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Abstract. We present a family of approximate BDDC preconditioners based on inexact solvers for the coarse
problem. The basic idea is to replace the direct solver for a standard BDDC coarse problem by a preconditioner
which requires much less computation and memory. The focus in this study is on scalar elliptic and linear elasticity
problems in three dimensions. The preconditioner for the coarse problem employs a standard two-level additive
Schwarz approach in which the coarse problem dimension is either one or six times the number of subdomain vertices.
We show, under certain assumptions on the coefficients, that favorable BDDC condition number estimates also hold
for the approximate preconditioners. Numerical examples are presented to confirm the theory and to demonstrate
the computational advantages of the approach.
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1. Introduction. In this study, we present approximate Balancing Domain Decomposition
by Constraints (BDDC) preconditioners for three-dimensional scalar elliptic and linear elasticity
problems in which the direct solution of the coarse problem is replaced by a preconditioner based on
a smaller vertex-based coarse space. By doing so, the computational and memory requirements can
be reduced significantly. Although the use of standard coarse spaces based on subdomain vertices
(corners) alone has similar memory benefits, the associated rate of convergence is not attractive as
the number of elements per subdomain grows, cf. e.g. [17]. This point is illustrated by a simple
motivating example in the next section.

There exists a rich theory for Finite Element Tearing and Interconnecting Dual Primal (FETI-
DP) and BDDC algorithms for scalar elliptic and linear elasticity problems in three dimensions;
see, e.g., [17], [19] and [28, Section 6.4.2]. In many cases, theoretical results for either FETI-DP
or BDDC apply directly to the other because the eigenvalues of the preconditioned operators differ
by at most two, see [24, 21, 2]. This result does not hold in the present study because the basic
FETI-DP algorithm [11] is not easily adapted to the use of a preconditioner instead of a direct solver
for the symmetric and positive definite coarse problem. In contrast, such a change is accommodated
easily by BDDC in both theory and practice, see [7].

Our approach to precondition the BDDC coarse problem is motivated in part by more recent
developments of small coarse spaces for domain decomposition algorithms [8]; see also [13]. Although
that study was focused on overlapping Schwarz methods, similar ideas can be used to construct coarse
spaces for preconditioning the BDDC coarse problem. Compared with larger edge- or face-based
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coarse spaces, we show that similar condition number bounds can be achieved at lower cost under
certain assumptions on material property jumps between adjacent subdomains.

We note that three- and multi-level BDDC algorithms [29, 30, 25] can also be viewed as using
an inexact solver for the coarse problem, but such approaches are fundamentally different from ours.
Namely, those algorithms construct and apply (recursively for multilevel approaches) a BDDC pre-
conditioner for the original two-level coarse problem. In contrast, we do not introduce additional
coarse levels and instead make use of standard two-level additive Schwarz concepts for precondition-
ing of the coarse problem. One important result of using smaller coarse spaces is that larger numbers
of subdomains are feasible before needing to use a three- or multi-level approach. Consequently, the
number of coarse levels can potentially be reduced resulting in fewer synchronization points. We
also note that approximate solvers of the coarse problem were introduced in [15] in the context of a
saddle-point formulation for FETI-DP. Successful approximate solvers for coarse FETI-DP compo-
nents, based on an algebraic multigrid algorithm, have also been developed in [16]. For recent work
on multi-level FETI–DP algorithms, see [27].

Reducing the size of the coarse problem while retaining favorable convergence rates was also
the subject of Algorithm D in [17]. The basic idea there was to use a coarse space based on a
subset of subdomain edges and corners (vertices) rather than all of them. The authors note that
their recipe for selecting such edges and corners is relatively complicated, but this approach can
effectively reduce the coarse problem dimension. This was followed by a study of compressible
elasticity [19]; its final subsection outlines a strategy of constructing a minimal coarse space for the
FETI-DP algorithm. We note that these results depend on the assumption that the coefficients in
the subdomains are constant and that their values can be used when designing this component of the
preconditioner. In contrast to that work, the present algorithms use coarse space variables related
to all subdomain edges or all subdomain faces, but replace the direct solver for the coarse problem
with a preconditioner.

A motivating example is presented in the next section for the proposed approach, which is
summarized in §3. Some auxiliary results are developed in §3.1. Of particular importance is the
use of [30, Lemma 4.2] and an analog thereof, developed in this paper, for algorithms based on
subdomain faces. This is then followed in §4 by the analysis, which provides our main theoretical
results for the scalar case, and by an analysis for linear elasticity in §5. The final two sections of
the paper deal with implementation details and numerical results which confirm the theory and
demonstrate the computational advantages of the approach.

2. Motivation. To help motivate the proposed approach, consider a unit cube domain parti-
tioned into 27 smaller cubic subdomains. Each of these subdomains is discretized using H/h lowest
order hexahedral elements in each coordinate direction for the Poisson equation with constant mate-
rial properties. Homogeneous essential boundary conditions are applied to one face of the unit cube
and a random load vector b is used for the linear system Ax = b. We note that in our algorithm, we
solve the interface problem SuΓ = g by iteration after eliminating the residuals in the subdomain
interiors in an initial static condensation step. Here, S is the Schur complement matrix associated
with the remaining interface variables.

We first consider coarse spaces based on subdomain vertices alone or edges alone. Table 2.1
shows the condition number estimates for the preconditioned operator along with the number of
iterations needed to achieve a relative residual tolerance of 10−8 using the conjugate gradient al-
gorithm preconditioned using BDDC. The fast growth of condition numbers in the third column
is consistent with a bound proportional to (H/h)(1 + log(H/h))2 as given in [17, Remark 2]. The
shortcomings of using coarse spaces based on vertices alone were also recognized early in the his-
tory of FETI-DP, cf. [10]. We note that the results for the proposed approach show significant
improvements in comparison to the standard vertex (corner) based coarse space.

Results are also shown in Table 2.2 for an increasing numbers of subdomains N and fixed
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Table 2.1
Poisson equation results. Number of iterations (iter) and condition number estimates (cond) are shown for a

unit cube domain constrained on one side and decomposed into 27 smaller cubic subdomains.

standard approach proposed approach
vertices edges

H/h iter cond iter cond iter cond
4 28 27.1 12 2.36 14 2.50
8 38 75.2 14 2.93 16 3.13
12 45 132 16 3.37 18 3.59
16 47 195 17 3.73 19 3.97

Table 2.2
Poisson equation results. Coarse space dimension nc and convergence results are shown for increasing numbers

of subdomains N and fixed H/h = 8.

standard approach proposed approach
vertices edges

N nc iter cond nc iter cond nc iter cond
64 27 55 74.5 108 15 2.98 27 17 3.25
216 125 70 73.7 450 15 2.94 125 17 3.26
512 343 74 73.6 1176 15 2.95 343 17 3.30
1000 729 75 73.6 2430 15 2.95 729 17 3.32

H/h = 8. We note that the dimensions nc of the coarse space for edge-based coarse spaces are
significantly larger than those for the proposed approach. Again, the advantages of the new approach
are evident in the final three columns of the table where the numbers of iterations and condition
numbers are much smaller than those for the standard vertex-based coarse space.

One of the primary goals of this study is to present an approach that has the best of both worlds.
That is, an approach that has the attractive convergence rates of edge or face-based coarse spaces
and the more streamlined computational requirements of a smaller vertex-based coarse space.

3. Overview of BDDC and Approach. We will first focus our analysis on the scalar elliptic
problem: find u ∈ H1

0 (Ω) such that

a(u, v) = f(v) ∀v ∈ H1
0 (Ω, ∂Ω),

where

H1
0 (Ω) := {v ∈ H1(Ω) : v = 0 on ∂Ω},

and

a(u, v) :=

∫
Ω

ρ(x)∇u · ∇vdx, f(v) :=

∫
Ω

fvdx.

The diffusion coefficient ρ(x) > 0 is assumed to take on a constant value in each subdomain when
we develop our theory. We will consider finite element approximations of u based on lowest order
tetrahedral or hexahedral elements.

We could equally well develop our algorithm for the case when part of ∂Ω is subject to a
Neumann boundary condition and we will do so when considering the equations of elasticity.

The domain Ω for the problem is assumed to be partitioned into nonoverlapping subdomains
Ω1, . . . ,ΩN . The set of interface nodes that are common to two or more subdomain boundaries is
denoted by Γ, and the set of those on ∂Ωi is denoted by Γi := Γ ∩ ∂Ωi. The constant value of
ρ(x) in Ωi is denoted by ρi. The finite element nodes on Γi are partitioned into equivalence classes
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associated with subdomain vertices, edges, or faces and are defined in terms of the indices of the
subdomains with boundaries to which they belong; see, e.g., [6] or [8] for more details.

A two-level BDDC preconditioner, see, e.g. [6], can be expressed concisely in additive form as

M−1 = M−1
local + ΦDK

−1
c ΦTD, (3.1)

where Kc is the coarse matrix and ΦD is a weighted interpolation matrix. We note that application
of the local component M−1

local requires solutions of problems local to each subdomain, which can be
done in parallel.

The coarse matrix is obtained from the assembly of coarse subdomain matrices and is given by

Kc =

N∑
i=1

RTicKicRic,

where Kic is the contribution of Ωi to the coarse matrix and uic = Ricuc the restriction of a coarse
vector uc to Γi. Let M−1

c denote a preconditioner for Kc which satisfies the bounds

β1u
T
c K
−1
c uc ≤ uTcM−1

c uc ≤ β2u
T
c K
−1
c uc ∀uc, (3.2)

where 0 < β1 ≤ β2. Defining the approximate BDDC preconditioner M−1
a as

M−1
a := M−1

local + ΦDM
−1
c ΦTD,

we find from (3.1) and (3.2) that

pTM−1
a p = pT (M−1 + ΦD(M−1

c −K−1
c )ΦTD)p

≤ pT (M−1 + (β2 − 1)ΦDK
−1
c ΦTD)p

≤ max(1, β2)pTM−1p. (3.3)

Similarly,

pTM−1
a p ≥ min(1, β1)pTM−1p. (3.4)

Let κ denote the condition number of the originating BDDC preconditioned operator. It then follows
from (3.3) and (3.4) that

κa ≤
max(1, β2)

min(1, β1)
κ, (3.5)

where κa is the condition number of the approximate BDDC preconditioned operator. Here we only
consider preconditioners for the coarse matrix Kc, but approximations for other components of the
BDDC preconditioner have also been studied in [7, 22].

The construction of the preconditioner M−1
c for Kc was inspired in part by our recent work

on small coarse spaces [8]. What we here, thus far, have called vertices are generalized there and
called coarse nodes. We recall that the coarse degrees of freedom for BDDC or FETI-DP are often
associated with average values over the different equivalence classes. The basic idea of the coarse
component of our preconditioner M−1

c is to approximate these averages using adjacent vertex values.
Using the notation of [8], let CN denote a set of coarse nodes, typically just a set of a few vertices,

for a nodal equivalence class N , e.g., of the nodes of a subdomain edge or face. We recall that an
equivalence class is the ancestor of any other class which contains a subset of its set of subdomains
and that a coarse node does not have any ancestors.



SMALL COARSE SPACES 5

Let uΨ denote a vector of vertex values. We introduce the coarse interpolant uc0 = ΨuΨ between
vertex values and nodal equivalence class averages such that each of these averages equals the average
of its ancestor vertex values. Thus, a row of Ψ associated with an edge of the center subdomain
in the motivating example has two entries of 1/2 (one entry for each vertex at its ends), while all
other entries are 0. We note that the number of rows in Ψ equals that of the active coarse degrees
of freedom for the original BDDC preconditioner. Thus, if only edges averages are used this number
equals the total number of subdomain edges.

The reduced coarse matrix is defined as Kcr := ΨTKcΨ. The number of rows and columns in
Kcr equals the number of vertices for scalar problems. We consider the following preconditioner for
Kc:

M−1
c = ΨK−1

cr ΨT + diag(Kc)
−1, (3.6)

where diag denotes the diagonal of the matrix; for elasticity problems the second term on the right
hand side of (3.6) is block diagonal. We note that M−1

c is simply a point-wise Jacobi preconditioner
with an additive coarse correction. Thus, since the number of subdomains incident to an edge (or
face) is bounded, a uniform upper bound on β2 for M−1

c can be obtained using a standard coloring
argument. Therefore, we will focus in the next sections on obtaining lower bound estimates for
β1. We note that higher quality local preconditioning could be designed, e.g., by replacing Jacobi
smoothing by symmetric Gauss-Seidel; our theory extends directly to that case, cf. [28, Section 2.3].
We will explore such options in §7.

3.1. Auxiliary Results. We first consider the case when the originating BDDC coarse space
is based on edge averages. Let Hi denote the diameter of Ωi and hi the diameter of its smallest
element. Throughout C refers to a generic constant which is independent of Hi, hi, and ρi. The
following lemmas concerning averages over subdomain edges play important roles in the analysis.

Lemma 1. Let ūi and ūE denote the averages of a finite element function ui over Ωi and an
edge E of Ωi, respectively. It holds that

Hi|ūE − ūi|2 ≤ C(1 + log(Hi/hi))|ui|2H1(Ωi)
.

Proof. The lemma follows by rewriting ūE − ūi = (ūE − ui) + (ui − ūi), using the Poincaré and
triangle inequalities, and [8, Lemma 3]. We note that this edge lemma holds for edges of Lipschitz
regions.

Let Ki denote the stiffness matrix for Ωi and Φi the matrix representation of the original coarse
basis functions for Ωi. We note that each column of Φi is associated with one of the edges of Ωi,
and that the coarse subdomain matrix is defined by Kic := ΦTi KiΦi. Reusing the symbol ui to also
denote a vector of nodal values for Ωi, we recall that ui = Φiuic minimizes the energy uTi Kiui subject
to the constraints that the edge averages equal those specified in uic. Based on this connection and
the equality ρi|ui|2H1(Ωi)

= uTi Kiui = uTicKicuic, we obtain the following estimate from Lemma 1.
Corollary 1. It holds that

ρiHi|ūE − ūi|2 ≤ C(1 + log(Hi/hi))u
T
icKicuic.

From Lemma 4.2 of [30], we obtain
Lemma 2. Let SiE denote the set of subdomain edges of Ωi. If |SiE | < C, it holds that

(1 + log(Hi/hi))u
T
icKicuic ≤ CρiHi max

E∈SiE
|ūE |2.
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Remark 1. The proof of Lemma 4.2 of [30] assumes that Ωi is a shape-regular polyhedron. If
a similar lemma could be proven for general Lipschitz Ωi, then our estimate for β1 would also hold
for Lipschitz subdomains. As for the assumptions needed for proving the basic estimates for BDDC
and FETI–DP, we note that inequalities for subdomain edges and faces are central, see [28, Section
4.6] in which technical tools for polyhedral subdomains are developed. For extensions to Lipschitz
subdomains, see [3, Lemma 4.7] and [8, Lemma 3]. We also note that theory has been developed for
less regular subdomains for problems in the plane; see, e.g., [18].

We next consider the case where the originating BDDC coarse space is based on face averages
and start by a counterpart of Lemma 1 for subdomain faces.

Lemma 3. Let ūF denote the average of a finite element function ui over a face F of Ωi. It
holds that

Hi|ūF − ūi|2 ≤ C|ui|2H1(Ωi)
.

Proof. It follows from a trace theorem [1, Theorem 1.6.6] and Poincaré’s inequality that

‖ui − ūi‖2L2(F) ≤ CHi|ui|2H1(Ωi)
.

This estimate together with the Cauchy-Schwarz inequality gives

|F||ūF − ūi| = |
∫
F

(ui − ūi) dx| ≤
∫
F
|ui − ūi| dx ≤ |F|1/2‖ui − ūi‖L2(F)

≤ C|F|1/2Hi|ui|H1(Ωi).

The lemma then follows provided that H2
i /|F| is bounded.

The following corollary is obtained from Lemma 3 and ρi|ui|2H1(Ωi)
= uTicKicuic for ui = Φiuic.

Corollary 2. It holds that

ρiHi|ūF − ūi|2 ≤ CuTicKicuic.

The counterpart of Lemma 2 for subdomain faces is given by the following lemma.
Lemma 4. Let SiF denote the set of subdomain faces for Ωi. It holds for a shape-regular

polyhedron that

uTicKicuic ≤ CρiHi max
F∈SiF

|ūF − ūi|2,

where the vector uic contains the averages of ui over these faces.
Proof. The basic idea is to construct approximate coarse basis functions and establish estimates

for them. These estimates will then also hold for the actual coarse basis functions because of their
energy minimizing properties.

Consider a cubic subdomain of length H in each of the three coordinate directions. A coarse
mesh of this subdomain has 8 smaller hexahedral elements which are also cubic in shape and 27 nodes.
Let K̂i denote the assembled stiffness matrix for these 8 elements and Φ̂ the matrix representation
of the associated face basis functions. The basis function which minimizes energy subject to a unit
average on the right face and zero averages for the other five faces is shown in Figure 3.1. The
matrix Φ̂ with faces ordered left, right, front, back, bottom, top is given by

Φ̂T = (1/6)

 4 −3 −2 6 −1 0 4 −3 −2 6 −1 0 8 1 2 6 −1 0 4 −3 −2 6 −1 0 4 −3 −2
−2 −3 4 0 −1 6 −2 −3 4 0 −1 6 2 1 8 0 −1 6 −2 −3 4 0 −1 6 −2 −3 4

4 6 4 −3 −1 −3 −2 0 −2 6 8 6 −1 1 −1 0 2 0 4 6 4 −3 −1 −3 −2 0 −2
−2 0 −2 −3 −1 −3 4 6 4 0 2 0 −1 1 −1 6 8 6 −2 0 −2 −3 −1 −3 4 6 4

4 6 4 6 8 6 4 6 4 −3 −1 −3 −1 1 −1 −3 −1 −3 −2 0 −2 0 2 0 −2 0 −2
−2 0 −2 0 2 0 −2 0 −2 −3 −1 −3 −1 1 −1 −3 −1 −3 4 6 4 6 8 6 4 6 4

 ,
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Fig. 3.1. Approximate coarse basis function for right face of cube. Coarse basis function values shown adjacent
to nodes have been multiplied by 6.

where nodes are numbered consecutively from left to right, then front to back, and then bottom to
top. One can verify that the stiffness matrix K̂ic := Φ̂T K̂iΦ̂ associated with this coarse discretization
is given by

K̂ic = ρiH/3


11 5 −4 −4 −4 −4
5 11 −4 −4 −4 −4
−4 −4 11 5 −4 −4
−4 −4 5 11 −4 −4
−4 −4 −4 −4 11 5
−4 −4 −4 −4 5 11

 .

One can also verify that xT K̂icx ≤ xTBicx for all 6-vectors x, where

Bic := 4ρiH/3


5 −1 −1 −1 −1 −1
−1 5 −1 −1 −1 −1
−1 −1 5 −1 −1 −1
−1 −1 −1 5 −1 −1
−1 −1 −1 −1 5 −1
−1 −1 −1 −1 −1 5

 .

From xTBicx = 4ρiH/3
∑6
i,j=1 |xi − xj |2, writing ūFk

− ūFm = (ūFk
− ūi) + (ūi − ūFm), and using

the triangle inequality, we then find

uTicK̂icuic ≤ CρiH
∑

k,m∈ŜiF

|ūFk
− ūFm

|2 ≤ CρiH max
F∈SiF

|ūF − ūi|2,
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where SiF is the index set of subdomain faces for Ωi. The lemma then follows since uTicKicuic ≤
uicK̂icuic. Although the proof was done for a cubic subdomain, similar arguments can made for
other shape-regular polyhedra.

The theory for Schwarz methods (see, e.g., chapter 2 of [28]), makes use of space decompositions
of the form

V = RT0 V0 +

M∑
k=1

RTk Vk,

where the first term involves the coarse space and the second term local spaces. In the context of
our preconditioner for Kc, this decomposition can be written as

uc = ΨuΨ +

M∑
m=1

wmem, (3.7)

where Ψ is the interpolation matrix, uΨ is a vector of coarse node values, M is the number of edges
or faces of the BDDC coarse space, and em is the unit vector in a coordinate direction. The scalar
wm is associated with edge or face number m. In order to obtain a lower bound for β1 in (3.2), we
need to find a uΨ and wm in (3.7) such that

uTc0Kcuc0 +

M∑
m=1

w2
me

T
mKcem ≤ C2

0u
T
c Kcuc (3.8)

where uc0 := ΨuΨ and C2
0 is a constant. It then holds that β1 ≥ 1/C2

0 , see [28, Lemma 2.5]. We note
that that eTmKcem is simply the diagonal entry in row m of Kc. Our strategy will be to first obtain
estimates for (uc − uc0)TKc(uc − uc0) and then estimates for the sum of the local contributions in
(3.8). An upper bound for β2 will be given in §4.3.

4. Analysis of the Scalar Case. The following assumption is almost identical to Assump-
tions 4.5 of [8] and is needed for the analysis when the originating BDDC coarse space is based on
edges. For early work using similar assumptions in the study of multi-level Schwarz algorithms, see
[9].

Assumption 1. Let c be any coarse node (vertex) of Ωi and Sc be the index set of all subdomains
containing c on their boundaries. Select jc ∈ Sc such that ρjc ≥ ρj for all j ∈ Sc. Assume there exists
a constant C and for any i ∈ Sc a sequence {i = j0

c , j
1
c , . . . , j

p
c = jc}, all in Sc, such that ρi ≤ Cρj`c

and that Ωj`−1
c

and Ωj`c have a subdomain edge in common for all ` = 1, . . . , p and i = 1, . . . , N .
Assumption 1 basically says that there is an edge-connected path between Ωi and Ωjc such

that the diffusion coefficient ρi is no greater than a constant times the diffusion coefficient of any
subdomain along the path. If Assumption 1 is satisfied, then we say there are quasi-monotone
edge-connected paths.

The analysis of face-based coarse spaces requires a stronger condition than in Assumption 1.
Assumption 2. Let c be any coarse node (vertex) of Ωi and Sc be the index set of all subdomains

containing c on their boundaries. Select jc ∈ Sc such that ρjc ≥ ρj for all j ∈ Sc. Assume there exists
a constant C and for any i ∈ Sc a sequence {i = j0

c , j
1
c , . . . , j

p
c = jc}, all in Sc, such that ρi ≤ Cρj`c

and that Ωj`−1
c

and Ωj`c have a subdomain face in common for all ` = 1, . . . , p and i = 1, . . . , N .
Assumption 2 basically says that there is a face-connected path between Ωi and Ωjc such that the

diffusion coefficient ρi is no greater than a constant times the diffusion coefficient of any subdomain
along the path. If Assumption 2 is satisfied, then we say there are quasi-monotone face-connected
paths.

The next assumption basically says that the ratio Hm/hm does not vary too much for any
subdomain Ωm containing c.
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Assumption 3. Let Sc be as defined in Assumption 1. It is assumed for any coarse node c that

max
j,k∈Sc

(Hj/hj)/(Hk/hk) < C.

4.1. Analysis of the Coarse Components. The present goal is to construct a coarse inter-
polant uc0 = ΨuΨ between coarse node values and equivalence class averages, and then to obtain
estimates for uTc0Kcuc0 in terms of uTc Kcuc. We first consider the case when the original BDDC
coarse space is based on subdomain edge averages.

4.1.1. Edge-Based Coarse Space. The value at coarse node c is chosen as ūjc , where jc is
defined in Assumption 1. If the interpolation of an edge E of Ωi only involves a single coarse node c,
i.e. the row of Ψ associated with this edge has a single nonzero value of 1 in the column for c, then
the coarse approximation of ūE is given by ūE0 = ūjc .

To simplify the notation in the following development, we replace {i, j1
c , . . . , j

p
c } in Assumption 1

by {0, 1, . . . , p} and label the edges of the connected path between Ωi and Ωjpc as E1, . . . , Ep. We
note that with this convention that Ω`−1 and Ω` share edge E` for ` = 1, . . . , p, and that the edges
E` and E`+1 both belong to subdomain Ω` for ` = 1, . . . , p− 1. We have

ūE − ūE0 = (ūE − ūE1) +

p−1∑
`=1

((ūE` − ū`) + (ū` − ūE`+1
)) + (ūEp − ūjc). (4.1)

Since the edge averages for each term in parenthesis involve the same subdomain, it follows from
Corollary 1 and Assumption 1 that

ρiHi|ūE − ūE0|2 ≤ C
∑
j∈Sc

(1 + log(Hj/hj))u
T
jcKjcujc. (4.2)

We note that (4.2) also holds if ūE0 depends on two coarse nodes c1 and c2 rather than just a single
one. To see this, we note that

ūE − ūE0 = ūE − (ūjc1 + ūjc2 )/2 = (ūE − ūjc1 )/2 + (ūE − ūjc2 )/2,

and that (4.2) can then be used for each of the terms on the right hand side.
It follows from (4.2) and Lemma 2 that

(uic − uic0)TKic(uic − uic0) ≤ C
∑
j∈Mi

uTjcKjcujc,

where uic0 = Ricuc0 is the coarse interpolant of uic and Mi is the index set of all subdomains
adjacent to Ωi and also including Ωi. Assumption 3 was used to allow for a cancellation of the
1 + log(Hj/hj) factors. Summing this estimate over all subdomains and noting that |Mi| ≤ C, we
find

(uc − uc0)TKc(uc − uc0) ≤ CucKcuc. (4.3)

4.1.2. Face-Based Coarse Space. A similar analysis can be carried out for a face-based
BDDC coarse space by replacing Corollary 1 and Lemma 2 by Corollary 2 and Lemma 4, respectively.
Further, Assumption 2 is used and the telescoping sum in (4.1) now involves face averages rather
than edge averages. Logarithmic factors no longer enter into the analysis, and we again arrive at an
estimate as in (4.3).
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4.2. Local Analysis. Let w := uc − uc0. We find from (4.2) that, for the edge-based case,

ρiHiw
2
m ≤ C

∑
j∈Sc

(1 + log(Hj/hj))u
T
jcKjcujc,

where m is the row of Ψ corresponding to edge E of Ωi. Setting the row of uic in Lemma 2
corresponding to E to 1 and all other rows to zero gives

(1 + log(Hi/hi))kicmm ≤ CρiHi,

where kicmm is the diagonal entry of Kic corresponding to E . Let ME denote the index set of
subdomains containing E and define M̂E := ∪i∈MEMi. From the previous two estimates and
Assumption 3, we obtain

w2
me

T
mKcem = w2

m

∑
j∈ME

kjcmm ≤ C
∑
j∈M̂E

uTjcKjcujc.

Summing this estimate over all edges and noting that the number of elements of M̂E containing the
index j is bounded by a constant, we find that

M∑
m=1

w2
me

T
mKcem ≤ CuTc Kcuc. (4.4)

We note that (4.4) also holds for a face-based coarse space under Assumption 2 by using a similar
analysis involving Lemma 4 rather than Lemma 2.

4.3. Two Main Results. We are now ready to provide results for scalar elliptic problems for
edge- and face-based BDDC algorithms.

Theorem 1. For edge-based BDDC coarse spaces and with quasi-monotone edge-connected paths
(see Assumption 1), the condition number of the preconditioned operator that is obtained by replacing
the direct solver for the coarse problem by the preconditioner M−1

c defined in (3.6) is bounded by

κa ≤ C(1 + log(H/h))2.

Proof. With reference to (3.5), it follows from a coloring argument that max(1, β2) ≤ C since
each subdomain edge is common to a finite number of subdomains. From the estimate in (4.3) and
the triangle inequality, we find

uTc0Kcuc0 ≤ CuTc Kcuc.

Together with the local estimate in (4.4), it follows that (3.8) holds with

C2
0 ≤ C,

and thus

max(1, β2)

min(1, β1)
≤ C.

The theorem then follows from (3.5) since κ is bounded by C(1 + log(H/h))2 for edge-based coarse
spaces under Assumption 1 (cf. Algorithm D in [28, Section 6.4.2]).
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Theorem 2. For face-based BDDC coarse spaces and with quasi-monotone face-connected paths
(see Assumption 2), the condition number of the preconditioned operator that is obtained by replacing
the direct solver for the coarse problem by the preconditioner M−1

c defined in (3.6) is bounded by

κa ≤ C(1 + log(H/h))2.

An additional factor of 1 + log(H/h) appears in this estimate under the weaker Assumption 1.
Proof. This estimate is obtained in the same way as for Theorem 1, but using estimates for

faces rather than edges. The additional factor of 1 + log(H/h) appears for the weaker Assumption 1
because there is no longer a cancellation of a logarithmic factor when using Lemma 4 for faces rather
than Lemma 2 for edges. In addition, the estimate κ ≤ C(1 + log(H/h))2 for a face-based coarse
space can be found in Theorem 6 of [23]. See also [20].

5. Compressible Linear Elasticity. We now turn to the equations of linear elasticity: Let
Ω ⊂ R3 be a domain with a Lipschitz boundary, and let ∂ΩD be a nonempty subset, of positive
measure, of its boundary ∂Ω, and introduce the Sobolev space V := {v ∈ H1(Ω) : v|∂ΩD

= 0}.
Here, H1(Ω) := H1(Ω)3. The linear elasticity problem consists in finding the displacement u ∈ V of
the domain Ω, fixed along ∂ΩD and subject to a surface force of density g, along ∂ΩN := ∂Ω \∂ΩD,
and a body force f :

a(u,v) := 2

∫
Ω

µ ε(u) : ε(v) dx+

∫
Ω

λ div u div v dx = 〈F,v〉 ∀v ∈ V.

Here λ(x) and µ(x) are the Lamé parameters, εij(u) = 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
) is the linearized strain tensor,

and two inner products are defined by

ε(u) : ε(v) :=

3∑
i=1

3∑
j=1

εij(u)εij(v), 〈F,v〉 :=

∫
Ω

3∑
i=1

fivi dx+

∫
∂ΩN

3∑
i=1

givi ds. (5.1)

The Lamé parameters can be expressed in terms of the Poisson ratio ν and Young’s modulus E:

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
=

2ν

1− 2ν
µ.

In our proofs, we will always assume that the Lamé parameters are constant in each subdomain and
denote their values in Ωi by µi and λi, respectively. The parameter µi will play a role similar to
that of ρi in the analysis of the scalar case. When developing our theory, we will assume that this
Lamé parameter satisfies Assumption 2.

5.1. Korn’s Inequalities. We note that the factor 2ν
1−2ν is bounded for the compressible case

for which ν < 1/2. We can then derive the upper bound

ai(u,u) ≤ 2(1 + νi)

1− 2νi
µi|u|2H1(Ωi)

,

where ai(u,v) is the contribution of Ωi to a(u,v). The ellipticity of this problem is established by
using a Korn inequality; for a discussion of the Korn inequalities, see [4, Section 6.15]. In particular,
we will use [4, Theorem 6.15-1]: there exists a constant C = C(Ωi), invariant under dilation, such
that,

|u|2H1(Ωi)
+ (1/H2

i )‖u‖2L2(Ωi)
≤ C

( ∫
Ωi

ε(u) : ε(u) dx+ (1/H2
i )‖u‖2L2(Ωi)

)
, (5.2)
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where Hi is the diameter of Ωi. We also will use [4, Theorem 6.15-3]: there exists a constant
C = C(Ωi), invariant under dilation, such that,

inf
r∈RB

‖u− r‖2L2(Ωi)
≤ CH2

i

∫
Ωi

ε(u) : ε(u) dx. (5.3)

Here RB is the six-dimensional space of rigid body modes, the null space of the elasticity operator.
This second estimate will, essentially, replace Poincaré’s inequality.

Given the Korn inequalities and the H1−continuity of the bilinear form ai(u,v), we can use the
H1(Ω)−norm in most of our analysis.

5.2. Analysis for Linear Elasticity. Looking back at the scalar case and formula (4.1) and
the proof of (4.2), we find a need to replace the edge and subdomain averages by expressions
appropriate for elasticity. We note that (4.1) provides a sum of differences of pairs of terms associated
with the same subdomain, which allows us to shift by elements in the null space, i.e., by constants.
This suggests that we should now try to find rigid body modes that will serve the same purpose.

We will consider the BDDC variants with the primal space defined by the averages over the
three components of the displacement over all the subdomain edges and also the case defined by six
primal face constraints for each subdomain face. In fact, we could also obtain the same results for
variants where any subdomain face is associated with either edge or face constraints or both. By
using results reported in [19], we can directly establish a bound on the condition number, in the edge
case, of the preconditioned operator of the form C(1+log(H/h))2 if Assumption 2 is satisfied. Thus,
if all the subdomain edges are subject to three average constraints, we can then use [19, Proposition
5.1 and Definition 5.3], to establish that all our subdomain faces are fully primal. Combining this
observation with Assumption 2, we find that we have an acceptable set of primal constraints, as in
[19, Definition 5.8], and that we can use the analysis of [19, Subsection 8.4] to conclude that we have
a C(1 + log(H/h))2 bound for the BDDC algorithm prior to the introduction of an inexact solver
for the coarse component of the preconditioner. These arguments can easily be modified to cover
the case with face constraints by working out an alternative representation of arbitrary rigid body
modes as in [19, Section 8.4]; we replace the edge functionals, denoted by gn below, by L2(F)−
inner products of u and the basis functions rk of RB as indicated at the end of §5.2.1.

We note that a richer primal space is required, to obtain a satisfactory rate of convergence,
for certain sets of Lamé parameters of the subdomains. That conclusion is supported by numerical
experiments reported in [15]. The two papers, [15, 19], concern FETI–DP algorithms but BDDC
and FETI–DP algorithms are closely related since the operators relevant for the convergence rates
of the two have the same eigenvalues except possibly for two if the same primal space is used and the
coarse problems are solved exactly, see [24]. Related issues on the effect of the values of the Lamé
parameters in the subdomains are also discussed in [26], a recent paper on isogeometric analysis,
which also provides experimental evidence.

5.2.1. Counterparts of (4.1), (4.2), and (4.3). We now turn to developing bounds specific
to elasticity and this paper. We will borrow tools developed in [19] and will also find that our
arguments will be simpler than those in that earlier study.

Let E be any subdomain edge of any subdomain Ωi and let the subdomain vertex c be one of
the endpoints of E . Let ūE be the 3−vector of averages over E of the components of u. According to
Assumption 2, we have a quasi-monotone face-connected path from Ωi to a subdomain Ωjp with the
largest Lamé parameter µ of the subdomains which share that subdomain vertex. As in Subsection
4.1.1, we renumber the subdomains on the path by {0, 1, . . . , p} and denote the subdomain face
between Ω`−1 and Ω` by F`. We also select an additional subdomain face F0 of Ω0, which is different
from F1 and with a boundary which contains the subdomain edge E . Then for 0 ≤ ` ≤ p − 1, the
faces F` and F`+1 are associated with subdomain Ω` on the path. For the final subdomain on the
path, Ωp, we will only work with one face, Fp.
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We will estimate the `2−norm of ūE − r̄
(p)
E where r(p) ∈ RB. This r(p) will provide the coarse

approximation of u associated with the subdomain vertex c and is independent of the edge E . We will
not work directly with this 3−vector but instead with an element in RB with the three components
of these vectors as coefficients for r1, r2, and r3, respectively. The rk form a standard basis of RB :

r1 := (1, 0, 0)T , r2 := (0, 1, 0)T , r3 := (0, 0, 1)T , r4 := (1/Hi)(0,−x3 + xo3, x2 − xo2)T ,

r5 := (1/Hi)(x3 − xo3, 0,−x1 + xo1)T , r6 := (1/Hi)(−x2 + xo2, x1 − xo1, 0)T .

Here xo := (xo1, x
o
2, x

o
3)T is the origin of the coordinate system. We have scaled r4, r5, and r6 by

dividing by Hi to make the norms of these six basis functions of the same order. We will write this

element of RB, representing ūE − r̄
(p)
E , as a sum of differences of pairs of elements in RB associated

with the individual subdomains on the path.
We will work with functionals gE,Fi , i = 1, 2, and 3 and fFk , k = 1, . . . , 6, as introduced in [19,

Section 5], which provide important tools in the proof of the main results of that paper. These
functionals are associated with a particular subdomain face F and we will choose the origin of the
coordinate system, xo, in which we express the basis of the rigid body space, as a point on or close
to the face.

For the first face, F0, we will use the centroid of E as the origin of the coordinate system. Then,∫
E
rF0

k ds = 0 for k = 4, 5, and 6. (5.4)

We now introduce the functionals

gE
′,F0

i (u(0)) :=

∫
E′ u

(0)
i ds∫

E′ 1ds
, i = 1, 2, and 3,

where E ′ is any subdomain edge of the face F0 under consideration and u
(0)
i one of the three

components of u(0), the restriction of u to subdomain Ωi. The number of such functionals equals
three times the number of subdomain edges that form the boundary of the face; when discussing
the edge-based case, we will assume that each face has at least three such edges. According to [19,
Proposition 5.1], we can then always find six linearly independent functionals of this set. We then

form a dual basis of RB by constructing the fF0

k as linear combinations of these gE
′,F0

i . They satisfy

fF0

k (r`) = δk` and we then have a representation of any element r ∈ RB :

r =

6∑
k=1

fF0

k (r)rF0

k . (5.5)

Similar formulas are also developed for the other faces on the path. These formulas will help us shift
by elements in RB to prepare for the use of (5.2) and (5.3).

Using (5.4), we find that that we can use the three gE,Fi for the edge E as fF0
1 , fF0

2 , and fF0
3 and

then complement this set by three additional functionals fF0
4 , fF0

5 , and fF0
6 , as in [19], e.g., by using

a QR−factorization with column pivoting. We note that the three components of ūE are then the
first three coefficients of

6∑
k=1

fF0

k (u)rF0

k .

Given that the rF0

k are linearly independent, we can then bound the components of ūE by the
L2(E)−norm of this function.
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Bounds for the gE,F`

i are given in detail in [19] and involve one logarithmic factor and the
H1(Ω`)−norm of u(`). By an argument using linear independence, we can then show that we have
the same bounds for the functionals fF`

k . Thus, we have

|fF`

k (u)|2 ≤ CH−1
i (1 + log(Hi/hi))(|u|2H1(Ω`) + (1/Hi)

2‖u‖2L2(Ω`)).

When moving from Ω0 to the next subdomain, Ω1, we will use the fact that

6∑
k=1

fF1

k (u(0))rF1

k =

6∑
k=1

fF1

k (u(1))rF1

k .

This follows from the choice of primal constraints, which ensures that all the gE,F1

i functionals
associated with the subdomain edges of the face F1 have the same values for u(0) and u(1). The
same argument can also be used for all other subdomain faces on the face-connected path.

Therefore, we can now write

6∑
k=1

fF0

k (u(0) − r(p))rF0

k = (

6∑
k=1

fF0

k (u(0) − r(p))rF0

k −
6∑
k=1

fF1

k (u(0) − r(p))rF1

k ) + . . .

+(

6∑
k=1

fF`

k (u(`) − r(p))rF`

k −
6∑
k=1

f
F`+1

k (u(`) − r(p))r
F`+1

k ) + . . .+

6∑
k=1

f
Fp

k (u(p) − r(p))r
Fp

k .

The first subdomain on the path, Ω0, contributes

6∑
k=1

fF0

k (u(0) − r(p))rF0

k −
6∑
k=1

fF1

k (u(0) − r(p))rF1

k .

We can now replace r(p) by r(0) by using (5.5); we simply subtract and add r(0)−r(p) and group the
terms appropriately. Here r(0) is the element of RB obtained in (5.3) and we have then eliminated
the L2−term. By using (5.2) as well as (5.3), we are able to return to the use of the bilinear form
for the elasticity operator; up to this point, we have used the H1−norm.

The similar expressions, associated with all but the final subdomain on the path, can be handled
in the same way. The fact that we only use one face of Ωp poses no problem since we have r(p) at
our disposal.

We can now establish estimates that are counterparts of (4.2) and (4.3):

µiHi|ūE − r̄
(p)
E |

2 ≤ C
∑
j∈Sc

(1 + log(Hj/hj))u
T
jcKjcujc. (5.6)

and by using Lemma 2,

(uc − uc0)TKc(uc − uc0) ≤ CucKcuc. (5.7)

For the case based on face constraints, we can replace the gE,Fi functionals by

gFk (u) :=

∫
F u · rkdA∫
F rk · rkdA

, k = 1, . . . , 6.

There are now only six functionals and we can easily introduce a basis for the dual space, i.e., fFk
functionals that can be used as in the edge-based case. This is in fact an easier case.
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5.2.2. Local Analysis. The analysis closely follows the one for the scalar case, but now wm

refers to a 3-vector of edge average displacements in the edge-based case. Defining w := uc − uc0,
it follows that

µiHi|wm|2 ≤ C
∑
j∈Sc

(1 + log(Hj/hj))u
T
jcKjcujc,

where wm = Rmw are the three rows of w associated with edge E of Ωi. Using arguments similar
to those for the scalar case, we find that

M∑
m=1

wT
mRmKcR

T
mwm ≤ CuTc Kcuc. (5.8)

We note that RmKcR
T
m are 3x3 matrices for all subdomain edges.

The face-based case requires no additional ideas.

5.2.3. Main Result for Elasticity. Using the same arguments as for the scalar case, we
obtain the following result from the coarse and local estimates in (5.7) and (5.8).

Theorem 3. For edge-based and face-based BDDC coarse spaces and with quasi-monotone
face-connected paths (see Assumption 2), the condition number of the preconditioned operator that
is obtained by replacing the direct solver for the coarse problem by the preconditioner M−1

c defined
in (3.6) is bounded by

κa ≤ C(1 + log(H/h))2.

6. Implementation. We note that edge-based coarse spaces can sometimes be more prob-
lematic for linear elasticity than for the scalar case. For example, consider the simple case of four
subdomains sharing a single edge and with a Dirichlet boundary condition applied to one of the
subdomain faces. We note that the nodes on that edge are the only ones which are shared by more
than two subdomain boundaries. For scalar problems this presents no difficulties since a single edge
constraint is sufficient to ensure nonsingularity of the coarse and local Neumann problems. For
elasticity, however, constraints on the three components of the edge average displacement are not
sufficient for this purpose. One way to deal with this situation is to also include 6 constraints for
each of the 4 pairs of subdomains sharing a face, but we then no longer have a purely edge-based
coarse space.

Our implementation in Trilinos [12] automatically augments the original edge-based constraints
with face-based ones to address problems like the one described in the previous paragraph. For
example, if a subdomain face has fewer than two subdomain edges in its closure, then 6 additional
face-based constraints are included for elasticity problems to restrain rigid body displacements be-
tween the two subdomains sharing the face. If the face has two edges in its closure, only 3 additional
constraints associated with mean face displacements are needed. Finally, no additional constraints
are needed if there are at least 3 edges in the closure of the face. As noted earlier, the situation
is much simpler for scalar problems where only a single edge constraint is needed to constrain two
adjacent subdomains.

The situation for linear elasticity is often simpler when using a face-based rather than edge-based
coarse space. For example, if 3 translational and 3 rotational degrees of freedom are used, then no
adjustments are needed for the four subdomain case described previously. Moreover, there are no
difficulties even when the four subdomains are in a single row with only face connections between
them. One downside of a face-based approach is that the coarse space can often be larger than that
for an edge-based approach. The reason is that 6 constraints are used for each face compared to
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3 constraints for each edge. With the present approach, however, the number of coarse degrees of
freedom for each vertex is the same for either edge-based or face-based coarse spaces.

In the next section, we will explore an economic approach for linear elasticity in which the
number of degrees of freedom for some subdomain vertices can be reduced from 6 to 3. This
approach is more naturally suited to face-based coarse spaces, but can also be useful for edge-based
ones in certain cases. For example, the average displacement for a straight edge can be interpolated
using the average of its two bounding vertices. Similarly, if a face has 3 or more vertices in its closure
which are not on the same line, then a least squares fit of the vertex displacements can be used for
the interpolation of the average displacement and rotation of the face. Numerical examples in the
next section demonstrate that significant reductions in coarse space dimensions are possible using
this economic approach.

Our theory was developed for an additive Schwarz approach, but it can be easily adapted to a
multiplicative approach (cf. Chapter 2 of [28]) like the one used in our implementation. We only
discuss details for the scalar case, but they carry over in a straightforward manner for elasticity.
Given a coarse residual vector rc, the preconditioned residual M̂−1

c rc obtained using a multiplicative
approach can be obtained as follows.

1. Calculate zc1 using forward Gauss-Seidel with rc as input.
2. Calculate rc1 = rc − Kczc1, the coarse correction zc2 = ΨK−1

cr ΨT rc1, and the updated
residual rc2 = rc1 −Kczc2.

3. Calculate zc3 using reverse Gauss-Seidel with rc2 as input.
4. Calculate M̂−1

c rc = zc1 + zc2 + zc3.
Compared to the additive preconditioner Mc in (3.6), M̂c requires additional matrix-vector products
involving the coarse matrix Kc, but these costs are typically much smaller than those for calculating
the coarse correction ΨK−1

cr ΨT rc which is common to both preconditioners. We note that the action
of M̂−1

c is similar to applying a two-level multigrid V-cycle with symmetric Gauss-Seidel smoothing.
Our implementation allows for multiple subdomains per MPI rank. With this feature, different

threads can be assigned to the work for each subdomain. In addition, this feature allows us to
explore the performance of the proposed approach at very large subdomain counts without the need
for the resources of a large supercomputer. Another feature of the implementation is the option of
using inexact solvers (i.e. preconditioners) for the subdomain and coarse problems [7]. Although
we do not present numerical results for this option, it does allow for much larger subdomains than
could be reasonably accommodated by sparse direct solvers. Further, inexact solvers may play a
larger role in the future because of performance challenges of sparse direct solvers on GPUs.

In certain cases, a mesh partitioner, such as METIS [14], may generate subdomains which have
disconnected components. We identify these components and treat each one as its own subdomain.
For unusual cases where a subdomain does not have any faces, we activate all equivalence classes
associated with that subdomain. The same adjustments are made for elasticity problems if there is
not at least one face with three or more nodes.

7. Numerical Results. Returning to §2, we find that the results in Tables 2.1 and 2.2 are in
good agreement with the theory for the scalar case, and demonstrate that comparable performance
to the standard edge-based BDDC preconditioner can be obtained more efficiently. We note that
in Table 2.2 that the coarse space dimension nc is approximately 3 times smaller for the proposed
approach than that of the standard edge-based approach for larger numbers of subdomains. This
can lead to large reductions in setup times since the number of operations to factor the coarse matrix
scales by n2

c .
Similar results for an elastic cube with E = 1 and ν = 0.3 are shown in Tables 7.1-7.3 for

both edge-based and face-based coarse spaces. Here again we see good agreement with theory
and comparable convergence rates for the standard and proposed approaches. The coarse space
dimensions are again smaller, but the reduction is more modest for elasticity and edge-based coarse
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Table 7.1
Elasticity results. Number of iterations (iter) and condition number estimates (cond) are shown for a unit cube

domain constrained on one face and decomposed into 27 smaller cubic subdomains.

edge-based coarse space face-based coarse space
standard approach proposed approach standard approach proposed approach

H/h iter cond iter cond iter cond iter cond
4 18 3.83 20 4.26 19 4.10 20 4.51
8 25 6.43 27 7.02 19 4.43 26 7.31
12 28 8.43 31 9.16 22 5.44 31 9.71
16 31 10.0 34 10.9 24 6.27 34 11.6

Table 7.2
Elasticity results for edge-based coarse spaces. Coarse space dimension nc and convergence results are shown

for increasing numbers of subdomains N and fixed H/h = 8.

edge-based coarse spaces
standard approach proposed approach

N nc iter cond nc iter cond
64 432 26 6.76 162 28 7.14
216 1530 27 6.90 750 29 7.47
512 3780 28 6.95 2058 30 7.64
1000 7614 28 6.97 4374 30 7.71

spaces than for the scalar case as can be seen by comparing Tables 2.2 and 7.2. Similar reductions,
however, are present for face-based coarse spaces as can be seen in Table 7.3. We note that the coarse
space dimensions reported in column 2 of Table 7.2 are greater than 3 times the corresponding values
in Table 2.2 because of the need for additional face-based constraints as discussed in §6.

Numerical results are also presented in Table 7.3 for the economic approach described in §6
whereby only three translational degrees are associated with some subdomain vertices. In other
words, rotational degrees of freedom are not required for these vertices. This has the important
effect of reducing the size of the coarse space. Notice in Table 7.3 that a significant reduction in the
coarse space dimension nc is achieved for the economic approach when compared with the standard
approach. Remarkably, a reduction of about 5 times is achieved for larger numbers of subdomains
for face-based coarse spaces. This reduction would asymptotically reach a factor of 6 as the number
of subdomains increases.

7.1. Material Property Jumps. This example deals with a cubic domain decomposed into
64 smaller cubic subdomains and constrained on its left face. Three different distributions of ma-
terial properties are considered as shown in Figure 7.1. The leftmost one has quasi-monotone
face-connected paths, the middle one quasi-monotone edge-connected paths, and the rightmost one
a checkerboard arrangement which is not covered by our theory.

The material properties in the white and blue regions are given by ρ = 1 for the scalar case
and E = 1, ν = 0.3 for elasticity. Likewise, the burnt orange and maize regions have ρ = 103,
E = 103, and ν = 0.3. Results for the scalar case and elasticity are shown in Table 7.4. Consistent
with the theory, condition numbers for the scalar case grow sublinearly with respect to H/h for
both face-connected and edge-connected paths. As expected, similar growth in condition numbers
is observed for linear elasticity in the case of face-connected paths. We recall that the case of edge-
connected paths is not covered by our theory for elasticity, and much larger condition numbers are
apparent in the table. Remarkably, excellent results are obtained for the checkerboard arrangement
of material properties for both the scalar case and linear elasticity when the originating BDDC coarse
space is based on edges. Notice that the results for edge-connected and checkerboard properties are
significantly poorer for face-based compared to edge-based coarse spaces for linear elasticity.
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Table 7.3
Elasticity results for face-based coarse spaces. Coarse space dimension nc and convergence results are shown for

increasing numbers of subdomains N and fixed H/h = 8.

face-based coarse spaces
standard approach proposed approach economic approach

N nc iter cond nc iter cond nc iter cond
64 864 21 4.70 162 27 7.11 159 27 7.14
216 3240 22 4.90 750 27 7.01 669 27 6.93
512 8064 23 4.97 2058 28 7.06 1683 28 6.92
1000 16200 23 5.00 4374 28 7.07 3345 28 6.98

Fig. 7.1. Material property distributions for a cube decomposed into 64 smaller cubic subdomains. The leftmost
figure has quasi-monotone face-connected paths while the middle one only has quasi-monotone edge-connected paths.
The rightmost figure shows a checkerboard arrangement of material properties.

7.2. Unstructured Meshes and Decompositions. The next example considers two finite
element models adapted from the Cubit [5] tutorial and shown in Figure 7.2. Results are shown
in Table 7.5 for two different mesh resolutions of each model. Notice that the proposed approach
again reduces the coarse space dimension without large increases in iterations. We note that the
average number of elements per subdomain was chosen to be around 500, which is an order of
magnitude smaller than what is not uncommon in practice. This was done to help reveal and
correct shortcomings in how equivalence classes were made active in the coarse space.

7.3. Performance Comparisons. The benefits of the proposed approach become apparent
when the number of subdomains is relatively large. The reason for this is that the cost for solving
the coarse problem begins to dominate costs at the subdomain level. Thus, any reduction in the
coarse space dimension can lead to reductions in overall solution times.

Results in Table 7.6 were obtained for a unit cube decomposed into N identical smaller cubic
subdomains with 64 elements each using 64 cpus of a compute server. Although this is an unusually
small number of elements per subdomain, it enables performance evaluations at large subdomain
counts without the need for large computational resources. The table lists speedups using the
proposed approach in both the initialization and solve phases for the iterative solution of the linear
equations. Also shown in the table are results obtained using the economic approach for linear
elasticity. As the number of subdomains increases, the relative amount of time spent in the coarse
solver also increases. Here, edge-based and face-based coarse spaces were used for the scalar case
and linear elasticity, respectively. Performance improvements are evident in the table, and the very
favorable results for the economic approach suggest that it be studied further.
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Table 7.4
Results for the models in Figure 7.1.

scalar case
edge-based coarse spaces face-based coarse spaces

face-connected edge-connected checkerboard face-connected edge-connected checkerboard
H/h iter cond iter cond iter cond iter cond iter cond iter cond

4 14 2.46 16 3.59 9 1.45 13 2.10 19 6.95 20 8.67
8 16 2.98 20 4.81 11 1.72 16 3.05 26 9.94 25 11.2
12 18 3.44 21 5.66 12 1.99 19 3.96 31 12.8 27 12.9
16 19 3.79 23 6.33 13 2.18 21 4.70 35 16.0 29 14.2

linear elasticity
edge-based coarse spaces face-based coarse spaces

face-connected edge-connected checkerboard face-connected edge-connected checkerboard
H/h iter cond iter cond iter cond iter cond iter cond iter cond

4 25 6.03 40 72.3 24 6.57 26 7.03 68 1.5e3 52 192
8 33 10.9 53 112 32 11.1 34 12.1 94 2.0e3 66 299
12 38 14.5 61 135 36 14.4 40 16.0 112 2.2e3 75 348
16 42 17.4 68 152 38 16.9 44 19.3 124 2.3e3 80 378

Fig. 7.2. Two finite element models adapted from the Cubit [5] tutorial (model 1 on left, model 2 on right).
Homogeneous essential boundary conditions are applied to the bottom and left of models 1 and 2, respectively.

Table 7.5
Results for Models in Figure 7.2 and face-based coarse spaces. The number of subdomains and elements are

denoted by N and nelem.

scalar case elasticity
standard approach proposed approach standard approach proposed approach

N nelem nc iter cond nc iter cond nc iter cond nc iter cond
Model 1

100 47,887 376 27 9.52 236 34 16.6 2219 49 27.3 1416 62 54.5
805 363,024 3754 33 11.4 2909 43 19.3 22,096 62 41.3 17,454 85 122

Model 2
201 97,316 544 17 2.87 269 19 3.84 3246 30 8.26 1614 37 15.3
903 450,661 3543 17 3.00 2201 21 4.40 20,957 35 18.5 13,206 43 30.4
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Table 7.6
Speedups in terms of the number of subdomains N and ratios of coarse space dimensions nc.

scalar case elasticity
proposed proposed economic

N init solve ratio nc init solve ratio nc init solve ratio nc

13,824 1.7 1.3 0.32 1.5 1.1 0.31 3.2 1.6 0.19
21,952 2.0 1.3 0.32 1.9 1.2 0.31 4.6 1.7 0.19
32,768 2.2 1.3 0.32 1.9 1.2 0.31 5.5 2.0 0.18
46,656 2.5 1.4 0.32 1.8 1.2 0.32 6.3 2.0 0.18

[1] S.C. Brenner and R. Scott: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York,
Third edition (2008).

[2] S.C. Brenner and L.-Y. Sung. BDDC and FETI–DP without matrices or vectors. Comput. Methods Appl. Mech.
Engrg., 196(8),1429–1435 (2007).

[3] E.T. Chung, H.H. Kim, and O.B. Widlund: Two-Level Overlapping Schwarz Algorithms for a Staggered Dis-
continuous Galerkin Method. SIAM J. Numer. Anal. 51(1), 47–67 (2013).

[4] P.G. Ciarlet: Linear and Nonlinear Functional Analysis with Applications. SIAM, 2013.
[5] T. Blacker, S.-J. Owen, and et al. CUBIT, Geometry and Mesh Generation Toolkit, 15.3 User Documentation.

Sandia National Laboratories, Albuquerque, New Mexico and Livermore, California, July 2017. SAND2017-
6895 W.

[6] C.R. Dohrmann: A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci.
Comput. 25(1), 246–258 (2003).

[7] C.R. Dohrmann: An approximate BDDC preconditioner. Numer. Linear Algebra Appl. 14(2) 149–168 (2007).
[8] C.R. Dohrmann and O.B. Widlund: On the design of small coarse spaces for domain decomposition algorithms.

SIAM J. Sci. Comput. 39(4), A1466–A1488 (2017).
[9] M. Dryja, M.V. Sarkis, and O.B. Widlund: Multilevel Schwarz methods for elliptic problems with discontinuous

coefficients in three dimensions. Numer. Math. 72(3), 313–348 (1996).
[10] C. Farhat, M. Lesoinne, and K. Pierson. A scalable dual-primal domain decomposition method. Numer. Lin.

Alg. Appl., 7(7–8), 687–714 (2000).
[11] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen. FETI-DP: A dual-primal unified FETI method

– part I: A faster alternative to the two-level FETI method. Internat. J. Numer. Methods Engrg., 50,
1523–1544 (2001).

[12] M.A. Heroux and J.M. Willenbring. Trilinos Users Guide. Technical Report SAND2003-2952, Sandia National
Laboratories, 2003.

[13] A. Heinlein, A. Klawonn, O. Rheinbach, and O.B. Widlund: Improving the Parallel Performance of Overlapping
Schwarz Methods by Using a Smaller Energy Minimizing Coarse Space. Proceedings of the twenty-fourth
International Conference on Domain Decomposition held in Svalbard, Norway, February 6–10, 2017.

[14] G. Karypis, R. Aggarwal, K. Schoegel, V. Kumar, and S. Shekhar: METIS home page,
http://glaros.dtc.umn.edu/gkhome/views/metis.

[15] A. Klawonn and O. Rheinbach. Robust FETI-DP methods for heterogeneous three dimensional linear elasticity
problems, Comput. Methods Appl. Mech. Engrg. 196(8), 1400–1414 (2007).

[16] A. Klawonn and O. Rheinbach: Inexact FETI-DP methods. Internat. J. Numer. Methods Engrg., 69(2):284–307,
2007.

[17] A. Klawonn, O.B. Widlund, and M. Dryja: Dual-primal FETI methods for three-dimensional elliptic problems
with heterogeneous coefficients. SIAM J. Numer. Anal., 40(1), 159–179 (2002).

[18] A. Klawonn, O. Rheinbach, and O.B. Widlund: An analysis of a FETI–DP algorithm on irregular subdomains
in the plane. SIAM J. Numer. Anal. 46(5), 2484–2504 (2008).

[19] A. Klawonn and O.B. Widlund: Dual-Primal FETI methods for linear elasticity. Comm. Pure Appl. Math.
59(11), 1523–1572 (2006).

[20] A. Klawonn, O.B. Widlund, and M. Dryja: Dual-primal FETI methods with face constraints. Recent devel-
opments in domain decomposition methods Held in Zürich, June 7–8, 2001. L.F. Pavarino and A. Toselli,
(eds). Springer Lect. Notes Comput. Sci. Eng. 23, 27–40 (2002).

[21] J. Li and O.B. Widlund. FETI–DP, BDDC, and Block Cholesky Methods. Internat. J. Numer. Methods Engrg.,
66(2), 250–271 (2006).

[22] J. Li and O.B. Widlund: On the use of inexact subdomain solvers for BDDC algorithms. Comput. Methods
Appl. Mech. Engrg. 196(8), 1415–1428 (2007).

[23] J. Mandel and C.R. Dohrmann: Convergence of a Balancing Domain Decomposition by Constraints and Energy
Minimization. Numer. Linear Algebra Appl. 10(7), 639–659 (2003).

[24] J. Mandel, C.R. Dohrmann, and R. Tezaur: An algebraic theory for primal and dual substructuring methods
by constraints. Appl. Numer. Math. 54(2), 167–193 (2005).



SMALL COARSE SPACES 21

[25] J. Mandel, B. Soused́ık, and C.R. Dohrmann: Multispace and multilevel BDDC. Computing 83(2-3), 55–85
(2008)

[26] L.F. Pavarino, S. Scaccchi, O.B. Widlund, and S. Zampini: Isogeometric BDDC deluxe preconditioners for linear
elasticity. Math. Mod. Meth. Appl. Sci. 28(7), 1337–1370 (2018).

[27] J. Toivanen, P. Avery, and C. Farhat: A multi-level FETI-DP method and its performance for problems with
billions of degrees of freedom. Int. J. Numer. Methods Eng. 116, 661–682 (2018).

[28] A. Toselli and O.B. Widlund: Domain Decomposition Methods - Algorithms and Theory, Springer Series in
Computational Mathematics, 34. Springer-Verlag, Berlin Heidelberg New York (2005).

[29] X. Tu: Three-level BDDC in Two Dimensions. Internat. J. Numer. Methods Engrg., 69(1), 33–59 (2007).
[30] X. Tu: Three-level BDDC in Three Dimensions. SIAM J. Sci. Comput. 79(4), 1759–1780 (2007).
[31] O.B. Widlund and C.R. Dohrmann: Small coarse spaces for overlapping Schwarz algorithms with irregular

subdomains. Proceedings of the twenty-fourth International Conference on Domain Decomposition held in
Svalbard, Norway, February 6–10, 2017.


