖1, . . . , 𝑧

′
𝑖𝑡
to compute the

final value of EVRF on input 𝑥 .6

Before we define the security properties, it is useful to define the following shorthand functions:

• Prove(SK, 𝑖,𝐶, 𝑥) = D-Core(𝑠𝑘𝑖, 𝑅𝑖, 𝑥), where

(𝑅1, . . . , 𝑅𝑛) = Split(𝑃𝐾,𝑛,𝐶).
6Without loss of generality, we will always assume that all the 𝑡 partial evaluations 𝑧 ′𝑖 satisfy

Shr-Vfy(𝑃𝐾, 𝑣𝑘𝑖 , 𝑧 ′𝑖 ) = 1 (else, we output⊥ before callingCombine). See also the definition of Eval below to explicitly
model this assumption.
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• Eval(SK, 𝑖1, . . . , 𝑖𝑡 ,𝐶, 𝑥): For 𝑗 = 1 . . . 𝑡 , compute 𝑧𝑖 𝑗 = Prove(SK, 𝑖 𝑗 ,𝐶, 𝑥).

Output ⊥ if, for some 1 ⩽ 𝑗 ⩽ 𝑡 , Shr-Vfy(𝑃𝐾, 𝑣𝑘𝑖 𝑗 , 𝑧𝑖 𝑗 , 𝑥) = 0.

Otherwise, output Combine(𝑃𝐾,𝐶, 𝑧𝑖1, . . . , 𝑧𝑖𝑡 , 𝑥).

We require the following security properties:

1. Distribution-Correctness:

(a) with prob. 1 over randomness of (𝑃𝐾, SK,VK) ←$ Gen(1𝜅, 𝑡, 𝑛),

Gen-Vfy(𝑃𝐾,VK) = 1

(b) with prob. 1 over randomness of Gen and Encap, for honestly generated ciphertext

𝐶: Eval(SK, 𝑖1, . . . , 𝑖𝑡 ,𝐶, 𝑥) = Comp(𝑇, 𝑥)

2. Uniqueness: there exists no values (𝑃𝐾,VK,𝐶, 𝑥, 𝑍1, 𝑍2) where 𝑍1 = ((𝑖1, 𝑧𝑖1), . . . , (𝑖𝑡 , 𝑧𝑖𝑡 ))

and 𝑍2 = (( 𝑗1, 𝑧 𝑗1), . . . , ( 𝑗𝑡 , 𝑧 𝑗𝑡 )). st

(a) Gen-Vfy(𝑃𝐾,VK) = 1

(b) for 𝑘 = 1, . . . , 𝑡 :

• Shr-Vfy(𝑃𝐾, 𝑣𝑘𝑖𝑘 , 𝑧𝑖𝑘 , 𝑥) = 1.

• Shr-Vfy(𝑃𝐾, 𝑣𝑘 𝑗𝑘 , 𝑧 𝑗𝑘 , 𝑥) = 1.

(c) Let Z𝑖 = (𝑧𝑖1, . . . , 𝑧𝑖𝑡 ) and Z 𝑗 = (𝑧 𝑗1, . . . , 𝑧 𝑗𝑡 ). Then,

Combine(𝑃𝐾,𝐶,Z𝑖, 𝑥) ≠ Combine(𝑃𝐾,𝐶,Z 𝑗 , 𝑥)

3. Pseudorandomness under D-Core ($-DCore): for any PPT algorithm A = (A0, A1,

A2), where A does not make query ( 𝑗,𝐶, 𝑥) to Prove(SK, ·, ·, ·), for 𝑗 ∉ {𝑖1, . . . , 𝑖𝑡−1} for
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variables 𝑖1, . . . , 𝑖𝑡−1, SK,𝐶, 𝑥 defined below,

Pr



𝑏 = 𝑏′

{𝑖1, . . . , 𝑖𝑡−1, 𝑠𝑡} ← A0(1𝜅, 𝑡, 𝑛);

(𝑃𝐾, SK,VK) ←$ Gen(1𝜅, 𝑡, 𝑛);

(𝐶,𝑇 ) ←$ Encap(𝑃𝐾);

(𝑅1, . . . , 𝑅𝑛) = Split(𝑃𝐾, 𝑛,𝐶);

(𝑥, 𝑠𝑡) ←$AProve(SK,·,·,·)
1 (𝑃𝐾,𝐶,VK, SK′, 𝑠𝑡)

𝑦0 = Comp(𝑇, 𝑥); 𝑦1←$ {0, 1} |𝑦0 | ;

𝑏←$ {0, 1}; 𝑏′←$AProve(𝑆𝐾,·,·)
2 (𝑦𝑏, 𝑠𝑡)



≤ 1
2
+ negl(𝜅)

where SK′ = (𝑠𝑘𝑖1, . . . , 𝑠𝑘𝑖𝑡−1).

We present a construction of our threshold EVRF in section 8.4.2.

Remark 12. For simplicity, in the above definition, we assume honest key generation and do

not explicitly address distributed key generation. Even with this simplification, the existence of

the Gen-Vfy algorithm ensures the users of the system that the public key (𝑃𝐾,VK) is “consis-

tent ”and was generated properly. Moreover, our construction, given in Section 8.4.2, can easily

achieve efficient distributed key generation using techniques of Gennaro et al.[GJKR07].

Remark 13. Note that when 𝑡 = 𝑛 = 1, our threshold EVRF implies the the standard EVRF

definition (Definition 8.10), where Post algorithm first runs Shr-Vfy on the single share 𝑧 and

then, if successful, runs Combine to produce the final output 𝑦. For 𝑛 > 1, however, we find it

extremely convenient that we can separately check the validity of each share, and be guaranteed

to compute the correct output the moment 𝑡 servers return consistent (i.e., Shr-Vfy’ed) shares 𝑧𝑖 .

8.4.2 Construction of Threshold (or Distributed) EVRFs

Our non-interactive threshold EVRF is given in Figure 8.4. It combines elements of our stan-

dard EVRF from Figure 8.3with the ideas of Shamir’s Secret Sharing [Sha79], FeldmanVSS [Fel88],
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Construction: Non-Interactive Threshold EVRF

Gen(1𝜅)
Sample a random (𝑡 − 1) degree polynomial 𝑓 ∈ Z∗𝑝 [𝑋 ].
Compute 𝑎 = 𝑓 (0), 𝐴0 = 𝑔

𝑎 .
for 𝑖 = 1, . . . , 𝑛 do

Compute 𝑎𝑖 = 𝑓 (𝑖), 𝐴𝑖 = 𝑔𝑎𝑖 .
return 𝑃𝐾 = (𝑔,𝐴0), SK = (𝑎1, . . . , 𝑎𝑛), VK = (𝐴1, . . . , 𝐴𝑛),
with server 𝑖 getting secret key 𝑠𝑘𝑖 = 𝑎𝑖 and verification key
𝑣𝑘𝑖 = 𝐴𝑖 .

Gen-Vfy(𝑃𝐾,VK)
Parse 𝑃𝐾 = (𝑔,𝐴0),VK =, (𝐴1, . . . , 𝐴𝑛)).
for 𝑖 = 𝑡, . . . , 𝑛 do

Compute Lagrange coefficients 𝜆𝑖,0 . . . , 𝜆𝑖,𝑡−1 s.t. 𝑓 (𝑖) =∑𝑡−1
𝑗=0 𝜆𝑖, 𝑗 · 𝑓 ( 𝑗).

Each 𝜆𝑖, 𝑗 is a fixed constant.
if 𝐴𝑖 ≠

∏𝑡−1
𝑗=0𝐴

𝜆𝑖,𝑗
𝑗

then

return 0
return 1

Encap(𝑃𝐾)
Parse 𝑃𝐾 = (𝑔,𝐴0).
Sample 𝑟 ∈𝑟 Z∗𝑝 .
Compute 𝑅 = 𝑔𝑟 , 𝑆 = 𝐴𝑟0.
return ciphertext 𝐶 = 𝑅 and trapdoor 𝑇 = (𝑅, 𝑆).

Comp(𝑇, 𝑥)
Parse 𝑇 = (𝑅, 𝑆).
Compute 𝑦 = 𝑒 (𝐻 (𝑅, 𝑥), 𝑆).
return 𝑦.

Split(𝑃𝐾,𝐶 ′)
Parse 𝑃𝐾 = (𝑔,𝐴0), 𝐶 ′ = 𝑅′.
return 𝑅′1 = 𝑅

′, . . . , 𝑅′𝑛 = 𝑅′.

D-Core(𝑆𝐾𝑖 , 𝑅′𝑖 , 𝑥)

Parse 𝑆𝐾𝑖 = 𝑎𝑖 , 𝑅′𝑖 = 𝑅
′.

Compute partial output 𝑧𝑖 = 𝐻 (𝑅′𝑖 , 𝑥)𝑎𝑖 .
return 𝑧𝑖 .

Shr-Vfy(𝑃𝐾,𝑉𝐾𝑖 , 𝑧 ′𝑖 , 𝑥)

Parse 𝑃𝐾 = (𝑔,𝐴0),𝑉𝐾𝑖 = 𝐴𝑖 .
if 𝑒 (𝑧 ′𝑖 , 𝑔) ≠ 𝑒 (𝐻 (𝑅′𝑖 , 𝑥), 𝐴𝑖) then

return ⊥.

Combine(𝑃𝐾,𝐶 ′, 𝑧 ′𝑖1, . . . , 𝑧
′
𝑖𝑡
, 𝑥)

Parse 𝑃𝐾 = (𝑔,𝐴0), 𝐶 ′ = 𝑅′.
Compute Lagrange coefficients 𝜆1 . . . , 𝜆𝑡 s.t. 𝑓 (0) =

∑𝑡
𝑗=1 𝜆 𝑗 · 𝑓 (𝑖 𝑗 ).

Note that these 𝜆 𝑗 ’s only depend on indices 𝑖1, . . . , 𝑖𝑡 .
Compute 𝑧 ′ =

∏𝑡
𝑗=1(𝑧 ′𝑖 𝑗 )

𝜆 𝑗 .
return 𝑦 = 𝑒 (𝑧 ′, 𝑅′).

Figure 8.4: TEVRF = (Gen, Gen-Vfy, Encap, Comp, Split, D-Core, Shr-Vfy, Combine).

and the fact that the correctness of all computations is easily verified using the pairing.

Security Analysis. To checkDistribution-Correctness, we observe that𝐴 = 𝑔𝑎 , 𝑆 = 𝑔𝑎𝑟 , and

𝑅 = 𝑔𝑟 . Therefore, Comp(𝑇 = (𝑅, 𝑆), 𝑥) = 𝑒 (𝐻 (𝑅, 𝑥), 𝑆) = 𝑒 (𝐻 (𝑅, 𝑥), 𝑔)𝑎𝑟 . By definition, we have

that:

Eval(𝑃𝐾, SK, 𝑖1, . . . , 𝑖𝑡 , 𝑅, 𝑥) = 𝑒 (
𝑡∏
𝑗=1

𝑧
𝜆 𝑗
𝑖 𝑗
, 𝑅)

𝑒 (
𝑡∏
𝑗=1

𝑧
𝜆 𝑗
𝑖 𝑗
, 𝑅) = 𝑒 (

𝑡∏
𝑗=1

𝐻 (𝑅, 𝑥)𝑎𝑖 𝑗 ·𝜆 𝑗 , 𝑅) = 𝑒 (𝐻 (𝑅, 𝑥)
∑𝑡
𝑗=1 𝑎𝑖 𝑗 ·𝜆 𝑗 , 𝑅)
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However, we know that 𝑎 =
∑𝑡
𝑗=1 𝑎𝑖 𝑗 · 𝜆 𝑗 . Therefore,

𝑒 (𝐻 (𝑅, 𝑥)
∑𝑡
𝑗=1 𝑎𝑖 𝑗 ·𝜆 𝑗 , 𝑅) = 𝑒 (𝐻 (𝑅, 𝑥)𝑎, 𝑔𝑟 ) = 𝑒 (𝐻 (𝑅, 𝑥), 𝑔)𝑎𝑟

To check Uniqueness, we are given: (𝑃𝐾,VK = (𝑣𝑘1, . . . , 𝑣𝑘𝑛), 𝑅, 𝑥, 𝑍1, 𝑍2) where

𝑍1 = ((𝑖1, 𝑧𝑖1), . . . , (𝑖𝑡 , 𝑧𝑖𝑡 )); 𝑍2 = (( 𝑗1, 𝑧 𝑗1), . . . , ( 𝑗𝑡 , 𝑧 𝑗𝑡 )) .

• Gen-Vfy(𝑃𝐾,VK) = 1 implies that 𝑎0, 𝑎1, . . . , 𝑎𝑛 where 𝑔𝑎0 = 𝑃𝐾 and 𝑔𝑎𝑖 = 𝑣𝑘𝑖 all lie

on a consistent polynomial 𝑓 of degree 𝑡 − 1. Thus, there exist 𝜆1, . . . , 𝜆𝑡 ∈ Z𝑝 such that

𝑓 (0) = ∑𝑡
ℓ=1 𝜆ℓ · 𝑓 (𝑖ℓ) and 𝜆′1, . . . , 𝜆′𝑡 ∈ Z𝑝 such that 𝑓 (0) = ∑𝑡

ℓ=1 𝜆ℓ · 𝑓 ( 𝑗ℓ). Therefore, we

have that:

𝐴 =

𝑡∏
ℓ=1

𝑣𝑘𝑖ℓ
𝜆ℓ =

𝑡∏
ℓ=1

𝑣𝑘 𝑗ℓ
𝜆′ℓ (8.3)

• We also know that for ℓ = 1, . . . , 𝑡 ,

Shr-Vfy(𝑃𝐾, 𝑣𝑘𝑖ℓ , 𝑧𝑖ℓ , 𝑥) = 1 and Shr-Vfy(𝑃𝐾, 𝑣𝑘 𝑗ℓ , 𝑧 𝑗ℓ , 𝑥) = 1. Therefore, we have that for

ℓ = 1, . . . , 𝑡 :

𝑒 (𝑧𝑖ℓ , 𝑔) = 𝑒 (𝐻 (𝑅, 𝑥), 𝑣𝑘𝑖ℓ ); 𝑒 (𝑧 𝑗ℓ , 𝑔) = 𝑒 (𝐻 (𝑅, 𝑥), 𝑣𝑘 𝑗ℓ ) (8.4)

• We will now show that the 2 outputs of Combine must be equal. Here we we will write

𝑅 = 𝑔𝑟 for some 𝑟 ,

Combine(𝑃𝐾, 𝑅, 𝑧𝑖1, . . . , 𝑧𝑖𝑡 , 𝑥) = 𝑒 (
𝑡∏
ℓ=1

𝑧
𝜆ℓ
𝑖ℓ
, 𝑅) =

𝑡∏
ℓ=1

𝑒 (𝑧𝑖ℓ , 𝑔)𝑟 ·𝜆ℓ
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From Equation (8.4):

𝑡∏
ℓ=1

𝑒 (𝑧𝑖ℓ , 𝑔)𝑟 ·𝜆ℓ =
𝑡∏
ℓ=1

𝑒 (𝐻 (𝑅, 𝑥), 𝑣𝑘𝑖ℓ )𝑟 ·𝜆ℓ = 𝑒 (𝐻 (𝑅, 𝑥),
𝑡∏
ℓ=1

𝑣𝑘
𝜆ℓ
𝑖ℓ
)𝑟

From Equation (8.3), we have that:

𝑒 (𝐻 (𝑅, 𝑥),
𝑡∏
ℓ=1

𝑣𝑘
𝜆ℓ
𝑖ℓ
)𝑟 = 𝑒 (𝐻 (𝑅, 𝑥),

𝑡∏
ℓ=1

𝑣𝑘
𝜆′ℓ
𝑗ℓ
)𝑟 =

𝑡∏
ℓ=1

𝑒 (𝐻 (𝑅, 𝑥), 𝑣𝑘 𝑗ℓ )𝑟 ·𝜆
′
ℓ

We again use Equation (8.4) to conclude the proof.

Theorem 8.16. If Figure 8.3 satisfies the $-Core property of standard EVRF, then Figure 8.4 satisfies

the $-DCore property of threshold EVRF. By Theorem 8.12, it follows that Figure 8.4 satisfies the $-

DCore property under the BDDH assumption in the random oracle model.

Proof. LetA = (A0,A1,A2) be a PPT attacker against the $-DCore property of TEVRF, having

advantage 𝜖 . A first chooses 𝑡 − 1 indices 𝑆 = {𝑖1, . . . , 𝑖𝑡−1} where each index is a subset of

{1, . . . , 𝑛}. Then, A is given the public key 𝐴 = 𝑔𝑎 (for unknown 𝑎), challenge ciphertext 𝑅 =

𝑔𝑟 (for unknown 𝑟 ), secret keys 𝑠𝑘𝑖1 = 𝑎𝑖1 = 𝑓 (𝑖1), . . . , 𝑠𝑘𝑖𝑡−1 = 𝑎𝑖𝑡−1 = 𝑓 (𝑖𝑡−1) (for unknown

polynomial 𝑓 of degree 𝑡 such that 𝑓 (0) = 𝑎), verification keys VK, and oracle access to Prove,

with equal valued Split step. Namely,A has access to Prove(𝑠𝑘𝑖, ·, ·): on query (𝑖, 𝑅′, 𝑥′),A gets

𝑧′ = 𝐻 (𝑅′, 𝑥′)𝑎𝑖 . A then outputs challenge 𝑥 , gets back a value 𝑦 which is either 𝑒 (𝐻 (𝑅, 𝑥)𝑎, 𝑅) =

𝑒 (𝐻 (𝑅, 𝑥), 𝑔)𝑎𝑟 or uniform over𝐺1, and has to tell which without asking its Prove(SK, ·, ·, ·) oracle

on input ( 𝑗, 𝑅, 𝑥) for 𝑗 ∉ 𝑆 . Additionally, A expects to have oracle access to the random oracle

𝐻 : {0, 1}∗ → 𝐺 .

Using this attacker A, we now define a PPT attacker B which will break the $-Core prop-

erty of EVRF. B = (B1,B2) is given the values 𝑔, public key 𝐴∗ = 𝑔𝑎
∗ (for unknown 𝑎∗), ci-

phertext 𝑅∗ = 𝑔𝑟
∗ (for unknown 𝑟 ∗), and an oracle access to Prove which is equal to Core

due to empty Split step. Namely B has access to Core(𝑎∗, ·, ·) on query (𝑅′, 𝑥′), it receives in
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response 𝐻 (𝑅′, 𝑥′)𝑎∗ . B then outputs a challenge 𝑥 and receives a response 𝑦 which is either

𝑒 (𝐻 (𝑅∗, 𝑥)𝑎∗, 𝑅∗) = 𝑒 (𝐻 (𝑅∗, 𝑥), 𝑔)𝑎∗𝑟 or uniform in 𝐺1. Additionally, B expects to have oracle

access to the random oracle 𝐻 : {0, 1}∗ → 𝐺 .

Definition of BCore(𝑎∗,·,·),𝐻 (·,·) (𝐴∗, 𝑅∗). Run A = (A0,A1,A2) as follows:

• Setup: B does the following during Setup.

– Receive set 𝑆 = {𝑖1, . . . , 𝑖𝑡−1} from A.

– Next B generates the key shares and public key as follows:

∗ Sample 𝑎𝑖1, . . . , 𝑎𝑖𝑡−1 ∈ Z𝑝 .

∗ Pick 𝑖𝑡 ∉ 𝑆 at random.

∗ Let 𝑓 ∈ Z𝑝 [𝑋 ] be the degree 𝑡 − 1 polynomial implicitly defined to satisfy 𝑓 (𝑖𝑡 ) =

𝑎∗, and 𝑓 (𝑖 𝑗 ) = 𝑎𝑖 𝑗 for 𝑗 = 1, . . . , 𝑡 − 1.

∗ Note that B does not know 𝑓 since it does not know 𝑎∗.

∗ Recall that 𝑓 (0) = 𝑎 and 𝐴 = 𝑔𝑎 is the public key. B determines the Lagrange

coefficients 𝜆1, . . . , 𝜆𝑡−1, 𝜆𝑡 ∈ Z𝑝 such that 𝑓 (0) =
∑𝑡
𝑗=1 𝜆 𝑗 ·𝑓 (𝑖 𝑗 ). Note that these do

not require the knowledge of 𝑓 . Therefore, we can now compute𝐴 =
∏𝑡−1

𝑗=1 𝑔
𝑎𝑖 𝑗 𝜆 𝑗 ·

(𝐴∗)𝜆𝑡 .

∗ B gives 𝑎𝑖1, . . . , 𝑎𝑖𝑡−1, 𝐴 to A.

– Next B computes the verification key VK = (𝑣𝑘1, . . . , 𝑣𝑘𝑛) as follows:

∗ For 𝑖 𝑗 ∈ 𝑆 , this is easy and merely sets 𝑣𝑘𝑖 𝑗 = 𝑔
𝑎𝑖 𝑗 . Further it sets 𝑣𝑘𝑖𝑡 = 𝐴∗.

∗ For ℓ ∉ 𝑆 , B determines the Lagrange coefficients 𝜆′1, . . . , 𝜆
′
𝑡 such that 𝑓 ( 𝑗) =∑𝑡

𝑗=1 𝜆 𝑗 · 𝑓 (𝑖 𝑗 ). Again, this does not need knowledge of 𝑓 . Now, it can set 𝑣𝑘ℓ =∏𝑡
𝑗=1 𝑣𝑘

𝜆′𝑗
𝑖 𝑗
.

∗ B gives VK to A.

– B also provides 𝑅∗ to A.
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• Queries to H: B merely responds to all queries from A to 𝐻 by using its oracle access to

𝐻 .

• Queries to Prove: B will maintain a table 𝑇 , which is initially empty, of the form

{( 𝑗𝑘 , 𝑅𝑘 , 𝑥𝑘),𝑤𝑘} where 𝑘 is the index of the query to Prove incremented with each query

( 𝑗𝑘 , 𝑅𝑘 , 𝑥𝑘). On receiving a query ( 𝑗𝑘 , 𝑅𝑘 , 𝑥𝑘), it does the following:

– If there exists ℓ < 𝑘 such that 𝑗𝑘 = 𝑗ℓ , 𝑅𝑘 = 𝑅ℓ , 𝑥𝑘 = 𝑥ℓ , then set𝑤𝑘 = 𝑤ℓ .

– Else if 𝑗𝑘 ∈ 𝑆 , then it merely uses its oracle access to𝐻 to receive the value𝐻 (𝑅𝑘 , 𝑥𝑘) =

ℎ𝑘 . It then sets𝑤𝑘 = ℎ
𝑎 𝑗𝑘
𝑘

.

– Else if 𝑗𝑘 = 𝑖𝑡 , then it uses it oracle access to Core to receive 𝑤𝑘 which is actually

equal to 𝐻 (𝑅𝑘 , 𝑥𝑘)𝑎
∗ .

– For all other 𝑗𝑘 , it does the following:

∗ Uses its oracle access to 𝐻 to receive the value ℎ𝑘 = 𝐻 (𝑅𝑘 , 𝑥𝑘).

∗ Further uses its oracle access to Core to receive the value ℎ∗ which is actually

𝐻 (𝑅𝑘 , 𝑥𝑘)𝑎
∗ .

∗ Determines Lagrange coefficients 𝜆1, . . . , 𝜆𝑡 such that 𝑓 ( 𝑗𝑘) =
∑𝑡
ℓ=1 𝜆ℓ · 𝑓 (𝑖ℓ). Now,

it computes𝑤𝑘 = (ℎ∗)𝜆𝑡 ·
∏𝑡−1

ℓ=1 ℎ
𝑎𝑖ℓ ·𝜆ℓ
𝑘

– Record (( 𝑗𝑘 , 𝑅𝑘 , 𝑥𝑘),𝑤𝑘) and return𝑤𝑘 to A.

• Challenge Query: On receiving the challenge input 𝑥 , B does the following:

– Check if there exists (( 𝑗𝑘 , 𝑅𝑘 , 𝑥𝑘),𝑤𝑘) ∈ 𝑇 such that 𝑗𝑘 ∉ 𝑆 , 𝑅𝑘 = 𝑅∗, and 𝑥𝑘 = 𝑥 . If yes,

abort as A has violated the definition of the game.

– If not, B issues its challenge input as 𝑥 . It receives 𝑦∗ which is either 𝑒 (𝐻 (𝑅∗, 𝑥), 𝑅∗)𝑎∗

or a random element in G1.

– It also uses its oracle access to 𝐻 to receive ℎ = 𝐻 (𝑅∗, 𝑥).
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– Determines Lagrange coefficients 𝜆1, . . . , 𝜆𝑡 such that 𝑓 (0) = ∑𝑡
ℓ=1 𝜆ℓ · 𝑓 (𝑖ℓ).

– Computes 𝑧∗ =
∏𝑡−1

ℓ=1 ℎ
𝜆ℓ ·𝑎𝑖ℓ .

– It finally computes 𝑦 = 𝑦∗𝜆𝑡 · 𝑒 (𝑧∗, 𝑅∗) and outputs 𝑦 to A

• Finish: It forwards A’s guess as its own guess.

Analysis of the Reduction. When 𝑦∗ = 𝑒 (𝐻 (𝑅∗, 𝑥), 𝑅∗)𝑎∗ , then we get that:

𝑦 = 𝑦∗𝜆𝑡 · 𝑒 (𝑧∗, 𝑅∗)

= 𝑒 (𝐻 (𝑅∗, 𝑥), 𝑅∗)𝑎∗·𝜆𝑡 · 𝑒 (𝑧∗, 𝑅∗)

= 𝑒 (ℎ, 𝑅∗)𝑎∗·𝜆𝑡 · 𝑒 (
𝑡−1∏
ℓ=1

ℎ𝜆ℓ ·𝑎𝑖ℓ , 𝑅∗)

= 𝑒 (ℎ, 𝑅∗) 𝑓 (𝑖𝑡 )·𝜆𝑡 · 𝑒 (ℎ
∑𝑡−1
ℓ=1 𝜆ℓ ·𝑓 (𝑖ℓ ), 𝑅∗)

= 𝑒 (ℎ, 𝑅∗)
∑𝑡
ℓ=1 𝜆ℓ ·𝑓 (𝑖ℓ ) = 𝑒 (ℎ, 𝑅∗) 𝑓 (0) = 𝑒 (ℎ, 𝑅∗)𝑎

It is easy to see that if 𝑦∗ was a random group element in G1, the final output 𝑦 is also a random

group element. Therefore, B perfectly simulates the $ −Core game forA, and B’s advantage is

the same as A’s advantage. This completes the proof of Theorem 8.16. □

8.5 Delegatable Encapsulated Verifiable Random

Functions

In this section, we formally introduce the primitive known as a Delegatable EVRF in Sec-

tion 8.5.1. This definition captures different levels of delegatability and we present constructions

that satisfy these levels in Sections 8.5.2,8.5.3, and 8.5.4.
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8.5.1 Definition of Delegatable EVRFs

In this work, we will be interested in a stronger type of delegatable EVRFs where anybody

can check if two ciphertexts 𝐶1 and 𝐶2 “came from the same place”. This is governed by the

“comparison” procedure Same(𝑃𝐾1,𝐶1, 𝑃𝐾2,𝐶2) which outputs 1 only if Equation (8.2) holds. This

procedure will have several uses. First, it allows the owner of 𝑆𝐾2 to be sure that the resulting

ciphertext𝐶2 indeed encapsulates the same VRF under 𝑃𝐾2 as𝐶1 does under 𝑃𝐾1. Second, it will

allow us to cleanly define a “trivial” attack on the pseudorandomness of delegatable EVRFs. See

also Remark 15.

Before we define the syntax and the security of delegatable EVRFs, we include a brief exposi-

tion on the nuances in the syntax and security of such a primitive.

Secretly-Delegatable vs Publicly-Delegatable EVRFs. It is fairly obvious from the security

of EVRFs that the delegation procedure must use the secret key 𝑆𝐾1 of the delegating party. The

big distinction/subtlety comes from whether or not such delegation also requires the secret key

𝑆𝐾2 of the receiving party. In our basic notion, defined below, we will allow such a dependence.

However, for completeness, we also define publicly-delegatable EVRFs, where only the public key

𝑃𝐾2 is needed. A priori, publicly delegatable EVRFs have the advantage that the delegation does

not need the cooperation of the receiving party. However, all our secretly-delegatable schemes

will have a trivial implementation, where the sender can use 𝑆𝐾1 to non-interactively convert𝐶1

into the “𝐶1-specific” trapdoor𝑇1 of the EVRF, which it can (securely) send to the receiving party.

In turn, the receiving party can use the secret key 𝑆𝐾2 to convert 𝑇1 to the corresponding dele-

gated ciphertext 𝐶2. Thus, all our concrete secret-key delegatable EVRFs will have no “usability

disadvantages” compared to publicly-delegatable EVRFs.

Bounded Delegation. Additionally, the definition we present is for unbounded delegation,

where any delegated ciphertext can be further delegated. We could also restrict the definition to

𝑡-delegatable, with 𝑡 = 1 being an important special case, where Delegation-Completeness is
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only required to hold for up to 𝑡 iterated delegations starting from any ciphertext 𝐶1 output by

the encapsulation procedure Encap. We will consider such a variant in Section 8.5.4.

Pseudorandomness of Delegatable EVRFs. To capture the pseudorandomness property of

delegatable EVRFs, it is clear that our definition should give the attacker the ability to call the

delegation oracle Del. However, there are several subtleties in such a definition which we list

below:

• Should we allow delegation queries from target 𝑆𝐾1 only to honestly generated keys (𝑃𝐾2,

𝑆𝐾2) (for which the attacker does not know 𝑆𝐾2), or shall we allow the attackerA to specify

such keys adversarially?

• For secretly-delegatable schemes, should the attacker A only have access to “OUT” oracle

Del(𝑆𝐾1, ·, ·), or should we also give A the “IN” oracle Del(·, ·, 𝑆𝐾1) as well?7 This corre-

sponds to the attacker A tricking the user 𝑈 to get some malicious EVRF from A, only to

force 𝑈 to use its secret key 𝑆𝐾1 in a way that will help the attacker break some honest

EVRF owned by𝑈 .

• What is the definitional security effect of studying one-time vs 𝑡-time vs unbounded-time

delegatable schemes? As we will see, the security definitions will not change syntactically

when restricted to 𝑡-time delegatable schemes. In particular, we will not explicitly limit the

number of times the attacker can attempt to iteratively call the delegation oracle. However,

since in such schemes the correctness is no longer required when delegating more than 𝑡

times, it will be easier to make 𝑡-delegatable schemes secure when 𝑡 is smaller.

• How to prevent the attacker from “trivial” attacks, where one can delegate ciphertext 𝐶1

under 𝑃𝐾1 to𝐶2 under 𝑃𝐾2, and then “break”𝐶1 by asking an evaluation query on𝐶2? This

is where the comparison procedure Samewill be handy, as it allows us to precisely exclude
7Clearly, this is a moot issue for publicly-delegatable schemes.

244



all such ciphertexts 𝐶2 which “originated” from 𝐶1, while still allowing the attacker to try

all other ciphertexts.8

Now, we can define the oracles. To adequately capture the discussed nuances, we define the

following oracles to the attacker:

1. Reg(1𝜅): registration oracle. It maintains a global variable 𝑞, initially 0, counting the num-

ber of non-compromised users. A call to Reg: (a) increments 𝑞; (b) calls (𝑃𝐾𝑞, 𝑆𝐾𝑞) ←$

Gen(1𝜅), (c) records this tuple (𝑞, 𝑃𝐾𝑞, 𝑆𝐾𝑞) in a global table not accessible to the attacker;

(d) returns (𝑞, 𝑃𝐾𝑞) to the attacker.

2. HProve(𝑖,𝐶, 𝑥): honest evaluation oracle. Here 1 ⩽ 𝑖 ⩽ 𝑞 is an index,𝐶 is a ciphertext, and

𝑥 in an input. The oracle returns Prove(𝑆𝐾𝑖,𝐶, 𝑥) = Core(𝑆𝐾𝑖, Split(𝑃𝐾𝑖,𝐶), 𝑥).

3. HDel(𝑖,𝐶, 𝑗): honest delegation oracle. Here 1 ⩽ 𝑖, 𝑗 ⩽ 𝑞 are two indices, and 𝐶 is a

ciphertext. The oracle returns 𝐶′ = Del(𝑆𝐾𝑖,𝐶, 𝑆𝐾 𝑗 ) (or Del(𝑆𝐾𝑖,𝐶, 𝑃𝐾 𝑗 ) in the publicly-

delegatable case).

4. OutDel(𝑖,𝐶, 𝑆𝐾/𝑃𝐾): “Out” delegation oracle. Here 1 ⩽ 𝑖 ⩽ 𝑞 is an index, 𝐶 is a cipher-

text, and 𝑃𝐾 or 𝑆𝐾 (depending on whether scheme is publicly-delegatable or not) is any

public/secret key chosen by the attacker. The oracle returns 𝐶′ = Del(𝑆𝐾𝑖,𝐶, 𝑆𝐾/𝑃𝐾).

5. InDel(𝑆𝐾,𝐶, 𝑖): “In” delegation oracle. Here 1 ⩽ 𝑖 ⩽ 𝑞 is an index, and 𝐶 is a ciphertext,

and 𝑆𝐾 is any secret key chosen by the attacker. The oracle returns 𝐶′ = Del(𝑆𝐾,𝐶, 𝑆𝐾𝑖).

Notice, this oracle is interesting only in the secretly-delegatable case.

Consequently, we can define three levels of pseudorandomness security for delegatable EVRFs.

Definition 8.17. An 𝐸𝑉𝑅𝐹 = (Gen, Encap,Comp, Split,Core, Post) is delegatable if there exists

polynomial-time procedures Del and Same, such that:
8In Definition 8.21 we will give an even stronger (and optimal) legality condition; some of our schemes will satisfy

even this stronger notion.
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• Del(𝑆𝐾1,𝐶1, 𝑆𝐾2) = 𝐶2 for the (default) secretly-delegatable variant;

• Del(𝑆𝐾1,𝐶1, 𝑃𝐾2) = 𝐶2 for the publicly-delegatable variant.

• Same(𝑃𝐾1,𝐶1, 𝑃𝐾2,𝐶2) = 𝛽 ∈ {0, 1}.

Before we define the security properties, it is useful to define the following shorthand functions:

• Prove(𝑆𝐾𝑖,𝐶, 𝑥) = Core(𝑆𝐾𝑖, Split(𝑃𝐾𝑖,𝐶), 𝑥)

• Eval(𝑆𝐾,𝐶, 𝑥) = Post(𝑃𝐾, Prove(𝑆𝐾,𝐶, 𝑥),𝐶, 𝑥)

In addition to the standard EVRF properties of Evaluation-Correctness and Uniqueness , we

require the following security properties from a delegatable EVRF:

1. Delegation-Completeness: for any valid (𝑃𝐾1, 𝑆𝐾1), (𝑃𝐾2, 𝑆𝐾2), and ciphertext 𝐶1,

Del(𝑆𝐾1,𝐶1, 𝑆𝐾2/𝑃𝐾2) = 𝐶2 =⇒ Same(𝑃𝐾1,𝐶1, 𝑃𝐾2,𝐶2) = 1

2. Delegation-Soundness: for any valid (𝑃𝐾1, 𝑆𝐾1), (𝑃𝐾2, 𝑆𝐾2), and ciphertexts 𝐶1, 𝐶2

Same(𝑃𝐾1,𝐶1, 𝑃𝐾2,𝐶2) = 1 =⇒

∀𝑥 Eval(𝑆𝐾1,𝐶1, 𝑥) = Eval(𝑆𝐾2,𝐶2, 𝑥)

Moreover, if we have 𝑃𝐾1 = 𝑃𝐾2, then 𝐶1 = 𝐶2.

1. Pseudorandomness under Core ($-Core): for any legal PPT attacker A = (A1,A2),

where legality ofA and appropriate delegation oracle(s) O are defined separately for each
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notion:

Pr


𝑏 = 𝑏 ′

(1, 𝑃𝐾1) ←$ Reg(1𝜅);

(𝐶1,𝑇1) ←$ Encap(𝑃𝐾1);

(𝑥, 𝑠𝑡) ←$AReg,HProve,O
1 (𝑃𝐾1,𝐶1);

𝑦0 = Comp(𝑇1, 𝑥); 𝑦1←$ {0, 1} |𝑦0 | ;

𝑏←$ {0, 1}; 𝑏 ′←$AReg,HProve,O
2 (𝑦𝑏, 𝑠𝑡)


≤ 1

2
+ negl(𝜅)

(a) Basic-$-Core: A has 1 delegation oracle O = HDel.

Legality of A: no call to HProve(𝑖,𝐶′, 𝑥) s.t.

Same(𝑃𝐾1,𝐶1, 𝑃𝐾𝑖,𝐶
′) = 1.

(b) Uni-$-Core: A has 2 delegation oracles O = (HDel, OutDel).

Legality of A: no call to HProve(𝑖,𝐶′, 𝑥) or

OutDel(𝑖,𝐶′, ∗) stSame(𝑃𝐾1,𝐶1, 𝑃𝐾𝑖,𝐶
′) = 1.

(c) Bi-$-Core: A has 3 delegation oracles

O = (HDel,OutDel, InDel).

Legality of A: same as that of Uni-$-Core.

Remark 14. Delegation-Completeness andDelegation-Soundness easily implyDelegation

-Correctness which was advocated in Equation (8.2):

Del(𝑆𝐾1,𝐶1, 𝑆𝐾2/𝑃𝐾2) = 𝐶2 =⇒ ∀𝑥 Eval(𝑆𝐾1,𝐶1, 𝑥) = Eval(𝑆𝐾2,𝐶2, 𝑥)

Remark 15. The legality condition on the attacker is necessary, as evaluating EVRF on the

“same” ciphertext 𝐶′ as the challenge ciphertext 𝐶1 breaks pseudorandomness (by delegation-

soundness). However, it leaves open the possibility for the attacker to find such equivalent ci-

phertext 𝐶′ without building some explicit “delegation path” from the challenge ciphertext 𝐶1. In-

deed, in Definition 8.21 we will give an even stronger legality condition on A, and some (but
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not all) of our schemes will meet it. For applications, however, we do not envision this slight

definitional gap to make any difference. Namely, the higher-level application will anyway need

some mechanism to disallow any “trivial” attacks. We expect this mechanism will explicitly use

our Same procedure, rather than keep track of the tree of “delegation paths” originating from𝐶1,

which could quickly become unmanageable.

Remark 16. It is easy to observe the following implications:

Bi-$-Core =⇒ Uni-$-Core =⇒ Basic-$-Core =⇒ $-Core

Here, the last implication uses the fact that 𝐶1 is the only ciphertext equivalent to 𝐶1 under 𝑃𝐾1.

Thus, bidirectional delegation security is the strongest of all the notions.

Remark 17. One could also consider EVRFs which are simultaneously threshold and delegatable.

In this case, 𝑛1 servers for the sender’s EVRFs will communicate with 𝑛2 servers for the receiver’s

EVRF to help convert a ciphertext𝐶1 for the sender EVRF into a corresponding ciphertext𝐶2 for

the receiver EVRF. We leave this extension to future work.

8.5.2 Construction of Basic Delegatable EVRF

We now show that our original EVRF Construction 8.3 can be extended to make it basic-

delegatable. The idea is to separate the role of the “handle” 𝑅 hashed under 𝐻 inside the Core

procedure from the one used in the preprocessing. For technical reasons explained below, we

will also hash the public key 𝐴 when evaluating the EVRF. The construction is presented as

Construction 8.5.

Observations. We notice that, since 𝑅 = 𝐷 initially, the resulting EVRF before the delegation

is the same as the one we defined in Section 8.3.4, except (a) we also include the public key

𝐴 under the hash 𝐻 during both Encap and Core; and (b) we perform the delegation check
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Construction: Basic Delegatable EVRF

Gen(1𝜅)
Sample 𝑎 ∈𝑟 Z∗𝑝
Compute 𝐴 = 𝑔𝑎 ∈ 𝐺 .
return 𝑆𝐾 = 𝑎 and 𝑃𝐾 = (𝑔,𝐴).

Encap(𝑃𝐾)
Parse 𝑃𝐾 = (𝑔,𝐴).
Sample 𝑟 ∈𝑟 Z∗𝑝 .
Compute 𝑅 = 𝐷 = 𝑔𝑟 , 𝑆 = 𝐴𝑟 .
return ciphertext 𝐶 = (𝐴, 𝑅, 𝐷) and trapdoor 𝑇 = (𝐴, 𝑅, 𝑆).

Comp(𝑇, 𝑥)
Parse 𝑇 = (𝐴, 𝑅, 𝑆).
Compute 𝑦 = 𝑒 (𝐻 (𝐴, 𝑅, 𝑥), 𝑆).
return 𝑦.

Del(𝑆𝐾1,𝐶1, 𝑆𝐾2)
Parse 𝑆𝐾1 = 𝑎1, 𝑆𝐾2 = 𝑎2,𝐶1 = (𝐴, 𝑅, 𝐷1).
if 𝑒 (𝐴, 𝑅) ≠ 𝑒 (𝑔𝑎1, 𝐷1) then

return ⊥.
else

Compute 𝐷2 = 𝐷
𝑎1/𝑎2
1 where 𝑎1/𝑎2 = 𝑎1 · (𝑎2)−1 mod 𝑝 .

return 𝐶2 = (𝐴, 𝑅, 𝐷2).

Split(𝑃𝐾,𝐶 ′)
Parse 𝑃𝐾 = (𝑔,𝐴), 𝐶 ′ = (𝐴, 𝑅′, 𝐷 ′).
if 𝑒 (𝐴′, 𝑅′) ≠ 𝑒 (𝐴, 𝐷 ′) then

return ⊥.
else

return (𝐴′, 𝑅′).

Core(𝑆𝐾,𝐶 ′, 𝑥)
Parse 𝑆𝐾 = 𝑎,𝐶 ′ = (𝐴′, 𝑅′, 𝐷 ′).
Compute partial output 𝑧 = 𝐻 (𝐴′, 𝑅′, 𝑥)𝑎 .
return 𝑧.

Post(𝑃𝐾, 𝑧 ′,𝐶 ′, 𝑥)
Parse 𝑃𝐾 = (𝑔,𝐴), 𝐶 ′ = (𝐴′, 𝑅′, 𝐷 ′)
if 𝑒 (𝑧 ′, 𝑔) ≠ 𝑒 (𝐻 (𝐴′, 𝑅′, 𝑥), 𝐴) then

return ⊥.
else

Compute full output 𝑦 ′ = 𝑒 (𝑧 ′, 𝐷 ′).
return 𝑦 ′.

Same(𝑃𝐾1,𝐶1, 𝑃𝐾2,𝐶2)
Parse 𝑃𝐾1 = (𝑔,𝐴1), 𝑃𝐾2 = (𝑔,𝐴2),𝐶1 = (𝐴, 𝑅, 𝐷1),𝐶2 = (𝐴′, 𝑅′, 𝐷2).
if (𝐴, 𝑅) ≠ (𝐴′, 𝑅′) or 𝑒 (𝐴1, 𝐷1) ≠ 𝑒 (𝐴2, 𝐷2) then

return ⊥.

Construction 8.5: Basic Delegatable DEVRF1 = (Gen, Encap,Comp, Split, Core, Post,Del, Same).

𝑒 (𝐴′, 𝑅′) ?
= 𝑒 (𝐴, 𝐷′) in the split procedure Split, which is trivially true initially, as 𝐴′ = 𝐴 and

𝑅′ = 𝐷′ = 𝑅. Thus, Evaluation-Correctness trivially holds, as before. For the same reason,

Uniqueness trivially holds as well.

The importance of change (a) comes from the fact that challenge ciphertext 𝐶 = (𝐴, 𝑅, 𝐷) no

longer includes only the value 𝑅, even though the value 𝑅 would be all that is needed to actually

evaluate our EVRF, had we not included 𝐴 under the hash 𝐻 . In particular, the attacker A given

challenge 𝐶 = (𝐴, 𝑅, 𝑅), can easily produce 𝐶′ ≠ 𝐶 by setting 𝐶′ = (𝐴2, 𝑅, 𝑅2). 𝐶′ passes the

delegation check 𝑒 (𝐴2, 𝑅) = 𝑒 (𝐴, 𝑅2), but clearly produces the same partial output 𝑧 = 𝐻 (𝑅, 𝑥)𝑎

as the challenge ciphertext, trivially breaking the $-Core property. Instead, by also hashing the

public key, the oracle call Prove(𝐶′, 𝑥) would return 𝑧′ = 𝐻 (𝐴2, 𝑅, 𝑥)𝑎 , which is now unrelated to

𝑧 = 𝐻 (𝐴, 𝑅, 𝑥)𝑎 , foiling the trivial attack.

The importance of change (b) comes from ensuring that a valid ciphertext (𝐴′, 𝑅′, 𝐷′) de-

termines the value 𝐷′ information-theoretically from the values (𝐴′, 𝑅′) (and the public key 𝐴),
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because the condition 𝑒 (𝐴′, 𝑅′) = 𝑒 (𝐴, 𝐷′) uniquely determines 𝐷′. Thus, it is OK that the Core

procedure only passes the values (𝐴′, 𝑅′) under the random oracle 𝐻 .

Delegation.

• Delegation-Completeness: Notice that valid delegation of (𝐴, 𝑅, 𝐷1) outputs (𝐴′, 𝑅′, 𝐷2),

where (𝐴′, 𝑅′) = (𝐴, 𝑅) and 𝐷2 = 𝐷
𝑎1
𝑎2
1 , which implies that

𝑒 (𝐴2, 𝐷2) = 𝑒 (𝑔𝑎2, 𝐷
𝑎1
𝑎2
1 ) = 𝑒 (𝑔

𝑎1, 𝐷1) = 𝑒 (𝐴1, 𝐷1)

which means Same(𝐴1, (𝐴, 𝑅, 𝐷1), 𝐴2, (𝐴′, 𝑅′, 𝐷2)) = 1 indeed.

• Delegation-Soundness: Given 𝐶1 = (𝐴, 𝑅, 𝐷1) and 𝐶2 = (𝐴′, 𝑅′, 𝐷2) satisfying (𝐴′, 𝑅′) =

(𝐴, 𝑅) and 𝑒 (𝐴1, 𝐷1) = 𝑒 (𝐴2, 𝐷2), we can see that the delegation checks 𝑒 (𝐴, 𝑅) ?
= 𝑒 (𝐴1, 𝐷1)

and 𝑒 (𝐴′, 𝑅′) ?
= 𝑒 (𝐴2, 𝐷2) are either both false or true simultaneously. Moreover, by writing

𝐴1 = 𝐴

𝑎1
𝑎2
2 , the second equation implies that 𝐷2 = 𝐷

𝑎1
𝑎2
1 . In particular, if 𝐴1 = 𝐴2, we have

𝐶1 = 𝐶2; and, in general, when (𝐴′, 𝑅′) = (𝐴, 𝑅) and 𝐷2 = 𝐷

𝑎1
𝑎2
1 , for any 𝑥 , we know:

Eval(𝑎2, (𝐴, 𝑅, 𝐷2), 𝑥) = 𝑒 (𝐻 (𝐴, 𝑅, 𝑥)𝑎2, 𝐷2).

However, that can be rewritten as

𝑒 (𝐻 (𝐴, 𝑅, 𝑥)𝑎2, 𝐷
𝑎1
𝑎2
1 ) = 𝑒 (𝐻 (𝐴, 𝑅, 𝑥)

𝑎2, 𝐷

𝑎1
𝑎2
1 ) = 𝑒 (𝐻 (𝐴, 𝑅, 𝑥)

𝑎1, 𝐷1)

which concludes the proof.

We reiterate that though our delegation is secretly-delegatable, as 𝐷2 depends on 𝑎2, in practice

the owner Alice of 𝑎1 will simply send the trapdoor value 𝑇1 = 𝐷
𝑎1
1 to the owner Bob of 𝑎2

over secure channel (say, encrypted under a separate public key), and Bob can then compute

𝐷2 = 𝑇
1/𝑎2
1 . In particular, this does not leak any extra information beyond (𝐷2, 𝑎2) to Bob, as

𝑇1 = 𝐷
𝑎2
2 is efficiently computable from 𝐷2 and 𝑎2. Also, the delegation check does not require
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any of the secret keys. Despite that, it ensures that only properly delegated ciphertexts can be

securely re-delegated again.

Theorem 8.18. The basic delegatable EVRF, given in Construction 8.5, satisfies the Basic-$-Core

property under the BDDH assumption in the random oracle model.

Proof. LetA = (A1,A2) be a PPT attacker against theBasic-$-Core property ofDEVRF1, having

advantage 𝜖 . A is given the public key 𝐴1 = 𝑔𝑎1 (for unknown 𝑎1), challenge ciphertext 𝐶1 =

(𝐴1, 𝑅1, 𝑅1) (where 𝑅1 = 𝑔𝑟 for unknown 𝑟 ), and has oracle access to 4 oracles: random oracle 𝐻 ,

registration oracle Reg, honest evaluation oracle HProve, and honest delegation oracle HDel.

Legality of A. Let 𝑢 be the polynomial upper bound on the number of overall honest pub-

lic/secret keys (including the challenge) used by 𝐴 (meaning A made at most 𝑢 − 1 registration

queries). Denote corresponding key pairs {(𝑎𝑖, 𝐴𝑖 = 𝑔𝑎𝑖 )}𝑢𝑖=1, so that 𝑎1 = 𝑎. Define 𝐷𝑖 = 𝑅
𝑎1/𝑎𝑖
1

and 𝐶𝑖 = (𝐴1, 𝑅1, 𝐷𝑖), for 𝑖 = 1 . . . 𝑢. The legality condition on A states what A is not able to

call HProve(𝑖,𝐶′𝑖 , 𝑥), where 𝑥 is the challenge input produced by A1, for any 𝐶′𝑖 = (𝐴′𝑖, 𝑅′𝑖 , 𝐷′𝑖 )

where Same(𝐴1,𝐶1, 𝐴𝑖,𝐶
′
𝑖 ) = 1. This means (𝐴′𝑖, 𝑅′𝑖 ) = (𝐴1, 𝑅1) and 𝑒 (𝐴1, 𝑅1) = 𝑒 (𝐴𝑖, 𝐷′𝑖 ). It

follows that 𝐷′𝑖 = 𝐷𝑖 = 𝑅
𝑎1/𝑎𝑖
1 and overall 𝐶′𝑖 = 𝐶𝑖 . Hence, in our reduction to BDDH we can

assume that A never calls HProve(𝑖, (𝐴1, 𝑅1, 𝐷𝑖), 𝑥), for any 𝑖 ∈ [𝑢]. Moreover, for any 𝐷′𝑖 ≠ 𝐷𝑖 ,

a call HProve(𝑖, (𝐴1, 𝑅1, 𝐷
′
𝑖 ), 𝑥) returns ⊥, since the value 𝐷′𝑖 does not pass the delegation check:

𝑒 (𝐴1, 𝑅1) = 𝑒 (𝐴𝑖, 𝐷𝑖) ≠ 𝑒 (𝐴𝑖, 𝐷′𝑖 ). To sum up this discussion, without loss of generality in our

reduction to BDDH, we can assume that

Condition (*): A never calls HProve(𝑖, (𝐴1, 𝑅1, 𝐷), 𝑥), for any 𝑖 ∈ [𝑢] and any 𝐷

Namely, these calls either immediately return ⊥ (if 𝐷 ≠ 𝐷𝑖 , and this can be checked by A), or

disallowed anyway.

Our Reduction. Our reduction, which uses A to build a BDDH attacker B(𝑔,𝐴, 𝐵, 𝑅, 𝑔1), will

proceed very similarly to the proof of Theorem 8.12, but with several small modifications:
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1. Initialization. B will set the challenge key 𝐴1 = 𝐴 (implicitly keeping the secret key

𝑎1 = 𝑎 unknown), and the challenge ciphertext is 𝐶1 = (𝐴, 𝑅, 𝑅), so we set 𝑅1 = 𝐷1 = 𝑅.

2. Registration Oracle Reg. A can set some polynomial number of honest key pairs

{(𝐴𝑖, 𝑎𝑖)}𝑢𝑖=2, where 𝐴𝑖 = 𝑔𝑎𝑖 . In our reduction, we set each such 𝐴𝑖 = 𝐴𝛼𝑖 , for random

𝛼𝑖 ∈ Z𝑝 chosen by B. Since the 𝛼𝑖 ’s are random, these keys are correctly distributed. For

ease of notation we set 𝛼1 = 1.

(Note, even though B does not know any of the secret keys 𝑎𝑖 = 𝛼𝑖𝑎 mod 𝑝 , B can compute

the ratio 𝑎𝑖/𝑎 𝑗 = 𝛼𝑖/𝛼 𝑗 .)

3. Honest Delegation Oracle HDel. When A calls

HDel(𝑖, (𝐴′, 𝑅′, 𝐷′), 𝑗), B can perform the delegation check 𝑒 (𝐴′, 𝑅′) ?
= 𝑒 (𝐴𝑖, 𝐷′) itself, and

then can compute (𝐷′)𝑎𝑖/𝑎 𝑗 = (𝐷′)𝛼𝑖/𝛼 𝑗 without the knowledge of any of the 𝑎𝑖 ’s.

4. Hash Queries to 𝐻 : previously, the oracle 𝐻 used by the Core procedure was only eval-

uated on the values (𝑅′, 𝑥′) given as input, but now we evaluate 𝐻 on the tuple (𝐴′, 𝑅′, 𝑥′).

Indeed, we already observed a simple attack showing that the construction is insecure if we

only hash the value (𝑅′, 𝑥′). Nevertheless, our simulation of𝐻 remains unchanged, modulo

now accepting (𝐴′, 𝑅′, 𝑥′) as input to 𝐻 , rather than only (𝑅′, 𝑥′). Namely, every such fresh

evaluation𝐻 (𝐴′, 𝑅′, 𝑥′) chooses values (𝛽𝑖, 𝑐𝑜𝑖𝑛𝑖), where 𝑖 is the query index, as in the proof

of Theorem 8.12, and still sets

𝐻 (𝐴′, 𝑅′, 𝑥′) = 𝑔𝛽𝑖 if 𝑐𝑜𝑖𝑛𝑖 = 0, and 𝐻 (𝐴′, 𝑅′, 𝑥′) = 𝐵𝛽𝑖 if 𝑐𝑜𝑖𝑛𝑖 = 1.

5. Honest Prove Oracle HProve. The oracle

HProve(𝑖, (𝐴′, 𝑅′, 𝐷′), 𝑥′) first checks that 𝑒 (𝐴′, 𝑅′) = 𝑒 (𝐴𝑖, 𝐷′), and then proceeds as before

in the proof of Theorem 8.12. In particular, it aborts if the value of 𝑐𝑜𝑖𝑛 𝑗 corresponding to

the oracle query 𝐻 (𝐴′, 𝑅′, 𝑥′) is 1, and otherwise (meaning 𝐻 (𝐴′, 𝑅′, 𝑥′) = 𝑔𝛽
′ for some

random 𝛽′) returns 𝑧′ = 𝐴𝛽
′

𝑖
, as before. This is correct since 𝑧′ = 𝐴𝛽

′

𝑖
= 𝑔𝑎𝑖𝛽

′
= 𝐻 (𝐴′, 𝑅′, 𝑥′)𝑎𝑖
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(for unknown 𝑎𝑖 ).

6. Challenge value 𝑦. This is returned as before, by evaluating 𝐻 (𝐴1, 𝑅1, 𝑥) and aborting if

the value of 𝑐𝑜𝑖𝑛 𝑗 corresponding to the oracle query𝐻 (𝐴1, 𝑅1, 𝑥) is 0 (i.e., 𝐻 (𝐴1, 𝑅1, 𝑥) = 𝐵𝛽

for some random 𝛽 if we do not abort). The challenge value 𝑦 is then set to 𝑔𝛽1 , as before.

7. Finishing. If the simulation succeeds until the end, B outputs the same 𝑏′ as A.

Analysis of Reduction. We claim that the proof of the security of this reduction can go exactly

as in Theorem 8.12. The only subtle point comes in the proof of Claim 8.13, where we argue that

the values (𝛽′, 𝑐𝑜𝑖𝑛′) sampled during the emulation of the evaluation oracle HProve(𝑖, (𝐴′, 𝑅′,

𝐷′)) are chosen independently from the value (𝛽, 𝑐𝑜𝑖𝑛) used to emulate the challenge query

(𝐴1, 𝑅1, 𝑥). This is indeed essential since we want all former coins to the 0, and the latter coin to

be 1.

Fortunately, it immediately follows from Condition (*), as all evaluation queries on challenge

𝑥 , must use (𝐴′, 𝑅′) ≠ (𝐴1, 𝑅1). Thus, we never have a conflict, and the proof of Claim 8.13

holds. □

Delegation Attack on Stronger Legality. We briefly mentioned in Section 8.5.1 that one

could require a stronger legality condition to say that the only way to distinguish the evaluation

of𝐶 on 𝑥 from random is to honestly delegate𝐶 to some honest user (possibly iteratively), getting

ciphertext 𝐶′, and then ask this user to evaluate EVRF on 𝑥 .

Here we show that our construction does not satisfy this notion. Consider challenge cipher-

text 𝐶1 = (𝐴1, 𝑅1, 𝑅1) under public key 𝐴1. Construct 𝐶′1 = (𝐴1, 𝑅
2
1, 𝑅

2
1). 𝐶′1 will satisfy the del-

egation check, so we could ask to delegate 𝐶′ to public key 𝐴2. We get 𝐶′2 = (𝐴1, 𝑅
2
1, (𝑅21)

𝑎1
𝑎2 ) =

(𝐴1, 𝑅
2
1, (𝑅

𝑎1
𝑎2
1 )2). By taking square roots from the last two components, we get 𝐶2 = (𝐴1, 𝑅1, 𝑅

𝑎1
𝑎2
1 ).

Notice, Same(𝐴1,𝐶1, 𝐴2,𝐶2) = 1 is true, so our original definition does not permit the attacker

to evaluate HProve(2,𝐶2, 𝑥) (which clearly breaks the scheme). However, since we obtained 𝐶2
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Construction: Delegatable EVRF

Gen(1𝜅)
Sample 𝑎 ∈𝑟 Z∗𝑝
Compute 𝐴 = 𝑔𝑎 ∈ 𝐺 .
return 𝑆𝐾 = 𝑎 and 𝑃𝐾 = (𝑔,𝐴).

Encap(𝑃𝐾)
Parse 𝑃𝐾 = (𝑔,𝐴).
Sample 𝑟 ∈𝑟 Z∗𝑝 .
Compute 𝑅 = 𝐷 = 𝑔𝑟 , 𝑆 = 𝐴𝑟 , 𝜎 = 𝐻 ′(𝐴, 𝑅)𝑟 .
return ciphertext 𝐶 = (𝐴, 𝑅, 𝐷, 𝜎) and trapdoor 𝑇 = (𝐴, 𝑅, 𝑆).

Comp(𝑇, 𝑥)
Parse 𝑇 = (𝐴, 𝑅, 𝑆).
Compute 𝑦 = 𝑒 (𝐻 (𝐴, 𝑅, 𝑥), 𝑆).
return 𝑦.

Del(𝑆𝐾1,𝐶1, 𝑆𝐾2)
Parse 𝑆𝐾1 = 𝑎1, 𝑆𝐾2 = 𝑎2,𝐶1 = (𝐴, 𝑅, 𝐷1, 𝜎).
if 𝑒 (𝐴, 𝑅) ≠ 𝑒 (𝑔𝑎1, 𝐷1) or 𝑒 (𝐻 ′(𝐴, 𝑅), 𝑅) ≠ 𝑒 (𝜎,𝑔) then

return ⊥.
else

Compute 𝐷2 = 𝐷
𝑎1/𝑎2
1 where 𝑎1/𝑎2 = 𝑎1 · (𝑎2)−1 mod 𝑝 .

return 𝐶2 = (𝐴, 𝑅, 𝐷2).

Split(𝑃𝐾,𝐶 ′)
Parse 𝑃𝐾 = (𝑔,𝐴), 𝐶 ′ = (𝐴′, 𝑅′, 𝐷 ′, 𝜎 ′).
if 𝑒 (𝐴′, 𝑅′) ≠ 𝑒 (𝐴, 𝐷 ′) or 𝑒 (𝐻 ′(𝐴′, 𝑅′), 𝑅′) ≠ 𝑒 (𝜎 ′, 𝑔) then

return ⊥.
else

return (𝐴′, 𝑅′).

Core(𝑆𝐾,𝐶 ′, 𝑥)
Parse 𝑆𝐾 = 𝑎,𝐶 ′ = (𝐴′, 𝑅′, 𝐷 ′, 𝜎 ′).
Compute partial output 𝑧 = 𝐻 (𝐴′, 𝑅′, 𝑥)𝑎 .
return 𝑧.

Post(𝑃𝐾, 𝑧 ′,𝐶 ′, 𝑥)
Parse 𝑃𝐾 = (𝑔,𝐴), 𝐶 ′ = (𝐴′, 𝑅′, 𝐷 ′, 𝜎 ′)
if 𝑒 (𝑧 ′, 𝑔) ≠ 𝑒 (𝐻 (𝐴′, 𝑅′, 𝑥), 𝐴) then

return ⊥.
else

Compute full output 𝑦 ′ = 𝑒 (𝑧 ′, 𝐷 ′).
return 𝑦 ′.

Same(𝑃𝐾1,𝐶1, 𝑃𝐾2,𝐶2)
Parse 𝑃𝐾1 = (𝑔,𝐴1), 𝑃𝐾2 = (𝑔,𝐴2),𝐶1 = (𝐴, 𝑅, 𝐷1, 𝜎),𝐶2 =

(𝐴′, 𝑅′, 𝐷2, 𝜎
′).

if (𝐴, 𝑅, 𝜎) ≠ (𝐴′, 𝑅′, 𝜎 ′) or 𝑒 (𝐴1, 𝐷1) ≠ 𝑒 (𝐴2, 𝐷2) then
return ⊥.

Construction 8.6: DEVRF2 = (Gen, Encap,Comp, Split, Core, Post,Del, Same).

without asking the delegate 𝐶1 itself (instead, we asked a different ciphertext 𝐶′1), the stronger

notion would have allowed the attacker to call HProve(2,𝐶2, 𝑥) and break the scheme.

8.5.3 Construction of Uni- and Bidirectional Delegatable EVRF

Next, we extend the construction from the previous EVRF construction to also handle delega-

tion to (and, under a stronger assumption, from) potentially untrusted parties. The idea is to add

a “BLS signature” [BLS01] 𝜎 in the Encap procedure which will prove that the initial ciphertext

was “well-formed”. This makes it hard for the attacker to maul a valid initial ciphertext 𝐶 into a

related ciphertext 𝐶′, whose delegation might compromise the security of 𝐶 . The public verifia-

bility of the signature 𝜎 will also make it easy to add a “signature check” to the “delegation check”

we already used in our scheme, to ensure that the appropriate pseudorandomness property is not

compromised. This is presented as Construction 8.6.
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Security Analysis. Since DEVRF2 is essentially the same as DEVRF1, its correctness follows

the same argument. In particular, we notice that the original signature 𝜎 indeed satisfies our

signature check:

𝑒 (𝐻 ′(𝐴, 𝑅), 𝑅) = 𝑒 (𝐻 ′(𝐴, 𝑅), 𝑔𝑟 ) = 𝑒 (𝐻 ′(𝐴, 𝑅)𝑟 , 𝑔) = 𝑒 (𝜎,𝑔)

Similar to the delegation check, the signature check, 𝑒 (𝐻 ′(𝐴′, 𝑅′), 𝑅′) ?
= 𝑒 (𝜎′, 𝑔), is important to

ensure that the value 𝜎′ is information-theoretically determined from the value (𝐴′, 𝑅′), so it is

fine to not include 𝜎 under 𝐻 .

Also, since the delegation procedure Del simply copies the values𝐴, 𝑅 and 𝜎 , and only modi-

fies the value𝐷1, theDelegation-Completeness andDelegation-Soundness ofDEVRF2 holds

as it did for DEVRF1, since the signature check is not affected by changing 𝐷1 to 𝐷2 = 𝐷

𝑎1
𝑎2
1 . In

particular, similar to the delegation checks, both signature checks are either simultaneously true

or false.

Now, we can show how the addition of the “BLS signature” 𝜎 and the new signature check

allow us to prove the following theorem:

Theorem 8.19. The delegatable EVRF given in Construction 8.6 satisfies the Uni-$-Core property

under the BDDH assumption in the random oracle model.

Proof. let A = (A1,A2) be a PPT attacker against the Uni-$-Core property of DEVRF2, having

advantage 𝜖 . A is given the public key 𝐴1 = 𝑔𝑎1 (for unknown 𝑎1), challenge ciphertext 𝐶1 =

(𝐴1, 𝑅1, 𝑅1, 𝜎1) (where 𝑅1 = 𝑔𝑟 for unknown 𝑟 and 𝜎1 = 𝐻 ′(𝐴1, 𝑅1)𝑟1), and has oracle access to 6

oracles: random oracles 𝐻 , 𝐻 ′, registration oracle Reg, honest evaluation oracle HProve, honest

delegation oracle HDel, and “OUT” delegation oracle OutDel. Note, oracles 𝐻 ′ and OutDel

are new compared to the the proof of Theorem 8.18. Still, our proof will mimic almost exact the

proof of Theorem 8.18, so we will use the same notation as in that proof, and only mention the

key differences in our reduction.
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Legality of A: As before, we denote 𝑢 − 1 honest keys by

{(𝑎𝑖, 𝐴𝑖 = 𝑔𝑎𝑖 )}𝑢𝑖=2, and define 𝐷𝑖 = 𝑅𝑎1/𝑎𝑖1 , 𝐶𝑖 = (𝐴1, 𝑅1, 𝐷𝑖, 𝜎1), for 𝑖 = 1 . . . 𝑢. The legality condi-

tion on A states what A is not able to call HProve(𝑖,𝐶′𝑖 , 𝑥) or OutDel(𝑖,𝐶′𝑖 , ∗), where 𝑥 is the

challenge input produced byA1, for any𝐶′𝑖 = (𝐴′𝑖, 𝑅′𝑖 , 𝐷′𝑖 , 𝜎′) where Same(𝐴1,𝐶1, 𝐴𝑖,𝐶
′
𝑖 ) = 1. This

means (𝐴′𝑖, 𝑅′𝑖 , 𝜎′) = (𝐴1, 𝑅1, 𝜎1) and 𝑒 (𝐴1, 𝑅1) = 𝑒 (𝐴𝑖, 𝐷′𝑖 ). But this means 𝐷′𝑖 = 𝐷𝑖 = 𝑅
𝑎1/𝑎𝑖
1 and

overall 𝐶′𝑖 = 𝐶𝑖 . Moreover, as in the the proof of Theorem 8.18, we can assume without loss of

generality that A will not use ciphertext 𝐶′𝑖 = (𝐴1, 𝑅1, 𝐷
′, 𝜎′) for any (𝐷′, 𝜎′) ≠ (𝐷𝑖, 𝜎1), as those

will not pass the delegation or the signature check of either HProve or OutDel. Hence, similar

to the proof of Theorem 8.18, we can we can assume that

Condition (**): A never calls HProve(𝑖, (𝐴1, 𝑅1, 𝐷, 𝜎), 𝑥) or OutDel(𝑖, (𝐴1, 𝑅1, 𝐷, 𝜎), ∗),

for any 𝑖 ∈ [𝑢] and any 𝐷, 𝜎 .

Our Reduction. Our reduction, which uses A to build a BDDH attacker B(𝑔,𝐴, 𝐵, 𝑅, 𝑔1), will

proceed very similarly to the proof of Theorem 8.18, but with several small modifications:

1. Hash Queries to 𝐻 ′: B will maintain a table 𝑇 ′ containing entries of the form (𝐴′, 𝑅′, 𝛾),

where𝐴′, 𝐵′ ∈ 𝐺 and 𝛾 ∈ Z𝑝 . To create the first such entry in𝑇 ′, B chooses a random value

𝛾1 ∈𝑟 Z𝑝 , and stores the tuple (𝐴, 𝑅,𝛾1), where 𝐴 and 𝑅 come from B’s challenge. After 𝑇 ′

is initialized, as above, all future queries 𝐻 ′(𝐴′, 𝑅′) are answered as follows.

If (𝐴′, 𝑅′) = (𝐴, 𝑅), respond with 𝑔𝛾1 , meaning that we set 𝐻 ′(𝐴, 𝑅) = 𝑔𝛾1 .

Otherwise, check if 𝑇 ′ has an entry of the form (𝐴′, 𝑅′, 𝛾 ′). If not, pick a random 𝛾 ′←$ 𝑟Z𝑝

and add the tuple (𝐴′, 𝑅′, 𝛾 ′) to 𝑇 ′. In either case, return 𝐻 ′(𝐴′, 𝑅′) = (𝐴′)𝛾 ′ .

2. Initialization. B will set the challenge key 𝐴1 = 𝐴 (implicitly keeping the secret key

𝑎1 = 𝑎 unknown), and the challenge ciphertext is 𝐶1 = (𝐴1, 𝑅1, 𝐷1, 𝜎1), where 𝑅1 = 𝐷1 = 𝑅,

and signature 𝜎1 = 𝑅𝛾1 .

(Note, since 𝐻 ′(𝐴1, 𝑅1) = 𝑔𝛾1 , we have that 𝜎1 = 𝑅𝛾1 = (𝑔𝑟 )𝛾1 = (𝑔𝛾1)𝑟 = 𝐻 ′(𝐴1, 𝑅1)𝑟 .)
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3. Registration Oracle Reg. Same as the proof of Theorem 8.18. In particular, each public

key 𝐴𝑖 = 𝐴𝛼𝑖 , for random 𝛼𝑖 ∈ Z𝑝 chosen by B, and we set 𝛼1 = 1. This means that even

though B does not know any of the secret keys 𝑎𝑖 = 𝛼𝑖𝑎 mod 𝑝 , B can compute the ratio

𝑎𝑖/𝑎 𝑗 = 𝛼𝑖/𝛼 𝑗 .

4. Honest Delegation Oracle HDel. When A calls

HDel(𝑖, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑗), B can perform the delegation check 𝑒 (𝐴′, 𝑅′) ?
= 𝑒 (𝐴𝑖, 𝐷′) and the

signature check

𝑒 (𝐻 ′(𝐴′, 𝑅′), 𝑅′) ?
= 𝑒 (𝜎′, 𝑔) himself (by evaluating 𝐻 ′ according to the standard strategy

above). Then, B then can compute (𝐷′)𝑎𝑖/𝑎 𝑗 = (𝐷′)𝛼𝑖/𝛼 𝑗 without the knowledge of any of

the 𝑎𝑖 ’s.

5. “OUT” Delegation Oracle OutDel. When A calls

OutDel(𝑖, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑎∗), for any secret key 𝑎∗, B can perform the delegation check

𝑒 (𝐴′, 𝑅′) ?
= 𝑒 (𝐴𝑖, 𝐷′) and the signature check 𝑒 (𝐻 ′(𝐴′, 𝑅′), 𝑅′) ?

= 𝑒 (𝜎′, 𝑔) himself (by evalu-

ating𝐻 ′ according to the standard strategy above). Moreover, from Condition (**) we know

that (𝐴′, 𝑅′) ≠ (𝐴1, 𝑅1). Thus, when we set the value 𝐻 ′(𝐴′, 𝑅′) in our simulation of 𝐻 ′, we

set it to 𝐻 ′(𝐴′, 𝑅′) = (𝐴′)𝛾 ′ for some random 𝛾 ′ known to B. B will combine this 𝛾 ′ with

the values of signature 𝜎′ and secret key 𝑎∗ given by A, and return

OutDel(𝑖, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑎∗) := (𝜎′) (𝑎∗𝛾 ′)−1 mod 𝑝

To check that this value indeed equals to (𝐷′)𝑎𝑖/𝑎∗ , it suffices to prove that (𝐷′)𝑎𝑖 = (𝜎′)1/𝛾 ′ .

To see that, our signature check implies that

𝑒 (𝐻 ′(𝐴′, 𝑅′), 𝑅′) = 𝑒 (𝜎′, 𝑔) =⇒ 𝑒 ((𝐴′)𝛾 ′, 𝑅′) = 𝑒 (𝜎′, 𝑔)
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This further implies that:

𝑒 (𝐴′, 𝑅′) = 𝑒 ((𝜎′)1/𝛾 ′, 𝑔)

Finally, combined with the delegation check 𝑒 (𝐴′, 𝑅′) = 𝑒 (𝐴𝑖, 𝐷′) and 𝐴𝑖 = 𝑔𝑎𝑖 , we get that

𝑒 ((𝜎′)1/𝛾 ′, 𝑔) = 𝑒 (𝐴′, 𝑅′) = 𝑒 (𝐴𝑖, 𝐷′) = 𝑒 ((𝐷′)𝑎𝑖 , 𝑔)

which implies that

(𝐷′)𝑎𝑖 = (𝜎′)1/𝛾 ′

6. Hash Queries to 𝐻 : These are identical to the proof of Theorem 8.18.

7. Honest Evaluation Oracle HProve. The oracle

HProve(𝑖, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑥′) first checks that 𝑒 (𝐴′, 𝑅′) = 𝑒 (𝐴𝑖, 𝐷′) and 𝑒 (𝐻 ′(𝐴′, 𝑅′), 𝑅′) =

𝑒 (𝜎′, 𝑔) (by evaluating 𝐻 ′ according to the standard strategy above). After that, it proceeds

exactly like the proof of Theorem 8.18.

8. Challenge value 𝑦. This is returned as before, by evaluating 𝐻 (𝐴1, 𝑅1, 𝑥) and aborting if

the value of 𝑐𝑜𝑖𝑛 𝑗 corresponding to the oracle query𝐻 (𝐴1, 𝑅1, 𝑥) is 0 (i.e., 𝐻 (𝐴1, 𝑅1, 𝑥) = 𝐵𝛽

for some random 𝛽 if we do not abort). The challenge value 𝑦 is then set to 𝑔𝛽1 , as before.

9. Finishing. If the simulation succeeds until the end, B outputs the same 𝑏′ as A.

Analysis of Reduction. The analysis of the reduction then goes exactly as in Theorem 8.18

(which in turn is based on that in Theorem 8.12). As before, the only subtle point comes in the

proof of Claim 8.13, where we argue that the emulation of𝐻 during the evaluation queries Prove

does not conflict with its emulation for the challenge query 𝐻 (𝐴1, 𝑅1, 𝑥).

Fortunately, this immediately follows from our Condition (**) above, as all evaluation queries

on challenge 𝑥 must use (𝐴′, 𝑅′) ≠ (𝐴1, 𝑅1). Thus, we never have a conflict, and the proof of

Claim 8.13 holds. □
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Finally, we also show that the same construction also satisfies the strongest bidirectional-

delegation security, but now under a much stronger iBDDH assumption. In fact, for this result,

we will even show a stronger legality condition mentioned earlier: the only way to break DEVRF2

is to trivially delegate it “out” to the attacker, or delegate it to the honest user, and then ask the

user to evaluate on challenge 𝑥 . We define this formally in proof of the following theorem:

Theorem 8.20. The delegatable EVRF given in Construction 8.6 satisfies the Bi-$-Core property un-

der the interactive iBDDH assumption in the random oracle model. It satisfies the strongest possible

legality condition for the attacker (see Definition 8.21).

Proof. Since the construction we analyze is identical to that of Theorem 8.19, our proof will be

almost identical as well. Now, however, we also need to show how to simulate the “IN” delegation

oracle InDel(𝑎∗, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑖). This appears hard, since the values 𝑎∗, 𝐴′, 𝑅′, 𝐷′, 𝜎′ are adver-

sarial, while the answer expected by the attacker should be equal (assuming the ciphertext is well

formed) to (𝐷′)𝑎∗/𝑎𝑖 . Recall also that in our simulation we set 𝑎𝑖 = 𝛼𝑖𝑎, where 𝛼𝑖 were known by

B, but 𝑎 was unknown. Thus, our reduction B must be able to compute the value

𝐷 = (𝐷′)𝑎∗/𝛼𝑖𝑎 = ((𝐷′)𝑎∗/𝛼𝑖 )1/𝑎

Fortunately, we are now reducing from the inversion-oracle BDDH (iBDDH) assumption,

given in Section 8.1.2.3. Namely, in addition to its standard BDDH inputs, B also has oracle

access to O𝑎 (ℎ) = ℎ1/𝑎 . With this access, the simulation of

InDel(𝑎∗, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑖) becomes trivial: B simply returns

O𝑎 ((𝐷′)𝑎
∗/𝛼𝑖 ) = (𝐷′)𝑎∗/𝑎𝑖 . This completes the first part of our proof. □

Stronger Legality Condition. We now show that under the iBDDH assumption we can actu-

ally strengthen the legality condition of A to be optimal; informally, only trivially delegated/e-

valuated ciphertexts can be broken by A. We formalize this below.
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Definition 8.21. If A makes a call 𝐶′ = HDel(𝑖,𝐶, 𝑗), we say A creates a delegation edge from

(𝑖,𝐶) to ( 𝑗,𝐶′), denoted (𝑖,𝐶) → ( 𝑗,𝐶′). A sequence of delegation edges (𝑖1,𝐶1) → (𝑖2,𝐶2) →

. . .→ (𝑖𝑡 ,𝐶𝑡 ) defines a delegation path from (𝑖1,𝐶1) to (𝑖𝑡 ,𝐶𝑡 ), denoted (𝑖1,𝐶1) { (𝑖𝑡 ,𝐶𝑡 ).

We now define a stronger legality condition on A (focusing on the bidirectional splittable case):

◦ Given challenge ciphertext 𝐶1 on user 1, A produced no delegation path (1,𝐶1) { (𝑖,𝐶′),

followed by either a call to HProve(𝑖,𝐶′, 𝑥), or a call to OutDel(𝑖,𝐶′, ∗), where 𝑥 is the

challenge input returned by A1.

Thus, the only “prohibited” ciphertexts𝐶′ must have been explicitly obtained by the attacker.

In contrast, our original Definition 8.17 only prevented 𝐶′ directly satisfying Same(𝑃𝐾1,𝐶1, 𝑃𝐾𝑖,

𝐶′) = 1. While reasonable in many situations, the “gap” between the two notions involves an at-

tacker who managed to find a ciphertext𝐶′ satisfying Same(𝑃𝐾1,𝐶1, 𝑃𝐾𝑖,𝐶
′) = 1without creating

a delegation path (1,𝐶1) { (𝑖,𝐶′).

Indeed, we saw that our unidirectional construction DEVRF2 was trivially insecure wrt the

stronger (and, clearly, optimal) legality condition on A. However, when looking at our current

construction DEVRF2, we see that the existence of the signature 𝜎 in the ciphertext appears to

foil the trivial attack from Section 8.5.2. In fact, we show that is not luck, but the construction is

actually secure w.r.t. to this stronger legality condition. Unfortunately, for this, we must rely on

the stronger iBDDH assumption (even for basic or unidirectional security, so we might as well

get the optimal bidirectional security).

Stronger Legality for DEVRF2. Consider any attacker A against Bi-$-Core security of

DEVRF2 which satisfies the stronger legality condition, and has advantage 𝜖 . Recalling all the no-

tation we used in the proof of Theorem 8.19, the challenge ciphertext 𝐶1 = (𝐴1, 𝑅1, 𝐷1, 𝜎), where

𝐷1 = 𝑅1, and 𝑢 “special” ciphertexts which we cannot fully handle (see below) in our reduction

are 𝐶𝑖 = (𝐴1, 𝑅1, 𝐷𝑖, 𝜎), where 𝐷𝑖 = 𝑅𝑎𝑖/𝑎11 . Indeed, these are the only ciphertexts satisfying

Same(𝐴1,𝐶1, 𝐴𝑖,𝐶𝑖) = 1
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Define the event 𝐺 to denote the “gap” between the two legality conditions of A; namely,

• Let 𝐺 be the event that A made a call to HProve(𝑖,𝐶𝑖, 𝑥) or OutDel(𝑖,𝐶𝑖, ∗) for some

𝑖 ∈ [𝑢], where 𝑥 is the challenge input produced by A1, but did not create a delegation

path (1,𝐶1) { (𝑖,𝐶𝑖).

Expanding the definition of A’s advantage 𝜖 , we get that

1
2
+ 𝜖 = Pr[[] (𝑏′ = 𝑏) ∧𝐺] + Pr[[] (𝑏′ = 𝑏) ∧ ¬𝐺]

⩽ Pr[[]𝐺] + Pr[[] (𝑏′ = 𝑏) ∧ ¬𝐺]

Thus, to prove that 𝜖 = negl(𝜅) under the iBDDH assumption, it suffices to prove the follow-

ing two Lemmas:

Lemma 8.22. Under the iBDDH assumption, Pr[[]𝐺] = negl(𝜅).

Lemma 8.23. Under the iBDDH assumption, Pr[[] (𝑏′ = 𝑏) ∧ ¬𝐺] ⩽ 1
2 + negl(𝜅).

Lemma 8.23 is exactly the proof of security of DEVRF2 we just finished at the beginning of

this section above, as this corresponds to the run of A satisfying the original legality condition.

Thus, to show the security of DEVRF2 under the stronger legality condition, we only need to

prove Lemma 8.22.

Proof of Lemma 8.22. Let use call a query 𝑄 of A violating if it triggers the event 𝐺 , meaning

that for some index 𝑖 ∈ [𝑢] this query is:

• either OutDel(𝑖,𝐶𝑖, ∗), where there is no delegation path (1,𝐶1) { (𝑖,𝐶𝑖) so far;

• or HProve(𝑖,𝐶𝑖, 𝑥), where there is no delegation path

(1,𝐶1) { (𝑖,𝐶𝑖) so far.

Let us also consider a dynamic “delegation graph”𝑀 = (𝑉 , 𝐸) consisting of all the delegation

edges of the form (𝑖,𝐶𝑖) → ( 𝑗,𝐶 𝑗 ). (Namely, we only look at 𝑢 special ciphertexts 𝐶𝑖 and ignore
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the rest.) The edge set 𝐸 of this graph starts empty, but eventually could grow when A makes

honest delegation query HDel(𝑖,𝐶𝑖, 𝑗) (which returns 𝐶 𝑗 ). Moreover, without loss of generality,

we assume 𝑀 is acyclic, as A get no information by completing the cycle in this graph (i.e., we

can simply remove all such edges creating cycles, as A already knows the answer).

Let 𝑄 be the first violating query of A, and 𝑗 ∈ [𝑢] be the corresponding index of this query.

By assumption that 𝐺 is triggered, 𝑄 and 𝑗 are well defined. Moreover, if 𝐸 is the current edge

set of the delegation graph 𝑀 , we know that there is no delegation path (1,𝐶1) { ( 𝑗,𝐶 𝑗 ) in 𝐸.

However, there could potentially be incoming edges from some (𝑖,𝐶𝑖) → ( 𝑗,𝐶 𝑗 ) in 𝐸, as long

as there is no delegation path (1,𝐶1) { (𝑖,𝐶𝑖). Going backward from ( 𝑗,𝐶 𝑗 ), though, since we

know that𝑀 is acyclic, we must reach some “source” (𝑖,𝐶𝑖) where 𝑖 > 1, which has no incoming

edges at all (and, hence, no path from (1,𝐶1) still). Let (𝑖,𝐶𝑖) be such “source node”, which could

be the original ( 𝑗,𝐶 𝑗 ) in the special case where no delegation edges entered ( 𝑗,𝐶 𝑗 ). In either

case, however, we know that the query𝑄∗ corresponding to the first time ciphertext𝐶𝑖 appeared

in either HDel(𝑖,𝐶𝑖, ∗), HProve(𝑖,𝐶𝑖, 𝑥) or OutDel(𝑖,𝐶𝑖, ∗) had the property that no delegation

path (1,𝐶1) { (𝑖,𝐶𝑖) existed.

In other words, there must exist a query 𝑄∗ of A and an index 𝑖 > 1 such that:

• 𝑄∗ is either HDel(𝑖,𝐶𝑖, ∗), HProve(𝑖,𝐶𝑖, 𝑥) or OutDel(𝑖,𝐶𝑖, ∗), and no prior calls of this

form where made so far (i.e., ciphertext 𝐶𝑖 was not “declared” by A before 𝑄∗).

• At the time 𝑄∗ is made, there is no delegation path (1,𝐶1) { (𝑖,𝐶𝑖).

Let us say that such query𝑄∗ is 𝑖-incriminating. Note, from our definition, each index 𝑖 > 1 could

have either zero or one 𝑖-incriminating query. To summarize,

event 𝐺 =⇒ there exists 1 < 𝑖 ⩽ 𝑢 having (unique) 𝑖-incriminating query 𝑄∗.

Using Incriminating Query. Recall, in our proof of Bi-$-Core security of DEVRF2 under the

original legality conditionwe constructed an attackerBO𝑎 (·) (𝑔,𝐴, 𝐵, 𝑅, 𝑔1) for iBDDHwhich could
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simulate all queries of A except HProve( 𝑗,𝐶 𝑗 , 𝑥) and OutDel( 𝑗,𝐶 𝑗 , ∗), which were prohibited

under the original legality condition of A.

We will now construct a different iBDDH attacker BO𝑎 (·) (𝑔,𝐴, 𝐵, 𝑅, 𝑔1) which will instead use the

fact that A must make an 𝑖-incriminating query for some 1 < 𝑖 ⩽ 𝑢. B will pick a random index

𝑖 ∈ [2, . . . 𝑢], hoping that this is the index corresponding to the 𝑖-incriminating query𝑄∗. Assum-

ing this guess is correct, we know that 𝑄∗ appears before (or exactly at) the first violating query

ofA, which means that we could have used (but we won’t!) the original reduction B to simulate

all the queries of A before 𝑄∗, as none of these queries will have the form HProve( 𝑗,𝐶 𝑗 , 𝑥) or

OutDel( 𝑗,𝐶 𝑗 , ∗).

More precisely, B will proceed nearly identically to the original reduction B, but with the

following modifications.

1. Same Simulation. Initialization of A, challenge ciphertext 𝐶1, challenge output 𝑦, and

oracles 𝐻,𝐻 ′, HProve, and OutDel are identical, except when OutDel or HProve query

is 𝑖-incriminating, as explained below.

2. Registration Oracle Reg. Previous attacker B set all value 𝐴 𝑗 = 𝐴
𝛼 𝑗
1 for 2 ⩽ 𝑗 ⩽ 𝑢,

implicitly setting 𝑎 𝑗 = 𝛼 𝑗𝑎. B will do the same for all 𝑗 ≠ 𝑖 . However, for the 𝑖-th secret

key B will chose a random key 𝑎𝑖 ∈𝑟 Z𝑝 and honestly set 𝐴𝑖 = 𝑔𝑎𝑖 . In other words, B will

actually know the 𝑖-th secret key.

3. 𝑖-Incriminating Query 𝑄∗. Recall, such queries are

HDel(𝑖,𝐶𝑖, ∗), HProve(𝑖,𝐶𝑖, 𝑥) or OutDel(𝑖,𝐶𝑖, ∗). Notice, B can test if a ciphertext 𝐶 =

(𝐴′, 𝑅′, 𝐷′) is equal to 𝐶𝑖 , by checking that (𝐴′, 𝑅′) = (𝐴1, 𝑅1) and 𝑒 (𝐴1, 𝑅1) = 𝑒 (𝐴𝑖, 𝐷′).

Thus, B can indeed test that the query 𝑄∗ is 𝑖-incriminating.

In this case B knows that the value 𝐷𝑖 inside the ciphertext𝐶𝑖 is equal to 𝐷𝑖 = 𝑅𝑎1/𝑎𝑖1 . Since
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𝑅1 = 𝑅, 𝑎1 = 𝑎 and B knows 𝑎𝑖 , B can compute 𝐷𝑎𝑖
𝑖
= 𝑅𝑎 , and then test if

𝑒 (𝐷𝑎𝑖
𝑖
, 𝐵) ?

= 𝑔1

In either case, B will abort the entire simulation and output guess 𝑏′ = 0 if and only if the

test above passes.

To explain B’s behavior, notice that 𝑒 (𝐷𝑎𝑖
𝑖
, 𝐵) = 𝑒 (𝑅𝑎, 𝑔𝑏) = 𝑒 (𝑔,𝑔)𝑎𝑏𝑟 . Hence, if 𝑔1 =

𝑒 (𝑔,𝑔)𝑎𝑏𝑟 the test always passes, and if 𝑔1 is random, it almost never passes.

4. Stuck/Complete Simulation. When B guesses the “incriminating index” 𝑖 correctly, we

know that B will encounter the incriminating query 𝑄∗, and hence output the guess 𝑏′,

before it encounters any of the HProve( 𝑗,𝐶 𝑗 , 𝑥) or OutDel( 𝑗,𝐶 𝑗 , ∗) queries that it cannot

simulate. However, when B’s guess for 𝑖 is wrong, we could encounter such a query, or

perhaps run A to completion (say, when 𝐺 does not happen). In this case, B will output a

random guess 𝑏′.

5. “IN” Delegation Oracle InDel. The oracle InDel(𝑎′,𝐶′, 𝑗) is identical for 𝑗 ≠ 𝑖 to what

was done before by B. Namely, if valid, it simply returns O𝑎 ((𝐷′)𝑎
∗/𝛼𝑖 ), where

𝐶′ = (𝐴′, 𝑅′, 𝐷′, 𝜎′). For 𝑗 = 𝑖 , we know the secret key 𝑎𝑖 , so we can simply evaluate InDel

honestly using 𝑎′ and 𝑎𝑖 .

6. Honest Delegation Oracle HDel. When A calls

HDel( 𝑗1, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑗2), B will first do the delegation and signature checks, rejecting

if they fail. Otherwise, if 𝑖 ∉ { 𝑗1, 𝑗2}, B does the same thing as B, returning (𝐷′)𝑎𝑖/𝑎 𝑗 =

(𝐷′)𝛼𝑖/𝛼 𝑗 . Otherwise, either 𝑗1 = 𝑖 or 𝑗2 = 𝑖 . We treat them differently:

• If A calls HDel(𝑖, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑗) where 𝑗 ≠ 𝑖 , B first checks if (𝐴′, 𝑅′, 𝐷′) = 𝐶𝑖 ,

which means (𝐴′, 𝑅′) = (𝐴1, 𝑅1) and 𝑒 (𝐴1, 𝑅1) = 𝑒 (𝐴𝑖, 𝐷′). If this is the case, B knows

this is an 𝑖-incriminating query, and will process it, as explained above.
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Otherwise, B is supposed to return the value

(𝐷′)𝑎𝑖/𝑎 𝑗 = ((𝐷′)𝑎𝑖/𝛼 𝑗 )1/𝑎 = O𝑎 ((𝐷′)𝑎𝑖/𝛼 𝑗 )

where B knows 𝑎𝑖 and 𝛼 𝑗 . Thus, B can simply return O𝑎 ((𝐷′)𝑎𝑖/𝛼 𝑗 ) using its own

oracle. To put it differently, we can pretend that this HDel query is actually an InDel

query with an adversarial key 𝑎𝑖 .

• If A calls HDel( 𝑗, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑖) where 𝑗 ≠ 𝑖 , then we know we have not yet

reached the 𝑖-incriminating query (assuming the guess for 𝑖 is correct, else we don’t

care). This means that the ciphertex

(𝐴′, 𝑅′, 𝐷′, 𝜎′) ≠ 𝐶 𝑗 , or else the answer to this query will be equal to 𝐶𝑖 , contradicting

the fact that 𝐶𝑖 has no incoming delegation edges. In this case we notice that even

though key 𝐴𝑖 is supposed to be honest, we can pretend that 𝑎𝑖 is an adversarial key,

and simulate HDel( 𝑗, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑖) as if it is a call to OutDel( 𝑗, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑎𝑖).

Specifically, B can perform the delegation check

𝑒 (𝐴′, 𝑅′) ?
= 𝑒 (𝐴 𝑗 , 𝐷′) and the signature check

𝑒 (𝐻 ′(𝐴′, 𝑅′), 𝑅′) ?
= 𝑒 (𝜎′, 𝑔) himself (by evaluating 𝐻 ′ according to the standard strat-

egy). Moreover, we know that (𝐴′, 𝑅′) ≠ (𝐴1, 𝑅1) in this case, because (𝐴′, 𝑅′, 𝐷′, 𝜎′) ≠

𝐶 𝑗 and the signature/delegation checks worked. Thus, in our simulation of 𝐻 ′ for the

value 𝐻 ′(𝐴′, 𝑅′), we set it to 𝐻 ′(𝐴′, 𝑅′) = (𝐴′)𝛾 ′ for some random 𝛾 ′ known to B. B

will combine this 𝛾 ′ with the values of signature 𝜎′ and secret key 𝑎𝑖 known to B, and

return

HDel( 𝑗, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑖) := (𝜎′) (𝑎𝑖𝛾 ′)−1 mod 𝑝

The proof of correctness is the same as before, and is omitted.

Analysis of Reduction. The analysis of the reduction is partitioned as to whether B managed
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to reach the 𝑖-incriminating query 𝑄∗ before being stuck with the simulation. Let us call this

event 𝐼 , and notice that it happens at least when 𝐺 happens and A’s guess 𝑖 correctly, so

Pr[[]𝐼 ] ⩾ Pr[[]𝐺]
𝑢 − 1 =

Pr[[]𝐺]
poly(𝑘)

When 𝐼 happens, B’s advantage is at least 1 − 1/𝑝 = 1 − negl(𝜅). Otherwise, B simply outputs a

random 𝑏′, achieving advantage 1/2. This gives overall advantage of B equal to

Pr[[]𝑏′ = 𝑏] ⩾ Pr[[]𝐼 ] · (1 − negl(𝜅)) + (1 − Pr[[]𝐼 ]) · 1
2
=
1
2
+ Pr[[]𝐺]
poly(𝑘)

And since we assume that the iBDDH assumption is true, we know B’s advantage must at most

1/2 + negl(𝜅), which means Pr[[]𝐺] = negl(𝜅), completing the proof of Lemma 8.22. □

8.5.4 Construction of One-time Delegatable EVRF

Note that the bidirectional-delegation security of Construction 8.6 relied on a very strong

inversion-oracleBDDH (iBDDH) assumption, which is interactive and notwell studied. For appli-

cations where we only guarantee security after a single delegation, we could prove bidirectional-

delegation under a much reasonable extended BDDH (eBDDH) assumption. More precisely, any

party 𝑃 is “safe” to do any number of “out-delegations” to other, potentially untrusted parties 𝑃 ′,

but should only accept “in-delegation” from such an untrusted 𝑃 ′ only if the delegated ciphertext

𝐶′ was created directly for 𝑃 ′ (and not delegated to 𝑃 ′ from somewhere else).

More formally, the one-time delegation scheme we present here is identical to the unidirec-

tional delegation scheme from the previous section, except we replace the “delegation check”

𝑒 (𝐴, 𝑅) ?
= 𝑒 (𝐴1, 𝐷1)
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by a stricter “equality check”:

(𝐴, 𝑅) ?
= (𝐴1, 𝐷1)

which means that the ciphertext 𝐶1 was directly created for public key 𝐴1 = 𝐴. We call the

resulting 1-time-delegatable construction DEVRF3. We will now show that DEVRF3 satisfies

bidirectional-delegation security, but now under a much weaker (non-interactive) eBDDH as-

sumption:

Theorem 8.24. The one-time delegatable DEVRF3 above satisfies the Bi-$-Core property under the

eBDDH assumption in the random oracle model. It satisfies the strongest possible legality condition

for the attacker (see Definition 8.21).

Proof. The proof of 1-time delegation is largely similar to the proof of Theorem 8.20. As in that

proof, we start with the simpler setting of standard legality condition onA, from Definition 8.17,

and then generalize it to the stronger legality in Definition 8.21.

Original Legality Condition. Recall, our goal is to construction a reduction B which uses

the attacker A, except must B must solve the harder eBDDH problem, as opposed to iBDDH.

Namely, B is given (𝑔,𝑊 ,𝐴, 𝐵, 𝑅, 𝑔1), where𝑊 = 𝑔1/𝑎 , as is no longer given full inversion oracle

O𝑎 (·). Recall also that, in the proof of Theorem 8.20, the only place where B used the inversion

oracle was to simulate InDel(𝑎′,𝐶′, 𝑖) oracle.

Our main idea is to use the fact that in the 1-time delegation scenario, each valid ciphertext

𝐶′ = (𝐴′, 𝑅′, 𝐷′, 𝜎′) submitted toOutDelmust have𝐴′ ∈ {𝐴1, . . . , 𝐴𝑢}, while each such ciphertext

submitted to InDel must have 𝐴′ ∉ {𝐴1, . . . , 𝐴𝑢} (or else the attacker breaks the discrete log

of some unknown honest key 𝐴𝑖 ). Thus, if previously we only used the signature 𝜎 to help

us simulate OutDel queries, by effectively extracting the value DH(𝐴′, 𝑅′) for the submitted

ciphertext 𝐶′, now we can use it instead for helping simulate InDel queries as well, since those

queries operate on disjoint sets of public keys 𝐴.

More concretely, our new attackerB(𝑔,𝑊 ,𝐴, 𝐵, 𝑅, 𝑔1) for eBDDHwill operate identically with
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the previous attacker in the proof of Theorem 8.20 (which used the inversion-oracle), except with

the following changes:

1. Initialization of A, challenge ciphertext 𝐶1, challenge output 𝑦, and oracles Reg, 𝐻 , HDel,

and HProve are identical.

2. Hash Queries to 𝐻 ′. Recall, our previous attacker set 𝐻 ′(𝐴1, 𝑅1) = 𝑔𝛾1 for random 𝛾1 ∈𝑟

𝑍𝑝 , but all other queries 𝐻 ′(𝐴′, 𝑅′) = (𝐴′)𝛾
′ for fresh random 𝛾 ′ ∈𝑟 𝑍𝑝 . Now, we still set

𝐻 ′(𝐴1, 𝑅1) = 𝑔𝛾1 , but set other queries (𝐴′, 𝑅′) ≠ (𝐴1, 𝑅1) as follows:

• If 𝐴′ ∈ {𝐴1, . . . , 𝐴𝑢}, set 𝐻 ′(𝐴′, 𝑅′) = (𝐴′)𝛾
′ for fresh random 𝛾 ′ ∈𝑟 𝑍𝑝 , as before.

• Otherwise, set𝐻 ′(𝐴′, 𝑅′) =𝑊 𝛾 for fresh random 𝛾 ∈𝑟 𝑍𝑝 , where𝑊 = 𝑔1/𝑎 comes from

the input of B.

3. “OUT” Delegation Oracle OutDel. When A calls

OutDel(𝑖, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑎∗), for any secret key 𝑎∗, any such (allowed) query must have

𝐴′ = 𝐴𝑖 , by our stricter delegation check. Hence, the oracle 𝐻 ′(𝐴′, 𝑅′) = (𝐴′)𝛾 ′ , as in the

proof of Theorem 8.20 (this uses the fact (𝐴′, 𝑅′) ≠ (𝐴1, 𝑅1), as this query is not allowed by

legality of A, even if 𝑖 = 1.) Hence, we can use the same strategy as before. Namely, the

value B can return the value

OutDel(𝑖, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑎∗) := (𝜎′) (𝑎∗𝛾 ′)−1 mod 𝑝

as before, as this value is equal to (𝐷′)𝑎𝑖/𝑎∗ . The proof of this is the same as in Theorem 8.19.

c

4. “IN” Delegation Oracle InDel. When A calls

InDel(𝑎′, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑖), for any secret key𝑎′, we first check if𝑎′ ∈ {𝑎1, . . . , 𝑎𝑢}, by check-

ing that 𝑔𝑎′ ?
= 𝐴𝑖 for all 𝑖 . If this is the case, B can compute 𝑎 = 𝑎′/𝛼𝑖 , which trivially allows
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it to win its game by checking whether 𝑔1
?
= 𝑒 (𝐵, 𝑅)𝑎 .

Otherwise, we know that 𝐻 ′(𝐴′, 𝑅′) = 𝑊 𝛾 for some random 𝛾 . From delegation check,

we also know that 𝐴′ = 𝑔𝑎
′ and 𝑅′ = 𝐷′, and from the signature check we know that

𝑒 (𝐻 (𝐴′, 𝑅′), 𝑅′) = 𝑒 (𝜎′, 𝑔). This means

𝑒 (𝜎′, 𝑔) = 𝑒 (𝐻 (𝐴′, 𝑅′), 𝑅′) = 𝑒 (𝑊 𝛾 , 𝑅′) = 𝑒 ((𝑅′)𝛾/𝑎, 𝑔)

This implies that (𝑅′)1/𝑎 = (𝜎′)1/𝛾 . But A expects to see

(𝐷′)𝑎′/𝑎𝑖 = (𝑅′)𝑎′/(𝛼𝑖𝑎) = ((𝑅′)1/𝑎)𝑎′/𝛼𝑖 = ((𝜎′)1/𝛾 )𝑎′/𝛼𝑖 = (𝜎′)𝑎′/(𝛾𝛼𝑖 )

Thus, B can complete the simulation by responding with

InDel(𝑎′, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑖) = (𝜎′)𝑎′/(𝛾𝛼𝑖 )

This completes our reduction for the basic legality condition.

Stronger Legality Condition. Finally, we show how to extend our proof to the optimal legal-

ity condition given in Definition 8.21. This will be done very similar to the proof of Theorem 8.20,

but slightly simpler due to the more limited structure of the delegation graph𝑀 used in the proof

of Theorem 8.20.

In particular, recall “special” ciphertexts 𝐶𝑖 = (𝐴1, 𝑅1, 𝐷𝑖, 𝜎), where 𝐷𝑖 = 𝑅
𝑎𝑖/𝑎1
1 and 𝜎 =

𝐻 ′(𝐴1, 𝑅1)𝑟1 . Except for 𝑖 = 1, none of these ciphertexts can be delegated. Thus, the “gap” event

𝐺 between the 2 legality conditions of A becomes simply:

• A made a call to HProve(𝑖,𝐶𝑖, 𝑥) for some 𝑖 > 1, where 𝑥 is the challenge input produced

by A1, but did not query HDel(1,𝐶1, 𝑖).

If 𝐺 does not happen, this corresponds to the original legality condition, for which we already
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finished the proof. Thus, it remains to show that for any PPT attacker A, we have Pr[[]𝐺] =

negl(𝜅). Once again, this is proven similarly to the corresponding proof of Lemma 8.22 in the

proof of Theorem 8.20.

In particular, we will build a reduction B to eBDDH from any attackerA which triggered the

gap event𝐺 . Since our 1-time delegatable scheme, DEVRF3 is really a special case of the general

scheme DEVRF2 considered in proof of Theorem 8.20, our reduction B can be identical to the

“old” reduction — call it B′ — used in the proof of Lemma 8.22, except we need to make sure we

no longer need to use the inversion oracle O𝑎 (·), and only use the value𝑊 = 𝑔1/𝑎 . Fortunately, we

can do it using the same technique as in the proof of the original legality condition, by basically

choosing a random index 𝑖 > 1 (hoping it corresponds to the incriminating query of A), and

effectively treating the known key 𝑎𝑖 as adversarial. We highlight the differences here:

1. Registration OracleReg. We simulate exactly like the previous reduction B′. We choose

a random index 𝑖 > 1 at random, and set all public keys 𝐴 𝑗 = 𝐴
𝛼 𝑗
1 for 𝑗 ≠ 𝑖 for random

𝛼 𝑗 . However, for the 𝑖-th secret key B will chose a random key 𝑎𝑖 ∈𝑟 Z𝑝 and honestly set

𝐴𝑖 = 𝑔
𝑎𝑖 . In other words, B will actually know the 𝑖-th secret key.

2. New Simulation of 𝐻 ′. As done earlier in the section, we set 𝐻 ′(𝐴′, 𝑅′) as follows:

• If (𝐴′, 𝑅′) = (𝐴1, 𝑅1), set 𝐻 ′(𝐴1, 𝑅1) = 𝑔𝛾1 , for random 𝛾1 ∈𝑟 𝑍𝑝

• If 𝐴′ ∈ {𝐴 𝑗 | 𝑗 ≠ 𝑖}, set 𝐻 ′(𝐴′, 𝑅′) = (𝐴′)𝛾
′ for fresh random 𝛾 ′ ∈𝑟 𝑍𝑝 .

• Otherwise, set 𝐻 ′(𝐴′, 𝑅′) =𝑊 𝛾 for fresh random 𝛾 ∈𝑟 𝑍𝑝 .

(Note, this critically includes the values 𝐻 ′(𝐴𝑖, 𝑅′).)

Due to the 1-time delegation nature of DEVRF3, this restriction on 𝐻 ′ still allows us to

correctly simulate all OutDel( 𝑗,𝐶′, ∗) calls for 𝑗 ≠ 𝑖 , as they will use 𝐻 ′(𝐴 𝑗 , 𝑅′) = (𝐴 𝑗 )𝛾
′ .

While for 𝑗 = 𝑖 we can simply use the secret key 𝑎𝑖 .
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3. Places Previous B′ used O𝑎 (·). Examining the proof of Lemma 8.22, there were only two

places where B′ used the inversion oracle O𝑎 (·):

• Case 1: When A called InDel(𝑎′, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑗). For 𝑗 = 𝑖 , our new reduction B

can simply use 𝑎𝑖 , as did B. However, for 𝑗 ≠ 𝑖 , instead of calling (no longer present)

oracle O𝑎 ((𝐷′)𝑎
∗/𝛼 𝑗 ), we use the same strategy we used at the beginning of this section

to extract the answer from the signature 𝜎′ supplied by the attacker. Namely, we know

that 𝑔𝑎′ = 𝐴′, 𝑅′ = 𝐷′, 𝐻 (𝐴′, 𝑅′) =𝑊 𝛾 in our simulation (as otherwise 𝑎′ = 𝑎 𝑗 = 𝛼 𝑗𝑎,

for 𝑗 ≠ 𝑖 , which allows us to break eBDDH trivially), and 𝑒 (𝐻 (𝐴′, 𝑅′), 𝑅′) = 𝑒 (𝜎′, 𝑔).

This means

𝑒 (𝜎′, 𝑔) = 𝑒 (𝐻 (𝐴′, 𝑅′), 𝑅′) = 𝑒 (𝑊 𝛾 , 𝑅′) = 𝑒 ((𝑅′)𝛾/𝑎, 𝑔)

This implies that (𝑅′)1/𝑎 = (𝜎′)1/𝛾 . But A expects to see

(𝐷′)𝑎′/𝑎 𝑗 = (𝑅′)𝑎′/(𝛼 𝑗𝑎)

= ((𝑅′)1/𝑎)𝑎′/𝛼 𝑗

= ((𝜎′)1/𝛾 )𝑎′/𝛼 𝑗 = (𝜎′)𝑎′/(𝛾𝛼 𝑗 )

Thus, B can complete the simulation by responding with

InDel(𝑎′, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑗) = (𝜎′)𝑎′/(𝛾𝛼 𝑗 )

• Case 2: When A called HDel(𝑖, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑗) for 𝑗 ≠ 𝑖 . However, by 1-time dele-

gation check we know that 𝐴′ = 𝐴𝑖 , which means 𝐻 (𝐴𝑖, 𝑅′) =𝑊 𝛾 as well. And hence

we can use exactly the same strategy as in the previous Case 1, effectively treating

the known 𝑎𝑖 as the adversarial key and returning

HDel(𝑖, (𝐴′, 𝑅′, 𝐷′, 𝜎′), 𝑗) = (𝜎′)𝑎𝑖/(𝛾𝛼 𝑗 )
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This completes the new reduction B to the eBDDH problem, and the overall proof of the stronger

legality condition of DEVRF3.

□

We stress that our 1-time delegatable scheme could in principle be delegated further, if the

stricter delegation check (𝐴, 𝑅) ?
= (𝐴1, 𝐷1) is replaced by the original check 𝑒 (𝐴, 𝑅) ?

= 𝑒 (𝐴1, 𝐷1).

However, by doing so the party receiving the EVRF from some untrusted source must rely on the

stronger iBDDH complexity assumption.
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Part IV

Updatable Public Key Encryption
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9 | Updatable Public Key Encryption in

the Standard Model

This chapter is based on joint work with Yevgeniy Dodis and Daniel Wichs that appeared in

TCC 2021 [DKW21]. Passages are taken verbatim from the full version of this paper [DKW22b].

This chapter considers the primitive known as updatable public key encryption (UPKE).

9.1 Preliminaries

Theorem 9.1 (Leftover Hash Lemma). Fix 𝜀 > 0. Let 𝑋 be a random variable on {0, 1}𝑛 with

conditional min-entropy H∞(𝑋 |𝐸) ≥ 𝑘 . Let H = {H𝑛}𝑛∈N where H𝑛 = {ℎ𝑠}𝑠∈{0,1}𝑑 for all 𝑛, be a

universal hash family with output length𝑚 ≤ 𝑘 − 2 log(1/𝜀). Then,

(ℎ𝑈𝑑 (𝑋 ),𝑈𝑑 , 𝐸) ≈𝜀 (𝑈𝑚,𝑈𝑑 , 𝐸)

Lemma 9.2 (Smudging Lemma [AJL+12]). Let 𝐵1 = 𝐵1(𝜅) and 𝐵2 = 𝐵2(𝜅) be positive integers and

let 𝑒1 ∈ [−𝐵1, 𝐵1] be a fixed integer. Let 𝑒2←$ [−𝐵2, 𝐵2] be chosen uniformly at random. Then the

distribution of 𝑒2 is statistically indistinguishable from 𝑒1 + 𝑒2 as long as 𝐵1/𝐵2 = negl(𝜅).

Definition 9.3 (The Decisional Diffie Hellman Assumption (DDH)). Let G be a probabilistic

polynomial-time “group generator” that, given as a parameter 1𝜅 where 𝜅 is the security param-
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eter, outputs the description of a group G that has prime order 𝑝 = 𝑝 (𝜅). The decisional Diffie

Hellman (DDH) assumption for G says that the following two ensembles are computationally

indistinguishable:

{(𝑔1, 𝑔2, 𝑔𝑟1, 𝑔𝑟2) : 𝑔𝑖 ← G, 𝑟 ← Z𝑝} ≈𝑐 {(𝑔1, 𝑔2, 𝑔
𝑟1
1 , 𝑔

𝑟2
2 ) : 𝑔𝑖 ← G, 𝑟𝑖 ← Z𝑝}

A lemma of Naor and Reingold [NR97] generalizes the above assumption for𝑚 > 2 generators.

Lemma 9.4 ([NR97]). Under the DDH assumption on G,

{(𝑔1, . . . , 𝑔𝑚, 𝑔𝑟1, . . . , 𝑔𝑟𝑚) : 𝑔𝑖 ← G, 𝑟 ← Z𝑝} ≈𝑐 {(𝑔1, . . . , 𝑔𝑚, 𝑔
𝑟1
1 , . . . , 𝑔

𝑟𝑚
𝑚 ) : 𝑔𝑖 ← G, 𝑟𝑖 ← Z𝑝}

Definition 9.5 (Learning with Errors Assumption (LWE)). Consider integers 𝑛, 𝑚, 𝑞 and a prob-

ability distribution 𝜒 on Z𝑞 , typically taken to be a normal distribution that has been discretized.

Then, the LWE assumption states that the following two ensembles are computationally indis-

tinguishable:

{𝑨,𝑨𝑇𝒙 + 𝒆 : 𝑨←$ Z𝑛×𝑚𝑞 , 𝒙←$ Z𝑛𝑞, 𝒆←$ 𝜒𝑚} ≈𝑐 {𝑨, 𝒗 : 𝑨←$ Z𝑛×𝑚𝑞 , 𝒗←$ Z𝑚𝑞 }

9.2 Updatable Public Key Encryption (UPKE)

Jost et al. [JMM19] introduced the notion of an Updatable Public Key Encryption (UPKE).

This definition was later modified by the work of Alwen et al. [ACDT20]. Below, we present our

variant of the UPKE.

Definition 9.6. An updatable public key encryption (UPKE) scheme is a set of five polynomial-

time algorithms UPKE = (U-PKEG,U-Enc,U-Dec,Upd-Pk,Upd-Sk) with the following syntax:

- Key generation: U-PKEG takes as parameter 1𝜅 where 𝜅 is the security parameter and
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outputs a fresh secret key sk0 and a fresh initial public key pk0.

- Encryption: U-Enc receives a public key pk and a message𝑚 to produce a ciphertext 𝑐 .

- Decryption: U-Dec receives a secret key sk and a ciphertext 𝑐 to produce message𝑚.

- Update Public Key: Upd-Pk receives a public key pk to produce an update ciphertext up

and a new public key pk
′.

- Update Secret Key: Upd-Sk receives an update ciphertext up and secret key sk to produce

a new secret key sk
′.

We require the following security properties from this primitive:

Correctness. Let (𝑠𝑘0, pk0) be the output ofU-PKEG. For any sequence of randomness {𝑟𝑖}𝑞𝑖=1,

define the sequence of public keys and secret keys {(pk𝑖, sk𝑖)}
𝑞

𝑖=1 as follows:

for 𝑖 = 1 to 𝑞

(up𝑖, pk𝑖) ← Upd-Pk(pk𝑖−1; 𝑟𝑖)

sk𝑖 ← Upd-Sk(sk𝑖−1, up𝑖)

Then, UPKE is correct if for any message𝑚 and for any 𝑗 ∈ [𝑞],

Pr[U-Dec(sk 𝑗 ,U-Enc(pk 𝑗 ,𝑚)) =𝑚] = 1 .

9.2.1 IND-CR-CPA Security of UPKE

In this section, we define the security game. We will called this the IND-CR-CPA Security

which is meant to capture INDistinguishibility under Chosen Randomness Chosen Plaintext At-

tack. Largely similar to the CPA security game, this also additionally allows the adversary to

choose the randomness used to update the keys which is modeled by the following oracle access:
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• O𝑢𝑝𝑑 (·): A provides its choice of randomness 𝑟𝑖 . The Challenger performs the following

actions:

(up𝑖+1, pk𝑖+1) ← Upd-Pk(pk𝑖 ; 𝑟𝑖)

sk𝑖+1 ← Upd-Sk(sk𝑖, up𝑖+1) .

𝑖 = 𝑖 + 1

In this game, 𝑖 is the update counter, initialized to 0. For any adversary A with running time 𝑡

we consider the IND-CR-CPA security game:

• Sample (sk0, pk0) ← U-PKEG(1𝜅), 𝑏←$ {0, 1}. Set 𝑖 = 0.

• (𝑚∗0,𝑚∗1, 𝑠𝑡𝑎𝑡𝑒) ←$AO𝑢𝑝𝑑 (·) (pk0)

• Compute 𝑐∗←$ U-Enc(pk𝑞′,𝑚∗𝑏) where 𝑖 = 𝑞
′ is the current time period.

• 𝑠𝑡𝑎𝑡𝑒←$AO𝑢𝑝𝑑 (·) (𝑐∗, 𝑠𝑡𝑎𝑡𝑒)

• Choose uniformly random 𝑟 ∗ and then compute

(up∗, pk∗) ← Upd-Pk(pk𝑞 ; 𝑟 ∗); sk∗ ← Upd-Sk(sk𝑞, up∗) .

where 𝑖 = 𝑞 is the current time period.

• 𝑏′←$A(pk∗, sk∗, up∗, 𝑠𝑡𝑎𝑡𝑒).

• A wins the game if 𝑏 = 𝑏′. The advantage of A in winning the above game is denoted by

AdvUPKEcrcpa (A) = |Pr[𝑏 = 𝑏′] − 1
2 |.

Definition 9.7. An updatable public-key encryption schemeUPKE is IND-CR-CPA -secure if for

all PPT attackers A, its advantage AdvUPKEcrcpa (A) is negligible.
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Remark 18 (Comparison of the Security Models.). The work of Jost et al. [JMM19] defined a

notion which had an update procedure not specific to any public key. This was designed to

support multiple instances, i.e. multiple key pairs, and where the offset generated by the public

update could be applied to many public keys. While we consider the simpler setting of only one

instance, which is also reflected in our syntax, we believe that our constructions trivially satisfy

the stronger security model proposed by [JMM19]. Our model also allows for 𝑞 ≠ 𝑞′, i.e., for the

adversary to issue a challenge in one time period and corrupt in another time period. However,

without loss of generality, we give the attacker the final secret key sk∗ immediately following the

honest post-challenge key update (at period 𝑞′), as this gives the most amount of information to

the attacker.

Our definition is a generalization of the model proposed by Alwen et al. [ACDT20]: their

notion forced an update of the keys after every encryption query, while ours separates the two

processes for more flexibility.

9.3 Key-Dependent-Message-Secure Encryption Scheme

Let us recall the definition of a public-key encryption scheme.

Definition 9.8. An encryption scheme is a set of three polynomial-time algorithms PKE = (Gen,

Enc,Dec) with the following syntax:

- Key generation: Gen receives 1𝜅 where 𝜅 is the security parameter and outputs a fresh

secret sk and outputs a fresh public key pk.

- Encryption: Enc receives a public key pk and a message𝑚 to produce a ciphertext 𝑐 .

- Decryption: Dec receives a secret key sk and a ciphertext 𝑐 to produce message𝑚.
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Correctness. The correctness of an encryption scheme is such that (pk, sk) ← Gen(1𝜅), ∀𝑚 ∈

M,

Pr[Dec(sk, Enc(pk,𝑚)) =𝑚] = 1

CS+LR Security. For any PPT adversary A we consider the following security game:

• Sample (sk, pk) ←$ Gen(1𝜅), 𝑏←$ {0, 1}.

• 𝐿, 𝑓 ,𝑚0,𝑚1←$A(pk) where 𝐿 is the leakage function chosen by A, 𝑚0,𝑚1 are the chal-

lenge messages, and 𝑓 is the function of the secret key that A wants to receive as encryp-

tion. 𝐿 defines the leakage resilience and 𝑓 defines the KDM security.

• Compute 𝐶←$ Enc(pk,𝑚𝑏), 𝐶′←$ Enc(pk, 𝑓 (sk))1.

• 𝑏′←$A(𝑐0, 𝑐1, 𝐿(sk)).

• A wins the game if 𝑏 = 𝑏′. The advantage of A in winning the above game is denoted by

AdvPKEKDM (A) = |Pr[𝑏 = 𝑏′] − 1
2 |.

Definition 9.9. A public-key encryption scheme PKE is 𝜆-CS+LR-secure if for all PPT attackers

A, and leakage functions 𝐿 such that H∞(sk|𝐿(sk)) ≥ |sk| − 𝜆, its advantage AdvPKEcs+lr (A) is

negligible.

9.4 DDH Based Construction

This section presents construction from the DDH Assumption. We begin by presenting a

slightly modified version of the PKE Scheme proposed by Boneh et al. [BHHO08] in section 9.4.1.

This scheme was shown to be independently circular secure and leakage resilient. We also show

that the scheme is CS+LR secure in section 9.4.2. We then present our construction of a UPKE
1In our security proofs, the function 𝑓 will be applied to each bit of the secret key.
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Protocol BHHO Cryptosystem

Gen(1𝜅)
Sample 𝒔 = (𝑠1, . . . , 𝑠ℓ ) ←$ {0, 1} and 𝑔1, . . . , 𝑔ℓ ←$ G.
Compute ℎ =

∏ℓ
𝑖=1 𝑔

𝑠𝑖
𝑖
.

return sk = 𝒔 ∈ Zℓ𝑝 , pk = (𝑔1, . . . , 𝑔ℓ , ℎ) ∈ Gℓ+1 .

Enc(pk,𝑚 ∈ G)
Parse pk = (𝑔1, . . . , 𝑔ℓ , ℎ)
Sample 𝑟 ←$ Z𝑝
for 𝑖 = 1, . . . , ℓ do

Compute 𝑓𝑖 = 𝑔𝑟𝑖
return 𝐶 = (𝑓1, . . . , 𝑓ℓ , 𝑐 = ℎ𝑟 ·𝑚) ∈ Gℓ+1

Dec(sk,𝐶)

Parse 𝐶 = (𝑓1, . . . , 𝑓ℓ , 𝑐 = ℎ𝑟 ·𝑚) and sk = 𝒔 = (𝑠1, . . . , 𝑠ℓ ) ∈ Zℓ𝑝
Compute 𝑚′ = 𝑐 ·

(∏ℓ
𝑖=1 𝑓

𝑠𝑖
𝑖

)−1
return 𝑚′

Construction 9.1: A modified version of the BHHO Cryptosystem where the bits of the secret key are

not encoded as group elements. Let 𝜅 be the the security parameter. Let G be a probabilistic polynomial-

time “group generator” that takes as input 1𝜅 and outputs the description of a group G with prime order

𝑝 = 𝑝 (𝜅) and 𝑔 is a fixed generator of G.

scheme (section 9.4.3), extended from the PKE scheme. We finally prove that the UPKE scheme

is IND-CPA secure in section 9.4.4.

9.4.1 The BHHO Cryptosystem

In this section, we present a modified version of the original BHHO Cryptosystem. This is

presented as Construction 9.1.

Correctness. Let𝑚 ∈ G. Enc(pk,𝑚) = (𝑓1 = 𝑔𝑟1, . . . , 𝑓ℓ = 𝑔
𝑟
ℓ , 𝑐 = ℎ𝑟 ·𝑚). Dec(sk, 𝑓1, . . . , 𝑓ℓ , 𝑐)

outputs:

𝑐 · (
ℓ∏
𝑖=1

𝑓
𝑠𝑖
𝑖
)−1 = ℎ𝑟 ·𝑚(

ℓ∏
𝑖=1

𝑓
𝑠𝑖
𝑖
)−1 = (

ℓ∏
𝑖=1

𝑔
𝑠𝑖
𝑖
)𝑟 ·𝑚 · (

ℓ∏
𝑖=1
(𝑔𝑟𝑖 )𝑠𝑖 )−1 =𝑚.

9.4.2 CS+LR Security of BHHO Cryptosystem

In this section, we provide proof of the combined circular security and leakage resilience of

the BHHO Cryptosystem. Formally, we will prove the following theorem:
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Theorem 9.10. Under the DDH Assumption, Construction 9.1 is 𝜆-CS+LR secure for leakage 𝜆 =

ℓ − 2 log𝑝 − 𝜔 (log𝜅).

However, before we can prove the theorem, we will prove that there exists an algorithm

Enc
′(pk, 𝑖) such that

(pk, Enc(pk, 𝑔𝑠𝑖 ), 𝒔) ≈𝑐 (pk, Enc′(pk, 𝑖), 𝒔).

Consider the following definition of Enc′:

Enc
′(pk, 𝑖) = (𝑓1 = 𝑔𝑟1, . . . , 𝑓𝑖−1 = 𝑔𝑟𝑖−1, 𝑓𝑖 = 𝑔𝑟𝑖 /𝑔, 𝑓𝑖+1 = 𝑔𝑟𝑖+1, . . . , 𝑓ℓ = 𝑔𝑟ℓ , ℎ𝑟 )

We will first show that this ciphertext decrypts correctly to 𝑔𝑠𝑖 .

Dec(𝒔, 𝑓1, . . . , 𝑓ℓ , 𝑐 = ℎ𝑟 ) = ℎ𝑟 ·
(
ℓ∏
𝑖=1

𝑓
𝑠𝑖
𝑖

)−1
= ℎ𝑟

(
ℓ∏
𝑖=1

𝑔𝑖
𝑠𝑖

)−𝑟
𝑔𝑠𝑖 = ℎ𝑟 · ℎ−𝑟 · 𝑔𝑠𝑖 = 𝑔𝑠𝑖

Lemma 9.11. Under the DDH Assumption, (pk, Enc(pk, 𝑔𝑠𝑖 ), 𝒔) ≈𝑐 (pk, Enc′(pk, 𝑖), 𝒔) where

(pk, 𝒔) ←$ Gen(1𝜅)

Proof. We will prove the lemma through a sequence of hybrids. This is a tabulated summary of

the changes through the proof:
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Hybrid Hybrid Definition Security

𝐷0 Enc is used to encrypt 𝑔𝑠𝑖
Identical

𝐷1 𝐷0 except ℎ𝑟 · 𝑔𝑠𝑖 replaced with
∏ℓ

𝑗=1 𝑓
𝑠 𝑗
𝑗
· 𝑔𝑠𝑖

DDH

𝐷2 𝐷1 except each 𝑓 𝑗 ←$ G

Identical

𝐷3 𝐷2 except 𝑓𝑖 is replaced by 𝑓𝑖/𝑔 where 𝑓𝑖 ←$ G

DDH

𝐷4 𝐷3 except 𝑓 𝑗 = 𝑔𝑟𝑗 where 𝑟 ←$ Z𝑝

Identical
𝐷5 Enc

′ is used to encrypt 𝑔𝑠𝑖

Hybrid 𝐷0. This is when Enc is used to encrypt 𝑔𝑠𝑖 . It corresponds to the distribution:

(pk, 𝑔𝑟1, . . . , 𝑔𝑟ℓ , ℎ𝑟 · 𝑔𝑠𝑖 , 𝒔 : 𝑟 ←$ Z𝑝)

Hybrid 𝐷1. This is same as Hybrid 𝐷0 where we replace ℎ𝑟 by the steps of the decryption

algorithm. It corresponds to the distribution(
pk, 𝑓1 = 𝑔

𝑟
1, . . . , 𝑓ℓ = 𝑔

𝑟
ℓ ,

ℓ∏
𝑗=1

𝑓
𝑠 𝑗
𝑗
· 𝑔𝑠𝑖 , 𝒔 : 𝑟 ←$ Z𝑝

)
The distributions 𝐷0 and 𝐷1 are identical for the same value of 𝑟 ←$ Z𝑝 . Therefore, there is

no distinguishing advantage for any adversary A.
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Hybrid 𝐷2. In this case, we sample each 𝑓𝑖 ←$ G. This corresponds to the distribution:(
pk, 𝑓1, . . . , 𝑓ℓ ,

ℓ∏
𝑗=1

𝑓
𝑠 𝑗
𝑗
· 𝑔𝑠𝑖 , 𝒔 : 𝑓1, . . . , 𝑓ℓ ←$ G

)

Claim 9.12. If DDH (as defined in Lemma 9.4) is hard forG, then for every PPTA, the advantage

in distinguishing Hybrids 𝐷1 and 𝐷2 is negligible.

Proof. We will use an adversary A capable of distinguishing between the two distributions to

create an adversary B that can win against the DDH Game. After receiving input from the chal-

lenger (𝑔1, . . . , 𝑔ℓ , 𝑓1, . . . , 𝑓ℓ), B generates (pk, sk = 𝒔) and returns toA: (𝑓1, . . . , 𝑓ℓ ,
∏ℓ

𝑗=1 𝑓
𝑠 𝑗
𝑗
·𝑔𝑠𝑖 , 𝒔).

It is easy to see that B perfectly simulates one of the hybrids based on the input it receives. This

concludes the proof that A has negligible advantage in distinguishing the two hybrids. □

Hybrid 𝐷3. The same distribution as Hybrid 2, except that 𝑓𝑖 is replaced by 𝑓𝑖/𝑔.(
pk, 𝑓1, . . . , 𝑓𝑖−1, 𝑓𝑖/𝑔, 𝑓𝑖+1, . . . , 𝑓ℓ ,

ℓ∏
𝑗=1

𝑓
𝑠 𝑗
𝑗
· 𝑔𝑠𝑖 , 𝒔 : 𝑓1, . . . , 𝑓ℓ ←$ G

)

We know that for fixed 𝑔, 𝑓𝑖/𝑔 is indistinguishable from 𝑓𝑖 where 𝑓𝑖 ←$ G. Therefore, the distri-

butions are identical and A has no advantage in distinguishing the two distributions.

Hybrid 𝐷4. This is corresponding to the distribution where 𝑓 𝑗 = 𝑔𝑟𝑗 where 𝑟 ←$ Z𝑝 .(
pk, 𝑔𝑟1, . . . , 𝑔

𝑟
𝑖−1, 𝑔

𝑟
𝑖 /𝑔,𝑔𝑟𝑖+1, . . . , 𝑔𝑟ℓ ,

ℓ∏
𝑗=1

𝑓
𝑠 𝑗
𝑗
· 𝑔𝑠𝑖 , 𝒔 : 𝑟 ←$ Z𝑝

)

Claim 9.13. If DDH (as defined in Lemma 9.4) is hard forG, then for every PPTA, the advantage

in distinguishing Hybrids 𝐷3 and 𝐷4 is negligible.

The proof of this claim is similar to the proof of the earlier claim.
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Hybrid 5. This is corresponding to the distribution (Enc′(pk, 𝑖), 𝒔), 𝑓𝑖 = 𝑔𝑟𝑖 /𝑔 where 𝑟 ←$ Z𝑝 .

(pk, 𝑓1 = 𝑔𝑟1, . . . , 𝑓𝑖−1 = 𝑔𝑟𝑖−1, 𝑓𝑖 = 𝑔𝑟𝑖 /𝑔, 𝑓𝑖+1 = 𝑔𝑟𝑖+1, . . . , 𝑓ℓ = 𝑔𝑟ℓ , ℎ𝑟 , 𝒔 : 𝑟 ←$ Z𝑝)

It is clear that the input distribution in Hybrids 𝐷4 and 𝐷5 are identical for the same 𝑟 andA has

no advantage in distinguishing the two distributions. This is because:
∏ℓ

𝑗=1 𝑓
𝑠 𝑗
𝑗
· 𝑔𝑠𝑖 = ∏

𝑗≠𝑖 𝑔
𝑟𝑠 𝑗
𝑗
·

𝑔
𝑟𝑠𝑖
𝑖
/𝑔𝑠𝑖 · 𝑔𝑠𝑖 = (∏ℓ

𝑗=1 𝑔
𝑠 𝑗
𝑗
)𝑟 = ℎ𝑟 .

Therefore, we have shown that (Enc(pk, 𝑔𝑠𝑖 ), 𝒔) ≈𝑐 (Enc′(pk, 𝑖), 𝒔). □

Further, note that each 𝑠𝑖 is independently chosen. Additionally, each encryption/fake-encryp

-tion chooses its own independent randomness 𝑟 . Therefore, we can independently replace each

Enc(pk, 𝑔𝑠𝑖 ) with Enc
′(pk, 𝑖), and the resulting encryption of secret key is computationally indis-

tinguishable from the one computed by Enc
′. This proof can be shown by a sequence of hybrids,

replacing one encryption at a time. Therefore, as a corollary we get that:

Corollary 9.14. Under the DDH Assumption,

(pk, Enc(pk, 𝑔𝑠1), . . . , Enc(pk, 𝑔𝑠ℓ ), 𝒔) ≈𝑐 (pk, Enc′(pk, 1), . . . , Enc(pk, ℓ), 𝒔)

With this corollary, we can prove the original theorem:

Theorem 9.10. Under the DDH Assumption, Construction 9.1 is 𝜆-CS+LR secure for leakage 𝜆 =

ℓ − 2 log𝑝 − 𝜔 (log𝜅).

Proof. Wewill prove the same through a sequence of hybrids. This is a tabulated summary of the

hybrids changes through the proof:
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Hybrid Hybrid Definition Security

𝐷0 The Original CS+LR Security Game, Enc is used
Corollary 9.14

𝐷1 𝐷0 except Enc′ is used

Identical

𝐷2 𝐷1 except except ℎ𝑟 ·𝑚𝑏 replaced with
∏ℓ

𝑗=1 𝑓
𝑠 𝑗
𝑗
·𝑚𝑏

DDH

𝐷3 𝐷2 except each 𝑓𝑖 is replaced by 𝑓𝑖 ←$ G

Leftover Hash Lemma
𝐷4 𝐷3 except

∏ℓ
𝑗=1 𝑓

𝑠 𝑗
𝑗
·𝑚𝑏 replaced by𝑈 ←$ G

Note that each of our hybrid distribution contains pk and 𝐿(sk = 𝒔) in its definition. We drop

these terms from the definition for simplicity and merely focus on the two ciphertexts which

undergo the bulk of the changes.

Hybrid 𝐷0. The original CS+LR Game. In this hybrid, A receives the following distribution:

(
𝐶 = (𝑓1 = 𝑔𝑟1, . . . , 𝑓ℓ = 𝑔𝑟ℓ , ℎ𝑟 ·𝑚𝑏),𝐶′ = (Enc(pk, 𝑔𝑠1), . . . , Enc(pk, 𝑔𝑠ℓ )) : 𝑟 ←$ Z𝑝

)
Hybrid 𝐷1. The CS+LR Game but with 𝐶′ consisting of the “fake encryption” algorithm. This

corresponds to the distribution:

(
𝐶 = (𝑓1 = 𝑔𝑟1, . . . , 𝑓ℓ = 𝑔𝑟ℓ , ℎ𝑟 ·𝑚𝑏),𝐶′ = (Enc′(pk, 1), . . . , Enc′(pk, ℓ)) : 𝑟 ←$ Z𝑝

)
In Corollary 9.14 we showed that the two distribution were indistinguishable even when condi-

tioned on the secret key 𝒔. However, in the definition of 𝐷0, 𝐷1, we only provide partial leakage

𝐿(𝒔), and hence A has negligible advantage in distinguishing the two distributions.
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Hybrid 𝐷2. It is similar to hybrid 𝐷1, but with ℎ𝑟 ·𝑚𝑏 replaced by
∏ℓ

𝑗=1 𝑓
𝑠 𝑗
𝑗
·𝑚𝑏 . This is the

following distribution:(
𝐶 =

(
𝑓1 = 𝑔

𝑟
1, . . . , 𝑓ℓ = 𝑔

𝑟
ℓ ,

ℓ∏
𝑗=1

𝑓
𝑠 𝑗
𝑗
·𝑚𝑏

)
,𝐶′ : 𝑟 ←$ Z𝑝

)
For the same 𝑟 , the distributions from Hybrids 𝐷2 and 𝐷3 are identical. Therefore, A has no

advantage in distinguishing the two hybrids.

Hybrid 𝐷3. Similar to hybrid 𝐷2, except each 𝑓𝑖 ←$ G. This is the following distribution:(
𝐶 =

(
𝑓1, . . . , 𝑓ℓ ,

ℓ∏
𝑗=1

𝑓
𝑠 𝑗
𝑗
·𝑚𝑏

)
,𝐶′ : 𝑓1, . . . , 𝑓ℓ ←$ G

)

Claim 9.15. If DDH is hard forG, then for every PPTA, the advantage in distinguishing hybrids

𝐷2 and 𝐷3 is negligible.

Proof. We will use an adversary A capable of distinguishing hybrids 𝐷2 and 𝐷3 to create B that

can win against the DDH Game. B receives from the DDH Challenger: (𝑔1, . . . , 𝑔ℓ , 𝑓1, . . . , 𝑓ℓ). It

chooses 𝒔←$ {0, 1}ℓ and sets pk = (𝑔1, . . . , 𝑔ℓ , ℎ) where ℎ =
∏ℓ
𝑖=1 𝑔

𝑠𝑖
𝑖
and sets sk = 𝒔. It then

sends to A: (pk, 𝐿(sk = 𝒔),𝐶 = (𝑓1, . . . , 𝑓ℓ ,
∏ℓ

𝑗=1 𝑓
𝑠 𝑗
𝑗
· 𝑚𝑏),𝐶′ = (Enc′(pk, 1), . . . , Enc′(pk, ℓ))).

It is easy to see that B perfectly simulates the distributions of hybrids 𝐷2 and 𝐷3 based on the

input it receives. It merely forwards A’s guess as its own. This concludes the proof that A has

a negligible advantage in distinguishing hybrids 𝐷2 and 𝐷3. □

Hybrid 𝐷4. Replace
∏ℓ

𝑗=1 𝑓
𝑠 𝑗
𝑗
with a random value𝑈 ←$ G. This gives the distribution:

(𝐶 = (𝑓1, . . . , 𝑓ℓ ,𝑈 ·𝑚𝑏),𝐶′ = (Enc′(pk, 1), . . . , Enc′(pk, ℓ)) : 𝑈 , 𝑓1, . . . , 𝑓ℓ ←$ G)

Claim 9.16. Hybrids 𝐷3 and 𝐷4 are statistically indistinguishable .
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Proof. We can represent 𝑓𝑖 ←$ G as 𝑔𝑟𝑖 for random 𝑟𝑖 ←$ Z𝑝 . Therefore, the term
∏ℓ

𝑗=1 𝑓
𝑠 𝑗
𝑗

= 𝑔⟨𝒓,𝒔⟩

where 𝒓 = (𝑟1, . . . , 𝑟ℓ). Now, note that distinguishing hybrids 𝐷3 and 𝐷4 is at least as hard as

distinguishing the following two ensembles:

(𝑟1, . . . , 𝑟ℓ , ⟨𝒓, 𝒔⟩,𝐶′ : 𝑟1, . . . , 𝑟ℓ ←$ Z𝑝); (𝑟1, . . . , 𝑟ℓ , 𝑢,𝐶′ : 𝑢, 𝑟1, . . . , 𝑟ℓ ←$ Z𝑝)

If one could distinguish the second pair of distributions, then they can efficiently calculate the

value of 𝑔𝑟𝑖 and 𝑔⟨𝒓,𝒔⟩ , thereby distinguishing the original pair of distributions.

We will now complete the proof by showing that the second pair of distributions are sta-

tistically indistinguishable. To this end, we will use LHL, as defined in Theorem 9.1. We have

that

H∞(𝒔 |𝐶′, 𝐿(𝒔), pk) = H∞(𝒔 |𝐿(𝒔), pk) ≥ H∞(𝒔 |𝐿(𝒔)) − log𝑝 ≥ ℓ − 𝜆 − log𝑝.

This is because 𝐶′ is independent of the sk conditioned on pk, the value pk’s component of ℎ

comes from a domain of size 𝑝 , and 𝐿 was a leakage function that satisfied H∞(𝒔 |𝐿(𝒔)) = ℓ − 𝜆.

Now, consider, the hash function familyH consisting ofℎ𝒓 (𝒔) = ⟨𝒓, 𝒔⟩ mod 𝑝 . The output length

is𝑚 = log𝑝 . This is a universal hash family. To apply LHL we need,𝑚 = 𝑘 − 2 log(1/𝜀). Here

𝑘 = ℓ − 𝜆 − log𝑝 . Therefore, log𝑝 = ℓ − 𝜆 − log𝑝 − 2 log(1/𝜀). Or if 𝜆 ≤ ℓ − 2 log𝑝 − 2 log(1/𝜀),

for some negligible 𝜀 then the latter two distributions are statistically indistinguishable. □

It follows from the above claim that A has a negligible advantage in distinguishing hybrids

𝐷3 and 𝐷4. Further, in Hybrid 4, the message is masked by a random value and therefore A has

no advantage in Hybrid 𝐷4.

Combining the different hybrid arguments together, we get that any PPT algorithm A has a

negligible advantage in the CS+LR security game. □
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Protocol DDH-Based UPKE

U-PKEG(1𝜅)
Sample 𝒔 = (𝑠1, . . . , 𝑠ℓ ) ←$ {0, 1} and 𝑔1, . . . , 𝑔ℓ ←$ G.
Compute ℎ =

∏ℓ
𝑖=1 𝑔

𝑠𝑖
𝑖
.

return sk = 𝒔 ∈ Zℓ𝑝 , pk = (𝑔1, . . . , 𝑔ℓ , ℎ) ∈ Gℓ+1 .

U-Enc(pk,𝑚 ∈ G)
Parse pk = (𝑔1, . . . , 𝑔ℓ , ℎ)
Sample 𝑟 ←$ Z𝑝
for 𝑖 = 1, . . . , ℓ do

Compute 𝑓𝑖 = 𝑔𝑟𝑖
return 𝐶 = (𝑓1, . . . , 𝑓ℓ , 𝑐 = ℎ𝑟 ·𝑚) ∈ Gℓ+1

U-Dec(sk,𝐶)

Parse 𝐶 = (𝑓1, . . . , 𝑓ℓ , 𝑐 = ℎ𝑟 ·𝑚) and sk = 𝒔 = (𝑠1, . . . , 𝑠ℓ ) ∈ Zℓ𝑝
Compute 𝑚′ = 𝑐 ·

(∏ℓ
𝑖=1 𝑓

𝑠𝑖
𝑖

)−1
return 𝑚′

Upd-Pk(pk)
Parse pk = (𝑔1, . . . , 𝑔ℓ , ℎ)
Sample 𝜹 = (𝛿1, . . . , 𝛿𝑚) ←$ {0, 1}ℓ

Compute ℎ′ = ℎ ·
(∏ℓ

𝑖=1 𝑔
𝛿𝑖
𝑖

)
Encrypt 𝛿 bit-by-bit, i.e., up =

(
U-Enc(pk, 𝑔𝛿1), . . . ,U-Enc(pk, 𝑔𝛿ℓ )

)
.

return (up, pk′ = (𝑔1, . . . , 𝑔ℓ , ℎ′))

Upd-Sk(sk, up)
Parse up = (𝑐1, . . . , 𝑐ℓ )
for 𝑖 = 1, . . . , ℓ do

Compute 𝑢𝑖 = U-Dec(sk, 𝑐𝑖)
if 𝑢𝑖 = 1 then

Set 𝛿𝑖 = 0
else

Set 𝛿𝑖 = 1
Compute 𝒔 ′ = 𝒔 + 𝜹 where 𝜹 = (𝛿1, . . . , 𝛿ℓ ) and addition is element-
by-element over Z𝑝 .
return sk

′ = (𝒔 ′)

Construction 9.2: DDHBased Construction. Let 𝜅 be the the security parameter. Let G be a probabilistic

polynomial-time “group generator” that takes as input 1𝜅 and outputs the description of a group G with

prime order 𝑝 = 𝑝 (𝜅) and 𝑔 is a fixed generator of G. Set ℓ = ⌈5 log𝑝⌉.

9.4.3 UPKE Construction

In this section, we present our construction of an updatable public key encryption based on

the BHHO Cryptosystem. This is presented in Construction 9.2.

Correctness. Informally, correctness requires that any message 𝑚 encrypted by an updated

public key decrypts with the help of the corresponding updated secret key to the same message

𝑚, always.

• Let (sk, pk) ← U-PKEG(1𝜅). Here, sk = 𝒔 = (𝑠1, . . . , 𝑠ℓ) ←$ {0, 1}ℓ ,and sk = (𝑔1, . . . , 𝑔ℓ ,∏ℓ
𝑗=1 𝑔

𝑠𝑖
𝑖
).

• Let 𝑟 be the randomness used for the Upd-Sk procedure. Let 𝜹 = (𝛿1, . . . , 𝛿ℓ) be the first

ℓ bits of 𝑟 . We have (pk′, up) ← Upd-Pk(pk). Here, pk′ = (𝑔1, . . . , 𝑔ℓ , ℎ ·
∏ℓ

𝑗=1 𝑔
𝛿𝑖
𝑖
). up =

(𝑔𝑟11 , . . . , 𝑔
𝑟1
ℓ
, ℎ𝑟1 · 𝑔𝛿1), . . . , (𝑔𝑟ℓ1 , . . . , 𝑔

𝑟ℓ
ℓ
, ℎ𝑟ℓ · 𝑔𝛿ℓ ).
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• We will look at Upd-Sk now. It is easy to verify that Upd-Sk correctly decrypts each ci-

phertext in up to corresponding 𝑔𝛿𝑖 . This is either 1 when 𝛿𝑖 = 0 or non-identity if 𝛿 = 1. It

then updates 𝒔′ = 𝒔 +𝜹 . Interestingly, while 𝒔 was initialized to be a bit string, each element

grows slowly over Z𝑝 .

• Consider U-Enc(pk′,𝑚). The resulting ciphertext is (𝑔𝑢1, . . . , 𝑔𝑢ℓ , ℎ′𝑢 ·𝑚) for 𝑢←$ Z𝑝 .

• Consider U-Dec(sk′, 𝑔𝑢1, . . . , 𝑔𝑢ℓ , ℎ′𝑢 ·𝑚)). The decryption algorithm returns:

ℎ′𝑢 ·𝑚 · (
ℓ∏
𝑗=1
(𝑔𝑢𝑗 )

𝑠 ′𝑗 )−1 = (ℎ ·
ℓ∏
𝑗=1

𝑔
𝛿 𝑗
𝑗
)𝑢 ·𝑚 · (

ℓ∏
𝑗=1
(𝑔𝑢𝑗 )

𝑠 ′𝑗 )−1

= (
ℓ∏
𝑗=1

𝑔
𝑠 𝑗
𝑗
·

ℓ∏
𝑗=1

𝑔
𝛿 𝑗
𝑗
)𝑢 ·𝑚 · (

ℓ∏
𝑗=1
(𝑔𝑢𝑗 )𝑠 𝑗+𝛿 𝑗 )−1

=𝑚

• The same can be extended to additional updates. The key point to note is that the algorithms

do not need 𝒔 to be a bit string and therefore can, and indeed will grow.

9.4.4 Security of the UPKE Construction

Theorem 9.17. Under the DDH Assumption, Construction 9.2 is IND-CR-CPA secure UPKE.

Proof. We proved in Theorem 9.10 that Construction 9.1 is CS+LR secure with 𝜆 = ℓ − 2 log𝑝 −

𝜔 (log𝜅), under the DDHAssumption. We will use this as the starting point and use an adversary

A against the IND-CPA game of the UPKE construction to construct an adversary B against the

CS+LR Security game of the PKE Scheme.

• The reduction B receives from the challenger the public key pk0 corresponding to some

secret key 𝒔0.

• It has a time period counter 𝑡 initialized to 0

289



• B provides pk0 to the adversary A.

• B responds as follows to the oracle queries to O𝑢𝑝𝑑 (·) as follows:

For each input invocation, it increments the counter 𝑡 to 𝑖 and records the 𝜹𝑖 it receives as

input.

• B then receives the challenge messages𝑚∗0,𝑚
∗
1.

• B then provides the randomized leakage function 𝐿(sk;𝜹∗) = 𝒔0 + 𝜹∗ where the addition is

element-by-element over Z𝑝 . Looking ahead, 𝜹∗ will correspond to the randomness for the

fresh update before the secret key is provided to the A. It also sets𝑚∗0,𝑚
∗
1 as its challenge

messages.

• B sends to its challenger the leakage function 𝐿,𝑚∗0,𝑚
∗
1. It also specifies the function 𝑓 to

be the encryption of each bit of the secret key in the exponent.

• In response, B receives𝐶 which is an encryption of𝑚∗
𝑏
under pk0,𝐶’ which is a encryption

of 𝒔0, bit-by-bit in the exponent, under pk0, and a leakage 𝒛 on 𝒔0 defined by 𝒛 = 𝒔0 + 𝜹∗ for

unknown 𝜹∗←$ {0, 1}ℓ . More formally,

𝐶 = U-Enc(pk0,𝑚∗𝑏);𝐶
′ =

(
U-Enc(pk0, 𝑔𝑠1), . . . ,U-Enc(pk0, 𝑔𝑠ℓ )

)
• At this point, let the time period be 𝑞′. Now, A expects 𝑐∗ = U-Enc(pk𝑞′,𝑚∗𝑏). So B does

the following to compute 𝑐∗:

– B has 𝐶 =

(
U-Enc(pk0,𝑚∗𝑏)

)
or 𝐶 = (𝑓1, . . . , 𝑓ℓ , 𝑐 = ℎ𝑟 ·𝑚∗𝑏).

– It computes 𝚫′ =
∑𝑞′

𝑖=1 𝜹𝑖 . 𝚫 = (Δ′1, . . . ,Δ′ℓ)
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– To convert it into a public key corresponding to 𝒔𝑞′ = 𝒔0 + 𝚫′, we do the following:

𝑐∗ =

(
𝑓1, . . . , 𝑓ℓ , 𝑐 ·

ℓ∏
𝑗=1

𝑓
Δ′𝑗
𝑗

)

This is where we employ the key homomorphism property.

• B sends to A the value of 𝑐∗.

• B continues to respond to O𝑢𝑝𝑑 (·) queries as before. When A finally stops, let 𝑞 be the

time period. Now, B does the following:

– To compute 𝒔∗:

∗ It sets 𝚫 =
∑𝑞

𝑖=1 𝜹𝑖 . Again, the operation is element-by-element addition over Z𝑝 .

Let 𝚫 = (Δ1, . . . ,Δℓ).

∗ With the knowledge of 𝒛 and 𝚫, B sets 𝒔∗ = 𝒔𝑞+1 = 𝒛 + 𝚫. Recall that 𝒛 = 𝒔0 + 𝜹∗

for random 𝜹∗. In other words, B implicitly sets 𝜹𝑞+1 = 𝜹∗, corresponding to the

final secure update.

– To compute pk∗: With the knowledge of 𝒔∗ it is also easy to generate the corresponding

public key pk∗ by merely computing the value of ℎ∗ =
∏ℓ
𝑖=1 𝑔

𝑠∗𝑖
𝑖
where 𝒔∗ = (𝑠∗1, . . . , 𝑠∗ℓ ).

Therefore,

pk
∗ = (𝑔1, . . . , 𝑔ℓ , ℎ∗)

– To compute up∗:

∗ Recall that up∗ =
(
U-Enc(pk𝑞, 𝑔𝛿1), . . .U-Enc(pk𝑞, 𝑔𝛿ℓ

)
where 𝜹∗ = (𝛿1, . . . , 𝛿ℓ)).

∗ B has 𝐶′ =
(
U-Enc(pk0, 𝑔𝑠1), . . . ,U-Enc(pk0, 𝑔𝑠ℓ )

)
where 𝒔0 = (𝑠1, . . . , 𝑠ℓ))

∗ Note that for all 𝑖 = 1, . . . , ℓ , by definition, 𝛿𝑖 = 𝑧𝑖 − 𝑠𝑖 ∈ Z𝑝 .

∗ Let 𝒄𝒕𝑖 = Enc(pk0, 𝑔𝑠𝑖 ) = (𝑓1, . . . , 𝑓ℓ , 𝑐 = ℎ𝑟 · 𝑔𝑠𝑖 )
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∗ For 𝑖 = 1, . . . ℓ , then we transform each 𝒄𝒕𝑖 into 𝒄𝒕′𝑖 where

𝒄𝒕′𝑖 =
©«𝑓 ′1 = 𝑓 −11 , . . . , 𝑓 ′ℓ = 𝑓 −1ℓ , 𝑐′ =

(
𝑐 · 𝑔−𝑧𝑖 ·

ℓ∏
𝑗=1

𝑓
−Δ 𝑗
𝑗

)−1ª®¬
Now,

up
∗ = (𝒄𝒕′1, . . . , 𝒄𝒕′ℓ)

• Send (pk∗, sk∗, up∗) to A.

• B forwards A’s guess as its own.

Analysis of Reduction. We first show that the leakage function defined here has sufficiently

small entropy loss.

Claim 9.18. H∞(𝒔0 |𝒛) = ℓ − 𝜆 where 𝜆 = ℓ (1 − log2(4/3))

Proof. First note that the components of 𝒛 = (𝑧1, . . . , 𝑧ℓ) and 𝒔0 = (𝑠1, . . . , 𝑠ℓ) are independent of

each other so H∞(𝒔0 |𝑧) =
∑
𝑖 H∞(𝑠𝑖 |𝑧𝑖). Now, the distribution of 𝑧𝑖 is given by

Pr[𝑧𝑖 = 0] = Pr[𝑧𝑖 = 2] = 1/4, Pr[𝑧𝑖 = 1] = 1/2

Further,

Pr[𝑠𝑖 = 0|𝑧𝑖 = 0] = 1, Pr[𝑠𝑖 = 0|𝑧𝑖 = 2] = 0, Pr[𝑠𝑖 = 0|𝑧𝑖 = 1] = 1
2

Therefore, H∞(𝑠𝑖 |𝑧𝑖) = − log2(1 · Pr[𝑧𝑖 = 0] + 1 · Pr[𝑧𝑖 = 2] + 1
2Pr[𝑧𝑖 = 1]) = − log(3/4) and

H∞(𝒔0 |𝒛) = ℓ · log2(4/3). □

We now show that the distribution of ciphertext is correct. We will show it is correct for any

𝑖 . We have 𝒄𝑖 = (𝑓1, . . . , 𝑓ℓ , 𝑐 = ℎ𝑟 · 𝑔𝑠𝑖 ). First, we first transform it into a cipher text of 𝒛 − 𝒔0,

under pk0. This is message homomorphism. We then transform this ciphertext, under pk0 to a

ciphertext encrypting the same message under pk𝑞 . This is the property of key homomorphism.
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• Multiplying 𝑐 with𝑔−𝑧𝑖 gives us a valid encryption of𝑔𝑠𝑖−𝑧𝑖 . However, we have that 𝑧𝑖−𝑠𝑖 = 𝑑𝑖

where 𝜹∗ = (𝑑1, . . . , 𝑑ℓ).

• To obtain the encryption of 𝑔𝑧𝑖−𝑠𝑖 we merely take the inverse of all elements, and then

multiply the last element by 𝑔𝑧𝑖 . Therefore,

𝒄′𝑖 = (𝑓 ′1 = 𝑔𝑟
′
1 = 𝑓 −11 , . . . , 𝑓 ′ℓ = 𝑔𝑟

′
ℓ = 𝑓 −1ℓ , 𝑐′ = 𝑐−1 · 𝑔𝑧𝑖 = ℎ𝑟 ′ · 𝑔−𝑠𝑖 · 𝑔𝑧𝑖 )

with 𝑟 ′ = −𝑟 .

• Now, note that sk𝑞 = sk0 + 𝚫 = (𝑠1 + Δ1, . . . , 𝑠ℓ + Δℓ). The public key is therefore pk𝑞 =

(𝑔1, . . . , 𝑔ℓ , ℎ𝑞) whereℎ𝑞 = ℎ ·
∏ℓ

𝑗=1 𝑔
Δ 𝑗
𝑗
. In order to transform a ciphertext 𝑐′𝑖 = (𝑓 ′1 , . . . , 𝑓 ′ℓ , 𝑐′)

under pk0 to a ciphertext under pk𝑞 we modify the last component, 𝑐′ as 𝑐′ ·∏ℓ
𝑗=1 𝑓

′Δ 𝑗
𝑗

=

(𝑐 · 𝑔−𝑧𝑖 ·∏ℓ
𝑗=1 𝑓

Δ 𝑗
𝑗
)−1.

Under this reduction, it is easy to see that B perfectly simulates the IND-CR-CPA game for A.

The advantage of A against the IND-CR-CPA is the same as the advantage of B. □

Choice of Parameters. We have from Theorem 9.10 that 𝜆 ≤ ℓ − 2 log𝑝 − 𝜔 (log𝜅). We

have also shown that our reduction needs ℓ − 𝜆 = ℓ · log2(4/3). Therefore, we have that ℓ ≥
2

log2 (4/3)
log𝑝 + 𝜔 (log𝜅). Or, ℓ = ⌈5 log𝑝⌉.

9.5 Constructions based on LWE

This section presents construction from the LWE Assumption. We begin by presenting a

slightly modified version of the dual-Regev PKE Scheme [Reg05, GPV08] in section 9.5.1. We

show that the scheme is CS+LR secure in section 9.5.2. We then present our construction of a

UPKE scheme (section 9.5.3), extended from the PKE scheme. We finally prove that the UPKE

scheme is IND-CR-CPA secure in section 9.5.4.
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Protocol Dual Regev or GPV Cryptosystem

Gen(1𝜅)
Sample 𝑨←$ Z𝑛×𝑚𝑝

Sample 𝑟 ←$ {0, 1}𝑚
Compute 𝒖 = 𝑨𝒓
return (pk = (𝑨, 𝒖), sk = (𝒓))

Enc(pk, 𝑏 ∈ {0, 1})
Parse pk = (𝑨, 𝒖)
Sample 𝒙←$ Z𝑛𝑝 , 𝒆←$ 𝜒𝑚, 𝑒 ′← 𝜒 ′

Compute 𝒕 = 𝑨𝑇𝒙 + 𝒆, 𝑝𝑎𝑑 = ⟨𝒙, 𝒖⟩ + 𝑒 ′ + 𝑏 ⌊𝑝/2⌋
return 𝑐 = (𝒕, 𝑝𝑎𝑑)

Dec(sk, 𝑐)
Parse 𝑐 = (𝒕, 𝑝𝑎𝑑) and sk = 𝒓
Compute 𝑏 ′ = (𝑝𝑎𝑑 − ⟨𝒓 , 𝒕⟩) ∈ Z𝑝
return 0 if 𝑚′ is closer to 0 than to ⌊𝑝/2⌋ and 1 otherwise.

Construction 9.3: TheDual Regev or GPVCryptosystem. Let𝑛,𝑚, 𝑝 be integer parameters of the scheme.

We will assume that LWE holds where 𝑝 is super-polynomial and 𝜒 is polynomially bounded. Then, we

set 𝜒 ′ to be uniformly random over (say) [−𝑝/8, 𝑝/8].

9.5.1 The Dual Regev or GPV Cryptosystem

The construction is presented as Construction 9.3.

Correctness. We show that the decryption algorithm is correct with overwhelming probabil-

ity (over the choice of the randomness of Gen, Enc). The decryption algorithm computes:

⟨𝒓, 𝒕⟩ = ⟨𝒓,𝑨𝑇𝒙 + 𝒆⟩ = ⟨𝒓,𝑨𝑇𝒙⟩ + ⟨𝒓, 𝒆⟩ = ⟨𝒙, 𝒖⟩ + ⟨𝒓 , 𝒆⟩

𝑝𝑎𝑑 − ⟨𝒓, 𝒕⟩ = ⟨𝒙, 𝒖⟩ + 𝑒′ + 𝑏
⌊
𝑝

2

⌋
− ⟨𝒓 , 𝒕⟩ = 𝑏

⌊
𝑝

2

⌋
+ (𝑒′ − ⟨𝒆, 𝒓⟩)

Now, note that 𝑒′ − ⟨𝑒, 𝑟 ⟩ is small in comparison to 𝑝 . Therefore, the computed value is closer to

⌊𝑝/2⌋ when 𝑏 = 0 and the opposite when 𝑏 = 1.

9.5.2 CS+LR Security of the dual-Regev Cryptosystem

In this section, we provide proof of the combined circular security and leakage resilience of

the dual-Regev Cryptosystem. Formally, we will prove the following theorem:
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Theorem 9.19. Under the LWE Assumption, Construction 9.3 is 𝜆-CS+LR secure with leakage 𝜆 =

𝑚 − (𝑛 + 1) log𝑝 − 𝜔 (log𝜅).

Before we can prove the above theorem, we show the existence of an encryption algorithm

Enc
′ such that

(Enc′(pk, 𝑖), sk) ≈𝑐 (Enc(pk, 𝑟𝑖), sk).

Consider: Enc′(pk, 𝑖) := (𝒕′, 𝑝𝑎𝑑′) where:

• Let 𝒙←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚 and 𝒅 = (𝑑1 = 0, . . . , 𝑑𝑖−1 = 0, 𝑑𝑖 = −⌊𝑝/2⌋, 𝑑𝑖+1 = 0, . . . , 𝑑𝑚 = 0).

Then, 𝒕′ = 𝑨𝑇𝒙 + 𝒆 + 𝒅.

• 𝑝𝑎𝑑′ = ⟨𝒙, 𝒖⟩ + 𝑒′ where 𝑒′ is chosen from a distribution 𝜒′ such that 𝑒′ + 𝐵 is statistically

indistinguishable from 𝑒′ where 𝐵 ∈ Z𝑝 .

Lemma 9.20. Under the LWE Assumption, (pk, Enc′(pk, 𝑖), sk) ≈𝑐 (pk, Enc(pk, 𝑟𝑖), sk). where

(pk, sk) ←$ Gen(1𝜅)

Proof. We will prove through a sequence of hybrids. This is a tabulated summary of the changes

through the proof:
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Hybrid Hybrid Definition Security

𝐷0 Enc is used to encrypt 𝑟𝑖
Lemma 9.2

𝐷1 𝐷0 except ⟨𝒙, 𝒖⟩ replaced with ⟨𝒓, 𝒕⟩

LWE

𝐷2 𝐷1 except 𝒕 = 𝑨𝑇𝒙 + 𝒆 replaced with 𝒕 ←$ Z𝑛𝑝

Identical

𝐷3 𝐷2 except 𝒕 replaced with 𝒕 + 𝒅 where 𝒅 = (0, . . . , 0, 𝑑𝑖 = −⌊𝑝/2⌋, 0, . . . , 0)

LWE

𝐷4 𝐷3 except 𝒕 = 𝑨𝑇𝒙 + 𝒆 where 𝒙←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚

Lemma 9.2
𝐷5 Enc

′ is used to encrypt 𝑟𝑖

Note that each of our hybrid distribution contains the value of pk. We drop the term for

convenience. pk

Hybrid 𝐷0. It corresponds to the distribution using Enc. This is the distribution:

(𝒕 = 𝑨𝑇𝒙 + 𝒆, 𝑝𝑎𝑑 = ⟨𝒙, 𝒖⟩ + 𝑒′ + 𝑟𝑖 ⌊𝑝/2⌋, 𝒓 : 𝑥 ←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚, 𝑒′←$ 𝜒′)

Hybrid 𝐷1. It corresponds to the distribution:

(𝒕 = 𝑨𝑇𝒙 + 𝒆, 𝑝𝑎𝑑′ = ⟨𝒓, 𝒕⟩ + 𝑒′ + 𝑟𝑖 ⌊𝑝/2⌋, 𝒓 : 𝒙←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚, 𝑒′←$ 𝜒′)

Hybrids𝐷0 and𝐷1 are statistically indistinguishable from each other because 𝑒′ is statistically

indistinguishable from 𝑒′ + ⟨𝒆, 𝒓⟩. This follows from Lemma 9.2. Therefore, an adversary A has

negligible advantage in distinguishing between Hybrids 𝐷0 and 𝐷1.
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Hybrid 𝐷2. It corresponds to the distribution where the first term is actually a random vector

chosen from Z𝑚𝑝 .

(𝒕, 𝑝𝑎𝑑′ = ⟨𝒓 , 𝒕⟩ + 𝑒′ + 𝑟𝑖 ⌊𝑝/2⌋, 𝒓 : 𝒕 ←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚, 𝑒′←$ 𝜒′)

Claim 9.21. Under the LWEAssumption, the advantage of any PPT attackerA in distinguishing

between Hybrids 𝐷1 and 𝐷2 is negligible.

Proof. We will use an adversary A capable of distinguishing between Hybrids 𝐷1, 𝐷2 to create

an adversary B that can win against the LWE game. After receiving input from the challenger

(𝑨,𝒚), the adversary runs Gen to get (pk, sk). It chooses 𝑒′←$ 𝜒′ and sends to A: (𝒚, ⟨𝒚, 𝒓⟩ +

𝑒′ + 𝑟𝑖 ⌊𝑝/2⌋, sk). It is easy to see that B perfectly simulates one of the hybrids based on the input

it receives. It forwards A’s guess (guessing 0 for Hybrid 𝐷1 and 1 for Hybrid 𝐷2) as its own.

This concludes the proof that A has a negligible advantage in distinguishing between the two

hybrids. □

Hybrid 𝐷3. Same as hybrid 𝐷2 except that we have added ⌊𝑝/2⌋ to element 𝑖 of 𝒕 . Or the first

term is 𝒕 + 𝒅 where 𝒅 = (𝑑1 = 0, . . . , 𝑑𝑖−1 = 0, 𝑑𝑖 = −⌊𝑝/2⌋, 𝑑𝑖+1 = 0, . . . , 𝑑𝑚 = 0)

(𝒕′ = 𝒕 + 𝒅, 𝑝𝑎𝑑′ = ⟨𝒓, 𝒕′⟩ + 𝑒′ + 𝑟𝑖 ⌊𝑝/2⌋, 𝒓 : 𝒕 ←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚, 𝑒′←$ 𝜒′)

We know that 𝒕′ = 𝒕 + 𝒅 for a fixed 𝒅 is indistinguishable from 𝒕 where 𝒕 ←$ Z𝑛𝑝 . Therefore, A

has no advantage in distinguishing between Hybrids 𝐷2 and 𝐷3.

Hybrid 𝐷4. Let 𝒅 = (𝑑1 = 0, . . . , 𝑑𝑖−1 = 0, 𝑑𝑖 = −⌊𝑝/2⌋, 𝑑𝑖+1 = 0, . . . , 𝑑𝑚 = 0). Then, we have the

distribution:

(𝒕 = 𝑨𝑇𝒙 + 𝒆 + 𝒅, 𝑝𝑎𝑑′ = ⟨𝒓, 𝒕⟩ + 𝑒′ + 𝑟𝑖 ⌊𝑝/2⌋, 𝒓 : 𝒙←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚, 𝑒′←$ 𝜒′)
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Claim 9.22. Under the LWEAssumption, the advantage of any PPT attackerA in distinguishing

between Hybrids 𝐷3 and 𝐷4 is negligible.

The proof is similar to the earlier claim.

Hybrid 𝐷5. We have the distribution corresponding to Enc
′, i.e.,

(𝒕 = 𝑨𝑇𝒙 + 𝒆 + 𝒅, 𝑝𝑎𝑑′ = ⟨𝒙, 𝒖⟩ + 𝑒′, 𝒓 : 𝒙←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚, 𝑒′←$ 𝜒′)

Let us simplify the 𝑝𝑎𝑑′ term in Hybrid 𝐷4.

𝑝𝑎𝑑′ = ⟨𝒓 , 𝒕⟩ + 𝑒′ + 𝑟𝑖 ⌊𝑝/2⌋

= ⟨𝒓,𝑨𝑇𝒙 + 𝒆 + 𝒅⟩ + 𝑒′ + 𝑟𝑖 ⌊𝑝/2⌋

= ⟨𝒓,𝑨𝑇𝒙⟩ + ⟨𝒓, 𝒆⟩ + ⟨𝒓 , 𝒅⟩ + 𝑒′ + 𝑟𝑖 ⌊𝑝/2⌋

= ⟨𝒖, 𝒙⟩ + 𝑒′ + ⟨𝒓, 𝒆⟩ + 𝑟𝑖 (−⌊𝑝/2⌋) + 𝑟𝑖 (⌊𝑝/2⌋)

= ⟨𝒖, 𝒙⟩ + 𝑒′ + ⟨𝒓, 𝒆⟩

We again use Lemma 9.2 to show that 𝑝𝑎𝑑′ in Hybrid𝐷4 is statistically indistinguishable from 𝑝𝑎𝑑′

in Hybrid 𝐷5. Therefore, an adversaryA has a negligible advantage in distinguishing hybrids 𝐷4

and 𝐷5.

Therefore, we have shown that (Enc(sk, 𝑟𝑖), sk) ≈𝑐 (Enc′(pk, 𝑖), sk) □

Further, note that 𝒓 is independently chosen, bit by bit. In addition, each Enc, Enc′ has indepen-

dently chosen randomness. Therefore, as a corollary we get that:

Corollary 9.23. Under the LWE Assumption,

(pk, Enc(pk, 𝑟1), . . . , Enc(pk, 𝑟𝑚), sk) ≈𝑐 (pk, Enc′(pk, 1), . . . , Enc′(pk,𝑚), sk)
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We can now prove the original theorem:

Theorem 9.19. Under the LWE Assumption, Construction 9.3 is 𝜆-CS+LR secure with leakage 𝜆 =

𝑚 − (𝑛 + 1) log𝑝 − 𝜔 (log𝜅).

Proof. We prove this similar to the proof of Theorem 9.10. This is done through a sequence of

hybrids. This is a tabulated summary of the hybrids changes through the proof:

Hybrid Hybrid Definition Security

𝐷0 The Original CS+LR Security Game, Enc is used
Corollary 9.23

𝐷1 𝐷0 except Enc′ is used

Identical

𝐷2 𝐷1 except ⟨𝒙, 𝒖⟩ replaced with ⟨𝒓 , 𝒕⟩

LWE

𝐷3 𝐷2 except 𝒕 = 𝑨𝑇𝒙 + 𝒆 replaced with 𝒕 ←$ Z𝑛𝑝 .

Leftover Hash Lemma
𝐷4 𝐷3 except ⟨𝒓 , 𝒕⟩ replaced with𝑈 ← Z𝑝

Note that each of our hybrid distribution contains pk and 𝐿(sk = 𝒓) in its definition where

𝒓 ←$ {0, 1}𝑚 . We drop these terms from the definition for simplicity and merely focus on the two

ciphertexts which undergo the bulk of the changes.

Hybrid 𝐷0. The original CS+LR Security Game. We get the distribution:

(
𝐶 = (𝒕 = 𝑨𝑇𝒙 + 𝒆, 𝑝𝑎𝑑 = ⟨𝒖, 𝒙⟩ + 𝑒′ + 𝑏 ⌊𝑝/2⌋),𝐶′ = (Enc(pk, 𝑟1), . . . , Enc(pk, 𝑟𝑚))

: 𝒙←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚, 𝑒′←$ 𝜒′
)
.
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Hybrid 𝐷1. This is the same game as Hybrid 𝐷0, except𝐶′ is generated using the “fake encryp-

tion” algorithm.

(
𝐶 = (𝒕, 𝑝𝑎𝑑,𝐶′ = (Enc′(pk, 1), . . . , Enc′(pk,𝑚)) : 𝒙←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚, 𝑒′←$ 𝜒′

)
From Corollary 9.23 we have that A has a negligible advantage in distinguishing the two distri-

butions. This is valid because we showed that the two distributions are computationally indis-

tinguishable even under total leakage of sk. Here, we only have partial leakage 𝐿(sk).

Hybrid 𝐷2. This is the same game as Hybrid 𝐷1, with the difference in the second component

of 𝐶 (𝑝𝑎𝑑). This gives the distribution:

(
𝐶 = (𝒕, 𝑝𝑎𝑑′ = ⟨𝒓, 𝒕⟩ + 𝑒′ + 𝑏 ⌊𝑝/2⌋),𝐶′) : 𝒙←$ Z𝑛𝑝, 𝒆←$ 𝜒𝑚, 𝑒′←$ 𝜒′

)
Hybrids 𝐷1 and 𝐷2 are statistically indistinguishable because 𝑒′ is statistically indistinguishable

from 𝑒′ + ⟨𝒆, 𝒓⟩ The LWE challenge is embedded in the challenge ciphertext.

Hybrid 𝐷3. We replace computed 𝒕 with a randomly chosen vector 𝒕 in Hybrid 𝐷2.

(pk, 𝐿(sk),𝐶 = (𝒕, 𝑝𝑎𝑑′ = ⟨𝒓, 𝒕⟩ + 𝑒′ + 𝑏 ⌊𝑝/2⌋),𝐶′) : 𝒕 ←$ Z𝑚𝑝 , 𝑒
′←$ 𝜒′)

Claim 9.24. Under the LWEAssumption, the advantage of any PPT attackerA in distinguishing

between Hybrids 𝐷2 and 𝐷3 is negligible.

The proof is similar to that of the earlier claim in this section.

300



Hybrid 𝐷4. We replace ⟨𝒓, 𝒕⟩ with a randomly chosen element 𝑢←$ Z𝑝 . This provides the dis-

tribution:

(pk, 𝐿(sk),𝐶 = (𝒕, 𝑝𝑎𝑑′′ = 𝑈 + 𝑒′ + 𝑏 ⌊𝑝/2⌋),𝐶′) : 𝑈 ←$ Z𝑝, 𝒕 ←$ Z𝑚𝑝 , 𝑒
′←$ 𝜒′)

Claim 9.25. Hybrids 𝐷3 and 𝐷4 are statistically indistinguishable.

Proof. To prove the above claim, we will use LHL, as defined in Theorem 9.1. We have that

𝑘 = H∞(sk|𝐶′, 𝐿(sk), pk) = H∞(sk|𝐿(sk), pk) ≥ H∞(sk|𝐿(sk)) − 𝑛 log𝑝

𝑘 ≥ 𝑚 − 𝜆 − 𝑛 log𝑝.

This is because 𝐶′ is independent of the sk conditioned on pk, the public key pk comes from a

domain Z𝑛𝑝 of size 𝑝𝑛 , and 𝐿 is a leakage function that satisfies H∞(sk|𝐿(sk)) =𝑚 − 𝜆.

Now, consider, the hash function family H consisting of ℎ𝒗 (𝒓) = ⟨𝒗, 𝒓⟩ mod 𝑝 . The output

length is log𝑝 This is a universal hash family. To apply LHL we need, log𝑝 ≤ 𝑘 − 2 log(1/𝜀) =

𝑚 − 𝜆 − 𝑛 log𝑝 − 2 log(1/𝜀). Therefore, if 𝜆 ≤ 𝑚 − (𝑛 + 1) log𝑝 − 2 log(1/𝜀) for some negligible 𝜀

then the latter two distributions are statistically indistinguishable. □

It follows from the above claim that A has a negligible advantage in distinguishing hybrids

𝐷3 and 𝐷4. Further, in Hybrid 𝐷4, the message is masked by a random value and thereforeA has

no advantage in Hybrid 𝐷4.

Combining the different hybrid arguments together, we get that any PPT algorithm A has a

negligible advantage in the CS+LR security game.

□
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Protocol LWE-Based UPKE

U-PKEG(1𝜅)
Sample 𝑨←$ Z𝑛×𝑚𝑝

Sample 𝒓 ←$ {0, 1}𝑚
Compute 𝒖 = 𝑨𝒓
return (pk = (𝑨, 𝒖), sk = (𝒓))

U-Enc(pk, 𝑏 ∈ {0, 1})
Parse pk = (𝑨, 𝒖)
Sample 𝒙←$ Z𝑛𝑝 , 𝒆←$ 𝜒𝑚, 𝑒 ′← 𝜒 ′

Compute 𝒕 = 𝑨𝑇𝒙 + 𝒆, 𝑝𝑎𝑑 = ⟨𝒙, 𝒖⟩ + 𝑒 ′ + 𝑏 ⌊𝑝/2⌋
return 𝑐 = (𝒕, 𝑝𝑎𝑑)

U-Dec(sk, 𝑐)
Parse 𝑐 = (𝒕, 𝑝𝑎𝑑) and sk = 𝒓
Compute 𝑏 ′ = (𝑝𝑎𝑑 − ⟨𝒓 , 𝒕⟩) ∈ Z𝑝
return 0 if 𝑚′ is closer to 0 than to ⌊𝑝/2⌋ and 1 otherwise.

Upd-Pk(pk)
Parse pk = (𝑨, 𝒖)
Sample 𝜹 = (𝛿1, . . . , 𝛿𝑚) ←$ {0, 1}𝑚
Compute 𝒖 ′ = 𝒖 +𝑨𝜹
Encrypt 𝛿 bit-by-bit, i.e., up = (U-Enc(pk, 𝛿1), . . . ,U-Enc(pk, 𝛿𝑚)).
return (up, pk′ = (𝑨, 𝒖 ′))

Upd-Sk(sk, up)
Parse up = (𝑐1, . . . , 𝑐𝑚)
for 𝑖 = 1, . . . ,𝑚 do

𝛿𝑖 = U-Dec(sk, 𝑐𝑖)
Compute 𝒓 ′ = 𝒓 + 𝜹 where 𝜹 = (𝛿1, . . . , 𝛿𝑚)
return sk

′ = (𝒓 ′)

Construction 9.4: LWE Based Construction. Let 𝑛,𝑚, 𝑝 be integer parameters of the scheme. We will

assume that LWE holds where 𝑝 is super-polynomial and 𝜒 is polynomially bounded. Then, we set 𝜒 ′ to
be uniformly random over (say) [−𝑝/8, 𝑝/8]. Further, we have that𝑚 ≥ (𝑛+1)

log2 (4/3)
log𝑝 + 𝜔 (log𝜅).

9.5.3 UPKE Construction

In this section, we present our construction of an updatable public key encryption based on

the dual-Regev cryptosystem. This is presented in Construction 9.4.

Correctness. The property of correctness of UPKE requires that a bit 𝑏 encrypted by an up-

dated public key decrypts to the same bit 𝑏 when the corresponding updated secret key is used.

• (pk = (𝑨, 𝒖 = 𝑨𝒓), sk = 𝒓) ← U-PKEG(1𝜅)

• We have the update bit 𝜹 ←$ {0, 1}𝑚 . We have the updated public key pk
′ = (𝑨, 𝒖′) where

𝒖′ = 𝒖 +𝑨𝜹 . We also have sk′ = 𝒓 ′ = 𝒓 + 𝜹

• Let us look at U-Enc(pk′, 𝑏). It produces ciphertext (𝒕, 𝑝𝑎𝑑) where 𝒕 = 𝑨𝑇𝒙 + 𝒆, 𝑝𝑎𝑑 =

⟨𝒙, 𝒖′⟩ + 𝑒′ + 𝑏 ⌊𝑝/2⌋.
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• Now, let us look at U-Dec(𝒓 ′, (𝒕, 𝑝𝑎𝑑)). It computes

𝑝𝑎𝑑 − ⟨𝒓 ′, 𝒕⟩ = ⟨𝒙, 𝒖′⟩ + 𝑒′ + 𝑏 ⌊𝑝/2⌋ − ⟨𝒓 + 𝜹,𝑨𝑇𝒙 + 𝒆⟩

= ⟨𝒙,𝑨𝒓 +𝑨𝜹⟩ + 𝑒′ + 𝑏 ⌊𝑝/2⌋ − ⟨𝒓 + 𝜹,𝑨𝑇𝒙 + 𝒆⟩

= ⟨𝒙,𝑨(𝒓 + 𝜹)⟩ − ⟨𝒓 + 𝜹,𝑨𝑇 , 𝒙⟩ + 𝑒′ − ⟨𝒆, 𝒓⟩ + 𝑏 ⌊𝑝/2⌋

= 𝑒′ − ⟨𝒆, 𝒓⟩ + 𝑏 ⌊𝑝/2⌋

• Now, note that 𝑒′ − ⟨𝑒, 𝑟 ⟩ is small in comparison to 𝑝 . Therefore, the computed value is

closer to ⌊𝑝/2⌋ when 𝑏 = 0 and the opposite when 𝑏 = 1.

9.5.4 Security of the UPKE Construction

Theorem 9.26. Under the LWE Assumption, Construction 9.4 is IND-CR-CPA secure UPKE.

Proof. The proof is very similar to the proof of Theorem 9.17. We proved in Theorem 9.19 that the

PKE scheme was CS+LR secure with 𝜆 ≤ 𝑚− (𝑛+1) log𝑝 −𝜔 (log𝜅), under the LWE assumption.

We will use this to construct B against the CS+LR game by usingA against the IND-CPA Game.

• The reduction B receives from the challenger the public key pk0 corresponding to some

secret key 𝒔0.

• It has a time period counter 𝑡 initialized to 0

• B provides pk0 to the adversary A.

• B responds as follows to the oracle queries to O𝑢𝑝𝑑 (·) as follows:

For each input invocation, it increments the counter 𝑡 to 𝑖 and records the 𝜹𝑖 it receives as

input.

• B then receives the challenge messages𝑚∗0,𝑚
∗
1.
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• B then provides the randomized leakage function 𝐿(sk;𝜹∗) = 𝒔0 + 𝜹∗ where the addition is

element-by-element over Z𝑝 . Looking ahead, 𝜹∗ will correspond to the randomness for the

fresh update before the secret key is provided to the A. It also sets𝑚∗0,𝑚
∗
1 as its challenge

messages.

• B sends to its challenger the leakage function 𝐿,𝑚∗0,𝑚
∗
1. It also specifies the function 𝑓 to

be the encryption of each bit of the secret key.

• In response, B receives𝐶 which is an encryption of𝑚∗
𝑏
under pk0,𝐶’ which is a encryption

of 𝒔0, bit-by-bit, under pk0, and a leakage 𝒛 on 𝒓0 defined by 𝒛 = 𝒓0 + 𝜹∗ for unknown

𝜹∗←$ {0, 1}𝑚 . More formally,

𝐶 = U-Enc(pk0,𝑚∗𝑏);𝐶
′ =

(
U-Enc(pk0, 𝑟1), . . . ,U-Enc(pk0, 𝑟𝑚)

)
• At this point, let the time period be 𝑞′. Now, A expects 𝑐∗ = U-Enc(pk𝑞′,𝑚∗𝑏). So B does

the following to compute 𝑐∗:

– B has 𝐶 = U-Enc(pk0,𝑚∗𝑏) or 𝐶 =

(
𝒕 = 𝑨𝑇𝒙 + 𝒆, 𝑝𝑎𝑑 = ⟨𝒙, 𝒖⟩ + 𝑒′ +𝑚∗

𝑏
⌊𝑝/2⌋

)
.

– It computes 𝚫′ =
∑𝑞′

𝑖=1 𝜹𝑖 .

– It computes 𝑝𝑎𝑑∗ = 𝑝𝑎𝑑 + ⟨𝚫′, 𝒕⟩ and sets 𝒕∗ = 𝒕 .

– Now, 𝑐∗ = (𝒕∗, 𝑝𝑎𝑑∗)

• B sends to A the value of 𝑐∗.

• B continues to respond to O𝑢𝑝𝑑 (·) queries as before. When A finally stops, let 𝑞 be the

time period. Now, B does the following:

– To compute sk∗ = 𝒓∗:

∗ Set 𝚫 =
∑𝑞

𝑖=1 𝜹𝑖 .

304



∗ With the knowledge of 𝒛,𝚫, B sets 𝒓∗ = 𝒓𝑞+1 = 𝒛 + 𝚫.

– To compute pk∗: With the knowledge of 𝑨, 𝒓∗, B computes 𝒖∗ = 𝑨𝒓∗. It sets pk∗ =

(𝑨, 𝒖∗).

– To compute up∗: B has bit-by-bit encryption of 𝒓0. It needs to compute the bit-by-bit

encryption of 𝜹∗ = 𝒛 − 𝒓0. For simplicity, assume that 𝒛 is a trit, i.e., taking value 0, 1,

2. Let 𝒓0 = (𝑟1, . . . , 𝑟𝑚), 𝜹∗ = (𝑑1, . . . , 𝑑𝑚) and 𝒛 = (𝑧1, . . . , 𝑧𝑚). Recall that 𝑟𝑖, 𝑑𝑖 ∈ {0, 1}

while 𝑧𝑖 ∈ {0, 1, 2}.

We will first look at how to transform U-Enc(pk0, 𝑟𝑖) to U-Enc(pk0, 𝑑𝑖).

∗ If 𝑧𝑖 = 2, then we have that 𝑟𝑖 = 𝑑𝑖 = 1. Therefore,U-Enc(pk0, 𝑟𝑖) = U-Enc(pk0, 𝑑𝑖)

and we do not need to do anything.

∗ Similarly if 𝑧𝑖 = 0, then we have that 𝑟𝑖 = 𝑑𝑖 = 0. Once again, U-Enc(pk0, 𝑟𝑖) =

U-Enc(pk0, 𝑑𝑖) and we do not need to do anything.

∗ If 𝑧𝑖 = 1, then we merely need U-Enc(pk0, 𝑟𝑖) to be modified to U-Enc(pk0, 1− 𝑟𝑖).

To achieve this we merely add ⌊𝑝/2⌋ to the second term in the ciphertext.

To convert U-Enc(pk0, 𝑑𝑖) to U-Enc(pk𝑞, 𝑑𝑖) we do the following:

∗ Note that U-Enc(pk0, 𝑑𝑖) = (𝒕0, 𝑝𝑎𝑑0) where 𝒕0 = 𝑨𝑇𝒙 + 𝒆 and 𝑝𝑎𝑑0 = ⟨𝒙, 𝒖0⟩ +𝑒′ +

𝑏 ⌊𝑝/2⌋. Further, 𝒖𝑞 = 𝒖0 +𝑨𝚫

∗ Let 𝑡𝑞 = 𝑡0, then 𝑝𝑎𝑑𝑞 = 𝑝𝑎𝑑0 + ⟨𝚫, 𝒕0⟩. with the choice

• Send (pk∗, sk∗, up∗) to A.

• B forwards A’s guess as its own.

Analysis of the Reduction. We first show that the leakage function has sufficiently small

entropy loss.

Claim 9.27. H∞(𝒓0 |𝒛) =𝑚 − 𝜆, where 𝜆 =𝑚(1 − log2(4/3))
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The above is identical to Claim 9.18 in the proof of Theorem 9.17.

We then need to show that the distribution of ciphertext is correct. Specifically, the distribu-

tion of the update ciphertext. We have 𝑡0 = 𝑡𝑞 . We will show that 𝑝𝑎𝑑𝑞 is correctly distributed.

By definition we have that: 𝑝𝑎𝑑𝑞 = ⟨𝒙, 𝒖𝑞⟩ + 𝑒′ + 𝑏 ⌊𝑝/2⌋. Here, we compute 𝑝𝑎𝑑𝑞 as follows:

𝑝𝑎𝑑𝑞 = 𝑝𝑎𝑑0 + ⟨𝚫, 𝒕0⟩

= ⟨𝒙, 𝒖0⟩ + 𝑒′ + 𝑏 ⌊𝑝/2⌋ + ⟨𝚫, 𝒕0⟩

= ⟨𝒙, 𝒖0⟩ + 𝑒′ + 𝑏 ⌊𝑝/2⌋ + ⟨𝚫,𝑨𝑇𝒙 + 𝒆⟩

= ⟨𝒙, 𝒖0⟩ + ⟨𝑨𝚫, 𝒙⟩ + 𝑒′ + ⟨𝚫, 𝒆⟩ + 𝑏 ⌊𝑝/2⌋

= ⟨𝒙, 𝒖𝑞⟩ + 𝑒′ + ⟨𝚫, 𝒆⟩ + 𝑏 ⌊𝑝/2⌋

We can now use the definition of distribution 𝑒′ and Lemma 9.2 to show that the computed dis-

tribution is statistically indistinguishable from the actual distribution.

Under this reduction, it is easy to see that B perfectly simulates the IND-CPA game for A.

The advantage of A against the IND-CPA is the same as the advantage of B. □

Choice of Parameters. From Theorem 9.19, we have that 𝑚 − 𝜆 ≥ (𝑛 + 1) log𝑝 + 𝜔 (log𝜅).

Further, we have from the above claim that𝑚 − 𝜆 = 𝑚 log2(4/3). Putting the two together, we

get𝑚 ≥ 𝑛+1
log2 (4/3)

log𝑝 + 𝜔 (log𝜅).
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10 | Conclusion and Final Thoughts

In this dissertation, we focused on four different problems that are of immense relevance to

real-world applications. The goal of this dissertation was to view each of these problems through

rigorous theoretical lens.

• Pseudorandom number generation: We presented theoretical modeling that captured prac-

tical entropy sources. Further, we presented our constructions which are easily instantiated

and based on industry-standard cryptographic hash functions. Our results can be applied

to understand the security of the general purpose PRNGs that form a part of operating

systems, including Fortuna used in Windows and Yarrow used in MacOS.

• Security of block ciphers: We introduced a new theoretical framework that combines proofs

and conjectures to capture security of existing and extensively used block ciphers (AES),

providing realistic hardness estimates.

• Public Key Searchable Encryption: We achieved sublinear search time with public key in-

dexing in searchable encryption, and our construction is deployed as a commercially avail-

able product.

• Updatable Public Key Encryption: We presented the first constructions that are secure in

the standard model, one of which is also the first construction that is believed to be post-

quantum secure.
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There are several interesting open problems in each of these areas of research and we summarize

some of them below.

• We introduced Small-box cryptography as a framework and showed its applications for

block ciphers and stream ciphers. Are there other symmetric key constructions for which

our framework works? Additionally, are there any guardrails for when our framework can

actually be applied and used?

• Our construction of Encapsulated Search Index critically leveraged the document specific

indexing to achieve sub-linear search time. Can we have universal indexing, public key

cryptography, and sublinear search time?

• We presented our standard model constructions of UPKE which have large parameter sizes.

Can we optimize the parameter sizes to make it practically implementable? Are there other

assumptions from which we can build UPKE?

• We presented a framework to build UPKE from PKE which are simultaneously leakage-

resilient and circular secure, is key homomorphic, and message homomorphic. Is there

another framework that we can leverage to achieve better parameter choices?
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