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Abstract. Two overlapping Schwarz algorithms are developed for eotisicuous Galerkin (DG) finite element
approximation of second order scalar elliptic problemsathliwo and three dimensions. The discontinuous Galerkin
formulation is based on a staggered discretization intedwy Chung and Engquist [13] for the acoustic wave
equation. Two types of coarse problems are introduced &twio-level Schwarz algorithms. The first is built on a
nonoverlapping subdomain partition, which allows quiteeral subdomain partitions, and the second on introducing
an additional coarse triangulation that can also be qudependent of the fine triangulation. Condition number
bounds are established and numerical results are presented
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1. Introduction. Two-level overlapping Schwarz algorithms are developedife fast
and stable solution of a staggered discontinuous Galerlgthaod applied to second order
elliptic problems. Discontinuous Galerkin methods all@sttfunctions which are discon-
tinuous across element boundaries and this feature maéssrttore suitable for modeling
problems with discontinuous coefficients, singulariti@sitiscales and multiphysics. Since
the first work, by Reed and Hill [27], for hyperbolic equatipdiscontinuous Galerkin meth-
ods have been applied to various problems and the field hasrigean active research area,
see, e.g.,[19, 16, 28, 9, 5]. The design of the flux conditnss the inter-element boundary
determines the accuracy of the discontinuous Galerkinceqipiation and the properties of
the resulting linear system.

In relatively recent works by Engquist and the first auth@, [13, 15, 14], a staggered
discontinuous Galerkin method is developed and analyzesecaAnd order problem is writ-
ten as a system of first order with two unknowliisandu. To approximatd/ andw, each
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triangle, in a given triangulation, is subdivided and digrmuous functiond/;, andu,, are
built for the resulting triangulation so that on each intemgent boundary one of these func-
tions is continuous and the other discontinuous. In additwe require these functions to
satisfy a certain inf-sup stability. Using them, a constiveainter-element flux condition
is then obtained straightforwardly. Such a flux conditioagarves symmetry of the model
problem and results in an optimal order of approximationrédeer, the use of this staggered
approximation provides locally and globally conservatehemes.

For elliptic problems, the resulting linear system arisirgm the staggered discontin-
uous Galerkin formulation is symmetric and positive dedirafter eliminating one set of
variables locally. To the best of our knowledge, no discamtius Galerkin formulation has
previously been developed which is symmetric and positefinde without introducing an
additional penalty term. However, one disadvantage ofthggered discontinuous Galerkin
method is that the resulting linear system is relativelgéaand less sparse than those from
other discontinuous Galerkin formulation, because theftesctions are built after a further
subdivision of the given triangulation and are also pdytiabntinuous. Therefore, a fast
and stable solver for the staggered discontinuous Galéokinulation is quite desirable to
increase its applicability for real world problems.

There have been previous studies that address fast ane stallkrs for discontinu-
ous Galerkin methods. In the works by Feng and KarakashianZ2], two-level additive
Schwarz methods were developed for second order elliptiblems and fourth order prob-
lems, and in the work by Lasser and Toselli [26] overlappinbvarz preconditioners were
developed for advection-diffusion problems. A more geh&emework of Schwarz pre-
conditioners was studied in [1, 2, 3, 4] including multiplive Schwarz preconditioners and
hp-discontinuous Galerkin formulation. In the work by Dry§zalvis, and Sarkis [20], BDDC
methods were applied to discontinuous Galerkin formutetiof elliptic problems with dis-
continuous coefficients, where the finite element functemescontinuous inside each subdo-
main and discontinuous across the subdomain boundarigsRatently, two-level additive
Schwarz preconditioners have also been studied by Barkéf@t In their work, algorithms
are developed and analyzed for several types of coarsegmnsland their performance com-
pared for these different choices.

In our work, we will develop a two-level overlapping Schwamzconditioner for the
staggered discontinuous Galerkin formulation [13] apgplie elliptic problems. In all the
previous works on two-level Schwarz preconditioners ferdiscontinuous Galerkin formu-
lation, each subdomain is assumed to be an element of a qegrdar partition or the union
of a few such elements. Our algorithm, in contrast, allowsaf@uite general subdomain
partition without such an assumption. Two types of coarsblems are introduced. The
first one is related only to the subdomain partition wheréheabdomain is obtained as the
union of elements provided in the problem domain. On each, fadich is the common
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part of two subdomain boundaries, we introduce a face-bésie element function; its

value is one on the given face and zero on the rest of the sulidanterface. For these
interface values, the values in the interior of each subdlorm@ determined by minimiz-
ing a certain discrete energy norm. By using these faceebfsections in the construc-
tion of the coarse problem, we can prove that the conditiomber can be bounded by
C(1+ H/6)(1+ H* “maxp,,
diametery the overlapping width¢' a positive constant independent of any mesh parameters,

0%, |%11(Q))’ whered is the dimensionH is the subdomain

anddy, () a continuous, face-based finite element function desciib8ection 4. We note
that our result can be applied to quite general subdomatitipas, where each subdomain
satisfies a Poincaré-inequality and a starlike property.

The second type of coarse problem is obtained by introdummgdditional coarse tri-
angulation. In this case, the subdomains again need not hima of coarse triangles. With
the less strong assumption that the diameter of each sul@@mparable to those of the
coarse triangles which intersect it, we can prove a conditiomber bound of’ (1 + H/9).

The rest of this paper is organized as follows. In Sectiom@ staggered discontinuous
Galerkin formulation is introduced for a model elliptic ptem and in Sections 3 and 4, our
first two-level Schwarz algorithm is developed and analyze&ection 5, the algorithm with
the second type of the coarse problem is introduced and zsthlyin Section 6, numerical
experiments are reported for the proposed algorithms. udirout this paper;’ denotes a
generic positive constant, which is independent of any masameters.

2. The Staggered Discontinuous Galerkin formulation.

2.1. Variational form. We consider a scalar, elliptic model problem in a bounded do-
main) ¢ R? with d = 2 or 3:

findu € H(Q) such that

(2.1)
=V (p(x)Vu(z)) = f(r) VreQ,

wherep(x) > pg > 0 with pg a constant. The domain is subdivided into potentially many
subdomaing$?;, which may have quite irregular boundaries. In the follogyiwe will used
to denote the dimension 6f. In our description of the algorithm, we will primarily digss
the case ofl = 3. The coefficient function can be discontinuou$inbut will be assumed to
vary only moderately in each subdomain. An equivalent vianal formulation is obtained
by integrating by parts:

find u € H}(Q) such that

(2.2) .
(p(@)Vu, Vo) 2y = (f,v)r20) Vv € Hy ().

By introducing an additional unknown, namdlyy := pVu, we can recast this problem, and
obtain a suitable framework for our DG discretization, dtsown as awo-unknowror a
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saddle poinproblem:

find (u, U) € H}(Q) x L*(Q) such that
(2.3) (p(x)~'U, Virz) — (Vu,V)pzq =0 VV € L*(9),
(U,VU)L2(Q) = (f, U)L2(Q) Yove Hol(Q)

2.2. The Staggered Discontinuous Galerkin discretization Following Chung and
Engquist [12, 13], we first define an initial triangulatip. Thus, the domain is trian-
gulated using a set of tetrahedra in 3D and triangles in2Pwill denote the set of all faces
in this triangulation andF? the subset of all interior faces, i.e., the set of faceg jrthat are
not embedded in{2.

For each tetrahedron, we select an interior poianhd denote this tetrahedron Byv).
We then further subdivide each tetrahedron ihtub-tetrahedra by connecting the painb
the4 vertices of the tetrahedron. The resulting triangulatidenoted by. We will denote
by 7, the set of all the new faces obtained by the second subdivésid setF := F, U F,
andF? := FJ U F,.

For each face; € F,,, we denote byR(x) the union of the two sub-tetrahedra sharing
the facex. If k is a boundary face, theR(x) is just the one tetrahedron having this face. See
Figure 1 for an illustration of this concept in two dimension

Fi1G. 1. Triangulation in 2D.

We define a unit normal vectar,. for each face: € F as follows: Ifx € F\FY, then
n,. is the unit normal vector of pointing towards the outside 6. If x € F°, an interior
face, we then fixn,, as one of the two possible unit normal vectorssgrwhen it is clear
which face is being considered, we will simplify the notatend use. instead ofn,,.

We are now ready to introduce our finite element spacesk Let0 be a non-negative
integer. Letr € T and letP*(7) be the space of polynomials of degree less than or equal to
konr.
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We first introduce our discrete scalar field space:
Locally H'(2)-conforming finite element space for the scalar field:

(2.4) Sy :={v| v, € P*(r), V7 € T; v continuous across € F; vjpq = 0}.

We define two norms in the spasg, the discrete.>-norm |v|| x and the discretéf ! —
norm||v||z, by

(2.5) llv||% :/v2 dzr + Z h,g/v2 do,
Q K

KEFD

(2.6) Iolly = [ 190 dos 3 it [ 1o don

KEFp

whereh,, is the diameter of and the integral o%v in (2.6) should be understood as defined
elementwise:

/ Vol?dz =" [ V()] da.
Q

TeT VT

Here we recall that, by definition, € S, is always continuous across each faceFgf but
that it can be discontinuous across any fac&gfln the above definition, the junip] across
eachx € F, is defined as

[v] = v1 — Vo

wherev; = v|,, andr; andr; are the two (sub-)tetrahedra sharingWe note that by using
norm equivalence and a scaling argument (see also [13, &ime8rl]), we can show that
there exists a constaét > 0, independent of, such that

[vl1Z2() < Wlx < Cllvllie@) Yo € Sh.

We next introduce a discrete space of vector fields:
Locally H (div; Q)-conforming finite element space for the vector field:

(2.7) Vi ={V | V|, € P*()% V¥r € T; V - nis continuous across € F,}.

In the spac#’;,, we define two norms, the discre€-norm and the discretdl (div; Q)-norm,
by

(2.8) V1% :/ VIPde+ > hm/(V-n)Q do,
Q KEFp r

(2.9) V% :/(V-V)2 dr+ h,;l/[v-n]2 do
Q

KEFY ®
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where the integral ofV - V)2 in (2.9) is defined elementwise. We also recall that, by defini
tion, V' € V, has a continuous normal component across each«face,,.
In the definition above, the jumpy - n] on eachx € F? is defined as

[V-n|=Vi-n—-Vy-n,

whereV; = V| andr; andr; are the two sub-tetrahedra withas their common face.
One can prove, by an argument used in the proof of [13, The8t8mthat there exists
a constant’ > 0, independent of, such that

(2.10) V2@ < IVIX £C Vi YV €V
We next define

bh(U,v):/QU-Vvdx— > | U-npdo

KEFp 1
(2.11) - Z /vU-nda, UeV,veS,
REFNFO F
b;(u,V):—/uv-Vda:+Z w[V -n]do
@ REFOVFE
(2.12) + ) /uV-ndcr, uwe S,V eV

KEFUN\FY

We note that whemw andw in the above formulae vanish @2, the last term in both
br (U, v) andbj, (u, V') vanish.
According to Lemma 2.4 of Chung and Engquist [13], we have

(2.13) b(V,0) =bi(v, V), Y(v,V) €Sy x V.
Moreover, the following holds

(2.14) b(V,v) < [lollz [VIx, Y(v,V) € Sp X Vi
The Staggered Discontinuous Galerkin methodeads:

find (upn,Up) € Sp x Vi, such that
(215) (Uh, V)L;%(Q) — b;;(Uh, V) = O, VV e Vh
bh(Uh,’U) = (fv'U)L2(Q)7 VoveSy.

Here

1
U,V)p- :/ —U - Vdz.
( )L”(Q) o p(x)
Let B), and M, are matrices obtained frotp (V,v) and(U, V') 12 (g for functions in
(V,v) € Vy x Sand(U,V) € V), x Vy, respectively. Using thadt,(V,v) = b} (v, V),



TWO-LEVEL SCHWARZ ALGORITHMS FOR STAGGERED DG METHODS 7

the matrixB; corresponds to the bilinear forbj) (v, U) for (v,U) € Sy, x V;,. We can then
rewrite (2.15) as an algebraic system of equations:

(2.16) MU}, — Bluy, =0,
(2.17) BrUp = fn.

Since M, is symmetric and positive definite and block diagonal witraBrnlocks, we can
eliminateU;, from (2.16) to obtain an equation fag,,

(2.18) ByM; ' Bl up = f,

with a matrix which is symmetric and positive definite. Weraauce a bilinear form for
(u,v) € 8, x Sp,

a(u,v) == v" B,M,; 'Bifu
and use the notatioA to denote the matri)BhM,le,?,
(2.19) A:=ByM, "B}

We will develop two two-level overlapping Schwarz algonith for solving the algebraic
system (2.18).

In the design of the first preconditioner, we will build caatmsis functions related to a
nonoverlapping subdomain partition Qfsimilar to that of [17]. Let{2;} be a nonoverlap-
ping partition ofQ). For a given partition, we introduce local finite elementcgs

Vh,i = Vhla,, Shi = Shlas,

which are the restrictions of, andS, to the subdomaif®;. Associated with¥y, ;, Sy ;), we
introduce local bilinear formgy, ; andb’;lyl. by

(2.20) b.i(U,v) :/ U-Vodo— Y U -nv] do
2 KEF, N 7R
(2.21) b, i(u, V) = —/ uV-Vdr+ Z ul[V -n]do
£ KEFOMQ,; W
+ Z u'V -n; do,

KEFO MO, 77

wheren; is the unit normal t@€2; on . It can be seen easily that
(2.22) bni(V,v) = by, (v, V),

and that

QNV

bn(V,0) = bni(Via,vle,), b0, V)= b, Q)
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Let B; andB; be the matrices associated to the bilinear fobmsandb;, ;, respectively,
ie.,

(BiVla;;vla,) = bni(Vla,,vle,)
and
(Bivla,, Vla,) = bji(vla,, Va,)-
Here(., -) denotes thé*-inner product. Using (2.22), we have
B; =B
By introducingM;, the matrix associated to the bilinear form
(M;Ulg,, Vlg,) = (Ula;, Vﬂi)Lz(Qi)
andR;, the restriction frons, to Sj, ;, we can rewrite (2.15) as

(2.23) MiU;—BTRu=0, i=1,---,N,
(2.24) STRTBU =Y RTf;,

K2

whereUs ; is the restriction olJ to €2; and f; is given by

(fi,v

;) = (f,v)r2(0,)-

SinceM; are invertible, by (2.23) and (2.24), we can obtain the algietequation (2.18) by
assembling of local matrices:

(2.25) > RIB:M;'B/'Ru=> R

Here we note that € V), where functions can be discontinuous across each<faeeF,,.
We introduce the notatiod; for
A; = BiM;'B}.
and we introduce a bilinear form defined 8p; x Sp, ;,
(2.26) ai(ug, v;) = (Aug, v;).

3. Atwo-level overlapping Schwarz algorithm. We consider a nonoverlapping parti-
tions of(2, which is denoted by(2; }. The nonoverlapping partition can be obtained from the
original triangulatiorif,, provided for(2, e.g., by using a mesh partitioner; the subdomains in
the resulting partition may then have quite irregular baries. The interfacE is defined by
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(Ui 0 N O \ 09, andI'” is the set of nodes that belong to the boundaries of at least
two substructures.

We introduce an overlapping partitidif2’ } of 2 and each subregio®; is associated
with finite element spacek;, (€2;) andS; (}), which are the restrictions af;, and S, to
the subregion2’;. Here the superscriptindicates that the functions lﬁﬁ(ﬂ;) vanish on the
boundary ofY’.

A bilinear form is introduced fotu, v) € S} (€)) x Sp(€)), by

T —1pT
aq;, (u,v) :==w Bh,Q;MQ/j Bhﬂ;u,

whereB,, o/ is the matrix obtained frory, (U, v) for (U, v) € Vi,(2)) X SpH(9)) andMS;;I
is the inverse of the weighted mass matrix obtained fi(dm V)Li(g) where (U, V) €
Vi (€2)) x Vi (€2)).

To simplify the presentation, we will use the notatidhito denoteS,?(ij) and introduce
the trivial extension by zero

R} : V] = 5.
A projectionP;, related to the subregid®’, is defined by
Pj = R} P},
whereP is obtained from
ag (Pju,v) = a(u,Rij), Yo e Vj.

We now construct the coarse spdgebased on the nonoverlapping partitiof; }. Let
F;; denote the common face (edge) of two subdom&inands?; in three (two) dimensions.
On eachF;;, we define a face (edge)-based functﬂi@j (z) as follows. Forz € 9QF its
value is given by

1, =ze€ FZ
Fij(x) = hy =h
0, zel™\F.

We extend these interface values to the interior by a mingnargy extension with respect
to the seminorna,; (v, v;)/? defined in (2.26). Here we use the supersckip stress that
Sy, is defined by piecewise polynomials of orderForx € ﬁf we defineegjz (x) similarly.
We then extend it by zero to the rest@fas an element of},.

We can now obtain the space of coarse basis functions,

The projectionP, is then defined by

a(Pou,v) = a(u,v), Yv eV
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and the two-level overlapping Schwarz operator is given by

N
Poe=)» P
j=0

4. Estimate of the condition number. We will now provide a bound of the condition
number of our first two-level overlapping Schwarz algorithBee [29, Chapter 3] for this
algorithm and theory in the standard conforming case.

For the upper bound, we obtain

a(Pasu,u) < (14 Noa(u,u),

where V.. is the number of colors required to color the overlappingegions in{(2’} so
that no two of them have the same color.
For the lower bound, we will prove that for some decompositbu € Sy,

N
T
U= ug + g R uj,

j=1
with ug € Vp andu; € V}, the following inequality holds

N

a(ug,uo) + Y aqy (uj,u;) < Cia(u, u).
j=1

The condition number of,, is then bounded by
#k(Pas) < (14 N.)CE.

In our theory, we need an assumption on the nonoverlappindcsnain partition{<2;}. A
domain) is starlike if there exits &g € Q2 and a constant > 0 such that

4.1) (x —x0) -n>cHg, VxeOoQ,

wheren is the unit normal t@®? atx.

ASSUMPTION4.1. Each subdomaif; satisfies the Poincé&rinequalities and the star-
like property, and the number of tetrahedra along each ed@k @ proportional to( H /)42,
With the above assumption on each subdomain in the nong@génig subdomain partition,
we will prove that

H - C
c;<cC <1 + 7) (1 + H? dn;ixwmj@p(m) ,
Wheree%w is a linear conforming face function with the boundary value

1, IEFZ}-

4.2 0% (x) =
( ) F,,J() {07 Ierh\ﬂ};7
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and which minimizes thél'-seminorm on a spadé,. HereV}, is the space of linear con-
forming finite element functions on the given initial triarigtion 7,,. We note thaﬁCFij is
needed only for the theory.

We recall the following properties far, (V', v) andb (v, V) (see [12, 13]):

(4.3) br(V,0)] < [Vl 4 [lv]lx,
(4.4) b (V,0)| < [V x [[v]l 2,
and

. by (v, V)
4.5 inf sup —"—2 >3,
45 v 22 Tolx VI,
(4.6) inf sup Vo0 g

vESKL VY, m B

wheref is a positive constant independentoénd H.
We note that using (4.4) and (4.6), we obtaindog S},

c(p)B2|lullZ < alu,u) < C(p)llullZ,

wherec(p) and C(p) are positive constants depending pfx). Similarly, we obtain for
u; € Sh,i

(4.7) B pilluillz, < ai(us, us) < Cpillui|,,

where

||U1H221 = /Q |Vul-|2dar—|— Z h;l/[ui]st

KEFp (N Qi

andc¢ and C are positive constants, which do not dependp¢n). Here we assume that
p(z) = p; for z in Q; wherep; is a positive constant.
Foru € H}(Q2), we have

ull z = |U|H1(Q)7
and for allu € H ()
(4.8) c(p)Blulip ) < alu,u) < C(p)|ulfy (o)-

We list some auxiliary results which will be useful in our &ysss.
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e Poincaré(-Friedrichs) inequalities (Brenner [8])

49 vl <C<Z 02y + S i / 2 ds + (/Q ds)2>.

TET KREF

(410)  [o]2,q) < C (Z o2y + S b / 2 4+ </F ds)2>.

TET KEF

e Trace inequality (Feng and Karakashian [22, Lemma 3.6])
(4.11)

01200y < C <H51||U|%2(Q) + Ho <Z 01y + D /MQ dS)) :

TeT KEF
Let Qs be the thin layer of2 which consists ok € €2 such that digtx, 9Q2) < 6.
e Generalized Poincaré inequality (Feng and Karakashianj@mma 3.7])
(4.12)

Iellzz o, < C5 (Hglwuizm) + Ho (Z ol + o At [ m?ds» .

TET KEF

We note that these results hold for any piecewise polynofaraition« given in terms
of a partition7 with F, the set of all interior faces (edges)7n In our caseF is the union
of 7, andF2. T is a measurable subset@f with a positive(d — 1)-dimensional measure.
Hgq andh,, denote the diameter of the domdiandx, respectively.

The inequalities in (4.9) and (4.10) hold for aftywhich satisfy the standard Poincaré(-
Friedrichs) inequalities. The inequalities in (4.11) a#d R) hold for any bounded polyhedral
domain which is starlike. The constafitin (4.11) depends on the constanappearing in
(4.1), the definition of the starlike property. We note thateed not be convex. The result in
(4.12) is a general version of Lemma 3.10 in [29]. In our tlyethrese results will be applied
to each subdomaif;.

For a given function: € S, we consider

(4.13) ZUF” o) ()

wheretr,; is the average of over Fyj, i.e.,

fFij u(x(s)) ds

(4.14) Ur,, =
f F 1ds

We note tha19 (k) ( (s)) = 1 onF;;, while the coarse basis functiof, (« ) of the standard
conforming flnlte elements vanishes at the boundary of tbe, fand thaﬂ sat|sf|es

Z 9%?( )=1forallz € Q.
Fijcaﬂi
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Let I be an interpolant of € H'(T), which is a space of piecewigé!-functions in
T, to S5, which satisfies

/(Ihv—v)quZO, Vq € P*(k), VK€ F?,
(4.15) ;
/(Ihv—v)qu:O, Vge P (1), VreT.

We note that'"v satisfies, see [13],
(4.16) "0\ g1(ry < Clolpa(ry, Yo € HY(T).

We prove the following lemmas, which will be used in our aisédy
LEMMA 4.2.Forv € HY(T), we have

11"v]z < Cllv]|z-

Proof. We will show that
11" — ||z < Clv]| 2.

By the definition off| - || z-norm and the inequality (4.16), it suffices to prove that
S bt /[m — W2 ds < C|lu|3.
KEFp f

For a givens € F,, let 1 andm, be the two (sub-)tetrahedra which shard_et w; be the
restriction of/"v — v to 7; for i = 1, 2. By a trace inequality, we obtain

Jitro—ods <C 3 (e il + bl r)
K i=1,2
From (4.15)w; has a zero average over any fagee F° of r; and by applying a Poincaré(-
Friedrichs) inequality

[will22(ry < ChZ, Jwil Fi 7,9,

and the following bound is obtained

/[Ihw —v?ds < C Z o, | T — ”ﬁll(n)-
o i=1,2
Combining the above inequality with (4.16), we obtain

Z ht /[Ihv —v]?ds < C Z |U|%{1(T).

KEFp TET
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LEMMA 4.3. With the assumption that the number of tetrahedra along egde of;
is proportional to(H/h)?~2, the coarse basis function satisfies,

k — c
16%11% < CH2 + 165, 31 ()

forall & > 0, wherefy, (x) is the standard linear conforming face coarse basis fumctio

Proof. We assumé& > 1 and later extend the result to the cése: 0. LetV;; be the set
of all triangles in the initial triangulatioff,, that have a non-empty intersection witf’;;.
We definedy (x) by

~(k
9}3

(k) gy
(@)l ={ Ory @l T EVy

0%, (z)|-, otherwise.

Since the number of triangles Irj; is proportional toH /h and to a constant faf = 3 and
d = 2, respectively,

|é%2 - 9%” |?{1 () S Oh’d72
forar onVj; andx in F, () 7 and
L a0 . _
85 =65 e < Ch2,
we obtain
Ak ¢ _

We note tha@%jz, (z) has the same boundary dataﬁéi@j (). Using thatz, |10 = [16%,, 1|2

and tha’f);@ o, minimizes the norna; (-, -)'/2, which is equivalent tg; || - || z,, we obtain

k S(k
169 1% < 1169112

<C(H2 4105,

2

A

2

1,9) -

Fork =0, we consideihegz_ , wherel" is the interpolant from a piecewigé' -function

(4.17) e (Hd_2 + 165,

in 7 to Sy, with £ = 0. Using the stability of the interpolant of Lemma 4.2, we dbta

2
7.

0 1
% 2 <06y

2 < |05

The above inequality combined with the result 0P 1 shows that the result also holds for
the casé = 0.0

LEMMA 4.4.With the assumption that the subdomdihsatisfy the Poinca inequality
and starlike property, the, in (4.13)satisfies

a(uo, u0) < Calu, u) (1 + H*max |05, 3).
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Here C' depends on the Poincaiand the starlike parameters of the subdomains.
Proof. We consider

a(u — uo, u — ug) = Zai((u = uo)la,; (u — uo)le,)-

3

Let R; be the restriction t6);. ThenR;(u — ug) = (u — uo)|q,. Each term above is bounded
by

a; (Rl (u — Uo), Rl (U — Uo)) S 2ai(Riu, RZ’UJ) + 2ai(Riu0, Rl’UJQ)

IN

C | ai(Riu, Riw) + > Uf, ai(Ribp,, RibF,)
Fijcaﬂi

2
Z

(4.18) < Clai(Riu, Rw)+ Y g, pillfr,
Fijcaﬂi

Here we use the inequalities in (4.7).
For the termﬂ%ﬁ , We obtain by applying (4.11) t9;

_ 1
(4.19) w?ds <C | H | |ulfno, + Z h Nl 2 | + EHUH%%QQ
Fij K€ N Fp

Using the fact thats — v, is invariant to a shift by a constant and applying the Poiacar
inequality (4.9) to the bound above , we obtain

(4.20) g, <CH ™ [ |ulfngy+ D hetllulllfze
K/EQT',m]:p

Combining (4.18) with (4.20), we get

ai(Ri(u—uo), RZ(U—UO)) S C ai(Riu, Rlu) + Z pZ”R1U|
F;jCOQ;

2
zZ

2ZI,HQ_d max |0,
Fij

and by the boun¢i||Riu|\2Zi < Ca;(R;u, Riu), see (4.7), we finally obtain

@.21) ol uo) < € (1+ 1y s, 13 ) ),

We now turn to the bounds for the local components. {&t be a partition of unity
provided for{2;} and wherd); € RV, with |V6;| < C/d and letu; = I"(0;(u — ug)) €
R;FVJ/, wherel" interpolates intc5), as defined in (4.15).

We obtain
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THEOREM 4.5. For u € S;, when subdomaing; satisfy Assumption 4.1 there is a
partitionu = Z;V:() u; which satisfies

N
H
alun )+ 3 amy (g 5) < € (14 ) (14 1m0, B o ) )

j=1
whereC' depends on the Poincaiand starlike parameters of the subdomains and the number
of colors N, and#; () is the standard linear conforming coarse basis functionrafiin
(4.2).
Proof. We letw = u — ug and then let
Uj = Ih(ejw) € Sh.

We consider

auj, u;) < CY pilluy]

7. <CY pillbuwl,
%

< CZpi Z |9jw|§11(7) + Z bt /ﬁ[w]2 ds

TET N2 N KEF, MY N

(4.22) sczpi S Vol Y. wliem

TETNQ N TETNQ N

__— h;l/ﬁ[w]zds

KEF, N N

We consider the first term in (4.22):

1 1
Z IVO;w]|7, ) < 05—2 Z [wll72(ry = Cd—QHWHQLz(Q}&in)
TN N TN, N
(4.23)

1 _ _
§05—26 HQ;1||w|\§2(Qin)+HQ/j Z [wl g () + Z h 1/[w]2d8
e N KEFp N2 N2 o

Here(2’ ; is the union ofr € 7 whereV¢; does not vanish, and the bound (4.12) is applied
to Q./jﬁ ﬂ Q;.
For the term|w||7, o A q,)» We use the Poincaré-Friedrichs inequality (4.10)
Aple”

2
lolZeioy < 0@ [ 3 byt 3 h;1|[w1||%2<ﬁ>+(/r wds)

TEQ ~€Q N Fyp
By choosingl’ = Fj;, we havefrwds = 0, see (4.13) and (4.14), and from a scaling
argument, we obtain

Jw[|72(0,) < CH? Z Wl (1) + Z h=H I [w[I7, e
TEQ; KEQ; N Fp
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Summing (4.23) ovei combined with the above bound and assuming flfkas_t is com-
parable to the diametdf of the(;, which intersectﬂ}, we obtain

(4.24)
H _

DDVZIED DI ) 2 A=Y L SN N SN 1 S S A [ ([ 08

i TeT N2, N i, N 2,0 €T N KEFp N

Here we note that the sum on the right hand side runs over belgubdomaing); which
intersect the subregid®;. Summing (4.22) ovef combined with (4.24), we finally obtain

429 Salusu) < (1 s %) > pilRl, <€ <1 " %) alw, w),
wherew = u — ug. The bound in Lemma 4.4 then completes the prof.

REMARK 4.6. The above result holds for quite general subdom&inavhich satisfy the
standard Poinca&(-Friedrichs) inequalities and the starlike property,dahas a number of
tetrahedra across each edge proportional#/h)9~2. The resulting bound depends on the
energy of the linear conforming coarse basis functiﬁiﬂ; (z). In the standard case, when
Q; is tetrahedral ¢ = 3) and rectangular or triangular4 = 2), we have

. _ H
105, 131 () < CH? (1 + log W) ;

whereC' is a positive constant independent of any mesh parametezsals note that for
John domain$; in two dimensions the above bound was proved in [25]. We [&{e23, 10]
for the definition of John domains. John domains satisfy &ofminequalities but they do not
in general have the starlike property. Instead of the traweguality in(4.11) we can apply
the Sobolev inequality

H
—2 < 2 < . 2
up,, < gggﬂu(xﬂ <C (1 + log h) | Riul 7,

to get the bound

H\? H
a(ug, ug) + ZJ: agy;, (uj,uj) < <1 + log ﬁ) (1 + 7)

for the two-dimensional case whéeh are John domains, see [17]. Here one additional log
factor comes from the Sobolev inequality. We refer to soiwentavorks [30, 18] for theory
of domain decomposition methods on quite general subd@main

In the three dimensions, with an assumption thaare Lipschitz, we obtain the follow-
ing result:

LEMMA 4.7. For a Lipschitz); in three dimensions, there exists a functiéfh <
Vii () H!(£2;) with the bound

. H
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Proof. LetV = {z € Q; : dist(z, F) < sinadist(xz,dF)}. Since(; is a Lipschitz
domain, we may seleet so thatF, := 9V \ F does not touclds?;.

Forx € V, we define
__ da(w)

di(z) + do(z)’

whered; (z) = dist(z, F') anddz(x) = dist(z, Fy), and where we extend(z) by zero for
x € ;\ V. We note that the construction of such a funciif§n) was first given by Dohrmann
in [18]. Letdyr(z) = dist(z, OF). We will show that forz € V, there existg > 0 such that

d(z)

dq(z) + dao(z) > cdop ().

Forx € V, let z; andzs be points onF' and F, such thatd; (z) = |z — 24| and
day(z) = |x — x2|. Letay, be points orOF such thatlyp(z2) = |z2 — ay,|. We then have

(4.26) dor(z) < | — ag,| < | — 22| + |22 — Agy]-

Sincex, € F5>, we have

1
— Q.| =d = d
|22 — ag, | or(x2) o 1(x2)

and by usingl; (z2) < |z2 — 21|, we obtain

|22 = ag, | < (lwg — | + |21 — =)

sin «

and from the bound in (4.26) combined with the above, we ptioat

(4.27) dor(x) < (1 n ) (dr(x) + do().

sin o

We interpolated(z) to the finite element space, ; () H'(€2;) and obtaind%.(z). We
note thatd%.(z) vanishes on the boundary éf. The functionf%.(z) satisfies the required
boundary condition, i.e., it has value one in the interiorfofand zero at the rest of the
boundary of2;. We will prove that

|9%|?{1(Qi) < CH(1+ log(H/h)).

By the construction, it suffices to consider all tetraheanzecingl’. For each tetrahedron
7 touching the boundary df', we have

1053 (r) < Ch,
and using that the number of such tetrahedi@(&/ /1), we obtain

(4.28) > 10%Hi ) < CH.
T OF#)
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For those tetrahedra not touching the boundar by using (4.27) combined with

1
VORI G
we obtain
1
dap(:l?)

and by integrating the above over all tetrahedra, which egygrom 0F by more than a

[VOR(z)| < C

mesh width, we obtain

(4.29) > 10513 () < CHlog(H/h).
TN OF=0

We complete the proof by using (4.28) and (4.29).

5. Coarse problem from an additional coarse triangulation. By introducing an addi-
tional coarse triangulation and an alternative coarseespae can obtain an alternative often
better bound,

a(uo, uo) < C(p(x))a(u, u),

which results in

N
a(ug, uo) + ZaQ;_ (uj,u;) < Clp(x)) (1 + %) a(u,u).
j=1
However,C(p(z)) may depend op(x).

Let 7y be the additional coarse triangulation. Here the subdosnmaed not be a union
of triangles inTy but we need the assumption that any subdomain diameter igaraivle to
the diameters of the triangles which intersect it. The umiball the coarse triangles iy
need not be&). However, the union is required to contain the pard®¥, where Neumann
boundary conditions are enforced, and to occupy a signiffgant of(2. In addition, no coarse
triangle is located entirely outside. We refer to [11] for details.

Let Vi be the linear conforming finite element spacefnand I/ be the interpolant
into Vy defined by

1
IHu)(z) = ——— udz,
U te) = e e J

wherekK] is the union of coarse triangles with as one of their vertices angj; is the subdo-
main containing the node, see [29, Section 3.5] and references there in. We therdinte

ug = j}}([}?u) € Sh,
Wherej,’} is the interpolant fromV/y into Sy, i.e.,

(Tg) (1) = v().
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Sinceug € H}(Q), we have

a(uo, uo) < C Y pill Rouoll%, = C D pil Rito[3p1 o

= ZpilRJf}ffM?ﬂ(m) =< Czpiuf?“@ﬂ(m)
(5.1) < Clp()) Y pill Riul %,

< C(p(x)) Y. ai(Riu, Riw) = Clp(x))a(u, u)
where R; is the restriction to the subdomai, and the inequality (5.1) can be proved in
a way similar to that of the proof in [24, Lemma 9] and by usihg Poincaré-Friedrichs
inequality (4.10). Here the constafifp(z)) is determined by

maxq. i
Clp(z)) < max Haxo, N ki Pi

o eNH ming, Mk, 20 Pi

where N7 is the set of all nodes in the coarse triangulatjofi and & is the union of the
coarse triangles witly; as one of their vertices.
We note that the preconditioner is of the form,

ThAG (T + Y RIAT'R;,
where
Ay = (TWMTATE, A; = RTAR,,

where R; is the restriction td2; and A is the matrix in (2.19). When the subdomains are
unions of triangles iV, the preconditioner is the same as the one in [6].

6. Numerical results. In this section, we present numerical tests of our two-18eblwarz
algorithms for the model elliptic problem (2.1) witha unit rectangle in two dimensions.

We partition€? into uniform triangles of mesh sizk and then divide each triangles
into three subtriangles. The domdinis then divided into nonoverlapping subdomains so
that each subdomain is a union of triangles before the sidialiv By construction, the
test functions inS;, are continuous across each edge on the subdomain boundaoyr |
experiments presented in Tables 1-5, we thake 0 in the definition ofS;,. The overlapping
subdomain partition for the local solver is obtained by egtag each subdomain with a given
overlapping widthy. For the second type of the coarse problem, we consider boittsred
and unstructured coarse triangulations. In the structooagse triangulationi?> means that
the square domaif is partitioned intat x 4 uniform rectangles and each rectangle is divided
into two triangles, and in the unstructured coarse triaaigm4? means that the size of each
triangle is comparable to digifl) /4 where dianiQ?) is the diameter of2. The triangles in
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TABLE 1
Performance of the algorithms with the two types of coarsblems (method1 and method2) and an increasing
number of subdomaind with a fixed local problem (H/h=4) and with = h: the number of iterations is lter, the
condition numbers:, the minimum eigenvalues,,;,, , the maximum eigenvalues,,q.

methodl method2

N Iter K Amin | Amaz | Iter K Amin | Amaz
42 18 | 7.12 | 0.660 | 4.70 17 | 6.09 | 0.698 4.25
82 21 | 890 | 0.533 | 4.74 18 | 6.15 | 0.691 4.25
162 23 | 9.66 | 0.492 | 4.75 17 | 594 | 0.715 4.24
322 24 | 985 | 0.482 | 4.75 17 | 591 | 0.718 4.24

TABLE 2
Performance of the algorithms with the first type of coarsebfgm (methodl) and the second type of coarse
problem (method2) and an increasing local problem gizéh with a fixed subdomain partition = 42) and with
a fixedH/é = 2: the number of iterations is Iter, the condition numbersthe minimum eigenvalues,, ., the
maximum eigenvalues,, q

methodl method2

H/h || lter K Amin | Amaz | Iter K Amin | Amaz
2 14 | 5.06 | 0.984 | 4.98 15 | 5.38 | 0.894 4.81

16 | 5.12 | 0.958 4.90 16 | 5.19 | 0.911 4.72

17 | 532 | 0919 | 4.89 17 | 5.26 | 0.893 4.70

16 18 | 5,52 | 0.888 | 4.90 17 | 5.29 | 0.886 4.69

the unstructured coarse triangulation may not be uniondasfdles in7 while those in the
structured coarse triangulation are unions of triangleg.inn the CG (Conjugate Gradient)
iteration, we stop when the relative residual norm has dedgqy a facton 0.

In Table 1, we present results for the algorithms with thetiypes of the coarse problems
with an increasing number of subdomains, a fixed local protdize, and a fixed overlapping
width. We observe stable behavior of the condition numbadsiteration counts for both
types.

In Table 2, we present results for the algorithms with the firel second type of coarse
problems by increasing the local problem size with a fi¥gt) and a fixed subdomain par-
tition. With an increase in the local problem size, we getramease in iteration counts and
condition numbers for the first type of the coarse problemthedesult seems to agree well
with our bound,C(1 + H/6)(1 + log(H/h)). For the second type of coarse problem, we
observe that the behavior does not depend on the local pnadiiee whenH /¢ is fixed.

In Table 3, we present the performance of our methods withingroverlapping width
0 with a fixed local problem size and a fixed number of subdomaitis observe a linear
increase in the condition numbers of the preconditionetesys regarding tdi/§ for both
types of coarse problems. The results agree well with owrétieal bounds.

In Table 4, we present tests to show the performance of ouradstwith respect to jumps
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TABLE 3
Performance of the algorithms with the first type of coarsebfgm (method1) and the second type of coarse
problem (method2) with an increasing overlapping widthith a fixed subdomain partition\| = 42) and local

problem size H/h = 16): the number of iterations is Iter, the condition numbersthe minimum eigenvalues
Amin, the maximum eigenvalu@s,, q »

method1 method2

H/§ || lter K Amin | Amaa | Iter K Amin | Amaz
16 29 | 1859 | 0.241 | 4.47 24 | 1252 | 0.321 4.02
8 23 | 12.44| 0.370 | 4.61 20 | 7.54 | 0.538 4.05

19 | 857 | 0554 | 4.75 18 6.05 | 0.696 4.21

2 18 | 5.52 | 0.888 | 4.90 17 5.29 | 0.886 4.69

TABLE 4
Performance of the algorithms with the first type of coarsgbfgm (methodl) and the second type of coarse
problem (method?2) with respect to jumps in the coeffigi¢m)). The overlapping widtld = h, subdomain partition
N = 82 and local problem sizéf/h = 4: the number of iterations is Iter, the condition numberghe minimum
eigenvalues\,, ;», the maximum eigenvalues,,q.

method1 method2
Pi Iter K Amin | Amaz | lter K Amin | Amaz
10-6 21 | 9.30 | 0.509 | 4.74 20 | 11.55| 0.373 4.31
1073 21 | 9.29 | 0511 | 4.74 20 | 11.45| 0.376 4.31
1 20 | 951 | 0.498 | 4.73 16 6.18 | 0.693 4.29
103 20 | 855 | 0.554 | 4.74 33 | 65.64 | 0.066 4.34
106 21 | 8.68 | 0.546 | 4.73 38 | 78.75| 0.055 4.34

in the coefficienp(x). In our testsp(x) = p; on the subdomains located at the diagonal in a
8 x 8 uniform partition anch(z) = 1 at the other subdomains. From the results, we see that
the condition number of the preconditioned system arisingfthe first method, the coarse
problem of which is defined by face basis functions, is ingeso the jumps inp(z), while
the condition number of the method with the second type ofsproblem increases very
slowly with increasing jumps ip(z).

In Table 5, we test our methods regarding the choice of cdaiesmgulations. In the
structured one, each coarse triangle is a union of trianglés and the coefficienp(x)
is constant in each coarse triangle. On the other hand, imnbk&uctured one, the coarse
triangles may not resolve jumps in the coefficiefit) and they may not be unions of triangles
in 7. We observe quite good performance in the unstructuredsedaangulation but the
results are a little more sensitive to jumps in the coefficigmn).

In Tables 6-8, we present the performance of the method WéHitst type of coarse
problem forS;, with piece-wise linear polynomialg (= 1). For this higher order case, we
also observe good performance similar to that for the gased.
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TABLE 5
Performance of the algorithm with the second type of coareblpm with respect to jumps in the coefficient
p(z) in the structuredTz and in the unstructured@z . The overlapping widtd = h, subdomain partitionV = 82
and local problem sizé&l /h = 4: the number of iterations is Iter, the condition numberghe minimum eigenvalues
Amin, the maximum eigenvalues,, q »

structured7 g unstructured/

Di Iter K Amin | Amaz | lter K Amin | Amaz
10~ 20 | 11.55| 0.373 4.31 19 | 11.01 | 0.390 4.30
10-3 20 | 11.45| 0.376 4.31 19 | 10.91 | 0.394 4.30

1 16 6.18 | 0.693 4.29 15 5.52 | 0.750 4.14
103 33 | 65.64 | 0.066 | 4.34 | 38 | 76.81| 0.065 | 4.95
106 38 | 78.75| 0.055 4.34 45 | 99.60 | 0.050 5.00

TABLE 6
Performance of the algorithms with the first type of coarsebfgm andk = 1 for increasing number of
subdomaingV with a fixed local problem (H/h=4) and with = h: the number of iterations is lter, the condition
numbersx, the minimum eigenvalues,,;, , the maximum eigenvalues,, . »

N Iter K Amin | Amaz
22 15 | 6.52 | 0.696 | 4.54
42 22 | 11.07 | 0.429 | 4.75
82 27 | 13.02| 0.367 | 4.77
162 || 28 | 14.47| 0.330 | 4.78

TABLE 7
Performance of the algorithms with the first type of coarsebfgm andk = 1 for increasing the overlapping
width 6 with a fixed local problem (H/h=16) and with a fixed subdomaartition N = 42: the number of iterations
is Iter, the condition numbers, the minimum eigenvalues,,;, , the maximum eigenvalues,, ¢

H/S§ || lter K Amin | Amaz
16 33 | 21.48 | 0.213 4.58
8 29 | 17.56 | 0.267 4.70

25 | 13.53 | 0.356 4.81

2 18 8.48 | 0.581 4.92

TABLE 8
Performance of the algorithms with the first type of coarsebfgm andk = 1 with respect to jumps in the
coefficientp(z). The overlapping widtlh = h, subdomain partitionV = 82 and local problem sizéf/h = 4:
the number of iterations is Iter, the condition numbershe minimum eigenvalues,,;,, , the maximum eigenvalues

>\77L(L(L'

pi Iter K Amin | Amaz
1076 || 24 | 13.40| 0.356 | 4.77
1073 || 24 | 1341 | 0.356 | 4.77
1 24 | 13.99| 0.341 | 4.77
103 24 | 11.69 | 0.408 | 4.77
108 23 | 11.68 | 0.409 | 4.77
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