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Abstract	
Certain pairs of drugs can cause death from their interaction. Knowledge of such interactions is held in drug 
interaction networks. The problem is that such networks may miss interactions that should be present and may 
include interactions that should be absent. Clearly, such information is valuable. Drug interaction networks are 
not unique in this regard. The same holds for protein-protein interaction networks, ecological networks, and 
many others. Improving the quality of such networks often requires a ground truth analysis (e.g. more 
experiments) but Roger Guimerá, Marta Sales-Prado, and their colleagues have shown in several papers that a 
structural analysis of networks can lead to predictions of missing and spurious edges that can improve those 
networks. Our contribution in this paper and the accompanying software is to create a program implementing 
their algorithmic ideas that is parallelizable and easy to modify for researchers who wish to try out new ideas. 
Our software can be found at https://github.com/samcoolidge/network. 
 
 
 
 
 
 
 
 
 
 



Motivation and Problem 
 

In Missing and Spurious Interactions and the Reconstruction of Complex 
Networks, authors Roger Guimerá and Marta Sales-Prado present a general 
mathematical framework for identifying errors in a network. Their implementation of this 
framework yields excellent results when compared to previous attempts at network 
reconstruction. The main limitations of their program are (i) it is slow when 
reconstructing networks that are substantially large or dense and (ii) it is hard to 
understand. This report describes a program that provides an improvement in efficiency 
by parallelizing the most laborious portions of the reconstruction process and has been 
engineered to be easier to modify. 
 
Intuitive Theory 
 

The Guimera-Sales-Prado algorithm relies only on the assumption that any 
network conforms to the structure of a stochastic block model. In a stochastic block 
model the nodes are separated into partitions (hereafter called groups), and the 
probability of an edge between two nodes is determined strictly by the groups to which 
these nodes belong. Therefore, a network with n nodes is defined by three data 
structures:  

 
1) A scalar value 𝑘 denoting the number of groups in the network 

 
2) An 𝑛	×	1 vector 𝑣 where each entry 𝑣' denotes the group associated with node 𝑖 
 
3) A 𝑘	×	𝑘 probability matrix 𝑀, where 𝑀'* contains the probability that a node in group 

𝑖 is connected to a node in group	𝑗 
 
The justification for using the stochastic block model is that it holds empirically in 

real network connections. For example, nodes in many networks are often organized 
into communities in which interaction within a group is significantly more common than 
interaction between groups. Family structure in a social network of animals is an 
obvious example. Nodes in a network may also have specified roles that can increase 
the prevalence of connections between roles. For example, in a protein interaction 
network, some proteins are more likely to have lasting physical contact with proteins of 
a different type than their own. This inter-community connection also holds for drug 
interaction networks. 

 
Complex networks typically have many groupings that determine the links 

between nodes. For example, a human social network may depend on partitions 
defined by birthplace, education, ethnicity, and age. These partitions may be very 
different from one another but all contribute to the likelihood of a network link and all are 
captured in some block model.  The general approach of the algorithm is to estimate the 
node partitions (i.e. the groups) of a given network by sampling from the space of 
stochastic block models. We can then estimate the reliability of a link (i.e. a graph edge) 
given our understanding of the underlying group structures.  



 
Guimera-Sales-Prado Algorithm and Our Implementation 
 
 To estimate the link reliabilities in a network we use the following procedure. A 
network of 𝑛 nodes is defined to be an 𝑛	×	𝑛	adjacency matrix with 𝐴'* = 1 if there is a 
edge between two nodes and 𝐴'* = 0 if there is no such edge. Given our data we 
assume that there is a “true” network 𝐴/ that differs from the observed network 𝐴0. The 
input for the algorithm is this matrix 𝐴0, and we estimate the probability that each 
possible link in the observed network exists in the true network.  The reliability of a link 
between nodes 𝑖 and 𝑗 is derived from the definition of a stochastic block model and 
given by the formula: 
 

1 									𝑅'* = 	
1
𝑍

𝑙4546
0 + 1
𝑟4546 + 2:∈<

exp	[−𝐻 𝑝 ] 

 
Intuitively, this is a sum over each partition	𝑝 in the space of all possible partitions 𝑃. 
Each 𝜎' represents the group of node 𝑖 and 𝑙GH0  is the number of links in the observed 
network between groups 𝛼 and 𝛽.The term  𝑟GH is the maximum number of links 
between groups 𝛼 and 𝛽 and,		𝐻 𝑝  is an “entropy” function of the partition given by: 
 

2 								𝐻 𝑝 = 	 ln 𝑟GH + 1 + ln
𝑟GH
𝑙GH0GMH

 

and 
 

𝑍 = 	exp	[−𝐻 𝑝 ] 
 
Each partition provides the probability of a link between two nodes as determined by the 
proportion of existing links to possible links between the groups of these nodes. The 
reliability is calculated as an average of these probabilities weighted by the relevance of 
the partition.  
 

In practice it is impossible to compute a sum over all possible partitions as the 
number of partitions exceeds 1×10N even for networks as small as 15 nodes. Much of 
the algorithm consists of finding only the partitions that contribute significantly to the 
sum. A Markov chain Monte Carlo method, specifically a Metropolis-Hastings algorithm, 
is used to find the relevant partitions. The N nodes are placed into one of N groups and 
then one at a time are randomly moved to a different group. At each step the change in 
𝐻 𝑝  is calculated, and if the H-value decreases then the swap of groups is accepted. If 
the value of 𝐻 𝑝  increases then the swap is accepted with probability exp	[−𝐻 𝑝 ]. The 
algorithm consists of three steps. First we find a “decorrelation factor” that will determine 
the number of node swaps needed to find uncorrelated partitions. Then we find an 
equilibrium partition as 𝐻 𝑝  decreases from its initial value to its equilibrium value, and 
finally we use this equilibrium partition to take a sample from the partition space.  

 



 
Decorrelation Factor 
 

First we must find the number of node swaps that must be attempted in order to 
create partitions that are uncorrelated. The accuracy of the algorithm relies on the fact 
that each partition provides unique information when calculating link reliability. To do 
this we create a starting partition with one of 𝑛	nodes in each of 𝑛 groups. We then 
perform a total of 𝑛 ∗ 𝑥Q node swaps, where 𝑥Q =

R
ST

 and record the normalized mutual 
information 𝑦Q of the resulting partition . We also perform	𝑛 ∗ 𝑥S node swaps, where 𝑥S =
𝑛 ∗ R

V
 and record normalized mutual information 𝑦S. Then we solve the system: 
 

𝑦Q − 𝑎 = 1 − 𝑎 ∗ exp
−𝑥Q
𝑏  

 
𝑦S − 𝑎 = 1 − 𝑎 ∗ exp

−𝑥S
𝑏  

 
The value of 𝑏 is recorded, and we repeat this process 10 times and average the 

results while discarding any outlier iterations. The result is a “decorrelation factor” 𝑑 that 
will be a critical input for our Metropolis-Hastings function. This method is used as a 
heuristic by Guimerá Et al. to find a partitions that have suitably low mutual information.  
From this point forward most of the work of the algorithm is done using a function called 
factor_MC_step() that will execute the Metropolis Hastings procedure on an input 
partition, attempting 𝑛 ∗ 𝑑 node swaps to ensure each new partition is sufficiently 
different from those previous.  
 
Equilibrium Partition 
 

To find an equilibrium partition we create small samples of partitions until the 
entropy (given in equation (2)) of these samples reaches equilibrium. Specifically, we 
execute our factor_MC_step() function 20 times and record the H-value of each 
resulting partition. For every sample of 20 H-values we calculate the mean and standard 
deviation and compare them to previous samples. If the difference between two sample 
means is less than their pooled standard error, we consider one of five equilibration 
checks to be complete. If five samples in a row satisfy the equilibrium check when 
compared to the first sample that satisfied our check, we can be confident that entropy 
function has reached an equilibrium as opposed to some local minimum. We take the 
partition that yielded the final H-value and call it our equilibrium partition. If any new 
sample has a significantly different mean H-value, we compare to this new sample and 
all previous successful checks are ignored.  

 
Sampling 
 

Once we have an equilibrium partition, we can generate a large sample of 
partitions with which we calculate our link reliabilities. We execute our factor_MC_step() 
function with our equilibrium partition as an input. The result is a new uncorrelated 



partition that is then fed back into factor_MC_step(). This loop is completed 10,000 
times to generate a sample. We calculate the reliabilities of each link in the network 
using equation (1), which is a sum over the sample of partitions. The reliabilities of links 
present in the observed network are sorted from lowest to highest, indicating that the 
links at the top of the list are likely to be spurious. Conversely, the reliabilities of the 
links missing from the observed network are sorted from highest to lowest, indicating 
that those at the top are likely to be present in the true network. The output of the 
algorithm is these lists which pair each link with their respective reliability. 

 
Parallel Design 
 

The objective of our reimplementation of this network reconstruction algorithm is 
to improve the algorithm’s execution time through parallel computing. The experiments 
in this paper uses 100 processors, though improvements are noticeable with as few as 
2-3 CPUs and efficiency would continue to increase with additional processing power. 
The most time-consuming portions of the algorithm are finding the equilibrium partition 
and then constructing a sample of 10,000 uncorrelated partitions.  
 
Equilibration in Parallel 

 
Using a single processor, we collect a sample of 100 equilibration times for two 

smaller networks. The data is shown below 
 
Karate Club Social Network – 34 Nodes 
Minimum Time:  0.155271053314 seconds 
Maximum Time:  2.13078403473 seconds 
Mean Time:  0.573533740044 seconds 
Standard Deviation:  0.384631167387 seconds 
 
Air Transportation Network – 133 Nodes 
Minimum Time:  9.968334198 seconds 
Maximum Time:  43.5213611126 seconds 
Mean Time:  21.4101707292 seconds 
Standard Deviation:  7.64734197381 seconds 
 
The variation in equilibration times is detrimental to the efficiency of the sequential code, 
but can be leveraged by parallel processing. Our algorithm initiates 100 threads that 
each performs a Metropolis-Hastings algorithm attempting to find an equilibrium 
partition. Whichever thread finishes first is chosen and the others discarded. The 
accuracy is unaffected by choosing the fastest thread because the equilibrium 
conditions described in the previous sections are sufficient to ensure a high quality 
partition. This portion of the algorithm is sped up on average by a factor of 2-4 
depending on the network, and reduces the standard deviation. 
 
 
 



 
Sampling in Parallel 
 

The most significant speed improvements in the new algorithm are achieved 
during the creation of a sample of 10,000 partitions. Instead of sampling sequentially 
from the equilibrium partition, we make copies of the starting partition equal to the 
number of processors 𝑝 we are running in parallel. Then each processor performs a 
sequential sampling of size 10,000 /	𝑝. These threads complete simultaneously as 
uncorrelated partitions are found in a constant amount of time since the time of our 
factor_MC_step() function depends only on the number of nodes swaps executed. 
Furthermore, since we know all partitions are uncorrelated, accuracy is not effected by 
running in parallel. All communication between nodes and processors is done with MPI, 
specifically MPI4py. 

 
Dependencies  
 

In addition to speed improvements, we believe that our implementation of the 
reconstruction algorithm is accessible and easy to modify. This is essential so that more 
research and improvements can be made to this algorithm. Our program relies only on 
the following Python packages: NumPy, SciPy, MPI4py and Cython. The function that 
executes the Metropolis-Hastings algorithm and calculates the entropy of partitions is by 
far the most complex and laborious part of our algorithm. This code has been simplified 
and is written with the Cython extension. It is accessible for Python users but still 
compiles and runs in C so no efficiency is sacrificed. 
 
Experiments 
 
Quality Comparison 
 

While our network reconstruction algorithm is conceptually the same as that of 
Guimerá and Sales-Prado, the data structures and computations differ. Therefore, it is 
necessary to compare the qualitative results of each. We test the quality of our new 
implementation of the algorithm on two networks and compare it to the previous 
implementation. 

 
 

 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 1. We test the quality of missing link reliabilities by removing a percentage of links from a true network to simulate data error. We then calculate the 
probability that a true negative (𝐴'*0 = 0 and 𝐴'*/ = 0) has a lower link reliability than a false negative (𝐴'*0 = 0 and 𝐴'*/ = 1) and call this the accuracy of the 
reconstruction. Networks with with a percentage of removed links ranging from 5% to 65% and the corresponding accuracy of the reconstruction are 
displayed. 

	



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Thus, the two implementations enjoy roughly the same quality. The new 

implementation is marginally more effective at detecting both missing and spurious links 
in the air transportation network, but marginally less effective at detecting missing links 
in the karate social club network. 

Fig. 2. We test quality of spurious link reliabilities by adding a percentage of links to a true network. We then calculate the probability that a true positive 
(𝐴'*0 = 1 and 𝐴'*/ = 1) has a higher link reliability than a false positive (𝐴'*0 = 1 and 𝐴'*/ = 0) and call this the accuracy of the reconstruction. Networks with with 
a percentage of added links ranging from 5% to 65% and the corresponding accuracy of the reconstruction are displayed.	



Timing Comparison 
 

To measure execution time improvements, we conducted timing tests on 
networks conforming to a stochastic block model. The networks were randomly 
generated while varying the parameters of network size and network density. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Run time is measured while varying the density of a network of size 50 nodes. Density is measured as the ratio of links to the number of 
nodes. We compare the previous sequential implementation of the algorithm to the new parallel implementation (100 processors). Specific run 
time values and a trend-line are displayed. Parallelism helps more the denser the network. 

Fig. 4. Run time is measured while varying the size (# of nodes) of a network with density = 3.0. We compare the previous sequential 
implementation of the algorithm to the new parallel implementation (100 processors). Specific run time values and a trend-line are 
displayed. Parallelism helps more for larger networks. 
	



Parallelization offers a negligible execution time improvement in small networks, 
especially those with very low density. However, parallelism shows significant benefits 
for large, dense networks. High density networks with a few thousand nodes would take 
days or weeks to reconstruct when using the previous implementation. The new code 
using 100 processors could cut down this run time by a factor of 10-20, expanding the 
set of networks to which this algorithm practically applies. 

 
Processor Scaling  
 
 Finally, we investigate to what extent additional processing power improves 
efficiency. Run time can be modeled by the following function of the number of 
processors (𝑝): 
 

𝑅𝑢𝑛	𝑇𝑖𝑚𝑒 = 	
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙	𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑇𝑖𝑚𝑒

𝑝 		+ 𝑚𝑖𝑛 𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙	𝐸𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛	𝑇𝑖𝑚𝑒𝑠  

 
Any variation caused is a result of different decorrelation steps or equilibration 

times. As additional processors are used during the sampling procedure, the minimum 
equilibration time becomes a larger portion of total run time. In this trial, minimum 
equilibration time is approximately equal to parallelized sampling time when 60 
processors are used. Thus additional processors past 60 cannot do better than cut run 
time in half. Perhaps future research can be conducted on further improving the 
efficiency of the equilibration period.  
 
 
 

Fig. 5. Run time is measured while varying the number of processors used in parallel. Specific run time values and a trend-
line are displayed.  
	



Conclusion 
 

Analysis of network structure can be useful in a variety of research and practical 
contexts, from biology and medicine to human interaction and sociology. However, 
network errors can arise both because of data collection failure or incomplete 
information. A computational approach that improves the reliability of network allows for 
the improvement in the quality of inferences made from a network by fixing links that are 
likely to be missing or spurious. It also can provide direction for data collection in 
incomplete networks by finding the missing links that are the most likely to exist.  We 
have implemented a parallel version of the Guimera-Sales-Prado algorithm that shows 
substantial speedup over the original sequential algorithm in several contexts. The 
software is available at https://github.com/samcoolidge/network 
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