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Abstract

The Systems Biology community has invested a great deal of effort in modeling

gene regulatory networks that should be able to (i) accurately predict future states

and (ii) identify regulatory hubs that can be manipulated to achieve desired phe-

notypes. Most computational tools for the problem embody linear models (e.g.

5 ∗ TF1 + 2 ∗ TF2 − 0.4 ∗ TF3....). However, it is well known that biological

interactions are highly synergistic and non-linear. Further, those tools mostly try

to directly predict networks even when the discovered edges (which usually come

from some assay such as Chip-seq) may have little physiological significance (e.g.,

may not influence gene expression).

This thesis considers an alternative approach to inferring gene causality. Specif-

ically, we consider the problem of predicting the expression of genes at a future

time point in a genomic time series. In this, we follow the philosophy that accurate

prediction often corresponds to a good understanding of causality.

The prediction may rest on several sources of data: the time point immediately

preceding t, the entire target time series preceding t, and ancillary data. In bi-

ology, for example, the ancillary data may consist of a network based on binding

data, data from different time series, steady state data, a community-blessed gold

standard network, or some combination of those. We introduce OutPredict, which

is a machine learning method for time series that incorporates ancillary steady

state and network data to achieve a low error in gene expression prediction. We

show that OutPredict outperforms several of the best state-of-the-art methods for

prediction. The predictive models OutPredict in turn generate a causal network.

Thus, this thesis presents an approach to the inference of causality based on

predictions of out-of-sample time-points based on both steady state and time series
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data. Because the model for each gene identifies those transcription factors that

have the most importance in prediction, those important transcription factors are

the most likely causal elements for that gene. We validate those predictions for a

set of well-documented transcription factors in Arabidopsis. Because our methods

apply to any situation in which there is time series data, ancillary data, and the

need for non-linear causal models, we believe that this work will have a broad

appeal to the scientific community, specifically those studying causality networks

in any biological system.
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2.2 Work-flow for the time-driven de novo DFG network inference by

machine learning and network pruning to increase precision of TF-

target predictions. Steps 1-3. The fine-scale time-series N-response

study of shoots captures 2,174 genes including 172 TFs, as per Spline

analysis. Step 4. A time-based de novo inference approach called

Dynamic Factor Graphs (DFG) [58, 48] was used to infer the in-

fluence of each TF on each gene in the NxTime shoot set. Step 5.

Three TFs (CRF4, and its validated downstream target TFs SNZ

and CDF1) that were predicted by DFG to be influential in the N-

signal response GRN were selected for experimental validation by

identifying their genome-wide targets in shoot cells in the TARGET

system [13] or in planta[1]. Step 6. The genome-wide regulated tar-

gets of CRF4, SNZ and CDF1 were then used to compute Precision

and Recall of the predicted DFG network in an Area Under the

Precision Recall (AUPR) curve (Fig. 2.3). This AUPR analysis

was then used to prune the network to identify a subnetwork with

precision of 0.345 (Precision=0.345, corresponding TF- target edge

score=0.95554) (see Fig. 2.3). . . . . . . . . . . . . . . . . . . . . . 13
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2.3 Time-inferred GRN for dynamic N-response in shoots is evaluated

with validated genome-wide TF target data for Precision vs. Re-

call. A. Genome-wide regulated targets of CRF4, SNZ and CDF1

were compared to the ranked DFG edges in the time-based GRN to

calculate Precision (True positives/(True + False positives)) and

Recall (True positives/(True positive + False negative)). Some

the top-ranked edge scores and validations are shown as examples.

B. Genome-wide regulated targets of three TFs (CRF4, SNZ and

CDF1) were used to calculate the Precision and Recall of the GRN

and to prune the TF-target edges in the network to a precision

threshold of 0.345. A further set of four independent TFs (TGA1,

HHO5, HHO6 & PHL1) whose TF-target regulation was validated

genome-wide in shoot cells, were used to cross-validate the Precision

of the pruned GRN. Precision of TF-targets edges inferred for these

4 individual TFs ranges from 0.17-0.45 with an average value of

0.32. C. Area Under Precision-Recall (AUPR) analysis show that

the DFG ranking of edge scores is significantly better than random

order (p <0.001), and the Area under PR curve (AUPR) is higher for

DFG compared to random ordering (n=1000). D. From the AUPR

curve, the highest precision (Precision=0.345, corresponding edge

score=0.9554) before the curve flattens was chosen as threshold to

prune network predictions to include only higher-confidence targets. 14
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2.4 Three novel TFs - CRF4, SNZ, CDF1 - regulate 53% of the

N-uptake/assimilation pathway genes. A time-based machine

learning approach Dynamic Factor Graph (DFG) ([48], [58]) was

used to infer TF-Target influence in a N-response GRN in shoots.

Validated genome-wide targets of three TFs in this GRN - CRF4,

SNZ and CDF1 (done by experimentalists at NYU Biology) - are

shown to regulate 53% (35/65) genes in the N-uptake/assimilation

pathway (Fig. A.9B). TF edges to N-responsive genes (green nodes)

that are predicted by the GRN and validated by TF perturbations,

are shown by (*) and thicker edge width. Grey circles indicate other

cellular processes validated to be regulated by these three TFs. . . . 17
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2.5 N-responsive TF hub CRF4 significantly regulates NxTime genes

and N-related processes in both shoots and roots in planta. A.

CRF4 responds early and robustly to N-supply in both the shoots

(JIT:5mins) and roots (JIT:20mins). B. Genome-wide targets of

CRF4 were determined in the shoots and roots of a conditional

CRF4-OX transplanta line (24 hrs after b- Estradiol induction) [1].

The CRF4-OX regulated shoot gene set overlaps highly significantly

with the Shoot NxTime gene set. The CRF4-OX regulated root

gene set overlaps significantly with the Root NxTime gene set. C.

GO over-representation analysis identifies that the CRF4-OX reg-

ulated targets vs. NxTime overlap in Roots is enriched for genes

involved in Nitrate uptake and assimilation and genes involved in

Root development which, likely, led to the observed root phenotypes

in the CRF4-OX line (Fig. A.10 & Fig. A.11). In the shoots, the

CRF4-OX regulated targets vs. Shoot NxTime overlap gene set was

enriched in GO terms related to translational control and as well as

other terms enriched in the Shoot NxTime gene set (see. Fig. A.4

and Fig. A.2D). D. Validated CRF4-OX (done by experimentalists

at NYU Biology) regulated targets in the shoot and root are sig-

nificantly enriched (p<0.001, green shading) in the early and later

just- in-time gene sets in the respective organs. . . . . . . . . . . . . 18
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2.6 A time-dependent GRN uncovers known and novel TFs in

dynamic N-signaling in shoot. A time- based machine learning

approach Dynamic Factor Graph (DFG) ([48, 58]) was used to in-

fer TF-Target influence in a GRN. Validated genome-wide targets of

three TFs - CRF4, SNZ and CDF1 - were used to prune the GRN for

TF-target Precision based on AUPR analysis (Fig. A.9 2.2 2.3).

This TF-target precision was reconfirmed using data for four inde-

pendent TFs - TGA1, HHO5/6, PHL1 (Fig. 2.3B). The TF-target

edges supported by an independent source of TF-Target binding

data (DAP-Seq ([73, 44])), capture regulation of 208 N-responsive

target genes by 35 TFs. TFs with a significant N-specificity index

are highlighted in red. Validated TF regulators of the N-response

are underlined; NLP7(7), TGA1/4(8), NAC4(9), LBD37,38 (11),

and CRF4, HHO5/6, PHL1 [This study]. . . . . . . . . . . . . . . . 22
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2.7 Precision scores of TF-target edges in Pruned N-response GRN are

independently validated with four additional TFs in the N-response

GRN. A. Experimentally validated genome-wide regulated targets

of four N-responsive TFs in the GRN (HHO5, HHO6, TGA1 and

PHL1) that were not used in the initial network pruning process

based on CRF4, SNZ and CDF1 regulated targets (Fig. 2.2), were

determined in shoot cells in the TARGET system [13]. The pre-

dicted targets of these four new TFs in the Pruned GRN, that were

experimentally validated using the TARGET experiments done by

our colleagues at NYU Biology, are shown here. B. Precision of

the Pruned GRN was re-estimated using the genome-wide taregts

of these four new TFs. The overall network precision for this new

set of TFs is 0.32 (110 validated out of 349 predicted). Also see

Fig. 2.3B. C. Three of these four TFs - HHO5, HHO6 and PHL1 -

are predicted and validated to influence six genes in multiple stages

of the N-assimilation pathway. TGA1 was predicted to influence

NRT1.1, NIR1 and NIT1 genes in the shoot NxTime response, but

the TARGET system failed to validate these network predictions

(i.e., false positives). . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Illustration of how priors work: the priors assign initial weights to

features (transcription factors) which influence how likely they are

to be chosen as splitting elements in the trees of the Random Forest.

As learning takes place, these weights can change, finally leading to

a model that depends on both the time series data and on other data. 33
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3.2 Gene Expression Change for all species. Generally, the average ab-

solute difference in expression (across all genes for each species)

decreases over time. E. Coli may be an exception because of the

short lifespan of bacteria. The Time-Step model worked better for

B. subtilis and Drosophila. The Ordinary Differential Equation-log

model worked better for Arabidopsis, E. coli and DREAM4 (Table

3.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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3.3 Bacillus subtilis. (A) Comparison of predicted gene expression us-

ing OutPredict (grey dots) versus actual expression (red line) at the

left-out time point. Genes are ordered by increasing actual mean ex-

pression value (red line). OutPredict predicts gene expression well

at all expression levels. The accuracy of forecasting is measured

by calculating the Mean Squared Error (MSE). (B) The vertical

axis indicates MSE, where lower bars indicate more accurate pre-

dictions. The descriptions of the different models of the x axis can

be found in Table 3.2. OutPredict (OP-Priors) performs signifi-

cantly better (P<0.05, based on a non-parametric paired test) than

Penultimate Value (with a 30% relative improvement), DynGenie3

(with a 50% relative improvement) and Neural Network(NN). The

MSE for Neural Nets is 3.75 (with standard deviation ≈ 0.3), which

is considerably higher than for other methods (Table 3.5); it is not

shown here because the MSE is out of scale. Moreover, when pri-

ors from both Integrated steady-state data and prior gold standard

data, are used with the OutPredict algorithm, there is a significant

(P<0.05, non-parametric paired test) improvement in predictions

relative to OutPredict using only time series data. Specifically, prior

gold standard data is significantly helpful, showing a 11% relative

improvement (Figure 3.8). Finally, out-of-bag analysis concludes

that the Time-step differencing model is better than the ODE-log. . 42
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3.4 Arabidopsis in Shoot Tissue (time series only dataset) (A) Predicted

gene expression using OutPredict (grey dots) compared to actual

expression (red line) at the left-out time point. (B) Comparison

of time series forecasting: the accuracy of forecasting, measured

by Mean Squared Error, has higher values in this case than for

other species, because the data is RNAseq and read counts have

a broad dynamic range. Table 3.2 describes which method and

data were used for each model in the x axis. OutPredict (OP)

performs 34.2% better than Penultimate Value (P < 0.05, non-

parametric paired test), and 61.5% better than Dynamic Genie3

(P < 0.05, non-parametric paired test). The incorporation of priors

from TARGET (OP-Priors) improves the performance of OutPre-

dict compared to the time series alone (9% improvement with P

= 0.12, non-parametric paired test). The ODE-log model is better

than Time-Step based on the out-of-bag score. The Neural Network

model doesn’t converge because the dataset is small. . . . . . . . . 43
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3.5 Escherichia coli: Time series forecasting. This is a time se-

ries only dataset consisting of 15 time series. (A) Comparison of

predicted gene expression using OutPredict (grey dots) vs. actual

expression (red line) at the left-out time point. The accuracy of

forecasting is measured by calculating the Mean Squared Error. (B)

OutPredict (OP and OP-Priors) improves (P < 0.01, based on a

non-parametric paired test) the quality of forecasting compared to

Penultimate Value (15% improvement) and Dynamic Genie3 (40.5%

improvement). For this data, there is no improvement using priors

from gold-standard edges compared with time series data by itself. . 44

3.6 Drosophila: Time series forecasting. This is a time series only

dataset consisting of one time series of 28 time-points. OutPredict

(OP and OP-Priors) performs better (P < 0.01, non-parametric

paired test) than benchmark approaches including Penultimate Value

and Dynamic Genie3 (23% and 26.1% improvement, respectively).

The incorporation of priors from the gold-standard network does

not improve forecasting compared to time series alone. . . . . . . . 44
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3.7 DREAM4: Time series forecasting. This is a synthetic dataset.

(A) Comparison of predicted gene expression using OutPredict (grey

dots) vs. actual expression (red line) at the left-out time point. (B)

OutPredict (OP-TSonly, OP-TS+SS and OP-Priors) outperforms

(P < 0.05, non-parametric paired test) Penultimate Value and Dy-

namic Genie3 with 10% and 40.1% relative improvement, respec-

tively. The incorporation of priors together with the integration of

steady-state data does not improve forecasting compared to time

series alone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 - Bacillus Subtilis - Full Comparison of time series forecasting: Neu-

ral Network from [Smith et al 2010] (NN) vs. Dynamic Genie3

(DynGenie3) vs. Penultimate Value (Pen.Value) vs. OutPredict

(OP-TSonly, OP-TS+SS and OP-Priors). The use of steady-state

data (OP-TS+SS ) leads to a 6% significant improvement (P < 0.05,

non-parametric paired test) relative to time series data alone (OP-

TSonly). OP-Priors uses gold standard data (in addition to time

series (TS) and steady-state (SS) integrated in a single random for-

est), which is helpful compared to the model OP-TS+SS showing

an 11% relative improvement (P<0.05, non-parametric paired test). 46
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3.9 DREAM4 - Causality Inference Improvement with Steady-State data.

The DREAM4 dataset shows that steady-state data contributes to

the inference of causality more when there are few time series than

when there is abundant time series data. (A) We show the com-

parison of Area under Precision-Recall (AUPR) with and without

steady-state data in cases of different numbers of time series. The

y-axis represent the AUPR average of three different random sets of

time series of size 1, 3, 5 respectively; x = 20 represents the case of

taking all 20 time series in the DREAM4 dataset. . . . . . . . . . . 47

3.10 DREAM4 - Causality Inference Improvement with Steady-State data.

The DREAM4 dataset shows that steady-state data contributes to

the inference of causality more when there are few time series than

when there is abundant time series data. The AUPR improvement

of using time steady-state data, relative to time series data alone,

decreases as the number of time series increases. . . . . . . . . . . . 48

3.11 DREAM4 - Gene Expression Prediction Improvement with Steady-

State data. The DREAM4 dataset shows that steady-state data

contributes to out-of-sample prediction more when there are few

time series than when there are many. (A) We show the comparison

of time series forecasting with and without steady-state data for

different numbers of time series. The y-axis represent the MSE

(mean squared error) average for three different random sets of time

series of sizes 1, 3, 5 respectively; x = 20 represents the use of all 20

time series in the DREAM4 dataset. . . . . . . . . . . . . . . . . . 49
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3.12 DREAM4 - Gene Expression Prediction Improvement with Steady-

State data. The DREAM4 dataset shows that steady-state data

contributes to out-of-sample prediction more when there are few

time series than when there are many. The out-of-sample predictions

improvement of using time plus steady-state data, relative to time

series data alone, decreases as the number of time series increases. . 50

3.13 DREAM4 - Gene Expression Prediction Improvement with Priors.

The DREAM4 dataset shows that Priors data contributes to out-of-

sample predictions more when there are few time series than when

there are many. (A) We show the comparison of time series fore-

casting with and without gold standard data for different numbers

of time series. The y-axis represent the MSE (mean squared error)

average for three different random sets of time series of size 1, 3, 5

respectively; x = 20 represents the use of all 20 time series in the

DREAM4 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.14 DREAM4 - Gene Expression Prediction Improvement with Priors.

The DREAM4 dataset shows that Priors data contributes to out-of-

sample predictions more when there are few time series than when

there are many. Therefore, when the gold standard as priors is

used in addition to time series data, the out-of-sample prediction

improvement decreases as the number of time series increases. . . . 52
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3.15 Inference of Causality. The area under the precision recall curve

(AUPR) of Outpredict with Priors (OP-Priors) is 15% better than

random (p-value < 0.01, based on a non-parametric paired test);

AUPR of Outpredict without Priors (OP-TSonly) is 7.5% better

than random (p-value < 0.01, non-parametric paired test); DynGe-

nie3 same as random. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.16 AUPR DREAM4 - OutPredict vs. Benchmarks for the inference of

causal edges. As for the Arabidopsis dataset (Figure 4 of the main

paper), here we show the AUPR (Area Under the Precision-Recall

curve) for predicting causal edges in the ideal case of DREAM4

where the true gold standard is known. Outpredict without Priors

(OP-TSonly) is clearly better than random (p-value < 0.01, non-

parametric paired test) in terms of Area under Precision-Recall.

Further, AUPR of OP-TSonly is 12% better than AUPR of Dyn-

Genie3 on time series data (p-value < 0.01, non-parametric paired

test). This suggests that good out-of-sample prediction leads to

good causality models. . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.17 Percentage of Correct Signs on last-time-points dataset - DREAM4

- OutPredict vs. DFG. We make predictions about whether gene

expression levels would be increased (positive sign) or decreased

(negative sign) at the last time-point compared with penultimate

(for all time-series). Outpredict (OP-TSonly) is better than DFG

(p-value < 0.01, non-parametric paired test) in terms of Percentage

of Correct Signs on the last-time-points test dataset for DREAM4
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3.18 AUPR DREAM4 - OutPredict vs. DFG for the inference of causal

edges. Here we show the AUPR (Area Under the Precision-Recall

curve) for the prediction of causal edges for DREAM4 where the

true gold standard is known. Outpredict (OP-TSonly) performs far
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of DynGenie3 on time series data (p-value < 0.01, non-parametric
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ulated target sets of the 20 most important TFs from the GRN

model. Colour intensity shows a fraction of overlapping target sets.
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act Test, if p<0.05, val=1) multiplied by the fraction of overlap.

Asterisk indicates experimental validation of up and downregulated
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5.2 PhenoPredict models of gene expression -> phenotype learned using

N-by-W response data in Nipponbare rice seedlings correlate with

actual values of biomass and yield across rice varieties in the field.

Top rice genotypes with predicted biomass using N-by-W data from

Niponbarre seedlings to predict outcomes in 19 rice varieties in the

field using data from [83]. The correlation is above 0.5 and standard

deviation below 0.3. The y-axis is the correlation between the actual

biomass values (of a given genotype) and the predicted values. . . . 70

5.3 PhenoPredict models of gene expression -> phenotype learned using

N-by-W response data in Nipponbare rice seedlings correlate with

actual values of biomass and yield across rice varieties in the field.

Top rice genotypes with predicted yield using N-by-W data from

Niponbarre seedlings to predict yield outcomes in 19 rice varieties

in the field using data from [83]. The correlation is above 0.5 and

standard deviation below 0.3. The y-axis is the correlation between

the actual yield values (of a given genotype) and the predicted values. 71

5.4 PhenoPredict with XGboost with the rice data: Top rice geno-

types with predicted biomass using N-by-W data from Niponbarre

seedlings to predict outcomes in 19 rice varieties in the field using

data from [83]. The correlation is above 0.5 and standard deviation

below 0.3. The y-axis is the correlation between the actual biomass

values (of a given genotype) and the predicted values . . . . . . . . 75
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5.5 30 TFs are present in the top 500 most important genes of the Lab

model. Validation score column ranges from 0 to 3: 3 implies that

a gene has solid experimental evidence from the literature on plant

development and or stress tolerance . . . . . . . . . . . . . . . . . . 76

A.1 A fine-scale time-series profile of plant transcriptional changes

in response to N- supply. A. Three replicates of plants grown in

a hydroponic system under low, but sufficient N conditions (1mM

KNO3), were treated with either the N-supply in MS media (20

mM KNO3 + 20mM NH4NO3) or 20 mM KCl and harvested at

time intervals 0, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min after

treatment. Shoots and roots from three independent Phytatray ex-

periments were harvested separately at each time-point, and their

transcriptome assayed using the RNA-Seq protocol on the Illumina

sequencing platform. B. The resultant RNA-Seq data was filtered

for quality and redundancy and converted into gene expression mea-

sures using the informatics pipeline shown. Genes responsive to the

N-signal were identified by fitting the gene expression measures to a

cubic spline model and testing for significant difference (FDR<0.01)

between the N-treated and control fits (refer to Method section that

describes Spline Analysis). . . . . . . . . . . . . . . . . . . . . . . . 83
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Chapter 1

Introduction

State-of-the-art methods for gene regulatory network inference [52, 20, 64, 27] use

machine learning on genome-wide sequencing data to predict the interactions be-

tween transcriptional regulators and target genes. A typical approach to gene

network inference is to take the results of an assay, most often binding assays such

as CHIP-seq, and divide the data into training and test sets. This involves ex-

cluding some of the transcription factor-target binding observations, and using the

remaining training set to infer the hidden data by some method. An issue with

this approach is that it presumes that the majority of binding events are physio-

logically meaningful, in the sense that they influence the expression of the target

gene. However, it has been shown that the physiological importance of binding

can be minor [32].

Another frequent issue with the paradigmatic network inference approach is that

the resulting networks encode linear interactions (sum of weighted effects of causal

elements). This modeling strategy makes pragmatic sense in the common situation

in which the number of possible interactions is much greater than the experimental
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data points, because linear models have fewer parameters to fit [33]. Unfortunately,

genomic interactions are decidedly non-linear, noisy and incomplete[81].

For these reasons, we first show in Chapter 2 together with Appendix 6, A.1.8

two studies where we mainly approach the causality problem with the paradig-

matic network inference [86, 16], then we discuss our prediction-based method in

Chapter 3 with variants in Chapters 4 and 5. Specifically, we tackle the causal-

ity problem differently, and Chapter 3 shows the steps in our causality approach:

i) Build a model for each gene g that can predict the expression of that gene in

left-out time points; ii) If our model is good, then the transcription factors that

most influence gene g likely constitute the causal elements for g.

The underlying belief is that accurate predictive models embody causal relation-

ships because the soundest path is to go for predictive accuracy first, and then try

to understand why [15].

1.1 Dynamic Factor Graph with Plant Model Or-

ganism Data – Chapter 2

In this chapter (together with Appendix 6) we show our work that infers the

temporal transcriptional logic underlying dynamic nitrogen (N) signaling in plants

[86].

Any time event e1 causes e2, e1 must be earlier than e2. For that reason, time-

series transcriptome data are of particular value in learning regulatory networks

that can predict network states at future/untested time-points. In this chapter we

learn the temporal transcriptional logic underlying dynamic nitrogen (N) signaling

in plants [86] with the paradigmatic network inference.
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We used a time-based machine-learning (ML) approach to infer the TF-to-target

edges in the underlying gene regulatory network (GRN).

We designed and implemented a computational pipeline which includes a machine

learning method based on a State-space model (SSM) algorithm called Dynamic

Factor Graphs (DFG)([58]) that models the dynamics of a sequence of data by

encoding the joint likelihood of observed and hidden variables.

To experimentally test these network predictions, we used genome-wide TF pertur-

bation data for three novel TF hubs that we validated to regulate genes involved

in nitrogen use in vivo. This validation step enabled us to derive a precision cut-off

for TF-target edge scores in the larger GRN of 155 TFs.

Many of the TF-target edges in this refined GRN were also supported by inde-

pendent TF-target binding data, used to calculate a N-specificity index for each

TF. The resulting time-based GRN revealed the temporal relationships of TFs

previously validated in the N-response and connects them with new TFs in the

N-response cascade.

The resulting network also provided transcriptional logic for TF-perturbations

aimed at improving N-use efficiency especially at low-N input levels, an important

issue for global food production in marginal soils and for sustainable agriculture.

A common theme throughout this thesis is that a combination of the time-based

approaches and machine learning models can be applied more generally to uncover

the temporal transcriptional logic for any response system in biology, agriculture

or medicine [24].

In Appendix A.1.8 we present a novel approach called Network Walking which

exploits the DFG algorithm and we apply to Arabidopsis root gene data. Network
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Walking combines functionally validated (85,144 edges produced by our biologist

colleagues at NYU Biology) and time-inferred TF-target edges to connect TF tar-

gets validated in root cells, with indirect targets regulated in planta [16]. In our

proof-of-concept Network Walking examples, we determine the network path for

two known TFs in the Nitrogen response, TGA1 and CRF4. Using this approach,

we connect 77% and 87% of the indirect targets detected only in planta, back to

TGA1 and CRF4, respectively, through intermediate TF2s. The Network Walking

approach has general application across biological systems. Our proof-of-concept

examples have implications for manipulation of networks that control plant N-use

efficiency, a process that impacts agriculture, the environment, and human health.

1.2 OutPredict – Chapter 3

In chapter 3 we present a new method called OutPredict. Here, we have ap-

proached the causality problem differently: we first create a model for each gene g

which can predict the expression of that gene in out-of-sample time points. If our

model is good, then the transcription factors most influential to gene g are likely

to be the causative components for g.

The form of the model is important here. Small data sizes relative to the number of

causal elements preclude the use of neural networks and, in particular, deep neural

networks, which would increase the number of model’s parameters. The presence

of non-linear relationships excludes linear methods. As a compromise, therefore,

this work uses Random Forests (RF) because they model non-linear synergistic

interactions of features and perform well even when sample sizes are small [14]

though noise is always an issue.
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The Random Forests within our new method OutPredict (OP) consist of an ensem-

ble of regression trees tuned through extensive bootstrap sampling. We show the

following: (i) The OutPredict model allows for non-linear dependencies of target

genes on causal transcription factors; (ii) OutPredict can incorporate time series,

steady-state, and prior (e.g. known Transcription Factor-target interactions) infor-

mation to bias the forecasts; (i) OutPredict forecasts the expression value of genes

at an unseen time-point better than state-of-the-art methods, partly because of

steady-state and known interaction data; and (iv) the important edges inferred

from OutPredict correspond to validated edges significantly more often than other

state-of-the-art methods.

We compare the OutPredict method to the state-of-the-art forecasting algorithms,

such as Dynamic Genie3 [38], that support forecasting and non-linear relationships,

but currently lack the ability to incorporate priors. Other time-based machine

learning methods such as Inferelator [33] and Dynamic Factor Graph [58], which

we used in our previous studies [16, 86] are based on regularized linear regression.

We also compare OutPredict with a neural net-based method built to predict gene

expression time series [82].

Another relevant time series method from the literature is Granger causality, which

has been used successfully for small numbers of genes[21, 94]. Granger causality is

a vector autoregressive method that can be used to infer important transcription

factors. In our case, however, we are trying to optimize predictive power using a

large number of candidate transcription factors using very short time series (e.g. 6

time points). As is well known[54], Granger causality can give misleading results in

such a setting because the time series are short, causal relationships are non-linear,

and the time series are non-stationary.
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1.3 Learning with Steady-State Data Alone – Chap-

ter 4

We apply OutPredict to a single-cells dataset in Arabidopsis where each single-

cell expression profile is treated as a steady-state condition, allowing the model to

learn a function that maps expression values of TFs to the expression value of each

target gene in the context of single-cells expression data.

The machine learning analysis belongs to an elaborated pipeline composed of com-

putational and experimental approaches included in a work which represents new

ground in single-cell studies in plants in the detailed coordination of single-cell

profiling and image analysis.

1.4 PhenoPredict – Chapter 5

In chapter 5 we describe how to build causality models for phenotypes. This is

useful because if, say, some gene g is differentially expressed when, for example,

plants have a positive phenotypic trait such as high yield, we want to induce g so

that we can transform plants to try to achieve this desirable trait. As a secondary

application, we can test young unmodified plants to predict which ones will have

that trait. In this chapter, we discuss a case study in rice in which we were able

to predict both biomass and yield in two-month old plants based on a model for

plants that were just a few weeks old.

6



1.5 Road Map

The presentation of the results in this thesis is structured as follows. We start by

introducing the importance of time series in gene expression data in Chapter 2 to

infer the temporal transcriptional logic of dynamic regulatory networks underlying

nitrogen signaling in plants shoot tissue using the state-space learning model called

Dynamic Factor Graph. Then in Chapter 3 we introduce our novel method called

OutPredict which approaches the problem of learning causality differently than the

paradigmatic network inference approach.

Chapter 4 describes an application of OutPredict on pure steady-state data in the

context of a single-cells dataset.

We finally present in Chapter 5 PhenoPredict which constructs causality models

to predict phenotypes and then learning the effect of the features (i.e., genes and

TFs) on phenotypes. We conclude the thesis in Chapter 6.
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Chapter 2

Dynamic Factor Graph with Plant

Model Organism

2.1 Temporal transcriptional logic of dynamic reg-

ulatory networks underlying nitrogen signaling

and use in plants

To infer transcription factor (TF)-target edges in a Gene Regulatory Network

(GRN), we applied a time-based machine learning method to 2,174 dynamic Nitrogen(N)-

responsive genes using the paradigmatic network inference. We experimentally

determined a network precision cut-off, using Transcription Factor(TF)-regulated

genome-wide targets of three novel TF hubs (CRF4, SNZ, CDF1 - see Appendix

6), used to prune the network to 155 TFs and 608 targets. This network precision

was reconfirmed using genome-wide TF-target regulation data for four additional

TFs (TGA1, HHO5/6, PHL1 - see Appendix 6) not used in network pruning.
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These higher-confidence edges in the GRN were further filtered by independent

TF- target binding data, used to calculate a TF N-specificity index (see Appendix

6). This refined GRN identifies the temporal relationship of known/validated reg-

ulators of N-signaling (NLP7/8, TGA1/4, NAC4, HRS1, LBD37/38/39) and 146

novel regulators. Six novel TFs - CRF4, SNZ, CDF1, HHO5/6, PHL - validated

in this study by our biologist colleagues at NYU Biology (see Appendix 6), reg-

ulate a significant number of genes in the dynamic N-response, targeting 54% N-

uptake/assimilation pathway genes. Phenotypically, inducible over-expression of

CRF4 in planta regulates genes resulting in altered biomass, root development

and 15NO3 - uptake, specifically under low-N conditions (see Appendix 6). This

dynamic N-signaling GRN now provides the temporal transcriptional logic for 155

candidate TFs to improve Nitrogen Use Efficiency (NUE) with potential agricul-

tural applications. Broadly, these time-based approaches can uncover the temporal

transcriptional logic for any biological response system in biology, agriculture or

medicine.

2.2 Inferring a time-derived GRN driving the tem-

poral N-response in shoots

De novo network inference is a valuable approach to build GRNs ([65, 52, 90,

2]). Because causality moves forward in time, fine-scale time-series transcriptome

experiments are an especially valuable resource to infer GRNs that can predict

out-of-sample target gene behavior, the ultimate goal of systems biology ([48],
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[47], [18]). Previously, we applied a time-based machine-learning method, Dynamic

Factor Graphs (DFG)([58]), to learn and predict causal relationships between TFs

and their targets ([48], [47]).

DFG identifies the likely set of TFs driving target gene expression, by learning an

f function that explains the target gene expression at each time-point, based on

the expression of the TFs at previous time-points ([58]).

DFG uses an Expectation-Maximization (EM) algorithm which consists of a two-

steps iterative procedure: the step which infers the latent variables z(t) (i.e. the

inference step) and the step to learn the linear f function (i.e. the learning step)

(Figure 2.1).

In the inference step the model infers the latent variable z(t) which represents the

denoised version of the gene expression data under the assumption that mRNA

data y(t) are noisy observations [57] (Figure 2.1).

For each gene j, the model relationship involves the rate of gene expression change,

the kinetic time constant τ , and a linear function f represented by an NxM matrix

F, where N is the total number of genes and M the number of transcription factors

plus a bias term b and a Gaussian error term with zero mean and fixed covariance

[57]:

τ
zj(ti+1)− zj(ti)

ti+1 − ti
+ zj(ti) =

M∑
m=1

Fj,m(zm(ti)) + bj + ηj(ti), j ∈ (1, N)

where zj(ti) denotes the expression of gene j at ti; τ = 1/α denotes the kinetic

time constant, which is related to the half-life t1/2 by t1/2 = τ log(2). All genes are

assumed to have the same τ (or same α).
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Figure 2.1: Figure from [57]. Dynamic Factor Graph representation of the state-
space model learned using the time series gene expression data. The model infers
the latent variable z(t) which represents the denoised version of the gene expression
data under the assumption that mRNA y(t) are noisy observations. [57]

Here, we used the DFG method to predict the influence of every TF on every

gene in the shoot NxTime gene set, implementing rigorous hyper-parameterization

steps. The resultant DFG network provides a measure of the influence (i.e., TF-

target edge score) of each of the 172 TFs on the 2,174 N-responsive genes in shoots

(e.g. 374,000 predicted edges). However, a major challenge in de novo network
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inference is the high false positive (FP) rate of TF-target predictions ([52]). We

thus estimated confidence in the edges of our time-inferred DFG network by com-

paring the predicted TF-target edges in the GRN to experimentally validated TF

targets ([52]). This method establishes the Precision (i.e., proportion of predicted

TF-target edges that are real) and Recall (i.e., proportion of real TF-target edges

that are predicted) of the GRN, which can then be used to prune the network to en-

rich for higher-confidence TF-target predictions ([52]). To implement this network

pruning step, we first retained the top 10% of DFG predictions and experimentally

validated the genome-wide targets of seven TF hubs in this initial DFG network.

This genome-wide TF-target validation step established the Precision vs. Recall

for the larger GRN of 155 TFs (Figs. 2.2 & 2.3), as detailed below.
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Figure 2.2: Work-flow for the time-driven de novo DFG network inference by ma-
chine learning and network pruning to increase precision of TF-target predictions.
Steps 1-3. The fine-scale time-series N-response study of shoots captures 2,174
genes including 172 TFs, as per Spline analysis. Step 4. A time-based de novo
inference approach called Dynamic Factor Graphs (DFG) [58, 48] was used to infer
the influence of each TF on each gene in the NxTime shoot set. Step 5. Three
TFs (CRF4, and its validated downstream target TFs SNZ and CDF1) that were
predicted by DFG to be influential in the N-signal response GRN were selected for
experimental validation by identifying their genome-wide targets in shoot cells in
the TARGET system [13] or in planta[1]. Step 6. The genome-wide regulated tar-
gets of CRF4, SNZ and CDF1 were then used to compute Precision and Recall of
the predicted DFG network in an Area Under the Precision Recall (AUPR) curve
(Fig. 2.3). This AUPR analysis was then used to prune the network to identify
a subnetwork with precision of 0.345 (Precision=0.345, corresponding TF- target
edge score=0.95554) (see Fig. 2.3). Step 7. This Pruned NxTime network now
connects 155 TFs to 608 N-responsive shoot genes. Step 8. Additional support for
the DFG predicted edges in this pruned network was derived by overlaying avail-
able TF-target binding data from an independent source (DAP-Seq) [73, 44]. Step
9. The precision of the pruned NxTime network was independently re-validated by
determining the genome-wide regulated targets of four additional TFs (HHO5/6,
PHL1 and TGA1) in the GRN in shoot cells using the TARGET system [13] (this
was done by experimentalists at NYU Biology). The overall precision of the pre-
dicted edges for these four new TFs is 0.32, which matches very closely the overall
pruned NxTime network precision of 0.345 (Step 6).
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Figure 2.3: Time-inferred GRN for dynamic N-response in shoots is evaluated with
validated genome-wide TF target data for Precision vs. Recall. A. Genome-wide
regulated targets of CRF4, SNZ and CDF1 were compared to the ranked DFG
edges in the time-based GRN to calculate Precision (True positives/(True + False
positives)) and Recall (True positives/(True positive + False negative)). Some the
top-ranked edge scores and validations are shown as examples. B. Genome-wide
regulated targets of three TFs (CRF4, SNZ and CDF1) were used to calculate the
Precision and Recall of the GRN and to prune the TF-target edges in the network
to a precision threshold of 0.345. A further set of four independent TFs (TGA1,
HHO5, HHO6 & PHL1) whose TF-target regulation was validated genome-wide in
shoot cells, were used to cross-validate the Precision of the pruned GRN. Precision
of TF-targets edges inferred for these 4 individual TFs ranges from 0.17-0.45 with
an average value of 0.32. C. Area Under Precision-Recall (AUPR) analysis show
that the DFG ranking of edge scores is significantly better than random order
(p <0.001), and the Area under PR curve (AUPR) is higher for DFG compared
to random ordering (n=1000). D. From the AUPR curve, the highest precision
(Precision=0.345, corresponding edge score=0.9554) before the curve flattens was
chosen as threshold to prune network predictions to include only higher-confidence
targets.
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2.2.1 Validation of novel TFs - CRF4, SNZ and CDF1 - in

the time-inferred GRN that regulate N-response and

N-uptake/assimilation pathway genes

To implement genome-wide validation of the DFG-predicted GRN, CRF4 was se-

lected for initial TF-target validation as it is; i) early N-responsive in both shoots

and roots (Fig. 2.5A), ii) a TF hub (422 out-edges) in the top 10% unpruned DFG

shoot network ( 35,200 edges), iii) has a high N-specificity index (see Appendix 6),

and iv) is a novel TF in N-signaling with potential links to the cytokinin pathway

([77]). Our NYU Biology colleagues and experimentalists identified the genome-

wide targets of CRF4 in an inducible over-expression transplanta line (CRF4-

OX)([1]), and also via TF-perturbation in shoot cells using the TARGET assay

([4, 13, 6, 41]) (see Appendix 6). These results confirm the early and central role

that CRF4 plays in the dynamic N-response. In planta CRF4-regulated targets are

significantly over-represented in NxTime genes in both shoots and roots, spanning

early and later JIT NxTime points (Fig. 2.5B&D). The validated genome-wide

targets of CRF4 in shoots include 16 downstream TFs responsive to NxTime (Fig.

A.9A). We next selected two validated TF targets of CRF4 - an early (SNZ, 10

min JIT) and late (CDF1, 45 min JIT) N-responder - for TF-perturbation studies

in shoot cells using the TARGET system ([13]) (Fig. A.9A&B) (this was done

by experimentalists at NYU Biology). These results revealed that the targets reg-

ulated by CRF4, SNZ and CDF1 are; i. significantly enriched in NxTime genes,

ii. support a high N-specificity index, and iii. are enriched in GO-terms related

to Nitrate assimilation/metabolism (for CRF4, SNZ, CDF1), Ribosome biogen-

esis (for CRF4) and Rhythmic processes (for CDF1) (Fig. A.9B). Collectively,
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the targets of CRF4, SNZ and CDF1 encompass; i) 54% of N-uptake/assimilation

pathway (35/65) genes, ii) 75% of the NxTime genes in the N-uptake/assimilation

pathway (12/16), and iii) 23 N-pathway genes that are not NxTime responsive

(Fig. 2.4). We note the cell-based TARGET system can identify direct targets

based on TF-regulation ( 2.4, solid lines), because translation of mRNA from pri-

mary TF-targets is blocked ([13]). By contrast, in planta TF perturbations cannot

distinguish direct vs. indirect regulated targets (Fig. 2.4, dashed lines).
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Figure 2.4: Three novel TFs - CRF4, SNZ, CDF1 - regulate 53% of the N-
uptake/assimilation pathway genes. A time-based machine learning approach
Dynamic Factor Graph (DFG) ([48], [58]) was used to infer TF-Target influence
in a N-response GRN in shoots. Validated genome-wide targets of three TFs in
this GRN - CRF4, SNZ and CDF1 (done by experimentalists at NYU Biology)
- are shown to regulate 53% (35/65) genes in the N-uptake/assimilation pathway
(Fig. A.9B). TF edges to N-responsive genes (green nodes) that are predicted by
the GRN and validated by TF perturbations, are shown by (*) and thicker edge
width. Grey circles indicate other cellular processes validated to be regulated by
these three TFs.

17



Figure 2.5: N-responsive TF hub CRF4 significantly regulates NxTime genes and
N-related processes in both shoots and roots in planta. A. CRF4 responds early
and robustly to N-supply in both the shoots (JIT:5mins) and roots (JIT:20mins).
B. Genome-wide targets of CRF4 were determined in the shoots and roots of a
conditional CRF4-OX transplanta line (24 hrs after b- Estradiol induction) [1]. The
CRF4-OX regulated shoot gene set overlaps highly significantly with the Shoot
NxTime gene set. The CRF4-OX regulated root gene set overlaps significantly
with the Root NxTime gene set. C. GO over-representation analysis identifies
that the CRF4-OX regulated targets vs. NxTime overlap in Roots is enriched
for genes involved in Nitrate uptake and assimilation and genes involved in Root
development which, likely, led to the observed root phenotypes in the CRF4-OX
line (Fig. A.10 & Fig. A.11). In the shoots, the CRF4-OX regulated targets vs.
Shoot NxTime overlap gene set was enriched in GO terms related to translational
control and as well as other terms enriched in the Shoot NxTime gene set (see.
Fig. A.4 and Fig. A.2D). D. Validated CRF4-OX (done by experimentalists at
NYU Biology) regulated targets in the shoot and root are significantly enriched
(p<0.001, green shading) in the early and later just- in-time gene sets in the
respective organs.
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2.2.2 The GRN is pruned using genome-wide TF-target val-

idation data to identify higher-confidence edge predic-

tions

Next, to validate our edge predictions in the time-derived GRN, we used experi-

mentally derived TF-target regulation data for CRF4, SNZ and CDF1 (Fig. 2.2).

First, we tested the significance of the DFG TF-target edge-rankings in our GRN

by performing an Area Under Precision-Recall (AUPR) curve analysis ([52], [31],

[50]) (Fig. 2.3). We compared the ranked TF-target edge predictions from the

DFG-inferred network, to a random ranking of TF-target edges (1,000 iterations).

This analysis showed that the AUPR of the DFG-inferred network (0.24), is sig-

nificantly better than the mean AUPR for random networks (0.14) (p-val <0.001)

(Fig. 2.3C). Next, to identify higher-confidence edges in the GRN ([31]), we chose a

cut-off point (Precision =0.345), before the AUPR curve flattens (Fig. 2.3D). This

Precision cut-off point of 0.345 matches a TF-target edge score of 0.95554 in our

GRN (Fig. 2.3A&D). Thus, only TF-target edges with an edge score >= 0.95554

were retained in our pruned DFG network (Fig. 2.3A). This pruned GRN includes

85 validated targets out of the 245 predicted TF-target edges between CRF4, SNZ

and CDF1 and genes in the NxTime shoot set. These predicted and validated

targets of CRF4, SNZ and CDF1, include five key genes in N-uptake/assimilation

(NRT1.1, NR1 & NR2, NIR, GLN1.1) (Fig. 2.4, edges denoted by *), ten genes

involved in transcriptional/translation, and genes in the circadian clock (e.g. TIC).

As our pruned GRN was optimized to increase Precision at the cost of low Recall,

it likely underestimates the influence of a given TF on GRN. For example, only

9/24 experimentally validated edges from these three TFs to the 12 N-responsive
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genes in the N-assimilation pathway (Fig. 2.4, green nodes) are in the pruned

network (Fig. 2.4, edges with asterisk).

2.2.3 Cross-validation of the pruned N-signaling GRN using

TF-target regulation data from four additional TFs

The above pruned GRN at an average precision of 0.345, can now predict the

influence of 155 N-responsive TFs on 608 NxTime genes in the dynamic N-response

in shoots (Fig. 2.2). To independently validate this precision rate, we identified

the regulated TF-targets of four additional TFs in the GRN - HHO5/6, PHL1 and

TGA1- in shoot cells using the TARGET system. The precision for each of these

four TFs in the GRN ranged from 0.17 to 0.45, for an overall average of 0.32 (Fig.

2.3B & 2.7B). In total, 110/349 predicted TF-targets in the pruned GRN were

experimentally validated, including six genes involved in N-uptake/reduction (Fig.

2.7A-C). These four TFs also influence a significant number of genes and processes

in the NxTime gene set in shoots (Fig. A.9C). This independent TF validation

proves that the initial network precision of 0.345 (Fig. 2.2) used to prune the shoot

N-response GRN, extends beyond the three TFs used in the network inference

pruning stage (e.g. CRF4, SNZ, CDF1), and can be used to predict targets of 155

TFs in the N-response GRN with an overall precision of 0.33. We note that our

Precision cut-off of 0.33 (i.e., one in three predicted edges are likely to be true), is

of comparable scale to the maximum precision of 0.5 achieved using an ensemble

approach of multiple network inference methods in microbes ([52]).
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2.2.4 Independent TF-target binding data supports predicted

edges in the NxTime GRN

The TF-target edges in the pruned DFG network identified as hubs (i.e., influential

TFs) multiple known/validated regulators of N-signaling (e.g. TGA1/4, NLP7/8,

NAC4, HRS1, LBD37/38/39)([53, 42, 29, 4, 74, 26], as well as 146 potential novel

regulators, including six validated herein by our NYU Biology colleagues - CRF4,

SNZ, CDF1, HHO5/6, and PHL1 (Fig. A.9B&C). To add further edge support,

the DFG-predicted edges in the pruned GRN were queried using an independent

source of TF-target binding data for the 40 NxTime TFs in shoots that are present

in the DAP-Seq dataset ([73]) (Fig. 2.6). A TF-target edge in the pruned DFG

network is supported by DAP-Seq TF-target data ([73]), only if that TF is shown

to bind to the promoter of the target gene in the DAP-Seq assay (41) (Fig. 2.6).

We note that the actual DAP-Seq TF-DNA binding data [44] was used to estab-

lish TF-target binding, not the in silico cis-motif information ([73]). The 19 TFs

in the pruned GRN that have DAP-seq data and high-N-specificity, include four

known TFs in the N-response (TGA1/4, NAC4, NLP7) and four new TFs (CRF4,

HHO5/6, PHL1) validated herein by experimentalists at NYU Biology (Fig. 2.6,

red underlined TFs).
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Figure 2.6: A time-dependent GRN uncovers known and novel TFs in
dynamic N-signaling in shoot. A time- based machine learning approach Dy-
namic Factor Graph (DFG) ([48, 58]) was used to infer TF-Target influence in
a GRN. Validated genome-wide targets of three TFs - CRF4, SNZ and CDF1 -
were used to prune the GRN for TF-target Precision based on AUPR analysis
(Fig. A.9 2.2 2.3). This TF-target precision was reconfirmed using data for four
independent TFs - TGA1, HHO5/6, PHL1 (Fig. 2.3B). The TF-target edges sup-
ported by an independent source of TF-Target binding data (DAP-Seq ([73, 44])),
capture regulation of 208 N-responsive target genes by 35 TFs. TFs with a sig-
nificant N-specificity index are highlighted in red. Validated TF regulators of the
N-response are underlined; NLP7(7), TGA1/4(8), NAC4(9), LBD37,38 (11), and
CRF4, HHO5/6, PHL1 [This study].
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2.3 GRN inference and network pruning

DFG ([58]) was used to infer interactions between 172 TFs and 2,174 NxTime genes

in shoots. Experimentally determined TF-target relationships from CRF4, SNZ

and CDF1 were used to perform an AUPR analysis and identify a pruning thresh-

old of precision =0.345, which was independently confirmed with validated targets

of 4 TFs in the GRN TGA1, HHO5/6, PHL1(Figs. 2.2 and 2.3). Further support

for predicted TF-target interactions was obtained from in vitro TF-promoter bind-

ing for 40 TFs that have binding data ([73, 44]) (Fig. 2.6). A previously validated

machine learning approach that implements Dynamic Factor Graphs [58, 48], was

used to derive the TF-target interaction in response to N-treatment. Briefly, the

dynamic behavior (i.e., the gene expression values at the nine sampled time points)

of the 172 TFs that respond to N-supply in shoots was used to model the behavior

of the 2,174 genes responding to N-supply in shoots. Briefly, as we mentioned,

Dynamic Factor Graph (DFG) identifies the likely set of TFs driving target gene

expression, by learning an f function that explains the target gene expression at

each time-point, based on the expression of the TFs at previous time-points [58, 57].

We use the time-series transcriptome data to learn hyper-parameters of the DFG

model using a leave-out time-point. Hyper-parameter optimization is the process

of choosing a set of hyper-parameters for a good generalization of a learning algo-

rithm [23].

Our dataset contains 10 time points. We train DFG on the first 9 time-points,

and tune the hyper-parameters to minimize error on the last time point, and then

inferred TF-target edges based on the constructed model. Then we look at the

final matrix we obtain using all 10 time points, where the matrix estimates the

influence of each TF on every N-responsive gene. This matrix is constructed as a
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network with the coefficient of TF influence on a given gene assigned as the edge

score for that network edge. This unpruned network contains edges from all TFs

to all genes. To increase confidence in the network predictions, we implemented a

network pruning approach to used validated TF-targets to identify true positives

from false positives, as described in [52]. To implement this Network pruning, we

conducted an Area Under the Precision Recall Curve (AUPR) based approach as

follows: The true TF-target edges, i.e., experimentally validated edges of 3 TFs

(CRF4, SNZ, CDF1. See Figure 2B) were used to calculate and plot the network

Precision and Recall (Fig. 2.3C). Briefly, the predicted edges in the DFG-inferred

GRN are ranked by their score (i.e., the coefficient of influence of TF on its target

gene). The network Precision and Recall are then computed by sliding down the

ranked list and labeling each TF-target edge as validated (True positive) or not

(False positive). After each step, the Precision (True Positives/ (True + False

Positives)) and Recall (True Positives/ (True Positives + False Negatives)) of the

network is recalculated (Fig. 2.3A). From these Precision and Recall measures, we

determined the minimum edge score that meets a network precision of 0.345 (Fig.

2.3C). This edge score threshold corresponds to 0.95554 in the DFG network. This

edge cut-off was chosen to minimize false positives (i.e., higher Precision), while re-

covering as many true positives as possible. Therefore, all predicted edges with an

edge score >=0.95554 (Fig. 2.3C) were retained in the pruned network to generate

the pruned TF-target network. This pruned DFG-inferred network represents a

highly conservative estimate of the true influence of a TF, and therefore has a low

Recall rate compared to the genome-wide targets of each of these TFs. Additional

experimental support for TF-> Target interactions was also obtained from inde-

pendent in vitro TF-binding data [73, 44] (Fig. 2.6). This TF-target DNA binding
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dataset included in vitro TF-target binding information for 35 N-responsive TFs

with DFG predictions (Fig. 2.6). For each TF with target predictions (DFG) and

binding data (DAP-Seq [73, 44]), the two target sets were intersected to identify

supported edges i.e., TF is predicted to regulate the target (by DFG) and TF is

shown to bind to the target gene promoter (by DAP-Seq) [73, 44] (Fig. 2.6).
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Figure 2.7: Precision scores of TF-target edges in Pruned N-response GRN are
independently validated with four additional TFs in the N-response GRN. A. Ex-
perimentally validated genome-wide regulated targets of four N-responsive TFs in
the GRN (HHO5, HHO6, TGA1 and PHL1) that were not used in the initial net-
work pruning process based on CRF4, SNZ and CDF1 regulated targets (Fig. 2.2),
were determined in shoot cells in the TARGET system [13]. The predicted targets
of these four new TFs in the Pruned GRN, that were experimentally validated us-
ing the TARGET experiments done by our colleagues at NYU Biology, are shown
here. B. Precision of the Pruned GRN was re-estimated using the genome-wide
taregts of these four new TFs. The overall network precision for this new set of TFs
is 0.32 (110 validated out of 349 predicted). Also see Fig. 2.3B. C. Three of these
four TFs - HHO5, HHO6 and PHL1 - are predicted and validated to influence six
genes in multiple stages of the N-assimilation pathway. TGA1 was predicted to
influence NRT1.1, NIR1 and NIT1 genes in the shoot NxTime response, but the
TARGET system failed to validate these network predictions (i.e., false positives).
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Chapter 3

OutPredict

In this chapter we present a new method called OutPredict. Here, we have tackled

the causality problem differently: we first create a model for each gene g which

can predict the expression of that gene in out-of-sample time points. If our model

is good, then the transcription factors most influential to gene g are likely to be

the causative components for g.

The ability to accurately predict the causal relationships from transcription fac-

tors to genes would greatly enhance our understanding of transcriptional dynamics.

This could lead to applications in which one or more transcription factors could be

manipulated to effect a change in genes leading to the enhancement of some desired

trait. Here we present a method called OutPredict that constructs a model for each

gene based on time series (and other) data and that predicts gene’s expression in

a previously unseen subsequent time point. The model also infers causal relation-

ships based on the most important transcription factors for each gene model, some

of which have been validated from previous physical experiments. The method

benefits from known network edges and steady-state data to enhance predictive

27



accuracy. Our results across B. subtilis, Arabidopsis, E.coli, Drosophila and the

DREAM4 simulated in silico dataset show improved predictive accuracy ranging

from 40% to 60% over other state-of-the-art methods. We find that gene expres-

sion models can benefit from the addition of steady-state data to predict expression

values of time series. Finally, we validate, based on limited available data, that

the influential edges we infer correspond to known relationships significantly more

than expected by chance or by state-of-the-art methods.

3.1 Data

Public datasets vary greatly by organism with respect to experimental design, data

density, time series structure and assay technologies. To show its general applica-

bility, we test OutPredict on five different species (Table 1): i) a Bacillus subtilis

dataset ii) an Arabidopsis dataset in shoot tissue iii) a Escherichia coli dataset iv)

a Drosophila time series dataset, and v) the DREAM4 one-hundred node in silico

challenge. When applicable, we denote data as "gold standard" when it is highly

curated regulatory or binding data.

B. subtilis: This dataset consists of time series and steady-state data capturing

the response of B. subtilis to a variety of stimuli [63]. The gold standard net-

work prior is a curated collection of high confidence edges from high throughput

ChIP-seq and transcriptomics assays on SubtiWiki[56] (we used the parsed data

set provided in [10]).

Arabidopsis thaliana in shoots [86]: This dataset consists of gene expression

level measured from shoots over the 2-hours period during which the plants are

treated with nitrogen. As gold standard network data, we used experimentally val-
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idated edges from the plant cell-based TARGET assay, which was used to identify

direct regulated genome-wide targets of N uptake/assimilation regulators[86].

E. coli: This dataset includes the E. coli gene expression values, measured at

multiple time points following five distinctive perturbations (i.e., cold, heat, ox-

idative stress, glucose-lactose shift and stationary phase)[43]. We used as gold

standard ancillary data the regulatory interactions aggregated from a variety of

experimental and computational methods that has been collected and described in

RegulonDB[79]. We retrieved both parsed expression dataset and gold standard

data from [38].

Drosophila melanogaster: This dataset consists of gene expression levels cov-

ering a 24-hour period; it captures the changes during which the embryogenesis of

the fruitfly Drosophila occurs[37]. As gold standard network data, we used the ex-

perimentally validated TF-target binding interactions in the DroID database[61].

These interactions come from a combination of ChiP-chip/ChIP-seq, DNAse foot-

printing, in vivo/vitro reporter assays and EMSA assays across various tissues from

235 publications.

Huynh et al[38] also used this Drosophila data.

DREAM4 synthetic data [34]: This synthetic dataset from the DREAM4 com-

petition consists of 100 genes and 100 TFs (any gene can be a regulator). Because

this is synthetic data, the underlying causality network is known.
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Dataset Number of Time-points(Num of Reps) Steady-State points Genes TFs gold standard edges (TFs)

B. subtilis 7(3),17(1),4(3),10(1),10(1),
11(1),8(1),10(1),11(1) [63] 52(3reps) [63] 4218 239 3144(154) [10]

Arabidopsis[86] 9(3),9(3) 0 2173 162 1731(7)

E. coli 7(3),7(3),7(3),9(3),5(3) [43] 0 2006 163 4899(163) [38]

Drosophila 28(1) [37] 0 1000 14 1660(9) [61]

DREAM4[34] 20 different time series
with 11 time-points (1rep) 201(1rep) 100 100 176(41)

Table 3.1: Description of Datasets: the table shows the number of data points
in each time series (in parentheses the number of replicates for each data point),
available steady-state data, and the number of genes and transcription factors
(TFs) under consideration for each species. "Gold standard" data is either well-
curated binding data or regulated data or both.

3.2 Methods

Methods

Time series predictions using Random Forests

OutPredict [22] learns a function that maps expression values of all active tran-

scription factors at time t, to the expression value of each target gene (whether

a transcription factor or not) at the next time point. Thus, for each gene target,

OutPredict learns a many-to-one non-linear model relating transcription factors to

that target gene.

The gene function is embodied in a Random Forest, as used previously in Genie3

[39], iRafNet [68], DynGenie3 [38]. When used on a single time series, the Random

Forest for each gene is trained on all consecutive pairs of time points except the

last time point. For example, if there are seven time points in the time series, then

the Random Forest is trained based on the transitions from time point 1 to 2, 2

to 3, 3 to 4, 5 to 6. Time point 7 will be predicted based on the trained function
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when applied to the data of time point 6. The net effect is that the testing points

are not used in the training in any way because the test set includes only the last

time points of each time series.

For a given time series, when multiple time series are available, OutPredict trains

the Random Forest on all consecutive pairs of time points (always excluding the

last time point) across all time series. Further, OutPredict treats replicates inde-

pendently, viz. if there are k1 replicates for time point t1 and k2 for subsequent

time point t2, then we consider k1 × k2 combinations in the course of our training.

The result of the training is to construct a single function f for each target gene

that applies to all time series. To test the quality of function f, we evaluate the

mean-squared error (MSE) on the last point of every time series on that target

gene.

The Random Forest uses bootstrap aggregation, where each new tree is trained on

a sub-sample of the training data points. The Out-of-Bag error for a given training

data point is estimated by computing the average difference between the actual

value for a given training data point and the predictions based on trees that do

not include the training data point in their bootstrap sample. Each tree is built on

a bootstrap sample of size approximately 2/3 of the training dataset. Bootstrap

sampling is done with replacement, and the remaining 1/3 of the training set is

used to compute the out-of-bag score. Thus, the out-of-bag calculation is done on

training data only.

All our experiments used random forest ensembles of 500 trees to avoid overfitting.

Pruning did not improve the out-of-bag score, so the experiments used the default

parameters for pruning of RandomForestRegressor in sklearn [67].
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Incorporation of gold-standard data as priors

OutPredict uses prior data to bias the training of the Random Forest model.

Specifically, each decision tree node within a tree of the Random Forest will be

biased to include a transcription factor X1 for the model of gene g in preference to

transcription factor X2 if the prior data indicates a relationship between X1 and

g but none between X2 and g.

The gold standard for OutPredict is a matrix [Genes ∗ TFs] containing 0s and

1s, which indicates whether we have prior knowledge about the interaction of a

transcription factor (TF) and a gene. Hence, if the interaction between a TF and

gene g is 1, then there is an inductive or repressive edge; while if it’s 0, then there

is no known edge.

In order to compute prior weights from the gold standard prior knowledge, we

assign a value v to all interactions equal to 1 (i.e., the True Positive interactions)

and 1/v to the interactions identified by 0 (the set of values tried for v is specified

in Supplementary Table S2).

During the tree construction, our Weighted Random Forest, at each node d, selects

r candidate features (transcription factors) X1, X2, ....., Xr according to the prior

weights (Figure 3.1); r is the number of features sampled at each node d, which

is set to the square root of the total number of transcription factors.

The r candidate transcription factors are a subset of all transcription factors and

are randomly sampled at each tree node, biased based on the weights of the priors,

as in iRafNet[68]. In addition, OutPredict calculates the I(d)(variance reduction *

prior weight) criterion (which is defined below in formula (3) of the Mathematical

Formulation section) for all the selected subset at each node and branch on the
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transcription factor with highest I(d).

Figure 3.1: Illustration of how priors work: the priors assign initial weights to
features (transcription factors) which influence how likely they are to be chosen
as splitting elements in the trees of the Random Forest. As learning takes place,
these weights can change, finally leading to a model that depends on both the time
series data and on other data.

OutPredict incorporates steady-state(SS) data into the same Random Forest model

as the time series(TS) data (an "integrated" approach, denoted as the RFSS+TS

model). Further, each prior dataset can be evaluated separately depending on

how helpful it is to make predictions on time series. By contrast, for example,

iRafNet[68], combines all prior datasets and weights them equally at each tree

node. An equal weighting strategy may decrease overall performance when, for

example, one prior dataset is less informative or is error-rich. As an aside, iRafNet

can make out-of-sample predictions but only on steady-state data.
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3.3 Mathematical Formulation

Mathematical Formulation

Let X be the expression values of the set of features (in our case, transcription

factors), and yj be a target. We seek a function such that maps X to yj either

in steady-state or for time series. For steady-state data, we use all experimental

conditions to infer a function yj = fsteadyj(X) where X must not include yj.

That is, for each gene yj, we seek a function from all other genes to yj. For time

series, Outpredict supports two types of models:

1. Time-Step (TS) model:

(1) yj(ti+1) = ftimestepj(X(ti)),∀j

2. Ordinary Differential Equation natural logarithm (ODE-log) model:

(2)
yj(ti+1)− yj(ti)
ln(ti+1 − ti)

+ αyj(ti) = fodej(X(ti)),∀j

where X(ti) denotes the expression values of all the transcription factors at time

ti, yj(ti+1) denotes the expression of gene j at ti+1, α is the degradation term. All

genes are assumed to have the same α.

OutPredict integrates steady-state(SS) data with Time series(TS) data in a single

Random Forest.

We have found that the ODE-log model achieves a better out-of-bag score com-

pared to just using the linear difference (ti+1− ti) in the denominator. This makes
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some intuitive sense because many phenomena in nature show a decay over time.

Empirically, for example, the difference in expression value between 5 and 20 is

more than 1/3 the difference between 5 and 60 in the Arabidopsis time series.

Further, Figure 3.2 illustrates the absolute difference in gene expression decreas-

ing over time for most of the species. During training, one of the Time-Step or

Figure 3.2: Gene Expression Change for all species. Generally, the average absolute
difference in expression (across all genes for each species) decreases over time. E.
Coli may be an exception because of the short lifespan of bacteria. The Time-Step
model worked better for B. subtilis and Drosophila. The Ordinary Differential
Equation-log model worked better for Arabidopsis, E. coli and DREAM4 (Table
3.3).

ODE-log models is selected based on the out-of-bag score on the training data.

We have found that the relative performances of the two OutPredict techniques

Time-Step and ODE-log are very data dependent, with Time-Step performing bet-

ter than ODE-log on B. subtilis and Drosophila, while the opposite is observed on
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Arabidopsis, E.coli and DREAM4 (Table 3.3 shows the best model based on out-

of-bag score).

In detail, during training, OutPredict determines (i) which of these two methods

(ODE-log or Time-Step) to use, (ii) the prior weights of the TFs, and (iii) the

degradation term for the ODE-log model. As far as we know, this is the first time

the choice of model and degradation parameter value have been treated as train-

able hyper-parameters. We show in Table 3.4 the set of hyper-parameter values

tested for the degradation term α and for the prior weights when calculating the

out-of-bag score.

Computationally, at a given node d in a tree, OutPredict computes the product of

(i) the standard Random Forest importance measure which is defined as the total

reduction of the variance of y and (ii) the weight given by the priors. Here is the

formula used for the reduction of variance [14], modified by the prior weighting:

(3) I(d) = [(Snum ∗ vary(S))− (Slnum ∗ vary(Sl))− (Srnum ∗ vy(Sr))] ∗ wXi,y

where d is the current decision node being evaluated, S is the subset of samples

that are below decision node d in the tree, Sl and Sr are the subsets of experiments

on the left and right branches of decision node d, respectively; vary is the variance

of the target gene in a given subset, and Snum, Slnum , Srnum denote the number of

training samples in each subset associated with a specific target gene. Finally, wXi,y

is the prior weight from a given feature Xi to a given target gene y, which causes

features with high prior weights to be chosen with higher probability when splitting

a tree node during tree construction. Because the model for each target gene is
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independent, OutPredict calculates the model for the target genes in parallel. For

Algorithm 1 OutPredict Method
1: procedure OutPredict
2: Split dataset in training and test sets
3: Test set includes the last time points of all time series
4: r = sqrt(len(TFs))
5: if OP-Priors == True then
6: Compute Prior Weights . (see section on gold-standard data)
7: For each of the Time-Step and ODE-log models:
8: Train a Random Forest as follows:
9: if OP-Priors == True then

10: Using the training data, do T times
11: Build a decision tree as follows:
12: for tree nodes do
13: Sample r candidates TFs X1, X2, ..., Xr according to prior weights
14: Calculate weighted importance I(d) for these r candidates .

(formula 3)
15: Branch on Xi with highest Ii(d)
16: else
17: No priors case: Use training data to build T decision trees for each gene

without use of priors.
18: Return best Time-Step/ODE-log model according to out-of-bag score
19: Make out-of-sample predictions using test set
20: Compute importance for each feature

the purpose of inferring relative influence of transcription factors on genes and

constructing a network of such potential causal edges, let T be the number of trees

and Di be the set of nodes which branch based on transcription factor (feature)

Xi, the overall importance score of the feature Xi is:

(4) si =
1

T

∑
Di

I(d)

Computationally, the importance score si of Xi is the sum of the variance improve-

ments I(d) over all nodes d in Di divided by the number of trees T. The resulting
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variable importance value si is more robust than the value obtained from any single

tree because of the variance reduction resulting from averaging the score over all

the trees [14]. High importance scores identify the set of the likely most influential

transcription factors for each target gene.

3.4 Results

We measure the prediction performance of our algorithm using the Mean Squared

Error(MSE) of the predictions of out-of-sample data. For each species tested, we

compare the performance of the different algorithms on time series alone and on

time series data with prior information.

As mentioned above, we compared our weighted Random Forest with two related

works: i) a Neural Network (NN) with a hidden layer[82] which is an approach

developed specifically for time series gene expression prediction. In detail, we

perform hyper-parameter optimization for the learning rate of the stochastic gra-

dient descent optimizer, and the dropout rate. Thus, regularization is applied

through dropout, which helps reduce overfitting. ii) the Random Forest algorithm

DynGenie3 [38], which is an extension of Genie3 [39] that is able to handle both

steady-state and time series experiments through the adaptation of the same ordi-

nary differential equation (ODE) formulation as in the Inferelator approach [33].

iRafNet [68], as noted above, does not handle time series data as the main input

data.

DynGenie3 was primarily designed for Gene regulatory network inference, but the

authors show the performance of DynGenie3 at predicting both time series and

steady-state data in the validation sets. Therefore, we evaluate DynGenie3 for
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predicting leave-out time series data in order to compare it with OutPredict. As

a baseline for all algorithms, we consider the penultimate value prediction of the

expression of a gene at a given time point to be the same value as the expression

of that gene at the immediately previous time point. To evaluate the performance

of our forecasting predictions, we compare the predicted expression values to the

actual expression values for each gene (Figures 3.3A, 3.4A) and calculate the

Mean Squared Error (MSE) across all genes.

Quantitative Results

We show in Figure 3.3B and Figure 3.4B overall bar plots for a Bacillus subtilis

and Arabidopsis. Similar results hold for other species (Figures 3.5, 3.6, 3.7). A

table showing which method and data were used for each can be found in Table

3.2. Our basis of comparison is Mean Squared Error, which is a measure of the

error in the predictions in which smaller values indicate more accurate predictions.

Given a species, the mean squared error (MSE) is calculated as follows: given the

prediction and actual value for each replicate of each gene at the last time point,

first compute the squared error for each replicate. Second, take the mean to get the

mean squared error for that gene. Third, compute the global mean squared error

as the mean of the mean squared errors of each gene. Figures 3.3A and 3.4A show

qualitatively that the actual values closely track the predicted values. OutPredict

outperforms DynGenie3, Neural Nets, and penultimate value predictions over all

species using these datasets.

In B. subtilis (Fig. 3.3), OutPredict performs 30% better than Penultimate Value

(P < 0.05, based on a non-parametric paired test), and 50% better than Dynamic

Genie3 (P < 0.05, based on a non-parametric paired test) (Fig. 3.3B). As Out-
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Predict allows the incorporation of priors into the model, such as gold-standard

network data, we compared the forecasting performance of OutPredict using time

series with the integration of steady-state with OutPredict on time series data

with steady-state data and gold-standard regulated edges as priors (Figure 3.8).

In these tests, the inclusion of validated gold-standard edges as priors improved

predictions compared to excluding priors (Figure 3.8, 11% improvement, P < 0.05,

non-parametric paired test).

The non-parametric paired test we use throughout this paper compares any two

prediction methods M1 and M2 as follows: (i) format the data from the original

experiment by a series of rows with one row for each gene containing the gene

identifier, the M1 prediction for that gene, the M2 prediction, and the real value

(call this series of rows Orig); (ii) calculate the figure of merit (for example, the

squared error) for each gene and each method (e.g., the square of M1 prediction -

real value); (iii) calculate the difference, Diff, in the average of the figure of merit

(for example, the difference of the mean squared errors) of the M1 values and the

M2 values; (iv) Without loss of generality, assume Diff is positive; (v) randomiza-

tion test: for some large number of times N (e.g., N = 10,000), starting each time

with Orig, for each gene g, swap the M1 and M2 values for gene g with probability

0.5. Now recalculate the overall difference of the figure of merit for M1 and for

M2 and see if that difference is greater than Diff. If so, that run is considered an

exception; (vi) The p-value of Diff (and therefore of the change in the figure of

merit) is the number of exceptions divided by N. When the p-value is small, the

observed difference is unlikely to have happened by chance.

We show in Table 3.2 the different models that were compared for the experimen-

tal results: each model (built with a given algorithm) is associated with a given
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species, a specific main input dataset and a prior dataset. Recall that, in OutPre-

dict, the priors bias the Random Forest by adjusting the weights that determine

feature inclusion.

Furthermore, we show the results using the OutPredict (OP) technique (either

the Time-step or ODE-log) that validation analysis found to be the best model

using the out-of-bag score. We found that the weights/importance found in high

quality prior data significantly improve predictions in B. subtilis (Fig. 3.3B),

though less so in Arabidopsis Shoots (Fig. 3.4B). There is no improvement in E.

coli, Drosophila or Dream4 (Figs 3.5, 3.6, 3.7). The precise reasons may vary:

gold standard data may contain inaccurate regulatory interactions, may be either

incomplete, or may depend on specific experimental conditions. The DREAM4

dataset shows that Priors data contributes to out-of-sample predictions more when

there are few time series than when there is abundant time series data (Figures

3.13, 3.14); similarly, the out-of-sample predictions improvement of using time

steady-state data, relative to time series data alone, decreases as the number of

time series increases (Figures 3.11, 3.12).

Label Method Description

OP-Priors OutPredict-Priors
OutPredict uses (i) Time series(TS) with steady-state(SS) data integrated (TS+SS) in one

big Random Forest, and (ii) Gold standard data as priors to bias the integrated
Random Forests for time series and steady-state data.

OP-TSonly OutPredict-TimeSeriesOnly No Priors: Time series alone; no other data.

DynGenie3 Dynamic Genie3 settings and hyper-parameter optimization as described in [38]

NN Neural Network one hidden layer as described in [82]

Pen. Value Penultimate Value the second to last time points of each time series is used as
the prediction for the last one.

Table 3.2: Legend of Experimental Results.

As a test of the usefulness of OutPredict’s importance scores, or measures of

influence, for all the TFs on every target gene, we evaluate the OP-Priors model

importances in Arabidopsis. The dataset consists of 162 TFs on 2173 targets, total-

41



Figure 3.3: Bacillus subtilis. (A) Comparison of predicted gene expression using
OutPredict (grey dots) versus actual expression (red line) at the left-out time
point. Genes are ordered by increasing actual mean expression value (red line).
OutPredict predicts gene expression well at all expression levels. The accuracy of
forecasting is measured by calculating the Mean Squared Error (MSE). (B) The
vertical axis indicates MSE, where lower bars indicate more accurate predictions.
The descriptions of the different models of the x axis can be found in Table 3.2.
OutPredict (OP-Priors) performs significantly better (P<0.05, based on a non-
parametric paired test) than Penultimate Value (with a 30% relative improvement),
DynGenie3 (with a 50% relative improvement) and Neural Network(NN). The MSE
for Neural Nets is 3.75 (with standard deviation ≈ 0.3), which is considerably
higher than for other methods (Table 3.5); it is not shown here because the
MSE is out of scale. Moreover, when priors from both Integrated steady-state
data and prior gold standard data, are used with the OutPredict algorithm, there
is a significant (P<0.05, non-parametric paired test) improvement in predictions
relative to OutPredict using only time series data. Specifically, prior gold standard
data is significantly helpful, showing a 11% relative improvement (Figure 3.8).
Finally, out-of-bag analysis concludes that the Time-step differencing model is
better than the ODE-log.

ing 352,026 TF–target edges. To refine these time-based TF–target predictions, we

retained the highest-confidence edges, specifically, the top 2% of the edges accord-

ing to the score, resulting into 7042 edges. We used 1754 validated TF–target edges

of 11 TFs physical experiments from [74],[11],[12],[49],[30],[53],[35],[17] (the data for

the 11 TFs are described in Table 3.6), which is a disjoint dataset from the one

used for the priors. This analysis establishes the precision (i.e., the proportion of
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Figure 3.4: Arabidopsis in Shoot Tissue (time series only dataset) (A) Predicted
gene expression using OutPredict (grey dots) compared to actual expression (red
line) at the left-out time point. (B) Comparison of time series forecasting: the
accuracy of forecasting, measured by Mean Squared Error, has higher values in
this case than for other species, because the data is RNAseq and read counts
have a broad dynamic range. Table 3.2 describes which method and data were
used for each model in the x axis. OutPredict (OP) performs 34.2% better than
Penultimate Value (P < 0.05, non-parametric paired test), and 61.5% better than
Dynamic Genie3 (P < 0.05, non-parametric paired test). The incorporation of
priors from TARGET (OP-Priors) improves the performance of OutPredict com-
pared to the time series alone (9% improvement with P = 0.12, non-parametric
paired test). The ODE-log model is better than Time-Step based on the out-of-bag
score. The Neural Network model doesn’t converge because the dataset is small.

Dataset Best OutPredict Model
B. subtilis Time-Step (7% better than ODE-log)
Arabidopsis ODE-log (22% better than Time-Step)
E. coli ODE-log (15% better than Time-Step)
Drosophila Time-Step (17% better than ODE-log)
DREAM4 ODE-log (5% better than Time-Step)

Table 3.3: Time-Step(TS) vs ODE-log model. For a given organism the table
shows the best model based on out-of-bag score. The relative performance of the
two OutPredict techniques Time-Step and ODE-log are very data dependent, with
Time-Step performing better than ODE-log on B. subtilis and Drosophila, while
the opposite is observed on Arabidopsis, E.coli and DREAM4. We determine this
on the training data and then apply whichever method is better on the test data.

predicted TF-target edges that are validated) and recall (i.e., the proportion of val-

idated TF-target edges that are predicted) of the OutPredict top 2% edges for the

43



Figure 3.5: Escherichia coli: Time series forecasting. This is a time se-
ries only dataset consisting of 15 time series. (A) Comparison of predicted gene
expression using OutPredict (grey dots) vs. actual expression (red line) at the left-
out time point. The accuracy of forecasting is measured by calculating the Mean
Squared Error. (B) OutPredict (OP and OP-Priors) improves (P < 0.01, based on
a non-parametric paired test) the quality of forecasting compared to Penultimate
Value (15% improvement) and Dynamic Genie3 (40.5% improvement). For this
data, there is no improvement using priors from gold-standard edges compared
with time series data by itself.

Figure 3.6: Drosophila: Time series forecasting. This is a time series only
dataset consisting of one time series of 28 time-points. OutPredict (OP and OP-
Priors) performs better (P < 0.01, non-parametric paired test) than benchmark
approaches including Penultimate Value and Dynamic Genie3 (23% and 26.1%
improvement, respectively). The incorporation of priors from the gold-standard
network does not improve forecasting compared to time series alone.
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Figure 3.7: DREAM4: Time series forecasting. This is a synthetic dataset.
(A) Comparison of predicted gene expression using OutPredict (grey dots) vs. ac-
tual expression (red line) at the left-out time point. (B) OutPredict (OP-TSonly,
OP-TS+SS and OP-Priors) outperforms (P < 0.05, non-parametric paired test)
Penultimate Value and Dynamic Genie3 with 10% and 40.1% relative improve-
ment, respectively. The incorporation of priors together with the integration of
steady-state data does not improve forecasting compared to time series alone.

Hyper-parameter Set of values tested
alpha (α) [1, 2e−1, 1e−1, 4e−2, 2e−2, 1e−2]
prior weights (True Positive) [2,exp(1), 5, 8, 15]

Table 3.4: Hyper-parameters: Set of values tested for the degradation term alpha
(α) and for the prior weights when calculating the out-of-bag score. As explained
in the body of the paper, when OP-Priors is set to True and gold standard data is
given as priors, OutPredict transforms the gold standard prior knowledge to prior
weight, by assigning a value v (chosen from the set of prior weights in the table) to
all interactions where there is an edge in the prior data and 1/v to the interactions
where the existence of an edge is unknown.

validated 11 TFs. The results showed that precision and recall for the TF–target

predictions in the top 2% edges were 0.246 (76/309) and 0.043 (76/1754), respec-

tively. Both were significantly greater than the mean for 1000 random samples

of 309 edges of these 11 TFs (random precision mean ≈ 0.161 and random recall

mean ≈ 0.028) (Table 3.7). Moreover, the precision of OP-Priors for the top 2%

outperforms OP-TSonly (precision=0.226) and DynGenie3 (precision=0.158). We

further compared the performance of the OP-Priors model importances with OP-
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Figure 3.8: - Bacillus Subtilis - Full Comparison of time series forecasting: Neu-
ral Network from [Smith et al 2010] (NN) vs. Dynamic Genie3 (DynGenie3) vs.
Penultimate Value (Pen.Value) vs. OutPredict (OP-TSonly, OP-TS+SS and OP-
Priors). The use of steady-state data (OP-TS+SS ) leads to a 6% significant
improvement (P < 0.05, non-parametric paired test) relative to time series data
alone (OP-TSonly). OP-Priors uses gold standard data (in addition to time se-
ries (TS) and steady-state (SS) integrated in a single random forest), which is
helpful compared to the model OP-TS+SS showing an 11% relative improvement
(P<0.05, non-parametric paired test).

Dataset Neural Netwok MSE (StdDev) OutPredict Time-Series-only MSE (StdDev)
B. subtilis 3.75 (0.3) 1.33 (0.08)
E. coli 3.33 (0.27) 0.9044 (0.07)
DREAM4 0.0095 (0.0008) 0.0036(0.00017)

Table 3.5: Neural Network (NN) with one hidden layer [Smith et al 2010] vs.
OutPredict Time-Series-only (OP-TSonly). NN from [Smith et al 2010] is able to
learn using time series only datasets. The table shows that the mean squared error
(MSE) for NN is significantly higher than for OutPredict since there is a relatively
small amount of data. Neural Networks work best with much larger datasets.
NN doesn’t converge for Arabidopsis and Drosophila because the datasets are too
small.
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Figure 3.9: DREAM4 - Causality Inference Improvement with Steady-State data.
The DREAM4 dataset shows that steady-state data contributes to the inference
of causality more when there are few time series than when there is abundant time
series data. (A) We show the comparison of Area under Precision-Recall (AUPR)
with and without steady-state data in cases of different numbers of time series.
The y-axis represent the AUPR average of three different random sets of time
series of size 1, 3, 5 respectively; x = 20 represents the case of taking all 20 time
series in the DREAM4 dataset.

TSonly and DynGenie3, and computed the Area under Precision-Recall (AUPR)

using the 1754 validated TF–target edges of 11 TFs physical experiments in Ara-

bidopsis. The AUPR of Outpredict with Priors (OP-Priors) is 15% better than

random (p-value < 0.01, non-parametric paired test), for Outpredict without Priors

(OP-TSonly) AUPR is 7.5% better than random (p-value < 0.01, non-parametric

paired test), while DynGenie3 is no better than random (Figure 3.15). Addition-

ally, we show that similar results (Figure 3.16) hold for the DREAM4 synthetic

dataset (where causal edges are known). This shows the promise of using predic-
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Figure 3.10: DREAM4 - Causality Inference Improvement with Steady-State data.
The DREAM4 dataset shows that steady-state data contributes to the inference
of causality more when there are few time series than when there is abundant time
series data. The AUPR improvement of using time steady-state data, relative to
time series data alone, decreases as the number of time series increases.

tion to infer influence and suggests that good out-of-sample prediction leads to

good causality models.
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Figure 3.11: DREAM4 - Gene Expression Prediction Improvement with Steady-
State data. The DREAM4 dataset shows that steady-state data contributes to
out-of-sample prediction more when there are few time series than when there are
many. (A) We show the comparison of time series forecasting with and without
steady-state data for different numbers of time series. The y-axis represent the
MSE (mean squared error) average for three different random sets of time series
of sizes 1, 3, 5 respectively; x = 20 represents the use of all 20 time series in the
DREAM4 dataset.

49



Figure 3.12: DREAM4 - Gene Expression Prediction Improvement with Steady-
State data. The DREAM4 dataset shows that steady-state data contributes to
out-of-sample prediction more when there are few time series than when there are
many. The out-of-sample predictions improvement of using time plus steady-state
data, relative to time series data alone, decreases as the number of time series
increases.
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Figure 3.13: DREAM4 - Gene Expression Prediction Improvement with Priors.
The DREAM4 dataset shows that Priors data contributes to out-of-sample predic-
tions more when there are few time series than when there are many. (A) We show
the comparison of time series forecasting with and without gold standard data for
different numbers of time series. The y-axis represent the MSE (mean squared er-
ror) average for three different random sets of time series of size 1, 3, 5 respectively;
x = 20 represents the use of all 20 time series in the DREAM4 dataset.
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Figure 3.14: DREAM4 - Gene Expression Prediction Improvement with Priors.
The DREAM4 dataset shows that Priors data contributes to out-of-sample predic-
tions more when there are few time series than when there are many. Therefore,
when the gold standard as priors is used in addition to time series data, the out-of-
sample prediction improvement decreases as the number of time series increases.
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Transcription Factor Technology

CGA1/GNL(AT4G26150) Microarray-Agilent

GATA17(AT3G16870) Microarray-Agilent

GATA2(AT2G45050) Microarray-ATH1

LBD38(AT3G49940) Microarray-ATH1

LBD37(AT5G67420) Microarray-ATH1

PHR1(AT4G28610) Microarray-ATH1

NLP7(AT4G24020) Microarray-CATMA

HBI1(AT2G18300) RNA-seq

CRF4(AT4G27950) RNA-seq

GNC(AT5G56860) Microarray-Agilent
combined with RNA-seq

SVP(AT2G22540) RNA-seq

Table 3.6: The Transcription Factor (TF) experiments used for the validation
of OutPredict’s Arabidopsis Model importance output. Regarding the Microarray
experiments, the genes not on chip were filtered from the predictions according
to the microarray type. The microarray elements for the different types were
retrieved from the following public repository: CATMA in arabidopsis.org ; ATH1
in arabidopsis.org ; Agilent in arabidopsis.org.
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Validated TF-target measures OP-Priors

Precision/Recall TF-target 0.246/0.043

Random Precision/Recall average 0.161/0.028

Validated Precision/Recall p-value <0.01/<0.01

Table 3.7: TF-target validation for OP-Priors Arabidopsis Model. The important
edges predicted by the model had a precision and recall of over 23% and 4%,
respectively. Whereas a random selection of the same number of edges had a
precision and recall of 16% and under 3% (respectively). The differences for both
are statistically significant.

Figure 3.15: Inference of Causality. The area under the precision recall curve
(AUPR) of Outpredict with Priors (OP-Priors) is 15% better than random (p-
value < 0.01, based on a non-parametric paired test); AUPR of Outpredict without
Priors (OP-TSonly) is 7.5% better than random (p-value < 0.01, non-parametric
paired test); DynGenie3 same as random.
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Figure 3.16: AUPR DREAM4 - OutPredict vs. Benchmarks for the inference
of causal edges. As for the Arabidopsis dataset (Figure 4 of the main paper),
here we show the AUPR (Area Under the Precision-Recall curve) for predicting
causal edges in the ideal case of DREAM4 where the true gold standard is known.
Outpredict without Priors (OP-TSonly) is clearly better than random (p-value <
0.01, non-parametric paired test) in terms of Area under Precision-Recall. Further,
AUPR of OP-TSonly is 12% better than AUPR of DynGenie3 on time series data
(p-value < 0.01, non-parametric paired test). This suggests that good out-of-
sample prediction leads to good causality models.

OutPredict vs. Dynamic Factor Graph (DFG)

In Chapter 2 and Appendix 6, A.1.8 we discussed our studies where we de-

signed and implemented a computational pipeline that includes the Dynamic Fac-

tor Graphs (DFG)([58]) algorithm, which is a State-space model (SSM) algorithm

that models the dynamics of a sequence of data by encoding the joint likelihood

of observed and hidden variables.

DFG uses an Expectation-Maximization (EM) algorithm which consists of a two-
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steps iterative procedure: the step which infers the latent variables z(t) (i.e. the

inference step) and the step to learn the linear f function (i.e. the learning step).

In the inference step the model infers the latent variable z(t) which represents the

denoised version of the gene expression data under the assumption that mRNA

data y(t) are noisy observations [57].

In this subsection we compare DFG with OutPredict; as shown in Chapter 2, DFG

learns the rate of change of gene expression, therefore we use as performance metric

the prediction of the direction of gene change (up-regulation or down-regulation)

on future data points. For this purpose we have generate a synthetic DREAM4

time-series dataset with 100 genes [80] in order to compare the two algorithms.

For each gene both algorithms are trained on all consecutive pairs of time points

except the last time point, hence the test set includes only the last time points of

each time series.

We use the prediction of the direction of change to gene expression to count the

number of times the sign of the change between the penultimate and last time

point for all time series is correct, which we call signs on leave-1 test dataset.

The leave-out-last predictive performance on the last time points for DFG was

worse than OutPredict, with 56% and 67.5% of correct signs on the test set re-

spectively (Figure 3.17).

We further compared the performance of the OP-TSonly model importances

with DFG, and computed the Area under Precision-Recall (AUPR). This is possible

because the causal edges are known for the DREAM4 synthetic dataset. Figure

3.18 shows that the AUPR (area under the precision-recall curve) of Outpredict

without Priors (OP-TSonly) is significantly better than random and DFG (p-value

< 0.01, non-parametric paired test). For the sake of fairness, we show the AUPR
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Figure 3.17: Percentage of Correct Signs on last-time-points dataset - DREAM4 -
OutPredict vs. DFG. We make predictions about whether gene expression levels
would be increased (positive sign) or decreased (negative sign) at the last time-
point compared with penultimate (for all time-series). Outpredict (OP-TSonly)
is better than DFG (p-value < 0.01, non-parametric paired test) in terms of Per-
centage of Correct Signs on the last-time-points test dataset for DREAM4 time
series.

for DynGenie3 as well. The fact that better prediction corresponds to better

feature importances estimation suggests that successful out-of-sample prediction

results in strong models of causality.

Conclusion

There are four reasons for the relative success of OutPredict compared to other

methods: (i) the use of Random Forests which provides a non-linear model (in
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Figure 3.18: AUPR DREAM4 - OutPredict vs. DFG for the inference of causal
edges. Here we show the AUPR (Area Under the Precision-Recall curve) for the
prediction of causal edges for DREAM4 where the true gold standard is known.
Outpredict (OP-TSonly) performs far better than DFG (p-value < 0.01, non-
parametric paired test) in terms of Area under Precision-Recall, i.e. 0.26 and 0.064
AUPR values respectively. Further, AUPR of OP-TSonly better than AUPR of
DynGenie3 on time series data (p-value < 0.01, non-parametric paired test) as
well.

contrast to regression models) that requires little data (in contrast to neural net

approaches), (ii) the incorporation of prior information such as gold standard net-

work data (in contrast to DynGenie3), (iii) the adjustment of weights of predictors

(in contrast to all other time series based methods), and iv) the selection during

training of the optimal technique between the Time-Step and our ODE-log model,

which includes a degradation term that is also tuned (in contrast to all other meth-

ods).
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In summary, OutPredict achieves high prediction accuracy and significantly out-

performs baseline and state-of-the-art methods on data sets from four different

species and the in silico DREAM data as measured by mean squared error. Fur-

ther, as a proof of concept, we have seen that the high importance edges correspond

to individually validated regulation events much greater than by chance in both

Arabidopsis and DREAM. The code is open source and is available at the site

github.com/jacirrone (DOI-10.5281/zenodo.3611488).
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Chapter 4

Learning with Steady-State Data

Alone

4.1 Single-cell analysis reveals a framework for un-

derstanding cell behavior from its birth to ter-

minal differentiation

We apply OutPredict to a single-cells dataset where each single-cell expression pro-

file is processed as a steady-state condition. While a host of studies published in

2019 have largely been descriptive, in this chapter we briefly describe work where

we use machine learning modeling together with genetics, and molecular analysis

to uncover functional circuitry in a case study focused on the Arabidopsis phloem.

Conceptually, this work shows how the morphogen-like gradients that have been

implicated in the maturation of the meristem connect to the specific mechanisms

that allow individual cell types to time the steps of their differentiation. The
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experimental part of this work done by our biologist colleagues at University of

Cambridge and University of Helsinki shows these connections directly with genetic

perturbations and in-vivo chromatin binding assays. Furthermore, our data and

computational models allowed us to form a unique view of cell type differentiation,

leading to a model of disconnected developmental changes that are mediated by

a so-called seesaw model in which early and late stage regulators antagonistically

regulate each other’s targets.

Overall, these results provide new general principles of how the plant meristem

functions, with implications in efforts to improve plant growth.

4.1.1 Single-cell expression profiles as steady-state condi-

tions

Plant roots consist of several concentric layers of functionally distinct cell files,

which initially bifurcate and establish distinct identities around the quiescent cen-

ter and its surrounding stem cells. Cells within each file mature through the

distinct zones of cell proliferation and differentiation. In Arabidopsis the develop-

ment of the protophloem sieve elements (PSEs) involves a transient period of cell

proliferation, during which, in addition to amplification of cells within the file, two

lineage-bifurcating events take place. Soon after the cell proliferation ceases, cells

of the PSE lineage initiate a differentiation process which culminates in enucleation,

an irreversible process that gives rise to the mature conductive cells. Because of

specific modulation of the graded distribution of the key phytohormonal cue auxin,

the differentiation of PSEs occurs faster than that of the other cell files. Therefore,

PSE development offers a tractable scheme to understand how the two processes
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of cell specialization and maturation interact.

This work concerns data produced by our experimental colleagues at the Univer-

sity of Cambridge and University of Helsinki. The data consists of 758 single-cell

PSE transcriptomes. The 758 PSE cells were placed on a linear developmental

trajectory using unsupervised tSNE clustering in order to project them into a

pseudo-temporal order. This way a pseudotime value is assigned to each cell in

order to obtain pseudo-time order of the 758 protophloem cells.

To model gene regulatory connections, we first selected the 15% most variable

genes among the 758 cells using the genevarfilter function in Matlab (Percentile,

85), leaving 4,924 genes for model inference. We modeled gene regulation using

OutPredict on the 758 single-cell expression profiles and the 4,924 highly variable

genes, which included 208 transcription factors (TFs). In general, the Random

Forest model allows for non-linear dependencies of target genes on causal tran-

scription factors. Each single-cell expression profile is treated as a steady-state

condition, allowing the model to learn a function that maps expression values of

TFs to the expression value of each target gene. In OutPredict, the TF-to-target

association is described with a score that reflects the contribution of the TF to

the expression of its target according to the model. To address drop-out effects

and other noise in single-cell data in the pre-processing stage, we merged the ex-

pression of consecutive cells to generate pseudo-cells using the following procedure

to optimize the "bin size" (number of consecutive merged cells): we subdivided

the 758 single-cell expression profiles into varying bin sizes, taking the median of

the expression value of each gene in each bin or pseudo-cell as the value of that

pseudo-cell. The Random Forest approach uses bootstrap aggregation, where each
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new tree is trained on a bootstrap sample of the training data. The remaining

out-of-bag error is estimated as the average error for each training data point pi

evaluated on predictions from trees that do not include pi in their corresponding

bootstrap sample. For the dataset, the optimal bin size that minimized the out-

of-bag error was 12 cells, providing our steady-state inference model a total of 64

pseudo-cells.

Finally, OutPredict ranks TFs based on their influence (score) on target gene ex-

pression, generating a predicted gene regulatory network (GRN) based on TF

causality. To refine these TF-target predictions, we retained the top-10 highest

scoring transcription factors for each gene target, resulting in 49,240 (TF-to-target)

edges. TFs were then ranked by their number of targets to derive the ranked list

of the most important TFs.

In summary, our OutPredict gene regulation model is based on the pseudotime-

ordered 64 pseudo-single-cell profiles, 208 TFs, and 4924 highly variable genes. We

extrapolate four forms of significant and insightful validation:

• Among the 208 TFs in this dataset, the majority of known PSE transcription

factors (such as APL, NAC45 and NAC86) were among the top 20 regulators.

• We validated the model by comparing predicted targets with genes induced by

in vivo ectopic expression of the same TFs, confirming a significant overlap

of targets in 3 out of 5 cases.

• Among the top 20 regulators we also identified four related genes that encode

early SE abundant PEAR transcription factors (Figure 4.1). The simulta-
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neous loss of six PEAR genes was recently shown to result in defects in PSE

differentiation [59].

• TF targets were classified into positive vs. repressive downstream sets in both

theOutPredictmodel and experimental over-expression data as follows: Pear-

son correlation between each TF and individual targets was used to deter-

mine regulatory effects (negative correlation, r<0, was classified as repressive

regulation, and r>0 was classified as positive regulation). We evaluated sig-

nificant overlap between all pairwise positive and negative regulatory sets

for each transcription factor (seesaw model) using the Fisher Exact test in

Matlab. For the heatmaps in Figure 4.2, the binary output of the Fisher

Exact test (p<0.05=1, p>0.05=0) was multiplied by the fraction of overlap

between the two TF target sets.
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Figure 4.1: Expression heatmap reveals four PEAR genes among the earliest
phloem specific transcription factors.
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Figure 4.2: This heatmap shows significantly overlapping and oppositely regulated
target sets of the 20 most important TFs from the GRN model. Colour intensity
shows a fraction of overlapping target sets. The colormap represents significantly
overlapping sets (Fisher Exact Test, if p<0.05, val=1) multiplied by the fraction of
overlap. Asterisk indicates experimental validation of up and downregulated sets
from TF OE in vivo.

The Gene Regulatory Network analysis shows that TFs along the trajectory

appeared to repress each other’s targets. i.e., the seesaw model and we used over-

expression data in the plant to test validate it.
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Chapter 5

PhenoPredict

This chapter describes another important application that uses data from gene

expression to construct causality models. The aim of the machine learning strategy

in this scenario is to create causal models for the phenotypes. In other words, the

causality models are constructed to predict phenotypes from gene expression data.

This is valuable because if, say, some gene g is over-expressed when plants have a

positive phenotypic trait such as high yield, we want to infer what causes g to be

over-expressed so that plants can be transformed to reach this desired trait. We

address a case study in rice in which we were able to estimate both biomass and

yield in two-month old plants on the basis of a model based on plants that were

just a few weeks old.
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5.1 PhenoPredict, a tree ensemble algorithm that

predicts phenotype from gene expression data

Nitrogen (N) and Water (W) – two essential resources for plant growth – are

increasingly limited inputs to modern agriculture. While agronomists have long-

known that N-by-W interactions have a synergistic effect of on crop outcomes, the

molecular basis for this remains unknown. The reason is that traditional experi-

mental designs can determine either W- or N-response genes, not their interactions.

To fill this knowledge-gap, our experimental colleagues use gene expression data

from a novel N-by-W matrix expression design in order to uncover field outcomes.

Figure 5.1: Pipeline for Modeling Biomass/Yield

PhenoPredict builds Random Forest-based models[15] using the N-by-W gene

expression dataset. In this case study, we used PhenoPredict on the rice data

from Nipponbare seedlings exposed to the 4x4 N-by-W matrix (16 conditions x 3

replicates) [83] to learn the model on rice seedlings, and then applied the learned

model to predict both the biomass and yield of 19 rice genotypes in the field, at

two months (mature plants) (Fig. 5.2, Fig. 5.3).
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Encouragingly, the model learned on N-by-W gene expression data from Nippon-

bare rice seedlings, can predict biomass (Fig. 5.2) and yield (Fig. 5.3) in multiple

rice genotypes of mature field grown plants. In addition, the list of TFs that are

important to predict biomass in Nipponbare include genes that are present in most

of the other genotypes. This indicates that the finding is applicable across different

genotypes. Furthermore, included in the gene list are TFs whose gene expression

levels can predict phenotypes. Among them are TFs validated by their reported

function in heat stress[92, 51] as well as salt and dehydration stress[51] responses

in rice.

The PhenoPredict pipeline was able to identify genes predictive of biomass/yield

in mature plants from much younger plants. Specifically, the biomass model

for Nipponbare at three weeks can be used on two-month old IR83383, PSBRC,

IR74371_54, IR87707, PR106, Nipponbare, IR74371_70, IR64 (genotypes) to pre-

dict their biomasses (Figure 5.2) and on two-month old Palawan, IR20, IR83380,

IR74371_70, PSBRC, IR83383, IR74371_54 (genotypes) to predict their yields

(Fig. 5.3).
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Figure 5.2: PhenoPredict models of gene expression -> phenotype learned using
N-by-W response data in Nipponbare rice seedlings correlate with actual values of
biomass and yield across rice varieties in the field. Top rice genotypes with pre-
dicted biomass using N-by-W data from Niponbarre seedlings to predict outcomes
in 19 rice varieties in the field using data from [83]. The correlation is above 0.5
and standard deviation below 0.3. The y-axis is the correlation between the actual
biomass values (of a given genotype) and the predicted values.
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Figure 5.3: PhenoPredict models of gene expression -> phenotype learned using
N-by-W response data in Nipponbare rice seedlings correlate with actual values
of biomass and yield across rice varieties in the field. Top rice genotypes with
predicted yield using N-by-W data from Niponbarre seedlings to predict yield
outcomes in 19 rice varieties in the field using data from [83]. The correlation is
above 0.5 and standard deviation below 0.3. The y-axis is the correlation between
the actual yield values (of a given genotype) and the predicted values.

PhenoPredict with XGBoost

The Random Forest algorithm is based on fully grown decision trees built in paral-

lel. By contrast, a decision-tree-based Boosting algorithm consists of weak learners,

which are shallow trees built sequentially.

XGBoosting claims to provide a scalable, portable, and distributed Gradient Boost-

ing implementation.
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XGBoost fits a Regression Tree to the residuals, however, it does not use regular

off-the-shelf regression trees, but a unique regression tree that we will call an XG-

Boost tree.

PhenoPredict uses the default method to build an XGBoost tree: each tree starts

out as a single leaf or root node and all of the residuals go to the root, which is

first node of the tree. Then, a quality score or similarity score for the residuals is

calculated as the sum of the residuals squared, divided by the number of residuals

plus λ:

Similarity_Score =
∑N

i Ri
2

(N + λ)

where Ri represents the residual of a given data point i; N is the total number of

residuals or data points; λ is a regularization parameter that is intended to prevent

overfitting the training data and reduce the prediction’s sensitivity to individual

observations.

After that, when a node is split, the question is whether or not the XGBoost

algorithm is able to do a better job at clustering similar residuals if they are split

into two groups.

The following formula for the variable Gain quantifies how much better the leaves

cluster similar residuals than the root:

Gain = Left_Similarity +Right_Similarity −Root_Similarity

At node splitting time, in a Random Forest the total reduction of variance is

maximized, XGBoost, on the other hand, maximizes the Gain, so that for a given

branch, the threshold that gives the largest Gain is used.

In order to prevent overfitting, an XGBoost tree is pruned according to its Gain
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values and the γ regularization parameter, such that for a given node, if (Gain−γ)

is negative the branch is removed.

Hence, when λ is greater than zero the similarity scores are smaller and pruning

becomes more likely, because the Gain values are smaller as well.

While setting γ equal to zero does not turn off pruning, setting Lambda equal to

0 turns off regularization.

XGBoost makes new predictions by starting with the initial prediction and adding

the output of each tree, which is scaled by a learning rate η (another hyper-

parameter):

Final_Prediction = Initial_Pred+ η ∗ Tree1_Pred+ .....+ η ∗ TreeN_Pred

In summary, when building XGBoost trees, Similarity Scores and Gain are

calculated to determine how to split the data. Then the tree is pruned by calcu-

lating the differences between Gain values and a tree complexity hyper-parameter

γ: if the difference is positive then the tree is not pruned, if it’s negative then

pruning is done (i.e., the branch is removed). Afterwards, the output values for

the remaining leaves are calculated as follows:

Output_V alue_XGBoost =
∑N

i Ri

(N + λ)

Lastly, λ is a regularization parameter, which affects pruning and output values

when it is greater than zero, therefore the algorithm results in more pruning by

shrinking the Similarity Scores and in smaller output values for the leaves.

We built an XGBoost model by performing an exhaustive hyper-parameters tuning

search for λ, γ, η and other minor hyper-parameters.
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As shown in Figure 5.4, we obtained comparable results with the ones presented

in Random Forest (Figure 5.2). The overall accuracy and the number of top

predicted genotypes are equivalent to the Random Forest version of PhenoPredict.

The Random Forest and XBoost models both predict eight field genotypes well.

The biomass Random Forest model for Nipponbare at three weeks can be used

on the following eight two month-old genotypes, IR83383, PSBRC, IR74371_54,

IR87707, PR106, Nipponbare, IR74371_70, IR64 (Figure 5.2), to predict their

biomasses with significantly high accuracy. Further, six out of eight Random Forest

high-accuracy predicted genotypes, i.e. IR87707, IR74371_54, PR106, PSBRC,

Nipponbare, IR83383, are in common with the XGBoost well-predicted genotypes

set (Figure 5.4).
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Figure 5.4: PhenoPredict with XGboost with the rice data: Top rice genotypes
with predicted biomass using N-by-W data from Niponbarre seedlings to predict
outcomes in 19 rice varieties in the field using data from [83]. The correlation is
above 0.5 and standard deviation below 0.3. The y-axis is the correlation between
the actual biomass values (of a given genotype) and the predicted values

Conclusion

As mentioned, the list of transcription factors that are shown to be important

to predict biomass in Nipponbare include genes that are present in most of these

other genotypes (Figure 5.5). Some of these already have a known role in positive

phenotypes.

Our model both (i) suggests which transcription factors to test for at three weeks

to predict high biomass and high yield at two months and (ii) which transcription
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factors to over-express and which ones to repress in transformed plants to achieve

higher biomass and yield.

Figure 5.5: 30 TFs are present in the top 500 most important genes of the Lab
model. Validation score column ranges from 0 to 3: 3 implies that a gene has
solid experimental evidence from the literature on plant development and or stress
tolerance
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Chapter 6

Conclusions

The goal of this thesis is to provide a systematic framework for learning causality

that is easy to use for biologists.

Towards achieving that goal, we focused on developing methods and tools for learn-

ing causality and predicting out-of-sample data using gene expression datasets.

This thesis tackles the problem of learning gene causality by constructing robust

predictive models of out-of-sample data which embody accurate causal relation-

ships.

In particular, we focused on our novel easy-to-use approach called OutPredict,

which is a non-linear machine learning method based on an ensemble of regression

trees for time series forecasting. It can incorporate steady-state data, temporal

data and prior knowledge, as well as a variety of differential equation models for

this purpose. OutPredict both predicts the future states of a given organism and

gives a quantitative measure of the importance of a given transcription factor on

a target gene.
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OutPredict achieved high accuracy and significantly outperformed baseline and

state-of-the-art methods.

In Chapter 4 I showed our application of OutPredict to single cell RNA-seq, so

that we moved from inferring causality networks of Chapter 3 that describe the

regulation of one type of cell to the environment to networks of influence in Chap-

ter 4 that describe the differentiation of cell types. An important outcome was

the identification of cell-type specific transcriptional regulators involved in cellular

differentiation.

Finally, in Chapter 5 I have illustrated a variant of OutPredict called Pheno-

Predict which builds causality models to accurately predict phenotypes and then

learning the effect of genes and TFs on phenotypes. Our PhenoPredict yields a

model built on plants data at three weeks which then predicted very well biomass

and yield across different genotypes in the field at two months.

The results presented in this thesis naturally open several interesting research

directions. An exciting future work project is the combination of approaches to

model cooperative modes of action where two or more TFs interact to target a gene;

this would assume that there is a way to explicitly encode and device such interac-

tions which are considered hyper-edges. Another improvement could be to utilize

the extent to which binding and open chromatin assays to influence the selection

of TFs to be branch points in the individual decision trees, since OutPredict can

incorporate a variety of data sources. Finally, another interesting research problem

is to extend our framework to allow cross-species inference via gene orthology.

78



Appendix A

Dynamic Factor Graph with Plant

Model Organism

A.1 Temporal transcriptional logic of dynamic reg-

ulatory networks underlying nitrogen signal-

ing and use in plants

1 This study exploits time, the relatively unexplored 4th dimension of gene reg-

ulatory networks (GRNs), to learn the temporal transcriptional logic underlying

dynamic nitrogen (N) signaling in plants [86] and our just-in-time analysis of tran-

scriptome data uncovered a temporal cascade of cis-elements underlying dynamic

N-signaling.

Nitrogen (N) - a nutrient/signal - is a core component of fertilizer used in modern
1Reference number [86], PNAS publication
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agriculture to alleviate world-wide hunger ([62]). However, this comes at environ-

mental costs, through excess nitrogen run-off due to inefficient N-use efficiency by

crops ([88]). Thus, improving plant N-uptake, assimilation and utilization is highly

desirable. With this goal, studies have attempted to capture and model the N-

regulatory networks controlling N-uptake/assimilation ([71, 72, 48, 70]). Validation

studies have identified several Transcription Factors (TFs) ([53, 42, 29, 4, 74, 66])

etc. as key regulators of N-signaling. However, we lack knowledge of the dynamics

and temporal hierarchy of these known - and as yet unknown - TFs in controlling

N-signaling, N-uptake/assimilation. A meta-analysis placed some known regula-

tors within network modules ([40]). However, such correlation-based networks are

unable to predict causality. By contrast, time-based machine learning approaches

can predict the regulatory influence of TFs on their targets in the dataset and in

out-of-sample data, the ultimate goal of systems biology ([48], [47], [58]).

In this study, we derived the temporal dynamics of N-regulatory networks by de-

vising and combining several time-based approaches. First, our just-in-time anal-

ysis uncovered a temporal cis-element cascade underlying dynamic N-signaling.

Second, we used a validated time-driven machine-learning approach, Dynamic

Factor Graph (DFG) ([48], [47], [58]), to infer TF-target interactions in 2,174

N-response genes in shoots. Third, we pruned the inferred TF-target edges in

this Gene Regulatory Network (GRN) using a precision cut-off threshold derived

from experimentally regulated genome-wide targets of six novel regulators of N-

uptake/assimilation - CRF4, SNZ, CDF1, HHO5/6, PHL1- validated herein. This

pruned GRN predicts the influence of 155 TFs on 608 N-responsive genes. Fourth,

to provide further support for the edges in the GRN, we used available TF-target
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binding data (DAP-Seq) ([73]), also used to calculate a TF N-specificity index.

This time-based GRN now reveals the temporal relationships of TFs previously

validated in the N-response (e.g. NLP7/8([53], [26]), TGA1/4([42]), NAC4([29]),

HRS1([4]), LBD37,38,39([74])). It also connects these known TFs with potential

new TFs in the N-response cascade, including novel ones we validated herein -

CRF4, SNZ, CDF1, HHO5/6, PHL1- to regulate a significant number of genes

in the dynamic N-response, including 54% of nitrate uptake/assimilation pathway

genes. Finally, we show that perturbation of CRF4, the earliest N-responsive TF

in this GRN, affects genes and processes that result in altered nitrate-uptake, root

development, and plant biomass, under low-N input conditions. Beyond these

proof-of-principle examples, the pruned GRN of dynamic N-signaling we derived

now provides the temporal transcriptional logic for 155 candidate TFs for pertur-

bations aimed at improving Nitrogen Use Efficiency (NUE) with potential appli-

cations in agriculture. More broadly, these time-based approaches can be applied

to uncover the temporal transcriptional logic for any biological response system in

biology, agriculture or medicine.

A.1.1 A fine-scale time-course transcriptome of dynamic

nitrogen signaling

Nitrogen (N) nutrient signal elicits dynamic responses in plant metabolism and

development ([48, 40, 5, 78, 91, 3, 45]). However, most prior transcriptome stud-

ies assayed only one or two time-points following N-treatment ([71], [70], [40]),
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or widely spaced time-points, not amenable to learning GRN causality ([45]). A

previous study uncovered the very early (3-20 min) transcriptional response to

nitrate-treatment in Arabidopsis roots ([48]). Herein, we captured early-to-late

transcriptome responses (5, 10, 15, 20, 30, 45, 60, 90 and 120 min) to a N-supply

(NO3- and NH4+) shown to elicit inorganic- and organic-N responses ([72]). Genes

responding to N as a function of time (NxTime genes), were identified using a

Cubic-Spline Model (FDR p-val<0.01) ([55]) (Fig. A.1 A&B). This analysis iden-

tified NxTime response genes in shoots (2,174 genes) and in roots (2,681 genes)

(Fig. A.2C (Shoots: green bars), Fig. A.5B (Roots: brown bars). These NxTime

gene sets are largely organ-specific, but share 778 genes, including 54 TFs (Fig.

A.1C). These include many known N-responsive genes ([71, 72, 48, 70, 40]), and

also 2,737 novel N-responsive genes (Fig. A.3, ([25])), due to increased sensitivity

from RNA-seq and 511 genes absent on microarrays ([40]). We also captured new

transient responses to N-supply, including the well-known N-regulator TF, NLP7

([53], [26]) (Fig. A.14). Our dataset captures dynamic effects of N-signaling in

shoots, on metabolism, RNA processing, photosynthesis ([8]) and circadian rhythm

([72]) (Fig. A.2, A.6, A.7, A.8).
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Figure A.1: A fine-scale time-series profile of plant transcriptional
changes in response to N- supply. A. Three replicates of plants grown in
a hydroponic system under low, but sufficient N conditions (1mM KNO3), were
treated with either the N-supply in MS media (20 mM KNO3 + 20mM NH4NO3)
or 20 mM KCl and harvested at time intervals 0, 5, 10, 15, 20, 30, 45, 60, 90,
and 120 min after treatment. Shoots and roots from three independent Phytatray
experiments were harvested separately at each time-point, and their transcriptome
assayed using the RNA-Seq protocol on the Illumina sequencing platform. B. The
resultant RNA-Seq data was filtered for quality and redundancy and converted
into gene expression measures using the informatics pipeline shown. Genes re-
sponsive to the N-signal were identified by fitting the gene expression measures to
a cubic spline model and testing for significant difference (FDR<0.01) between the
N-treated and control fits (refer to Method section that describes Spline Analysis).
C. The NxTime response gene sets have 778 genes in common, but also include
genes that respond only in the shoot (1,396 genes) or root (1,904 genes). Similarly,
the shoot and root N- responses also have shared and unique sets of Transcription
Factors (TFs).
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Figure A.2: A fine-scale time-series profile of shoot transcriptional
changes captures just-in-time responses to N-supply. A. The transcrip-
tional cascade triggered by N-signal perception shows a sequential activation and
repression of 2,174 genes in shoots (NxTime genes), as identified by a Spline anal-
ysis [55]. B. Next, each NxTime gene is assigned to the first just- in-time point
at which mean gene expression between +Nitrogen vs. No Nitrogen, changes by
>=1.5 fold. C. The transcriptional response to Nitrogen in the shoots (i.e., size
of NxTime genes) increases over time (Green bars). Blue bars = just-in-time gene
sets identified using a classification algorithm to capture cohorts of genes whose
expression is altered by the N-signal for the first time at that specific time-point.
D. Next, each just-in-time gene set was analyzed by the BioMaps function in Vir-
tualPlant [60] to identify overrepresented GO terms in each bin.
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Figure A.3: Fine-scale time-series captures known and novel genes
in N-signal response. A. Fine-scale N-response time-course in this study
(N_time_Shoot and N_time_root) captures the known N-response genes from
previous studies ([71], [70], [40], [72], [48]). The display uses the GeneSect func-
tion in VirtualPlant [60] to calculate the significance of the gene intersect. B.
Finds a novel set of 2,737 N-response genes unique to our new N_time_Shoot and
N_time_root, as visualized using the SunGear function [25] in VirtualPlant [60].
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A.1.2 Just-in-time analysis uncovers a temporal cascade

of cis-regulatory elements and biological processes in

response to N-supply

To uncover the regulatory cascade underlying dynamic N-signaling, we imple-

mented a just-in-time (JIT) analysis. This JIT analysis bins NxTime genes, based

on the first time-point at which its mRNA levels are affected by N-signaling (Fold-

Change (FC) >= 1.5) (Fig. A.2B, Fig. A.2C, blue bars). We then identified

overrepresented known cis-motifs ([73], [7], [9]) in each JIT bin, using a hyper-

geometric distribution on a genome-wide promoter background ([89]). This anal-

ysis uncovered a temporal cascade of over-represented cis-regulatory motifs (e-val

<0.05) in the promoters of genes first responding to N-signaling at each JIT point

(Fig. A.4A). The set of enriched cis-elements are different between the JIT sets

of shoots (Fig. A.4A) vs. roots (Fig. A.5C). The temporal enrichment of unique

cis-element motifs in shoots is particularly noticeable at the 10, 15 and 20 min JIT

points (Fig. A.4A). Conversely, certain cis-element motifs - such as SORLIP2 and

TELO-box - are over-represented at consecutive JIT sets (Fig. A.4A). This JIT

analysis also uncovered a temporal cascade of enriched Gene Ontology (GO) terms

enriched in each JIT gene set in shoots (FDR adjusted p <0.01) (Fig. A.4B, Fig.

A.2D). The early JIT gene sets (5-15 min) are significantly enriched in genes related

to N-uptake/assimilation. Intermediate JIT gene sets (20-30 min) are enriched in

energy generation. The later JIT gene sets (>=45 min), are enriched in genes for

metabolic and developmental processes (Fig. A.2D, Figs. A.6, A.7, A.8, A.13).

Overall, JIT cis-element and GO analysis, implicates a cascade of associated TFs

regulating largely non-overlapping sets of genes at consecutive JIT time-points in
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N-signaling (Fig. A.4). However, the current cis-motif datasets ([73], [7], [9]),

are generalized for TF families, and cannot associate individual TFs with specific

target genes. We thus associated specific TFs with targets in the NxTime cascade

by using a time-based network inference method described below.

Figure A.6: N-signal in shoots stimulates multiple components of the ribosome bio-
genesis pathway [87]. The N-signal induces a coordinated up-regulation of mRNA
for ribosomal RNA subunits and ribosomal proteins, starting at 30 minutes after
the initial N-signal.
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Figure A.7: N-signal induces multiple pathways [87] in plant primary metabolism
within 5 minutes of N-supply in shoots. These pathways are either directly involved
in nitrate uptake or in providing Carbon skeletons and/or energy for nitrate as-
similation.
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Figure A.8: N-signal response affects processes beyond cellular metabolism in
shoots. Multiple steps in the carbon fixation, photosynthesis, hormone signaling
and the circadian rhythm pathways [87] are altered in response to the N-supply in
shoots. These changes happen later in the N-signal response (i.e., >30 minutes),
compared to the changes induced by the N-signal in primary metabolism (5-20
minutes) (Fig. A.7).

A.1.3 Assigning a N-specificity index to TFs in the dynamic

N-response cascade

Our time-course captures 172 TFs responding to N-supply within two hours. To

identify TFs that play a specific role in N-signaling, we computed a N-specificity

index, based on available TF-target binding data ([73]). For each NxTime regu-

lated TF with genome-wide binding data (40 TFs), we tested if the proportion of

its genome-wide targets ([73]) in the NxTime shoot genes are significantly over-

represented, relative to the proportion of all the TF-bound targets in the genome.

This identified 19 TFs with a highly significant N-specificity score (p-val<0.05) in

shoots. These N-specific TFs include four validated regulators of the N-response
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(NLP7([53]), TGA1/4([42]) and NAC4(9)), and 15 novel TFs whose targets are

enriched in N-signal responsive genes in shoots. We note that this N-specificity

calculation is limited to TFs with TF-Target binding data for 529 TFs currently

in the DAP-seq database ([73]). However, this N-specificity calculation may be

applied to any TF, with known genome-wide targets as we show with SNZ and

CDF1 (Fig. A.9B), as detailed below.
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Figure A.9: Novel TF regulators - CRF4, SNZ, CDF1, HHO5, HHO6 &
PHL1- of NxTime genes in shoots. A. CRF4 was chosen for initial functional
validation in planta, as it responds early to N-signaling (JIT: 5min) and has a high
N-specificity index. In planta ([88]) and shoot cell-based transient TF perturbation
assays [13] identified 16 TFs that are regulated by NxTime and by CRF4. From
this set of CRF4 targets, SNZ (JIT:10min) and CDF1 (JIT:45min) were chosen for
further validation by TF perturbation in shoot cells using the TARGET system
[13]. B. Genome-wide regulated targets of CRF4, SNZ and CDF1 were validated by
TF over-expression in plants [1] andor shoot cells [13]. C. Independently, genome-
wide regulated targets of four additional TFs in the pruned GRN - HHO56, PHL1
and TGA1- were identified in shoot cells using the TARGET assay [13]. Genome-
wide regulated targets of all of these seven TFs (Panels B and C), show a significant
overlap with the NxTime gene set in shoots. Six of these seven TFs show over-
representation of GO terms related to the Nitrogen assimilation process. Further,
four novel TFs validated here (CRF4, SNZ, CDF1 and HHO5) also show a high
N-specificity of regulated genes in shoots. Note: The N-specificity listed in Panel
C is estimated from the regulated genome-wide targets of these four TFs in the
shoot cell TARGET assays. By contrast, the N-specificity index shown in Fig 3
was estimated from genome-wide TF-target binding (DAP-Seq) in vitro [73].
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A.1.4 CRF4 - the earliest TF in the N-signaling GRN - reg-

ulates N-uptake and N-use in planta

The pruned DFG network - refined by TF-target binding data - places CRF4 at the

top of the N-signaling cascade (Fig. 2.6), based on its early response (5 min JIT)

and its GRN connections. Indeed, our validation studies support the early and spe-

cific role of CRF4 in mediating the dynamic N-response GRN in planta. Inducible

expression using a CRF4-OX transplanta line ([1]), reveals that CRF4 controls a

highly significant number of NxTime genes, spanning early and later just-in-time

gene sets (Fig. 2.5B&D). Impressively, CRF4 directly or indirectly regulates 1/3

of the genes in the N-uptake/assimilation pathway (21/65), including seven N-

uptake genes (Fig. 2.4). In planta CRF4 targets are also enriched in N-metabolic

processes and translation (in shoots), and response to nitrate and root development

(in roots) (Fig. 2.5C). Moreover, these CRF4 mediated changes in gene regulation

affect N-uptake and use in planta (Fig. A.10). CRF4-OX over-expression results

in significantly lowered shoot biomass (p<1e-5) (Fig. A.10C), primary root length,

and number of lateral roots, under low-N conditions (Fig. A.11A &B), where the

high-affinity N-transporter, NRT2.1, is the major functional nitrate-uptake system

[93]. Further, repression of NRT2.1 in shoots and roots of CRF4-OX plants (Fig.

A.10A, A.11C), leads to lower rates of nitrate-uptake under low-N-conditions in

the CRF4-OX line ([1]). Using 15NO3 tracer [76], 15NO3-uptake was significantly

reduced in the induced CRF4-OX over-expression line, at levels comparable to

the nrt2.1 mutant impaired in high-affinity nitrate uptake [75], when compared

to un-induced CRF4-line and wild-type controls, under low-N conditions (2-way

ANOVA, with Tukey HSD analysis) (Fig. A.10B). These results validate the im-

92



portant role CRF4 plays in regulating N-uptake/use - acting either directly, or

indirectly through its downstream TFs, such as SNZ and CDF1 (Fig. A.10A).
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Figure A.10: CRF4 overexpression represses high-affinity nitrate uptake
and biomass in planta. A. CRF4 overexpression via β-estradiol (+β E) induc-
tion ([1]) represses SNZ, CDF1 and NRT2.1 (Fig. A.11C). SNZ and CDF1 over-
expression in shoot cells ([13]) induces NRT2.1 expression. CRF4 over-expression
in low-N (1 mM NO3) conditions significantly reduces; B. the rate of nitrate 15NO
- uptake, and C. Shoot biomass in planta (Fig. A.11A).
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Figure A.11: Conditional CRF4 over-expression in planta leads to changes in shoot
biomass, root growth and NRT2.1 expression. A. Conditional and sustained in-
duction of CRF4-OX in plants grown for 7 days under low-N conditions (1mM N),
results in significantly lower shoot biomass specifically under low-N (Tukey test).
This growth retardation in CRF4-OX is specific to low-N, is and is not observed
in high-N conditions (30mM N). B. The induction of CRF4 over-expression by
-Estradiol [1] also resulted in a reduction of primary root length and the number
of lateral roots, under low-N conditions (1mM N). C. Q-PCR assays were used
to measure the expression levels of NRT2.1 in shoots and roots of the CRF4-OX
line and wild-type plants, under low-N conditions, in the presence/absence of the
b-Estradiol. CRF4 over-expression, induced by b-Estradiol [1] represses NRT2.1
expression in roots of whole plants, as determined by a 2-way ANOVA analysis
followed by TukeyHSD.
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A.1.5 A fine-scale time-course and GRN establishes the tem-

poral hierarchy of known and novel N-signaling regu-

lators

Next, we used the DFG network inference method ([48], [58]), to derive GRNs

that reveal the transcriptional logic underlying dynamic nitrogen (N) signaling in

shoots. The resulting N-response network pruned for precision now places 155 N-

responsive TFs in shoots in a temporal hierarchy (Fig. A.12), and predicts their

likely temporal interactions. For example, the 12 TFs that respond earliest to the

N-signal in shoots (JIT=5 min) (Fig. A.12), include TFs previously validated in

the N-response: LBD37/38/39([74]) and HRS1([4]), and a novel early TF validated

herein; CRF4 (Fig. 2.6). We note that some of the earliest steps of N-signal

transduction are also likely to occur via post-translational modifications ([5]) or

changes in TF localization, as shown for NLP7 ([53]). This pruned network, is

further supported by TF-target binding data, - and reveals a set of 15 novel TFs

that are specific to the N-response (Fig. 2.6, TFs in red). This establishes the

power of applying de novo GRN inference approaches to expression data sets, as

shown for GRNs mediating environmental responses in rice ([65]), and drought

responses in Arabidopsis [85].
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Figure A.12: Pruned DFG network predicts the temporal interactions of 155 Nx-
Time responsive TFs in shoots. The pruned DFG N-regulatory network of shoots
places TFs in a temporal hierarchy and predicts the regulatory interactions be-
tween them. The currently known TF regulators of N-signal response (e.g., NLP7,
HRS1, TGA1/4, LBD 37/38/39, NAC4) are highlighted in yellow, while the six
novel regulators (CRF4, SNZ, CDF1, HHO5, HHO6 and PHL1) of N-signal re-
sponse functionally validated herein are shown in Red. The activation edges are
shown in green while inhibitory edges are shown in red.

A.1.6 CRF4 - the earliest TF in the N-signaling GRN - reg-

ulates N-uptake and N-use in planta

Our time-based N-regulatory network revealed CRF4 as a novel early player in

mediating the N-signaling response. Indeed, our genome-wide target studies and

phenotypic analysis support the key role CRF4 plays in mediating nitrate uptake

and use in planta (Fig. A.10, Fig. A.11). In response to N-supply, CRF4 represses

genes in the N-assimilation pathway, including the high-affinity nitrate transporter

NRT2.1 (Fig. A.11C), which is repressed under high-N conditions in wild-type

[75]. Additionally, we validated two downstream TF targets of CRF4, and found

that SNZ is largely an activator, while CDF1 activates or represses genes in the
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N-assimilation pathway (Fig. 2.4). CRF4 targets in shoots include ribosomal

proteins, induced within 30-45 min of N-supply (Fig. A.2D, Fig. 2.5C). In roots,

CRF4 regulates nitrate uptake and root development processes, consistent with

the in vivo phenotypes (Fig. A.10, Fig. A.11 & 2.5C). N-signaling is a novel

role for CRF4, whose only previous description was the role it plays in the cold re-

sponse [69]. In addition, we discovered that 11/12 members of the CRF family [69]

are N-responsive, including eight in shoots (CRF1-6, CRF10 & CRF11), and three

(CRF3-4, CRF11) in roots. This highlights a potential new role of the CRF family

in linking the N-response and cytokinin signaling ([77]). Our study also identifies

multiple novel TFs that link nitrogen and phosphate responses (HHO5/6, PHL1),

as previously shown for HRS1([4]).

In addition to discovering novel TFs in the N-response network, the transcriptional

logic of N-signaling uncovered herein can also suggest the temporal mode-of-action

for TFs and combinatorial TF experiments which will be valuable for the global

goal of enhancing NUE. More broadly, our time-centric approach that uses fine-

scale time-course data to fuel causal network inference, can now be applied to

understand any stimulus-driven gene regulatory network in any organism. More-

over, the analysis approaches we described - just-in-time and N-specificity index -

can be used to uncover the regulatory structure and signal-specificity in any time-

series transcriptome datasets. When coupled with genome-wide TF-target binding

data (e.g. ChIP-Seq, DAP-Seq([73])) and other layers of genome-wide dynamic in-

teraction data (e.g., chromatin accessibility maps([9])), the approach employed in

our time-based study can identify key molecular players, their hierarchy and other

emergent network properties in any complex transcriptional regulatory system in

biology, agriculture, or medicine.
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To summarize, Nitrogen (N) - a key nutrient/signal - regulates dynamic plant

processes including circadian rhythm ([72]) and root-foraging ([48, 40, 5, 78, 91]).

However, the underlying temporal mechanisms are unknown. Our just-in-time

analysis uncovered discrete waves of transcriptional responses to N-signaling in

shoots (Fig. A.4). For example, we confirm and extend the role of N-signaling as

an input to the circadian clock in plants ([72]). N-signaling regulates TFs in the

circadian clock, inducing TOC1 and CDF1, and repressing ZTL within 20-45 min

after N-supply (Fig. A.8). Overall, the shoot NxTime gene set shows significant

enrichment for genes with peak expression at pre-dawn ([84]).

A.1.7 Just-in-Time analysis of time-series transcriptome data

Each NxTime gene was assigned to the first time-bin at which gene expression

in N-treated samples is >=1.5 fold of control (Fig. A.2B). Each just-in-time

gene set (Fig. A.2C, blue bars), was analyzed to identify over-representation of

cis-regulatory motifs (FDR E-val <0.05, Elefinder [7]) and such cis-elements were

hierarchically clustered (Fig. A.4A). Just-in-time gene set were also analyzed to

identify over-represented GO-terms [60] (Fig. A.4B, Fig. A.2D). The normalized

expression level of the N-response genes in shoots (2, 174 genes) and roots (2, 681

genes) at each of the time-points assayed (0-120 min) was used to calculate the

fold-change of expression between the N-treated samples and the controls (KCl).

For just-in- time analysis, each gene was then assigned to the first time-bin at
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which the fold-change of expression is >= 1.5 fold (See Fig. A.2B). The promot-

ers of all genes in each just-in-time gene set (Fig. A.2C, blue bars), were then

analyzed to identify over-representation of cis- regulatory element motif (FDR cor-

rected E-val < 0.05) using an online search tool (Elefinder [89]). Cis-regulatory

motifs that are rare in the genome were filtered out to remove spurious associations

by requiring that for each just-in-time bin every over-represented cis-motif must

be present in at least 5 or more promoters in that gene set. The resulting matrix

of over-represented cis-elements in genes at each just-in-time points was hierarchi-

cally clustered and visualized using MeV [28] (Fig. A.2A). Separately, all genes in

each just-in-time gene set were analyzed by the BioMaps function in VirtualPlant

[60] to identify over-represented GO-terms in each bin (Fig. A.4B and Fig. A.2D).

A.1.8 Nitrogen-specificity index for TFs in the GRN

For each of the 40 NxTime TFs with in vitro TF-target genome-wide binding data

[73, 44], we retrieved genome-wide targets in shoot NxTime set. The TFs with

a significantly higher proportion of targets in the NxTime set relative to their

genome-wide distribution (one-tail t-test, p-val <0.01), were accepted as being

specific to the N-signal. Of the 172 TFs that respond to N-signal in the shoot,

DAP-Seq in vitro TF-target genome-wide binding data [73, 44] is available for 40

of these TFs. For each of these TFs, their genome-wide targets were retrieved from

the Plant Cistrome Database [73, 44]. We next obtained the subset of each TFs

target in the N-signal response genes, by intersecting the genome-wide targets of

each TF with the NxTime signal response genes in shoots (2,174 genes). For each

TF, the proportion of its targets in the genome was calculated as pg = Tg/Gg
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where Tg is the total number of TF targets in the genome and Gg is the total

number of genes in the genome. Again, for each TF, the proportion of its targets

in the N-signal response gene set was calculated as pn = Tn/Gn where Tn is the

total number of TF targets in the N-signal response gene set, and Gn is the total

number of genes in the N-signal response gene set. The significance of each TF

to the N-signal was then tested by a one-tailed t-test under the null hypothesis

pn = pg. The TFs with a significantly higher pn than pg (p-val <0.01) were accepted

as being specific to the N-signal.
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Figure A.13: N-signal alters the expression of various components in the RNA
processing and degradation machinery in shoots. A novel observation of this study
is the effect of N-supply on the molecular machinery required for proper processing
of mRNAs and their degradation in shoots. Molecular components of both these
pathways are upregulated, implying an increase in the mRNA turnover within the
plant.
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Figure A.14: Spline analysis of time-series transcriptome captures transient
changes in N- regulated gene expression in shoots. Transient changes in N-
regulated gene expression are generally missed in end-point measurements. Genes
shown here to be N-regulated at earlier time- points would not be detected as
N-responsive, if assayed only at 2 hours after N-signal. For example, NPL7 [19], a
major player in the N-response was not previously known to be transcriptionally
regulated by N-supply at these early time-points. Genes responding to nitrogen
significantly (FDR adjusted p-val <0.05) over the time-series N-response data were
identified by fitting a Cubic Spline Model (df=5) to the N-treatment and Control
samples, using the lmFit function in the Limma R package [55] and visualized
using ggplot2 [36]
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A.2 Network Walking charts transcriptional dy-

namics of nitrogen signaling by integrating val-

idated and predicted genome-wide interactions

2Across biology, a great deal of effort is being invested in generating gene regulatory

networks that are able to accurately predict future states and identify regulatory

hubs that can be manipulated to achieve desired phenotypes. Key to accomplishing

this goal is linking the earliest responses to stimuli in the cells that perceive the sig-

nal to the downstream consequences of that signal at the tissue and organism level.

However, the experimental tools most commonly used to validate the accuracy of

these networks in vivo are prohibitively time-consuming and expensive to scale

to the necessary level. A proliferation of TF binding data from in vitro methods

has been helpful, however the results lack cellular context and cannot inform what

effect the TF-target interaction has on gene regulation. In this chapter, we have

used data which comes from a cell-based assay adapted to increase the throughput

of identification of direct regulated TF targets [16]. This allows us to successfully

chart and validate a temporal path in the nitrogen response gene regulatory net-

work that links early TF-triggered events to downstream effects. This assay can

be done on cells isolated from a specific tissue of interest, and can capture impor-

tant transient events that are often missed in whole tissues. Herein, we use this

assay to identify direct targets of 33 TFs that respond early to nitrogen treatment

in Arabidopsis. Our results confirm the roles for 6 known regulators of nitrogen

signaling and validate an additional 14 novel TFs in this important pathway, in-

cluding information on their temporal course of action. Using a network we built
2Reference number [16], Nature Comm publication
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from integrating direct targets identified for these 33 nitrogen-early response TFs

with existing datasets, we demonstrate how the resulting TF-target connections

can be used to generate new biological insights. Using all available cis-binding

motifs for Arabidopsis and a recently published fine-scale nitrogen time-course,

we identify families of TFs that work together, and extend our results to predict

targets for an additional 145 nitrogen responsive TFs in Arabidopsis roots. Fi-

nally, we present our Network Walking approach using TGA1, a well-known TF

in the nitrogen-response in which we chart a network path to connect the indirect

targets which respond to a TF only in planta back to that TF via intermediate

TF2s. Our approaches for identifying direct regulated targets of a TF in cells iso-

lated from a specific tissue type and integrating datatypes via Network Walking

are easily adapted to other eukaryotic systems. This enables researchers to study

any signaling network of interest and identify the temporal hierarchy of TF-target

interactions. Our Network Walking is a combination of novel and scalable exper-

imental/computational approaches to infer Temporal path in gene networks. In

other words our approach is used to connect direct TF targets identified in cells

(this is done using the wet lab protocol) to the indirect and downstream targets

identified only in planta (this is done used our computational approach). At the

end all of this is validated using experimental datasets (TARGET and in planta).

The signal in our case is N, which is Nitrogen because we are in the context of

plants treated with nitrogen. Network Walking [16] is a time-based network in-

ference approach which connects rapid and transient TF-targets captured in roots

cells, with downstream targets identified in planta. Here, we adapt a time-driven

machine learning method we validated [48] [47], to test the hypothesis that rapid

and transient direct targets detected in cells, lead to the regulation of downstream
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targets in whole plants, using an approach we term Network Walking ( A.15A).

Our results have shown that Hit-and-Run TFs can effect target gene expression

through two distinct mechanisms - Hit-and-Run and stable binding - depending

on the cis-context of a target([6]; [41]). Thus, our innovation in Network Walking,

is to further adapt the DFG modeling approach to account for the two types of

TF targets- Hit-and-Run and stable - and improve the predictive power of our

dynamic GRN. Network Walks connect rapid and transient targets in cells, with

downstream targets in plants. We successfully implemented the Network Walking

approach, and our results on bZIP1 and NLP7 predict that an important set of

transient TF-targets identified only in cells (e.g. TF2s) ( A.15, inner ring), reg-

ulate downstream targets in plants (outer ring) ( A.15B&C). The Network walk-

ing approach can be subdivided in three steps. In Step 1 of the Network Walk

( A.15A), we identify genes involved in bZIP1-mediated N-signaling as the union

of: i) TF targets identified in the cell-based TARGET system (primary and tran-

sient targets)([6]) and ii) bZIP1 targets identified by TF perturbation in planta

(primary and secondary targets)([46]). In order to make time-based connections

between these datasets, we intersect this union with the N-regulated genes in roots

from a fine-scale time-course study of N-regulated genes in planta([48]). In Step

2, we infer edges between the early N-response bZIP1 targets identified in cells

(i.e. transient target TF2s)([6]), and downstream targets identified in planta (i.e.

gene Z)([46]), using the time-series N-response data and the time-based network

inference method, Dynamic Factor Graph (DFG)([58]), with our own adaptations

(described in Krouk et al.([48]; [47])). Briefly, DFG synthesizes Bayesian and

Markovian approaches to learn from time-series transcriptome data and to es-

timate the quantitative influence of up to k TFs (k is an adjustable parameter
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currently set at 10) at time t, on target genes at t+1. It then uses these esti-

mates to predict the expression level of target gene Z, at left-out time-points([48];

[47]) (see Background for more details on the performance of DFG). In further

iterations of Step 2, we use our new knowledge to improve the predictive power

of network models by incorporating both Hit-and-Run and stable relationships for

each TF tested. An example of our modeling strategy for the Hit-and-Run targets

to account for potential TF partners that continue transcription initiated by the

TF Hit, after the Run, is as follows: i) experimentally identify the Hit-and-Run

source-target (S-T) relationships, ii) identify cis-elements associated with each Hit-

and-Run target, iii) identify partner TFs (P) that bind to those cis-elements, and

iv) create non-linear (quadratic) models that account for source (S) and partner

(P) effects on target expression. Algorithmically, the relationships between the

source (S), partner (P) and target (T) is a prior relationship (i.e. there would

be a hyperedge from S, P to T). Standard regression methods can be used, but

instead of having only linear terms (i.e., a sum of weighted TF expressions), there

would also be quadratic terms (involving S,P). Because the Hit-and-Run sources

(S) may recruit a partner (P) and then later affect a target (T), we also have

time-offset interaction terms in which we look at the mRNA level of c1* S(t) *

P(t) + c2*S(t-1)*P(t) + c3*S(t-2)*P(t). Thus we can model the effects of the

Hit-and-Run source at times t, t-1 and time t-2, on the target at time t. For

the stable TF-targets, our network models follow the adapted DFG methods we

previously validated([48]). Thus, our dynamic network models account for both

stable and transiently bound (Hit-and-Run) TF-target interactions. Step 3. The

Network Walk resulting from Steps 1 and 2, connect TF targets in cells, with

those identified in plants - and this relationship can be visualized using Cytoscape
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( A.15B&C). Our Network Walk (Fig. A.15) shows direct targets of bZIP1 iden-

tified in root cells (inner ring, A.15B)([6]), are predicted to regulate downstream

targets in planta (outer ring A.15B)([46]), including key genes in N-assimilation

(e.g. nitrate reductase, NIA1)([?]). Remarkably, all 18 TF2s predicted to mediate

downstream bZIP1 responses, are transient bZIP1 targets detected only in cells

(inner ring, A.15B)([6]). These transient TF2 targets of bZIP1 include LBD38

and LBD39, previously associated with N-response in planta([74]). Our Network

Walk now places them downstream of bZIP1 a transcriptional cascade that me-

diates N-signaling e.g. N->bZIP1->LBD38/39->NIA1 (nitrate reductase). This

LBD38/39->NIA1 link is supported by in planta perturbation studies. In our Net-

work Walk for NLP7, the direct targets identified in cells (inner ring Fig. A.15C)

are predicted to regulate genes in planta([19]) (outer ring A.15C), defining a Net-

work Walk: N->NLP7->LBD38->NIA1 (nitrate reductase), controlling the first

step of N assimilation.

In summary, charting a temporal path in gene networks requires linking early

transcription factor (TF)-triggered events to downstream effects(Fig. A.16) [16].

Here, we scale-up a cell-based TF-perturbation assay to identify direct regulated

targets of 33 nitrogen (N)-early response TFs encompassing 88% of N-responsive

Arabidopsis genes(Fig. A.17)[16]. We uncover a duality where each TF is an

inducer and repressor, and in vitro cis-motifs are typically specific to regulation

directionality. Validated TF-targets are used to refine precision of a time-inferred

root network, connecting 145 N-responsive TFs and 311 targets. To infer the root

gene regulatory network, we applied a time-based machine learning method to the
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dynamic N-responsive genes of a time-series transcriptome in whole roots. These

data are used to chart network paths from direct TF1-regulated targets identified

in cells to indirect targets responding only in planta via Network Walking. We

uncover network paths from TGA1 and CRF4 to direct TF2 targets, which in turn

regulate 76% and 87% of TF1 indirect targets in planta, respectively(Fig. A.18).

These results have implications for N-use and the approach can reveal temporal

networks for any biological system [16]. Code for the computational pipeline is

available at: github.com/jacirrone/MLTimeSeriesPNASNatComm.
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Figure A.16: Network Walking connects validated direct transcription factor (TF)
targets to in planta responses[16]. a Schematic overview: the Network Walking
approach charts a network path from direct targets of a TF identified in cells to
its indirect targets, which only respond in planta. This is achieved using data
for 33 TF perturbations in root cells using TARGET (Transient Assay Reporting
Genome-wide Effects of Transcription factors) scaled-up in this study, and a time-
series transcriptome of nitrogen (N) response in whole roots. TF-target edges for
145 TFs were inferred using this time-series data in a machine-learning method
called dynamic factor graphs (DFG) (blue arrow). The validated edges and high-
confidence inferred edges are used to link a TF to its indirect targets in planta
via the Network Walk. b The 33 TFs were selected based on their response to N
in shoots and roots (black TFs) or roots only (orange TFs) from the N-treatment
time-series data of [86]
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Figure A.17: Validated direct targets of the 33 N-early response TFs are enriched
in NxTime genes[16]. The intersection of direct regulated targets for the 33 N-early
response TFs identified in root cells using the TARGET system with NxTime genes
from [86]. This allowed identification of TFs regulating a significant portion of the
N response in both roots and shoots (e.g. bZIP3/RAV1, black arrows). The direct
regulated targets of other TFs are enriched in organ-specific NxTime response
genes. These include CRF4/ERF5, which are specifically enriched for the shoot
NxTime response genes (green arrows), and NAP/LBD37, which are specifically
enriched for the root NxTime response genes (orange arrows). Green and orange
shading represents the N-Specificity Index29, the p-value calculated using the one
proportion z-test.
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Figure A.4: Genes responding to NxTime by Cubic-Spline Analysis ([55]) were
binned into the first time-point at which mean expression changes by >=1.5 fold.
A. A cascade of unique cis-element motifs are significantly enriched in each JIT
gene set. B. The JIT gene sets have non-overlapping sets of GO-terms enriched at
each time-point (Fig. A.2D).
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Figure A.5: Cis-element motif enrichment in just-in-time bins in the root
N-response. A. The transcriptional cascade triggered by N-signal perception
shows a sequential activation and repression of 2,468 genes in roots. B. The tran-
scriptional response to N-signal increases over time in roots (brown bars). Just-in-
time gene sets (blue bars) are identified using a classification algorithm to capture
cohorts of genes whose expression is altered by the N-signal for the first time at
that specific time-point C. The set of cis-element motifs specifically enriched in
just-in-time analysis of the root NxTime series data is shown. Although, some cis-
motifs are shared with the shoot dataset (Fig. A.4A), many of the cis-element
motifs in the root just-in-time gene sets are unique to the root N-response (e.g.,
WOX13, Dof5.7 etc). This result implies that distinct sets of TFs are likely driving
the dynamics of the N-signal response in the roots vs. the shoots.
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Figure A.15: Network Walking connects transient TF-targets detected cells with
downstream responses in planta. A) The Network Walking pipeline. Step 1, over-
laps TF-targets detected in cells (Aim 1) with the in planta TF-targets (Aim
2A). Step 2, infers edges between cell and in planta using N-treatment time-series
transcriptomic data using the DFG time-based network inference approach. Step
3, networks are visualized using Cytoscape for B) bZIP1 and [C) NLP7.] The
transient targets detected in cells (inner ring), are predicted to regulate targets in
planta (outer ring), and several examples are validated (e.g. LBD38/39->NIA1)70.
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Figure A.18: Network Walking charts a path from direct to indirect TF-targets[16].
(a) A schematic representation of the Network Walking approach used to connect
direct TF targets identified in cells, to the indirect targets identified only in planta.
Example of Network Walks from direct targets identified in cells (yellow shaded
region), to indirect targets identified only in planta (orange shaded region) for (b)
TGA1 and (c) CRF4. Edges connecting the indirect targets back to TGA1/CRF4
through their direct TF2 targets come from validated TARGET edges as well as
from high-confidence edges from the pruned time-inferred DFG network. Enrich-
ment of the consensus cis-motif for the 80 clusters in the 500bp promoters and
gene body of the indirect targets of TGA1 and CRF4 was assessed. The most
significant cluster CCM in indirect targets of TGA1 was for cis-motif cluster 15
(NAC family) in the gene body. For CRF4, the CCM for cluster 8 (AP2EREBP)
was enriched in the gene body of CRF4 indirect targets. The network shown is
limited to TFs and targets that respond to NxTime in [86]. For clarity, edges to
target genes include only the top three validated edges based on fold change, and
top ten predicted DFG edges based on edge score.
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Appendix B

OutPredict in Action

B.1 OutPredict Installation and Run

To run OutPredict, the latest version of Miniconda or Anaconda must be previ-

ously installed (Anaconda: https://www.anaconda.com/distribution/#download-

section).

If conda is already installed on your machine, you can update to the latest version

with:

conda update – all

Clone the codebase:

git clone https : //github.com/jacirrone/OutPredict.git

Enter the OP_3 directory:

cd OP_3/

To install OutPredict, first install the OpenMP library as follows:

For Mac-OS:

brew install libomp
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For Linux:

(Side note: it might be necessary to run "sudo apt-get update" and "sudo apt-get

install gcc", especially if you are using a virgin AWS machine, for example)

sudo apt− get install libomp− dev clang

Then, run (in the OP3/directory) the OutPredict Installation file:

sh install.sh

As example to run OutPredict, invoke the corresponding pipeline script for the

dream10 dataset:

python dream10_pipeline.py

B.1.1 Required data for OutPredict

The Datasets directory, ”OP_3/Datasets/”, contains the directories of each or-

ganism’s datasets.

Let us consider a dataset for a generic organism called ”new_organism”.

Inside this directory ”OP_3/Datasets/new_organism/” the following sample files

are required (for the ”dream10” example the directory is ”OP_3/Datasets/dream10/”) :

B.1.2 expression.tsv

Expression values; must include row (genes) and column (conditions) names

Obtain expression data and save it as a tsv file ”expression.tsv” of [Genes x

Samples]
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B.1.3 gold_standard.tsv

This file is required when choosing the gold standard priors option on OutPredict,

see A.3 section.

Needed for OutPredict with "gold_standard" priors; matrix of 0s and 1s indicating

whether we have prior knowledge about the interaction of a transcription factor

(TF) and a gene; one row for each gene, one column for each TF; must include

row (genes) and column (TF) names (Figure B.1).

So the position tf t and gene g: is 1 if there is an inductive or repressive edge; is 0

if there is no such edge or unknown.

Obtain gold standard data, interactions between TFs and target genes and save it

as a tsv file ”gold_standard.tsv” [Genes x TFs]

Figure B.1: Gold Standard file example

B.1.4 interaction_weights_list.tsv

This file is required when choosing the steady state priors option on OutPredict,

see A.3 example.

Needed for OutPredict with ”steady_state” priors;

118



This type of priors is represented by a list of interactions indicating whether we

have prior knowledge about the interaction of a transcription factor (TF) and a

gene. In this case the prior knowledge is represented by a real number weight,

which is an interaction confidence score.

First column are TFs, second column are genes, third column are real number

weights.

B.1.5 meta_data.tsv

In a gene expression dataset a condition is defined as an experimental assay or a

replicate of an experiment.

The meta data file describes the conditions; must include column names; has five

columns (Figure B.2):

isTs : TRUE if the condition is part of a time-series, FALSE else.

is1stLast: "e" if the condition is not part of a time-series; "f" if first; "m" middle;

"l" last. Thus "l" means a value at the last time point, "f" at the first time point,

"m" all others.

prevCol: name of the preceding condition in time-series; NA if "e" or "f".

del.t: time in whatever the common unit (e.g. typically minutes for transcription

factors) since prevCol; NA if "e" or "f".

condName: name of the condition.
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Figure B.2: Meta-data file example.
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B.1.6 tf_names.tsv

One TF (transcription factor) name on each line; these must be subset of the row

names of the expression data

Create a list of TFs to model for inference and save it as a file ”tf_names.tsv”

with each TF on a separate line [TFs]

Note that each gene (TFs and others) must have the same name in all files (ex-

pression, gold_standard, etc.)

B.1.7 Construct a new run script for a generic organism

Here is an example of the contents of that file (‘pipeline_new_organism.py‘):

1

2 if __name__ == ’__main__ ’:

3

4 #Create an OutPredict instance

5

6 op = OutPredict ()

7

8 #Set required file names and parameters:

9

10 op.num_of_trees = 300 # The number of Trees

11 #for Random Forests

12

13 op.input_dir_name = "dream10" # Name of

14 #Directory , inside OP_3/Datasets/, containing the dataset

15
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16 op.test_set_split_ratio = 0.15 # The percentage of

17 #data points to use for the test set separately for

18 #time -series and steady -state , e.g. 0.15, 15\% of

19 #steady -state data will be used as test set ,

20 #15\% of the time -series data (last time points of time -series)

21

22 op.training_data_type = "TS-SS" # whether to use for

23 #training TS(time -series), SS(steady -stae) or TS-SS

24 #(time -series and steady -state)

25

26 op.leave_out_data_type = "TS" # whether to use for

27 #training TS(time -series), SS(steady -stae) or TS-SS

28 #(time -series and steady -state)

29

30 op.genes_coeff_of_var_threshold = 0 # coefficient of

31 #variance threshold to filter the genes to modeling;

32 #0 to modeling all genes

33

34 op.num_of_cores = 20 # (Integer) number of

35 #cores to use for parallelization

36

37 #it’s not necessary to set which method to use -

38 #either time -step or ode -log - because

39 #it will be automatically learned

40

41 #Set required params to run OutPredict WITH Priors:
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42

43 op.prior_file_name = "gold_standard.tsv" #either

44 #name of file containing prior knowledge or empty

45

46 op.priors = "gold_standard" #"steady_state"

47 # gold_standard or steady_state or empty

48

49 op.run()

B.1.8 Run OutPredict

Enter the OP3 directory and activate the conda environment op3

cd OP3/

conda activate op3

To use OutPredict WITHOUT priors, do NOT set the params "prior_file_name"

and "priors", and this script can now be run from the command line as (Figure

B.3):

1 python -s pipeline\_new\_organism.py

To use OutPredict WITH priors, after properly setting BOTH the params "prior_file_name"

and "priors", this script can now be run from the command line as (Figure B.4):

1 python pipeline\_new\_organism.py

The folder "OP_3/output/" contains the output folders for the different runs of

OutPredict.

A generic output folder for a run related to the "WITHOUT priors" version is

called "new_organism_output_RF_...".
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Figure B.3: Running OutPredict without Priors

Figure B.4: Running OutPredict with Priors

A generic output folder for a run related to the "WITH priors" version is called

"new_organism_output_RF-mod_..."
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