
Quantum Information Physics I
TR2021-996

Davi Geiger and Zvi M. Kedem

Courant Institute of Mathematical Sciences

New York University, New York, New York 10012

Abstract
Quantum physics, despite its intrinsic probabilistic nature, is formulated as time-

reversible. We propose an entropy for quantum physics, which may conduce to the emer-

gence of a time arrow. That entropy is a measure of randomness over the degrees of freedom

of a quantum state and is quantified in phase spaces. Its minimum is positive due to the

uncertainty principle.

To study the relation of the entropy to physical phenomena, we classify the behaviors of

quantum states according to their entropy evolution. We revisit transition probabilities and

Fermi’s golden rule to show their close relation to states with oscillating entropy. We study

collisions of two particles in coherent states, and show that as they come closer to each

other, their entanglement causes the total system’s entropy to oscillate.

We conjecture an entropy law whereby the entropy never decreases, and speculate that

entropy oscillations trigger the annihilations and the creations of particles.
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INTRODUCTION AND SUMMARY

Today’s classical and quantum physics laws are time-reversible, and a time arrow

emerges in physics only when a probabilistic behavior of ensembles of particles

is considered. In contrast, no mechanism for a time arrow has been proposed for

quantum physics even though it introduces probability as intrinsic to the description

of even a single-particle system. The concept of entropy has been useful in classical

physics but extending it to quantum mechanics (QM) has been challenging. For

example, von Neumann’s entropy [18] requires the existence of classical statistics

elements (mixed states) in order not to vanish, and consequently it must assign the

entropy of 0 to one-particle states (pure states). Therefore, it is not possible to start

with von Neumann’s entropy if one wants to assign an entropy that measures the

randomness of a one-particle state, and then extend it to multiple particles and a

quantum field.

In classical physics, Boltzmann entropy and Gibbs entropy and their respective

H-theorems [13] are formulated in the phase space, reflecting the degrees of freedom

(DOFs) of a system. In quantum physics the complete description of randomness of

a particle state goes beyond the randomness of the DOFs of a state as illustrated by

the uncertainty principle [16]. Even though the momentum description of a state can

be recovered by the position DOFs description of a state (via a Fourier transform),

the randomness of the state is only captured in quantum phase space formed by

position and momentum (or spatial frequency). Note that there are internal DOFs,

such as the spin orientation of a particle, which must be accounted for via their own

phase space when measuring total randomness.

To be useful, the entropy in quantum physics must (i) account for all the DOFs of

a state, (ii) be a measure of randomness of such a state, and (iii) be invariant under

the applicable transformations. We propose an entropy defined in phase spaces

associated with the DOFs and that satisfies those conditions. It is applicable to both
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QM and Quantum Field Theory (QFT).

To analyze particles’ evolution, we introduce a QCurve structure imposed on the

evolutions of a quantum state. We partition the set of all the QCurves according to

their entropies’ behavior during an evolution.

The study of the QCurves in the blocks of the partition leads us to conjecture that

there is an entropy law, whereby entropy never decreases, applicable to all particle

physics.

QUANTUM ENTROPY IN PHASE SPACES

The quantum entropy must account for both the coordinate and the internal (spin)

DOFs, and we define the entropy in light of this requirement.

Coordinate-Entropy

We associate with a state |k〉C its projection onto the QM eigenstates of the

operators r̂ and p̂ , i.e., |r〉 and |p〉. Either one, |r〉 or |p〉, is sufficient to recover

the other one via a Fourier transform. As illustrated by the uncertainty principle,

the randomness of the coordinates of a particle is described in the coordinate phase

space (k(r, C) = 〈r|kC〉 , q(p, C) = 〈p|kC〉). By Born’s rule, dr(r, C) = |k(r, C) |2 and
d? (p, C) = |q̃(p, C) |2 are the probability densities of the phase-space representation

of the state.

Motivated by Gibbs [13] and Jaynes [15], we will define S, the coordinate-

entropy of a particle. Let k = 1
ℏ
p be the spatial frequency, d: (k, C) = 1

ℏ3 d? (p, C) the
associated probability density, Sr = −

∫
dr(r, C) ln dr(r, C) d3r; and analogously for

Sk. Then we define

S = −
∫
dr(r, C)d: (k, C) ln (dr(r, C)d: (k, C) ) d3r d3k = Sr + Sk . (1)
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The entropy is dimensionless and invariant under changes of the units of measure-

ments. For an extension to #-particle systems, see [11].

Fields in QFT are described by the operators R (r, C), where (r, C) is the

space-time, and Q(k, C) is the spatial Fourier transform of R (r, C). A represen-

tation for a system of particles is based on Fock states with occupation number��=@1 , =@2 , , . . . , =@8 , . . .
〉
, where =@8 is the number of particles in a QM state |@8〉. The

number of particles in a Fock state is then # =
∑ 
8=1 =@8 , and a QFT state is described

in a Fock space as |state〉 = ∑
< U<

��=@1 , =@2 , , . . . , =@8 , . . .
〉
, where < is an index

over configurations of a Fock state, U< ∈ ℂ, and 1 =
∑
< |U< |2. The QFT operators

act on a state producing a phase space state (R (r, C) |state〉 , Q(k, C) |state〉). We

then define the probability density function for the spatial coordinates as

d
QFT
r (r, C) = |R (r, C) |state〉 |2 = 〈state|R †(r, C)R (r, C) |state〉 .

Analogously, dQFTk (k, C) = |Q(k, C) |state〉 |2 = 〈state|Q†(k, C)Q(k, C) |state〉. One

may call the coefficients “the wave function” and interpret them as distributions

of the information about the position and the space frequency of the state of the

field. The QFT coordinate-entropy is then described by (1), where we dropped the

superscript QFT, as it will be clear which framework is used, QM or QFT.

In [11], we proved that the coordinate-entropy is invariant under continuous 3D

coordinate transformations, continuous Lorentz transformations, and discrete CPT

transformations.

Spin-Entropy

The DOFs associated with the spin are captured by a vector or a bispinor repre-

sentation of the states in both frameworks. It is not possible to know simultaneously

the spin of a particle in all three dimensional directions, and this uncertainty, or
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randomness, was exploited in the Stern–Gerlach experiment [12] to demonstrate the

quantum nature of the spin.

We characterize the spin phase space by considering simultaneously a spin state

along G, H, and I directions, i.e., a spin state |b〉 is represented in spin phase

space as ( |b〉G , |b〉H , |b〉I), and an spin-entropy term derived from the probability

distribution associated with each state direction is added to produce the spin-entropy.

The derivation of a spin-entropy for massive particles with spin B = 1
2 , 1 is presented

in [11]. Clearly, an eigenstate |b〉I does not imply that the entropy is 0 due to the

possible uncertainties in |b〉G and |b〉H. Note however, that preparing a system to

align a spin state with a particular direction, say an eigenstate |b〉I, as it is done in
many experiments with spin (e.g., [12]), implies the knowledge of one of the spin

directions. Thus its spin-entropy must have been reduced by the preparation. This

topic as well as the entanglement of two spin B = 1
2 particles is further studied in

[11]. For particles with B = 0 (scalar fields) the spin entropy is 0. A massless

field with B = 1 is described by the gauge field �` (r, C), a vector under Lorentz

transformation. In this case, the spin uncertainty is reflected by the two polarization

vectors and is derived in a later section that considers the photon emission in the

hydrogen atom.

THE MINIMUM ENTROPY VALUE

The third law of thermodynamics establishes 0 as the minimum classical en-

tropy. However, the minimum of the quantum entropy must be positive due to the

uncertainty principle’s lower bound. Let θ(G) be 1 for positive G and 0 elsewhere.

Theorem 1. The minimum entropy of a particle with spin B = 0, 1
2 , 1 is 3(1+ lnπ) +

2θ(B) ln 2.

Proof. The entropy is the sum of the coordinate-entropy and the spin-entropy.
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The coordinate-entropy (1) is Sr + Sk. Due to the entropic uncertainty principle

Sr + Sk ≥ 3 ln eπ as shown in [1, 2, 14], with Sk = Sp − 3 ln ℏ. To complete the

proof, in [11] we showed that the minimum spin-entropy is 2θ(B) ln 2.

Higgs bosons in coherent states have the lowest possible entropy 3(1 + lnπ).

The dimensionless element of volume of integration to define the entropy will

not contain a particle unless d3r d3k ≥ 1, due to the uncertainty principle, and this

may be interpreted as a necessity of discretizing the phase space. We note that the

minimum entropy of the discretization of (1) is also 3(1 + lnπ), as shown in [7].

QCURVES AND ENTROPY-PARTITION

We introduce the concept of a QCurve to specify a curve (or path) in a

Hilbert space parametrized by time. In QM a QCurve is represented by a triple(
|k0〉 ,* (C), δC

)
where |k0〉 is the initial state,* (C) = e−i�C is the evolution operator,

and [0, δC] is the time interval of the evolution. Alternatively, we can represent the

initial state by (〈r|k0〉 , 〈k|k0〉) and in QFT by (R (r, 0) |state〉 ,Q(k, 0) |state〉).

Definition 1 (Partition of E). Let E to be the set of all the QCurves. We define a

partition of E based on the entropy evolution into four blocks:

C: Set of the QCurves for which the entropy is a constant.

I: Set of the QCurves for which the entropy is increasing, but it is not a constant.

D: Set of the QCurves for which the entropy is decreasing, but it is not a constant.

O: Set of the oscillating QCurves, with the entropy strictly increasing in some

subinterval of [0, δC] and strictly decreasing in another subinterval of [0, δC].

It is straightforward to show that all stationary states are in C (see [11]).
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The Coordinate-Entropy of Coherent States Increases With Time

Coherent states, represented by the state |U〉, the eigenstates of the annihilator

operator, yield in position and momentum space representations

kk0 (r − r0) = 〈r|U = 0〉 = 1
23π

3
2 (det�) 1

2
N (r | r0,�) eik0·r ,

Qr0 (k − k0) = 〈k|U = 0〉 = 1
23π

3
2 (det�−1) 1

2
N

(
k | k0,�

−1
)

ei(k−k0)·r0 , (2)

where � is the spatial covariance matrix. The foundational material follows from

most common textbooks, e.g., [6, 10, 17, 19].

In [11] we proved that for a QCurve with an initial coherent state (2) and evolving

according to the energy ℏl(k) = ℏ

√
k222 +

(
<22

ℏ

)2
, the entropy evolves as 3(1 +

lnπ) + 1
2 ln det

(
I + C2(�−1H)2

)
, where

H8 9 = H8 9 (k0) =
ℏ

<

(
1 +

(
ℏ:0
<2

)2
)− 3

2
[
δ8, 9

(
1 +

(
ℏ:0
<2

)2
)
−

(
ℏ:08

<2

) (
ℏ:0 9

<2

)]
and H is positive definite. Thus, the QCurve is in I. This suggests that quantum

physics has an inherent dispersion mechanism to increase entropy for free fermion

particles.

Time Reflection as a Mechanism to Convert QCurves in I to D and Vice-Versa

We consider a time-independent Hamiltonian and investigate the discrete sym-

metries C and P, and Time Reflection, the augmentation of Time Reversal with

Time Translation, i.e., the classical mapping C ↦→ C′ = −C + δC. We define the Time

Reflection quantum field, Tδ, asRTδ (r,−C + δC) = TR (r, C) = )R ∗(r, C) .

Note that in contrast to the case of Time Reversal, RT(r,−C) = TR (r, C), the
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Figure 1. A visualization of the Time Reflection Theorem. (i) Axis C: A QCurve 41 =(
k0(r), e−i�C , δC

)
. (ii) Axis C ′ = δC − C: The antiparticle QCurve is created as 42 =

&CPTδ
(41) =

(
kCPTδ (−r, C ′ = 0), e−i�C′, δC

)
. Axis C ′ shows the evolution as going forward

in time C ′. The evolution of kCPTδ (−r, C ′) = [W5 (R †)T(r, δC − C ′) is mirroring the evolution
of k(r, C), with C = C ′ evolving from 0 to δC. If 41 ∈ D, then 42 ∈ I.

entropies associated with R (r, C) and RTδ (r, C) are generally not equal. Thus, an

instantaneous Time Reflection transformation will cause entropy changes.

Definition 2 (&CPTδ
). Let W5 = iW0W1W2W3 and [ a phase factor. Then &CPTδ

maps(
k(r, 0),* (C), δC

)
↦→

(
kCPTδ (−r, 0),* (C), δC

)
, where

kCPTδ (−r, 0) = [ �%)R T(r,−δC) = [W5 (R †)T(−r, δC) .

We proved in [11] a Time Reflection Theorem stating that when 41 =

(k(r, C0),* (C), δC) is a QCurve solution to a QFT (under some basic conditions

satisfied by the standard model), then 42 = &CPTδ
(41) is also a solution to such a

QFT. Furthermore, under &CPTδ
, C, I, O, D are the reflections of C, D, O, I. The

case when 41 ∈ D, and therefore 42 ∈ I, is depicted in Figure 1, showing a relation

between a particle and an antiparticle.
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Entropy Oscillations

Consider a Hamiltonian�′ = �+�I, where |�I | � |� |, and the initial eigenstate��k�8 〉 of � associated with the eigenvalue �8 = ℏl8. The time evolution of
��k�8 〉 is

|kC〉 = e−i (�+�
I)

ℏ
C
��k�8 〉 = =∑

:=1
U: (C)

��k�: 〉 ,
where = is the number of the eigenvectors of �. Fermi’s golden rule [8, 9] approxi-

mates the coefficients of transition for : ≠ 8 and short time intervals by

U: (C) ≈
�I
8,:

ℏ(l8 − l: )

(
−2 sin2

(
(l8 − l: )C

2

)
+ i sin ((l8 − l: )C)

)
.

Theorem 2 (Entropy Oscillations). Consider the QCurve
( ��k�8 〉 ,* (C) =

e−i (�+�
I)

ℏ
C , )

)
with ℏl1 the ground state value of � and ) = 2π

|l8−l1 | . Assume that

|U1(C) |2, |U8 (C) |2 � |U: (C) |2 for : ≠ 1, 8 and C ∈ [0, )]. Then the QCurve is in O.

Proof. With the theorem’s assumptions, we can approximate the position and the

momentum probability densities associated with |kC〉 by

dr(r, C) ≈
���√1 − |U1(C) |2

〈
r
��k�8 〉 + U1(C)

〈
r
��k�1

〉���2 ,
dk(k, C) ≈

���√1 − |U1(C) |2
〈
k
��k�8 〉 + U1(C)

〈
k
��k�1

〉���2 .
The time coefficients are the same for dr(r, C), and dk(k, C) and they all return to the
same values simultaneously after a period of ) , and so the entropy will return to its

previous value too. As the entropy is not a constant, it must be oscillating.

10



PHYSICAL SCENARIOS WITH PARTICLE CREATION

A Two-Particle Collision

Consider a two-fermions or a two-bosons system

|kC〉 =
1
√
�C

(��k1
C

〉 ��k2
C

〉
∓

��k2
C

〉 ��k1
C

〉)
,

where �C is the normalization constant that may evolve over time and the signs “∓”
represent fermions (“−”) and bosons (“+”). When

��k1
C

〉
and

��k2
C

〉
are orthogonal to

each other, �C = 2. Projecting on 〈r1 | 〈r2 | and on 〈k1 | 〈k2 |,

k(r1, r2, C) =
1
√
�C
(k1(r1, C)k2(r2, C) ∓ k1(r2, C)k2(r1, C)) ,

k(k1, k2, C) =
1
√
�C
(q1(k1, C)q2(k2, C) ∓ q1(k2, C)q2(k1, C)) .

From [11], the entropy of the two-particle system, discarding the spin-entropy

which is constant throughout the collision, is then

(

(��k1
C

〉
,
��k2
C

〉)
= −

∫
d3r1

∫
d3r2 dr(r1, r2, C) ln dr(r1, r2, C)

−
∫

d3k1

∫
d3k2 dk(k1, k2, C) ln dk(k1, k2, C) .

Consider a collision of two particles, each one in an initial coherent state with

position variance f2 centered at 21 and 22, and moving towards each other along the

G-axis with center momenta ?0 = ℏ:0 and −?0. They can be represented in position
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and momentum space as

R1(G, C) =
e−i:0E? (:0) C

/1
N

(
G | 21 + E6 (:0) C, f2 + i CH(:0)

)
ei:0G ,

R2(G, C) =
e−i:0E? (:0) C

/1
N

(
G | 22 − E6 (:0) C, f2 + i CH(−:0)

)
e−i:0G ,

Q1(:, C) =
e−iC E? (:0):0

/:0

N
(
: | :0, (f2 + i CH(:0))−1

)
ei(:−:0)(21+E6 (:0) C) ,

Q2(:, C) =
e−iC E? (:0):0

/:0

N
(
: | −:0, (f2 + i CH(−:0))−1

)
ei(:+:0)(22−E6 (:0) C) .(3)

Figure 2 shows that when the two particles are far apart, the entropy of the system

is close to the sum of the two individual entropies, with each one increasing over

time. The spatial entanglement decreases the uncertainty, and therefore the entropy

too. The competition between the increase of the entropy of the individual particles

and the decrease of the entropy due to entanglement results in an oscillation and the

decrease in the total entropy when the two particles are close.

The Hydrogen Atom and Photon Emission

The QED Hamiltonian for the hydrogen atom is

� (?, A, @) =
3∑
8=1

(
?8 − e

2
�8 (@)

)2

2<
− e2

A
+

2∑
_=1

ℏl@ 0
†
_
(@) 0_ (@) ,

where the photon’s helicity _ is 1 or 2, l@ = |@ |2, the creation and the annihilation

operators of photons satisfy [0_ (?), 0†_′ (@)] = δ_,_′δ(? − @), and � = (�1, �2, �3).
The electromagnetic vector potential is

�̃8 (@) =
√

2πℏ22
2∑
_=1

1
√
l@

(
n 8_ (@) 0_ (@) + n

∗i
_ (@) 0

†
_
(@)

)
,
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(a) ℏ
<
= 1 : Entropy vs. time; dG (G1, G2, C) overlaid over time

(b) ℏ
<
= 0.5 : Entropy vs. time; dG (G1, G2, C) overlaid over time

Figure 2. Collision of two fermions with individual amplitudes (3), parameters :0 = 1,
22 = −21 = 300, speed of light 2 = 1, a grid of 1 000 points for G1, G2, :1, :2. The left
column shows entropy vs. time. The right column shows snapshots of the density at
initial time, final time, and intervals of 100 time units, overlaid on single plots. The I-axis
represents the density and the G-H axes represent G1-G2 values. As the particles approach
each other, their individual densities disperse, the maximum values are reduced, and the
entropy increases. Only when the particles are close to each other, the interference reduces
the total entropy.

and in theCoulombGauge (∇·� = 0), for @ = |@ | (sin \@ cos q@, sin \@ sin q@, cos \@),
the polarizations satisfy n1(@) = (cos \@ cos q@, cos \@ sin q@, sin \@) and

n2(@) = (− sin q@, cos q@, 0).

The state of the atom can be described by |=, ;, <〉e− |@, _〉γ, where =, ;, <

are the quantum numbers of the electron e−, and @ and _ are the momentum

and the helicity of the photon γ. We next consider the Lyman-alpha transition,

|= = 2, ; = 1, < = 0〉 |0〉 → |= = 1, ; − 0, < = 0〉 |@, _〉 with the emission of a pho-
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ton with wavelength _ ≈ 121.567 × 10−9 m.

We first evaluate the electron’s entropy at both states |= = 2, ; = 1, < = 0〉 and
|= = 1, ; − 0, < = 0〉. For simplicity, we consider the Schrödinger approximation to

describe the electron state with the energy change in this transition of ∆�==2→==1 ≈
−

(
1
22 − 1

)
× 13.6 eV = 10.2 eV. We now compute the difference between the final

and initial state entropy following three steps.

(i) The position probability amplitudes described in [3] and the associated en-

tropies are

k2,1,0(d, \, q) =
1
√

32π

(
1
00

) 3
2

de−
d

2 cos(\) → Sr(k2,1,0) ≈ 6.120 + lnπ + 3 ln 00 ,

k1,0,0(d, \, q) =
1
√
π

(
1
00

) 3
2

e−d → Sr(k1,0,0) ≈ 3.000 + lnπ + 3 ln 00 ,

where 00 ≈ 5.292 × 10−11 m is the Bohr radius, and d = A/00.

(ii) The momentum probability amplitudes described in [3] and the associated

entropies are

Q2,1,0(?, \?, q?) =
√

1282

2π?3
0

?

?0

(
1 +

(
2
?

?0

)2
)−3

cos
(
\?

)
,

→ S? (Q2,1,0) ≈ 0.042 + 3 ln ?0 ,

Q1,0,0(?, \?, q?) =
√

32
π ?3

0

(
1 +

(
?

?0

)2
)−2

,

→ S? (Q1,0,0) ≈ 2.422 + 3 ln ?0 ,

where ?0 = ℏ/00.

(iii) Therefore, ∆S2,1,0→1,0,0 = Sr(k1,0,0) + S? (Q1,0,0) − Sr(k2,1,0) − S? (Q2,1,0) ≈

14



−0.740 .

Thus, the entropy of the electron is reduced by approximately 0.740 during the

transition |= = 2, ; = 1, < = 0〉 → |= = 1, ; − 0, < = 0〉.

We next evaluate the entropy associated with the randomness in the emission of

the photon. Due to energy conservation, the energy must satisfy |@ |2 ≈ 10.2 eV,

where 2 is the speed of light. The associated energy uncertainty is very small.

The main randomness for the photon is in specifying the direction of the emission.

The angular momentum of the electron along I (< = 0) does not change between

|= = 2, ; = 1, < = 0〉 and |= = 1, ; = 0, < = 0〉. The spin 1 of the photon is along its

motion, and conserves the total angular momentum of the system. Thus, to conserve

angular momentum along I, the photon must be moving perpendicularly to the I

axis, that is, \@ = π
2 , and so the polarization vectors must be n1(@) = (0, 0, 1) and

n2(@) = (− sin q@, cos q@, 0). The angle q@ is completely unknown, with the entropy

ln 2π. Then we observe that the entropy increases, as

∆S|==2,;=1,<=0〉|0〉→ |==1,;−0,<=0〉|@,_〉 ≈ ln 2π − 0.740 = 1.098 .

Consider now an apparent time-reversing scenario in which an apparatus emitted

photons with energy �γ = ℏ|l==2,;=1,<=0 − l==1,;=0,<=0 | to strike a hydrogen atom

with its electron in the ground state. The photon had to follow a precise direction

towards the atom, and a very small uncertainty in the direction implies low photon

entropy. Once the atom absorbs the photon, the energy of the electron in the ground

state suffices for a jump into an excited state. The entropy increases again, as the

entropy of the excited state is greater than the entropy of the ground state (accounting

for the low photon entropy).
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AN ENTROPY LAW AND A TIME ARROW

In classical statistical mechanics, the entropy provides a time arrow through the

second law of thermodynamics [5]. We have shown that due to the dispersion

property of the fermionic Hamiltonian, some states, such as coherent states, evolve

with an increasing entropy. However, current quantum physics is time reversible

and we have just studied in the previous section several scenarios where the entropy

oscillates. This study lead us to think that entropy oscillations do not occur in nature,

instead and inspired by the second law of thermodynamics, we conjecture

Law (The Entropy Law). The entropy of a quantum system is an increasing function

of time.

Let us review some of the physical scenarios where oscillations may not take

place:

1. A high-speed collision e+ + e− → 2γ may produce new particles instead of

allowing the entropy to decrease (see Figure 2).

2. According to QED, and due to photon fluctuations of the vacuum, the state

of an electron in an excited state of the hydrogen atom is in a superposition

with the ground state, and by Theorem 2 the entropy would decrease within a

time interval 2π/|l==2,;=1,<=0 − l==1,;=0,<=0 |. Instead, the electron jumps to

the ground state and a photon is created/emitted, increasing the entropy.

3. We speculate that the QCurve of a neutral K meson (kaon K0) [4], 40 =

(k0(r),* (C), 2π
∆F ), is in O. Then, a K0 particle in state k0(r) evolves with

increasing entropy until, say at time ) , it enters the remaining segment of

QCurve 4) = (k) (r),* (C), [), 2π
∆F ]) in D. To block such a decrease (forbid-

den by the entropy law), a transformation takes place, with quarks exchanging

bosons to transform K0 ↦→ K̄0 to create an antiparticle’s QCurve 41 in I.

16



We conjecture that the entropy law is the trigger for those particles’ creation. Finally,

in [11] we studied the spin-entropy in more depth, and this law would impact which

spin state evolutions would be physically allowed.

CONCLUSIONS

Capturing all the information of a quantum state requires the specifying of the

parameters associated to the DOFs of a quantum state as well as as the intrinsic

randomness of the quantum state. We proposed an entropy defined in the phase

spaces of position and spatial frequency as well as in the spin phase space addressing

the space and the spin DOFs. This definition of the entropy possesses desirable

properties, including invariance in special relativity, and invariance under CPT

transformations.

We characterized the behaviors of all quantum states according to their entropy

evolution. To this end, we introduced a QCurve structure, a triple representing

the initial state, the unitary evolution operator, and a time interval. We partitioned

the set of all the QCurves into four blocks, characterized by the entropy during an

evolution. A QCurve is in C if the entropy is a constant, in I if it is increasing, inD

if it is decreasing, and in O if it is oscillating.

We showed that due to the dispersion property of a fermionic Hamiltonian,

QCurves of initially coherent states are in I. We extended the CPT transformation

to allow for Time Reflection, consequently mapping C, I, O, D, to C, D, O, I,

respectively. Then we revisited Fermi’s golden rule, discussing its relation to

QCurves in O. We showed that the entropy increases when an electron in excited

state of the hydrogen atom falls to the ground state emitting a photon. We studied

the collision of two particles, each in a coherent state. The entropy of each particle

alone is increasing, but as they approach each other, an entropy oscillation can occur

in the two-particle system due to their entanglement.
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We observe that many interesting particle- or atomic-physics phenomena seem

to be described by scenarios where QCurves are in O, such as (i) decay of atoms

(Fermi’s golden rule), (ii) electrons in excited states of atoms that transition to the

ground state causing emission of radiation, (iii) particle oscillations (e.g., neutrinos

and neutral kaons), and (iv) collision of particles that lead to annihilation of particles

and creation of new particles.

We conjectured an entropy law that would trigger particle states with QCurves

in O to transform into new states with the creation and annihilation of particles.
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