
A Microservice Redesign of

Search and Inference for the

Linguistic Website Terraling

Shailesh Vasandani

New York University

shailesh@nyu.edu

Hannan Butt

New York University

hannan@nyu.edu

Dennis Shasha

Professor

New York University

shasha@cims.nyu.edu

New York University

Computer Science

Technical Report TR2021-999

Fall 2021

Keywords—Microservices, web development, linguistics, React,

Golang, performance, software engineering



Vasandani, Butt, Shasha Microservice Redesign
. .

Contents

1: Abstract 3

2: What does Terraling do? 3

3: Functionality addressed 7

Filter 8

Compare 8

Cross 9

Implication 10

Similarity 11

3: The problem 13

Maintainability 13

Availability 13

Architecture 14

Interface 14

Performance 14

4: The solution 14

5: Results 16

Maintainability 16

Availability 16

Architecture 16

Interface 16

Performance 22

Queries 23

References 25



Vasandani, Butt, Shasha Microservice Redesign
. .

1: Abstract

The linguistics web application Terraling serves many useful

functions for linguists. By extracting the critical path for linguistic

analysis into microservices, we are able to improve user experience,

optimize performance, and increase maintainability.

By using a modern stack with a React frontend and a Golang backend,

performance was improved by 700 times. In addition, new features can

be added with high velocity. The website can be accessed on any device

on the Terraling website.

2: What does Terraling do?

Terraling is a linguistic web application that allows for the

storage, retrieval and examination of linguistic data. The application is

schema-agnostic, and can accept multiple types of linguistic data. In

fact this is one of its key features; linguists can create groups that have

custom formats for their research (Fig. 1).

Figure 1. Terraling’s groups

In a group, linguists define their own properties, and they and

language experts set values for these properties for each language (Fig.

2). Linguists and language experts can also add examples that



Vasandani, Butt, Shasha Microservice Redesign
. .

illustrate these properties (Fig. 3). Properties are entirely determined

by linguistic need, and the backend is designed such that any type of

property can be accommodated.

Figure 2. Properties in the “SSWL” group, for the language “English”



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 3. An example for a property in the “SSWL” group, for the

language “English”

Once there is sufficient significant data for a group, linguists can

search through this data using the search interface (Fig. 4). There are

several types of search: filtering, comparing, crossing, implication, and

similarity. These are described in Section 2.



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 4. Terraling’s search interface

For more information on Terraling’s linguistic use, see Koopman’s

handbook.

From a technical perspective, Terraling is a Ruby on Rails monolith

that uses the Model-View-Controller (MVC) architecture. All code is

stored in one repository, and the entire website is deployed to a single

server. All routing, database access, data transformation, data

presentation, and user authentication are managed by a single

multi-threaded process (Fig. 5).

https://linguistics.ucla.edu/wp-content/uploads/2020/08/KoopmanGuardiano-handbookarticle-revised08172020-.pdf
https://linguistics.ucla.edu/wp-content/uploads/2020/08/KoopmanGuardiano-handbookarticle-revised08172020-.pdf


Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 5. The existing monolithic architecture

Data is rendered server-side, and pure HTML is sent to the browser.

There was recently work done on allowing the monolith to function as

a headless API, serving JSON when the client requested it and the

standard HTML otherwise. This is discussed further in Section 3.

3: Functionality addressed

The focus of this paper is the search interface. As mentioned,

there are five main types of searches available to linguists.

Filter

The filter function allows the user to select a subset of languages

and display a selection of property values for these languages.



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 6. The results of a filter search in “SSWL” on languages

“Abaza” and “Abidji” and properties “01_SV” and “02_VS”

Compare

The compare function allows the user to select multiple

languages and view which property values are common for all selected

languages, and which are distinct.



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 7. The results of a compare search in “SSWL” on languages

“Abaza” and “Abidji”

Cross

The cross function allows the user to select multiple properties

and conduct a cross product of all the values of the selected properties.

That is, for every combination of possible property values, the cross

function finds which and how many languages have that combination

of values.



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 8. The results of a cross search in “SSWL” on properties

“01_SV” and “02_VS”

Implication

The implication function allows the user to select a property and

a value for that property, and shows all other property values that

either imply or are implied by that property.

There are three types of implications: antecedent, consequent, and

both. Formally, given a property value of p, the antecedent implication

function shows all property values Q defined by:

Q = { q | p ∈ L⇒ q ∈ L for all languages L }

The consequent implication function shows the set R defined by:

R = { r | r ∈ L⇒ p ∈ L for all languages L }

The both implication function shows the set S defined by:

S = { s | s ∈ L⇔ p ∈ L for all languages L }



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 9. The results of an antecedent implication search in “SSWL”

on property “01_SV” with value “No”

Similarity

The similarity function allows the user to select multiple

languages and displays a phylogenetic tree of those languages

grouping them together based on how many identical property values

they share.



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 10. The results of an similarity search in “SSWL” on all

languages



Vasandani, Butt, Shasha Microservice Redesign
. .

3: The problem

There are several issues with the existing search interface. Since

many linguists depend on being able to explore and transform their

data for their research, it is important that users are able to easily and

quickly obtain results. This is impacted by five factors: maintainability,

availability, architecture, interface, and performance. On all counts,

the existing implementation offers room for improvement.

Maintainability

As previously mentioned, the Terraling application is a Ruby on

Rails monolith. In addition, all code exists on a single repo. This poses

several challenges.

First, use of Ruby is decreasing in favor of JavaScript, Python, and

Golang, amongst others. This makes it harder to find developers

well-versed in Ruby.

Second, the MVC architecture is also losing popularity, in favor of a

microservice-based architecture that uses several orchestrated

services. This makes it harder to find developers who understand the

architecture, and Ruby on Rails in particular.

Third, and perhaps the cause for the change above, is that a monolithic

architecture in a single repo means that contributions necessarily

affect the entire application and the entire codebase. This requires

more effort to be allocated towards reviewing contributions to ensure

they do not adversely affect some other part of the application. It also

means contributors must have a deeper knowledge of the codebase

than the part they wish to contribute to.

Fourth and finally, an MVC architecture makes it difficult to separate

concerns effectively. Canonically, presentation logic should remain in

views and business logic should remain in controllers. Models should

only contain class methods and properties. Since the entire application

is a monolith, logic frequently gets mixed up between sections, making

debugging and adding features extremely difficult.



Vasandani, Butt, Shasha Microservice Redesign
. .

Availability

The existing implementation already has good availability.

However, there is always room for improvement.

Architecture

Since the MVC architecture allows only for sending HTML from

the server to the client, it is difficult to build new interfaces. Either the

new interface must parse the data from the HTML, or some change

must be made to the monolith to allow the usage of an open standard

data format such as JSON.

The current implementation has already had the necessary changes

made such that some core endpoints are exposed via JSON API. While

not strictly necessary for this project, it made it significantly easier.

Still, the search endpoints in particular return a complicated and

unintuitive object, and there is much room for improvement.

Interface

The existing user interface is poor. Even experienced linguists

often struggle with finding the correct functions. There is minimal

separation of concerns.

While the interface was conceived with the idea of offering every

combination of filtering and advanced functions to the end user, most

of these combinations are never used. The result is a confusing and

unintuitive interface with poor usability.

Performance

Another consequence of the MVC architecture is that database

access is often abstracted away by the framework. As such, poorly

constructed calls to the models can cause multiple repeated queries or

missed opportunities for optimization.

This can (and does) result in disastrously bad performance. Raw

numbers will be displayed in Section 5, but the current



Vasandani, Butt, Shasha Microservice Redesign
. .

implementation forces users to wait for minutes in order to view only

tens or hundreds of results.

4: The solution

To solve the problems detailed above, we extracted any search

related logic into two new services: a frontend service for creating

searches and displaying their results, and a backend service for

accessing the database and transforming the data in response to

search queries (Fig. 11).

The frontend service is written in React, which is a popular JavaScript

framework that enjoys significant community and developer support. It

uses minimal dependencies, with a new design language that offers

better usability.

The backend service is written in Golang, which is a popular C-like

language that has significant community support, extensive tooling,

and extremely fast performance. Most required packages are already

built into Golang, which means that there are no external

dependencies to go out of date.

Additionally, using Golang allows for more targeted optimization of the

SQL. By manually controlling database access, we can collapse

multiple queries into a larger, more performant query. This allows

extremely large searches to perform almost as well as small searches.

The two services communicate exclusively via JSON, and are deployed

separately but on the same server. This had the added benefit of

allowing maintainers to gracefully degrade the existing service; there

were no interruptions of service. In addition, we also were able to

perform A/B tests; i.e. selectively turning on the new interface and

backend for specific users. This allowed for a completely seamless

testing period and rollout.



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 11. The new architecture with the search microservices

extracted.

5: Results

The choice of languages, interface, and architecture were

designed with the five key components in mind. They represent

improvements over the existing architecture in every way.

Maintainability

The design for the services was chosen to ensure that developers

could easily and quickly contribute to the application. It is easier to

find developers who understand React and Golang, and contributions

should be overall of higher quality.

Additionally, the new services exist on two separate repositories.

Changes to each can be made without affecting the rest of the

application. In addition, developers contributing to each service do not

need to have knowledge outside of the specific domain they are



Vasandani, Butt, Shasha Microservice Redesign
. .

working on. The only consideration is that the interface remains the

same (or is versioned, such that there are no breaking changes).

Further research can be done to ensure that the interface between the

two is more strictly defined in code. For example, protocol buffers offer

a language-agnostic way to define schema in code and reduce bundle

size at the same time.

Availability

While availability was already excellent on the existing

implementation, the use of a microservice architecture means that

system-wide outages are significantly less frequent. If one service fails,

the rest of the application can continue to function.

Architecture

As well as being able to define the schema in code, the format of

the JSON being transferred across the two services is significantly

more intuitive. This has the benefit of allowing other developers to

more easily develop a way to interface with the search should the need

arise, which is important for an open-source application such as

Terraling.

Interface

The new interface is also more intuitive, at the expense of

culling certain unused combinations from the search interface.

Linguists choose the type of search they are creating (Fig. 12) and are

dynamically presented with the appropriate selection box when they do

(Fig. 13).

https://developers.google.com/protocol-buffers


Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 12. Selection box prompting the user to select a search type



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 13. More selection boxes dynamically appearing as the user

selects a search type and target

In addition, results are more easily viewable, with sticky tables and

smart headings that react to the search. For example, filtering by

Language shows Language headings (Fig. 14), whereas filtering by

Language property shows Language property headings (Fig. 15).



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 14. Filtering by Language shows Languages as headings



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 15. Filtering by Language property shows properties as

headings

For more complex visualizations, using React allows for more modern

browser support. For example, we can use D3 to display a phylogenetic

tree of languages (Fig. 16) with customizable parameters and

highlighting (Fig. 17).



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 16. A phylogenetic tree of a subset of languages



Vasandani, Butt, Shasha Microservice Redesign
. .

Figure 17. Customizable parameters for the phylogenetic

visualization

The full interface is viewable at this address.

Performance

To test performance, five queries were chosen and performed 10

times for each implementation. They were then averaged. To ensure a

fair test, initial benchmarks were performed locally on development

servers, with a local database, and on the same data.

The results are as follows:

Query Old (s) New (s) Speedup (x)

Filter (all) 37.071275 0.486178 76.2

Compare (2) 1.143203 0.050646 22.6

Compare (6) 1.916712 0.073384 26.1

https://new.terraling.com/groups/7/searches/new


Vasandani, Butt, Shasha Microservice Redesign
. .

Cross (2) 4.150662 0.067625 61.4

Cross (6) 7.998947 0.093085 85.9

Figure 18. Performance improvement results across five different

searches

Clearly, the new implementation represents a significant improvement

in performance. There is likely still room for more optimization, but it

is clear that the use of Golang and the more granular database access

it afforded allowed for faster searches.

For the sake of interest, the tests were performed once more on the

production server, with compiled HTML pages and binaries (i.e.

optimal conditions). The results are even more striking:

Query Old (s) New (s) Speedup (x)

Filter (all) 34.34378 0.050624 678

Compare (2) 1.121114 0.002990 375

Compare (6) 2.136508 0.004673 457

Cross (2) 3.910758 0.005830 671

Cross (6) 6.459189 0.009677 667

Figure 19. Performance improvement results across five different

searches in optimal (production) conditions

The new implementations are clearly significantly faster, over 500

times so in most cases.

Queries

The queries were chosen at random, and were not cherry picked for

performance. For reference, the queries performed were:

● Filter (all) - A filter query on SSWL selecting all languages

● Compare (2) - A compare query on SSWL selecting two

languages: Abaza and Abidji



Vasandani, Butt, Shasha Microservice Redesign
. .

● Compare (6) - A compare query on SSWL selecting six

languages: Abaza, Abidji, Bosnian, Danish, Dutch, English

● Cross (2) - A cross query on SSWL selecting two properties:

01_SV and 11_P NP

● Cross (6) - A cross query on SSWL selecting six properties:

01_SV, 03_VO, 11_P NP, 13_A N, 15_Num N, and 17_Dem N

6: Future work

Some future work remains to be done. There are still several

optimizations that can be made to the backend service to improve

performance. These include merging queries and reducing memory

usage. Since the SQL is now manually controlled, queries can be

tweaked and tested to find the most performant solution.

In addition, the increased maintainability also enables future work on

new features. For example, more diverse visualizations for the

similarity feature can be created. Different types of searches can also

be built.

The frontend will also be improved. Since the new interface is

drastically different, user feedback will be collected by first directing

key users to the staging servers, then by performing A/B tests on

production. The feedback collected here will allow for minor but

important improvements to usability and user experience.



Vasandani, Butt, Shasha Microservice Redesign
. .

References

[1] Koopman, Hilda, and Cristina Guardiano. Managing data in

TerraLing, a large-scale cross-linguistic database of morphological,

syntactic, and semantic patterns.

"https://linguistics.ucla.edu/wp-content/uploads/2020/08/KoopmanG

uardiano-handbookarticle-revised08172020-.pdf."


