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A�������

A mesh is a representation used to digitally represent the boundary or volume of an object for

manipulation and analysis. Meshes can be used in many �elds, including physical simulation in

manufacturing, architecture design, medical scan analysis. In this thesis, we propose a series of

meshing algorithms, namedW���M������, that tackles one of the long-standing, yet fundamen-

tal, problems in geometry modeling: robustly and automatically generating high-quality triangle

and tetrahedral meshes and repairing imperfect geometries in the wild. Di�erent from existing

methods that have assumptions about the input and thus often fail on real-world input geome-

tries, W���M������ provides strict guarantees of termination and is a black box that can be easily

integrated into any geometry processing pipelines in research or industry.

This thesis �rst investigates the problem of tetrahedralizing 3D geometries represented by

piecewise linear surfaces. We propose an algorithm, T��W���, that is unconditionally robust,

requires no user interaction, and can directly convert a triangle soup into an analysis-ready vol-

umetric tetrahedral mesh. It relies on three core principles: hybrid geometric kernel, tolerance

of the mesh relative to the surface input, and iterative mesh optimization with guarantees on

the output validity. We then consider improving the algorithm e�ciency for tetrahedralizing

large-scale geometries. We design a new algorithm, �T��W���, that is based on the principles of

T��W��� but replaces the hybrid kernel with a �oating-point kernel, which largely reduces run-

time while keeping the same robustness. Next, this thesis explores meshing curved geometries.

We start from the problem of triangulating 2D planar shapes whose boundaries are represented
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by curves. We introduce T��W���, an algorithm to robustly generate curved triangle meshes re-

producing smooth feature curves, which leads to coarse meshes designed to match the simulation

requirements necessary by applications and avoids the geometrical errors introduced by linear

meshes.

We test our algorithms on over ten thousand real-world input geometries and they achieve

100% success rate. Our methods generate meshes without any assumptions about the input while

repairing the imperfect geometries, opening the door to automatic, large-scale processing of real-

world geometric data.
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1.1 The tetrahedral mesh of a cube. (a) A vertex highlighted in orange. (b) An edge

highlighted in orange. (c) A triangular face of the mesh in orange. (d) A tetrahe-

dral cell in orange. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 A selection of the ten thousand meshes in the wild tetrahedralized by our novel

tetrahedral meshing technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 A diagram illustrating the pipeline of our algorithm in 2D. The points of the orig-

inal input segments (left) are triangulated using Delaunay triangulation (second

left). Each line segment is then split by all triangles that intersect it, construct-

ing a BSP-tree (third left). Each of the resulting convex polygons (colored blue)

is divided into triangles by adding a point at its barycenter and connecting it to

the vertices of the polygon (third from the right). Local operations are used to

improve the quality (second from the right), and �nally winding number is used

to �lter out the elements outside of the domain (right). . . . . . . . . . . . . . . . 12

2.3 Self-intersections in the input (left) are automatically handled by our meshing

algorithm (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 An oversized n ( 1
100 , with b being the bounding box diagonal) creates a tetrahedral

mesh (2nd row) that fails to capture the features of the input triangle mesh (1st

row). Reducing n to 1
300 and

1
3000 increases the geometric �delity (3rd and 4th row). 18
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2.5 Overview of the local mesh improvement operations. For face swapping, our
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seconds to 2476.6 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.10 A heavily tessellated bridge model from Thingi10k (top, left), is simpli�ed by our

algorithm, while keeping the surface in the envelope (top, right), and then con-

verted into a tetrahedral mesh (bottom). . . . . . . . . . . . . . . . . . . . . . . . . 24

2.11 For an input model with open boundaries (left, red lines), we add a reprojection

in the smoothing step to preserve them (middle). To improve the surface quality,

we apply Laplacian smoothing to the output faces used to �ll the open regions

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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2.12 A triangle face sampled using a triangular lattice has all samples inside the con-

servative n̂-envelope can have points outside the envelope by at most 3/
p
3 (left).

Splitting the triangle into two changes the sampling pattern (right), and some

samples on one of its sub-faces are nowoutside the conservative envelope (marked
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for all tets generated from CGAL and our algorithm. The dotted lines indicate

the ideal quality values computed on a regular tetrahedron. Note that our results

(bottom row) have better quality in all measures. . . . . . . . . . . . . . . . . . . 32

2.18 ✓ controls the density of the output mesh. Input (top), ✓ = 1/20 (middle) and

✓ = 1/150 (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

xi



2.19 n bounds the maximal distance between the input and output mesh. Input (left),

n = 1/1000 (middle) and n = 1/3000 (right). . . . . . . . . . . . . . . . . . . . . . . 35

2.20 Example for spatially varying sizing �eld using background mesh. Input (left),

output tetrahedral mesh without sizing control (middle), and output tetrahedral

mesh with sizing �eld applied (right). . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.21 A self-intersecting triangle soup, is cleaned using mesh�x by removing the base.

Our algorithm instead creates a tetrahedral mesh of its interior, whose boundary

corresponds to a clean triangle mesh of the pawn. . . . . . . . . . . . . . . . . . . 36

2.22 We test our generated tet meshes by solving a harmonic PDE using �nite ele-

ment method with linear elements. For each model in Thingi10K, we compare

the computed solution with the ground truth (radial basis functions with kernel

1/A centered at the red spheres). We show the absolute max error, relative max

error, and relative !2 error histograms (log scale) in the bottom row. . . . . . . . 37

2.23 Our algorithm can be used to bootstrap quadrilateral remeshing. . . . . . . . . . . 37

2.24 Our algorithm can be used to bootstrap hex-dominant remeshing. . . . . . . . . . 38

2.25 Our algorithm is robust to geometrical noise. The numbers denote the minimal

dihedral angle of output meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.26 The volume around a complex mechanical piece is automatically meshed by our

algorithm, preserving the surface of the embedded object. . . . . . . . . . . . . . . 39

xii
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the input models in less than 2 minutes, and processes all models within 32 min-

utes. The comparison has been done using the experimental setup of TetWild [Hu

et al. 2018] and selecting a similar target resolution for all methods. The CGAL

surface approximation parameter has been selected to be comparable to the enve-

lope size used for TetWild and for our method. The images above the plot show a

mouse skull model (from micro-CT) tetrahedralized with �T��W��� (right) com-

pared with other popular tetrahedral meshing algorithms. . . . . . . . . . . . . . 42
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1 | I�����������

Meshing is the practice to generate the discrete representation, mesh, of a shape and is an in-

dispensable part of computer-aided design (CAD) systems. Meshes can be used to de�ne the

shape or volume of objects (Figure 1.1). A surface mesh is a collection of vertices, edges and

faces (polygons) that de�nes the shape of a polyhedral object. A volumetric mesh also contains

cells (polyhedra) that de�ne the volume of a solid object. Meshes are used almost everywhere in

computer graphics, like rendering, modeling, or Finite Element Method based simulations. Tri-

angulation and tetrahedralization are the most popular and fundamental meshing techniques for

generating triangle meshes for 2D shapes and tetrahedral meshes for 3D shapes.

Ideally, a meshing algorithm is a black box: given the boundary of a shape, the algorithm al-

ways successfully produces a mesh with high geometric quality conforming to the input bound-

ary. A black box meshing algorithm enables the possibility of making the most of the countless

shapes in the wild (whose boundary representation may be imperfect) and convert them into a

(a) Vertex (b) Edge (c) Face (Triangle) (d) Cell (Tetrahedron)

Figure 1.1: The tetrahedral mesh of a cube. (a) A vertex highlighted in orange. (b) An edge highlighted
in orange. (c) A triangular face of the mesh in orange. (d) A tetrahedral cell in orange.

1



large collection of clean analysis-ready meshes. These large datasets can be directly integrated

into fabrication pipelines, used in large-scale veri�cation for downstream algorithms, or used for

benchmarking machine learning algorithms. One of the current major challenges in geometric

deep learning is the lack of large scale datasets.

Surprisingly, despite of great research e�ort and considerable academic and industrial inter-

est, there is no robust and automatic meshing algorithm able to handle input in the wild with

artifacts like self-intersections, small gaps, and sharp features. Taking tetrahedral meshing as

an example, we tested a collection of popular tetrahedral meshing methods on a large dataset

containing 10,000 real-world input, and obtained low success rates ranging from 37.1% to 87.2%

(Table 3.3). Their robustness is insu�cient for supporting black-box processing. Note that intro-

ducing artifacts on the surface is unfortunately common during the real-world design procedure

and to the best of my knowledge, there is no existing algorithm that can automatically clean

up a defective geometry. Users have to clean up the surface manually, which is a tedious and

labor-intensive work. For example, the challenging model in Figure 3.26 has a multitude of issues

introduced during the modeling phase and requires about two weeks to �x it manually. In many

cases, even if meshing may succeed, the output mesh could be immense due to over-re�nement

or contains low-quality elements, which makes the later application prohibitively expensive or

not su�ciently accurate. Even if the balance between size and quality is achieved, hard-to-detect

features of the input may be lost as the examples in Figure 2.14.

In this scenario, I proposeW���M������, a family of meshing algorithms: T��W��� [Hu et al.

2018] and �T��W��� [Hu et al. 2020] for linear tetrahedralization, T��W��� [Hu et al. 2019] for

2D curved triangulation, and �T��W��� for 3D curved tetrahedralization, which I am currently

working on. My goal is to shift the paradigm and design black-box triangulation and tetrahedral-

ization algorithms veri�ed by large-scale testing and able to produces high-quality output robustly

and automatically.
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L����� ����������� ������� takes as input the linear surface representation of an 3D object,

uses linear tetrahedra to �ll in the interior space of the object, and outputs a linear tetrahedral

mesh that conforms to the input surface exactly or approximately depending on the downstream

application. Di�erent from previous methods, We reformulate the meshing problem accordingly:

Our new algorithms, T��W��� and �T��W���, mesh volumes represented by arbitrary surface

meshes, with no assumptions on surface manifoldness, watertightness, or self-intersections etc.

Instead of viewing surface repair as a separate preprocessing problem, we recognize the fact, that

“clean” surfaces are more of an exception than a rule in many settings.

Thus, we design T��W��� algorithm (Chapter 2) that is unconditionally robust, requires no

user interaction, and can directly convert a triangle soup into an analysis-ready volumetric mesh.

The approach is based on several core principles: (1) initial mesh construction based on a fully

robust, yet e�cient, �ltered exact computation (2) explicit (automatic or user-de�ned) tolerancing

of the mesh relative to the surface input (3) iterative mesh improvement with guarantees, at every

step, of the output validity. The quality of the resultingmesh is a direct function of the targetmesh

size and allowed tolerance: increasing allowed deviation from the initial mesh and decreasing the

target edge length both lead to higher mesh quality.

We then propose �T��W��� (Chapter 3) that builds on the T��W��� algorithm, replacing

the rational triangle insertion with a new incremental approach to construct and optimize the

output mesh, interleaving triangle insertion and mesh optimization. Our approach makes it pos-

sible to maintain a valid �oating-point tetrahedral mesh at all algorithmic stages, eliminating the

need for costly constructions with rational numbers used by T��W���, while maintaining full

robustness and similar output quality. This allows us to improve on T��W��� in two ways. First,

our algorithm is signi�cantly faster, with running time comparable to less robust Delaunay-based

tetrahedralization algorithms. Second, our algorithm is guaranteed to produce a valid tetrahedral

mesh with �oating-point vertex coordinates, while T��W��� produces a valid mesh with rational

coordinates which is not guaranteed to be valid after �oating-point conversion. As a trade-o�,
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our algorithm no longer guarantees that all input triangles are present in the output mesh, but

in practice, as con�rmed by our tests on the Thingi10k dataset, the algorithm always succeeds in

inserting all input triangles.

T��W��� and �T��W��� generate high-quality tetrahedral meshes with clean surface and

thus can also be used for automatic surface repairing. Our approaches enable “black-box” analysis

and allow to automatically solve partial di�erential equations on geometrical models available in

the wild, o�ering a robustness and reliability comparable to, e.g., image processing algorithms,

opening the door to automatic, large scale processing of real-world geometric data.

C����� ���������� M������ whose input and output are curved and can make precise re-

production of curved shapes, such as Bézier curves, independently of the resolution used. Curved

meshes, i.e. meshes with curved edges and faces, provides signi�cantly superior geometric ap-

proximation of a shape in a small size like the example in Figure 4.14. In downstream simulation

application, the smaller mesh size leads to higher e�ciency for a given desired accuracy.

We propose a robust 2Dmeshing algorithm, T��W��� (Chapter 4), to generate curved triangles

reproducing smooth feature curves, leading to coarse meshes designed to match the simulation

requirements necessary by applications and avoiding the geometrical errors introduced by linear

meshes. The robustness and e�ectiveness of our technique are demonstrated by batch processing

an SVG collection of 20k images, and by comparing our results against state-of-the-art linear and

curvilinear meshing algorithms. We demonstrate for our algorithm the practical utility of com-

puting di�usion curves, �uid simulations, elastic deformations, and shape in�ation on complex

2D geometries.

Chapter 5 concludes the dissertation by summarizing the contribution and limitation of W���M����

��� algorithms. We also discuss as feature work the potential method to tetrahedralize 3D CAD

models with the input features preserved.
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2 | T���������� M������ �� ���W���

This chapter introduces our work, T��W���, for robustly and automatically generating high-

quality tetrahedral meshes for possibly imperfect geometries in the wild.

2.1 I�����������

Triangulating the interior of a shape is a fundamental subroutine in 2D and 3D geometric com-

putation.

For two-dimensional problems requiring meshing a domain, robust and e�cient software for

constrained Delaunay triangulation problem has been a tremendous boon to the development

of robust and e�cient automatic computational pipelines, in particular ones requiring solving

PDEs. Robust 2D triangulations inside a given polygon boundary are also an essential spatial

Figure 2.1: A selection of the ten thousand meshes in the wild tetrahedralized by our novel tetrahedral
meshing technique.
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partitioning useful for fast point location, path traversal, and distance queries.

In 3D, the problem of robustly triangulating the interior of a given triangle surface mesh is

just as well, if not more, motivated. While tremendous progress was made on various instances

of the problem, it is far from solved by existing methods. While pipelines involving 3D tetrahe-

dralization of smooth implicit surfaces are quite mature, pipelines using meshes as input either

are limited to simple shapes or routinely fallback on manual intervention. The user may have

to “�x” input surface meshes to cajole meshers to succeed due to unspoken pre-conditions, or

output tetrahedral meshes must be repaired due to failure to meet basic post-conditions (such as

manifoldness). Existing methods typically fail too often to support automatic pipelines, such as

massive data processing for machine learning applications, or shape optimization. In many cases,

while meshing may succeed, the size of the output meshmay be prohibitively expensive for many

applications, because a method lacks control between the quality of approximation of the input

surface and the size of the output mesh. Even when such controls are present, hard-to-detect

features of the input mesh may not be preserved.

In this paper, we propose a new approach to mesh domains that are represented (often am-

biguously) by arbitrary meshes, with no assumptions on mesh manifoldness, watertightness,

absence of self-intersections etc. Rather than viewing mesh repair as a separate preprocessing

problem, we recognize the fact, that “clean” meshes are more of an exception than a rule in many

settings.

The key features of our approach, based on careful analysis of practical meshing problems,

and shortcomings of existing state of the art solutions are:

• We consider the input as fundamentally imprecise, allowing deviations from the input

within user-de�ned envelope of size n ;

• We make no assumptions about the input mesh structure, and reformulate the meshing

problem accordingly;
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• We follow the principle that robustness comes �rst (i.e., the algorithm should produce a

valid and, to the extent possible, useful output for a maximally broad range of inputs), with

quality improvement done to the extent robustness constraints allow.

• While allowing deviations from the input, which is critical both for quality and perfor-

mance, we aim to make our algorithm conservative, using the input surface mesh as a

starting point for 3D mesh construction, rather than discarding its connectivity and using

surface sampling only.

Our method is explicitly designed to output �oating point coordinates, but at the same time

is strictly closed under rationals allowing it to �t neatly into robust, exact rational computational

geometry pipelines.

We empirically compare both the performance and robustness of state-of-the-art methods and

our novel method on a large database of 10 thousand models from the web [Zhou and Jacobson

2016b]. To foster replicability of results, we release a complete reference implementation of our

algorithm, all the data shown in the paper, and scripts to reproduce our results.

Our method –while slower– demonstrates a signi�cant improvement in robustness and qual-

ity of the results on a number of quality measures, when applied to meshes found in the wild.

2.2 R������ ����

Tetrahedral mesh generation has remained a perennial problem, both for computational geome-

ters and practitioners in graphics, physics and engineering ([Cheng et al. 2012a; Carey 1997; Owen

1998]). We are speci�cally interested in methods that are constrained to output a 3D tetrahedral

mesh whose 2D surface closely matches an input surface. We categorize related work with re-

spect to the high-level methodology employed. We place special emphasis on methods with

reproducible results thanks to their openly accessible implementations. One confusion during

comparisons is that most existing software implements multiple algorithms, triggered discretely
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(and somewhat discreetly) by input �ags or parameters (e.g., T��G�� or CGAL). Our comparisons

are done in best faith and using default parameters where applicable; when controls similar to

the ones used in our method are available, we tried to choose them in a similar way.

B���������G���� In 3D, a regular lattice of points is trivial to tetrahedralize (e.g., using either

�ve, six, or 12 tetrahedra per cube). To tetrahedralize the interior of a solid given its surface,

grid-based methods �ll the ambient space with either a uniform grid or an adaptive octree. Grid

cells far from the surface can be tetrahedralized immediately and e�ciently using a prede�ned,

combinatorial stencil, with excellent quality. Trouble arises for boundary cells.

Molino et al. [Molino et al. 2003] propose the red-green tetrahedron re�nement strategy, while

cells intersecting the domain boundary are pushed into the domain via physics-inspired simula-

tion. Alternatively, boundary cells can be cut into smaller pieces [Bronson et al. 2012]. Labelle

& Shewchuck [Labelle and Shewchuk 2007a] snap vertices to the input surface and cut crossing

elements. This method provides bounds on dihedral angles and a proof of convergence for su�-

ciently smooth (bounded curvature) isosurface input. Doran et al. [Doran et al. 2013] improves this

method to detect and handle feature curves, providing an open source implementation,������

[Bridson and Doran 2014a] with which we thoroughly compare. Average element quality tends

to be good: for volumes with high volume-to-surface ratio, most of the mesh will be �lled by the

high-quality stencil. Near the boundary, grid-based methods struggle to simultaneously provide

parsimony and element quality: either the surface is far denser than the interior making volume

gradation di�cult to control or the surface is riddled with low-quality elements.

D������� The problem of tetrahedralizing a set of points is very well studied [Cheng et al.

2012a; Sheehy 2012]. E�cient, scalable [Remacle 2017] algorithms exist to create Delaunay

meshes.

When the input includes surface mesh constraints, the challenge is to extend the notion of a

Delaunay mesh in a meaningful way. In two dimensions, constrained Delaunay methods provide
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a satisfactory solution. In contrast to 2D, the situation in 3D is immediately complicated by the

fact that there exist polyhedra that cannot be tetrahedralizedwithout adding extra interior Steiner

vertices [Schönhardt 1928].

The simple and elegant idea of Delaunay re�nement [Chew 1993; Shewchuk 1998; Ruppert

1995] is to insert new vertices at the center of the circumscribed sphere of the worst tetrahedron

measured by radius-to-edge ratio. This approach guarantees termination and provides bounds

on radius-edge ratio. This approach has been robustly implemented by many [Si 2015a; Jamin

et al. 2015], and, in our experiments, proved to be consistently successful. However, robustness

problems immediately appear if the boundary facets have to be preserved.

More importantly, even in situations when the method is guaranteed to produce a mesh

with bounded radius-to-edge ratio, it does not –unlike the 2D case– guarantee that quality mea-

sures relevant for applications are su�ciently good. The notorious “sliver” tetrahedra satisfy the

radius-to-edge ratio criteria. Thus, unavoidably, Delaunay re�nement needs to be followed by

various mesh improvement heuristics: exudation [Cheng et al. 2000], Lloyd relaxation [Du and

Wang 2003], ODT relaxation [Alliez et al. 2005a], or vertex perturbation [Tournois et al. 2009].

Our approach also relies on a variational-type mesh improvement (Section 2.3.2). Conforming

Delaunay tetrahedralization [Murphy et al. 2001; Cohen-Steiner et al. 2002] splits input boundary

by inserting additional Steiner points, until all input faces appear as supersets of element faces.

Even with additional assumptions on the input, this process may require impractically many ad-

ditional points and tetrahedra. In contrast, constrained Delaunay tetrahedralization [Chew 1989;

Si and Gärtner 2005; Shewchuk 2002a; Si and Shewchuk 2014] proposes to relax the Delaunay

requirement for boundary faces so fewer Steiner points are needed. The popular open source

software T��G�� [Si 2015a] is based on constrained Delaunay tetrahedralization, enforcing in-

clusion of input faces in the mesh.

Restricted Delaunay tetrahedralization [Cheng et al. 2008; Boissonnat and Oudot 2005] com-

pletely resamples the input surface to obtain better tet quality while generating a good approxi-
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mation of the domain boundary at the same time. The software D��PSC and CGAL 3D tetrahedral

meshing module [Jamin et al. 2015; Dey and Levine 2008] is based on this approach. Engwirda

[Engwirda 2016] uses an advancing front method as a re�nement and point placement strategy

for constructing a restricted Delaunay mesh.

Variations of these methods are di�cult to implement robustly, as in their original form they

require exact predicates that go beyond the typically available set, so a careful reduction to the

robustly implementable operations is needed. This may account for a percentage of failures that

we observe.

A conceptual feature of many restricted Delaunay meshers (using meshes as input) is that

they do not allow any slack on the boundary geometry, thus requiring heavy re�nement in certain

cases to achieve acceptable quality, for any target tetrahedron size. However, tetrahedra incident

at features are invariably excluded from quality improvement.

In contrast, our algorithm by design, admits practical robust implementation, and, also by

design, allows the surface to change within user-speci�ed bounds, which greatly reduces unnec-

essary over-re�nement due to surface irregularities.

The state-of-the-art method based on restricted Delaunay re�nement, [Jamin et al. 2015], is

highly robust for important classes of inputs (smooth implicit surfaces) and yields high-quality

meshes. However, as we demonstrate in the results section, if the input is polygonal, it cannot

be easily reduced to the problem of meshing an implicit surface, due to nonsmoothness, and

the need for feature preservation. Currently, [Jamin et al. 2015] and related methods preserve

features using the protection ball method: spheres are placed on feature points and weighted

Delaunay meshing and re�nement are performed, treating ball radii as point weights. This ap-

proach requires explicit detection and representation of feature lines; in its current form, it results

in reduction of robustness and in some cases over re�nement.
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V���������� ������� The duality between Delaunay meshes and Voronoi diagrams, leads to a

variational or energy-minimizing view of the meshing problem. Centroidal Voronoi Tessellation

energy minimizers can leverage Lloyd’s algorithm of BFGS optimization to produce regular or

adaptive meshes with well spaced vertices [Du and Wang 2003], though this does not guaran-

tee good element quality [Eppstein 2001]. An alternative is to minimize the “Optimal Delaunay

Triangulation” energy [Chen and Xu 2004; Alliez et al. 2005a], for better element quality. These

algorithms require an initial starting point (which cannot be generated starting from noisy input

geometry), in order to stay near any input surface constraints. Our method is designed to gen-

erate this valid starting point, and it then uses a variant of these methods, which is designed to

work with a hybrid kernel, to improve quality.

Other variational mesh improvement methods exist [Klingner and Shewchuk 2007; Gargallo-

Peiró et al. 2013; Misztal and Bærentzen 2012], but all require and depend heavily on the initial

base mesh. In contrast, we propose a complete meshing algorithm. Our �rst step generates a

base mesh that complements our choice of mesh improvement strategy later on. The result is

unprecedented robustness and element quality.

Tetrahedral meshing is a hard problem. The strategies found in the literature span a wide

range of ideas, from the use of machine learning to predict hard cases [Chen et al. 2012] to the

various advancing front methods to generate initial meshes [Cuillière et al. 2012; Alauzet and

Marcum 2013; Haimes 2015]. The quality of advancing front outputs can be deceptive: problems

are pushed into the interior. Even if the exterior looks perfect, quality in the interior may be arbi-

trarily poor. We found no reliable advanced front methods suitable for our full-scale comparison.

S������ E�������. Explicit envelopes have been used to guarantee a bounded approximation

error in surface reconstruction. Shen et al. [2004] convert a polygon soup into an implicit repre-

sentation using a novel interpolation scheme, where a watertight n-isosurface can be extracted

for surface approximation purposes. Mandad et al. [2015a] create an isotopic surface approxi-
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mation within a tolerance volume using a modi�ed Delaunay re�nement process followed by an

envelope-aware and topology-preserving simpli�cation procedure. Our approach uses a simi-

lar, implicit, n-envelope to ensure that the tracked surface does not move too far from the input

triangle soup.

2.3 M�����

Delaunay 
Triangulation

BSP
Subdivision

Barycenter
Triangulation

Mesh
Optimization

In/out
Filtering

Figure 2.2: A diagram illustrating the pipeline of our algorithm in 2D. The points of the original input
segments (le�) are triangulated using Delaunay triangulation (second le�). Each line segment is then split
by all triangles that intersect it, constructing a BSP-tree (third le�). Each of the resulting convex polygons
(colored blue) is divided into triangles by adding a point at its barycenter and connecting it to the vertices
of the polygon (third from the right). Local operations are used to improve the quality (second from the
right), and finally winding number is used to filter out the elements outside of the domain (right).

We start by de�ning our problem more precisely. As input we assume a triangle soup, a user-

speci�ed tolerance n , and a desired target edge length ✓ . The goal is to construct an approximately

constrained tetrahedralization, that is, a tetrahedral mesh that (1) contains an approximation of the

input set of triangles, within user-de�ned n of the input, (2) has no inverted elements, and (3) edge

lengths below user-de�ned bound ✓ . Mesh quality is optimized while satisfying these constraints. We

call a mesh valid if it satis�es the �rst two properties.

The resulting tetrahedralization can be used for a variety of purposes; most importantly, we

can use any de�nition of the interior of a set of triangles to extract a tetrahedralized volume

contained “inside” the input triangle soup.

Throughout this paper, we use the term surface to refer to collections of faces, not necessarily

manifold, connected, or self-intersection free. Our algorithm tackles this problem in two dis-

tinct phases: (1) the generation of a valid mesh, disregarding its geometric quality, representing
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its coordinates with arbitrary-precision rational numbers and (2) improvement of the geometric

quality of its elements and rounding the coordinates of the vertices to �oating point numbers,

while preserving the validity of the mesh. Decoupling these two sub-problems is the key to the

robustness of our algorithm and it is in contrast with the majority of competing methods, which

attempt to directly generate a high-quality mesh.

The �rst phase relies only on operations closed under rational numbers, i.e., the entire compu-

tation can be performed exactly if the vertex coordinates are rational, sidestepping all robustness

issues (but increasing the computational cost). The second phase uses a hybrid geometric kernel

(inspired by [Attene 2017]), allowing us to switch to �oating point operations whenever possible

to keep the running time sensible (Section 2.3.4). Our algorithm is thus guaranteed to produce a

valid mesh (Phase 1), but we cannot provide any formal bound on its quality (Phase 2): in practice,

the quality obtained with our prototype on a dataset of ten thousand in the wild models is high

(Section 2.4).

O�������. The algorithm creates a volumetric Binary Space Partitioning (BSP) tree, containing

one plane per input triangle and storing its coordinates as exact rational numbers. By construc-

tion, the resulting convex (but not necessarily strictly convex) cell decomposition is conforming

to the input triangle soup, and a tetrahedral mesh can be trivially created by independently tetra-

hedralizing each cell (Section 2.3.1). The volumetric mesh is not only created inside the model,

but also around the model, �lling a bounding box slightly larger than the input. This allows us

to robustly deal with imperfect geometry that contains gaps or self-intersections, postponing the

inside/outside segmentation of the space to a later stage in the pipeline. The quality of the mesh

is then optimized with a set of local operations to re�ne, coarsen, swap, or smooth the mesh

elements (Section 2.3.2). These operations are performed only if they do not break a set of in-

variants that ensure the validity of the mesh at each step. The �nal mesh is then extracted using

winding-number �ltering [Jacobson et al. 2013], which is robust to imperfect, real-world input
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Figure 2.3: Self-intersections in the input (le�) are automatically handled by our meshing algorithm
(right).

(Section 2.3.3).

2.3.1 G��������� �� � V���� T����������M���

The robust generation of a valid tetrahedral mesh that preserves the faces of an original trian-

gle soup is challenging, even ignoring any quality consideration. Real-world meshes are often

plagued by a zoo of defects, including degenerate elements, holes, self-intersection, and topolog-

ical noise [Zhou and Jacobson 2016b; Attene et al. 2013]. Even manually modeled CAD geometry

cannot be exported to a clean boundary format, since the most common modeling operations are

not closed under spline representation [Farin 2002; Sederberg et al. 2003], unavoidably leading

to small “cracks” and self-intersections. Cleaning polygonal meshes or CAD models is a long-

standing problem, for which bullet-proof solutions are still elusive [Attene et al. 2013]. We thus

propose to use the input geometry as is, and rely on a robust geometrical construction to �ll

the entire volume with tetrahedra, without committing to the exact topology or geometry of the
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boundary at this stage, and postponing this challenge to a later stage in the pipeline, after all

degeneracies have been removed.

BSP�T��� A�������. We build an exact BSP subdivision, using in�nite-precision rational co-

ordinates, and only relying on operations closed under this representation. An illustration of the

pipeline in 2D is shown in Figure 2.2: we use a 2D illustration since it is di�cult to visualize the ef-

fect of operations on tetrahedral meshes in a static �gure. In contrast to the surface-conforming

Delaunay tetrahedralization [Si 2015a], for which designing a robust implementation is chal-

lenging (Section 2.2), the unconstrained version can be robustly implemented with exact rational

numbers [Jamin et al. 2015]. We thus create an initial, non-conforming tetrahedral mesh M,

whose vertices are the same as the input triangle soup, using the exact rational kernel in CGAL

[Jamin et al. 2015].

The generated tetrahedral mesh does not preserve the input surface, making it unusable for

most downstream applications. To enforce conformity, we use an approach inspired by [Joshi and

Ourselin 2003], but designed to guarantee a valid output. We consider each triangle of the input

triangle soup as a plane, and intersect it with all the tetrahedra in M that contain it. In other

words, we consider each tetrahedron as the root of a BSP cell, and we cut the cell using all the

triangles of the input geometry intersecting it. This computation can be performed entirely us-

ing rational coordinates, since intersections between planes are closed under rationals, ensuring

robustness and correctness even for degenerate input. This polyhedral mesh is converted into a

tetrahedral mesh taking advantage of convexity of the cells: we triangulate its faces, add a vertex

at the barycenter, and connect it to all the triangular faces on the boundary. Since the only oper-

ation necessary is an average of vertex positions, the barycenter can be computed exactly with

rationals. As long as at least four input vertices are linearly independent, then all convex cells

will be non-degenerate, i.e., the resulting tetrahedra connected to the barycenter will also be non-

degenerate (though perhaps poor quality). The output mesh is valid and exactly conforming to
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the input triangle soup. Self-intersections in the input are naturally handled by this formulation:

they are explicitly meshed, splitting the corresponding triangles accordingly (Figure 2.3).

2.3.2 M��� I����������

Given a valid tetrahedral mesh represented using rational numbers, we propose an algorithm

to improve its quality, and round its vertices to �oating point positions, while preserving its

validity. We follow the common greedy optimization pipeline based on local mesh improvement

operations [Dunyach et al. 2013; Faraj et al. 2016; Freitag and Ollivier-Gooch 1997], but with four

important di�erences:

1. We explicitly prevent inversions using exact predicates (Validity Invariant 1).

2. We track the surface mesh during the operations, and we only allow operations that keep

them within an n distance from the input triangle mesh (inspired by a similar criteria used

for surface meshing by [Hu et al. 2017]) (Validity Invariant 2).

3. We directly penalize bad elements in all shapes using a conformal energy which has been

recently introduced for mesh parametrization [Rabinovich et al. 2017].

4. We use a hybrid geometric kernel to reduce the computation time while ensuring correct-

ness and termination, using �oating point whenever possible and relying on exact coordi-

nates only where it is strictly necessary.

I�������� 1: I���������. We disallow every operation introducing inverted tetrahedra whose

orientation is negative, using the exact predicates in [Brönnimann et al. 2017] for both rational

and �oating point coordinates. This ensures an output without inversions, since the algorithm

starts from an inversion-free tetrahedral mesh produced by our BSP-tree construction (Section

2.3.1).
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I�������� 2: I���� S������ T������� ��� E�������. By construction, the tetrahedral mesh

produced in Section 2.3.1 contains an exact representation of all input triangles, in the form of a

collection of faces of the tetrahedra. That is, the tetrahedral mesh contains one (or more) tetra-

hedra whose faces exactly match any given input triangle. We call this collection of faces the

embedded surface, and all operations performed on the tetrahedral mesh keeps track of it.

To bound the geometric approximation error introduced during themesh improvement proce-

dure, we only accept operations that keep the faces of the embedded surface at a distance smaller

than a user-de�ned n . Intuitively, this can be depicted as an envelope of thickness n built around

the input triangle soup. We ensure that the embedded surface is always contained in the envelope

at all times by disallowing any operation breaking this invariant (Figure 2.4).

������ M������. As a measure of quality to optimize, we use the 3D conformal energy re-

cently explored in [Rabinovich et al. 2017], which is well-correlatedwithmany commonmeasures

of quality (we evaluate the results on a number of measures). It is expressed as:

E =
’
C2)

tr(J)C JC )
det(JC )

2
3

(2.1)

where JC is the Jacobian of the unique 3D deformation that transforms the tetrahedron C into a

regular tetrahedron. This energy is oblivious to isotropic scaling, but naturally penalizes needle-

like elements, �at and fat elements, slivers, and prevents inversions since it diverges to in�nity as

an element approaches zero volume. It is also di�erentiable [Rabinovich et al. 2017], and can be

e�ciently minimized using Newton or Quasi-Newton iterations [Kovalsky et al. 2016; Rabinovich

et al. 2017].

L���� O���������. We use four local operations for mesh improvement [Freitag and Ollivier-

Gooch 1997; Faraj et al. 2016]: edge splitting, edge collapsing, face swapping, and vertex smooth-

ing (Figure 2.5). These operations only a�ect a local region of themesh, and can thus be performed
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Figure 2.4: An oversized n ( 1
100 , with b being the bounding box diagonal) creates a tetrahedral mesh (2nd

row) that fails to capture the features of the input triangle mesh (1st row). Reducing n to 1
300 and 1

3000
increases the geometric fidelity (3rd and 4th row).
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Edge SplitingEdge Collapsing

Face Swapping Vertex Smoothing

Figure 2.5: Overview of the local mesh improvement operations. For face swapping, our algorithm uses
3-2, 4-4, 5-6 bistellar flips [Freitag and Ollivier-Gooch 1997], where 3-2 flip is illustrated here.

Figure 2.6: A low quality triangle mesh exported from a CAD model with OpenCascade (le�) is auto-
matically converted into a high-quality tetrahedral mesh by our algorithm (right), without requiring any
manual cleanup.

e�ciently. We propose an asymmetric optimization scheme: coarsening and optimization oper-

ators are applied only if they improve the mesh quality, while the re�nement operator is applied

until a prede�ned edge length (user-controlled) is reached, or whenever a region is locked due

to the lack of enough degrees of freedom. The rationale behind this strategy is that we want to

avoid over-re�nement in regions where it is not necessary to improve quality, and we thus add

additional vertices only to match the user-provided density or locally if they are necessary to

improve the quality. This strategy allows us to produce high-quality meshes even if the input

surface has low quality (Figure 2.6).

We optimize the mesh using 4 passes: (1) splitting (re�ning), (2) collapsing (coarsening), (3)

swapping, and (4) smoothing. We store a target edge length value at the vertices of the tetrahedral
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mesh, initialized with the user-speci�ed desired edge length ✓ . In (1) each edge whose length is

larger than 4
3 [Botsch and Kobbelt 2004; Dunyach et al. 2013] times the average of the target edge

lengths assigned to its endpoints is split once, and the average is assigned to the new vertex. After

(1), the target edge length assigned to a vertex E is divided by 2 if there is a low-quality tetrahedron

(E > 8, Equation 2.1) within its ✓E ball, and multiplied by 1.5 otherwise. To ensure that the user-

speci�ed density is always reached, we limit the length by the user-speci�ed parameter ✓ . To

prevent unnecessary over-re�nement in problematic regions, we cap below the length by n . In

(2), we collapse an edge if its length is smaller than 4✓
5 . In (3), we swap faces if they improve

the quality. In (4), we smooth all vertices individually minimizing the average of Equation 2.1

over their one-ring, using Newton’s iteration. Only vertices roundable to �oats are smoothed,

the others are skipped. All these operations are performed only if they do not break any of the

invariants described above, and if they increase the mesh quality (with the exception of (1)). In

each pass, we use a priority queue to decide the orders of the operations (longest edge �rst for (1)

and (3) and shortest edge �rst for (2)), except for (4) where the vertices are processed in random

order. For (4), we use analytic gradient and Hessian. In Figure 2.7, we show the e�ects of the

mesh improvement step.

The mesh improvement process stops when either the maximum energy is su�ciently small

(default: less than 10) or the maximum number of iteration is reached (default: 80 iterations).

2.3.3 I������� ������ ����������

Note that until this point, our algorithm has not attempted to de�ne a closed surface bounding

a volume: the result of the previous stage is a construction of the approximately constrained

tetrahedralization, with a possibly nonmanifold, disconnected and open embedded surface.

We use the method proposed in [Jacobson et al. 2013] to address possible imperfections in the

embedded surface, by de�ning an inside-outside function that can be used to extract an interior

volume associated with the mesh.

20



0

3

6

9

0 5 10 15 20 iterations

min dihedral
(degrees)

Figure 2.7: Amesh generated with the BSP-tree approach is processed by our iterative mesh optimization
algorithm. The quality might decrease during the iterations due to the local refinement ignoring quality,
but it quickly improves a�er additional passes of collapsing, swapping, and smoothing.

We calculate the winding number of the centroid of each tetrahedron with respect to the

embedded surface. If the winding number of the centroid of an element is smaller than 0.5, we

consider it outside of the surface and drop it before exporting the mesh. Note that this technique

must be applied only after mesh optimization due to numerical reasons: the computation of the

winding number cannot be performed in rational numbers and it is numerically unstable close to

the surface (where we care the most), due to the use of trigonometric functions.

As a result of this step, both small gaps and large surface holes will be �lled according to

the induced winding number �eld (Figures 2.8 and 2.11). Consequently, if the input mesh has

holes, our algorithms produces a tetrahedral mesh whose surface is not completely inside the n

envelope, since the triangles used for hole �lling may be outside.

2.3.4 T�������� D�����

H�����K�����. Implementing themesh optimizationwith only exact rational numbers to store

the position of the vertices is not practical for two reasons: (1) the size of the rational represen-

tation grows every time a vertex is modi�ed (dramatically increasing the computation time as
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Figure 2.8: Any gap or hole in the input geometry (top) is automatically filled by our algorithm (bo�om),
generating an analysis-ready tetrahedral mesh.

the algorithm proceeds, especially in the smoothing step), and (2) rational operations are not

supported directly in hardware, and are much slower than �oating point operations. We imple-

mented our algorithm using an hybrid geometric kernel, similar in spirit and design to [Attene

2017]. For each vertex, we store its coordinates in exact rational numbers only if any of the in-

cident tetrahedra invert after rounding its vertices to �oating point representation. This has two

major bene�ts: it avoids the growth of the rational representations, since it trims their length

as soon as it is possible to round a vertex, and reduces the memory consumption. Note that

this does not a�ect the correctness of the algorithm since problematic regions containing almost

degenerate elements will continue to use an exact rational representation.

V���� S�������. While guaranteed to produce a valid mesh for any input, the algorithm de-

scribed in Section 2.3.1 can (and will) generate poorly-shaped initial cells whose size is di�erent

from what the user prescribed, requiring extensive cleanup in the mesh improvement step. To

reduce running times, we found it bene�cial to preemptively add some proxy points in a regular

lattice inside the bounding box of the input triangle soup. To avoid creating degenerate cells, we

remove proxy points that are within X (X > n , default: X = 1
40 ) from the surface. These points are

passed to the Delaunay tetrahedralization algorithm (Figure 2.9), producing a superior starting

point that requires fewer local operations to reach a usable quality. In addition to reducing the
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Figure 2.9: Voxel stu�ing produces a tetrahedral mesh (middle) of quality comparable to a direct BSP-tree
construction (right), but reduces the running times from 3292.3 seconds to 2476.6 seconds.

timing in the optimization stage, this step also localizes the BSP construction around the input

surface. We experimentally found that setting the grid edge length to 1
20 provides the highest

bene�t, with 1 being the length of the diagonal of the bounding box.

I���� S�������������. The BSP-tree construction potentially introduces a quadratic number

of intersections with respect to the number of faces. This only happens in rare pathological cases

and it is not an issue for the majority of real-world models, but we did �nd two problematic ones

over ten thousand in Thingi10k [Zhou and Jacobson 2016b] (one of which is shown in Figure 2.10).

In these two models, this issue is su�ciently severe to make the BSP tree mesh larger than 64GB,

making our implementation crawl due to memory swapping. We propose a preprocessing step

that, while not changing the upper bound complexity of our algorithm, resolves this issue on all

meshes we tested it with. The preprocessing tries to: (1) collapse all manifold edges of the input

triangle soup, accepting the operations that do not move the surface outside of the envelope and

(2) improve the quality of the mesh (in terms of angles) by �ipping edges, still keeping the surface

in the envelope. This procedure simpli�es regions with low curvature, and e�ectively reduces
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Figure 2.10: A heavily tessellated bridge model from Thingi10k (top, le�), is simplified by our algorithm,
while keeping the surface in the envelope (top, right), and then converted into a tetrahedralmesh (bo�om).

the number of vertices introduced by the BSP tree. We were not able to construct a synthetic

case that breaks this procedure when a realistic n is provided. We used this procedure for all our

results, since it improves performance also on non-pathological meshes.

O��� B���������. If the surface contains an open boundary, using only the surface envelope

is not always su�cient to ensure a good approximation of the input triangle soup: while unlikely

to happen, the boundary is free to move anywhere inside it, potentially moving away from the

open boundary, while staying inside the envelope. We address this problem, tracking the open

boundaries and reprojecting its vertices back to it in the smoothing step (Figure 2.11). We consider

an edge an open boundary if only one triangle is incident to it.

E������� T���. Our algorithm heavily relies on testing whether a triangle is contained inside

the mesh envelope or not to ensure that the embedded surface stays within the envelope during

optimization (Section 2.3.2). An exact solution would be prohibitively expensive for our purpose

[Bartoň et al. 2010; Tang et al. 2009], and we thus use a conservative �oating point approximation.

Since the approximation error is bounded, our method guarantees that none of the output surface
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Figure 2.11: For an input model with open boundaries (le�, red lines), we add a reprojection in the
smoothing step to preserve them (middle). To improve the surface quality, we apply Laplacian smoothing
to the output faces used to fill the open regions (right).

points is outside the envelope.

We implicitly construct the envelope bymeasuring point-to-mesh distance to the unprocessed

input mesh, accelerated by an AABB tree [Samet 2005; Lévy 2019]. To check if an embedded

surface triangle face is inside of the envelope, we sample this face using a regular triangular lattice

with 3 as the length of the lattice edge. We also add additional samples on the edges of the face,

ensuring a maximal sampling error of 3/
p
3 (Figure 2.12, left). The triangle is considered inside if

all the samples are closer than n̂ = n � 34AA (34AA = 3/
p
3), which is a conservative envelope. Since

the maximal sampling error is bounded by 34AA , this ensures a correct result, up to �oating point

rounding. This construction allows us to control the computational cost: a small 3 means denser

sampling and more computational cost but leads to a wider envelope, allowing our algorithm

more �exibility in relocating the vertices. Our experiments showed that 3 = n (n̂ = (1 � 1/
p
3)n)

is a good compromise.

However, the discrete nature of the sampling introduces a subtle problem: our envelope check

is conservative, but not consistent, i.e. reallocating samples on a face of embedded surface by

editing its vertices could make it erroneously classi�ed as outside, since some samples might

land outside the conservative envelope n̂ (but not outside the user-speci�ed envelope n) (Figure

2.12, right). This could prevent the optimization algorithm for improving the quality of some

regions, since operations might be rejected due to the excessively conservative envelope check.

This is a rare occurrence, we observed it on only 3 models over 10k (0.03%).
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Figure 2.12: A triangle face sampled using a triangular la�ice has all samples inside the conservative
n̂-envelope can have points outside the envelope by at most 3/

p
3 (le�). Spli�ing the triangle into two

changes the sampling pa�ern (right), and some samples on one of its sub-faces are now outside the con-
servative envelope (marked in red).

We propose a robust, yet expensive, solution for these problematic cases: observing that if

there are locked elements, enlarging n̂ by 34AA guarantees that all elements will be free to move

again, we increase the sampling density to make enough space for enlarging the envelope, so

that locked regions are freed without violating the user-speci�ed envelope n . Let : an integer

representing the current stage (the initial stage is denoted by : = 1). In stage : : we (1) set the

sampling distance to 3: = 3/: , (2) run the algorithm, and then (3) enlarge the envelope for : � 1

times by 34AA/: each time during the geometric optimization (see Figure 2.13). If a model is still

invalid (i.e. the output contains no unroundable vertex) after the geometric optimization in stage

: , we then enter into stage : + 1, rerun the algorithm with a denser sampling, and repeat this

procedure until it succeeds.

Across the Thingi10K dataset, 9997 models produced valid outputs after stage 1, and the re-

maining 3 models succeed after stage 2. Since enlarging envelope gives more freedom for moving

vertices and cleaning surface, this method can also help to improve quality to some degree: we got

99.98% output tetrahedral meshes have minimal dihedral angle larger than 1 degree with : = 2,

while this percentage is only 99.52% with : = 1.
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Figure 2.13: Di�erent stages of envelope.

Table 2.1: Comparison of code robustness and performance on the Thingi10k dataset

Software Success rate Out of memory
(>32GB)

Time exceeded
(>3h)

Algorithm
limitation

Average
time(s)

CGAL
(explicit, w features) 57.2% 5.4% 15.7% 21.7% 160.2

CGAL
(explicit, wo features) 79.0% 0.0% 0.0% 21.0% 11.7

CGAL
(implicit, wo features) 55.7% 0.0% 32.6% 11.7% 997.3

TetGen 49.5% 0.1% 1.7% 48.7% 32.3
DelPSC 37.1% 0.0% 31.1% 31.7% 174.8
Quartet 87.2% 0.0% 0.0% 12.8% 15.3
MMG3D 56.2% 1.2% 10.8% 31.8% 2182.3
Ours 99.9*% 0.0% 0.1% 0.0% 360.0

Note: The maximum resource allowed for each model are 3 hours and 32GB of memory. *Our method exceeds the
3h time on 11 models. If 27 hours of maximal running time are allowed, our algorithm achieves 100% success rate.
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Input CGAL CGAL - no features TetGen DelPSC Quartet Ours

8.008 8.027 0.0115 0.07588 18.3 9.96

1.544 7.031 0.07683 0.04171 18.05 13.27

7.02 7.02 0.6842 0.2172 21.64 12.71

0.4195 7.855 0.01151 0.00186 0.01427 10.20

5.108 7.094 0.0053 0.0 18.45 13.00

2.008 7.005 5.492 0.0 9.276 9.741

Figure 2.14: Comparisonwith state-of-art tetrahedralization algorithms. The number close to eachmodel
is the minimal dihedral angle.
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Figure 2.15: Comparison of running time.

2.4 R������

We implemented our algorithm in C++, using Eigen for linear algebra routines, CGAL and GMP

for rational computations. The source code of our reference implementation is available at https:

//github.com/Yixin-Hu/TetWild.

R��������� ��� P����������. We tested our algorithm and a selection of competingmethods

over the entire Thingi10k dataset [Zhou and Jacobson 2016b]: we show a few examples in Figure

2.14, report aggregate statistics in Table 3.3, running times in Figure 2.15, and output mesh quality

in Figure 2.16. We also report detailed statistics for all models shown in the paper (with the

exception of Figure 2.1) in Table 2.2. We selected their parameters to make the comparison as fair

as possible.

CGAL. We compared our method with [Jamin et al. 2015] in 3 scenarios: (1) CGAL with

polyhedral oracle with feature protection, (2) CGAL with polyhedral oracle without feature pro-

tection, and (3) CGAL with implicit surface oracle. (1) and (2) are run using the standard im-

plementation inside CGAL, enabling and disabling feature protection (Section 2.2), respectively.
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Figure 2.16: Comparison of generatedmesh quality on Thingi10k dataset. For each so�ware, we show the
distribution of 6 common quality measures of all tetrahedra in 1000 randomly sampled meshes generated
from Thingi10k dataset. �ality measures: dihedral angle, inscribed/circumscribed sphere radius ratio,
conformal AMIPS energy, and normalized Shewchuk’s gradient error estimate factor ([Shewchuk 2002d]).
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Table 2.2: Statistics for the datasets in the paper.

Model Input Output
Id Fig. #V #V Angle AMIPS Time(m)

255648 2.3 91550 61506 4.8/41.3 16.1/4.1 48.8
134705 2.4 66045 2208 5.6/41.4 11.5/4.1 3.0
134705 2.4 66045 11341 11.7/46.4 7.8/3.7 10.3
134705 2.4 66045 470742 10.3/47.3 11.4/3.7 168.5
114029 2.6 123565 118347 10.3/45.4 9.2/3.7 47.2
376252 2.7 980051 31734 11.1/45.8 8.0/3.7 10.9
62526 2.8 7818 25773 8.9/43.7 9.6/3.9 17.7
38416 2.9 120172 87648 10.2/46.3 8.0/3.7 44.6
996816 2.10 76111 12663 0.02/45.0 1625.4/4.0 747.7
48354 2.11 10945 21211 10.5/45.8 8.0/3.7 3.4
486859 2.14 14629 15011 10.0/45.3 9.3/3.7 5.3
42155 2.14 24646 7248 13.3/45.4 7.3/3.7 2.1
78481 2.14 298370 11385 12.7/46.4 7.9/3.7 3.9
551021 2.14 174066 51011 10.2/46.1 9.4/3.7 16.5
488049 2.14 23036 3574 13.0/43.2 7.8/4.0 1.3
47076 2.14 768 5491 9.7/44.7 9.6/3.8 1.0
964933 2.17 148 4991 10.0/44.5 8.3/3.8 1.2
1036403 2.18 87046 46220 10.5/45.1 8.1/3.8 20.3
1036403 2.18 87046 202846 12.4/50.1 7.7/3.5 162.7
252683 2.19 906835 34721 10.0/44.5 8.2/3.8 14.1
252683 2.19 906835 119087 10.1/46.4 8.0/3.7 113.4
78211 2.20 320 2042 11.3/34.2 9.9/4.6 0.5
78211 2.20 320 8661 9.3/43.5 10.1/3.9 14.2
63465 2.21 592 6238 14.1/44.9 8.2/3.8 0.9
76538 2.22 14169 10098 12.0/44.9 7.9/3.8 3.9

1065032 2.23 48506 27362 8.5/45.4 9.4/3.8 9.2
1036658 2.24 4244 3713 12.3/43.7 7.9/3.8 1.4
Bunny 2.25 11247 38326 7.7/43.8 9.3/3.9 7.2
Bunny 2.25 11247 87359 9.9/43.0 8.1/4.0 20.8

1505037 2.26 19218 37782 10.2/44.2 8.0/3.9 16.8
Note: From left to right: Thingi10k model ID, �gure where it appears, number of input vertices, number of output

vertices, dihedral angle (min/avg), AMIPS energy (Equation 2.1) (max/avg), running time in minutes.
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Figure 2.17: (Top): With the same meshing parameters (n = 1/2000 and ✓ = 1/20), CGAL’s algorithm
with and without feature protection (top row) used more than 4 and 7 times the number of tets than ours
(second row right) respectively. When using roughly the same number of tets, CGAL’s result (second row
le�) struggles to preserve sharp features. (Bo�om): Histograms of various tet quality measures for all tets
generated from CGAL and our algorithm. The do�ed lines indicate the ideal quality values computed on
a regular tetrahedron. Note that our results (bo�om row) have be�er quality in all measures.
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For (3), we passed an implicit function based on the winding number calculation, used in our

�ltering. We provide a signed distance �eld as oracle (computed with the AABB tree in [Jacobson

et al. 2016]), and use the winding number [Jacobson et al. 2013] to decide its sign. In all cases,

we have observed lower robustness compared to our algorithm. The quality is slightly better

for our algorithm. CGAL with the polyhedral oracle is on average 3 to 4 times faster than our

algorithm, while CGAL with implicit oracle is much slower: nearly a third of the inputs timed

out after 3 hours (Table 3.3). We show a more detailed comparison of the quality (measured using

6 di�erent criteria) in Figure 2.17. Tetgen [Si 2015a] is an order of magnitude faster than our

method, but cannot process around half of Thingi10k. It produces meshes with a quality consis-

tently lower than ours, despite introducingmore elements. DelPSC [Dey and Levine 2008] su�ers

from robustness problems, successfully processing only around 38% of Thingi10k. The quality is

consistently lower than ours. Quartet [Bridson and Doran 2014a] is the most robust competing

method, with a success rate of 88%. It unfortunately struggles to preserve thin features, and often

uses a much higher element count than our method.

P���������. Our algorithm requires two parameters: the target edge length ✓ , which controls

the density of the output mesh, and the maximal Hausdor� distance bound n , which controls the

geometric faithfulness of the result. For all our experiments (except where noted otherwise) we

used ✓ = 1/20 and n = 1/1000, where 1 is the length of the diagonal of the bounding box of the

input. The parameter ✓ controls the mesh density directly (Figure 2.18), while n does it indirectly.

Prescribing a small n forces the algorithm to re�ne more to enforce the tighter bound. Providing

a larger n allows our algorithm to get close to the user-prescribed lenghts (Figure 2.19).

S�������� V������ S����� F����. By replacing the uniform target edge length ✓ with a spatially

varying function ✓ (?), our algorithm can be extended to create graded meshes. Figure 2.20 illus-

trates a result with target edge length smoothly varying from coarse to �ne in a single model.

Note that the output mesh quality remains high despite the large change in the sizing �eld.
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Figure 2.18: ✓ controls the density of the output mesh. Input (top), ✓ = 1/20 (middle) and ✓ = 1/150
(bo�om).
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Figure 2.19: n bounds the maximal distance between the input and output mesh. Input (le�), n = 1/1000
(middle) and n = 1/3000 (right).

Figure 2.20: Example for spatially varying sizing field using background mesh. Input (le�), output tetra-
hedral mesh without sizing control (middle), and output tetrahedral mesh with sizing field applied (right).
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Input Self-intersection (red) MeshFix Ours

Figure 2.21: A self-intersecting triangle soup, is cleaned using meshfix by removing the base. Our algo-
rithm instead creates a tetrahedral mesh of its interior, whose boundary corresponds to a clean triangle
mesh of the pawn.

S������ R�����. Our algorithm can be used as an e�ective mesh repair tool for closed sur-

faces by creating a tetrahedral mesh of their interior, and then extracting its boundary. Self-

intersections are robustly resolved when constructing the BSP-tree, degeneracies are removed by

the mesh improvement step, surface gaps/holes are �lled based on generalized winding number,

and the output surface is trivially the boundary of a valid volume. While computationally more

expensive than alternative methods that only work on the surface, our technique can robustly

handle extremely challenging cases. In Figure 2.21, we compare our method to MeshFix [Attene

2010a] on a self-intersecting chess pawn.

F����� E������ M����� V���������. We demonstrate that our algorithm can be used as a

black box to solve PDEs on the entire Thingi10k dataset. We normalize all our output meshes to

�t in the unit cube and create an analytic volumetric harmonic function by summing 12 radial

kernels (1/A ), placed randomly on a sphere centered at the origin of radius 1.51. This function is

sampled on the boundary of the mesh and used as a boundary condition for a Poisson problem,

solved using [Jacobson et al. 2016]. We successfully solve this PDE over all models, and we report

a sample solution and the histograms of !2 and !1 errors with respect to the analytic solution

evaluated on the internal nodes in Figure 2.22.
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Figure 2.22: We test our generated tet meshes by solving a harmonic PDE using finite element method
with linear elements. For each model in Thingi10K, we compare the computed solution with the ground
truth (radial basis functions with kernel 1/A centered at the red spheres). We show the absolute max error,
relative max error, and relative !2 error histograms (log scale) in the bo�om row.

Figure 2.23: Our algorithm can be used to bootstrap quadrilateral remeshing.

S���������M������. Structured meshing algorithms [Bommes et al. 2012] usually rely on an

existing clean boundary representation of the geometry (triangle meshes in 2D and tetrahedral

meshes in 3D) to generate a structured mesh. Our algorithm can be used to convert triangle soups

into meshes suitable for remeshing. We show the examples of quadrilateral meshing using [Jakob

et al. 2015] in Figure 2.23 and hexahedral-dominant meshing [Gao et al. 2017] in Figure 2.24.

N���� S������T���. We stress test our method under geometrical noise (Figure 2.25), by ran-

domly displacing its vertices using Gaussian noise. Even in this extreme case our algorithm

produces meshes close to the noisy input and have a large minimal dihedral angle.
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Figure 2.24: Our algorithm can be used to bootstrap hex-dominant remeshing.

7.68

9.91

noise = 0.05

noise = 0.1

Figure 2.25: Our algorithm is robust to geometrical noise. The numbers denote the minimal dihedral
angle of output meshes.
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Figure 2.26: The volume around a complex mechanical piece is automatically meshed by our algorithm,
preserving the surface of the embedded object.

M������ ���M������������ S����� Our algorithm naturally supports the generation of tetra-

hedral meshes starting frommultiple enclosed surfaces by simply skipping the �ltering step (Sec-

tion 2.3.3), as shown in Figure 2.26.

2.5 L���������� ��� C��������� R������

Our algorithm handles sharp features in a soft way: they are present in the output, but their

vertices could be displaced, causing a straight line to zigzag within the envelope. While this is

acceptable for most graphics applications, extending our algorithm to support exact preservation

of sharp features is an interesting research direction that we plan to pursue. We demonstrated

that our algorithm can be used as a mesh repair tool, but it is, however, limited to closed surfaces:

extending it to support mesh repair over shells is an interesting and challenging problem. Our

single threaded implementation is slower than most competing methods: since most steps of

our algorithm are local, we believe that a performance boost could be achieved by developing a

parallel (and possibly distributed) version of our approach.

To conclude, we presented an algorithm to compute approximately constrained tetrahedral-

39



izations from triangle soups. Our algorithm can robustly process thousands of models without

parameter tuning or manual interaction, opening the door to black-box processing of geometric

data.
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3 | F��� T���������� M������ �� ���

W���

This chapter describes our work �T��W��� that extends T��W��� in Chapter 2 for improving

the meshing e�ciency.

3.1 I�����������

Tetrahedral meshes are commonly used in graphics and engineering applications. Tetrahedral

meshing algorithms usually take a 3D surface triangle mesh as input and output a volumetric

tetrahedral mesh �lling the volume bounded by the input mesh. Traditional tetrahedral meshing

algorithms have strong assumptions on the input, requiring it to be a closed manifold, free of

self-intersections and numerical unstably close elements, and so on. However, those assumptions

often do not hold on imperfect 3D geometric data in the wild.

The recently proposed Tetrahedral Meshing in the Wild (TetWild) [Hu et al. 2018] algorithm

makes it possible to reliably tetrahedralize triangle soups by combining exact rational compu-

tations with a geometric tolerance to automatically address self-intersections, gaps and other

imperfections in the input. The algorithm imposes no formal assumptions on the input mesh and

is extremely robust, opening the door to automatic processing and repair of large collections of

3D models.
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Figure 3.1: The bar charts show the percentage of models requiring more than the indicated time for the
di�erent approaches over 4 540 inputs (the subset of Thingi10k where all 4 compared algorithms succeed).
Our algorithm successfully meshes 98.7% of the input models in less than 2 minutes, and processes all
models within 32 minutes. The comparison has been done using the experimental setup of TetWild [Hu
et al. 2018] and selecting a similar target resolution for all methods. The CGAL surface approximation
parameter has been selected to be comparable to the envelope size used for TetWild and for our method.
The images above the plot show a mouse skull model (from micro-CT) tetrahedralized with �T��W���
(right) compared with other popular tetrahedral meshing algorithms.

However, TetWild has two downsides, one theoretical and one practical. The theoretical

downside is that it does not guarantee the generation of a �oating point tetrahedral mesh: the

algorithm internally uses rational numbers, which are then converted to �oating point in the

process of mesh optimization. While quite unlikely, it is possible that the mesh optimization

stage will be unable to round all coordinates of the output mesh to �oating point. The practical

downside is the long running time compared with Delaunay-based tetrahedralization algorithms.

We introduce �T��W���, a variant of the TetWild algorithm addressing both these limitations

while keeping the important properties of TetWild: robustness to imperfect input and ability

to batch process large collections of models without parameter tuning, while producing high-

quality tetrahedralmeshes. Di�erently fromTetWild, which generates a polyhedral rationalmesh

inserting all triangles at once, we start from a �oating point tetrahedral mesh, insert one input

triangle at a time and re-tetrahedralize locally, rejecting the operations producing inverted or

degenerate elements.

We then improve the quality of the mesh iteratively, and attempt to insert the rejected trian-
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gles into a higher quality mesh, which is less likely to fail.

Our algorithm always guarantees to generate a valid tetrahedral mesh with �oating point

vertex positions, independently from the stopping criteria or quality of the mesh. It might fail to

insert few input triangles leading to a “less accurate” boundary preservation, however we never

observe this behavior in our experiments. The new algorithm can be implemented using �oating

point constructions, avoiding the overhead associated with rational numbers. The use of �oating

point numbers also simpli�es parallelization, which we use during mesh optimization to further

improve the running time on large models. Consequently, our new algorithm is signi�cantly

faster than TetWild, with running times comparable to Delaunay-based algorithms (Figure 3.1),

while providing the stronger guarantee of always producing a valid �oating point output at the

same time.

These improvements make �T��W��� more practical than TetWild not only for volumetric

meshing problems, but also for mesh repair and approximate mesh arrangements. By combining

�T��W��� and some elements of [Zhou et al. 2016], we obtain an approximate mesh arrangement

algorithm for input triangle soups guaranteed to produce a valid �oating point output. In com-

parison, the original algorithm presented in [Zhou et al. 2016] may fail to produce a �oating-point

output due to impossibility of rounding after the rational-arithmetic arrangement computation.

We demonstrate the robustness and practical utility of our algorithm by computing tetrahe-

dral meshes on the Thingi10k dataset (10 000 models) and computing approximate Booleans. We

use the generated tetrahedral meshes to solve elasticity, �uid �ow, and heat di�usion equations

on complex geometric domains. The complete implementation of �T��W��� is provided in the

additional material, together with scripts to reproduce all results in the paper.
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3.2 R������W���

We have reviewed the literature on tetrahedral meshing in Chapter 2 Section 2.2 and we refer to

[Cheng et al. 2012b; Shewchuk 2012] for a more detailed overview of the topic. Here we give an

emphasis on envelope-based techniques, We also review mesh repair and mesh arrangement al-

gorithms, since our technique can be also used in these settings to enable processing of imperfect

geometry.

M���R�����. Since our algorithm can be used formesh repair, we review themost recent works

on this topic, and we refer to [Attene et al. 2013] for a complete overview.

MeshFix [Attene 2010b, 2014] detects problematic regions in triangle meshes, and uses a set

of local operations to heal them. The tool is very e�ective, but due to its use of a greedy algo-

rithm it might delete large parts on a mesh. The most recent mesh repair technique has been

introduced in [Hu et al. 2018]: the algorithm generates a tetrahedral mesh and discards the gen-

erated tetrahedra, only keeping the boundary surface. While simple and e�ective, this techniques

is computationally expensive, and thus only usable in batch processing applications. Our algo-

rithm can be used in the same way, but its higher e�ciency makes it more practical. We also

propose a simple modi�cation to the surface mesh extraction procedure to guarantee a manifold

output.

B������� ���M��� A�����������. Many approaches to performing Boolean operations on

meshes were proposed, with some methods emphasizing robustness, other methods aiming to

produce exact results, and another set prioritizing performance. In most cases, non-trivial as-

sumptions are made on the input meshes: most commonly, these are required to be closed; in

other cases, no self-intersections are allowed, or most restrictively vertices may be assumed in

general position.
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CGAL, one of the most robust implementations of Boolean operations available [Granados

et al. 2003], relies on exact arithmetic, and uses a very general structure of Nef polyhedra [Bieri

and Nef 1988] to represent shapes. This allows one to obtain exact Boolean results in degenerate

cases (e.g., when the result is a line or a point). At the same time, the assumptions on the input

are quite restrictive: the surfaces need to be closed and manifold (although the latter constraint

could be eliminated).

Another approach to achieve robustness at the expense of accuracy, is to convert inputmeshes

to level sets e.g. by sampling a signed distance function for each object [Museth et al. 2002] and

perform all operations on the level set functions. The obvious disadvantage of these methods is

that their accuracy is limited by the resolution of the grid; the original mesh geometry is lost,

and it is non-trivial to maintain even explicitly tagged features. These downsides are partially

addressed by adaptive [Varadhan et al. 2004] and hybrid [Pavic et al. 2010; Wang 2011; Zhao

et al. 2011], the latter preserving mesh geometry away from intersections. All these methods

rely on well-de�ned signed distance function, i.e., assume that input meshes are closed, and may

still signi�cantly alter the input geometry near intersections. [Schmidt and Singh 2010] does not

use a signed distance function, but resembles these methods, in that it removes existing geometry

near intersections and replaces it by newmesh connecting the two objects and approximating the

result of the Boolean. Binary Space Partitioning (BSP) basedmethods, starting from [Thibault and

Naylor 1987; Naylor et al. 1990] are closest in their approach to ours. Using BSP trees preserves

the input more accurately, and, along the way, creates a volume partition. However, it is prone to

errors due to numerical instability of intersection calculations, and, due to global intersections of

triangle planes, performs excessive re�nement. [Bernstein and Fussell 2009] addresses the issue

of non-robustness by using exact predicates, and [Campen and Kobbelt 2010] reduces re�nement

by creating localized BSP trees in an octree. Examples of highly e�cient but non-robust software

for computing Booleans are [Douze et al. 2015], [Barki et al. 2015], and [Bernstein 2013]. A general

position assumption is often required explicitly or implicitly. In [Zhou et al. 2016] a robust way to
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computemesh arrangements is introduced, with Boolean operations as an application. Robustness

is achieved by using rational numbers for critical computations. To perform Booleans the mesh

is required to be Positive Winding Number (PWN), which does not always hold in meshes in the

wild [Zhou and Jacobson 2016a].

Sheng et al. [2018a,b] use a combination of plane-based and vertex-based representations of

mesh faces to improve robustness of basic operations needed for Boolean operations performed in

�oats. Their method achieves very high e�ciency, at the expense of somewhat lower robustness

compared to the state of the art [Zhou et al. 2016; Granados et al. 2003]. Their method assumes

that the input meshes enclose solids and are free of self-intersections. [Magalhães et al. 2017] is

an e�cient technique using simulation-of-simplicity techniques to handle general intersections

between objects, self-intersections or holes are not handled. [Paoluzzi et al. 2017] considers a

general problem of arrangements of complexes in 2D and 3D, presenting a theoretical general

merge algorithm, but do not consider the questions of robustness and handling imperfect inputs.

Compared to existing methods, the application of �T��W��� to Boolean operations is more

conservative, in terms of mesh geometry changes and re�nement, compared to level set and

BSP-based methods, while maintaining their level of robustness. At the same time, thanks to

the geometric tolerance, �T��W��� is capable of eliminating near-degenerate or overly re�ned

triangles in the input model, which [Zhou et al. 2016] cannot do. We alsomake fewer assumptions

on the inputs, allowing gaps, self-intersections, and degeneracies.

3.3 M�����

�T��W��� takes as input a 3D triangle soup (i.e., a set of arbitrarily connected, potentially inter-

secting triangles with vertices potentially duplicated) whose vertices are represented in �oating-

point coordinates, representing the surface of an object. The algorithm has two user-de�ned

parameters: target edge length ✓ , and envelope size n . The n-envelope represents the maximal
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Figure 3.2: Example of an input surface mesh with self-intersections and a bad triangulation on the base.
�T��W��� converts this model into a high-quality tetrahedral mesh.

deviation from the input surface the user is willing to accept. For instance, in additivemanufactur-

ing applications n can be the machining precision. It outputs a volumetric tetrahedral mesh of the

axis-aligned bounding box containing the input, with �oating-point vertex coordinates, whose

elements are (1) non-inverted (i.e., positive volume) and (2) with some faces approximating the

input soup within a user-de�ned n-envelope. �T��W��� makes no assumptions on the input tri-

angle soup and it is robust when handling imperfect input with self-intersections or small gaps.

This robustness is achieved by allowing the faces of the tetrahedral mesh corresponding to the

input surface to move inside an n-envelope (up to n far from the input): self-intersections, degen-

erate and near-degenerate faces and gaps contained in the envelope are automatically removed

when combined with proper mesh improvement operations (Figure 3.2).

The output tetrahedral mesh can be optionally post-processed to remove the tetrahedra out-

side the input surface (Section 3.3.6). We note that this optional stage relies on the input triangles

(geometry and orientation) to represent a valid volume. This heuristic �ltering might fail, for

instance if the input is far from a closed surface (e.g., a half-sphere) �T��W��� will generate a

valid tetrahedral mesh with faces conforming to the input, but the �ltering stages might discard
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all tetrahedra since the “outside” region is not well de�ned.

S����������� ���D���������� �� E������� F��� I��������A���������. Themain challenge

tackled in many existing tetrahedral meshing algorithm is the preservation of the input faces,

which can be exact or approximate. One of the best known algorithms exactly preserving the in-

put faces is [George et al. 2003], which proposed to subdivide a background mesh by intersecting

it with input faces. This procedure can, however, introduce inverted elements due to �oating-

point rounding, which then need to be untangled, a di�cult task for which no robust algorithm

currently exists. A robust solution is proposed in TetWild [Hu et al. 2018], that initially inserts

the faces exactly using rational numbers to avoid numerical problems, but is then forced to al-

low them to move to round the rational coordinates back to �oating point. Although robust and

conservative, this solution relies on expensive rational constructions, and it is not guaranteed to

succeed in the rounding phase.

Our method follows an approach similar to TetWild (see Chapter 2 for a description of the

algorithm), enabling small and controlled deviations from the input surface, but sidesteps the

need for constructing a rational mesh, always using �oating-point coordinates, while inheriting

the robustness of TetWild. Algorithmically, there are three major di�erences:

1. �T��W��� preserves the input faces by inserting one input triangle at a time into an existing

background tetrahedral mesh. To facilitate the insertion it relaxes the insertion with a

snapping tolerance (relatively larger than �oating point machine precision) which is only

possible thanks to the n-envelope.

2. �T��W��� always tetrahedralizes the region a�ected by the newly inserted face by look-

ing up a pre-computed table and always maintains a valid inversion-free tetrahedral mesh

(using exact predicates).

3. �T��W��� represents the vertices using only �oating point coordinates, reducing the run-
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Insertion

Mesh
Improvement Output

Figure 3.3: Overview of our algorithm. From le� to right, the input mesh is simplified, a background
mesh is created and the input faces are inserted, the mesh quality is optimized, and the final result is
obtained by filtering the elements lying outside the input surface.

ning time and memory consumption.

We note that inserting a triangle might fail due to limitations of the �oating-point representa-

tion. For instance, the inserted face can be arbitrarily close to one of the existing vertices and the

insertion will introduce a tetrahedron with a volume numerically equal to zero. In this scenario,

we rollback the problematic operation, mark the problematic face as un-inserted, iteratively per-

form mesh improvement operations on the whole mesh, and try to insert the face again when

the mesh quality has increased. This procedure shows the only possible failure of �T��W���: the

impossibility of adding some input faces. While this is indeed possible, it never manifested in our

experiments. Note that even if some faces could not be inserted, �T��W��� still outputs a valid

mesh conforming to all other faces.

3.3.1 A�������� O�������

Our algorithm consists of four phases (Figure 3.3): (1) the input triangle soup is simpli�ed while

ensuring it stays in the n-envelope of the input (Section 3.3.3), (2) a background mesh is gener-

ated and the triangles are iteratively inserted into it, if the insertion does not introduce inverted

elements (Section 3.3.4), (3) the mesh is improved using local operations (Section 3.3.5) and at the

end of every three improvement iteration we re-attempt the insertion of input triangles that could
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not be inserted at phase 2, (4) the mesh elements are optionally �ltered to remove the elements

outside the surface or to perform Boolean operations (Section 3.3.6).

During the whole procedure we ensure that the tetrahedral mesh remains valid, that is, we

ensure that (1) each element has positive volume (checked using exact predicates [Shewchuk 1997;

Lévy 2019]) and (2) all successfully inserted triangles, from now on called the tracked surface, stay

inside the n-envelope of the input.

Throughout the algorithm, we consider a distance between two points zero if it is below a

numerical tolerance nzero. Similarly, we use n2zero, n3zero for areas and volumes respectively. We

found that the performance of the algorithm are not heavily a�ected by this tolerance, as long as

nzero > 10�20: in our experiments we used nzero = 10�8.

3.3.2 E�������

We use the envelope de�nition and the algorithms introduced in [Hu et al. 2018] to build the

envelope and check if a triangle is contained in it. In particular, testing if a triangle is contained

within the envelope is done by sampling the input triangle and checking if the samples are all

within a slightly smaller envelope with the sampling error conservatively compensated [Hu et al.

2018].

3.3.3 P������������

We use the same preprocessing procedure proposed in [Hu et al. 2018] for simplifying the input:

we merge vertices closer than nzero and collapse an edge (by merging one endpoint to the other) if:

(1) it is a manifold edge (has no more than two incident triangles) and vertex-adjacent edges are

also manifold, and (2) the collapsing operation does not move triangles outside a smaller envelope

of size nprep < n . At this stage, we use nprep = 0.8n since this value gives space for snapping

in triangle insertion (Section 3.3.4), and prevents vertices to be too close to the boundary of the
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Figure 3.4: A two-dimensional example of edge coloring. From le� to right: one parallel-independent
edge is selected (in red), its vertex-adjacent triangles are colored in black. The algorithm proceeds until
no edges can be marked (last image). In the end, all red edges can be safely collapsed in parallel without
a�ecting other red edges.

envelope, thus leaving more freedom for surface vertices to move in the mesh improvement stage

(Section 3.3.5). On our dataset, we observed that changing this parameter has a minor impact on

the running time and negligible e�ect on the output when in the range 0.7 to 0.999. Note that it

cannot be set to 1 because it will prevent snapping (Section 3.3.4). We use the value 0.8 since it is

far from the bounds of this range.

Since the preprocessing step is computationally expensive, due to the envelope containment

checks, we propose a basic parallelization strategy which leads, on average, to a 4x speedup of

the preprocessing step when using 8 cores. Our parallel edge collapsing procedure uses a serial

2-coloring pass over all input faces. We mark all input triangles white in the initial stage. Then,

iteratively, we mark all edges as parallel-independent if all its vertex-adjacent triangles are white,

and then mark these triangles black (Figure 3.4). At this point, we can safely collapse all marked

parallel-independent edges in parallel. We iterate this procedure until we are unable to remove

more than 0.01% of the original input vertices.

3.3.4 I���������� T������� I��������

3.3.4.1 B���������M��� G���������

The triangle insertion stage requires a background mesh (which does not necessarily conform

to the input triangles) which we create using Delaunay tetrahedralization [Lévy 2019] on the

vertices from the preprocessing stage. Since we allow the surface to move within an n-envelope,

we generate the background mesh for a bounding box 2n larger than the bounding box of the
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Figure 3.5: Segment insertion into a triangle mesh (a 2D analog of triangle insertion) with and without
snapping. (a) Insertion of segment ?@ into mesh " . (b) Identification of cut triangles T� (in red). (c)
Snapping vertex E to line ?@ and updating T� , where E is X-close to ?@. E is moved to its closest points on
line ?@ if this does not invert any elements of" (case 1). Vertex E is added inVX both if E is moved (case
1) or not (case 2). The yellow triangle is added to T� . (d) Computing the intersection of line ?@ with the
edges of T� (points ?1, ?2, ?3). (e) Triangles requiring subdivision (shown in red). (f) The final mesh a�er
subdivision.

input vertices. Similarly to TetWild, additional points are added uniformly inside the box and at

least n away from the input faces before Delaunay tetrahedralization to obtain more uniformly-

shaped initial elements. More precisely, the additional points are added in a regular grid with

spacing of 3/20 (where 3 is the diagonal of bounding box of the input mesh), skipping inserting

the additional points with distance to the input faces smaller than n .

3.3.4.2 S����� T������� I��������

The key component of our algorithm is three-stage procedure for inserting one triangle ) into a

valid tetrahedral mesh " , adding new vertices and tetrahedra, and adjusting mesh connectivity,

to minimize the number of insertion failures and number of badly shaped tetrahedra created by

insertion. Note that we do not insert degenerate triangles. Our algorithm uses ideas from march-

ing tetrahedra [Doi and Koide 1991] and other tetrahedralization methods [George et al. 2003;

Weatherill and Hassan 1994], as well as marching cubes [Lorensen and Cline 1987]. It consists

of the following steps: (1) Find the set T� consisting of the tetrahedra of " that triangle ) cuts,

as de�ned below; (2) Compute the intersection points of the plane spanned by ) (denoted as % )
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Figure 3.6: Examples of tetrahedra T included into, or excluded from, T� . The intersections are shown
in red. Le� two: ) intersects a face of T at a segment ([?1, ?2]) or a polygon ([?1, ?2, ?3]) that contains
interior points of both ) and the intersected face of T . In this case, we put T into T� . Right two: )
intersects a face of T (in light red) at a segment ([?1, ?2]) that does not contain any interior points of
either ) or the intersected face of T . In this case, we do not put T into T� .

and the edges of the tetrahedra in T� ; (3) Subdivide all cut tetrahedra using a connectivity pattern

from a pre-computed tet-subdivision table. These patterns guarantee that a valid tetrahedral mesh

connectivity is maintained.

F������C��T���������. We �rst de�ne that object� cuts though object⌫ if their intersection

contains interior points of both � and ⌫. We say that triangle ) cuts tetrahedron T if (1) it is

completely contained inside T , or (2) it cuts through at least one face of T (Figure 3.6). We

initialize T� to be the set of the tetrahedra of " that ) cuts. Note that this set will be iteratively

expanded by the algorithm.

We use exact predicates [Shewchuk 1997; Lévy 2019] for checking if a triangle is contained

inside a tetrahedron. To detect if one triangle cuts through another, we combine the exact predi-

cates with the algorithm [Guigue and Devillers 2003]. The use of predicates ensures topological

correctness when using �oating-point coordinates.

P�����T��������� I�����������. To insert a triangle) de�ning a plane % intoT� (Figure 3.5(c)(d)),

we need to ensure that after the insertion: (1) for every point ? 2 ) there is a face � of the re�ned

tets in the set T� such that min@2� k? � @k < X ; (2) the projection of faces � in T� , that are within

the distance X from ) to the plane % covers ) . We call sets with these properties covers of ) . We

allow the cover of triangles to deviate from % . This is crucial for robustly inserting triangles using

�oating point computations: without it, we observe a signi�cantly higher running time due to
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Figure 3.7: Plane % intersects T� (T 2 T� ). (a) The faces of F (marked in yellow) are the covering of
triangle ) . (b) Snapping E to its closest point on % and expanding F to include red triangles makes F
safely covering ) . (c) Snapping a boundary vertex ?1 of F to E changes the area of F and make it not
covering ) . (d) Snapping an interior vertex ?3 of F to E does not change the boundary of F : F is still
covering ) .

more insertion failures, which leads to additional iterations of mesh optimization. Also, more

faces remain uninserted in the �nal output. For the �rst pass of triangle insertion (i.e., before

any mesh improvement is done), we use a larger X = max(nzero, 10�3n), while for all subsequent

passes we reduce it to X = nzero.

We start with the idealized case of in�nite-precision arithmetics. In this case, we can easily

realize the covering of ) by intersecting all the faces of the tetrahedra in T� with plane % . This

generates a planar polygonal mesh F on % covering ) and the maximal distance from ) to F is

zero (Figure 3.7 (a)). The vertices of F are intersection points of % and edges of T� .

When the �oating point representation is used to represent the coordinates of vertices, round-

o� error may result in degenerate or inverted tetrahedra. Our approach is to reject insertion in

these cases. However, to minimize the number of triangles that have to be rejected, we either snap

vertices of the tetrahedral mesh " to % (Figure 3.7 (b)) or snap intersection points to vertices of

" (Figure 3.7 (c)(d)). Moving a vertex E of T� (thus changing ") changes the cover F , because
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Figure 3.8: 2D illustration of step (1) to (3) of snapping when inserting segment [?,@]. The cut triangles
in T� are marked in red. (1) Vertex E is within X distance to segment [?,@]. (2) Check the e�ect of moving
E to line [?,@]. (Vertex E cannot be moved to [?,@] in this case, because a triangle reverts its orientation.)
(3) One-ring triangle [E, E0, E1] (marked in yellow) of E is intersecting with line [?,@], and the projection
of its edges [E, E0], [E, E1] on line [?,@], segment [E 0, E 00], [E 0, E 01], intersect with segment [?,@].

% intersects the edges of T� in di�erent locations. As no intersection of % with an edge of T�
disappears (at most, it may move to an endpoint), and no new intersections appear (other than

at the endpoints shared with already intersected edges), the connectivity of T� can be viewed

as unchanged, possibly with some zero-length edges. We can view snapping vertices of T� to %

as a deformation of F , keeping it on plane % . If the a�ected vertices are in the interior of F ,

F still covers ) since the boundary of F does not change. However, if moving E changes the

boundary of F , the covering might be invalidated (Figure 3.7 (b)). In this case, before moving a

boundary vertex, we extend T� by adding its 1-ring neighbourhood, intersect it with % , and extend

F accordingly. We repeat this process until all a�ected vertices are in the interior.

Moving the point E to the plane % might not always be possible, since it could invert some

tetrahedra in" . In these cases, instead of moving E to % , we deform F bymoving some vertices of

F to E , which is at X distance from % by de�nition (Figure 3.7 (c)(d)). Similarly to the previous case,

this operation can only be applied on interior vertices of F . We thus extend T� if this operation

a�ects vertices on the boundary of F .

In practice, we never explicitly compute F on the plane % since it is uniquely de�ned by the

intersection points (Section 3.3.7), but instead use the following 4 steps, that directly determine

the vertices of F (the faces of F are obtained by table-based re�nement of T� ).

1. Find all vertices of the tetrahedra in T� , with distance to % smaller than X and put them in

VX (e.g., vertex E in Figure 3.8(1)).
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Table 3.1: A subset of the tet-subdivision table, the complete table is provided in the additional material.
The first row corresponds to the case of a tetrahedron without cut edges, the second and third to the case
of one cut edge, 40 and 41 respectively, and the last row to two cut edges 40 and 41. All tetrahedra shown
in the table have same edge label.

I
II 0 1 · · ·

0(10) = 000000(2)

e0
e1
e5 e3e4

e2 · · ·

1(10) = 000001(2) · · ·

2(10) = 000010(2) · · ·

3(10) = 000011(2) · · ·

...
...

...
. . .

2. Move vertices in VX to their closest points on % if it does not invert any elements of "

(Figure 3.8(2)).

3. For each vertex inVX , add all of its vertex-adjacent tetrahedra to T� if these are cut by % and

have faces covering ) (i.e., the projection of the face to % intersects with ) ). For example,

[E, E0, E1] in Figure 3.8(3) is added.

4. Repeat steps (1) to (3) until no more new tetrahedra are added to T� .

T���������� T���������� S����������. All tetrahedra sharing the edges of tetrahedra in T�
cut by % are subdivided into sub-tetrahedra according to the tet-subdivision table. Note that this

set of tetrahedra usually contains some tetrahedra from T� (red elements in Figure 3.5(e)) and

some neighboring tetrahedra of T� (yellow elements in Figure 3.5(e)).

Since an edge can have at most one intersection point with % , the decomposition of the subdi-
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(1) No cut (2) 1 edge cut (3) 2 edge cut (4) 2 edge cut (5) 3 edge cut (6) 3 edge cut (7) 4 edge cut

Figure 3.9: 7 symmetry classes of edge-cut configurations. (4) and (6) can only happen on neighboring
tetrahedra of T� with only certain edges cut by % .

vided tetrahedron is largely (but not entirely) determined by which edges are cut. (An edge will

be cut if it intersects with % and neither endpoints are snapped.) We record all possible decompo-

sitions of a tetrahedron in a subdivision table, indexed by primary cut indices and secondary cut

indices. The primary index (I) (Table 3.1), is a binary string, indicating which edges are cut. If two

edges on a face are cut (3 edges of a face cannot be cut at the same time), there are two possible

triangulations of this face and also multiple decompositions of the tetrahedron; the secondary

index (II) is the number of a speci�c decomposition (Table 3.1). A primary index paired with a

secondary index retrieves a unique decomposition of a tetrahedron.

For an oriented tetrahedron T , there are 26 = 64 combinations of possible intersection points

on its edges, but not all 64 combinations can be practically realized. A direct enumeration shows

that the following edge-cut con�gurations are impossible: (1) T has six cut edges, (2) T has �ve

cut edges, (3) T has 4 cut edges, and 3 of them are on the same face, and (4) T has 3 cut edges on

the same face. In total, there are
�6
6
�
+
�6
5
�
+ 3 · 4 + 4 = 23 impossible edge-cut con�gurations.

The remaining 41 realizable edge-cut con�gurations cover all subdivision cases and we can

categorize them into 7 symmetry classes (Figure 3.9). Five of them were discussed in [Schweiger

and Arridge 2016] and used for a tetrahedron cut by a plane. We need 2 extra con�gurations

(Figure 3.9, (4) and (6)) for subdividing the neighboring tetrahedra of T� with only certain edges

cut by % (yellow elements in Figure 3.5(e)).

We retrieve a list of decompositions of T corresponding to a primary index; we now need to

select a secondary index corresponding to a decomposition that preserves the validity of mesh

" after the subdivision, that is, we want " to have a valid topology and no inverted tetrahedra.
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Figure 3.10: Triangulation on the shared face.

To ensure a valid topology, two adjacent subdivided tetrahedra must have the same triangulation

on the shared face. We set a rule for choosing such triangulation using only the global ordering

of the vertices of " . For a face [E0, E1, E2] of tetrahedra T with two intersection points ?1, ?2 on

it (see Figure 3.10), we select the triangulation containing the edge [?2, E1] if the unique integer

label of vertex E1 is larger than the one of E2. Otherwise, we select the triangulation containing

the edge [?1, E2]. This simple rule completely identi�es a secondary index and preserves the

topology of the mesh. For completeness, we remark that some con�gurations might require

additional vertices (Section 3.3.7). However, our rule automatically excludes them. We attach

the visualization of the tet-subdivision table in the supplementary material. We then check if all

sub-tetrahedra have volume larger than n3zero (since we observed that elements with positive but

extremely small volume could delay later insertions in this local region) and reject the insertion

if this is not the case.

3.3.4.3 O������������ E��� P�����������.

After triangle insertion, the input edges shared by two non-coplanar triangles are preserved

through the insertion of adjacent triangles, as the plane of the next inserted triangle will in-

tersect the cover F of a previously inserted triangle. This does not hold for boundary edges.

An edge is an open-boundary edge if it has only one incident triangle or has multiple coplanar

incident triangles on the same side of the edge in their common plane.

To preserve an open-boundary edge 4 of a triangle ) , we project 4 and the cover F of ) to

the plane % 0 that best �ts the faces of F . Then, we compute the intersection of the projection of
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Figure 3.11: Example of model where the numerical instability of the AMIPS energy causes over-
refinement (middle). By evaluating the energy using rational numbers (when it is above 108) the issue
disappears (right).

4 to % 0 with the projections of the faces of F . The intersection points of the projection of 4 and

T are then computed on % 0 and are lifted back to the corresponding faces of F . Since we have a

set of edges cut into two, we can subdivide the a�ected tetrahedra using the previous table-based

tetrahedron subdivision. An example can be found in Section 3.3.7.

Note that the open-boundary edge preservation might fail due to numerical reasons, in this

case we rollback the operation and postpone the insertion of the open-boundary triangle to later

stages.

3.3.5 M��� I����������

We adapt the mesh improvement framework proposed in TetWild [Hu et al. 2018] that optimizes

the conformal AMIPS 3D energy [Rabinovich et al. 2017] to increase the mesh quality, but avoid

the overhead introduced by the hybrid kernel by specializing the framework for �oating point

computation. Note that, as mentioned in [Hu et al. 2018], we use the AMIPS energy since it is

di�erentiable and scale-invariant. We made three changes to the original optimization:

1. We try to insert the uninserted input faces every three mesh improvement iterations until

all input faces are inserted or the mesh improvement terminates.
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2. We parallelize the vertex smoothing step using a simple graph coloring strategy.

3. We discovered an instability in the evaluation of the AMIPS energy computation in �oating

points, which sometimes leads to overre�nement in TetWild. We propose a �x using a

hybrid evaluation that uses rational numbers to compute intermediate results.

(1) is a change required by the new algorithm, since not all faces can be inserted when compu-

tations are done in �oating point. (2) is a minor, yet e�ective, modi�cation that slightly improves

performance (Figure 3.18). (3) is a subtle problem, which we now explain in more detail. The

conformal AMIPS 3D energy is a Jacobian-based energy de�ned as:

AMIPS =
tr(J) J)
det(J)2/3

, (3.1)

where J is the Jacobian of the transformation from a regular tetrahedron to the tetrahedron T .

The larger the energy is, the worse the quality of T is. The minimal value is 3, the energy

of a regular tetrahedron. The AMIPS energy is invariant under permutation of the vertices of

T , however its numerical evaluation in �oating-point arithmetic is not, due to �oating-point

rounding. Usually the di�erence is negligible, but when the energy of T is large (on the order of

108), the �oating point computation becomes unstable and the resulting energy could di�er by

two orders of magnitude, which means that the descent direction that appears to be decreasing

the energymay be determined incorrectly. Here is a concrete example: we compute the 3DAMIPS

energy for a tetrahedron with these 4 vertices:

E1 = (22.8289586180569, 31.46598870690956, 2.000000016196326)

E2 = (22.83955896584259, 31.46598870610162, 2.000000016081439)

E3 = (22.85206254968259, 31.46598870514861, 2.000000015945925)

E4 = (22.83955896584259, 30.48801551784109, 2.616041190648805)
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we obtain

AMIPS1234 = 5.027711906288343e10,AMIPS2341 = 2.171615254548946e11

AMIPS3412 = 8.865129658843354e10,AMIPS4123 = 7.103076229685612e10,

where the subscript indicates the vertex permutations. There are 24 permutations in total and

here we pick 4 of them as an example. Even if we use the cube of the energy without rational we

obtain �uctuations

AMIPS31234 = 9.401446861483944e25,AMIPS32341 = 1.834560196543814e25,

AMIPS33412 = 1.006679363250288e26,AMIPS34123 = 3.462536408842030e26.

As reference the correct value computed with rational number is 1.127562687503913e11.

This numerical instabilitymight preventmesh improvement and thus lead to over-re�nement,

since the algorithm is trying to add degrees of freedom unnecessary to improve the quality (Fig-

ure 3.11).

To address this issue, we raise the energy to the third degree making it completely rational,

and evaluate it using rational computation for elements with energy larger than 108. We round

the computed value of its third degree to the 64-bit �oating point representation, and then com-

pute the cubic root. The rational computation is more accurate (and permutation invariant) but

signi�cantly slower. However, the cases of precision loss in the energy are rare, and the overall

computational overhead is negligible. Note that we only use the rational evaluation of the energy

to ensure validity of the line search step: the search direction is always computed using �oating-

point. This change has a major e�ect on the speed and e�ectiveness of our mesh optimization

(Figure 3.11), avoiding unnecessary re�nement and decreasing the overall runtime.

The mesh improvement terminates when either a user-speci�ed mesh quality or a user-
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Input
#F = 35 459

Output 99s
#T = 72 242

Max energy = 7.9

Output with open region
smoothed 113s
#T = 72 094

Max energy = 10

Figure 3.12: Input with open boundary on the bo�om (le�). The output tetrahedral mesh preserves the
input geometry and closes the open side (middle). Users can choose to enable an additional smoothing
process for smoothing the open region (right).

controlled number of iterations is reached. To ensure a fair comparison, for the large dataset

testing and all examples in the paper, we use the same stopping criteria (max AMIPS energy is

smaller than 10 or the number of optimization iterations reaches 80) and input parameters (en-

velope size n = 10�33 , targeted edge length ✓ = 3/20, where 3 is the diagonal’s length of the

bounding box of the input mesh) as in [Hu et al. 2018].

We note that our method provides no theoretical guarantees on the quality of the �nal mesh.

In our experiments, it achieves a quality higher or comparable to other methods (Section 3.4).

Quartet [Bridson and Doran 2014b], a grid based method, produces uniformly sized tetrahedral

mesh whose dihedral angles are bounded between 10.7� and 164.8�, or between 8.9� and 158.8�

[Labelle and Shewchuk 2007b], but it does not preserve sharp edges or corners. The Constrained

Delaunay re�nement method used in TetGen [Si 2015b] guarantees a radius-edge ratio larger

than 2 if the input does not have sharp features or angles smaller than 70.53�.

We use the same strategy as in TetWild for handling inputs with open boundaries. We track
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Figure 3.13: 1000 random samples of �T��W��� output on Thingi10k dataset.

the vertices on the open boundary and project them back to the open boundary during mesh

improvement (Section 3.3.5). Elements are classi�ed as inside or outside the surface using the

generalized winding number (Section 3.3.6). An example of input with open boundary is shown

in Figure 3.12.

3.3.6 F��������

The output of the mesh improvement step is a volumetric tetrahedral mesh of the expanded

bounding box of the input triangle soup, with the preprocessed input triangles inserted. We

provide three ways of optionally �lter the result, targeting two di�erent applications.

The �rst strategy is to use a simple �ood-�ll algorithm starting from the boundary. This

method is well-suited for watertight input models with incorrect normal orientations and several

component nested. This simple strategy only removes elements outside the outer boundary of

the object but can not remove unwanted elements inside nested components as shown in the

middle of the sliced output in Figure 3.14.

The second strategy uses the fast winding number [Barill et al. 2018] to �lter the tetrahedra

outside of the preserved/tracked input [Hu et al. 2018]. This strategy is particularly suited to

inputs with gaps, since it is able to extend the notion of in-out to these regions. In this case, the

volume of output extracted by the winding number �lter depends on the orientation of the input

triangles.
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Input
#F = 151 328

Output using �ood �ll 1064s
#T = 273 084

Max energy = 12.3

Figure 3.14: An inputmodel (le�) where the heuristic winding number filtering fails to extract the volume
(it drops most of the tetrahedra in the output) due to inconsistent triangle orientations in the input. By
changing the heuristic to the flood-fill algorithm, we can obtain the expected output (right).

The third strategy is a volumetric extension of the mesh arrangement algorithm [Zhou et al.

2016]. In this case, the input becomes a set of triangle soups, coupled with a set of Boolean oper-

ations to perform on them. During the triangle insertion stage, we keep track of the provenance

of each triangle, and use it at the end to compute a set of generalized winding numbers (one for

each tracked input surface) for the centroids of all tetrahedra in the volumetric mesh. We use the

set of winding numbers to decide which tetrahedron to keep by checking if it is supposed to be

contained in the result of the Boolean operation. For instance, when intersecting two triangle

soups, we keep all tetrahedra that are inside both input triangle soups, according to the winding

number de�nition.

There are three major advantages of this method over [Zhou et al. 2016]: (1) Boolean opera-

tions can be performed on non-PWN surfaces, (2) the output is equipped with a tetrahedral mesh,

which could be useful in downstream applications, and (3) the surface quality is high since the

algorithm is allowed to remesh within the n envelope.
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Figure 3.15: Two unused configurations requiring an additional vertex.
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Figure 3.16: Example for preserving an open-boundary edge 4 of triangle ) . (1) Insert ) and T� = {T }
in this case. (2) The sub-tetrahedra of T a�er subdivision. (Only sub-tetrahedra behind ) are shown for
be�er visualization.) (3) Inserting edge 4 and get the intersection points (in green).

3.3.7 T�������� D�����

U����� D������������� �� � T���������� We enumerated all the possible decompositions

of a tetrahedron and discovered two symmetry classes (Figure 3.15) of triangulation of faces

whose decomposition requires an additional internal vertex. Note that these two cases are never

selected by our algorithm (we include them here for completeness), as our rule (Section 3.3.4.2)

never selects these two cases.

We show that our rule does not select case 1 (Figure 3.15 left). By contradiction: since the

con�guration is selected then the edges [?1, E2], [?2, E3] and [?3, E1] are present, thus E2 > E1,

E3 > E2, and E1 > E3, according to our rule. Combining these inequalities, the indices of the

vertices must satisfy E3 > E2 > E1 > E3, which is impossible. Case 2 (Figure 3.15 right) is also not

selected following a similar argument.
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Table 3.2: Edge-cut configurations of a cu�ing tetrahedron before and a�er snapping. Numbers corre-
sponds to the configurations in Figure 3.9.

Before 1 vertex snapped 2 vertices snapped 3 vertices snapped
(2) (1) (2) (1)
(3) (1)(2) (1)(2) (1)
(5) (1)(3) (1)(2) (1)(2)
(7) (3) (1)(3) (1)

A� E������ ��� O����B������� E��� P����������� If triangle ) is the only inserted tri-

angle and is entirely contained inside a tetrahedron T (Figure 3.16(1)), the intersection of the

plane % and T will be a larger polygon (marked in yellow) containing ) . In this case, the edges

of ) , which are open-boundary edges, are not preserved. To preserve them, we subdivide the

tetrahedra once more.

In Figure 3.16(1), T �rst get decomposed into sub-tetrahedra (Figure 3.16(2)). Then the faces

covering ) are F = {[?1, ?2, ?3], [?4, ?2, ?3]} Figure 3.16(3). The open-boundary edge 4 and the

faces in F are projected to the best-�tting plane of ?1, ?2, ?3, and ?4. The intersection points

of the projection of 4 and T are then computed in 2D and are lifted to 3D (3 green points in

Figure 3.16(3)). Now there are 3 edges [?1, ?2], [?2, ?3], [?3, ?4] cut into two. We thus subdivide

all the neighbouring tetrahedra with the table-based subdivision.

C������ �� E������� C������������ A���� S������� Table 3.2 shows all possible edge-

cut con�gurations of a cutting tetrahedron T after snapping. The �nal con�gurations have no

more than two vertices which makes the triangulation of F uniquely de�ned by the points. The

table includes only the 4 symmetry classes where T is cut by plane % and contains a face in F

(Figure 3.9 (2)(3)(5)(7)), but excludes the remaining 3 classes where T is not cut or is just a�ected

by their neighbors (Figure 3.9 (1)(4)(6)).

A tetrahedron T can have at most 3 vertices snapped. If T has all its 4 vertices within a X

distance to the % , we only snap the 3 vertices closer to % .
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Memory usage of �T��W��� (MB)

Figure 3.17: Histogram of memory usage of �T��W��� over the Thingi10k dataset (data truncated at
2GB).

Table 3.3: Comparison of code robustness and performance on the Thingi10k dataset.

Method Success rate Out of memory
(>32GB)

Time exceeded
(>3h)

Algorithm
limitation

Average
time (s)

CGAL 79.00% 0.00% 0.00% 21.00% 11.7
TetGen 49.50% 0.10% 1.70% 48.70% 32.3
TetWild *99.89% 0.05% 0.11% 0.00% 360.0
Ours **99.97% 0.02% 0.03% 0.00% 49.8

Note: The maximum resources allowed for each model are 3 hours and 32GB of memory. The �rst 3 lines of data
are from [Hu et al. 2018], Table 2. Note that the average time (last column) is computed over all the models for
which each method succeeded, and it is thus not directly comparable between di�erent methods. *: TetWild

exceeds the 3h time on 11 models. If 27 hours of maximal running time are allowed, TetWild achieves 100% success
rate. **: Our method exceeds the 3h time limit on 3 models. If 11 hours of maximal running time are allowed,

�T��W��� achieves 100% success rate.

3.4 R������

Our algorithm is implemented in C++ and uses Eigen [Guennebaud et al. 2010] for the lin-

ear algebra routines. We perform a large-scale comparison of our method with other mesh-

ing methods on the Thingi10k dataset [Zhou and Jacobson 2016a], which contains 10 000 real-

world surface triangle meshes. We run our experiments on cluster nodes with a Xeon E5-2690v4

2.6GHz, allowing every model to use up to 8 threads, 128GB memory, and 24 hours running

time. The reference implementation and testing data are open-source and available on GitHub:

https://github.com/wildmeshing/fTetWild.
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Figure 3.18: Percentage of models requiring more than a certain time for our parallel and serial algorithm
compared with TetWild on Thingi10k dataset.

Input
#F = 171 436

TetWild 17hr
#T = 39 312

Max energy = 1625.4

Ours 56m
#T = 36 605

Max energy = 8.5

Figure 3.19: Example of a challenging model where �T��W��� is 17 times faster than TetWild.

3.4.1 S������ R���

With the above memory and time constraints, �T��W��� successfully tetrahedralizes 100% of

the 10 000 input meshes (Figure 3.13). Most of the input models can be tetrahedralized with less

than 1GB of RAM as detailed in Figure 3.17. Note that very complex models might require more

memory, for instance the one in Figure 3.26 uses around 17GB of memory.

As observed in [Hu et al. 2018], most of the state-of-the-art tet-meshers have low success rate

on in-the-wild data. We summarize the results on the whole Thingi10k dataset in Table 3.3. Note

that only our method and TetWild have high success rates: our average timing is however seven

times faster than TetWild.
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3.4.2 R������ T���

T�����10�D������ (10000M�����) We compare the running time of ourmethodwith TetWild.

For a fair comparison, we disable our code optimizations that could be easily ported to TetWild,

such as parallelization of the preprocessing and smoothing step, and using the recent fast winding

number algorithm for the �nal �ltering. Without these optimizations, our algorithm is 4 times

faster than TetWild on average (80.4s vs 360s). With code optimizations, we further improve our

running time to 49.8s on average on a machine with 8 cores, which is 7 times faster than the

serial implementation of TetWild (Figure 3.18). On more complex examples, like the model in

Figure 3.19, our method is up to 17 times faster than TetWild.

The running time of our algorithm (and of TetWild too) depends, among other factors, on the

envelope size. Checking envelope containment using sampling has a cost that grows quadratically

as the envelope shrinks. This results in a trade-o� between running time and detail preservation.

Figure 3.20 shows how the performance of �T��W��� and TetWild are a�ected by the envelope

size: while both methods are fast with large envelope size, the running times dramatically in-

crease when the envelope shrinks. Alternative strategies could be used to check the envelope to

mitigate this issue [Wang et al. 2020]. If a small envelope is required, the runtime could be

reduced by sacri�cing element quality by stopping the algorithm prematurely during the mesh

optimization.

R������ T�����10� D������ (4540 M�����) We use a reduced dataset containing the inter-

section of the Thingi10k models that TetGen, CGAL, TetWild, and our method all succeed on.

The dataset contains 4540 models, and allows us to fairly compare the performance of the di�er-

ent methods. On average, our method is comparable (18.5s) to the widely used, Delaunay-based

tetrahedral mesher TetGen (22s), and is faster than CGAL (95s) and TetWild (107s), while robustly

handling imperfect inputs. Figure 3.1 shows the number of models requiring more than a given

time. For example, within less than 2 minutes, our method successfully tetrahedralizes 98.7% of

69



Input, #F = 35 528

TetWild, 1846s 
#T = 287 064

Max energy = 11.9 

fTetWild, 479s
#T = 211 429

Max enenrgy = 7.8
2x10-3 10-3 5x10-4 2.5x10-4 1.25x10-4

Envelope size wrt d

2x10-3 10-3 5x10-4 2.5x10-4 1.25x10-4
Envelope size wrt d

TetWild, 4386s 
#T = 220 112

Max energy = 11.3 

fTetWild, 249s
#T = 179 298

Max enenrgy = 8.0

Input, #F = 1 141 868

Figure 3.20: Input models and running time plots of �T������ and Tetwild with n reduced from 2 10�33
to 1.25 10�43 (le�). Output tetrahedral meshes of the two methods at n = 5 10�43 (middle and right). Note
that we flipped all the normals of the input triangles of the airplane model for visualization purposes (see
Figure 3.33 for a detailed discussion).
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Input
#F = 240 486

TetWild 2476s
#T = 376 437

Max energy = 8.0

Ours 411s
#T = 311 318

Max energy = 8.9

Figure 3.21: Our method (right) produces high-quality tet-meshes that are similar to TetWild (middle).

the inputs. It is interesting to note that the tail of the distribution of our method is shorter than

both TetGen and CGAL. For instance, there are only 4 models where our method requires more

than 16 minutes, di�erently from TetGen, CGAL, and TetWild which have 20, 122, and 25 models,

respectively.

3.4.3 M���������

The geometric quality of meshes produced by our algorithm is similar to the meshes produced

by TetWild (Figure 3.21), since our method implements a similar mesh optimization strategy. We

quantitatively evaluate and compare the element quality of TetWild and our output using �ve

di�erent measures:

1. AMIPS energy (Equation (3.1)), range [3, +1), optimal 3,
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TetWild Ours TetWild Ours

Average AMIPS energy Maximum AMIPS energy (truncated at 11)

Average smallest dihedral angle Minimum smallest dihedral angle

Average volume-to-edge ratio Minimum volume-to-edge ratio

Average aspect ratio Minimum aspect ratio

Average radius-to-edge ratio Minimum radius-to-edge ratio

Figure 3.22: Histogram for mesh quality comparison of TetWild (red) and our method (green) in five
di�erent quality measures. The statistic is based on the output of the whole Thingi10k dataset.

2. Minimal dihedral angle, range (0, 1.23], optimal 1.23,

3. Volume-to-edge ratio 6
p
2+ /✓3max, range (0, 1], optimal 1,

4. Aspect ratio
p
3/2⌘min/✓max, range (0, 1], optimal 1,

5. Radius-to-edge ratio 2
p
6 Ain/✓max, range (0, 1], optimal 1,

where + is the volume, ✓max is the longest edge, ⌘min the minimum height, and Ain the radius of

the inscribed circle of a tetrahedron T . We use (3), (4) and (5) since these are standard measures

for tetrahedral quality [Shewchuk 2002b].

Figure 3.22 shows the histograms of worst and average element quality of 10 000 output

meshes of TetWild and our method. The quality of our outputs are quite similar to TetWild’s
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Comparison of mesh size between TetWild and �T��W���

100 101 102 103 104 105 106 107 100 101 102 103 104 105 106 107

TetWild Ours

Figure 3.23: Histograms of number of in log scale for the output meshes of Thingi10k dataset.

output. We refer to the study in [Hu et al. 2018, Figure 14] for the full quality comparison of

TetWild and other tetrahedral meshing algorithms.

3.4.4 M��� D������

Compared with TetWild, our method generates meshes of similar density (Figure 3.23). Both

TetWild and our method aim to generate as-coarse-as possible meshes while preserving the input

surface. This choice is useful in downstream applications to reduce their computational cost.

Optionally, the algorithm supports a user-speci�ed sizing �eld to increase the density if desired.

In contrast to our method, TetGen preserves the input surface geometry exactly and thus

generates a dense tetrahedral mesh around the surface if the input surface mesh is dense, as

visible in the model shown in Figure 3.1. CGAL approximates the surface by means of an implicit

function, but sometimes over-re�nes sharp features and tiny artifacts as illustrated in Figure 3.1,

where the dark spots are over-re�ned regions.

3.5 A�����������

3.5.1 M��� R�����

Similarly to TetWild, our algorithm can be used to repair imperfect triangle meshes by tetra-

hedralizing the volume and extracting the surface of the generated tetrahedral mesh. However,

the mesh improvement step of our method (Section 3.3.5) can be stopped at any time since we
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Input
#F = 16 248

MeshFix 23s
#F = 13 486

Our 129s
#F = 31 348

Figure 3.24: Example of repairing an invalid triangular mesh (le�) with MeshFix (middle) and our algo-
rithm (right). MeshFix is fast but loses details during processing, while our method preserves them. The
max AMIPS energy of our intermediate tetrahedral mesh is 1975. Here we stop mesh improvement when
maximum energy reaches 2000.

maintain an inversion-free �oating point tetrahedral mesh at all stages of our algorithm. High

tetrahedral mesh quality is not required for this application, and we can stop mesh optimiza-

tion as soon as all input faces are inserted, further reducing the running time. We compared

our result with the state-of-the-art mesh repairing tool MeshFix [Attene 2010b] in Figure 3.24.

Our method, while slower, provides a higher-quality result with controllable geometric error. A

minor, yet important, observation is that keeping only the boundary of a valid tetrahedral mesh

might generate a non-manifold surface mesh (Figure 3.25). To avoid this problem, we identify

the non-manifold edges and split them. Then we duplicate every non-manifold vertex to ensure

a global manifold output, using the algorithm proposed in [Attene et al. 2009]. Note that this

procedure ensures manifoldness, but introduces vertices in the same geometric position. With

this minor change, our algorithm can be used to repair triangle meshes, guaranteeing the extrac-

tion of an high-quality, manifold boundary surface mesh within the prescribed distance from the

input triangle soup.
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Input
#F = 16 248

Non-manifold output
87s

#F = 42 924
Max energy = 9.0

Manifold output 90s
#F = 42 931

Max energy = 9.2

Geodesic distance
from one point on the

manifold surface

Figure 3.25: Example of a non-manifold surface mesh (le�) which is automatically repaired by our algo-
rithm (right second).

We also tested an extremely challenging model coming from an industrial application in ad-

ditive manufacturing (the part is copyrighted by Velo3D): the design of an exhaust pipe using a

volume �lled with a structure based on the gyroid triply periodic minimal surface. The model

has a multitude of issues introduced during the modeling phase, but it can be cleaned up by our

algorithm within 55 minutes (or 122 minutes with the envelope size decreased by a factor of two),

compared to around twoweeks of manual labor required by Velo3D’s current processing pipeline.

Our output mesh (Figure 3.26) is directly usable for FEA, further editing, or fabrication. As a ref-

erence point, the original implementation of TetWild takes 215 minutes with a default envelope

size. Another challenging model we tested contains complex thin structures coming from archi-

tecture (Figure 3.27). The method in [Masoud 2016; Ghomi et al. 2018] optimizes for the layout

of a graph, then replaces the graph edges with cylinders of varying radii. To ensure solidity of

the �nal structure, all cylinders are intersecting as shown in the close up. Although the mesh

contains many irregularities, �T��W��� successfully meshes the domain into an analysis-ready
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Envelope size = 1e-3d,  55min
#T = 1 202 275

Max energy = 8.1 

Input
#F = ~31Million 

Envelope size = 5e-4d,  2hr 2min
#T = 2 207 842

Max energy = 8.0 

Figure 3.26: Meshing a complex model with 93 million vertices and 31 million faces with di�erent enve-
lope sizes (top). The input mesh contains degenerate triangles and severe self-intersections. Our output
tetrahedral meshes are in geometric high quality with either default envelope size (middle) or half enve-
lope size (bo�om).
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Input
#F = 700 070

Envelope size = 1e-43 , 38min
#T = 417 744

Max energy = 40

Figure 3.27: Example of an architectural application with 80 999 self-intersecting faces. The cylinders in
the input are intersecting with each other as shown in the closeup. �T��W��� successfully cleaned and
tetrahedralized this input. Here we stop mesh optimization when maximum energy reaches 50.

mesh.

3.5.2 M��� A�����������

Zhou et al. [2016] proposes to compute the arrangement between multiple surfaces using an

algorithm to map Boolean operations into simple algebraic expressions involving the winding

number of the input surfaces. Their method is robust, but only supports clean PWN surfaces as

input. We propose a simple extension of this algorithm (as explained in Section 3.3.6) to arbitrary

triangle soups. The advantages of our method is evident when the input surfaces come from

CAD models containing small gaps or self-intersections: both Mesh Arrangements [Zhou et al.

2016] and CGAL [Hachenberger and Kettner 2019] are unable to perform the operation (since it

is not well-de�ned for non-PWN surface), while �T��W��� can compute an approximate (since

it allows for an n-deviation from the input surfaces) union, di�erence, and intersection between

them (Figures 3.28, 3.29), providing robust (but slower) Boolean operations on imperfect geome-
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Two objects for Boolean Input
#F = 3 506

Union, 30s
#T = 46 885

Max energy = 8.0

Di�erence, 31s
#T = 25 768

Max energy = 8.0

Intersection, 33s
#T = 10 347

Max energy =
7.5

Figure 3.28: Three Boolean operations computed on non-manifold, self-intersecting, and non-PWN in-
put surface meshes. The le� are two objects for Boolean operation. The middle is the input surface mesh
of �T��W���. The right are our output meshes a�er computing the union, di�erence, and intersection be-
tween the two objects. The averagemax AMIPS energy of outputs and average time of di�erent operations
are with small variance.
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U

-
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=

Figure 3.29: Four Boolean operations among 5 objects. �T��W��� takes 34s and products output with #T
= 8 060 and max energy = 7.2.

tries. The output is a tetrahedral mesh, which can be useful in downstream applications, and its

boundary is a high quality surface triangular mesh.

3.5.3 S���������

The main application of tetrahedral meshing is physical simulations, and the high-quality of our

results makes them ideal to be directly used in downstream �nite element software (Figure 3.30).

Additionally, the recently proposed a priori ?-re�nement [Schneider et al. 2018] is an ideal

�t for our approach when targeting FEM applications, since �T��W��� always produces a valid

�oating-point mesh. Schneider et al. [2018] provides a simple formula to determine the order of

each element to compensate for its, possibly bad, shape. We can use this criterion to terminate
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Input
#F = 8 436

Time 58s
#T = 16 291

Max energy = 7.9
Elastic deformation

Figure 3.30: Example of non-linear elastic deformation of a body (right).

Input
#F = 30 580

Max energy  10, 107s
#T = 90 438

Max energy = 8.0

?  4, 69s
#T = 41 735

Max energy = 32.4

Figure 3.31: Two di�erent stopping criteria of our algorithm. The full optimization (middle) improves
the mesh to high quality, while using the criterion in [Schneider et al. 2018] (right) results in lower mesh
quality but faster meshing and smaller mesh size. The color shows the solution of the volumetric Laplace
equation.

Input
#F = 138 504

Time 50s
#T = 40 161

Max energy = 7.3
Streamlines

Figure 3.32: Streamlines of a fluid (right) moving in a cylindrical pipe (le� top) with a complicated ob-
stacle (le� bo�om) in the center. The background mesh (middle) is obtained by subtracting the obstacle
from a cylinder using our method.
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the mesh optimization early in our algorithm (thus reducing the meshing time) without a�ecting

the quality of the simulation, Figure 3.31.

We use the Boolean di�erence (Section 3.5.2) to generate the background mesh required for

simulating the �uid �ow on a cylindrical tube containing an obstacle (Figure 3.32).

3.6 C��������� R������

We introduced �T��W���, a novel robust tetrahedral meshing algorithm for triangle soups which

combines the robustness of TetWild with a running time comparable to Delaunay-basedmethods.

The improved performance makes this algorithm suitable not only for applications requiring a

volumetric discretization, but also for surface mesh repair and Boolean operations.

Our current naive parallelization approach shows that our algorithm bene�ts from shared-

memory parallelization; exploring more advanced parallelization techniques and extending it to

distributed computation on HPC clusters are important directions for future work. Our iterative

triangle insertion algorithm could be used in dynamic remeshing tasks, potentially allowing to

reuse an existing mesh and insert new faces only in regions with high deformation. While con-

ceptually trivial, extending our algorithm to 2D triangle meshing could improve the performance

of [Hu et al. 2019].

Our algorithm optionally uses the winding number or �ood �ll �lters to extract the volume of

the interior of the object bounded by the input surface. While these heuristics are very e�ective

for imperfect inputs representing closed input models with consistent normal orientation, they

might fail if the input surface contains open shells not bounding a volumes or nested components

with wrongly oriented normals (Figure 3.33). In these cases, the volume is not well de�ned and

our �ltering will arbitrarily discard or keep tetrahedra around these regions. We recommend to

not rely on these heuristics if the input contains open shells, and do the �ltering using an ad-hoc

algorithm. In case of nested components we recommend to correct the orientation to ensure a
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Input Output Output �ltered by �ood
�ll

Output �ltered by
winding number

Figure 3.33: The output of �T��W��� is a tetrahedral mesh of the bounding box containing the input
(second column). The output can be optionally filtered to delete the tetrahedra in the exterior using the
flood fill or the winding number heuristic (last two columns), which may fail on inputs (first column) with
open shells or nested components with inconsistent normal orientation.
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proper de�nition of in-out [Takayama et al. 2014].

�T��W��� uses the conformal AMIPS energy [Rabinovich et al. 2017] to measure and opti-

mize the quality of the tetrahedra. An interesting alternative has been introduced concurrently

to our work by [Alexa 2019]: they propose to optimize directly for the Dirichlet energy of the

tetrahedralization and show that this measure is e�ective at removing slivers, while being com-

putationally e�cient to evaluate. A comparative study of the two measures would be interesting,

and using the Dirichlet energy could lead to further reductions in the running time of our method.
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4 | T��W���: R����� T������������

���� C���� C����������

Based on T��W���, we design a robust algorithm T��W��� for generating coarse 2D planar

curved triangle meshes that preserves input curved shapes with fewer elements and higher ac-

curacy compared with linear meshes.

4.1 I�����������

Triangle meshing is at the core of a large fraction of two-dimensional computer graphics and

computer aided engineering applications, most commonly, used to solve PDEs or optimization

problems on 2D domains, in the context of physical simulation, geometric modeling, animation

and nonphotorealistic rendering. Major e�orts have been invested in robustly generating meshes

with linear edges with good geometric quality. However, the restriction to linear meshes makes

precise reproduction of simple curved shapes, such as a Bézier curve, impossible independently

of the resolution used, resulting in artifacts and/or excessive re�nement in applications ranging

from physical simulation to nonphotorealistic rendering. Curvedmeshes, i.e. meshes with curved

edges, are an e�ective solution to this problem: the idea is to use curved triangles instead of

linear ones, providing signi�cantly superior geometric approximation of a shape using a mesh

of a particular size. In most cases, the lower triangle count leads to an overall more e�cient
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Figure 4.1: The o�icial ACM SIGGRAPH logo (www.siggraph.org/about/logos) is converted into a curved
triangle mesh. We use the mesh to compute di�usion curves (Laplace), inflate surface (bilaplace), deform
elastic bodies (Neo-Hooke), and simulate fluid flow (Stokes). Note that the imperfections in the input
(shown in the closeups) are automatically healed by our method.

simulation for a given desired accuracy [Ciarlet and Raviart 1972; Scott 1973, 1975; Braess 2007].

A simple 2D example is shown in Figure 4.2, which has a geometric error of 2% of the overall

area when 236 linear triangles are used, and the error can be reduced to numerical zero with

the same number of curved triangles with a cubic Lagrangian geometric map (Figure 4.2). While

the use of curved meshes is well established in the FEM literature (with a few applications in

graphics [Mezger et al. 2009; Boyé et al. 2012]), the automatic generation of these meshes is

rarely considered, and the few existing methods we tested have a high failure rate on real-world

examples (Section 4.5).

We propose a robust 2D meshing algorithm, TriWild, to generate high-quality curved meshes

on complex 2D geometries. Our algorithm takes as input a 2D scene described as an SVG �le (a

soup of basic curved primitives, such as circles, ellipses, and Bézier curves), and automatically

produces an analysis-ready, high-quality curved mesh. The algorithm starts by sanitizing the

input curves and resampling them based on their curvature. This step is crucial, since “dirty” input
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is extremely common (see for a representative example the o�cial SVG of the SIGGRAPH logo in

Figure 4.1) and the preservation of degenerate features will inevitably lead to overre�ned meshes

not usable in downstream applications (Figure 4.2). The sanitized features are then meshed using

a novel curved meshing algorithm that creates an initial linear mesh, curves its edges, and then

maps each curved triangle to a reference domain (i.e., computes a geometric map). The algorithm

internally uses rational coordinates for robustness and outputs a triangular mesh composed of

cubic Bézier triangles with positive Jacobian in �oating points coordinates. The created meshes

are coarse, represent the input curves with high �delity, and are directly usable to solve discrete

PDEs.

We stress test TriWild on a large SVG collection, which is challenging even for existing robust

linear triangular meshers. Our algorithm is able to handle even the most complex cases and pro-

duces meshes directly usable in FEM simulations. We also demonstrate the practical applicability

of our algorithm in four common graphics applications: (1) color interpolation to create di�usion

curves vector graphics [Orzan et al. 2008; Boyé et al. 2012], (2) viscous �ow simulation in complex

geometries [Stenberg 1984], (3) simulation of elastic deformations [Mezger et al. 2009], and (4)

conversion of planar meshes into 3D models using surface in�ation [Joshi and Carr 2008; Sýkora

et al. 2014]. A reference implementation of our algorithm and a set of scripts to reproduce the

results in the paper are provided at https://github.com/wildmeshing/TriWild.

4.2 R������W���

Our method creates a linear triangulation and then bends the edges of the mesh to create a curved

triangulation. Both types of triangulations have received signi�cant attention in the meshing

literatures.
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Conforming Delaunay. Our linear mesh. Boundary error of the
linear mesh.

Figure 4.2: Comparison of Conforming Delaunay Triangulation (le�) and of our linear output (middle
and right) corresponding to the model in Figure 4.1. The curved mesh in Figure 4.1 has only 236 triangles
and it approximates the input exactly, without any geometric error, while the CDT linear mesh requires
around 4 thousand triangles to have a comparable visual quality.

4.2.1 L����� ��������������

Linear unstructured meshing in 2D is an old problem (e.g., [MacNeal 1949]1 or [Frederick et al.

1970]). There have been many papers, surveys and books written on this topic (e.g., [Cheng et al.

2012b; Shewchuk 2012]). Existing works can be broadly categorized by their primary methodol-

ogy and corresponding strengths and weaknesses.

A�������� ����� ������� generate a triangle mesh by growing a mesh in a �ood-�lling

manner, typically growing inward from a given boundary [George 1971; Sadek 1980; Peraire et al.

1987]. While attractive because initial triangles placed near the starting regions can be high-

quality and boundary-preservation is often trivial, the mesh quality typically gets progressively

worse as the front continues. This culminates in a slew of issues when multiple fronts meet,

where bad triangles are hard to avoid.
1In his PhD thesis, MacNeal [1949] physically created a triangle mesh on drawing paper and, by measuring angles

with a protractor, solved the 2D Poisson equation using the now famous cotangent formula.
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G���/�������� ������� are in some sense a complement to advancing front methods. These

methods begin with a grid of high-quality triangles everywhere and then adjust triangles near

the domain boundary [Yerry and Shephard 1983; Baker et al. 1988; Bern et al. 1994]. The methods

are fast and can obtain good average quality since most triangles in the interior will have per-

fectly regular shape. However, thesemethods struggle to achieve accurate boundary preservation

without sacri�cing worst-case quality at boundary triangles.

D������� ������� are arguably the most widely used, in particular, the open source T�����

��� program by Shewchuk [1996]. Based on rigorous and well understood theory (e.g., [Auren-

hammer 1991; Shewchuk 1999; Cheng et al. 2012b; Aurenhammer et al. 2013]), triangulations

boast good mathematical properties stemming from all or most triangles ful�lling the local De-

launay criteria. Categorizations of Delaunay methods generally split according to how they deal

with one-dimensional line segment constraints. Conformingmethods iteratively add points along

constraints to pure Delaunay triangulation until each segment is covered by a union of Delaunay

edges. While the number of necessary inserted points is bounded (e.g., Bishop [2016] proved by

$ (=2.5) for an =-vertex input segment graph), the output meshes can be prohibitively over-dense

near input features. To avoid over-re�nement, a preprocessing guided by a user tolerance could be

done to merge or re-align problematic features before applying conforming Delaunay [Busaryev

et al. 2009]. In contrast, constrained methods relax the Delaunay requirement for input segments.

This relaxation prevents an explosion in the vertex count, but introduces di�culty maintaining

quality and robustness near features. We compare directly to the Delaunay triangulation libraries

T������� [Shewchuk 1996] and CGAL [Boissonnat et al. 2002], both of which implement con-

forming and constrained methods.

I���������� ������� attempt to increase the aggregate or worst-case quality of triangles

in an existing mesh by local connectivity changes or vertex displacements [Canann et al. 1996,

1993; Lipman 2012]. The Optimal Delaunay Triangulation family choose ametric that harmonizes
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with Delaunay methods and their duality with Voronoi diagrams [Chen and Xu 2004]. While

strategies exist to encourage these methods to huge input domain boundaries [Alliez et al. 2005b;

Feng et al. 2018], they require a good, boundary-preserving initial starting point and generally

do not support internal features. Our method follows the strategy of Hu et al. [2018] to create

such an initial starting point for boundary and internal linear or curved features. We optimize the

conformal AMIPS energy [Fu et al. 2015; Rabinovich et al. 2017] to measure and improve mesh

quality.

4.2.2 C����� T�������������

While linearmeshes are predominant, curvedmeshes see frequent use in visual computing [Bargteil

and Cohen 2014; Mezger et al. 2009] and engineering analysis [Xue et al. 2005; Bertrand et al.

2014b,a]. Meshes with curvilinear triangles o�er a higher-order boundary approximation, en-

abling higher-accuracy simulations for smaller meshes [Babus̆ka and Guo 1988, 1992; Bassi and

Rebay 1997; Luo et al. 2001; Oden 1994; Hughes et al. 2005; Sevilla et al. 2011; Zulian et al. 2017]. To

the best of our knowledge, all existing methods for constructing curved triangulations begin by

creating a linear triangulation and then curve triangles to align with a curvilinear feature/bound-

ary constraints. Our method is no exception.

Also to the best of our knowledge, all existing methods have been tested on small collections

of comparatively simple models, and none of them can handle real-world, imperfect models (see

Section 4.5.3 for our study on robustness of linear meshing methods, which are strictly simpler

than high order methods). Our method is the �rst that has been tested on tens of thousands of

real-world inputs.

D����� ������� split features into shorter curves and then create incident triangles on the

interior of the domain (similarly to linear advancing front methods) [Dey et al. 1999] or directly

�t or snap high-order nodes of a curvedmesh (based onminimumdistances) [Ghasemi et al. 2016].
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The curved triangles are represented using Lagrange polynomials, [Dey et al. 1999], quadratic or

cubic Bézier polynomials [George and Borouchaki 2012; Lu et al. 2013; Luo et al. 2002], or NURBS

[Engvall and Evans 2017]. To capture the high-order curve or surface, while most techniques

assume an isometric mapping between each element of the linear mesh and the corresponding

high-order piece by evenly interpolating the parameters of linear vertices for high-order nodes,

[Shephard et al. 2005; Sherwin and Peiró 2002] take into account the anisotropic property of the

to-be-curved region to compute the high order node parametric positions accordingly.

D���������� ������� start with a linear mesh and elevate the degree of triangles to (so far,

straight) high-order �nite elements. By treating the triangulated domain as an elastic object, the

mesh is deformed to curve triangles to match the input features. Di�erent physical models have

been employed, such as linear [Abgrall et al. 2014, 2012; Dobrzynski and El Jannoun 2017] and

non-linear [Persson and Peraire 2009; Moxey et al. 2016; Poya et al. 2016] elasticity.

D��������� M�����, I��������, ��� I������������. Optimization methods are usually used

as a post-processing step to attempt to untangle the inverted triangles created during the curving

process and to improve their quality. Inverted triangles can be identi�ed by extending the notion

of area [Knupp 2000] to high-order function geometric maps [Engvall and Evans 2018; Johnen

et al. 2013; Poya et al. 2016; Roca et al. 2012]. Various untangling strategies have been proposed,

including geometric smoothing and connectivity modi�cations [Cardoze et al. 2004; Dey et al.

1999; Gargallo Peiró et al. 2013; George and Borouchaki 2012; Lu et al. 2013; Luo et al. 2002;

Peiró et al. 2008; Shephard et al. 2005]. The mesh is then improved by optimizing various quality

measures [Dobrzynski and El Jannoun 2017; Geuzaine et al. 2015; Roca et al. 2012; Ruiz-Gironés

et al. 2017, 2016a,b; Stees and Shontz 2017; Karman et al. 2016; Toulorge et al. 2016; Ziel et al.

2017]. However, none of these methods can guarantee to produce an inversion-free curved mesh.

A di�erent approach [Persson and Peraire 2009; Ruiz-Gironés et al. 2017] consists of initializ-

ing the optimization from a feasible inversion-freemesh, and preventing �ips during deformation.
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Our method follows this approach, but unlike previous methods we do not sacri�ce input feature

preservation. Another issue is mesh overlaps due to intersections of curved boundary segments

(not necessarily incurring �ipped triangles). To the best of our knowledge, our method is the �rst

to deal with this problem explicitly (Section 4.3.1).

R�������������� of curved meshes vary: B-spline, implicit functions, and subdivision surfaces

are typical high-order surface representations [Bruno and Pohlman 2003]. A few works assume

the input being either an implicit function and �t B-spline patches [Peiró et al. 2008], or a linear

boundary only and then try to obtain the high-order domain through the optimization of a linear

mesh according to physical boundary conditions [Feng et al. 2018; Moxey et al. 2016; Poya et al.

2016; Ruiz-Gironés et al. 2017; Ziel et al. 2017]. The majority of the proposed works focus on

polynomials, Bézier, and B-splines with a low degree (usually quadratic and cubic) [Dey et al.

1999; George and Borouchaki 2012; Lu et al. 2013; Luo et al. 2002; Peiró et al. 2008; Geuzaine

et al. 2015; Johnen et al. 2013; Toulorge et al. 2013]. While Engvall and Evans [2017] show that

exactly capturing NURBS patches is possible, their curved meshing algorithm is only applicable

to clean CAD models, i.e. orientable, watertight, manifold, and without intersections, which are

rare in practice. To the best of our knowledge, [Ruiz-Gironés et al. 2016b] is the �rst attempt on

2dmeshing curved inputs with interior gaps. Since imperfect geometries are commonplace [Beall

et al. 2003], all the existing curved meshing techniques are impractical in an automatic pipeline.

C����� T�������M������ S�������. There are few 2Dmeshing software supporting curved

triangles. To the best of our knowledge, the only ones available are in the Matlab Partial Di�eren-

tial Equation Toolbox [MATLAB Partial Di�erential Equation Toolbox 2018], GMSH [Geuzaine

and Remacle 2009], and NekTar++ [Cantwell et al. 2015; Turner et al. 2018]. However, all of them

have strict input requirements which are rarely met by vector drawings in the wild. Matlab only

supports a CSG tree of circles, ellipses, and rectangles, greatly limiting its applicability. GMSH

and NekTar++ both target the tessellation of domains speci�ed in STEP format, using the Open-
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(a) (b) (c) (d) (e)

Figure 4.3: Overview of the pipeline of our algorithm. The input piecewise-Bézier curves (a) are split at
inflection points (black) and at optimal position to limit the total curvature (b), and finally all intersections
are removed (c). This concludes the feature preprocessing and the features are first linearly meshed (d)
and finally a curved mesh is obtained (e).

CASCADE engine to create initial linear triangle meshes on the interior of a parametric patch.

Neither supports open or self-intersecting curves, which are extremely common (in our dataset,

this accounts for 99.95% of the inputs).

4.3 M�����

Our curvilinear meshing algorithm (Figure 4.3) is divided into three stages: (1) analysis, �ltering,

and rounding of the input features (Section 4.3.1), (2) generation of a piece-wise linear initializa-

tion (Section 4.4.1), and (3) quality optimization and curving (4.4.2). The three stages are designed

to work together, but can be used independently: for example, step (1) could be used as pre-

processing for other linear triangle meshing pipelines to increase their robustness by sanitizing

invalid inputs.

4.3.1 I���� ������������� ��� ������

Commonly used 2D meshing algorithms and software make strong, often implicit assumptions

about the quality of the input, usually requiring no self-intersection, no degeneracy, and no small

angle between intersecting segments. However, these conditions are rarely met in real-world

data, and their violation often results in either ameshing failure or over-re�nement in the a�ected
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Figure 4.4: Traditional meshing tolerance may lead to jaggy boundary even in simple configurations
(le�). Preserving features removes the problem (right).

regions (Figure 4.2). In both cases, it might not be possible to solve PDEs in these domains, which

then requires manual interaction to clean up the problematic regions. A possible solution is using

a meshing tolerance [Mandad et al. 2015b; Hu et al. 2018], i.e. allowing a controlled geometric

error in the created mesh: if the tolerance is su�ciently large, these algorithms will automatically

remove small features, preventing over-re�nement and numerical problems due to imperfections

in the input. However, this comes at the cost of approximating the input, which is particularly

problematic around straight features, which might become jaggy (Figure 4.4).

We propose a di�erent approach: we analyze the input curves to identify a subset (primary

feature curves) that can be represented with a curved triangle mesh with a user-desired target

edge-length ; , and approximate the rest (secondary feature curves) with a piecewise linear mesh

within an n meshing tolerance.

I���� D����������. Our input is a feature soup F = {P, C} of 2D isolated points (P) and 2D

cubic Bézier curves (C) representing the features of the scene. The parameters of the primitives

are provided in double �oating points.

We obtain the input feature soups by converting a subset of the SVG 2.0 standard (points,

circles, ellipses, curves, and straight lines) into their cubic Bézier representation (replacing circles

and ellipses with the Bézier approximation used by Adobe Illustrator) and we output our results
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in the gmsh format [Geuzaine and Remacle 2009].

Next, we de�ne primary and secondary feature curve sets. The algorithms for obtaining these

are described in Section 4.4. The primary feature curve set satis�es two conditions: bounded

curvature and `-separation.

B������C��������. Let ;< be the user-controlledminimal edge length of the �nal mesh. Now

consider a circle with curvature higher than 2/;<: since a triangle of this size cannot �t inside the

circle it will be impossible to represent such a feature without re�ning more than what the user

prescribed. We thus discard all the parts of curves whose local curvature is higher than 2/;< , and

denote these new feature set as F; .

`�����������. Ideally, we would like to preserve all features in F; . However, this might be

impossible if we want to represent the output at a given resolution. A counterexample is simple

to construct: take as input two parallel segments at a distance 3 . A triangle mesh that exactly

represents both segments must contain at least one triangle between them, and the area of this

triangle will tend to 0 as 3 tends to 0, leading to a possible inversion of the triangle due to �oating

point rounding errors. Similarly, two feature endpoints that are at a distance3 between each other

will force the insertion of two vertices in the �nal mesh, corresponding to the two endpoints, that

are also at a distance 3 . As 3 tends to zero, rounding errors might �ip triangles that are in the

neighbourhood. Even if we could somehow perturb the �oating point coordinates to prevent

inversions, the quality and size of these triangles will make the resulting mesh unusable for most

downstream applications.

To avoid this problem, we formally identify these cases de�ning a local validity condition for

sets of planar curves.

De�nition 4.1. Let F 2 R2 be a collection of planar piecewise Bézier curves. The `-separated

set F` , is the subset of F; , such that for any point ? on a feature 5 , the ` ball centered at ? contains
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only a single connected component of 5 and no other feature curves or connected components

of 5 .

This de�nition ensures that no pair of points in the `-separated set F` can be closer than `,

except if they belong to the same curve and are connected by a part of the curve fully contained

inside a ` ball. For convenience, we will refer to F` as the primary features, and its complement

F \ F` , i.e. the parts of features that have been �ltered out because of their high curvature or

because of the `-separation, as secondary features.

The parameters ` (feature envelope) and ;< ( minimal edge length) control the desired level

of approximation: a small ` will lead to denser meshes with more features tagged as primary

and preserved more accurately in the �nal mesh (Figure 4.6). Similarly, a small n (boundary enve-

lope, Section 4.4.1) will produce secondary feature which better approximate the input secondary

curves. We also use a numerical tolerance n< to account for rounding errors in the control points

of the input curves.

O����� D����������. The output of our algorithm is a valid triangular mesh of a bounding

box containing all input curves. Its edges are line segments or cubic Bézier curves, satisfying the

following properties: (1) the edges do not intersect each other or the boundary of the bound-

ing box, and (2) the edges in one-to-one correspondence with the primary features are within `

distance from their assigned feature (Section 4.4). While we do not have any formal guarantee

on the preservation or approximation of the secondary features (Figure 4.3 (e) green edges), our

algorithm strive to preserve them if the resolution allows and if they are not too close to primary

features (which are given priority).

The coordinates of the output mesh vertices and control points for the curved edge are rep-

resented in double �oating point representation. We use cubic Bézier curves for the edges since

they can induce volumetric geometricmap de�nedwith cubic Lagrange triangleswhich, restricted

to edges, correspond to the Bézier curve. We decide to use Lagrange bases for the map, since
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Figure 4.5: Notation for Lemma 4.2, Lemma 4.3, and Theorem 4.4.

they are ubiquitously used in curved meshing applications and are supported by most FEM sys-

tems [Geuzaine and Remacle 2009; Ansys 2018; Abaqus 2018].

Note that, during our optimization we not only produce curvedmeshes but also try to produce

a bijective geometric map expressed with Lagrange bases. Our algorithm could be adapted to

produce curved meshes with NURBS edges, which would allow to reproduce ellipses and circles

exactly; we leave this extension as a future work.

4.3.2 M��������� ��� T������� C������.

Our algorithm is based on a necessary and su�cient condition on the mesh quality (minimal

angle) of a linear mesh, that ensures that its edges can be bent into Bézier curves without self-

intersections. We will use this condition as a criteria to guide the discrete resampling of the input

curves, which will be used to create an initial linear triangle mesh.

Lemma 4.2. Let 2 (C), C 2 [0, 1], be a cubic Bézier curve with control points 20, 21, 22, 23, no self-

intersection, and constant-sign curvature less than c , i.e. no in�ection points (Figure 4.5, left). Then,

for any C 2 [0, 1], 2 (C) is on the same side of line segments [20, 21] and [22, 23].

Proof. Because of the constant-sign curvature, the rotation of the vector 20(C) is always positive

(or negative) prohibiting the curve to change direction. Additionally, since the curvature is less

than c , the two segments [20, 21] and [22, 23] are in the same side of the line passing trough [20,

23]. Therefore, for the curve to cross the edge [20, 21] and match the tangent at the end point it
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requires to a full turn which can be only achieved with a self intersection since degree 3 Bézier

cannot spiral. [22, 23] follows by symmetry. ⇤

Lemma 4.3. Let 2 (C), C 2 (0, 1) be a cubic Bézier curve with control points 20, 21, 22, 23, without

self-intersection, constant-sign curvature (no in�ection points), and total curvature U strictly smaller

than c (Figure 4.5, middle). Then the signed angles between the vectors Æ20, 23 and Æ20, 21 and Æ22, 23 and

Æ20, 23 turns in opposite directions, and are smaller than U .

Proof. The fact that two angles between the segments turn in opposite directions follows from

Lemma 4.2: any point on the curve is on the right (and left side) of the tangent and in particular

the intersection between the segments [23, 21] or [20, 22]. Finally, since the total curvature is the

integral of the curvature (which is constant-sign) is smaller than U , any tangent angles is smaller

than U , and in particular the two at the endpoints which correspond to the angles \212023 and

\202322. ⇤

Theorem 4.4. Let �⌫⇠ be a triangle with minimal angle U , and 2 (C), C 2 (0, 1) be a cubic Bézier

curve with control points �,21,22,⌫, no self-intersection, constant-sign curvature and total curvature

U strictly smaller than c (Figure 4.5, right). Then c(t) does not intersect the edges AC and CB, for any

C 2 {0..1}.

Proof. Since that quadrilateral is contained in the triangle ABC, it follows that the curve will not

intersect it. ⇤

Theorem 4.4 provides a direct connection between linear mesh quality (measured as the min-

imal angle over the triangles of a linear mesh) and the maximal turning angle of the feature curve

assigned to one of linear mesh edges. Wewill �x a minimal angle U = 10 degrees that the meshing

algorithm will optimize for, and re�ne the input features to ensure that the angle between the

tangents at the endpoints and corresponding edges does not exceed U . Note that this condition is

only necessary but not su�cient to ensure a positive Jacobian of the Lagrangian geometric map

assigned to the triangle, and it is thus only a very e�ective heuristic (Section 4.5).
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4.4 F������ P��������� ��� C�����M������

We introduce an algorithm to compute primary and secondary features from the set F of input

features. This algorithm uses standard double �oating point precision. The algorithm has six

parameters: ` the feature envelope (distance between primary features), n the boundary envelope

(desired accuracy for secondary features, described below), n< (small number used to account for

roundo� errors), U (desired minimal angle in the target mesh), ; (desired edge length of the target

mesh), and ;< (minimal edge length of the target mesh). In our experiments, we use ` =1e-33 ,

n = 2`, n< = 1e-8, U = 10 degrees, ; = 3/20, and ;< =1e-43 with 3 the diagonal of the bounding

box. It �rst splits the feature curves into elementary pieces (discrete curve sections) discarding

some not satisfying primary feature constraints, and then classi�es the remaining ones.

R������ �� D��������� C�����. We convert all degenerate curves which have all their con-

trol points too close together (i.e., contained in a circle of radius n<), into a feature point computed

as the average of the control points. The rationale behind this choice is that any such curve will

be too small to be represented with a mesh of target resolution and we thus opt to represent it as

a single point in the output mesh.

We also identify all Bézier curves corresponding to straight segments by least-square �tting a

line to the control points, andmarking them as straight if the sumof distances of the control points

to the line is smaller than n< . These features are replaced by line segments to avoid numerical

problems in the next steps and to simplify the point to feature queries.

I��������� P���� S����. We split each curve 28 2 C at its in�ection points, decomposing it

into at most three curves with constant-sign curvature, which is a crucial property required by

Theorem 4.4. The in�ection points are computed explicitly by �nding the parametric coordinates
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for which the curvature changes sign

^k20(C)k3 = det(2 (C)0, 2 (C)00) = 0, (4.1)

and ensuring that 2 (C)0 < 0.

T���� C�������� S����. While each part of the curve has constant-sign curvature by con-

struction, its total curvature is not bounded, potentially creating self-intersections in the curving

step (Theorem 4.4). We thus recursively subdivide the curves until the turning number is smaller

than 180 degrees to prevent self-intersections (Theorem 4.4). The optimal splitting point, which

halves the total curvature, corresponds to the point in which the tangent is the average of the

two endpoints tangents. This condition can be formulated as a quadratic equation in C

det
✓
20(0) + 20(1)

2
, 20(C)

◆
= 0.

Note that when the angle between 20(0) and 20(1) is larger than c , we need to use minus the

average tangent.

C���� R���������. We discretize the resulting curves by sampling them recursively, splitting

them in half at each step, until two conditions are satis�ed: (1) the segments are shorter than the

user-desired target edge length ; and (2) the polyline approximation is within ` distance from

the Bézier curve. From now on, each curve section will be denoted with the term discrete curve

section.

P������ ��� S�������� F������T������. We now compute a discrete version of a `-separated

soup of features, directly using the polyline approximating the curves. We greedily traverse all

the discrete curve sections, and for each one we mark it as primary, check the `-separated condi-

tion, and discard conservatively all the segments that violate it, marking them as secondary. The
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Figure 4.6: E�ect of the feature envelope ` and boundary envelope n on the closeup (white circle in the
middle) of an input mesh (center). The larger ` and n (top right corner) are, the less primary (red) and
secondary (green) features the final mesh will have. By enlarging ` (~-axis from bo�om to top) more
primary features will be present in the final result. A similar e�ect is obtained by enlarging n (G-axis from
le� to right).

output of this stage is a valid `-separated set features.

S�������� F������ S�������������. A second pass is used to prune close secondary features:

every pair of feature endpoints closer than ` corresponding to secondary features are collapsed

at their barycenter. This step is not strictly necessary, but it dramatically reduces the number

of triangles generated by the BSP subdivision step, improving the running times in challenging

models with thousands of self-intersections.

99



4.4.1 L����� M������

Similarly to many existing curved meshing algorithms (Section 4.2), we create an initial valid

linear mesh and then curve its edges to match the feature curves. However, our pipeline di�ers

from existing approaches: (1) we interleave mesh curving and quality mesh improvement and (2)

we never allow the curved triangles to get inverted, i.e. we keep the Jacobian of their geometric

map positive.

G��������� �� � V���� L����� T������� M���. To construct an initial linear triangle mesh,

we implement a 2D version of the TetWild algorithm proposed in [Hu et al. 2018] , trivially

adapting all the steps to their 2D counterparts, which are both simpler and much more e�cient

than the volumetric version. We thus denote our algorithm as TriWild.

We use the same hybrid geometric kernel proposed in [Hu et al. 2018], using rational co-

ordinates to avoid numerical problems in the �rst phase, and rounding them to �oating point

coordinates during quality optimization. The algorithm requires a parameter n to control the size

of boundary envelope. In Figure 4.6, we compared the results of di�erent combinations of enve-

lope n and feature envelope `. The in�uence of targeted edge lengths ; and minimal edge length

;< on �nal output is shown in Figure 4.7. For the sake of brevity, we describe here the extensions

required to handle the input curved features and we refer to [Hu et al. 2018] for the complete

description of the algorithm.

F������ I���������. Similarly to TetWild, TriWild preserves two invariants during the mesh

generation and optimization: (1) secondary feature edges need to stay within the n envelope, and

(2) triangles cannot be inverted. We add two additional invariant for the primary feature edges:

(3) the integrated curvature of the part of the parametric curve associated with every triangle

edge must be smaller than U , and (4) primary feature vertices are allowed to only move on the

curve. We simply discard all operations that violate any invariant, and we use our preprocessing
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; = 3/5 ; = 3/20 ; = 3/100
Figure 4.7: E�ect of the targeted edge length ; on the output mesh.

(Section 4.3.1) to ensure that the invariants hold for the initial triangle mesh generated after BSP

subdivision.

F������ H�������. TriWild iterates between four local operations for mesh improvement: (1)

edge splitting, (2) edge collapsing, (3) edge swapping, and (4) vertex smoothing. Their behaviour

and implementation are identical to their 3D counterpart in TetWild. The only exceptions are

the vertices and edges corresponding to primary features: (1) when a feature edge is split, we

place the inserted vertex in the middle of the parametric curve attached if it does not introduce

inverted triangles, otherwise we place it in the middle of the linear edge, (2) when we collapse

edges involving an endpoint of a curve, we always keep the endpoint in the same position, (3)

we disallow swaps on primary and secondary feature edges, and (4) we restrict smoothing of

vertices attached to a feature to lie on the feature itself (Section 4.4.3). During all the operations,

we explicitly keep track of the parametric position of all the vertices lying on primary features.

V����� P���������. While unconditionally robust, triangle meshing using a BSP subdivision

has the unfortunate side e�ect of potentially re�ning some of the edges corresponding to input

features. This is problematic if the features are curved, since the inserted vertices will lie close, but

not exactly on the feature. We thus add an additional step in the mesh improvement that moves

every feature vertex as close as possible to its assigned feature (Figure 4.8) to enforce the �fth
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Figure 4.8: The green vertex prevents the new orange point in the feature to move to the curve without
creating inverted triangles (first image). We un-mark it so it is free tomove (second feature) until is pushed
away and the feature vertex is snapped to its feature (last image).

invariant. For each such vertex, we compute the closest point on the feature (Section 4.4.3), and

move as close as possible to it, while not violating any of the 3 invariants above. These vertices are

not allowed to move further away from their closest point on the features. As the vertices move

toward their target position, the rest of the mesh follows them since the smoothing operations

strive to keep the quality high, eventually allowing these vertices to snap to the feature. While

rare, it is possibly that some vertices in the region between the linear and the curved feature

(Figure 4.8) cannot move due to Invariant (1). We thus delete the tagging for any secondary

feature in these areas to allow the primary feature vertices to be snapped.

T���������� C�������. The quality optimization terminates when the minimal angle of the

mesh is larger than U or the AMIPS energy is smaller than 10 (default value of TetWild), which is

a good heuristic for curving the linear triangles (Theorem 4.4). Note that this condition does not

guarantee that the elements will not be inverted during curving, but makes it less likely. We also

stop the optimization if the maximum of iterations is reached. We have experimentally observed

that for most models it is possible to stop the optimization prematurely, without a�ecting the

quality in noticeable ways, and we thus used lower thresholds (10 degrees, AMIPS energy 30,

max 80 iterations) for the large scale stress tests to reduce the overall running time at the cost of

mesh quality.
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4.4.2 C���������� M��� O�����������

The result of the previous stage is a linear meshwhich edges are assigned to a primary feature and

which vertices have the corresponding parametric values. We now aim to construct a per-triangle

bijective geometric map expressed in Lagrange form which, restricted to edges, corresponds to

the curve. This curvilinearmesh optimization iteratively warps the edges of the linearmeshwhile

optimizing its quality with local operations. Note that our optimization only bends the feature

edges.

S�������� ��� C������ To simplify all operations applied on a curved mesh, we split every

triangle with more than one edge assigned to a curved feature until it has only one edge. We

assign the cubic Lagrangian geometric map

6(G,~) =
9’
8=0

E8✓8 (G,~)

(see Section 4.4.3 for the de�nition of ✓8 (G,~)) to each triangle with a feature edge (the �rst 3

E8 are the vertices of the triangle) and we compute its coe�cients E8 by evaluating the curve

2 (C) at 1/3 and 2/3 for the curved edge. For the remaining two linear edges, we sample them

linearly, and use the average �rst 9 E8 for the position of the central node. This procedure is

not guaranteed to produce a valid geometric map due to 2 reasons: (1) the solution might not

exist (avoiding intersections between the boundary segments of a Lagrangian triangle is not a

su�cient condition to ensure an overall positive Jacobian), and (2) even if it exists it might not be

in the simple form we just described. We thus skip problematic triangles in this stage (assigning

them a linear geometric map) and we improve the quality of the mesh further, increasing the

probability that the geometric map �t will produce a bijective map.
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Figure 4.9: Maximal least square fi�ing error with respect to 3 on a log scale.

C����� M��� O�����������. The mesh quality is improved using the same local operations

used in Section 4.4.1, but with less constraints, since it is not necessary anymore to enforce the

total curvature invariant. Since the mesh is now using a non-linear geometric map, the Jacobian

is no longer constant in each triangle, and checking for validity is more expensive [Geuzaine et al.

2015]. Note that each operation on a curved triangle potentially modi�es the curved edges and

requires to update the Lagrange coe�cients E8 to always match the associated feature.

T���������� C������� ��� L���� S����� F������. The optimization terminates when the

user-controlled quality threshold is achieved (AMIPS Energy 20), or after a user-controlled num-

ber of iterations (default 10) is reached. If there are curved triangles which are still impossible

to curve exactly using the simple Lagrange basis (i.e., the Jacobian of the geometric mapping

is negative), we do a best-e�ort and �t them only in a least square sense by optimizing for the

Lagrangian coe�cients E8 that best approximate the boundary curve (minimize the distance be-

tween the two curves) under the constraint of having a positive Jacobian. This happens to 44.7%

meshes of all our outputs and 0.18% faces per mesh (those with �tting) in average. The overall

max error in our experiments is 6.99e-23 (mean 1.87e-53 , std 6.99e-4, Figure 4.9), indicating a

faithful reproduction of the input features.
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4.4.3 T�������� D�����

C�����AMIPS For a feature vertex ? = 2 (C) where 2 is the feature curve and C is the parametric

value, we let ⇢ (?) be the traditional AMIPS energy which is minimized using Newton method,

thus we requires gradient and hessian of ⇢. For the smoothing on the features the minimization

becomes univariate:

min
C2(0,1)

⇢ (2 (C)).

We now need gradient and hessian of ⇢ (2 (C)) with respect to C which can be easily obtained by

the chain rule:

⇢0(2 (C)) = h(r⇢) (2 (C)), 20(C)i,

and

⇢00(2 (C)) = (20(C))) �⇢ ((2 (C)) 20(C) + h(r⇢) (2 (C)), 200(C)i.

Note that since ⇢ (2 (C)) : R! R the gradient and hessian are scalars (while for ⇢ (G,~) : R2 ! R

they are tensorial).

P���� C���� B����� D������� The parametric value C¢ of the closest point to ? in the curve 2

can be �nd as

C¢ = argmin
C2(0,1)

k2 (C) � ? k2,

which, by the �rst order condition leads to the following equation

d
dC

k2 (C) � ?k2 = 0.
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Since 2 (C) is a polynomial of order 3, the squared norm becomes of order 6, which implies that

the �rst order condition equation is of order 5. Therefore it can be written as

d
dC

k2 (C) � ? k2 = 0C5 + 1C4 + 2C3 + 3C2 + 4C + 5 = 0.

Fining roots of this polynomial is a challenging task, which we solve by computing the eigenval-

ues _8 , 8 = 0, . . . , 4 of the 5 ⇥ 5 companion matrix

" =

©≠≠≠≠≠≠≠≠≠≠≠≠
´

0 0 0 0 5 /0

1 0 0 0 4/0

0 1 0 0 3/0

0 0 1 0 2/0

0 0 0 1 1/0

™ÆÆÆÆÆÆÆÆÆÆÆÆ
¨

.

For each real eigenvalue _8 we compute k2 (_8) �? k2 and select C¢ as the _8 with smallest distance

in the interval 0, 1. If no _8 are in interval, we know that C¢ will be either zero or one, which can

be decided by evaluating the distance from the endpoints. Note that we opted for this solution

for simplicity, a more e�cient alternative is Bezier clipping [Sederberg and Nishita 1990].

C���� L������� B���� The ten Lagrange bases are de�ned as

✓0 = �1
2
(3~ � 1 + 3G) (~ � 1 + G) (3~ � 2 + 3G) ✓1 =

1
2
G (9G2 � 9G + 2)

✓2 =
1
2
~ (9~2 � 9~ + 2) ✓3 =

9
2
G (G + ~ � 1) (3G + 3~ � 2)

✓4 = �9
2
G (3G2 + 3G~ � 4G � ~ + 1) ✓5 =

9
2
G~ (3G � 1)

✓6 =
9
2
G~ (3~ � 1) ✓7 = �9

2
~ (3G~ � G + 3~2 � 4~ + 1)

✓8 =
9
2
~ (G + ~ � 1) (3G + 3~ � 2) ✓9 = �27G~ (G + ~ � 1)

106



0%

2%

4%

6%

1 100 10000
Timing (in seconds)

Figure 4.10: Timing of our curved pipeline on a log scale.

4.5 R������

We implemented our algorithm in C++, using Eigen [Guennebaud et al. 2010] for linear algebra

routines. The source code of our reference implementation is available at https://github.

com/wildmeshing/TriWild. The experiments were performed on cluster nodes with 2 Xeon E5-

2690v4 2.6GHz CPUs and 250GB memory, each with 64GB of reserved memory, and allowed for

a maximum running time of 6 hours.

To test our curved mesh generation we crawled 19,686 SVG images from openclipart.org, a

free SVG image repository. For each SVG image we extract the set of features F which are used in

our algorithm. Figure 4.11 shows some examples of the created curved meshes. Within the time

limit of 6 hours we successfully created 19,685 curved meshes with only one failure due to large

input size. Figure 4.10 summarizes the running time of our curved pipeline. Since we always

reject operations (included the �tting) introducing inverted elements, the only possible failure is

inherited by TetWild: some vertices might fail to be rounded into �oating points. However, this

never happened in our experiments.
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Figure 4.11: Random selected examples of curved meshes obtained with our method on the Openclip
dataset.
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Figure 4.12: Example of di�usion curves for a linear (second right) and curved (most right) mesh. The
most le� is the input and the second is the our curved output.

4.5.1 A�����������

The main application of meshing is simulation, which aims to solve a partial di�erential equation

(PDE) for an unknown functionD de�ned over a domain ⌦ subject to some boundary constraints.

The role of the function D depends on the application, for instance in elasticity it is displacement,

while for �uids it is velocity. One of the typical numerical methods to solve PDEs is the �nite

element method (FEM). As the name suggests, the �rst essential step of a FEM consist of meshing

the domain (thus creating the triangles) which can be done with both linear or curved meshes.

In fact, for FEM simulations, one requires only a bijective map from the reference triangle (unit

right-angle triangle) to the actual physical triangle, without any assumptions about the linearity

of the map. Changing the geometric order of the triangles (e.g., from linear to cubic) only changes

the local assembler but not a�ects the size and sparsity of the �nal linear system. In fact, it only

requires a slightly higher quadrature order, leading to similar performance as linear triangles.

Themain advantage of high order geometries is that we can use coarse meshes, which leads to

faster simulations, without introducing any geometrical error on the boundary description. We

now demonstrate the e�ectiveness of our curved meshes for di�erent applications using di�erent
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PDEs. We focus our applications to standard PDEs used in graphics, and remark that other more

complex equations might bene�t more from high-order geometries [Bassi and Rebay 1997]. All

experiments are done on cubic meshes (the geometric map used is cubic Lagrange polynomials)

with quadratic Lagrange polynomials as basis functions to represent the solution. When we

compare against meshes with straight edges, we replace the cubic geometric map with a linear

one. We stress that replacing the linear geometric map with a cubic one produces systems with

exactly the same size and sparsity, the only di�erence are the entries of the matrices, which are

slightly more expensive to compute for the high-order map.

L�������� The simplest, and by far the most popular in graphics, PDE is the Laplace equations

�D = 5 , D = 6 for G 2 m⌦,

where m⌦ is the boundary of the domain. A popular graphics application of such equation is

di�usion curves [Orzan et al. 2008; Boyé et al. 2012]. A set of curves is augmented with 2 colors,

one on the left and one on the right. The �nal image is generated by di�using the colors from

the input colored curves. In other words, the mesh is cut open along the curves, the left and

right colors play the role of boundary conditions, and the solution is the color at every pixel.

We generate a curved mesh with our method from the annotated curves in [Orzan et al. 2008]

and run the di�usion simulation with and without curved triangles, Figure 4.12. We clearly see

that, at the same resolution, the curved mesh provides a superior result, avoiding approximation

artifacts on the di�usion curves. The runtime for the linear mesh is 0.074s, and switching to cubic

geometric map only adds 0.016 seconds.
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B��L�������� For many graphics applications, the Bi-Laplacian equation is preferred since it

produces smoother results around the boundary.

�2D = 0, D = 6 for G 2 m⌦,

To solve this PDE we require mixed �nite elements [Monk 1987] or⇠1 basis functions [Boyé et al.

2012], we opted for the former since it is simpler to implement. Among many application of the

bi-Laplacian, we picked surface in�ation [Joshi and Carr 2008; Sýkora et al. 2014]. The idea is

elegant: the mesh is �xed at the curves (zero boundary conditions) and a force is applied to the

curves to “lift” the mesh. We follow the Rèpousse [Joshi and Carr 2008] construction but instead

of using the curvature to in�ate we use a constant value. Figure 4.13 shows the results for the

samemesh with and without curved triangles: similarly as before, the curved mesh do not exhibit

any visible artifacts, and the runtime is only slightly (0.2%) higher for the curved mesh.

E��������� In Figure 4.14, we study the di�erence of an elastic deformation using the Neo-

Hookean elasticity model, where the stress f relationship is not linear with respect to the dis-

placement D:

�div(f [D]) = 5 f [D] = ` (� [D] � � [D]�) ) + _ ln(det � [D])� [D]�) ,

where � [D] = rD + � and _, ` are material parameters. Note that due to the non-linearity of

the PDE, the solution method requires a non-linear solver such as the Newton method. We use

a simple setup, a square domain with a circular hole in the middle is hanged on the top (zero

Dirichlet) and gravity is applied. Even in the context of non-linear PDE the overhead of curved

triangles is negligible (curved 0.0975s, linear 0.0857s) and curved meshes produce results closer

to the ground truth solution computed on a dense mesh, Figure 4.14.
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Figure 4.13: Example of inflation on a linear (middle) and curved (right) mesh of the same resolution,
the input mesh is shown in the (le�).

Gravity

Figure 4.14: Example of elastic deformation of linear (second figure) and curved (third figure) triangles. A
solution on a densemesh is also provided for reference (fourth figure). Note how the curvedmesh provides
a much more accurate solution than the linear mesh, especially around the hole. The coarse mesh used
in both simulations is shown in the first figure. The color shows the ~-displacement.
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Figure 4.15: Example of Stokes fluid simulation for small circular obstacles (le�) on linear (middle) and
curved (right) triangles. The color shows the norm of the velocity of the fluid, and the lines are the stream
lines.

S����� The �nal application we consider is �uid simulation, where we are looking for the �uid

velocity D of a �uid. We solve the Stokes equation

�`�D + r? = 0

�divD = 0,

where ? is the pressure and ` is the viscosity of the �uid. The experiment consists of a pipe

�lled with small circular obstacles with a �uid passing through (Figure 4.15 left), a setup used

for studying cancer cell migration within interstitial tissues [Panagiotakopoulou et al. 2016]. In

other words, we have a constant non-zero boundary condition on the left and right side of the

domain (in and out �ow velocities) and zero velocity on the rest of the boundary (i.e., the top

and bottom, and the obstacles). Figure 4.15 shows a close-up of the results of the simulation for

curved and linear meshes. Because of the poor approximation of the linear mesh, the behaviour

of the �uid is asymmetric and unnatural. While simulation on linear mesh takes 2.65s, it takes

2.70s on curved mesh where the di�erence is small.

4.5.2 C��������� ���� C�����M������

To the best of our knowledge only three existing available software allow to generate curved

meshes that preserve input curve features: the Matlab PDE toolbox [MATLAB Partial Di�erential
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Matlab Our

Figure 4.16: Comparison between Matlab (le�) and our (right) mesh for a simple set of ellipses.

Equation Toolbox 2018], GMsh [Geuzaine and Remacle 2009], and NekTar++ [Cantwell et al.

2015]. Themain di�erence between these software and our solution is that they require a CSG tree

(Matlab) or a boundary curve which clearly de�nes an interior domain (GMsh, NekTar++). With

these solutions it is impossible to mesh a set of open input curves, thus limiting the applications,

for instance di�usion curves or in�ation (Section 4.5.1) would be impossible. Wemanually created

2 simple examples and provided a representative comparison to one method for each category.

M����� According to the Matlab documentation2, the 2D meshing package exploits construc-

tive solid geometry (CSG), which uses a set of solid blocks: square, rectangle, circle, ellipse, and

polygon. This short list of primitives limits the applications considerably, for instance it is not

possible to represent even closed polybezier curves. Another major limitation of the toolbox is

that it supports only linear and quadratic triangles, leading, for instance, to poor approximations

of circular arcs. To test Matlab we setup a simple example, a unit square with 3 ellipses curves

added3 and produced the SVG for our method, Figure 4.16. Note that our method constructs a

dense high-quality mesh around the high-curvature tip of the ellipse while Matlab resorts to large

low quality triangles.

While constructing this example we discover 2 problems in the Matlab mesher: if we shrink
2
https://www.mathworks.com/help/pde/geometry.html

3The Matlab experiment consists of: a unit square at the origin, an ellipse centered at (0.25, 0.25) with semiaxes
0.2 and 0.15, an ellipse centered at (0.5, 0.75) with semiaxes 0.4 and 0.15, and an ellipse centered at (0.8, 0.5) with
semiaxes 0.055 and 0.4. The four primitives are just added.
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GMsh Our

Figure 4.17: Comparison of creating a curved cubic mesh for a puzzle piece with GMsh (le�) and our
method (right). GMsh mesh contains 19 inverted triangles, whereas ours has none and it can be directly
used in downstream applications.
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Figure 4.18: The success rate of generating a triangulation over the raw, cleaned and snap rounded
Openclipart data set.

the last ellipse �rst semi-axis from 0.055 to 0.054 it produces an error and cannot generate any

valid output; by shrinking it even more it goes in in�nite loop, while our method is una�ected

by these changes.

GM�� GMsh requires the curves to de�ne a closed domain. Since GMsh exactly reproduces the

input boundaries, it overre�nes near the defects (Figure 4.17). Additionally, it relies on an “un-

tangling” strategy: it �rst generates a possibly invalid curved mesh, and then tries to “un-invert”

the triangles. For the example in Figure 4.17, the untangling fails and the mesh still contains 19

inverted triangles, making it unsuitable for FEM simulations.
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Figure 4.19: The total running time of all triangulation algorithms.
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4.5.3 L����� M������ C���������

Our algorithm can be used to robustly generate traditional linear triangles meshes, by simply

loading a collection of points and line segments, and marking all the segments as secondary

features (Section 4.4). We compare extensively with two popular open source 2D meshing li-

braries, implementing the current state of the art triangulation algorithms: Triangle [Shewchuk

1996] and CGAL’s 2D Triangulation module [Boissonnat et al. 2002]. Both libraries are capable

of taking a set of (potentially intersecting) segments as constraints and generating either a con-

strained Delaunay triangulation (CDT) or a conforming Delaunay triangulation (RDT) as output.

We compare our results with both CDT and RDT results generated by these libraries on three

sets of input: (1) raw input, (2) cleaned input, and (3) snapped input. Raw input contains piece-

wise linear approximations of 19,686 SVG images crawled from openclipart.org The clean input

is obtained by (1) removing duplicated vertices, (2) removing duplicated edges, and (3) removing

degenerate edges. Note that intersecting segments are not �xed in the cleaning process, since

all methods supports them. Lastly, the snapped input is the output of iteratively snap rounding

[Goodrich et al. 1997] the raw input using n as the pixel size. For linear comparison, we limit the

maximum computing resources for each input to 1 hour running time and 16 GB memory.

S������ R��� The �rst, and simplest, metric is to check if the algorithm successfully gener-

ated a non-empty output. Figure 4.18 compares all methods on the three types of inputs. For

snapped inputs (where there is no intersections), all methods succeeds nearly 100%. However

on cleaned inputs, RDT from both CGAL and Triangle fails due to the presence of intersecting

segments. Only our approach and CGAL CDT are robust enough against the rampant presence

of intersecting and degenerate segments from the raw input. It is interesting to observe that the

single model that produces invalid output with Triangle RDT is not the same one that produces

an invalid output for CGAL RDT.

Figures 4.19 and 4.20 shows the total running time and the total number of triangles generated
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Figure 4.20: Comparison of the number of triangles generated by each method on a log scale.
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Figure 4.21: The running time of two preprocessing algorithms we used. Note that snap rounding is
much more expensive than triangulation in general.
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Table 4.1: Total Number of Failed Results for All Methods.

Triangle CGAL Ours*
CDT RDT CDT RDT

raw 16010 (67) 17806 (1) 3743 (3585) 12945 (1) 13 (0)
cleaned 645 (24) 3329 (0) 524 (457) 3560 (0) 83 (0)
snapped 5 (0) 5 (0) 5 (0) 38 (0) 5 (0)

Note: The failure refers to no output or output with inverted triangles. Numbers in parenthesis represent the
number of output triangulations that contains inversions. *While our algorithm occasionally timed out due to

limited computing resources, we have validated that it can always succeed with a larger epsilon and 64G memory.

by all methods on all three sets of inputs. Although slower, our algorithm alongwith CGAL’s CDT

are the only methods not requiring input preprocessing to be robust. Note that the preprocessing

step can be very expensive (Figure 4.21) and will likely dominate the running time when paired

with a triangle meshing algorithm that requires clean input. Note that all timing plots are using

logarithmic scale for G-axis.

C���������� ��� ������ Table 4.1 lists the number of invalid triangulations generated by

each method, i.e. triangulation containing one or more inverted triangles. We use exact predi-

cates to check for triangle inversions [Shewchuk 1997]. Our algorithm generates inversion-free

triangulation for all inputs, while both Triangle and CGAL produce invalid outputs occasion-

ally. Figure 4.22 illustrates one of the many triangulation quality measures [Shewchuk 2002c]:

min edge to max edge ratio. Our algorithm produces more well-shaped triangles than CDT, but

slightly worse that RDT. The number (Figure 4.20) and quality (Figure 4.22) of the triangles gener-

ated by our method is mostly independent from the preprocessing done to the input, suggesting

that our algorithm is stable to small perturbation in the input. This is not the case for other

methods, which exhibit major di�erences in both number of elements and quality.
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Figure 4.22: Edge ratio distribution on 1,000 randomly sampled outputs for each method.
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4.6 L���������� ��� C��������� R������

We introduce an algorithm to create curved triangular meshes preserving features from a large

collection of real-world SVG drawings. We demonstrated that our algorithm supports many ap-

plications in computer graphics, and compares favorably against existing triangle meshers, pro-

ducing coarser meshes due to its native ability to �lter out small scale features that are smaller

than a user-controlled epsilon.

The main limitation of our algorithm is that it does not guarantee to exactly preserve inter-

sections between curves. While our current algorithm produces visually pleasing results in these

cases, we would like to explore the use of an exact Bezier arrangement [Wein et al. 2018] of the

input features, to address this issue. A second interesting direction for future work is the cre-

ation of meshes with geometric maps of arbitrary degree or with rational Bezier edges, able to

exactly reproduce circular arcs. While extending our algorithm will require minor modi�cations,

their use in FEM is unclear, since there are no standard elements that reproduce them. Com-

pared to other linear triangle meshers, our algorithm is around 10 times slower. We believe that

parallelization of the mesh optimization stage would provide a noticeable performance boost.

We expect our contribution and our reference implementation to have a large impact in com-

puter graphics andmechanical engineering, by considerably lowering the e�orts required to build

curved (and linear) meshes and use them for FEM simulations.
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5 | C���������

This dissertation explains the reason whywe regard the triangular and tetrahedral meshing prob-

lem as a black-box problem: Meshing is a fundamental problem in many �elds, including com-

puter graphics, mechanical engineering, and scienti�c computing, and meshers should be able to

process real-world boundary representations of objects. However, the boundary representation

acquired from modeling or scanning procedure often has artifacts, like self-intersection, small

gaps, non-manifoldness, and etc., which are not handled by previous methods.

We propose envelope-based triangulation and tetrahedralization algorithms, W���M������,

that deal with both 2D and 3D problems: Triangulating the area of a 2D shape and tetrahedralizing

the volume of a 3D shape. Despite being in di�erent dimensions, these two problems share many

similarities. So we formulate three core principles for bothW���M������ algorithms: (1) Robust-

ness: test and verify the algorithm on large public datasets; (2) Complete automation: no complex

parameter tuning and the default parameter should work on any input; And (3) high-quality out-

put: the algorithm should generate high-quality meshes approximating the input surface within

a user-de�ned distance threshold. We purposely make no assumption about the input and work

on imperfect input in the wild.

Compared with existing state-of-the-art methods, we formulate the problem in a di�erent

way: Instead of trying to preserve the input geometry exactly, we approximate the geometry

with a controlled approximation error, which is more practically useful since most of the real-

world geometries are anyhow imperfect and thus exact preservation is of unclear utility.
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Our linear tetrahedral meshing algorithm, T��W��� and �T��W���, share a similar goal but

have di�erent guarantees: T��W��� has the guarantee to preserve all the input faces in the

user-de�ned envelope but does not guarantee to produce a �oating-point output mesh, while

�T��W��� guarantees to produce a �oating-point output mesh, but does not guarantee to pre-

serve all the input faces in the user-de�ned envelope. �T��W��� has the added advantage of com-

bining the robustness of T��W��� with a running time comparable to Delaunay-based methods.

The di�erent guarantees and performance make the algorithms complementary: T��W���

can be extended to solve problems that require exactly preserving input geometry since it can

generate an initial tetrahedral mesh that preserves the input exactly in rational coordinates.

�T��W��� foregoes this feature to improve running time and avoid both the higher memory

usage linked to rational coordinates and the implementation complexity of having to handle

polyhedral meshes, and it is thus easier to extend as it requires only basic data structures for

simplicial meshes.

Since both T��W��� and �T��W��� handle sharp features in a soft way: they are present in

the output, but their vertices could be displaced, causing a smooth surface to be unevenwithin the

surface tolerance envelope. In this scenario, we introduce a curved meshing algorithm, T��W���,

to create curved 2D planar triangular meshes preserving input feature curves. We demonstrate

that our output meshes support many applications in computer graphics, and compare favorably

against existing triangle meshers due to the fact that T��W��� is able to generate coarser meshes

with input curved geometry preserved. Extending T��W��� to 3D is a major challenge and an

avenue for future work.

W���M������ is a radically di�erent approach to geometric computing: we change the prob-

lem statement to at the same time achieve reasonable running times and strong guarantees on

the output, and we approach veri�cation of correctness in an experimental way, complement-

ing formal guarantees with experimental evidence of success on a large collection of real-world

3D models. We provide a new way of verifying algorithm experimentally that uses a large-scale
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Table 5.1: Guarantees and limitations of W���M������ algorithms

Algorithm Guarantees Limitations

T��W���
1. Always terminate.
2. Represent all input

triangles in the envelope.

1. Output might be in rational coordinates.
2. Have no bound on quality.

3. Produce piece-wise linear approximation
of the input.

�T��W��� 1. Always terminate.
2. Output in �oating-point.

1. Output might not approximate all the
input triangles in the envelope.
2. Have no bound on quality.

3. Produce piece-wise linear approximation
of the input.

T��W���
1. Always terminate.
2. Represent all input

triangles in the envelope.

1. Output might be in rational coordinates.
2. Have no bound on quality.

3. Produce piece-wise linear approximation
of the input that satis�es a set of assumptions.

public real-world dataset on the scale of ten thousand instead of hundreds as the benchmark

to test the robustness of a research algorithm. The large collection of clean models generated

by W���M������ can bene�t the other research works that need clean meshes. This shifts the

paradigm of algorithm veri�cation in the graphics community.

5.1 S������

In table 5.1 we summarize the guarantees and limitations of W���M������ algorithms.

By analyzing the pros and cons of the two variants of TetWild, we identi�ed 8 open questions,

which we would like to explore in the future:

1. Is it possible to guarantee a �oating-point output in the T��W��� algorithm? This seems

to hold experimentally, but we lack formal proof.

2. Is it possible to guarantee the insertion of all the input triangles in �T��W���? This also

holds experimentally, but we lack formal proof.

3. Can we extend T��W��� to 3D tetrahedralization and preserve the input surface using a
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high-order approximation in the output tetrahedral mesh?

4. Although we have experimental evidence that the W���M������ algorithms produce con-

sistently high-quality outputs, we do not have a formal guarantee. Is it possible to provide

a formal bound on quality for the current algorithms? If not can we develop a similar

algorithm with a quality bound?

5. Our current algorithm output meshes while preserving the input boundary within a dis-

tance tolerance but does not preserve the topology of the input, which is especially useful

for multi-material models (such as MRI images). Is it possible to extend the algorithms to

preserve the input topology?

6. Our current algorithm does not produce a mapping between input and the boundary of the

output, which is often required in Finite Element Analysis applications to transfer boundary

conditions. Is it possible to change the surface tracking algorithm to produce a bijective

mapping between the input surface and the boundary of the output?

7. Our current envelope check uses a conservative approximation of the L-in�nity distance

due to e�ciency and robustness considerations. Can an exact check be developed for L-

in�nity or L-p distance?

8. We currently generate the whole mesh at once and do not have local remeshing. Can we

extend theW���M������ idea to remeshing applications where the input changes between

iterations?

5.2 F�����W���

Based on the W���M������ algorithms, one natural extension of T��W��� is to automatically

and reliably convert CAD models composed of a collection of smooth primitives (feature points,
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elementary curves and patches, NURBS curves and patches) into a tetrahedral mesh suitable for

�nite element analysis and a corresponding triangle mesh suitable for processing using standard

geometry processing, animation, and rendering algorithms. We would like to make minimal

assumptions on the input geometry, tolerating gaps, self-intersections, and inconsistent orienta-

tions in the input primitives and provide, whenever possible, a map to transfer properties from

the original CAD primitives to the output simplicial mesh.

The challenges in meshing CAD models come from the modeling procedure where the input

patches are intersected with each other and then trimmed to form a certain shape desired by the

designer. The trim on a patch is a curve in 2D parametric space that approximates the intersec-

tion curve of the patch with other patches in 3D physical space. Thus, the trims of the same

intersection on di�erent patches may not align. In the meantime, the computation of the inter-

section could be numerically unstable in �oating-point and could be ambiguous using di�erent

CAD geometric kernels. It could also introduce high algebraic degree curves that are impractical

and thus soon approximated by �xed degree curves during the CAD modeling procedure.

To avoid the notorious trimming, we propose an idea for converting CADmodels intomeshes:

we independently convert each untrimmed patch into a high-quality triangle mesh and then

introduce an algorithm, based on the TetWild tetrahedral meshing algorithm [Hu et al. 2018], to

�ll the entire space. After all the patches are represented in the tetrahedral mesh, we �lter out

the tetrahedra outside the surface and optionally recover only the surface of the CAD using the

feature curves provided in the CAD.

We have implemented a preliminary algorithm for the idea that take as input a collection of

points and bijective parametric curves and patches (Figure 5.1(1)) and output a tetrahedral mesh

of the bounding box of the input with the input preserved. The part of an input primitive far from

the others by a distance tolerance ` is preserved by a set of linear elements (edges and faces) with

their vertices mapped to the primitive and the distance from the primitive smaller than Y` . The

other part is approximated with the distance from the primitive smaller than Y. We �rst gener-
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U

(1) Input smooth features (2) Discretized surfaces Discretized curves (3) Output mesh

Figure 5.1: Pipeline of the algorithm. (1) The input features, where feature patches are in blue and feature
curves are in orange. (2) The discretization of surfaces (blue) and the discretization of curves (orange). (3)
The output tetrahedral mesh with the input feature preserved.

ate a discretization of the input, discretizing the curves into a set of segments and triangulating

the patches (Figure 5.1(2)). We then tetrahedralize the domain while keeping track of the corre-

spondence of the linear elements (vertices, edges, faces) and the input primitives. Optionally, we

extract the interior volume of the shape from the tetrahedralized box (Figure 5.1(3)).

There are three main problems left to solve. (1) Our current algorithm does not guarantee

to handle non-bijective input, e.g. input with self-intersection or singularities. We would like to

design a method to handle non-bijective input correctly since it is quite common in the real world

but hard to �x. (2) Our current algorithm estimates without error control the surface deviation

from the output to the input. We plan to compute exactly or estimate with a controlled error the

surface deviation. (3) Our current algorithm relies on the trimmed patches to extract the interior

volume. We try to avoid trimming the patches and �gure out a new way to extract the interior.

We aim to break barriers among di�erent geometric computing kernels, allowing us to reli-

ably convert them into triangle meshes, tetrahedral meshes, or point clouds used in many down-

stream applications without any user intervention. We believe it will also be an important tool

for automating CAD design and simulation.
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