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Abstract
We study quantum entropy, a measure of randomness over the degrees of freedom of a

quantum state and quantified in phase spaces. We show that it is dimensionless, a relativistic

scalar, and it is invariant under coordinate and CPT transformations.

We show that the entropy evolution of a coherent state is increasing with time. We

augment time reversal with time translation and show that CPT with time translation can

transform particles with decreasing entropy evolution into anti-particles with increasing

entropy evolution. We revisit transition probabilities of a two state Hamiltonian and show

how it relates to entropy oscillation. We study the entropy of a spin phase space and apply

it to the study of the entanglement states.

We also explore the possibility that entropy oscillations trigger the annihilations and the

creations of particles.
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INTRODUCTION

A time arrow emerges in physics only when a probabilistic behavior of ensembles

of particles is considered in classical physics. In contrast, quantum physics is

presented as time reversible even though a probabilistic behavior is intrinsic even to

a single-particle. In [10] we proposed a definition of quantum entropy to measure

the randomness of a quantum state, while accounting for all its degrees of freedom

(DOFs). That entropy is a sum of two components: the coordinate-entropy and

the spin-entropy, each defined in its own phase space. We analyzed the possible

entropy evolution and conjectured that a law analogous to the classical second law

of thermodynamics holds, applicable to all particle physics.

This paper provides more technical depth, to further develop the issues raised

in [10]. The results are applicable to both the Quantum Mechanics (QM) and the

Quantum Field Theory (QFT) settings, but we will generally present them in the

more convenient setting. We first derive the spin-entropy for a single particle and

study the case of entanglement for two particles of spin 1
2 . Then we further develop

the coordinate-entropy for multiple particles. We show that the coordinate-entropy

is invariant under changes in continuous 3D coordinate transformations, continuous

Lorentz transformations, and discrete CPT transformations. We then analyze the

evolution of coherent states. We study time reflection of particles’ evolution and

the impact of the transformation into anti-particles. We study entropy oscillations

for a two-state Hamiltonian and their relation to Fermi’s golden rule. Following the

results presented here, we review a conjectured entropy law that the entropy of a

quantum system is an increasing function of time, and end with conclusions.
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QUANTUM ENTROPY IN PHASE SPACES

Spin-Entropy

The DOFs associated with the spin are captured by the vector or bispinor repre-

sentation of the states in both frameworks, QM and QFT. The spin matrix associated

with a particle can be specified (e.g., [5]) as

®( = (G Ĝ + (H Ĥ + (I Î and (2 = (2
G + (2

H + (2
I ,

[(0, (1] = iℏ(2 , where 0, 1, 2 is a cyclic permutation of G, H, I ,

[(2, (0] = 0 , for 0 = G, H, I .

The spin value of a particle is a Casimir invariant but it is not possible to simulta-

neously know the spin of a particle in all three dimensional directions. Knowing

the I-direction spin does not imply that we know the G- or the H-direction spins

as captured by the non-commutative property of the spin operators and the Stern-

Gerlach experiment [11]. This uncertainty, or randomness, is the intrinsic source for

the non-zero spin-entropy. The uncertainty also reflects the close relation between

spin matrices, their unitary transformations, and the rotation group SO(3). For spin
0 particles (Higgs bosons), there is no spin uncertainty and so the spin-entropy is

0. For spin 1
2 particles, any spin state is reachable from any other spin state via a

2 × 2 unitary transformation, a local isomorphism (and a global homomorphism)

to the SO(3) group. For spin 1, the matrices are unitarily similar to SO(3), and
one can transform them into generators of SO(3) via unitary transformations. We

then characterize the spin phase space by considering simultaneously a spin state

along G, H, and I directions, i.e., a spin state |b〉 is represented in spin phase space
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as ( |b〉G , |b〉H , |b〉I). The spin-entropy is then

S = −
2∑
8=1

2∑
9=1

2∑
:=1

P(8, 9 , :) ln P(8, 9 , :) , (1)

where P(8, 9 , :) = PG (8)PH ( 9)PI (:), {P0 (8) = | 〈8 |b〉0 |2; 8 = 1, 2, 3, 0 = G, H, I},
〈8 | 9〉 = δ8 9 , 8, 9 = 1, 2, 3, and |b〉I = |b〉.

Preparing a spin state to align with a particular direction, say I direction as it is

done in many experiments with spin, e.g., [11], implies full knowledge of one of the

spin directions. We will show that this knowledge, and thus this preparation, reduce

the spin-entropy.

A spin state of a particle with spin value 1
2 is represented by a set of two

orthonormal eigenstates |+〉 = (1, 0)T and |−〉 = (0, 1)T of the operators ((2, (I),
with associated eigenvalues

( 1
2 ,±

1
2
)
.

Theorem 1 (Spin-Entropy B = 1
2 ). A general description of the state of a particle

with spin 1
2 is |b〉I = eii (

eia cos \U |+〉 + sin \U |−〉
)
= eii

(
eia cos \U, sin \U

)T
,

where \U ∈ [0, c2 ] and i, a ∈ [0, 2c). The spin entropy of this state is

S 1
2
= −

∑
0=G,H,I

∑
sign=−,+

Psign
0 (\U, a) ln Psign

0 (\U, a) , (2)

where P±G (\U, a) =
(1±sin 2\U cos a)

2 , P±H (\U, a) =
(1±sin 2\U sin a)

2 , P+I (\U) = cos2 \U, and

P−I (\U) = sin2 \U.

Proof. Astate |b〉I assigns a probability distribution PI =
(
| 〈1|b〉I |2, | 〈2|b〉I |2

)T
=(

cos2 \U, sin2 \U

)T
. To calculate PG we write the G-basis as eigenvec-

tors of (G and (2, i.e., the basis matrix �G = 1√
2
©­«
1 1

1 −1
ª®¬ made of column

eigenvectors. Then, |b〉G = eii�−1
G |b〉I with corresponding probabilities

PG = 1
2

(
1 + sin 2\U cos a, 1 − sin 2\U cos a

)T
. Similarly, the eigenvectors
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of (H and (2 form the H-basis �H = 1√
2
©­«
−i i

1 1
ª®¬; and |b〉H = eii�−1

H |b〉I,

PH = 1
2

(
1 + sin 2\U sin a, 1 − sin 2\U sin a

)T
. Replacing these expressions for

PG , PH, PI into (1) we obtain the spin-entropy (2). For a visualization of the entropy,

see Figure 2a.

For spin B = 1 we must evaluate the internal uncertainty of the gauge field

�` (r, C), a vector under Lorentz transformation. For a massless field, the quantized

electric field � (r, C) and magnetic field �(r, C) form the phase space for each space-

time coordinate (r, C), where their commutation properties leads to an uncertainty

relation. For massive particles with spin B = 1, the spin matrices ([5])

(G =
1
√

2

©­­­­«
0 1 0

1 0 1

0 1 0

ª®®®®¬
(H =

1
√

2

©­­­­«
0 −i 0

i 0 −i

0 i 0

ª®®®®¬
(I =

©­­­­«
1 0 0

0 0 0

0 0 −1

ª®®®®¬
(2 =

©­­­­«
2 0 0

0 2 0

0 0 2

ª®®®®¬
yield a basis representation for spin with the eigenvectors of (I and (2

|↑〉I =
(
1, 0, 0

)T
, |→〉I =

(
0, 1, 0

)T
, |↓〉I =

(
0, 0, 1

)
Theorem 2 (Massive Spin-Entropy B = 1). A general state of spin B = 1 is

|b〉 = eiiH
(
cos \U cos \V eiiG |↑〉I + sin \U |→〉I + cos \U sin \V eiiI |↓〉I

)
(3)

where \U, \V ∈ [0, c2 ], iG , iI, iH ∈ [0, 2c). The spin-entropy of this state is

S1 = −
3∑
8=1

3∑
9=1

3∑
:=1

PG (8)PH ( 9)PI (:) ln
(
PG (8)PH ( 9)PI (:)

)
, (4)
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where

PG
H
= 1

4

©­­­­«
1 + sin2 \U ± sin 2\V cos2 \U cos(iG − iI) +

√
2 sin 2\U (sin \V |cos iI

sin iI + cos \V |cos iG
− sin iG

2 cos2 \U ∓ 2 sin 2\V cos2 \U cos(iG − iI)
1 + sin2 \U ± sin 2\V cos2 \U cos(iG − iI) −

√
2 sin 2\U (sin \V |cos iI

sin iI + cos \V |cos iG
− sin iG )

ª®®®®¬
PI =

©­­­­«
cos2 \U cos2 \V

sin2 \U

cos2 \U sin2 \V

ª®®®®¬
Proof. The state |b〉 in the I−axis basis is given by (3), and describing it in the H−axis

basis �B=1
H = 1

2

©­­­­«
−1

√
2 −1

−
√

2 i 0
√

2 i

1
√

2 1

ª®®®®¬
and in the G−axis basis �B=1

G = 1
2

©­­­­«
1
√

2 1
√

2 0 −
√

2

1 −
√

2 1

ª®®®®¬
,

we get |b〉H = (�B=1
H )−1 |b〉, |b〉G = (�B=1

G )−1 |b〉 yielding {P0 (8) = | 〈8 |b〉0 |2; 8 =

1, 2, 3, 0 = G, H, I}, where 〈8 | 9〉 = X8 9 , 8, 9 = 1, 2, 3, and |b〉I = |b〉. Performing the

matrix calculations completes the proof.

For a visualization of the spin-entropy for some parameters see Figure1.

Theorem 3. The minimum spin-entropy for B = 0, 1
2 , 1 is 2θ(B) ln 2, where θ(B) = 1

for B > 0 and zero otherwise.

Proof. The spin-entropy for B = 0 is 0. Relying on the numerical minimization

functionality of Wolfram Mathematica®, we obtained (i) for S 1
2
the minimum of

2 ln 2 at \U = c
4 , a = 0; or \U = c

4 , a = c
2 ; or \U = 0 (describing when G-, H-, or

I-axis are oriented along the state); (ii) for S1 we obtained the minimum of 2 ln 2 at

\U = c
2 (eigenstate |→〉), \U = π

2 , \U = 0, \V = iG = iI =
π
4 . This concludes the

proof.

We also observed that for B = 1 the local minimum 3 ln 2 occurs at |↑〉, defined by
\U = 0, \V = 0 and |↓〉, defined by \U = 0, \V = c

2 ; and at other states. Thus, prepar-

ing a spin state orientation, which allows it to be aligned with a given coordinate

system, reduces the entropy either to local or global minimum.
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Spin Entanglement

We now examine the spin-entropy of a system with two particles with spin

B = 1
2 . It is known that that a product of two independent spin particles |b��〉I =

eii�
(
eia� cosU� |+〉� + sinU� |−〉�

)
eii�

(
eia� cosU� |+〉� + sinU� |−〉�

)
does not

cover all two-particle states, described by
��b{�,�}〉I = 0++ |+〉� |+〉�+0+− |+〉� |−〉�+

0−+ |−〉� |+〉� + 0−− |−〉� |−〉�, where 0++, 0+−, 0−+, 0−− are complex value coeffi-

cients with |0++ |2 + |0+− |2 + |0−+ |2 + |0−− |2 = 1. In particular, entangled states such

as 0++ = 0−− = 0, 0+− = 0−+ = 1√
2
can not be described by the product of two

states. We now explore entangled states further.

Theorem 4 (Two spin B = 1
2 entanglement). Consider a system with two identical

particles, � and �, each with B = 1
2 in an entangled state

|b〉 = eiU [
cos \�� |+〉� |−〉� − sin \�� |−〉� |+〉�

]
(5)

where ± varies over the two I-components and \�� ∈ [0, 2c). The spin-entropy of
|b〉 is

S�±,�∓ (\��) = −
3
2
[(1 − sin 2\��) ln(1 − sin 2\��) + (1 + sin 2\��) ln(1 + sin 2\��)]

+ (4 − sin 2\��) ln 2 . (6)

Proof. The four vectors of the spin basis for two fermions along the I-axis are

|++〉 = |+〉� |+〉�, |−+〉 = |−〉� |+〉�, |−+〉 = |−〉� |+〉�, and |−−〉 = |−〉� |−〉�;
and in this basis the state (5) is |b〉I = eiU

(
0, cos \��, − sin \��, 0

)T
, with spin
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matrices

(G =
1
2

©­­­­­­­«

0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

ª®®®®®®®¬
, (H =

1
2

©­­­­­­­«

0 −i −i 0

i 0 0 −i

i 0 0 −i

0 i i 0

ª®®®®®®®¬
, (I =

©­­­­­­­«

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

ª®®®®®®®¬
, (2 =

©­­­­­­­«

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

ª®®®®®®®¬
.

A basis simultaneously constructed from eigenvectors of (I and (2 is{
|++〉 , 1√

2
( |+−〉 + |−+〉), 1√

2
( |+−〉 − |−+〉), |−−〉

}
, and they can be written

as a matrix of eigenvector columns �I =

©­­­­­­­«

1 0 0 0

0 1√
2

1√
2

0

0 1√
2
− 1√

2
0

0 0 0 1

ª®®®®®®®¬
. Then, the state (5) and

its probability distribution is written in this basis as

|b〉I = �−1
I |b〉 = eiU 1

√
2

©­­­­­­­«

0

cos \�� − sin \��
cos \�� + sin \��

0

ª®®®®®®®¬
→ PI =

1
2

©­­­­­­­«

0

1 − sin 2\��
1 + sin 2\��

0

ª®®®®®®®¬
.

A simultaneous eigenvector basis �G to (G , (2 produces the state |b〉 in such basis as

�G =
1
2

©­­­­­­­«

1
√

2 0 −1

1 0
√

2 1

1 0 −
√

2 1

1 −
√

2 0 −1

ª®®®®®®®¬
→ |b〉G = �−1

G |b〉 =
eiU

2

©­­­­­­­«

cos \�� − sin \��
0

√
2(cos \�� + sin \��)
cos \�� − sin \��

ª®®®®®®®¬
,
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a. iG = 0, iI = π
2 b. iG = π

3 , iI =
π
2 c. iG = π

4 , iI =
π
4

Figure 1. Spin-Entropy for B = 1 (4) vs (\U, \V) for a fixed set of parameters iG , iI . Note
that for \U = π

2 and for \U = 0, \V = iG = iI =
π
4 the spin-entropy reaches its minimum

2 ln 2 ≈ 1.3863.

and similarly for the eigenvector basis �H to (H, (2

�H =
1
2

©­­­­­­­«

−i
√

2 0 i

1 0
√

2 1

1 0 −
√

2 1

i
√

2 0 −i

ª®®®®®®®¬
→ |b〉H = �−1

H |b〉 =
eiU

2

©­­­­­­­«

cos \�� − sin \��
0

√
2(cos \�� + sin \��)
cos \�� − sin \��

ª®®®®®®®¬
,

with probability distributions PG = PH =
(

1
4 (1−sin 2\��), 0, 1

2 (1+sin 2\��), 1
4 (1−

sin 2\��)
)T
. Thus, after some manipulations to compute S from (1) we derive (6).

For a plot, see Figure 2b.

Clearly, the eigenvalue 0 of (2 has only one eigenvector, 1√
2
( |+−〉 − |−+〉), and

it is common to all three eigenvector basis. Thus, the entangled state for \�� = π
4 ,

|b〉\��=π
4
= 1√

2
( |+−〉 − |−+〉), has the entropy of 0. The minimum entropy for a

state with eigenvalue 1 of (2 occurs for the eigenstates of (2 that are simultaneously

eigenstates of (G or of (H or of (I, such as S�±,�∓ (\�� = 3π
4 ) = 2 ln 2.

We will now compare the entropy of a system of two independent particles

with that of a system of two entangled particles. Consider two independent states
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a. Fermion Spin-Entropy (2) vs (\U, a) b. Entangled State Spin-Entropy (6) vs \��

Figure 2. a. A surface plot of a fermion with B = 1
2 , with I-axis spin-entropy (2) vs G-,H-axis

(\U ∈ [0, π2 ), a ∈ [0,π)). b. A plot of the entanglement spin-entropy (6) vs the angle
\�� ∈ [0, 2π]. Note that for \�� = π

4 + =π; = = 0, 1, . . . the spin-entropy is zero. The
entropy also never reaches the largest possible sum of two independent fermions, which is
≈ 3.08.��b�〉 = cos \�� |+〉 − sin \�� |−〉 and

��b�〉 = − sin \�� |+〉 + cos \�� |−〉. The

probabilities of finding those particles in |+〉 and |−〉 are the same as in the entangled

state (5). Of course, the product of two independent particles does reach states |+〉 |+〉
and |−〉 |−〉 that the entanglement does not, which motivates the examinations of the

entropies. The entropies associated with
��b�〉 and ��b�〉, S�1

2
(\��) and S�1

2
(\��), are

obtained from (2), where for
��b�〉, i = a = c and \U = \��; and for

��b�〉, i = a = 0

and \U = \�� + c
2 .

We plot both S�±,�∓ (\��) and S�,� (\��) = S�1
2
(\��) + S�1

2
(\��) in Figure 3. For

most values of \�� the entropy of the entanglement is lower than that of two indepen-

dent particles. However, as seen in Figure 3b., there is a small interval of values of

\�� where the entanglement spin-entropy is greater than the spin-entropy S�,� (\��).
This interval is [= c2 , \

max S�± ,�∓
��

(=)] for = ∈ ℤ∗, where \�� = = c2 produces the S�,�
minima and \max S�± ,�∓

��
(=) ≈ 0.113 + = c2 = arg max\�� S�±,�∓ (\��).

Works exist exploring the information content of entangled physical systems,

e.g., [2, 3, 12]. They considered the von Neumann entropy for |b〉, which is zero,

but after tracing out a particle state, they obtain an entropy associated with the two

probabilities P�+�− (\��) = cos2 \�� and P�−�+ (\��) = sin2 \��. In contrast, our
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a. S�,� (red) and S�±,�∓ (blue) vs \�� b. Close up of a.

Figure 3. A plot of the entanglement spin-entropy (6) in blue overlaid with the two indepen-
dent B = 1

2 particles spin-entropy S�,� (\��) = S�(\��) +S� (\��) in red vs the angle \��.
In a. \�� ∈ [0, 2c] where the entanglement spin-entropy is mostly smaller then S�,� (\��).
In b. Close up of the plot in a. for the range \�� ∈ [1.4, 1.7], showing an interval in which
entanglement’s spin-entropy is greater than S�,� (\��).

proposed entropy captures the information difference between the two entangled

states, for \�� = π
4 and for \�� = 3π

4 . Experiments exploiting the projection of such

states along perpendicular directions (in analogy to the [11]) could realize the larger

amount of randomness of the \�� = 3π
4 entangled state.

Coordinate-Entropy of Multiple Particles

We now consider the coordinate-entropy in phase space, which was defined

in [10] as

S = −
∫
dr(r, C)d: (k, C) ln (dr(r, C)d: (k, C) ) d3r d3k = Sr + S: ,

where Sr = −
∫
dr(r, C) ln dr(r, C) d3r, and analogously for Sk, dr(r, C) = |k(r, C) |2

and d: (k, C) = |q̃(k, C) |2, with k(r, C) and q̃(k, C) representing in QM the wave

function and in QFT the coefficients of the Fock states. The momentum is described
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by the change of variables p = ℏk, so that the entropy is dimensionless and invariant

under changes of the units of measurements.

A natural extension of this entropy to an #-particle QM system is

( = −
∫

d3r1 d3k1 . . . d3r# d3k# dr(r1, . . . , r# , C)dk(k1, . . . , k# , C)

× ln (dr(r1, . . . , r# , C)dk(k1, . . . , k# , C))

= −
∫

d3r1 . . .

∫
d3r# dr(r1, . . . , r# , C) ln dr(r1, . . . , r# , C)

−
∫

d3k1 . . .

∫
d3k# dk(p1, . . . , k# , C) ln dk(k1, . . . , k# , C) ,

where dr(r1, . . . , r# , C) = |k(r1, . . . , r# , C) |2 and dk(k1, . . . , k# , C) = |q(k1, . . . , k# , C) |2

are defined in QM via the projection of the state |kC〉# of # particles (the product

of # Hilbert spaces) onto the position 〈r1 | . . . 〈r# | and the momentum 〈k1 | . . . 〈k# |
coordinate systems.

ENTROPY INVARIANT PROPERTIES

Continuous Transformations of the Phase Space

In the QM setting, we investigate a point transformation of coordinates and a

translation in phase space of a quantum reference frame [1].

Consider a point transformation of position coordinates � : r ↦→ r′. It induces

the new conjugate momentum operator [6]

p̂′ = −iℏ
[
∇r′ +

1
2
�−1(r′)∇r′ · � (r′)

]
, (7)

where � (r′) = mr(r′)
mr′ is the Jacobian of �−1.

Theorem 5. The entropy is invariant under a point transformation of coordinates.
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Proof. Let S be the entropy in phase-space relative to a conjugate Cartesian pair of

coordinates (r, p). Let p′ be the momentum conjugate to r′. As the probabilities in

infinitesimal volumes are invariant,

|k′(r′) |2 d3r′ = |k(r(r′)) |2 d3r(r′) and |q̃′(p′) |2 d3p′ = |q̃(p(p′)) |2 d3p(p′) . (8)

Thus, by Born’s rule the probability density functions are |k′(r′) |2 and |q̃′(p′) |2.
The Jacobian satisfies det � (r′) d3r′ = d3r, and combining this with (8),

1√
det � (r′)

k′(r′) = k(r(r′)) , (9)

so the infinitesimal probability |k′(r′) |2 d3r′ = k(r(r′)) det � (r′) d3r′ is invariant.

Considering the Fourier basis 〈p|r〉 = 1
(2π)

3
2
e−ir·p combined with (9) leads to q̃(p) =

1
(2π)

3
2

∫√
det � (r′) k′(r′) e−ir′·p d3r′ .

It was noted in [6] that in the momentum space there is a transformation

� : p ↦→ p′, specified by (7) up to an arbitrary function 6(p′) = det � (�−1) (p′)
such that 6(p′) d3p′ = d3p. Similarly to (9), let 〈p′|k〉 = 1√

6(p′)
q̃′(p′) = q̃(p(p′)),

implying that | 〈p′|k〉 |26(p′) d3p′ = |q̃′(p′) |2 d3p′, which is an infinitesimal proba-

bility invariant in momentum space. Thus, scaling det � (�−1) (p′) by any function,

say 5 (p′), while also scaling 〈p′|k〉 according to 1√
5 (p′)

will produce a new trans-

formation � that satisfies the conjugate properties. Thus,

Sr + Sp = −
∫

d3r d3p dr(r, C)d? (p, C) ln
(
dr(r, C)d? (p, C)

)
− 3 ln ℏ

= Sr′ + Sp′ − 〈ln det �−1(r′)〉d′
A ′
+ 〈ln 6(p′)〉d′

?′
= Sr′ + Sp′ ,

and 6(p′) is chosen to satisfy 〈ln 6(p′)〉d′
?′
= 〈ln det �−1(r′)〉d′

A ′
.

We next investigate translation transformations. When a quantum reference
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frame is translated by G0 along G, the state |kC〉 in position representation becomes

k(G − G0, C) = 〈G − G0 |kC〉 = 〈G | )̂% (−G0) |kC〉, where )̂% (−G0) = eiG0 %̂, and %̂ is

the momentum operator conjugate to -̂ . When the reference frame is translated

by ?0 along ?, the state |kC〉 in momentum representation becomes q̃(? − ?0, C) =
〈? − ?0 |kC〉 = 〈? | )̂- (−?0) |kC〉, where )̂- (−?0) = ei?0 -̂ , and -̂ is the position

operator conjugate to %̂.

Theorem 6 (Frames of reference). The entropy of a state is invariant under a change

of a quantum reference frame by translations along G and along ?.

Proof. Let |kC〉 be a state and S its entropy. We start by showing that SG =

−
∫∞
−∞ dG |k(G, C) |2 ln |k(G, C) |2 is invariant under two types of translations:

(i) translations along G by any G0

SG+G0 = −
∫ ∞
−∞

dG |k(G + G0, C) |2 ln |k(G + G0, C) |2 = SG ,

verified by changing variables under the infinite integration interval.

(ii) translations along ? by any ?0

k?0 (G, C) = 〈G | )̂- (?0) |kC〉 =
∫ ∞
−∞
〈G | )̂- (?0) |?〉 〈? |kC〉 d?

=

∫ ∞
−∞
〈G |? + ?0〉 q̃(?, C) d? =

∫ ∞
−∞

1
√

2π
ei G (?+?0) q̃(?, C) d?

= k(G, C) ei G ?0 ,

implying |k?0 (G, C) |2 = |k(G, C) |2.

Similarly, by applying both translations to Sp = −
∫∞
−∞ d? |q̃(?, C) |2 ln |q̃(?, C) |2 we

conclude that Sp is invariant under them too. Therefore S = SG + Sp − 3 ln ℏ is

invariant under translations in both G and ?.
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CPT Transformations

We will be focusing on fermions, and thus on the Dirac spinors equation, though

most of the ideas apply to bosons as well. The QFT Dirac Hamiltonian is

HD =

∫
d3rR †(r, C)

(
−iℏW0 ®W · ∇ + <2W0

)
R (r, C) .

A QFT solution R (r, C) satisfies [HD,R (r, C)] = −iℏ mR (r,C)
mC

and the �,

%, and ) symmetries provide new solutions from R (r, C). As usual,

RC(r, C) = �R
T(r, C), R P(−r, C) = %R (−r, C), RT(r,−C) = )R ∗(r,−C), and

kCPT(−r,−C) = �%)k
T(−r,−C), For completeness, we briefly review the three

operations, Charge Conjugation, Parity Change, and Time Reversal.

Charge Conjugation transforms particles R (r, C) into antiparticles R
T(r, C) =

(R †W0)T(r, C). As �W`�−1 = −W`T,RC(r, C) is also a solution for the same Hamil-

tonian. In the standard representation � = iW2W0, up to a phase. Parity Change

% = W0, up to a sign, effects the transformation r ↦→ −r. Time Reversal effects

C ↦→ −C and is carried by the operator T = ) ̂ , where  ̂ applies conjugation. In the

standard representation ) = iW1W3, up to a phase.

Theorem 7 (Invariance of the entropy under CPT-transformations). Given a quan-

tum fieldR (r, C), its Fourier transformQ(k, C), and its entropy SC , the entropies of

R ∗(r, C),R P(−r, C),RC(r, C),RT(r,−C), andRCPT(−r,−C) and their corresponding
Fourier transforms are all equal to SC .

Proof. The probability densities of R ∗(r, C), RT(r,−C), R P(−r, C), RC(r, C), and

16



RCPT(−r,−C) are

d∗r (r, C) =R T(r, C)R ∗(r, C) =R †(r, C)R (r, C) = d(r, C) ,

dC
r (r, C) =

(
R
T)† (r, C)�†�R T(r, C) =R ∗(r, C)R T(r, C) = dr(r, C) ,

dP
r (−r, C) =R †(r, C) (W0)†W0R (r, C) =R †(r, C)R (r, C) = dr(r, C) ,

dT
r (r,−C) =R T(r, C))†)R ∗(r, C) =R T(r, C)R ∗(r, C) = dr(r, C) ,

dCPT
r (−r,−C) =

(
R
T)† (r, C) (�%))†(�%))R T(r, C) = dr(r, C) . (10)

As the densities are equal, so are the associated entropies.

Equations (10) also hold forQ(k, C) and its density. Thus, both entropies terms

in SC = SA + S: are invariant under all CPT transformations.

Lorentz Transformations

Theorem 8. The entropy is a relativistic scalar.

Proof. The probability elements dP(r, C) = dr(r, C) d3r and dP(k, C) = dk(k, C) d3k

are invariant under Lorentz transformations since event probabilities do not depend

on the frame of reference. Consider a slice of the phase space with frequency

lk =

√
k222 +

(
<22

ℏ

)2
. The volume elements 1

lk
d3k andlk d3r, are invariant under

the Lorentz group [13], that is, 1
lk

d3k = 1
lk′

d3k′ and lk d3r = lk′ d3r′, implying

d+ = d3k d3r = d3k′ d3r′ = d+ ′, where r′, k′, andlk′ result from applying a Lorentz

transformation to r, k, and lk; 1
lk
dr(r, C) and lkdk(k, C) are also invariant under

the group. Thus, the phase space density dr(r, C)dk(k, C) is an invariant to Lorentz

transformations. Therefore the entropy is a relativistic scalar.

Note that in QFT, one scales the operatorQ(k, C) by
√

2lk, that is, one scales the

creation and the annihilation operators U†(k) = √lk a†(k) and U(k) =
√
l a(k).

17



In this way, the density operator Q†(k, C)Q(k, C) scales with lk and becomes a

relativistic scalar. Also, with such a scaling, the infinitesimal probability of finding

a particle with momentum p = ℏk in the original reference frame is invariant under

the Lorentz transformation, though it would be found with momentum p′ = ℏk′.

QCURVES AND ENTROPY-PARTITION

We introduced in [10] the concept of a QCurve to specify a curve (or path) in

a Hilbert space parametrized by time. In QM, a QCurve is represented by a triple(
|k0〉 ,* (C), δC

)
where |k0〉 is the initial state,* (C) = e−i�C is the evolution operator,

and [0, δC] is the time interval of the evolution. Alternatively, we can represent the

initial state by (〈r|k0〉 , 〈k|k0〉) and in QFT as (R (r, 0) |state〉 ,Q(k, 0) |state〉).

Definition 1 (Partition of E from [10]). Let E to be the set of all QCurves. We

define a partition of E based on the entropy evolution into four blocks:

C: Set of the QCurves for which the entropy is a constant.

I: Set of the QCurves for which the entropy is increasing, but it is not a constant.

D: Set of the QCurves for which the entropy is decreasing, but it is not a constant.

O: Set of oscillating QCurves, with the entropy strictly increasing in some subin-

terval of [0, δC] and strictly decreasing in another subinterval of [0, δC].

Consider stationary states |kC〉 = |k�〉 e−ilC with l = �/ℏ, where � is an energy

eigenvalue of the Hamiltonian, and |k�〉 is the time-independent eigenstate of the

Hamiltonian associated with � .

Theorem 9. All stationary states are in C.

Proof. Follows from the time invariance of the probabilities.
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The Coordinate-Entropy of Coherent States Increases With Time

Dirac’s free-particle Hamiltonian in QM [8] is

� = −iℏW0 ®W · ∇ + <2W0 . (11)

It can be diagonalized in the spatial Fourier domain |k〉 basis to obtain

l(k) = ±2
√
:2 + <

2

ℏ2 2
2 , (12)

where l(k) is the frequency component of the Hamiltonian. We focus on the

positive energy solutions and so the group velocity becomes

vg(k) = ∇kl(k) =
ℏ

<

k√
1 + ( ℏ:

<2
)2
. (13)

In (16) wewill use the Taylor expansion of (12) up to the second order, thus requiring

the Hessian H(k), with the entries

H8 9 (k) =
m2l(k)
m:8 m: 9

=
ℏ

<

(
1 +

(
ℏ:

<2

)2
)− 3

2
[
δ8, 9

(
1 +

(
ℏ:

<2

)2
)
−

(
ℏ:8

<2

) (
ℏ: 9

<2

)]
(14)

for the positive energy solution. The three (positive) eigenvalues of H(k) are

_1 =
ℏ

<

(
1 +

(
ℏ:

<2

)2
)− 3

2

= ℏ
<2(

<2 + `2(:)
) 3

2
,

_2,3 =
ℏ

<

(
1 +

(
ℏ:

<2

)2
)− 1

2

= ℏ
1

(<2 + `2(:)) 1
2
,
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where `(:) = ℏ:/2 is the kinetic energy in mass units. The Hessian is positive

definite for positive energy, and so gives a measure of dispersion of the wave.

We now consider initial solutions that are localized in space, kk0 (r − r0) =

k0(r − r0) eik0·r, where r0 is the mean value of r. Assume that the variance,∫
d3r (r− r0)2dr(r), is finite, where dr(r) = |k0(r) |2. In a Cartesian representation,

we can write the initial state in the spatial frequency domain as qr0 (k − k0) =
q0(k − k0) e−i(k−k0)·r0 , where q0(k) is the Fourier transform of k0(r), and so the

variance of dk(k) = |qr0 (k − k0) |2 is also finite, with the mean in the spatial

frequency center k0.

The time evolution of kk0 (r − r0) according a Hamiltonian with a dispersion

relation l(k) and written via the inverse Fourier transform is

kk0 (r − r0, C) =
1

(
√

2π)3

∫
Qr0 (k − k0) e−il(k)Ceik·r d3k . (15)

As qr0 (k − k0) fades away exponentially from k = k0, we expand (12) in a Taylor

series and approximate it as

l(k) ≈ vp(k0) · k0 + vg(k0) · (k − k0) +
1
2
(k − k0)TH(k0) (k − k0) , (16)

where vp(k0), vg(k0), and H(k0) are the phase velocity l(k0)
|k0 | k̂0, the group velocity

(13), and the Hessian (14) of the dispersion relation l(k), respectively. Then after

inserting (16) into (15), we obtain the quantum dispersion transform

qrCk0
(k − k0, C) ≈

1
/:

e−iCvp (k0)·k0QrCk0
(k − k0)N

(
k | k0,−iC−1H−1(k0)

)
,

kk0 (r − rCk0
, C) ≈ 1

/r
e−iCvp (k0)·k0 kk0 (r − rCk0

) ∗N
(
r | rCk0

, iCH(k0)
)
, (17)

where rCk0
= r0 + vg(k0)C, QrCk0

(k − k0) = q0(k − k0) e
−i(k−k0)·rCk0 , with Fourier

transformkk0 (r−rCk0
); ∗ denotes a convolution, /A and /: normalize the amplitudes,
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and N is a normal distribution. Consequently, kk0 (r − rCk0
, C) is the spatial Fourier

transform ofQrCk0
(k − k0, C).

The probability densities associated with the probability amplitudes in (17) are

dr(r − rCk0
, C) = 1

/2
r
|kk0 (r − rCk0

) ∗N
(
r | rCk0

, i CH(k0)
)
|2 ,

dk(k − k0, C) =
1
/2
:

|QrCk0
(k − k0) |2 . (18)

Lemma 1 (Dispersion Transform and Reference Frames). The entropy associated

with (18) is equal to the entropy associated with the simplified probability densities

dS
r (r, C) =

1
/2 |k0(r) ∗N (r | 0, i CH(k0)) |2 ,

dS
k (k, C) =

1
/2
:

|Q0(k) |2 = dS
k (k, C = 0) . (19)

Proof. Consider (18). If the frame of reference is translating the position by rCk0
=

r0+vg(k0)C and the momentum by ℏk0, we get the simplified density functions (19).

Theorem 6 shows that the entropy in position and momentum is invariant under

translations of the position r and the spatial frequency k, and that completes the

proof.

The time invariance of the density dS
k (k, C), and therefore of Sk, reflects the

conservation law of momentum for free particles.

We now focus on the case of coherent states, represented by |U〉, the eigenstates
of the annihilator operator. The coherent state |0〉, associated with eigenvalue U = 0,
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yields in position and momentum space representations

kk0 (r − r0) = 〈r|0〉 =
1

23π
3
2 (det�) 1

2
N (r | r0,�) eik0·r ,

Qr0 (k − k0) = 〈k|0〉 =
1

23π
3
2 (det�−1) 1

2
N

(
k | k0,�

−1
)

ei(k−k0)·r0 , (20)

where � is the spatial covariance matrix.

Theorem 10. A QCurve with an initial coherent state (20) and evolving according

to (11) is in I.

Proof. To describe the evolution of the initial states (20), we apply (17). Then, after

applying Lemma 1,

dSr (r, C) =
1
/2

2
N (r | 0,� + iCH(k0))N (r | 0,� − iCH(k0)) = N

(
r | 0, 1

2
�(C)

)
,

dSk (k, C) = N
(
k | 0,�−1

)
,

where �(C) = � + C2H(k0)�−1H(k0). Then

S = Sr + Sk

= −
∫
N

(
r | 0, 1

2
�(C)

)
lnN

(
r | 0, 1

2
�(C)

)
d3r

−
∫
N

(
k | 0,�−1

)
lnN

(
k | 0, 2�−1

)
d3k

= 3(1 + lnπ) + 1
2

ln det
(
I + C2(�−1H(k0))2

)
.

As det
(
I + C2(�−1H(k0))2

)
> 0, the entropy increases over time.

The theorem suggests that quantum physics has an inherent mechanism to in-

crease entropy for free particles, due to the spatial dispersion property of the Hamil-

tonian. Note that at C = 0 a coherent state (20) reaches the minimum possible
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coordinate-entropy value, while the spin-entropy remains constant.

Time Reflection

Weconsider a time-independentHamiltonian, investigate the discrete symmetries

C and P, and propose that Time Reversal be augmented with Time Translation, say

by δC. We refer to the mapping C ↦→ −C + δC as Time Reflection, because as C varies

from 0 to δC, C′(C) = −C + δC varies as a reflection from δC to 0. We define the Time

Reflection quantum field

RTδ (r,−C + δC) = TR (r, C) = )R ∗(r, C) .

Note that in contrast to the case of Time Reversal,RTδ (r, C′) = TR (r,−C′ + δC),
and the entropies associated withR (r, C) andRTδ (r, C) are generally not equal. Thus,
an instantaneous Time Reflection transformation will cause entropy changes.

We next consider a composition of the three transformation, Charge Conjugation,

Parity Change, and Time Reflection.

Definition 2 (RCPTδ). Let the CPTδ quantum field be

RCPTδ (−r,−C + δC) = [δ�%)R
T(r, C) = [W5 (R †)T(r, C) , (21)

where [ is the product of the phases of each operation, [δ is the phase of time

translation, and W5 = iW0W1W2W3.

Definition 3 (&CPTδ
). Let&CPTδ

be
(
k(r, 0),* (C), [0, δC]

)
↦→

(
kCPTδ (−r, 0),* (C), [0, δC]

)
.

Using (21) we see that,

kCPTδ (−r, 0) = [W5 (R †)T(r,−0 + δC) = [ W5 (R †)T(r, δC) . (22)
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Theorem 11 (Time Reflection). Consider a CPT invariant quantum field theory

(QFT) with energy conservation, such as Standard Model or Wightman axiomatic

QFT [14]. Let 40 = (k(r, 0),* (C), [0, δC]) be a QCurve solution to such QFT. Then,
41 = &CPTδ

(40) is (i) a solution to such QFT, (ii) if 40 is in C, D, O, I then 41 is

respectively in C, I, O, D, making C, I, O, D reflections of C, D, O, I, respectively.

Proof. Let C′ = −C +δC. The QCurve 41 describes the evolution kCPTδ (−r, C′) during
the period [0, δC].

Since 40 is a solution to a QFT that is CPT-invariant and time-translation invari-

ant, 41 is also a solution to the QFT, proving (i).

The time evolution of kCPTδ (−r, 0) from 0 to δC is described by kCPTδ (−r, C′)
and by (22) kCPTδ (−r, C′) = [ W5 (R †)T(r,−C′ + δC) = [ W5R ∗(r, δC − C′). Thus, the
evolution of kCPTδ (−r, C′) as C′ evolves from 0 to δC, by Theorem 7, has the same

entropies as k(r, δC− C′). Since k(r, δC− C′) traverses the same path as k(r, C′) but in
the opposite time direction, we conclude that 41 produces the time evolution states

kCPTδ (−r, C′) in the time interval [0, δC] traversing the same path and with the same

entropies as k(r, C′), but in the opposite time directions.

Applying the above to a QCurve respectively in I, D, C, O, results in a QCurve

respectively in D, I, C, O. Thus, we conclude the proof of (ii).

For a visualization see Figure 1 of [10].

Entropy Oscillations

Theorem 12 (Coefficients for two states). Consider a particle in an eigenstate
��k�1

〉
of a Hamiltonian � that has only two eigenstates

��k�1

〉
and

��k�2

〉
with eigenvalues

�1 = ℏl1 and �2 = ℏl2, respectively. Let this particle interact with an external

field (such as the impact of a Gauge Field), requiring an additional Hamiltonian

term �I to describe the evolution of this system.
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Let lI
8, 9

= 1
ℏ

〈
k�8

���I
��k� 9 〉, ltotal

1 = l1 + lI
11, ltotal

2 = l2 + lI
22,

[ =

√(
ltotal

1 − ltotal
2

)2
+ 4(lI

12)2, and _± =
ltotal

1 +ltotal
2 ±[

2 . The probability of

the particle to be in state
��k�2

〉
at time C is

4(lI
12)

2

[2 sin2 (_+ − _−)C
2

.

Proof. The Hamiltonians in the basis
��k�1

〉
,
��k�2

〉
are

� = ℏ
©­«
l1 0

0 l2

ª®¬ and �I = ℏ
©­«
lI

11 lI
12

lI
12 lI

22

ª®¬ ,
where the real values satisfy lI

21 = lI
12 as �

I is Hermitian. The eigenvalues of the

symmetric matrix �′ = � + �I are ℏ_±, and so we can decompose it as

�′ = ℏ
©­«
ltotal

1 lI
12

lI
12 ltotal

2

ª®¬ =
©­«
cos \ − sin \

sin \ cos \
ª®¬ ©­«

ℏ_+ 0

0 ℏ_−

ª®¬ ©­«
cos \ sin \

− sin \ cos \
ª®¬ , (23)

where

\ =
1
2

arcsin
2lI

12
[

. (24)

The time evolution of
��k�1

〉
is |kC〉 = e−i (�+�

I)
ℏ

C
��k�1

〉
=

∑2
:=1 U: (C)

��k�: 〉, and
projecting on

〈
k� 9

��, we get U 9 (C) = 〈
k� 9

�� e−i (�+�
I)

ℏ
C
��k�1

〉
. From (23),

e−i�
′

ℏ
C =

©­«
cos \ − sin \

sin \ cos \
ª®¬ ©­«

e−i_+C 0

0 e−i_−C
ª®¬ ©­«

cos \ sin \

− sin \ cos \
ª®¬

=
©­«
e−i_+C cos2 \ + e−i_−C sin2 \ e−i_+C−e−i_−C

2 sin 2\
e−i_+C−e−i_−C

2 sin 2\ e−i_+C sin2 \ + e−i_−C cos2 \

ª®¬ .
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Thus,

©­«
U1(C)
U2(C)

ª®¬ = e−i�
′

ℏ
C ©­«

1

0
ª®¬ =

©­«
cos2 \ e−i_+C + sin2 \ e−i_−C

sin 2\
(
e−i_+C−e−i_−C

2

) ª®¬ ,
and so

©­«
|U1(C) |2

|U2(C) |2
ª®¬ =

©­«
1 − 1

2 sin2 2\ (1 − cos(_− − _+)C)
1
2 sin2 2\ (1 − cos(_− − _+)C)

ª®¬ .
As 1 − cos(_− − _+)C = 2 sin2 (_+−_−)C

2 , the probability of being in state
��k�2

〉
at

time C is |U2(C) |2 = sin2 2\ sin2 (_+−_−)C
2 . Using (24), completes the proof.

If l1 � lI
11, l2 � lI

22, and |l1 − l2 | � lI
12, then _+,− ≈ l1,2, and the

coefficient of transition becomes |U2(C) |2 ≈
4(lI

12)
2

(l1−l2)2
sin2 (l2−l1)C

2 , which is Fermi’s

golden rule [7, 9].

In [10] we showed that when the probability of two states oscillates as above, the

entropy oscillates too.

The derivation of U2(C) can be expanded to multiple states. However, for multiple

states, the sum over all the frequencies _: − _8 may cancel the oscillations unless

some frequencies dominate the sum, such as when the transition to the ground state

dominates other transitions. Thus, to obtain the entropy oscillation in the presence of

multiple transitions may require approximations similar to the ones that are usually

used in derivations of Fermi’s golden rule.

The spin-entropy of a state with two or more particles, such as (6), and its unitary

time evolution (forming their QCurves) can be studied with the same technique as

above. How such evolution leads to one of the four block partition needs to be

further studied.

26



An Entropy Law and a Time Arrow

In classical statistical mechanics, the entropy provides a time arrow through the

second law of thermodynamics [4]. We have shown that due to the dispersion

property of the fermions Hamiltonian some states in quantum mechanics, such as

coherent states, already obey such a law. However, current quantum physics is

described as time reversible. In [10] we conjectured the following

Law (The Entropy Law). The entropy of a quantum system is an increasing function

of time.

The lawmay help explainwhy particles are created and/or annihilated in scenarios

such as high-speed collision e+ + e− → 2γ, kaons decay into mesons, and photon

creation and emission when the electron in the hydrogen atom transitions from

an excited state to the ground state. In those scenarios, while such final states are

reachable in a unitary evolution of the initial state, it seems that only those evolutions

in which entropy increase are realized. According to the S-matrix formulation [13],

similar to Fermi’s golden rule in QM, these final states are among the possible

transition states. We note that similarly to Fermi’s golden rule, these are also entropy

oscillation scenarios in which the evolution is blocked from entering a time interval

of decreasing entropy. The creation and/or annihilation of a particles seem to occur

when the entropy of the evolution from the initial to the final state is oscillating, and

but for such events the entropy would decrease, which the conjectured law forbids.

Furthermore, the spin-entropy evolution of system of particles or fields is also

subject to this law which may have implications in all physical scenarios including

quantum information and quantum computing.
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CONCLUSIONS

The concepts of entropy in phase spaces in [10] were developed here. First for the

spin-entropy and studied the case of two entangled spin 1
2 particles. The spin-entropy

obtained differs from Von Newman’s entropy, which is the one currently adopted in

quantum information and quantum computing and together with the proposed law

may impact these fields. We then extended the coordinate-entropy in QM tomultiple

particles. We proved that the coordinate-entropy is invariant under coordinate

transformations, Lorentz transformations, and CPT transformations. We analyzed

the entropy evolution of coherent states, showing that the Dirac’s Hamiltonian

has a mechanism to disperse the information and to increase entropy. We proved

that Time Reflection transforms QCurves in C, I, O, D into QCurves in C, D,

O, I, respectively. We proved that for a two-state Hamiltonian, the addition of a

Hamiltonian term not only causes a state oscillation (as suggested by Fermi’s golden

rule when the appropriate approximations hold) but also causes entropy oscillation.

In light of the technical advancements here, we reviewed the conjectured entropy

law [10]. According to that law, not only a time arrow would emerge, but should

the formation of new particles be triggered by the entropy law, the history of the

universe would have to be revised through such a lens. Perhaps, the collapse of a

wave function occurs not due to measurements, but instead due to the restrictions

posed by the entropy law.
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