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Abstract

We study quantum entropy, a measure of randomness over the degrees of freedom of a
quantum state and quantified in phase spaces. We show that it is dimensionless, a relativistic
scalar, and it is invariant under coordinate and CPT transformations.

We show that the entropy evolution of a coherent state is increasing with time. We
augment time reversal with time translation and show that CPT with time translation can
transform particles with decreasing entropy evolution into anti-particles with increasing
entropy evolution. We revisit transition probabilities of a two state Hamiltonian and show
how it relates to entropy oscillation. We study the entropy of a spin phase space and apply
it to the study of the entanglement states.

We also explore the possibility that entropy oscillations trigger the annihilations and the

creations of particles.
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INTRODUCTION

A time arrow emerges in physics only when a probabilistic behavior of ensembles
of particles is considered in classical physics. In contrast, quantum physics is
presented as time reversible even though a probabilistic behavior is intrinsic even to
a single-particle. In [10] we proposed a definition of quantum entropy to measure
the randomness of a quantum state, while accounting for all its degrees of freedom
(DOFs). That entropy is a sum of two components: the coordinate-entropy and
the spin-entropy, each defined in its own phase space. We analyzed the possible
entropy evolution and conjectured that a law analogous to the classical second law

of thermodynamics holds, applicable to all particle physics.

This paper provides more technical depth, to further develop the issues raised
in [10]. The results are applicable to both the Quantum Mechanics (QM) and the
Quantum Field Theory (QFT) settings, but we will generally present them in the
more convenient setting. We first derive the spin-entropy for a single particle and
study the case of entanglement for two particles of spin % Then we further develop
the coordinate-entropy for multiple particles. We show that the coordinate-entropy
is invariant under changes in continuous 3D coordinate transformations, continuous
Lorentz transformations, and discrete CPT transformations. We then analyze the
evolution of coherent states. We study time reflection of particles’ evolution and
the impact of the transformation into anti-particles. We study entropy oscillations
for a two-state Hamiltonian and their relation to Fermi’s golden rule. Following the
results presented here, we review a conjectured entropy law that the entropy of a

quantum system is an increasing function of time, and end with conclusions.



QUANTUM ENTROPY IN PHASE SPACES

Spin-Entropy

The DOFs associated with the spin are captured by the vector or bispinor repre-
sentation of the states in both frameworks, QM and QFT. The spin matrix associated

with a particle can be specified (e.g., [S]) as

S=S&+8,9+8.2 and $?=582+82+8S2,
[Sa, Sp] =1AS., where a, b, c is a cyclic permutation of x, y, z,

[Sz,Sa] =0, fora=x,y,z7.

The spin value of a particle is a Casimir invariant but it is not possible to simulta-
neously know the spin of a particle in all three dimensional directions. Knowing
the z-direction spin does not imply that we know the x- or the y-direction spins
as captured by the non-commutative property of the spin operators and the Stern-
Gerlach experiment [[11]. This uncertainty, or randomness, is the intrinsic source for
the non-zero spin-entropy. The uncertainty also reflects the close relation between
spin matrices, their unitary transformations, and the rotation group SO(3). For spin
0 particles (Higgs bosons), there is no spin uncertainty and so the spin-entropy is
0. For spin % particles, any spin state is reachable from any other spin state via a
2 X 2 unitary transformation, a local isomorphism (and a global homomorphism)
to the SO(3) group. For spin 1, the matrices are unitarily similar to SO(3), and
one can transform them into generators of SO(3) via unitary transformations. We
then characterize the spin phase space by considering simultaneously a spin state

along x, y, and z directions, i.e., a spin state |£) is represented in spin phase space
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as (|€),,1€),,[€),). The spin-entropy is then

2
> P(i,j. k) InP(i, j, k), (1

2
=1 k=1

=1 j
where P(i, j, k) = Pc(i)Py(/)P.(k), {Pa(i) = |(ilé), 1% i = 1,2,3,a = x,y,2},
(ilj)y =8y, 1, j =1,2,3,and [£), = |£).

Preparing a spin state to align with a particular direction, say z direction as it is
done in many experiments with spin, e.g., [11], implies full knowledge of one of the
spin directions. We will show that this knowledge, and thus this preparation, reduce
the spin-entropy.

A spin state of a particle with spin value % is represented by a set of two
orthonormal eigenstates |+) = (1,0)T and |-) = (0,1)" of the operators (S2,S.),

with associated eigenvalues (3, +3).

Theorem 1 (Spin-Entropy s = %). A general description of the state of a particle
. . . , T

with spin % is |£), = % (e cosb, |+) +sinb, |-)) = ¥ (e”’ cos 6, sin Qa) ,

where 0, € [0, 7] and ¢, v € [0,2r). The spin entropy of this state is

Si== > > PiE (4, v) NP (64, v) )

a=x,y,z sign=—,+

=

where P5(6,4,v) = w, P3(0a,v) = w, Pi(0,) = cos? 6, and
P2 (0,) = sin’ 6,.

T
Proof. Astate |£), assigns a probability distribution P, = (| &) 1%, 14218), |2) =

T
(cos2 0, sin? Ha) . To calculate P, we write the x-basis as eigenvec-

tors of S, and S2, i.e., the basis matrix B, = — made of column

V2l -1
eigenvectors.  Then, |£), = e“B;! |€), with corresponding probabilities
T

P, = % (1 +5sin26, cosv, 1 —sin26, cos v) . Similarly, the eigenvectors
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11 :
of §, and S? form the y-basis B, = % ; and [£), = e“ﬁB;1 1€,
11

T
P, = % (1 +sin26, sinv, 1 —sin26, sin y) . Replacing these expressions for
P,, Py, P into (I)) we obtain the spin-entropy (2). For a visualization of the entropy,
see Figure [2h. O

For spin s = 1 we must evaluate the internal uncertainty of the gauge field
AH*(r,1), a vector under Lorentz transformation. For a massless field, the quantized
electric field E (r, r) and magnetic field B(r, ¢r) form the phase space for each space-
time coordinate (r,?), where their commutation properties leads to an uncertainty

relation. For massive particles with spin s = 1, the spin matrices ([3])

010 0 —-i 0 10 0 200
1 1
S,=—1101 S,=—|i 0 =i S.={oo0 o s2=1020
X’\/z y'\/i Z
010 0i 0 00 -1 002

yield a basis representation for spin with the eigenvectors of S, and S?
T T
m.=(100) . I=x=(0. 1o, I.=(001)

Theorem 2 (Massive Spin-Entropy s = 1). A general state of spin s = 1 is
|£) = ¥y (cos 04 cos O ¥ IT), +sin6, | =), + cos b, sinbg ¥z |l)z) 3)

where 04,0p € [0, 7], ¢x, ¢z, ¢y € [0,2r). The spin-entropy of this state is
303

2 PPy (j)P (k) In (P (i)Py (/)P (K)) , “4)
=1

k=1

i=1 j



where

1 +sin® 6, + sin 264 cos® 6, cos(¢y — @) + V2 5in 26, (sin Hﬁlzﬁffj + cos Qﬁlc_ossil‘f);x
Py = I 2 cos? 0, F 25in 205 cos® O, cos(gx — ¢;)
1 + sin” 6, = sin 26 cos? B, cos(¢y — ¢;) — V2sin 26, (sin 0ﬁ|§ions:fzz + cos Hﬁ|i°:ir‘f’;x)
cos? 0, cos? 03
P, = sin? 6,

cos? 0, sin> 0

Proof. The state |£) in the z—axis basis is given by (3), and describing it in the y—axis

-1 V2 -1 1 V2 1

basis B}~ =11-v2i 0 V2ilandinthex—axisbasisBS' =1|v2 0 —v2[,
1 V2 1 1 -V2 1
we get |£), = (By) 7€), |€), = (By)7|€) yielding {P,(i) = |(il€), 1% i =

1,2,3,a = x,y,z}, where (i|j) = 6;;, i,j = 1,2,3, and |£), = |£). Performing the

matrix calculations completes the proof. 0
For a visualization of the spin-entropy for some parameters see Figure[I]

Theorem 3. The minimum spin-entropy for s = 0, %, 1is 20(s)In2, where (s) =1

for s > 0 and zero otherwise.

Proof. The spin-entropy for s = 0 is 0. Relying on the numerical minimization

functionality of Wolfram Mathematica®, we obtained (i) for S 1 the minimum of

2In2atf, = 7, v=0;0r0, =7, v =7; or §, = 0 (describing when x-, y-, or
z-axis are oriented along the state); (ii) for S| we obtained the minimum of 21n 2 at
0, = 5 (eigenstate |—)), 6, = 7, 0, = 0,0 = ¢, = ¢, = . This concludes the

proof. ]

We also observed that for s = 1 the local minimum 3 In 2 occurs at |T), defined by
0o =0,05 =0and |]), defined by 6, =0, 6g = %; and at other states. Thus, prepar-
ing a spin state orientation, which allows it to be aligned with a given coordinate

system, reduces the entropy either to local or global minimum.
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Spin Entanglement

We now examine the spin-entropy of a system with two particles with spin
s = % It is known that that a product of two independent spin particles |£4p), =
elea (ei“ cosay |[+) + sinay |—)A) elvs (ei"B cos ag |+)2 + sinag |—)B) does not
cover all two-particle states, described by |§{A’B}>z = ape [ D) B +a, |+>A |-)yB+
a_y |- R +a__|-)* |-)B, where a4y, as_, a_,, a__ are complex value coeffi-
2

P

cients with |a . |? + |a4_|> + |a—+|> + |a__|*> = 1. In particular, entangled states such

asdayy =a—_=0,a,_ =a_, = % can not be described by the product of two

states. We now explore entangled states further.

Theorem 4 (Two spin s = % entanglement). Consider a system with two identical

particles, A and B, each with s = % in an entangled state

|€) = €' [cos Oap |+ |-)F —sin@ap |-)" |+)7] &)
where + varies over the two z-components and 6 € [0,2r). The spin-entropy of

&) is

3
Sa+ p=(0aB) = — > [(1 —sin204p)In(1 —sin264p) + (1 +sin264p) In(1 + sin20,43)]

+ (4 —sin2604p)In2. (6)

Proof. The four vectors of the spin basis for two fermions along the z-axis are
) = DA HE -0 = 19405 |- = [P, and |--) = |94 9)F

, T
and in this basis the state (§) is |£), = e'* (0, cosB@up, —sinfyup, 0) , with spin
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matrices

0110 0—i—-i0 100 0 2000
1li1oo1 1li oo i 000 O , |orto
Se=3 S=3 . S.= R .
211001 210 0 —i 000 O 0110
0110 0i i 0 000 —1 0002

A basis simultaneously constructed from eigenvectors of S, and S° is

{I++).5(+=) + [=8), 5(1+=) = |=+)).--)}, and they can be written

10 0O
0 = 0
as a matrix of eigenvector columns B, = V2 V2 . Then, the state (5)) and
0oL -Lo
V2 V2
00 01

its probability distribution is written in this basis as

0 0
.1 |cosOxp —sind 1|1 -sin26
). =B gy =eo— | TR =TT
V2 cosOap +8inf p 2 1+sin264p
0 0

A simultaneous eigenvector basis B, to S, S? produces the state |¢) in such basis as

1 V2 0 -1 cosOap —Sinf p
T I ! ,
2{1 0o V21 2 \/E(COSQAB+Sin9AB)

1 =v2 0 -1 coSsOap — sinfup



_ T

a. ¢r=0,0,=75 b.or=%,0.=73

Figure 1. Spin-Entropy for s = 1 (@) vs (64, 6p) for a fixed set of parameters ¢, ¢,. Note
that for 6, = 7 and for 6, = 0,63 = ¢ = ¢, = T the spin-entropy reaches its minimum
2In2 ~ 1.3863.

and similarly for the eigenvector basis B, to Sy, S

-iv2 0 i cos O p —sinO p
A I |
T2 1 0 -V2 1 Y Y 2 \/E(COSQAB+Sin9AB) ,
i V2 0 -i cosOap — sinfp

with probability distributions P, = Py, = (}‘(1—sin 2048), 0, 3(1+sin264p), +(1-

T
sin2604p) ) . Thus, after some manipulations to compute S from (I)) we derive (6)).

For a plot, see Figure 2b. O

Clearly, the eigenvalue 0 of S has only one eigenvector, %(H—) — |-+)), and
it is common to all three eigenvector basis. Thus, the entangled state for 645 = %,
|§)9AB=% = %(H—) — |—+)), has the entropy of 0. The minimum entropy for a
state with eigenvalue 1 of §2 occurs for the eigenstates of S that are simultaneously
eigenstates of Sy or of S, or of S;, such as Sp+ g+ (04 = %T) =2In2.

We will now compare the entropy of a system of two independent particles

with that of a system of two entangled particles. Consider two independent states
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/\ |——Entanglement|

Spin-Entropy

v-axis

00 0 1 2 3 4 5 6
0q-axis O4p

a. Fermion Spin-Entropy (2)) vs (6,, v) b. Entangled State Spin-Entropy (6)) vs 045

Figure 2. a. A surface plot of a fermion with s = % with z-axis spin-entropy (2)) vs x-,y-axis
(0 € [0,%),v € [0,71)). b. A plot of the entanglement spin-entropy (6) vs the angle
04 € [0,27]. Note that for 45 = % +nmn = 0,1,... the spin-entropy is zero. The
entropy also never reaches the largest possible sum of two independent fermions, which is
~ 3.08.

|£4) = cosOap |+) — sin@ap|-) and [¢B) = —sinfp |+) + cosOap|-). The
probabilities of finding those particles in |[+) and |—) are the same as in the entangled
state (5)). Of course, the product of two independent particles does reach states |+) |+)
and |—) |—) that the entanglement does not, which motivates the examinations of the
entropies. The entropies associated with |§A> and |§B > SA(QA g) and SB (6ap), are
obtained from (2), where for |§A> ¢=v=mandf, = HAB, and for |§B> =v=0
and 0, = G4 + 5.

We plot both S 4+ p=(04p) and Sz g(04p) = S‘;(QAB) + SI;(QAB) in Figure For
most values of 8 4 the entropy of the entanglement is lower than that of two indepen-
dent particles. However, as seen in Figure Ep., there is a small interval of values of

6 5 where the entanglement spin-entropy is greater than the spin-entropy S4 p(64p)-
max S+ pF

This interval is [n 2,9 AB

(n)] for n € Z*, where 84p = n7 produces the Sz p
minima and Qmax Saz.p* (n) = 0.113 + n% = argmaxg, , Sa+ p+(0ap).

Works exist exploring the information content of entangled physical systems,
e.g., [2, 3, [12]. They considered the von Neumann entropy for |£), which is zero,
but after tracing out a particle state, they obtain an entropy associated with the two

probabilities P4, p (6ap) = cos? 0,5 and Py B,(0aB) = sin?@45. In contrast, our

11
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—Two Independent
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1.45
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155 1.6 165 1.7

6’,1 B HAB

a. Sy p (red) and S+ p= (blue) vs O4p b. Close up of a.

Figure 3. A plot of the entanglement spin-entropy (6] in blue overlaid with the two indepen-
dent s = % particles spin-entropy Sa. g (0ap) = Sa(0aB) +Sp(0ap) inred vs the angle 6 45.
Ina. 84p € [0, 2] where the entanglement spin-entropy is mostly smaller then S4_g(64B).
In b. Close up of the plot in a. for the range 645 € [1.4, 1.7], showing an interval in which
entanglement’s spin-entropy is greater than S4 p(6ag).

proposed entropy captures the information difference between the two entangled
states, for € 4p = § and for 045 = 3%. Experiments exploiting the projection of such
states along perpendicular directions (in analogy to the [[11]) could realize the larger

amount of randomness of the 045 = 3% entangled state.

Coordinate-Entropy of Multiple Particles

We now consider the coordinate-entropy in phase space, which was defined

in [[10] as
S = —j pe(r. Dpe (k1) Tn (s, Dpr(ke 1)) dr &k = S, + Sy,

where S; = —J pe(r, 1) In pe(r, 1) d*r, and analogously for Sy, pr(r, 1) = |y (r, 1)|?
and pr(k,1) = |¢(k,1)|?, with y(r,¢) and ¢(k, 1) representing in QM the wave

function and in QFT the coeflicients of the Fock states. The momentum is described

12



by the change of variables p = 7ik, so that the entropy is dimensionless and invariant
under changes of the units of measurements.

A natural extension of this entropy to an N-particle QM system is

r

S=- d3l‘1 d3k1 Ce d3I’N d3kN pr(l‘l, R ,I‘N,l)pk(kl, e ,kN,t)

XIn (pr(ry, ..., en, 1) px(Ki, ... Ky, 1)

.
=— d3r1 .. ‘[ d3err(r1, e N, D) Inpe(ry, ..., TN, 1)

_J d3k1 . J d3kNpk(p1’ s 7kN’ t) lnpk(kI’ s ’kN’ l) ’

Wherepr(rl, S T |lﬂ(l’1, . ,rN,t)|2andpk(k1, ... Ky, 1) = |¢(k1, .. .,kN,t)|2

are defined in QM via the projection of the state |y,)" of N particles (the product
of N Hilbert spaces) onto the position (ry| ... (ry| and the momentum (k| ... (Ky]|

coordinate systems.

ENTROPY INVARIANT PROPERTIES
Continuous Transformations of the Phase Space

In the QM setting, we investigate a point transformation of coordinates and a
translation in phase space of a quantum reference frame [/1].
Consider a point transformation of position coordinates F : r — r’. It induces

the new conjugate momentum operator [6]
A/ . 1 —1 / /
p=-in|Vy + EJ )V - J()| , (7

where J(1') = ag(:,/) is the Jacobian of F~!.

Theorem S. The entropy is invariant under a point transformation of coordinates.
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Proof. Let S be the entropy in phase-space relative to a conjugate Cartesian pair of
coordinates (r, p). Let p’ be the momentum conjugate to r’. As the probabilities in

infinitesimal volumes are invariant,
' (¢)]> & = |y (r(r')]> Er(r') and | (p) 1> &p’ = |¢(p(p) I p(p') . (8)

Thus, by Born’s rule the probability density functions are |/ (r')|> and |’ (p’)|>.
The Jacobian satisfies det J(1”) d&’r’ = &’r, and combining this with (8],

Jﬁwm = y(r(r)). ©)

so the infinitesimal probability | (r")|? dr = Y(r(r’))detJ(r’) d’r’ is invariant.

Considering the Fourier basis (p|r) = — 5 e~ '"P combined with (9) leads to ¢(p) =

(2m)?
Lo [detd () ' (') e P &r.

3
(2m)2
It was noted in [6] that in the momentum space there is a transformation

G : p — p/, specified by up to an arbitrary function g(p’) = detJ(G~1)(p’)

such that g(p’) °p’ = d’p. Similarly to @), let (p’[y) = —==¢'(p) = $(p(p")),
5 Ve(p')

implying that | (p’|¥) |*g(p’) d*p’ = |# (p')|> &p’, which is an infinitesimal proba-

bility invariant in momentum space. Thus, scaling det J(G~')(p’) by any function,
1

Vi)

formation G that satisfies the conjugate properties. Thus,

say f(p’), while also scaling (p’|¢) according to will produce a new trans-

Si+Sp = _J &r d3p pr(r,1)pp(p, 1) In (pr(r, Dep(Pps t)) —-3Inn

=Sy +Sy — (IndetJ ' (1)), + (Ing(p')),r, =Sy + Sy,
r p
and g(p’) is chosen to satisfy (In g(p’))p;, = (Indet J‘l(r’))p;,. ]

We next investigate translation transformations. When a quantum reference
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frame is translated by x( along x, the state |/;) in position representation becomes
W(x = x0,1) = (x = xolgr) = (x| Tp(=x0) [¢r), where Tp(-x0) = e ”, and P is
the momentum operator conjugate to X. When the reference frame is translated
by po along p, the state |¢;) in momentum representation becomes ¢(p — po, 1) =
(p = polws) = (p|Tx(~po) l). where Tx(=po) = €%, and X is the position

operator conjugate to P.

Theorem 6 (Frames of reference). The entropy of a state is invariant under a change

of a quantum reference frame by translations along x and along p.

Proof. Let |y;) be a state and S its entropy. We start by showing that S, =

(&) 2 2 . . . . .
—f_oo dx [y (x, )| In | (x, t)|” is invariant under two types of translations:

(1) translations along x by any xg

Sx+x0 = —J dx |l//(x +X0,l‘)|2 In |l//(x +)C(),l‘)|2 =S,,

verified by changing variables under the infinite integration interval.

(i1) translations along p by any pg

o0

W (x,1) = (x| Tx (po) Iy:) = J x| Tx(po) Ip) {ply) dp

—00
(o)

= f; (x|p + po) (p,1)dp = Lo \/%Te”(’””“)@(p, 1) dp

=y (x, 1) e P,

implying [y, (x, 1) [* = |y (x, 1) >,

Similarly, by applying both translations to S, = —fjooo dp|d(p, D)) In|d(p,t)|> we
conclude that S, is invariant under them too. Therefore S = S, +S, —3In7 is

invariant under translations in both x and p. O
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CPT Transformations

We will be focusing on fermions, and thus on the Dirac spinors equation, though

most of the ideas apply to bosons as well. The QFT Dirac Hamiltonian is
HP = J Erf(r, 1) (—ihyoi -V + mcyo) Y(r,t).

A QFT solution ¥(r,t) satisfies [HP,¥(r,t)] = —ih% and the C,
P, and T symmetries provide new solutions from ¥(r,¢). As usual,
wC(r,t) = CP (r,1), PP(-r,1) = P¥(-r,1), ¥ (r,—1) = T¥*(r,~i), and
YT (=1, —1) = CPTJT(—I', —t), For completeness, we briefly review the three

operations, Charge Conjugation, Parity Change, and Time Reversal.

Charge Conjugation transforms particles ¥ (r, ) into antiparticles WT(r, t) =
Py T(r,1). As Cy*C~' = —y#T wC(r, 1) is also a solution for the same Hamil-
tonian. In the standard representation C = iy%y°, up to a phase. Parity Change
P = 9%, up to a sign, effects the transformation r — —r. Time Reversal effects
t — —t and is carried by the operator T = TK, where K applies conjugation. In the

standard representation T = iy!y3, up to a phase.

Theorem 7 (Invariance of the entropy under CPT-transformations). Given a quan-
tum field ¥ (v, t), its Fourier transform @ (K, t), and its entropy S;, the entropies of
i (r, 1), PP (-r,1), PC(r, 1), P (r, —1), and PCT (-r, —1) and their corresponding

Fourier transforms are all equal to S;.

Proof. The probability densities of ¥*(r,1), YT(r,—t), P (-r,1), ¥C(r,1), and

16



PCPT (_y, —1) are

pr(r,t) =T (r, )V (r,1) =T (e, )P (r,1) = p(r.1) ,

oC(r, 1) = (?T)Jr (r,0)CTCT (0,0) = 7 (5, 0)F (r.1) = py(r, 1),
pr(=r,0) =¥ (r, ) )Y W (r,0) = ¥ (0, 1) (r, 1) = pe(r,1)
pr(x,—=1) =¥ (e, )T TP (r, 1) = VT (r, )P (r,1) = pe(r. 1),

pCPT (Zr, —1) = (?T)Jr (r,))(CPT) (CPT)F (r,1) = pi(r, 1) . (10)

As the densities are equal, so are the associated entropies.
Equations (10)) also hold for @(k, 7) and its density. Thus, both entropies terms

in S; = S, + Sy are invariant under all CPT transformations. ]

Lorentz Transformations

Theorem 8. The entropy is a relativistic scalar.

Proof. The probability elements dP(r, ¢) = p.(r, 1) dr and dP(k, 1) = ox (K, 1) d’k
are invariant under Lorentz transformations since event probabilities do not depend

on the frame of reference. Consider a slice of the phase space with frequency

[ 2
2 . .
wi = +/K2c? + (%) . The volume elements wik d’k and wy d3r, are invariant under

the Lorentz group [13]], that is, 0~+k d’k = i d*k’ and wy &°r = wy d*r’, implying
dv = Pk d’r = &Kk &*r = dV’, where 1, K, and wy result from applying a Lorentz
transformation to r, K, and wy; a%kpr(r, t) and wypx (K, 1) are also invariant under
the group. Thus, the phase space density p.(r, t) ok (K, 7) is an invariant to Lorentz

transformations. Therefore the entropy is a relativistic scalar. 0

Note that in QFT, one scales the operator @(k, r) by V2wy, that is, one scales the
creation and the annihilation operators o (k) = ywr a' (k) and a(k) = Vwa(k).

17



In this way, the density operator &' (K, 1)@(K, 1) scales with wy and becomes a
relativistic scalar. Also, with such a scaling, the infinitesimal probability of finding
a particle with momentum p = 7K in the original reference frame is invariant under

the Lorentz transformation, though it would be found with momentum p’ = 7ik’.

QCURVES AND ENTROPY-PARTITION

We introduced in [10] the concept of a QCurve to specify a curve (or path) in
a Hilbert space parametrized by time. In QM, a QCurve is represented by a triple
(o), U(r), 1) where |yo) is the initial state, U(r) = e ' is the evolution operator,
and [0, 0t] is the time interval of the evolution. Alternatively, we can represent the

initial state by ({r|yo) , (k|¢o)) and in QFT as (¥ (r, 0) [state) , D(k, 0) |state)).

Definition 1 (Partition of € from [10]). Let € to be the set of all QCurves. We

define a partition of € based on the entropy evolution into four blocks:
C: Set of the QCurves for which the entropy is a constant.
J: Set of the QCurves for which the entropy is increasing, but it is not a constant.
D: Set of the QCurves for which the entropy is decreasing, but it is not a constant.

O: Set of oscillating QCurves, with the entropy strictly increasing in some subin-

terval of [0, 0¢] and strictly decreasing in another subinterval of [0, d¢].

Consider stationary states |, = |y£) e”" with w = E /%, where E is an energy
eigenvalue of the Hamiltonian, and |¢g) is the time-independent eigenstate of the

Hamiltonian associated with E.
Theorem 9. All stationary states are in C.

Proof. Follows from the time invariance of the probabilities. U
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The Coordinate-Entropy of Coherent States Increases With Time

Dirac’s free-particle Hamiltonian in QM [8] is
H = —-iy’y - V+mey®. (11)

It can be diagonalized in the spatial Fourier domain |K) basis to obtain

2
w(K) = cq/k? + ﬁcz , (12)

where w(k) is the frequency component of the Hamiltonian. We focus on the

positive energy solutions and so the group velocity becomes

vg(K) = Viw(k) = L

m +(%)2'

In (16) we will use the Taylor expansion of (I2)) up to the second order, thus requiring

(13)

the Hessian H(K), with the entries

0k h A2 nk\2\  (fk:\ (Tik;
1= ok, —%(“(%)) [5 (“(%) - (i) ()] 0

for the positive energy solution. The three (positive) eigenvalues of H(K) are

3
2\ 72 2
2]
m\ - \me (2 + 12 (k)

1
2\ 2
1
Y U4 N
m\ - \me (m? + 2 (k)




where u(k) = hk/c is the kinetic energy in mass units. The Hessian is positive
definite for positive energy, and so gives a measure of dispersion of the wave.

We now consider initial solutions that are localized in space, Yy, (r — r9) =
Yo(r — ro) e®T, where ry is the mean value of r. Assume that the variance,
f d&r(r- ro)2p:(r), is finite, where p.(r) = |/o(r)|%. In a Cartesian representation,
we can write the initial state in the spatial frequency domain as ¢.,(k — ko) =
do(k — ko) e7i(k"k0)To\where ¢o(K) is the Fourier transform of ¢ (r), and so the
variance of px(k) = |¢;(k — ko)|? is also finite, with the mean in the spatial
frequency center K.

The time evolution of Yy, (r — rg) according a Hamiltonian with a dispersion

relation w (k) and written via the inverse Fourier transform is

1
(V2m)3

Yo (r =10, 1) = J @, (k — ko) e w®ielkr P (15)

As ¢r,(k — ko) fades away exponentially from k = ko, we expand in a Taylor

series and approximate it as

w(k) = vp(ko) - ko + vg(ko) - (k — ko) + %(k —ko)H(ko) (k —ko), (16)

w(ko)
ko

(13)), and the Hessian of the dispersion relation w(k), respectively. Then after

where v (Ko), vg(Kko), and H(ko) are the phase velocity ko, the group velocity

inserting (I6)) into (I3)), we obtain the quantum dispersion transform

| : B —
e, (k= ko.1) & 2o R Dy (ko) N (k o, it~ H (o))

I . .
Vi (r =t 1) = e 0RO g (r )« N (r I, 1tH(ko)) . an

T

—i(k—Kko)r}

where 1} = 1o + vg(Ko)?, Dy (k — ko) = ¢o(k — Kkg) e k, with Fourier
0

Ko
transform yry, (r— rf{o); * denotes a convolution, Z, and Z; normalize the amplitudes,
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and N is a normal distribution. Consequently, ¢, (r — r{(o, t) is the spatial Fourier

transform of Dy (k — ko, 1).
0

The probability densities associated with the probability amplitudes in are

1 .
Pr(r - ri(o’t) = ?Wko(r - r{(()) * N (l' | ri(o’ltH(kO)) |2 ’

1
pr(k ko, 1) = — | (k—ko)|*. (18)
zZ,

Lemma 1 (Dispersion Transform and Reference Frames). The entropy associated

with (I8)) is equal to the entropy associated with the simplified probability densities

1
Py (1) = —lo(r) « N (r | 0,ir H(ko)) I,

1
Pk 1) = —51Po(K)I* = o (k.1 = 0). (19)
k

Proof. Consider (I8). If the frame of reference is translating the position by rj =

ro+ Vg (ko)? and the momentum by 7iko, we get the simplified density functions (19).

Theorem [6] shows that the entropy in position and momentum is invariant under
translations of the position r and the spatial frequency k, and that completes the

proof. 0

The time invariance of the density plf(k, t), and therefore of Sk, reflects the

conservation law of momentum for free particles.

We now focus on the case of coherent states, represented by |a@), the eigenstates

of the annihilator operator. The coherent state |0), associated with eigenvalue a = 0,
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yields in position and momentum space representations

1 N(r | r09 Z) eik()'l',

Ui, (r—ro) =(r|0) = —5———
2373 (det X)2

Dry (k — ko) = (k[0) =

: N (k | ko, 2—1) eikkomo (o0
2373 (det 1)z

where X is the spatial covariance matrix.

Theorem 10. A QCurve with an initial coherent state (20) and evolving according
to (I1))isinJ.
Proof. To describe the evolution of the initial states (20), we apply (I7). Then, after

applying LemmalI]

pS(r,1) = %N (r|0,Z+itH(ko)) N (r] 0,2 —irH(ko)) =N (r | 0, %Z(I)) ,
2

P n =N(k|0,x7),
where £(¢) = X + *H(ko) X 'H(Kko). Then

S =S, + Sk
1 1 \
:—JN r10.35(0] N [r 0,520 | &
—J N(k 0, 2-1) lnN(k 0, 22-1) Sk

1
=3(1+Inm) + 3 Indet (I n r2(2—1H(k0))2) .

As det (T+#2(Z7'H(ko))?) > 0, the entropy increases over time. O

The theorem suggests that quantum physics has an inherent mechanism to in-
crease entropy for free particles, due to the spatial dispersion property of the Hamil-

tonian. Note that at + = 0 a coherent state (20) reaches the minimum possible
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coordinate-entropy value, while the spin-entropy remains constant.

Time Reflection

We consider a time-independent Hamiltonian, investigate the discrete symmetries
C and P, and propose that Time Reversal be augmented with Time Translation, say
by 6¢. We refer to the mapping ¢ — —t + 0t as Time Reflection, because as ¢ varies
from O to 6z, t'(¢) = —t + &t varies as a reflection from &z to 0. We define the Time

Reflection quantum field
P (r,—1 +81) = T¥(r, 1) = TV (r,1) .

Note that in contrast to the case of Time Reversal, #Ts (r,t) = T¥(r,—t" + 01),
and the entropies associated with ¥ (r, ) and ¥ 15 (r, t) are generally not equal. Thus,
an instantaneous Time Reflection transformation will cause entropy changes.

We next consider a composition of the three transformation, Charge Conjugation,

Parity Change, and Time Reflection.

Definition 2 (ZC?Ts), Let the CPT5 quantum field be
WOPTs (L. 1+ 81) = s CPT ¥ (r,1) = 1" (¥ )T (1, 1) | 21)

where 7 is the product of the phases of each operation, 75 is the phase of time

translation, and y° = iy%y!y2y3.

Definition 3 (Qcpr;). Let Ocpr; be (l//(l‘, 0),U(1), [0, 52‘]) — (wCPTf’ (-r,0),U(1), [0, 01] )
Using we see that,
YT (—r,0) =y’ (PN (r, =0+ 81) =0y () (x, 81) . (22)
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Theorem 11 (Time Reflection). Consider a CPT invariant quantum field theory
(QFT) with energy conservation, such as Standard Model or Wightman axiomatic
QFT [l14]. Leteg = (Y(x,0),U(2), [0, 8t]) be a QCurve solution to such QFT. Then,
e1 = Qcpr; (€o) is (i) a solution to such QFT, (ii) if eq is in C, D, O, J then ey is

respectively in C, J, O, D, making C, J, O, D reflections of C, D, O, J, respectively.

Proof. Lett’ = —t+06t. The QCurve e; describes the evolution FTs (—r, ') during
the period [0, d¢].

Since e is a solution to a QFT that is CPT-invariant and time-translation invari-
ant, e is also a solution to the QFT, proving (1).

The time evolution of 15 (—r, 0) from O to &¢ is described by y*Ts (—r, ')
and by YOS (—r, ") = y> (TN (x, —1" + 8t) = y> ¥*(r, 5t — t'). Thus, the
evolution of ¢/ “Ts(—r, ') as ¢’ evolves from O to 5¢, by Theorem [7, has the same
entropies as ¢ (r, 8t —t’). Since Y/ (r, 8t —t’) traverses the same path as ¢/ (r, ¢’) but in
the opposite time direction, we conclude that e; produces the time evolution states
WCPTs (—r, ¢') in the time interval [0, 8] traversing the same path and with the same
entropies as ¥ (r, t’), but in the opposite time directions.

Applying the above to a QCurve respectively in J, D, €, O, results in a QCurve
respectively in D, J, €, O. Thus, we conclude the proof of (ii). O

For a visualization see Figure 1 of [10].

Entropy Oscillations

Theorem 12 (Coefficients for two states). Consider a particle in an eigenstate |¢ﬁ15l )
of a Hamiltonian H that has only two eigenstates |¢E1> and |¢E2> with eigenvalues
E| = hw| and E> = hw,, respectively. Let this particle interact with an external
field (such as the impact of a Gauge Field), requiring an additional Hamiltonian

term H' to describe the evolution of this system.
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|| I total _ I total  _ I
Let w; = ﬁ<¢Ei|H|ij>, a)lota = w + wy, wzoa = Wy + Wy,

total ,  total
w°a+w2°ai7]

2
n = \/(wtl"tal—a)tz"tal) +4(w},)% and 1. = ——=*—. The probability of

the particle to be in state |l//E2> at time t is

4(6‘)112)2 ) (Ay — At
sin .
n? 2

Proof. The Hamiltonians in the basis |¢E1 ) , |¢ E2> are

I I
w; 0 wy;, W
H=h and H'=n I” 112 ,
0 wy Wy, Wy,

where the real values satisfy w), = w!, as H' is Hermitian. The eigenvalues of the

symmetric matrix H' = H + H Lare 7id., and so we can decompose it as

) wPel Wl cos@ —sinf\ (A1, O \[ cos@ sin6
H = - . (23)
wl, WP sin@ cosf |\ 0 #AA_|\—sin@ cos6
where
1 ) 2a)112
6 = — arcsin —= . (24)
2 ]
. . . _jab 2
The time evolution of |yg, ) is [y,) = e 7 ' |yg,) = S k() lv£, ). and
(H+HY)

,we geta(t) = <ij| e !|yg, ). From 23),

projecting on (Y,

_u’, [cosf —sin@ e 0 cosf sind
e h =
sinf cos6 0 e |\—-sin@ cosd
. - . —idyt _g—id-t
e Mt 0og2 9 4+ 7141 gin2 g &——>*——sin26
= —idqt _ —id-t s . .
£ —=—sin26 e Ml gin? 9 + e 7111 cos2 @
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Thus,

a1 (1) a1 cos2 @ e~ 4 gin2 @ e—iA-1

=€ = —idyt _a—id-t s
(1) 0 sin 26 (%)
and so

|1 (1)]? (1= % sin?26 (1 — cos(A_ — A,)1)

| (1)|? % sin?26 (1 — cos(A_ — A,)1)

As 1 —cos(Ad_ — A,)t = 2 sin® M , the probability of being in state |¢E2> at

2 (A=A )t
2

time 7 is |2 (¢)|> = sin® 26 sin . Using (24)), completes the proof. ]

If w; > !

' wr > W)y, and |w) — wy| > wl,, then A~ ~ wp, and the

R 12°

1

4(wi)) sin2 (w2—w1)t
(w1—w>)? 2

coefficient of transition becomes |a;(f)|* ~ , which is Fermi’s

golden rule [7,9].

In [10] we showed that when the probability of two states oscillates as above, the

entropy oscillates too.

The derivation of a, () can be expanded to multiple states. However, for multiple
states, the sum over all the frequencies 4y — A; may cancel the oscillations unless
some frequencies dominate the sum, such as when the transition to the ground state
dominates other transitions. Thus, to obtain the entropy oscillation in the presence of
multiple transitions may require approximations similar to the ones that are usually
used in derivations of Fermi’s golden rule.

The spin-entropy of a state with two or more particles, such as (6], and its unitary
time evolution (forming their QCurves) can be studied with the same technique as
above. How such evolution leads to one of the four block partition needs to be

further studied.
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An Entropy Law and a Time Arrow

In classical statistical mechanics, the entropy provides a time arrow through the
second law of thermodynamics [4]. We have shown that due to the dispersion
property of the fermions Hamiltonian some states in quantum mechanics, such as
coherent states, already obey such a law. However, current quantum physics is

described as time reversible. In [[10] we conjectured the following

Law (The Entropy Law). The entropy of a quantum system is an increasing function

of time.

The law may help explain why particles are created and/or annihilated in scenarios
such as high-speed collision e* + e~ — 27, kaons decay into mesons, and photon
creation and emission when the electron in the hydrogen atom transitions from
an excited state to the ground state. In those scenarios, while such final states are
reachable in a unitary evolution of the initial state, it seems that only those evolutions
in which entropy increase are realized. According to the S-matrix formulation [13]],
similar to Fermi’s golden rule in QM, these final states are among the possible
transition states. We note that similarly to Fermi’s golden rule, these are also entropy
oscillation scenarios in which the evolution is blocked from entering a time interval
of decreasing entropy. The creation and/or annihilation of a particles seem to occur
when the entropy of the evolution from the initial to the final state is oscillating, and

but for such events the entropy would decrease, which the conjectured law forbids.

Furthermore, the spin-entropy evolution of system of particles or fields is also
subject to this law which may have implications in all physical scenarios including

quantum information and quantum computing.
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CONCLUSIONS

The concepts of entropy in phase spaces in [10] were developed here. First for the
spin-entropy and studied the case of two entangled spin % particles. The spin-entropy
obtained differs from Von Newman’s entropy, which is the one currently adopted in
quantum information and quantum computing and together with the proposed law
may impact these fields. We then extended the coordinate-entropy in QM to multiple
particles. We proved that the coordinate-entropy is invariant under coordinate
transformations, Lorentz transformations, and CPT transformations. We analyzed
the entropy evolution of coherent states, showing that the Dirac’s Hamiltonian
has a mechanism to disperse the information and to increase entropy. We proved
that Time Reflection transforms QCurves in C, J, O, D into QCurves in C, D,
0, J, respectively. We proved that for a two-state Hamiltonian, the addition of a
Hamiltonian term not only causes a state oscillation (as suggested by Fermi’s golden
rule when the appropriate approximations hold) but also causes entropy oscillation.
In light of the technical advancements here, we reviewed the conjectured entropy
law [10]. According to that law, not only a time arrow would emerge, but should
the formation of new particles be triggered by the entropy law, the history of the
universe would have to be revised through such a lens. Perhaps, the collapse of a
wave function occurs not due to measurements, but instead due to the restrictions

posed by the entropy law.
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