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Abstract

The Reissner-Mindlin plate theory models a thin plate with thickness ¢. The
condition number of finite element approximations of this model deteriorates badly
as the thickness t of the plate converges to 0. In this thesis, we develop an over-
lapping domain decomposition method for the Reissner-Mindlin plate model dis-
cretized by Falk-Tu elements with a convergence rate which does not deteriorate
when ¢ converges to 0. We use modern overlapping methods which use the Schur
complements to define coarse basis functions and show that the condition number
of this overlapping method is bounded by C(1 + Z)3(1 + log#)?. Here H is the
maximum diameter of the subdomains, ¢ the size of overlap between subdomains,
and h the element size. Numerical examples are provided to confirm the the-
ory. We also modify the overlapping method to develop a BDDC method for the
Reissner-Mindlin model. We establish numerically an extension lemma to obtain
a constant bound and an edge lemma to obtain a C(1+log4!)? bound. Given such
bounds, the condition number of this BDDC method is shown to be bounded by
C(1+ logi)2.
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Chapter 1

Introduction

1.1 An Overview

When we solve an elliptic partial differential equation (PDE) numerically, we
first need to discretize the problem using finite element, finite difference, or other
methods. After discretization, we have a large sparse linear system to solve to get
a numerical solution. Typically, accuracy of approximated solution from discrete
methods depends on the mesh size, denoted by h. As the mesh size decreases, we
can get a more exact numerical solution, but the linear system to solve becomes
larger and more ill-conditioned. Therefore, we need to precondition the linear
system so that the preconditioned system has a smaller condition number and
converges to the solution faster when using Krylov space methods.

Domain decomposition methods give scalable and efficient preconditioners that
can be used with Krylov space methods and parallel computers. In domain decom-
position methods, we divide the original domain into many smaller subdomains so
that we can solve a smaller linear system of each subdomain using direct solver
separately. If we use only local solvers, information can be exchanged only between
neighboring subdomains in each iteration. By also using a coarse solver, which has
only few degrees of freedoms per subdomain, we can prevent the condition number
of preconditioned system from increasing for many subdomain cases.

Domain decomposition methods can be categorized into two classes: over-
lapping Schwarz methods and iterative substructuring methods. In overlapping
Schwarz methods, we use overlapping subdomains with an overlap J and get better-
conditioned methods with larger §. In iterative substructuring methods, we reduce
the space of unknowns to the space of interface unknowns by eliminating the un-
knowns in the interior of subdomains resulting in Schur complements. We will
concentrate on BDDC (balancing domain decomposition methods by constraints)
methods in this thesis.

We consider Reissner-Mindlin plate theory which has been developed to de-



scribe the behavior of a thin plate under exterior force. We describe the displace-
ment of the plate by three variables: one displacement variable and two rotations,
after a reduction of dimension, see subsection 3.2.1. If we use naive standard low
order polynomial elements, the finite element model can suffer from locking prob-
lems. There are now many good finite elements developed on Reissner-Mindlin
plate theory, which avoid this problem.

There are a number of studies which develop preconditioners for the Kirchhoff
plate problem, see [13, 15, 14, 33, 39]. [33] and [39] can be extended to the Reissner-
Mindlin plate problem for elements which are spectrally equivalent to Kirchhoff
plate elements. For MITC element approximation of the Reissner-Mindlin plate
problem, a BDDC method has also been developed, see [8].

In this dissertation, we develop overlapping Schwarz methods on Reissner-
Mindlin plate theory by finding proper coarse basis functions. There is relation
between the displacement variable and rotations, and we use this relation to get
good coarse basis functions. We then modify overlapping Schwarz methods to
a BDDC method using primal constraints of BDDC methods which are related
to the coarse basis functions of the overlapping Schwarz methods. We developed
methods which are independent of ¢ for small ¢, quisi-optimal, and scalable.

We will first review some basic functional analysis tools, the conjugate gradient
method and mixed finite element methods.

1.2 Functional Analysis Tools

1.2.1 Sobolev Spaces

We assume that  is a Lipschitz domain in R? or R3. L*(Q) is the space of real
valued functions defined as

L2(Q):{u:QHR\ /u2dm<oo}.
Q
This is a Hilbert space with the inner product
(u,v)2(0) = / uv dax
Q
and an induced norm
lull 2y = ()20 = [ u* da.
Q

In the following when we say derivatives, they are weak derivatives as in [10,
chapter 2.1]. H'(Q2) C L*(Q) is the space of real valued functions which have first



order weak derivatives and satisfies

/uzdw<oo and /Vu-Vud:c<oo.
0 Q

This is also a Hilbert space with the scaled norm

2 1

where Hg is a diameter of the domain €; this scaling factor is obtained by dilation
from a region of unit diameter. The corresponding H'-seminorm is given by

Q

H}(Q) is the closure of C§°(Q) in H'(Q) with respect to the H'-norm. In HJ (),
the H'-norm and H!'-seminorm are equivalent.
Similarly, we define H?() as the space with functions that have bounded L?
norms and L? bounded first and second order derivatives.
We also define the divergence of a vector-valued function w with two or three
components by
"L Ou,

i =V .-u= 1.1
divu:=V - u ;8% (1.1)

where u; is the i-th component of u. H/(div,Q) C L*(Q)" is the space with the
inner product given by

(u,v)diVQ:/divu divvda:—l—%/u-vdw.
’ Q Hg Jao

We note that H1(Q)" C H (div, ). We define the curl of the scalar-valued function
p and the rotation of the vector-valued function u with two components by

2 Ouy 0
curl p := < B g2 ), rota = o2 — 20 (1.2)

P
Ox1

Similar to H (div, Q), H (rot, ) C (L*(Q))? is the space with the inner product

1
(u,’u)rotQ:/roturotvdac—l——2/u-'vdac.
7 Q Hg Jo



1.2.2 Trace and Extension Theorems

Let 2 be a Lipschitz domain in R™, n = 2,3, and I" be an open subset of 0f)
with non-vanishing (n — 1)-dimensional measure.
We define the H'/2(T)-seminorm by

2
a2 ://Mdmy
||H/(F) rJr |z —y["

where n is the dimension of Q. With the H'/2(T')-norm defined by

1
2 2 2
el a2y = |wlgpaery + I Nl »

H'2(T") is the space of functions which have bounded H'/?(I")-norms.

Lemma 1 (Trace theorem). Let €2 be a Lipschitz domain. Then, there is a bounded
linear operator o : HY(2) — HY2(0Y) such that you = u on 98 if u is continu-
ously differentiable.

We also have the extension theorem.
Lemma 2. Let Q be a Lipschitz domain. Then, there exists a continuous lifting
operator Rq : HY2(09) — HY(Q) such that vo(Rou) = u, u € HY/?(0Q).
1.2.3 Poincaré and Friedrichs Inequalities

In domain decomposition theory, Poincaré and Friedrichs inequalities are pow-
erful tools for the analysis. See [41] for a proof of the following theorem.

Theorem 1. Let €2 C R”™ be a bounded Lipschitz domain and let f;,i =1, ..., L, be
linear functionals in HY(Q), such that, if v is constant in €,

L
DM@ =0 < wv=0

Then, there exist constants, depending only on §2 and the functionals f;, such that,
foru € HY(Q),

L
2
ull L2y < Chlulin o) + Cs Z | fi(w) .
=1

From Theorem 1 and simple scaling arguments, we have Poincaré and Friedrichs
inequalities which will be used many times in our proofs, cf. [47, chapter A .4].



Lemma 3 (Poincaré and Friedrichs Inequalities). Let @ C R™ be a bounded Lips-
chitz domain with diameter H. Then, there exists a constant C, that depends only
on the shape of Q) but not on its size, such that

—112
|Ju — u||L2(Q) < CngZ|u|%{1(Q)

for Yu € HYQ). Here u is the mean of u over Q. Similarly, if T C 9Q has
nonvanishing (n-1)-dimensional measure and a diameter of order Hq, then

2 2
HUHL2(Q) < C2H§22|U|§{1(Q) + C3Hq HUHL2(F)

for Yu € H'(Q).

1.3 The Conjugate Gradient Method

We can solve a sparse linear system using Krylov space methods. Especially if
we solve a symmetric positive definite problem

Au = b,

where A is a symmetric positive definite matrix, we can use the Conjugate Gradient
method. For more detail, see [47, chapter C] and [48]. The Conjugate Gradient
method is given as follows:

1. Initialize: r° = b — Au?
2. Iterate kK = 1,2, --- until convergence

BE =< bl kol s ) k2 k2 S gl
pF = Rl 4 gl [t = p0)
ok =<kl phl s f gk Apk >
uk = ub=1 4 akph
k= k=l ok Aph
We see that in this iterative method A is used only in a matrix-vector multiplication

and we do not need to construct A explicitly.
We define the A-norm as follows:

]|, = VaT Az,

Then, we have the following convergence lemma for the Conjugate Gradient method.



Lemma 4. Let A be symmetric and positive definite. Then, the iterate u* of the
Conjugate Gradient method minimizes ||u, — ul||, over the space

u® + span{Ar°, i =0,1,....k — 1}

where u, s the solution of Au = b and r° = b — Au’.
The Conjugate Gradient method also satisfies the error bound

HQA—l 0
L et L

where ko(A) is the spectral condition number of A.

As Lemma 4 suggests, the convergence rate of the Conjugate Gradient method
depends greatly on the condition number of A. If we can find a good precondi-
tioner M, a symmetric positive definite matrix with xe(M1A) << ko(A), we can
consider the modified linear system, which has a symmetric operator,

MYV2AMYV 2 = M~Y2b, v = MY ?u.

The algorithm of the preconditioned Conjugate Gradient method is given as
follows:

1. Initialize: r° = b — Au?
2. Tterate kK = 1,2, --- until convergence
Precondition: zF=! = M—1yk—!
BF =< bl gkl s ) o k2 k=2 5 (1 = (]
pr = 2Rl BRpEl [ph = 2]
abf =< AL pkl s <ph Apk >
uF = yF g afph
k= k=1 ok Aph
We have the following convergence lemma.

Lemma 5. Let A and M be symmetric and positive definite. Then, the precondi-
tioned Conjugate Gradient method satisfies

KQ(M_IA) —1

\/I{Q(M_lA) + 1

k

[ [ Ju ~ .

4 =2 A



Therefore, we need to find M which is a good approximation to A and is
computationally inexpensive when designing domain decomposition methods.

We can compute an approximation of the condition number of A when we use
the Conjugate Gradient method to solve the system. For more detail, see [30] and
[43]. From the coefficients of the Conjugate Gradient method, we can construct
the following symmetric tridiagonal matrix,

1/an —VBi/ =
JB = | —VBi/ar (az+ Bifon) —VBafaz - || (1.3)

Then, J* is a matrix representation of the restriction of the matrix A to the space
span{A? ¢ =0,1,...,k—1}. An approximation of the condition number of A can
be obtained from the condition number of J®*). The eigenvalues of J*) interlace
those of J**1) and an improved estimate of the condition number can be obtained
in each step. Extreme eigenvalues of J*) typically converge quite rapidly.

1.4 Mixed Finite Element Methods

In this section, we consider abstract mixed finite element methods for saddle
point problems. For more details, see [9, pp.34-41] and [10].

Let X and M be two Hilbert spaces and suppose that a(-,-) and b(-,) are two
continuous bilinear forms on X x X and X x M such that

|a(u, v)]

|b(v,7)]

We consider the solution of the following saddle point problem:
Given f € X’ and g € M’, find (u,v) € X X M such that

llal[ [Jullx [lollx , Yue X, Vve X,
|

<
< lbl[H[ollx V]l > Vo e X, ¥y € M.

a(u,v) + b(v,y) =< f,v >, YveX,
b(u,p) =< g,pu >, VYu € M. (1.4)

We have the following theorem on the existence, uniqueness and stability of the
saddle point problem. For a proof, see [10, chapter 3.4].

Theorem 2. [If there exists a constant o > 0 such that

a(v,v) > a||v||§(, VoeVi:={veX|bpu =0, Yue M}, (1.5)



and 3 > 0 such that
inf sup blo, 1) 2B, (16)
neM ex |[vl]x | pllar

then there exists a unique solution (u,~y) to (1.4) and the norms of the solution
satisfy

flle <o il 4o g,
bl <520+ + s b, o

(1.6) is called the inf-sup condition and the assumption of Theorem 2 is called
the Babuska-Brezzi condition. Next, we consider two finite element spaces X" C X
and M" c M. We then have the discrete saddle point problem as follows:

Find (u",4") € X" x M" such that

a(ul, v") b A" =< foh > Yol e X, (1.8)
bu, yhy =< g, ut > vuh e M. (1.9)

For the error bound of finite element methods, we have the following theorem, cf.
[10, chapter 4.3].

Theorem 3. Suppose the hypotheses of Theorem 2 hold and suppose Xy and M,
satisfy the Babuska-Brezzi condition with o > 0 and 8 > 0 which are independent
of h. Then, we have

vRE€EXp

=l +1ly = ully <€ (int = onll+ inf 1= ally ) (110

In some cases, such as in Reissner-Mindlin plate theory, we need to consider
saddle point problems with penalty terms. Suppose that in addition to the bilinear
forms a and b, we have

c:MxM—R, c(u,p)>0, Yue M,

which is a continuous bilinear form on M x M. We also will use a parameter t
which is a small real number. Saddle point problem with the penalty term has the
following form:

Find (u,7) € X x M such that

a(u,v) +b(v,y) = < fiv> WveEJX,
b(u, p) = t2c(y,p) = <g,pu>, YpeM, (1.11)
In this problem, we need the ellipticity of a on the entire space X, rather than
just on the kernel V' to get the stability of the solution. If we have the ellipticity

and an inf-sup condition, we then have the uniform stability and error bounds as
in Theorem 2 and 3 for all 0 <¢ < 1.



Chapter 2

Domain Decomposition Methods
and an Abstract Theory

2.1 Introduction

Overlapping Schwarz methods have been developed to solve numerical PDE
efficiently. One level additive overlapping methods were originally introduced by
Matsokin and Nepomnyaschikh [40] and Nepomnyaschikh [42]. They were im-
proved to more powerful two level overlapping methods in [25, 26, 27] and other
related papers. Modern overlapping methods using Schur complements were intro-
duced in [23] and [24]. They have been applied successfully in many fields other
than for the Poisson problem. With a large overlap, we can get a small condition
number for the overlapping methods.

The traditional overlapping methods are not suitable for the case where we
have jumps of the coefficients. Such a problem can have a bilinear form

/ p(x)Vu - Vudz
Q

where p(x) can vary over the domain. With proper scaling, iterative substructuring
methods can handle the jumps of coefficients successfully and the condition number
of operators do not depend on the change of coefficients.

Among iterative substructuring methods, the FETI-DP and BDDC (Balancing
Domain Decomposition by Constraints) methods are well known. In this thesis, we
mainly consider the BDDC methods. The BDDC methods were first introduced
by Dohrmann in [22] as a variant of the Balancing Neumann-Neumann methods
with an additional coarse level solver. It has now been applied in other fields as in
[34] and three-level BDDC methods have been introduced in [49] and [50].

In this chapter, we introduce the abstract Schwarz theory. We then introduce
the overlapping Schwarz methods and the BDDC methods for the Poisson problem



and give condition number bounds for them.

2.2 Abstract Theory of Schwarz Methods

We consider a finite dimensional Hilbert space W. Given a symmetric, positive
definite bilinear form a(-,-), we have a matrix representation given by A which is a
symmetric, positive definite matrix; see [47, appendix B|. Similarly, we can express
an element f € W’ as a vector. We then have to find u € W such that

Au = f. (2.1)
We consider a family of spaces W® i =0, ..., N with interpolation operators
R w® W, i=0,.., N,
and assume that W has the following decomposition
N
W => ROW0O. (2.2)
i=0
We next consider local symmetric, positive definite stiffness matrices
A9 WO S w® i =0,.. N,

with corresponding local bilinear forms a@(-,-). If A® = ROARD"  we say that
we use exact solvers. We then define projection-like operators

Pi=RO"ADTROA W - RO"WO c W, i=0,..,N, (2.3)
and if we use exact solvers, they are projections since
P2 = ROT A0 RO AROT A0 RO A — ROT AV AD A0 RO — b (2.4
The additive Schwarz operator is defined by

N
Pya=> P (2.5)
=0

and the symmetric multiplicative Schwarz operator by
Pmu=1— Enu, (2.6)
where the multiplicative error propagation operator Eyyy is defined by
Emuy=(I—Py)---(I=P)I=FR)I—-P)--(I—Py). (2.7)

For bounds of the condition numbers of the Schwarz operators, we need some
assumptions, cf. [47, chapter 2.3].

10



Assumption 1. (Stable Decomposition) A decomposition (2.2) is stable, i.e.,
N ~
Z u®" AWy < C2u” Au. (2.8)
i=0

The minimum eigenvalue of the additive Schwarz operator P, is bounded
below by C;?, see [47, Lemma 2.5].

Assumption 2. There exist constants 0 < ¢€; < 1,1 <14,5 < N, such that
\a(R(i)Tu(i), R(j)Tu(j))‘ < eija(R(i)Tu(i), R(i)Tu(i))1/2a(R(j)Tu(j)’R(j)Tu(j))1/2

for u® € W@ and u) € WO, We will denote the spectral radius of € = {e;;} by
p(E).

For a decomposition of W, we can color the subspaces {W® i =0,..., N} such
that if two subspaces W) and W®*) have the same color, then they are orthogonal,
ie.,

a(R(j)Tu(j)’ R(k)Tu(k)) =0, uDewd & ecw®,

We assume that we color the subspaces using N€¢ colors and can then show
p(E) < N°. (2.9)
Assumption 3. There exists w > 0, such that
a(RD"u® ROy @) < wa® (@ u@), u® € range(AD R A), 0<i< N.

Basic convergence theorems on the additive and multiplicative Schwarz opera-
tors can be found in [47, chapter 2.3]

Theorem 4. Let Assumptions 1, 2, and 3 be satisfied. Then, we have the following
bounds on the additive Schwarz operator and the multiplicative error propagation
operator Emaq:

R(Put) < CRolp(€) + 1),
2—w

Enu 2= I — Py, 2<1_
|| ||a || ||a— (8p(5)2—|—1)03

<1, if0<w<2.

2.3 Problem Setting

In this chapter, we mainly consider second order scalar elliptic problems on
a bounded domain 2 C R", n = 2,3. 0f) is the boundary of 2 and we impose

11



homogenous Dirichlet boundary conditions on 0€). The problem is to find u €
H}(Q) such that

/ p(x)Vu-Vuodr = / fodx, Yve Hj(Q). (2.10)
0 0

Here we assume that there exists a constant pg such that p(z) > po > 0.

Let 7y be a shape-regular coarse triangulation of 2. We decompose €2 into
N nonoverlapping subdomains €2;, ¢ = 1,..., N, with diameters H; and H =
max;{ H;}. We assume that each subdomain €2; is the union of elements of 7y and
that the number of such elements in €); is uniformly bounded. If 9€2; N 02 = @,
Q; is called a floating subdomain.

We also have a fine quasi uniform triangulation of each subdomain §2; with
mesh size h;. We denote max;{H;/h;} by H/h. We assume that p(x) is constant
in each subdomain €2; and denote its value by p;.

The finite element nodes on the boundaries of neighboring subdomains should
match across the interface I' := U,;.;0€; N 092;. We denote the space of finite ele-
ment nodes on the interface I by I',. We also define I';, the interface on subdomain
Q, by I'; :=I' 1 09, and denote the space of finite element nodes on I'; by I'; .
The interface can be partitioned into faces, edges and vertices in R? and into edges
and vertices in R?; see [47, chapter 4.2] for more detail.

We also define local bilinear forms and linear functionals by

a(i)(u,v) ::/ piVu - Voudz, f(i)(v):/ fvde, i=1,---,N. (2.11)
Q; Q;

2.4 Notation

In the following, W® is the vector space of values at the nodes in §;. Each
W® can be decomposed into the vector space of subdomain interior nodal values
and the vector space of subdomain interface nodal values, W® = Wj(i) &P Wr(i).
Wr(i) can be further decomposed into the vector space of primal nodal values and
the vector space of dual nodal values, Wp(i) = Wr(f) @WX). Terminologies of
primal nodal values and dual nodal values came from the FETI-DP methods. In
FETI-DP methods, we allow discontinuity for dual nodal values and ensure the
continuity using Lagrange multiplier. We choose few degrees as primal values on
each subdomain and the remaining interface nodal values are dual nodal values.
For more detail, see [35].

Associated product spaces, which allow discontinuity across the interface, are

12



denoted by

N
we=TIw®, W= W, W=,

i=1 i=1

N
Wi = [[ WY, and Wa =Wy
i=1 i=1
Therefore, we have W = W; @ Wr and Wr = W @ Wa.
The finite element solutions are continuous across the interface and we denote

the continuous subspace of Wr by /Wp and the continuous subspace of W by /W,
respectively. For BDDC methods, we need a larger subspace Wr C Wr, which can

be written by
N
/er = WA@WH = <H WX)) @/WH,

1=1

where /WH is the continuous, coarse-level, primal variable subspace. We will always
assume that the basis has been changed so that each primal constraint corresponds
to an explicit degree of freedom and W consists of functions with zero values at
the primal degrees of freedom.

We define several restriction and extension operators. Rra and Rrp are the
restriction operators from the space Wp onto Wa and WH, respectlvely For each
subdomain component, RA Wa — VVA , and R(Z W — W map global

mterface vectors to thelr components on I';, respectively. R Wp — VVF , RH :
Wp — WH and R( W — W( map Wp to proper components. Rp /Wp — Wr
is the direct sum of RF and Rp Wp — Wp is the direct sum of RH and R(

Now we need to define positive scaling factors

f pi
6 (2) = =", vely,
Z]eNz p.;/

for v € [1/2,00). Here N, is the set of indices of the subdomains which have x on
their boundaries. The scaling factors give us a partition of unity:

Z 5;(33) =1, zeTly.

JEN

Let D® be the diagonal matrix with the elements 53 (x) corresponding to the node
x € F, h-

By multlplymg each row of R , RY A, and R( with the corresponding &' (), we
can define RDI, R%) As and RD A respectively. The scaled restriction operators
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Rpr and Rp A are the direct sums of R%),F and R%{ As Tespectively. EDI is the

direct sum of EH and }A%%) A- From these definitions, we see that

RIRpr=RLpRr =1, RERpr=R5Rp=1. (2.12)

2.5 Schur Complement Systems and Discrete
Harmonic Extensions

We can rewrite A®) with respect to interface and interior basis functions of A®

and consider '
uy) :[ 0 ]
| =L
(4)

Given up’, we can calculate the interior values by solving

B
AFI AFF

AW A0 — g (2.13)

This is a discrete harmonic function on €2;, see [47, chapter 4]. We use the notation

u® = Hz(u(ﬁ)) and call ‘H; the discrete harmonic extension operator into €2;. We
denote the piecewise discrete harmonic extension of ur to the entire domain 2 by

H(ur)
The related Schur complements are written as

SO = 4D AW 4O 4O G g N (2.14)

S is the direct sum of the S® on the product space Wr. Note that S is singular
~ N .
if there are any floating subdomains. Let S := Zf\il R(FZ) S (Z)R(FZ) and let

(@)
3. T p@" 5T p®T] o | B Rro
S = ;:1: [RFHRH RraRp ] S RX)RFA : (2.15)

They are Schur complements restricted to Wp and Wp, respectively.
We have the following lemma on the discrete harmonic functions.

Lemma 6. Let ug) be the restriction of a finite element function u to 0Q; N T.

Then, the discrete harmonic extension u¥ = Hi(ul@) of ul@ into §); satisfies

W ADD = pin @7 4Dy
U<i)|00imr=u¥)

and
W07 G0y O — O 4Gy

14



Analogously, if ur is the restriction of a finite element function to I", the piecewise
discrete harmonic extension w = H(ur) of ur into the interior of the subdomain
satisfies

ul' Au = min o7 Av

vlp=ur

and
ut Sup = u” Au.

In practice, we do not need to calculate the Schur complement explicitly. The
action of S or S®™" can be calculated by solving proper Dirichlet or Neumann
problems on §2;.

We can obtain the following reduced global problem on the interface by remov-
ing the interior part: R

SFUF = 4gr, (216)

with
N

)T i DO
gr = DR (F0 = afaf) ).

i=1

2.6 Overlapping Schwarz Methods

We present modern overlapping Schwarz methods which use Schur complements
rather than classic overlapping Schwarz methods as in [23] and [24].

In this section, we assume that p(z) = 1. We now extend each subdomain €;
to a larger region 2 such that 2 does not cut through any fine elements. This can
be done by repeatedly adding a layer of elements. We assume that for: =1,..., N,
there exists §; > 0, such that, if  belongs to €2/, then

dist (2, 9Q2;\082) > 0;

for a suitable j = j(z), possibly equal to i, with = € Q2. We denote the maximum

of —g"' by
— = max{ =
5 = max 5 [

We also assume that the {{2.} can be colored using at most N¢ colors as ex-
plained in section 2.2. There is a partition of unity given by family of functions
related to the overlapping subdomains. For a proof, we refer to [47, chatper 3.2
and [16, Lem. 2.4].

Lemma 7 (Partition of Unity). Let {2} be an overlapping partition with the over-
lap 6;. Then, there exists a family of nonnegative functions in WhH>(Q), {x;, 1 <
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i < N}, such that

Xi =0 on Q\Q;

N
inzl on Q
i=1

||in||Loo < C(Si_l

where C' is a constant independent of the ; and the H;.

We also use a coarse space Wy C W of functions which are linear on the
interface and discrete harmonic in each subdomain. The functiglls in Wy have
degrees of freedom at the subdomain vertices only. R . Wy — W is the matrix
with columns representing the basis functions of Wj.

Let B(€2;) be the union of the nonoverlapping subdomains which intersect 2.
We then have the following lemma related to the stable decomposition of Assump-
tion 1.

Lemma 8. Foru € /W, there exists ug € Wy such that

|Ju — u0||L2(QZ~)

<
|u0|H1(Qi) <

The local spaces are the finite element spaces of functions that are piecewise
linear on the fine meshes and vanish on the boundaries of the extended subdomain,
QL

WO = {ue H ()| ux € P, KeT}CW.

The local interpolators RO : W® — W extend functions in W by zero to the
whole of €.

Given ¢; > 0, let €, 5, C €2 be the set of points that are within a distance ¢ of
o\ 0f2. We will need to use [47, lemma 3.10].

Lemma 9. There exists a constant C such that, for u € H'(Q),

H
2 A 2
lullia,,) < Co7(1+ 5—2) Nl )
H; 2
< Co(1+ 5—2) el e -
We then define the overlapping additive preconditioned operator P,;. We can
prove a bound for the condition number of P,4, refer [47, chapter 3.6].
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Theorem 5. The condition number of the additive Schwarz operator satisfies

5(Pa) < C (1 + %)

where C depends on N€¢, but is independent of h, H, and 0.

2.7 BDDC Methods

2.7.1 Algorithm

We consider the continuous space of interface nodal values, /Wp, in BDDC
methods to solve the reduced problem (2.16). Therefore, all functions are defined
on interface only.

__ In BDDC methods, we need to choose the primal variables. We can choose
Wi to be spanned by vertex nodal finite element basis functions and edge cut-
off functions of all the edges of I'. An edge cut-off function is a piecewise linear
function defined on the edge and has values 1 at all interface nodes except at the
two ends of the edge where it vanishes. The local subspace WX) is the subspace of

ng) where the values at the subdomain vertices and the edge averages vanish.
We define a coarse Schur complement by

N (3) (1) ()"
)T i i i A A A i
Smn =Y RY Al — [Af) AGA Aég A{,.)A AE{T RY  (2.19)
i=1 AT AA IIA
and define an extension matrix & : WH — Wp by
N (1) (1) ()"
®=~RL, — RS 0 RV ) | Ry (2.20)
i=1 AT AA AHA

We will use CI)T]A%“DI as the restriction operator for the coarse space.

We define Sa as the direct sum of subdomain Schur complements SX) which
are defined by

i i i i)"Y LG
59 = D, — AD AT AR, (221)

We use SX) as the local stiffness matrix and }A%%)Z as the extension operator for

each WX).
We then define the BDDC preconditioner as an additive preconditioner:

Mgioe = REpREASA ReaRpr + RE 1 ®Sqhd  Rp . (2.22)
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By some algebra, we can rewrite the BDDC preconditioner using S in (2.15)
by o~
Mgppe = Rh S~ Rpr (2.23)

and the Schur complement on W by

S = RISRr. (2.24)

2.7.2 Condition Number Bound

We follow the proof in [34], [49], and [50] to prove the condition number bound.

First, we show the lower bound. For a given ur € Wr, let wr := Mgppcur. By
(2.12), we have that

T TETSS-15
uFMBDDCuF = UFRFSS RD,FwF
- 1//2 /o~ 1/2

< (érUF, RFUF> 5 (S_lRDIwFa g_léD,FwF> s

1/2

= (aFRES R (w5155 )

~ 1/2 _ 1/2
= <U§SUF> (U%MBDDCMB]%DCMBDDCUF)/

1/2

~ 1/2
= (UFSUF) (UgMBDDCUF)

Therefore, we obtain u%MBDDCuF < urSur.

Lemma 10. Eigenvalues of the BDDC method are bounded below by 1.
For the upper bound, we define an average operator Ep : Wp — ﬁ/\p C Wp by
Ep := RrRp . (2.25)

FEp is an identity operator on /Wp.
We have the following lemma for Ep, see [47, Lemma 6.36] and [35, Lemma 1]
for a proof:

Lemma 11. .
|Epur|% < C(1+log(H/h))*|ur|%, ur € Wr, (2.26)

where C' is independent of H, h, and p;.
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We define wr := Mgppcur for a given ur € /Wp again. By Lemma 11, (2.23),
(2.24), and (2.12), we have that

WL Sup = (ugég) §(§Fég,F§—léger)
~ ~ 1/2 ~ o~ ~ o~ 1/2
= (RFuFaRFUF)g (EDS_leJ—x'LUF,EDS_leJ—x’LUF)g
1/2

e~ 1/2 ~ L~ ~ L~
< (ul:CRI:CSRFUF> C(1+log(H/h)) (S_le,FwFa S_le,FwF>§

1/2

~ 1/2
— C(1+log(H/m)) (urSur) " (uf Myppcur)

We obtain upSur < C(1+ log(H/h))*ul Mgppcur.
Therefore, we have the following bound for the BDDC operator.

Theorem 6. The BDDC operator has the following bound of the condition number
#(MpppeS) < C(1+ log(H/h))*
where C' 1s independent of H, h, and p;.

Lemma 10 is common to the BDDC operators for any problems. Therefore, we
just need to estimate the upper bound of eigenvalues and to prove the property
similar to Lemma 11 for the Reissner-Mindlin plate problem in chapter 5.

We can find a close relation between the BDDC methods and the FETI-DP
methods, see [35] and [38] for more detail. For the FETI-DP methods, see [47]
for definition and proofs. The preconditioned FETI-DP operator and the BDDC
operator have the same eigenvalues if they use the same primal constraints.
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Chapter 3

The Reissner-Mindlin Plate
Theory

3.1 Introduction

Elasticity theory concerns the deformation of bodies under external forces and
the calculation of the stress and strain of bodies from the deformation. In this
theory, we consider bodies in R?. We follow the presentations in [10, chapter 6].

Among materials with the linear elasticity property, we will mainly consider
thin plates with a thickness . By a reduction of dimension, we can describe the
deformation of a thin plate by the displacement (w) and rotation () variables in
the Reissner-Mindlin Plate theory. If we impose the Kirchhoff condition, Vw =
6, or t = 0, we obtain the Kirchhoff (biharmonic) problem. For the Kirchhoff
plate, see [10, chapter 6.5], [9] and [12, chapter 5.9]. In the continuous case, the
solution of the Reissner-Mindlin problem converges well to that of the Kirchhoff
problem, see (3] and [4]. However, we can suffer from the locking if we do not use
proper finite elements because the Kirchhoff condition is too severe on the discrete
level. If we, e.g., use continuous piecewise linear functions to approximate both
the displacement and rotation variables with a homogenous Dirichlet boundary
condition, the rotation variables would vanish.

By introducing a reduction operator II for # and mixed finite element methods,
we can avoid the locking problem. See [9, pp.195-232], [10, chapter 5.6], and [2, 5, 7,
1, 17, 18, 19, 20, 28, 29, 36, 46, 32, 6, 37, 44] for good finite elements on Reissner-
Mindlin plate. In this chapter, we will introduce several finite elements for the
Reissner-Mindlin Plate. We will also give some regularity results and convergence
results from the Reissner-Mindlin Plate and the Kirchhoff Plate theory.
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3.2 Linear Elasticity

We assume that we know the original body Q) which is the closure of €, a
bounded open set in R3. We call Q the reference configuration. Under external
force, we can view the deformation in terms of a mapping

¢:Q — B CR?

where B is the deformed body of Q. We refer to a point in the original body as
xg and to a point in the deformed body as xp, i.e., xp = ¢(xR).
Using the function I to denote the identity mapping, we can express ¢ as

o=1+u. (3.1)

Here w is called the displacement. In the following, we assume that ¢ is sufficiently
smooth. ¢ represents a deformation, if det(V¢)> 0, because it maps a subdomain
with positive volume into a subdomain with positive volume. If we use a linear
approximation, we have

16(z5 +25) — d(xp)l[p = [V 25l
= 25(Ve) ' Vzp. (3.2)

Therefore, the matrix

C=V¢'Ve

describes the change of length and is called the Cauchy-Green strain tensor. The
deviation of Cauchy-Green strain tensor from the identity matrix,

- %(c -, (3.3)

is called the strain. In the linear elasticity theory, we ignore higher order terms,
i.e., keeping only the first order leads to the symmetric gradient:

1 (0u;  Ouy

We assume that there are two types of external forces; surface forces and body
forces. Mathematically we can express the body force by a function f : B — R3
with a force fdV acting on a volume element dV. Surface force can be written
by a function t(zp,n) : B x S? — R3 where S? is the unit sphere in R? denoting
the space of the unit outward-pointing normal vector n. If dA is the area element,
then the surface force acting on dA is t(zxp,n)dA. t(xp,n) is called the Cauchy
stress vector.

We assume the following equilibrium state.
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Assumption 4 (Axiom of Static Equilibrium). There exists a vector field t such
that in every subdomain V' of B, the body forces f and the stresses t satisfy

/Vf(xB) drp + /av t(xp,n)ds =0, (3.5)

/a:BAf(:BB)de+/ xp Nt(rp,n)ds = 0. (3.6)
v ov

where A is the vector product in R3.

In the following, S* denotes the space of symmetric 3 x 3 matrices, S the
space of positive definite matrices in S*, M2 the space of 3 x 3 matricies with
positive determinants, Q‘j’r the space of 3 x 3 orthogonal matricies with positive
determinants, and C*(A, B) the space of C* functions from the space A to the
space B. Equilibrium axiom implies the existence of Cauchy stress tensor, T, as
follows:

Theorem 7 (Cauchy’s Theorem). Let t(-,n) € C'(B,R?), t(xp, ) € C°(S?* R3),
and f € C(B,R3) in Assumption 4. Then there exists a symmetric tensor field
T € CY(B,S?) with the following properties:

t(xg,n) = T(zp)n, zp € B, nc S (3.7)
diVT(SL’B)+f(LUB)I 0, rp € B, .
T(LL’B) = TT(LL’B), rp € B. (39)

We also assume that the material is frame indifferent.

Assumption 5 (Axiom of Material Frame-Indifference). The Cauchy stress vector
t(xp,n) = T(xp)n is independent of the choice of coordinates, i.e., Qt(xp,n) =

H(Qz5.Qn) for any Q € Q.
We now define two properties of materials.

Definition 1. A material is called elastic if there exists a mapping T: M — §3
which satisfies )
T(zp) =T(Vo(zr)). (3.10)

The mapping T is called the response function.

Definition 2. A material is called isotropic if

T(F)=T(FQ), vQecQ. (3.11)
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So far we have discussed the argument on the deformed body B. With ¥(zg) =
det(Vo(zr))(Vo(zr)) 1T (d(xr))(Vé(zr)) T and the neglected errors of the higher
orders, we have

divp X+ fr=0 (3.12)

in a reference body. For X, we have the response function such as
S(F) = det(F)F'T(F)FT.
We have the following theorem for an elastic material.

Theorem 8. If a material is frame indifferent and isotropic, a response function
M3 — S? has the form X(F) = o(FFT) such that
o Si —S?

o(B) = &I+ catrace(B)B+o0(B) as B — 0. (3.13)
with proper constants c¢; and cs.
If we plug C = V¢V = I + 2¢ into o(C), we have
oT(I + 2¢) = &1 + Cotrace(e) + Cze + o(e) as e — 0. (3.14)

Normally, the situation ¢ = 0 corresponds to an unstressed condition and we
assume that ¢; = 0. We can express the stress as follows if we ignore the terms of
the higher orders:

o = Atrace(e)l + 2ue. (3.15)

Here X\ and g are called the Lamé constants. We can express the Lamé constants

in terms of the Young’s modulus of elasticity E and the Poisson ratio v:

Ev FE

A T TR

From this relation between € and o, we obtain the following boundary value
problem:

—dive(z) = f(z), x €,

o(x) = Mrace(e(z))] + 2ue(z), x €9,

u(l’) = 0, x ey C o9,
o@)n(z) = g(x), x €Ty =00\I.
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3.2.1 The Reissner-Mindlin Plate

In the following, we consider a thin plate with thickness ¢. Let the plate occupy
the region P, = Q x (—%,+%), where Q is a bounded domain of diameter 1 in R?.
We are interested in the case when the plate is thin, i.e., ¢ is small. In this problem,
we consider three displacement components u;, i = 1,2,3. We use a reduction of
dimension for the z-direction, and assume the following four conditions, cf. [10,
chapter 6.5]:

H1. The linearity hypothesis.

H2. The displacement in the z-direction does not depend on the z-coordinate.

H3. The points on the middle surface are deformed only in the z-direction.

H4. The normal stress o33 vanishes.

Under the above hypotheses, we can write the displacement components as,

ui(z,y,z) = —z0;(x,y), fori=1,2,
ug(z,y,2) = w(z,y).
Using H4 with a reduction of dimension for the z-direction, we have a variational

problem:
Minimize the Reissner-Mindlin energy

/C&? 0) dxdy + Qt 2/\Vw 0| dxdy
— /gwdxdy+/f-9d:vdy,
Q Q

where C = A™', A7 = (1 + v)7/E — vtrace(t)I/E, and 1 is the 2 by 2 identity
matrix. The Reissner-Mindlin equations are

—divCe(f) — ot *(Vw — ) = —f,
—div (Vw — 0) = o~ '#g. (3.16)

For simplicity, we assume that 6 and w vanish on 0f2.
This problem can have a locking problem and we can handle that by using
mixed finite element methods; see [9], [10]. By introducing the shear stress v =
~2(Vw — 6), we obtain the following variational problem, cf. [9], [8], [10, chapter
6.6]:
Find 0 € Hy(Q),w € H}(Q), and v € L*(Q2) such that

a(f,¢) + (v, Vo — ¢) = (9,0) = (f,¢), ¢ € Hy(Q),v € Hy(Q),
(Vw — 0,n) — 0 *t*(v,n) =0, n € L*(Q). (3.17)

Here a(f, ) := [,(Ce(f),e(¢)). For the bilinear form a(-,-), there is Korn’s in-
equality which ensures its positive definiteness on H ().
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Lemma 12 (Korn’s inequality). Let  C R? be an open bounded set with a piece-
wise smooth boundary. In addition, suppose I' € 02 has a positive one-dimensional
measure. Then there exists a positive number C (€, T") which is independent of Hg,
such that

/ e(u) : e(u) dedy > C(2,T) Hqul(Q) for all u € HA(Q). (3.18)
0

Here HL(Q) is the closure of {u € C®(Q)?| u(x) = 0 for x € T'} with respect to
the H'-norm.

Proof. See [10, chapter 6.3]. O

We know that a(6,6) is not elliptic on the space H () x HE(£2) because of the
w component. Therefore, we cannot use the general theory of Section 1.4 directly.
For the stability and other related issues, it is useful to introduce the Helmholtz
decomposition. For a proof, see [10, Lemma 6.1].

Lemma 13. Assume that Q C R? is simply connected. Then every function y €
L2(2) is uniquely decomposable in the form

v=Vr+curl p
with r € H}(Q) and p € H'(Q)/R.

We can rewrite (3.17) as a perturbed Stokes equation:
Find (r,0,p,w) € H}(Q) x H(Q) x H'(Q)/R x H}(Q) such that

(Vr, Vo) = (g,v), v € Hy(Q), (3.19)

a(0,¢) — (curlp,¢) = (Vr,¢) = (f,¢), ¢ € Hy(), (3.20)
— (0, curl q) — o~ t*(curl p,curlq) =0, ¢ € H'(Q)/R, (3.21)
(Vw,Vs) = (0 + o '*Vr, Vs), s € Hy(Q). (3.22)

Now a(f,6) is elliptic on H}(Q2) by Korn’s inequality and if we check the inf-
sup condition for each line of equations above, we can establish the existence and
uniqueness of the solution. For more details, see Theorem 9 in subsection 3.2.2.

Note that for a known r with ¢ = 0, (3.20) and (3.21) is the Stokes equation
for (0y, —0;,p). Therefore, there is a connection between the Reissner-Mindlin
problem and the Stokes problem.

3.2.2 The Kirchhoff Plate

In addition to hypotheses H1-H4, we can assume the Kirchhoff condition:
H5. § = Vuw.
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Now @ is not independent being a function of w and we require that w € HZ((2).
The energy (3.16) becomes

J(0,w) = % /Q Ce(6) : 2(0) dudy + /Q -0 dudy. (3.23)

The variational problem (3.17) becomes:
Find w € HZ(Q) such that

a(Vw,Vv) = (g,v) — (f,Vv), v e HF(Q). (3.24)

Let us denote the solution of this Kirchhoff plate problem by w® and define §° :=

Vuw?. Ast — 0, we know that § — 6° and w — w". The two models have similar

interior solutions but differ in a boundary layer of a width of order of t. You can

find more results and examples on the differences of the two models in [3] and [4].
We have some regularity results and convergence results.

Theorem 9. Let Q) be a convex polygon or a bounded domain with a smooth bound-
ary in the plane. For any t € (0,1], f € H'(Q), and g € H~(R), there ezists a
unique solution (r,0,p,w) € HE(Q) x H{() x H' () /R x H}(Q) satisfying (3.19)-
(8.22). Moreover, if f€ L*(Q) and g € L*(Q), then § € H*(Q), w € H*(Q), and
there exists a constant C independent of t, f, and g such that

1011 20y + 1wl g2y + 1V 1 ) 1AV A 120y < CUI9l 20y +1F 1 22(q)) - (3.25)
Finally, we have
|6 — QOHHl(Q) + ||w - onHz(Q) < Ct([lgll 2y + [1F 1l L2e)- (3.26)

Proof. See [9, pp.202-203]. O

3.3 Finite Elements for Reissner-Mindlin Plate

We can use conforming finite elements, i.e., @, C Hy(S2), W, C H}(Q), and
Sy, C L*(Q). Let I : H}(Q2) + S, — Si be a reduction operator which will be
specified later. Then, as in [9, 10], the discrete problem becomes:

Find 6;, € Oy, w;, € W), and ~;, € S, such that

a(Oh, @) + (vn, Vo = 119) = (g,v) — (f,9), ¢ € Op,v e W,
(Vwy, — 10605,1) — 0~ t*(va, 1) = 0, n € Sh. (3.27)

We now discuss some conforming finite elements.
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0, Wh Sh
Figure 3.1: the MITC7 element.

3.3.1 The MITC7 Elements

For this element, we partition the domain into triangles. We choose, see [10,
chapter 6.6], [9, pp.210-213], [21, pp.268-272],

©, =M, + B, W, = M},, Sy =RTy

on the triangulation. Here MZO is the space of piecewise kth order polynomials in
H;(Q), M(ﬁo the space of piecewise kth order polynomials in H¢(2), M* the space
of piecewise kth order polynomials in H®, BF the space of piecewise kth order
polynomial bubble functions, and RT7 the space of Raviart-Thomas elements of
order k, a subspace of H (rot,2). More specifically, S, is defined by

Sn:={y € H(rot,Q) | yx € (P(K))>+ Pi(K)(y,—x)", VK},

where P;(K') denotes the space of linear functions on the triangular element K. Tt
can be proved that a function in Sp(K) is uniquely determined by assigning

- the moments up to first order of its tangential component on each
edge of K (6 degrees of freedom) and
- its mean values over K (2 degrees of freedom).

For a given u = (u1, us), we define 11 : H}(Q) + S, — Sp, by requiring that

/Hudxdy = /udxdy,
K K

Jmwomeds = [ oms i

for every triangle K € 7, and every edge e of K. Here t is the tangent vector to
the edge e and p;(s) is any first order polynomial on each edge. II is similar to the
interpolation operator of the Raviart-Thomas element except that it is related to
the rotation instead of the divergence.

For the MITC7 element, we have the following convergence theorem.
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Theorem 10. For the MITC7 element and a sufficiently smooth solution (0, ~,w),
we have for 1 <r <2

110 = Onll 2y + 1w = whll L2y < CR 10N griaay + IV iy + 1V -1 (0)-
Proof. See [9, pp.212-213]. O]

Considering the Helmholtz decomposition, functions of Sy cannot be generally
represented in the form

Yn = Vry + curl py, Vv, € Sh,

with proper finite element spaces for r, and p,. However, the MITC7 element has
a discrete Helmholtz decomposition with proper definitions.
First, the MITCT element has the following 5 properties in terms of an auxiliary
space
Qn:={qe Lj(Q) | gk € PI(K), VK € T,}

where L2(Q) denotes the space of functions in L?(2) with a vanishing mean.
P1: VW), C Sp.
P2: rot S}, C Q.
P3: rot I1¢ = I1°rot ¢ for ¢ € H (), with I1° : L2(Q2) — Q) denoting
the L?—projection.
P4: 1f n € S}, satisfies rot n = 0, then n = Vv for some v € W,

P5: (®i, Q) satisfies the inf-sup condition for the Stokes problem,
i.e., there exists a constant C' which is independent of h such that

sup (rot ¢, q)

> Cllall 2y, Va € Q. (3.28)
07#¢€®), ||¢HH1(Q)

We define the discrete curl operator curly, as follows:

(curly gn, M) r2() = (qn,T0t M) 12(0), V1) € Sh. (3.29)

Because Sy, C H(rot, ), curly is well defined. Then, S}, for the MITC7 element
has a discrete Helmholtz decomposition described by the following theorem.

Theorem 11. Suppose properties P1, P2, and P5 hold. Then, there exists an Lo—
orthogonal decomposition such that

Sh = VWh D CU.l"lh Qh-

Proof. See [10, Theorem 6.6.5]. O
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Figure 3.2: the MITC9 element.

This leads to an alternative discrete variational problem:
Find (rp,, 0, pr, wr,) € Wi, X O, X Q) x W}, such that
(Vr, Vo) = (g,v), vE W,
a’(efw ¢) - (CU.I'lph, ¢) = (V’f’h, ¢) - (fa ¢)7 ¢ € @ha
— (0, curl q) — o~ H*(curl pp,curlq) = 0, q € Qp, (3.30)
(Vwy,, Vs) = (0, + o0 't*Vr,,Vs), s W,.
In addition to these five properties, P1-P5, the MITC7 element has the following
property.

P6: For each edge e of the element K, let t be the tangent vector of e.
Then the composite operator (I10|.) - t depends only on 6. - t.

3.3.2 The MITC9 Elements

In this element, we partition the domain into rectangles, see [9, pp.221-223]
and [8]. On each element K € 7;, we choose,
On = {0€ HYQ) |0 € [Qu(K)P, VK € T},
W, = {we Hy(Q)| wy € [Qa(K) N P3(K), VK € Tp,}, (3.31)
Sp = {y € Ho(rot,Q) |
Vi € span[(L, @y, 2y,y%) x (L, z,y,2° 2y)] VK € Tp}
where Py (K') denotes the space of kth order polynomial functions on the rectangu-

lar element K and Qy(K) the standard space of biquadratic polynomial functions.
For a given u = (uy,uy), we define Il : H}(Q) + Sy, — Sp, by requiring that

/Hudxdy = /udxdy,
K K

Ju-ops)as = [t tps)ds

€ €

29



@h W, Sh
Figure 3.3: the Falk-Tu element with k=2.
for every rectangle K € 7, and every edge e of K.

It is known that the MITC9 element satisfies the 6 properties P1-P6 of subsec-
tion 3.3.1 like the MITC7 element when we define the auxiliary space @ by

Qn = {q € Lg(Q) : q\K c Pl(K), VK € ZL}
For a proof, see [17] and [18].

3.3.3 The Falk-Tu Elements

In the Falk-Tu element, see [9], [31], we choose

O, =M, + B, W, =M}, Sh=M,

on the triangulation. Here MZO is the space of piecewise kth order polynomials in
H;(Q), M(ﬁo the space of piecewise kth order polynomials in H¢(2), M* the space
of piecewise kth order polynomials in H*, and B* the space of piecewise kth order
polynomial bubble functions.

Note that we choose a discontinuous stress variable in the Falk-Tu element.
The II operator is defined as the L? projector from H(Q) to Sh.

We have the following error estimate. For a proof, we refer to the lecture notes
edited by Boffi and Gastaldi [9, pp.213-216].

Theorem 12. For sufficiently smooth solutions of the continuous problem, we have
16 = Bullzzqen + lw — wall @y < CR(IF 2@ + lglzeqe) (3.32)
where C'is independent of h.
The kth order Falk-Tu elements are defined as follows; see [9], [31]:
©, = M,' + B"", W), = My, Sp= My (3.33)

Note that we again choose a discontinuous stress variable. The II operator is again
defined as the L? projector from H(Q2) to Sp.
We have an error estimate similar to Theorem 12. For a proof, see [9, p. 213].
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Theorem 13. For sufficiently smooth solutions of the continuous problem, we have
for1<r<k-1

160 = On|L20) + [[w — wal i) <
CH 101 i1y + 0l sz gy + I ey + 17| r))  (3:34)

where C'is independent of h.

31



Chapter 4

Overlapping Methods Using the
Falk-Tu Elements for the
Reissner-Mindlin Plate

4.1 Introduction

In this chapter, we use the Falk-Tu elements to discretize the Reissner-Mindlin
problem. For simplicity, we assume that the subdomains are shape-regular tri-
angles. We first define coarse basis functions and local spaces for an overlapping
method. We then show a C(1+£)3(1+log#)? bound for our overlapping method.
As we saw in section 2.2, we can use the same coarse and local spaces to additive
and multiplicative Schwarz methods. We also give numerical results on additive
and multiplicative Schwarz methods.

4.2 Definition of the Operator C and Bilinear
Forms

We will consider the operator A of subsection 3.2.1 in more detail and find a
relation between a(6,6) and the H'-norm of 6. Let,

1+v v X trace(T)
AT = - I
TR T E
1 4 0 T11
1
= E -V 1 0 T22
0 0 1 +v T12

(4.1)
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Then C, the inverse of A, is defined by

Ce:= A" le

_E
(1=

E
2(1+v)

ﬂ<

O =

|
/

N)—‘

[T

o =

LTl

[\

Ttt
oo o N

|

=] =
OI“Q’I‘M
A R
=] =
O|‘l\3|‘[§
A R
N OO
v

where

With

1( 208 62+0)
2\ 0:+0, 20 ’

2Ll + 2w p2 oL
= / f_—“y@g + %9; , (bf/ dxdy
@ (6240, 1(¢2 )

2
:l/ﬁ_ 026, + “”W¢+- —036%) dady +

Q

define

+ (07 + 0,)(07 + 0,) 1) dady.

Thus,

2(010% + 022 + = (92 +0,) (¢35 + ¢,)) dudy +

=3
= JCD

=

I
S~

/1 (010L+ 026 + 0304 + 0162) dady

)

= 2/ e(# ¢) dxdy + / div 6 div ¢ dzdy,
Q —VJa
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or

a(6,¢) = 2 /Q pe(9) : e(8) dxdy+12f—yy [ divo div g dudy
= /Q,ua(ﬁ) :e(9) dmdy+)\/ div 0 div ¢ dzdy (4.7)
Q Q
where \ := 21 .
1—v

The bilinear form a(#, 0) is that of the standard linear elasticity operator. We can
easily show that a(f,0) is bounded by the square of the H'-seminorm of 6 if the
Lamé parameters p and A\ are bounded. More precisely, we get the bound

a(0,0) < m|6[2, (48)

with m := max(2u, \).
We will use the scaled H'-norm for each subdomain:

1
||u||%{1(9i) = |U|§11(Qi) + mHUH%?(Q) (4.9)

4.3 Discrete Harmonic Extension

We use the Falk-Tu element to discretize (3.17). Because we choose a discontin-
uous stress variable, we can eliminate it on the element level as in [8], [23]. Then,
the problem becomes:

Find 6;, € ©;, and w;,, € W}, such that

b((eh,UJh), ((b,U)) = (g,U) - (f? ¢)7 ¢ € ®h7 RS Wh (410>
where b is defined by
b((0,w), (6,v)) := a6, d) + t%(ne — Vu, 16 — Vo). (4.11)
The discrete Reissner-Mindlin energy
b((@h, wh), (Hh, wh)) = a(@h, Qh) + t%(th — 116, Vw,, — H@h) (4.12)

will be estimated later in the proof. We define v := (0, w) and U := @), x W},

For natural boundary conditions, the dimension of the null space of this Reissner-
Mindlin energy is 3. The first null element is given by § = (0,0) and w = 1, the
second by 6 = (1,0) and w = x, and the third by § = (0,1) and w = y. These null
space functions will play an important role for the subdomain problems defined
later.
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The energy of the interior part of u, which is orthogonal to discrete harmonic
functions in b-seminorm, can be bounded by the sum of the energy of local com-
ponents of u. Therefore, it is enough to consider discrete harmonic functions when
establishing stable decompositions. From now on, we will assume that u is discrete
harmonic in each subdomain.

Because the support of each bubble function is contained in a single element, the
bubble functions are determined by the values of the piecewise linear parts of # and
w if u is discrete harmonic to minimize the Reissner-Mindlin energy. Therefore, we
can consider the bubble function as a dependent functions in a discrete harmonic
function.

Let us consider one element K only and assume that the piecewise linear part
of # and w are already determined. Let 61 be the piecewise linear part of 8. Using
the bubble basis functions %, k = 1,2, ..., 6, we can write Vw — 0, = 22:1 BeI10%,
with certain coefficients (.

Note that the square of the L?-norm of the divergence of 83 is positive definite.
Therefore, the two components of the a-seminorm are equivalent over the bubble
function space and a(fg,0p) is equivalent to m|0p|7..

Let us write the bubble function on the element K as g = 22:1 akﬁkeg. We
can then choose optimal coefficients oy, k= 1,2, ...,6, for the bubble functions to
minimize the Reissner-Mindlin energy of u. We know that the a-seminorm does
not depend on the scaling and the square of the L?-norm of the bubble functions
is on the order of h2.

Let 3 be the diagonal matrix with the diagonal entries (i, (s, ..., B¢, and let
a = (ag,qg,...,a6)". Let F and G be the matrices representing the a-seminorm
and the L?-norm of the bubble functions on a reference element, respectively. Let
F = B'FB, G = B'GB, and let 1 be the 6-dimensional column vector with all
entries 1. We know that h*1'3'31 is equivalent to ||[Vw — 9L||%2(K)- Then the

Reissner-Mindlin energy of (61 + 0p,w) is equivalent to

~ 2 ~
a(fr,0r) + ma'Fa + %(1 —a)'G(1 - a).

This is minimized by

h? ~ 1A
a = t_QO G1 where
h2
O = th+t—2G and
O = ['op
= h
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and
1—a=mO'F1.

If we plug this « into the above energy formula, the Reissner-Mindlin energy is
equivalent to

h? h? S
a(,0r) + mt—t—ltGO LFO™'G1 +m 2 —1'FO'GO™'F1

(HL,HL)—i—m mt( _GO-IFO-\G + mFO-1GO- 1F)A1.

Because F', G, and O are positive definite, so are GO'FO~'G and FO~'GO~'F.
We can bound the quadratic forms of these two positive definite matrices by each
other in terms of m, h and t. We then find that GO™'FO~'G is equivalent to

¢™*I where ¢ :=m + 4. Similarly, FO"'GO~'F is equivalent to ¢~2I.

The Relssner—Mlndhn energy is equivalent to

h? h?
a(0r,01) + m 1t6t(—c_21 +1me 1)1

h
= a(f;,01) + mt—21t6t(0_11)51

2
= a(fp,01) + c_lmh—ltﬁtﬂl

= a(f.,0.) + 2}#1%%1

+h
Using the equivalence of h*1'381 and |[Vw — 0r |72k, the Reissner-Mindlin
energy is equivalent to

a(@L, GL) + ) i 72 (413)

Overall, we can conclude that minimizing the Reissner-Mindlin energy over the
(01, 0, w) space is equivalent to minimizing the expression of the equation (4.13)
over the (01, w) space. This is called the stabilized Reissner-Mindlin energy of the
(0L, w) space.

There are two terms: a(6r,0r) and #W [Vw—0y||3- in the stabilized Reissner-
Mindlin energy. The a-seminorm increases linearly with m and the ratio between
the two terms is ~t2+h2 If t = 0, this ratio is # and larger than 1. If this ratio is
small, then the problem is close to the linear elasticity problem; this ratio should
be large for Reissner-Mindlin plate problem to be physically reasonable. If ¢ is
sufficiently small, then we can find h such that mt? + h? = h2 and we can consider
the case of t > 0 as being similar to the case of ¢ = 0 with a mesh size h.
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Figure 4.1: One subdomain and its vertices and edges.

Therefore, if ¢ is bounded from above, we can consider ¢ as being 0. In interest-
ing problems for a Reissner-Mindlin plate, ¢ is in this good range and we, therefore
assume that t is 0 and 11§ = Vw from now on. Then, Reissner-Mindlin energy
becomes
m|[Vw — HLH%?(K)

h2

b(u,u) = a(b,0) ~ a(0r,0r) +

with the condition 116 = Vw.

4.4 The Coarse Problem

4.4.1 Coarse Basis Functions

We now provide details on our coarse basis functions. We define them on the
interface and use their discrete harmonic extensions. We consider the subdomains
Q;, one by one, to define the coarse basis functions. From now on, we consider
only one of the floating subdomains €; with 9; (9 = @.

For each 6;, i = 1,2, we define a vertex basis function which vanishes at all
interface nodes except at a subdomain vertex where its value is 1. We denote
these vertex basis functions by 67, , i = 1,2, k = 1,2,3. Because there are two

1,V
components of 6, we have 6 vertex basis functions for each subdomain.

Lemma 14. The Reissner-Mindlin energy of the vertex basis function Hgvk is

bounded by Cm where C' does not depend on H, h and 6, but depends on the
shape regularity of the elements.

Proof. We can find a bubble function 6g such that the I10g 4+ 6, = 0 where 6,
is a piecewise continuous linear functions with zero values at the interface and
interior nodes except at the subdomain vertex being considered. This 65 vanishes
except in the elements which contain the subdomain vertex. The number of such
elements are bounded by the shape regularity. The H'-seminorm of this function
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Values of w component of e‘l’ M

Figure 4.2: 3d plots of the 6 vertex basis function 67 .
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is bounded by a constant. Because Vw = 116, the Reissner-Mindlin energy is equal
to the square of the a-seminorm and we can bound the Reissner-Mindlin energy
in terms of the square of the H'-seminorm. Because discrete harmonic functions
have minimal energy, we can complete the proof. O

For the other coarse basis functions, we need to prove several lemmas.

Lemma 15. Let &, &, &3 be the values of the barycentric functions of the subdo-

main at (z,y). Let
1

2
Y= 4.14
etote (14)
1 é-2 63

Then, the gradient of Y; is bounded by % where r is the minimum distance to the
two vertices of the edge e;. The second order partial derivatives of T; are bounded
by 7%

Proof. Without loss of generality, we prove the lemma for T; only. We use the
Figure 4.1 of the triangle to define the indices of ey, es, €3, v1, v2, and vs. Let

fi=€2¢2 and g := €32 + €2¢2. Then,
L
3
T1:17111
gtg g
£2¢2
£363 + 6165 + &3
o
f+g

We can easily show that f + g > Cmin(7?,r?) where 7 is the minimum distance
to the other vertex v; of the triangle which is not on the edge e;. Here, min(7,r)
is the minimum distance to the three vertices of the triangle.

For f, we can also show that f < Cr%,

We calculate the first order partial derivatives of f,

fm = 25252,x£§+2£3£3,m£§7
fy = 268,65 + 263835,65,

and find that |f,| < Cr® and |f,| < Cri®.
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The second order partial derivatives of f are

fro = 2((£22)°65 + L2.006285 + 283.282,283E2
+(£3.0)°65 + E3,006385 + 260,0326382),

foy = 2(&y&.085 + 282,065 + 262,485,4628s
+&5,563.285 + E3.0y63E5 + 263.282,E360),

Foy = 2((€24)76 + E2,4y &85 + 285,460 46360
+(£34)85 + &3y E3E5 + 262,E3,632),

and we find that |f..|> < C72, |fs]* < CF? and |f,,|* < C72. Similarly, we can
calculate the first and second order partial derivatives of g and obtain a bound of
them by taking the maximum of the bounds of the two terms in g. We find that
|g‘ S CT2f2, ‘gr| S CTf, |gy| S Crfv |gww|2 S C? ‘gmy|2 S C? and |gyy‘2 S C

We next calculate the partial derivative of T; with respect to x and find

dr (f +9)?
. 9fe— fgac
(f+9)?*

If we use the bounds just derived, then

|8T1 < Cr2r?rr® + Crrirr
- Cmin(r2,72)?
Cr3rmax(r=,7 %)

Cmaz(r—'7°, r3F)

Cmaz(r~',1)
C

r

IA AN A

IA

Similarly, we get |%| <<
For the second order derivative of Ty, we have

PY1 (9far + Gofo = foGe — f9u)(f +9)° 20/ +9)(fo + 9:) (e — [ 92)
Ox? (f+9)* (f +9)*
(9fex = [9ue)(f +9) = 2(f2 + 92)(9f2 — f92)

(f+9)° '
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This can be bounded by

Y, < (27272 4+ P27 (27t 4+ r272) + (r73 4 r7) (P27 + r2rier)
Oz | — (f+9)?
254N (1,252 N\ (1355
< C(rr)(rr)+(rr)(rr)
(f+9)3
o Tt
- min(rS, 76)
< Cr4f6max(r_6, f_ﬁ)
< Cmax(r_QfG, 7'4)
< Cmaz(r~2,1)
C
< por
Similarly, we get |682;21\ <<
Also,
ale _ (gyfw + gfmy - fygac - fgry)(f + 9)2 . 2(f + g)(fy + gy)(.gfw - fgm)
Oxdy (f+9)* (f+g)
— (gyfx + gf:cy - fygx - fg:cy)(f + g) . Q(fy + gy)(gfx - fg:c)
(f+g)* (f+9)?

This can be bounded by

0?1,
0xdy

(r27 ) (r*7?) + (r7) (r°7°)
(f +9)?

Cri®max(r=%,7°)

Cmax(r—27°, r4)

C

r2’

C

IAINA

IN

O

Lemma 16. Under the same assumptions as in Lemma 15, the gradient of Y,
defined in (4.14), vanishes on the edges of a triangle.

Proof. In the proof of Lemma 15, we have established that

dr  (f +g)?
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We have

9fe = (6165 + E163) (26260485 + 26383.265)
= 2676:865(85 + £3) (€085 + E3.082).

Therefore, this term vanishes on the edges of a triangle. Similarly,

f9: = &565(26161,085 + 26060287 + 26161065 + 26383,467)
= §E3E5(281 465 + 26060 61 + 261465 + 26383 ,:61)

which also vanishes on the edges. O

Lemma 17. Let T; be the function defined by equation (4.14). Let M be a C?
function on the closure of the triangle. For a given edge e;, assume that M goes to
0 at least linearly at the two vertices of the edge e;. Then, the gradient of MY; is
bounded by a constant and the second order partial derivatives of MY; are bounded
by g, where r is the minimum distance to the two vertices of the edge e;. The
value of MY; is equal to that of M on the edge e; and to 0 on the other edges. The
gradient of M'X; is equal to that of M on the edge e; and to 0 on the other edges.

Proof. Let us consider the edge e;. Let M = MT;.

It is easy to see that the value of M is equal to that of M on the edge e; and
to 0 on the other edges from the construction of ;.

By Lemma 16, on the edges of the triangle,

a—M = TlxM+T1Mx
oz ’

= T,M,.
Since T vanishes on ey and e3 and is equal to 1 on ey, we find that V(M7Y;) =

VM on the edge e; and that it vanishes on the other edges.
By Lemma 15, we can bound |2Y| as

OM
€T
< gr+0
r
< C.

Similarly, we have |%| < C.
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If we use Lemma 16 again, we find that

O2M
|T1,:c:cM| + 2|T1,xMx| + |T1M:c:c|
0r?
S —27” +—+ C
T T
< ¢
r
Similarly, we have |gi—g;| < ¢ and |682y]2\~4 | << O

Lemma 18. For a given vertex v;, let e; and e be the two edges adjacent to v;.
Let M; and My be C* functions on the closure of the triangle going to 1 at least
linearly at v;. We also assume that M; goes to 0 linearly at the other vertex of e;
and that M, goes to 0 linearly at the other vertex of ex. Let M := T;M; + T M.
Then, VM is bounded by a constant and the second order partial derivatives ofM
are bounded by %, where r is the minimum distance to the vertices of the triangle.
The value of M is equal to the value of M; on the edge e;, to the value of My on
er, and vanishes on the third edge. The gradient of M is equal to the gradient of
M; on the edge e;, to the gradient of My on the edge ey, and vanishes on the other
edge.

Proof. Without loss of generality, we can assume that j = 1, £ = 2, and ¢ = 3.
Let us define a linear function M3 which vanishes on the edge e3 and is equal to 1
at V3.

If we use the fact that 1 = 11 4+ Y5 + T3, we can express M as

M = TlMl + TQMQ
= T M, + YoMy — My + Ms;
== Tl(Ml - Mg) + TQ(MQ - Mg) - TgMg + Mg.

If we apply Lemma 17 to Y1 (M; — M3), To(Ms — Ms), and Y3M;, and add Mj to
the terms, we then can complete the proof. O

We define a displacement vertex basis function wgk, k=1,2,3, by giving w the
value 1 at one of the subdomain vertices, 0 at the others, and making it linear on
the edges of the subdomain. In addition to the definition of w on the interface,
we give values for #; on the two edges of the subdomain vertex being considered
such that 6 = %jt@bej where ¢; is the length of the edge, t the unit tangent vector
of an edge adjacent to our chosen subdomain vertex, and 1., the edge cut-off
function defined in section 2.7. Note that we make the value of 6 equal to 0 at the
subdomain vertices for continuity.
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V2 €3 U1

The boundary values of the
w component of w) on es.
The height is 1.

.
/ \
Vg es3 U1

The boundary values of the
¢ components of wd on ej.

I

U1 €2 U3

The boundary values of the
w component of wy, on es.
The height is 1.

(2
(%) €2 / Vs

The boundary values of the
¢ components of w9 on es.

The heights depends on t and ¢;. The heights depend on t and /5.

vy N € U3 Vg \91 61\92 U3

The boundary values of 6 and w vanish on the edge e;.

Figure 4.3: Values of w) on the interface.

Lemma 19. The Reissner-Mindlin energy of the vertex basis function w® is

Vg

bounded by C’%(l + log%) where C does not depend on H, h, and 9, but depends
on the shape regularity of the elements.

Proof. Let us assume that the lengths of the three edges of a subdomain are ¢4, (5,
and /3 and that their relative lengths are bounded; this follows from the shape
regularity of the subdomains. We first prove the lemma for w)) using notation in
Figure 4.1.

Let us assume that the vertex basis function has the value 1 at the vertex vy,
and that the two edges es, e3 of that vertex can be expressed by asx + by = ¢
and azr + byy = cg respectively. (ag, by) is the unit tangent vector of the edge e
from w3 to vy, and (as, b3) is the unit tangent vector of the edge ez from vy to vy
and let (af, b)) be the unit normal vector of the edge e;.

Let again &7, &9, &3 be the values of barycentric functions of the subdomain at
(x,y). Let

BT 2

ai . bi
A

Y+ Ci)

for 1 = 2,3, where ¢; is chosen so that the equation %x + %y + ¢ = 1 at our
chosen vertex v;. Further, let w = wy + ws. From Lemma 18, we know that w
satisfies the boundary condition prescribed by the definitions of the basis function
given above. We also know that the gradient of w is bounded by % and that the
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Figure 4.4: 3d plots of the w vertex basis function w
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second derivatives of w are bounded by % where 7 is the minimum distance to
the vertices. _

Then, define w, = I"(w) and 0, = ["(Vw) on each element of the subdo-
main except in the elements next to each vertex where 0y, is defined by the linear
components of #. Here I" is the standard second order interpolation operator to
M? and I" is the standard first order interpolation operator to Mi, see subsection
3.3.3 for the definitions of M? and M;. We can easily find bubble functions by
using the equation 116 = Vw on each element. Because the scaling does not affect
the H'-seminorm and there are a bounded number of elements next to any vertex
because of the shape regularity, we can bound the a-seminorm of the basis function
on the elements next to the vertices easily as in Lemma 14.

For each element K which does not touch a subdomain vertex, we have

003y < HVQU’H;(K)'

Therefore,

0.3 < C/%/H ! rdrdd + C
LIHY () = o o H2r?
C

H
< = = .
< H2(1+logh)+C

For the bubble function #z, we know that
05 = Yy, — 0 = V(') — I"(Vw) = V(' — w) + (Vw — I"(Vw)).

Therefore for each element K, which does not touch a subdomain vertex,

C
sl < aloelliaa

8. -
< E(HV(Ihw—w)H%(K)JF||Vw—fh(vw)||%zu<))
< CUIV(IMw — w)|[Fee ey + (V0 = I (VW) |[] e i)
< CR?||Vwl [ sy

h2

< Oy

There are on the order of IZ—; elements in each subdomain and the number of
elements with a distance r from a vertex is about 5. Therefore, to bound |03, ()’

we need to estimate .
1 ih h? "1 h

2 e “ H?ih

M-
]

)
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Figure 4.5: Values of 62, on the interface.

where 7 = ¢h. This sum is bounded by (1 + log4l).

In total, the square of the H'-seminorm of the function in the proof is bounded
by & = (1 +log h) Because we Choose 6 and w such that 116 = Vw, we can bound
the Reissner-Mindlin energy by g + log h)

We can prove similar bounds for w? v, and w? o O

We define a rotational edge basis function ng, k =1,2,3, for each edge e, by
prescribing 6 = ni)., where n is the unit normal vector of the edge e;, pointing into
the right half plane, and )., is the edge cut-off function. We set all the boundary
values of w to zero.

Lemma 20. The Reissner-Mindlin energy of the edge basis function ng is bounded
by Cm(1 + log%) where C' does not depend on H, h, and 6, but depends on the
shape regularity of the elements of the subdomain.

Proof. We have the same assumptions as in the proof of Lemma 19. Consider

i
wy, 1= 67’“(a;€x + by + )
2 + 5
3
where ¢ is chosen so that wy = 0 on the edge €. As in Lemma 19, we can prove
that the square of the H'-seminorm of this function is bounded by C(1 + log(%))

using Lemma 17 instead of Lemma 18. O

4.4.2 Coarse Interpolant in Stable Decomposition

In total, we have 9 vertex basis functions and 3 edge basis functions. Therefore,
on average, we have 3 basis functions for each subdomain.
We now define a coarse interpolant u° by

]h ewek) ’ )

3 2 3
u® = wpw), + Y ()6, + Z Jeu o egk, (4.15)
er ' €k

k=1 i=1 k=1
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We can easily check that this coarse interpolant reproduces all functions in the null

space of the Reissner-Mindlin energy and thus satisfies the null space property, cf.
[45].

From [47, remark 4.13], we know that
H 1
lul[zw) < CL+log—)lullbngy, v H(Q)NV. (4.16)
And it is easy to prove that

ullZ2e) < 2H]|ull7n ;)

where e is an edge and that

JoU"(utpe) - m) ds
fe ¢e ds

<C /—dx/7<C||\D, < OV2Jul|gi(q,).  (4.17)

Using inequalities (4.16) and (4.17) and Lemmas 14, 19, and 20 of this section to
bound the energy of the coarse interpolant (4.15), we obtain the following bound:

Cm H
b(u’, u’)e, <z (1+ log=)*l[wllin g, + Ol + log— ) 16117 o,
Using the equation Vw = 116, we can show that

1VelBag, _ 416lBxqy
H? - H?

Because u? reproduces all the null space functions, we can use a Poincaré

inequality by shifting by some null space functions and find that

i

H H
b’ u)o, < 7 (1+log— )||w||H1(Q + Cm(1 +log=)’[|6l71(,)

H
Lemma 21. Under the condition of 110 = VYw, the a-seminorm and the H'-

seminorm are equivalent for 6. This equivalence does not depend on H and h but

depends on the shape reqularity of elements and the Lamé constants. In particular,
we have the relation |0]71q,) < %a(@,@).
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Proof. We can prove this lemma on each element of diameter h. Let us consider
one element only and assume that one of its nodes is at (0,0). Then, we can use
the following transformation to the reference element:

w(x,y) = %(w(hx,hy)—w(0,0))+w(0,0),

0(z,y) = 6O(hx,hy).

Then, Vi(z,y) = Vw(hz, hy) = 110(ha, hy) = 116(z, y) on the reference element.
We can easily see that the a-seminorm and the H'-seminorm are invariant under
this dilation. Therefore, it is enough to prove the lemma on the reference element.

On each element, we have 12 basis functions for §. Among them are three
null basis functions for a(6, ) and two null basis functions for the H'-norm. Two
of these null basis functions are common. The remaining null basis function for
a(0,0) is (—y,x) and this is not a valid basis function for this problem because of
the condition Vw = 116.

Because we consider a finite dimensional problem and the null space of the two
seminorms are the same, the two seminorms are equivalent and we get the bound
|0|%{1(Qi) < %a(ﬁ,ﬁ). O

Using Lemma 21 and inequality (4.18), we can prove that
T H
b, 1), < C(1 + log—)b(u, u)o. (4.19)
o

We note that if the material becomes more incompressible, the decomposition
becomes less stable.

If 09; (0 # @ with a strictly positive measure, we can define similar basis
functions except on J€). In such a subdomain, we can prove a bound of the square
of the a-seminorm by using a Friedrichs inequality.

If 0F); intersects OS) only at one or a few points, we need to modify the proof.
Let us assume that 9€); intersects 9Q at (0,0). Let us find 6,2 + Aoy + b such that
0, = fQ 0, dxdy, 05 = fQ 0y dxdy, and W = fQ (w — 612 — Oy) dzdy. Because 6,
vanishes at a point, we have that

161 ey < 1160 — 01| (n) + [64]
< 2/[01 — 01|
H _
S C 1+ZOQEH¢91 _01||H1(Qi)

/ H

20



which is a variation of inequality (4.16). Similarly, we have

H
1621700y < C(1+log— )|92|H1 Q) (4.21)

We also have that

0-n / H

which is a variation of inequality (4.17).
For w, we have

||z < [Jw— 1z — Oay — W|poo @,y + W] + 1612 + §2y||L°°(Ql)
< 2w — 6w — Ooy — W|[ ooy + (|01] + |62]) H

H o A o
< Cyf1+ log%Hw — thx — Ooy — 0|, + (|61] + [62)) H
H _ _
< Cy/1+ log lw — 61z — Oay — 0|10y + (161] + 102]) H.(4.23)

Using the equation V(w — 612 — fyy — ) = I1(6 — (61, 05)), we can show that
||V (w — O — Opy — UAJ)H%Z(Q-) < 4|6 - (éh 52)“%2(91)
The first term of (4.23) is bounded by

H - H
Cy/1+ lOQﬁH@ — (01, 02)l[2() < CH\ 1+ l09Z|9|H1(Qi)

by the Poincaré inequality. Also,

/ H
101] < H?[|01]| 100 < CH?*(/ 1+ log— \91|H1

We can obtain a similar bound for |f,| and

/ H

Using Lemmas 14, 19, and 20 of this section and inequalities (4.20), (4.21),
(4.24), and (4.22) instead of (4.16) and (4.17), we obtain the following bound:

b(u®, ul)q, < Cm(1 + log— ) |9|H1 (4.25)
Using Lemma 21 and inequality (4.25), we can prove that

b(u®,ul)q, < o (1 + log%)2 b(u, u)gq,. (4.26)
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4.4.3 Additional Coarse Basis Functions

We can also define a w edge basis function on each edge. These basis functions
are not necessary in our proof, however they make the constant in decomposition
smaller. We will compare numerical results of the additive method with such w
edge basis functions with results without them in section 4.10. In our experiments,
the condition numbers of the preconditioned system with these additional basis
functions are much smaller than those without.

On each edge of a subdomain, we prescribe the values of a quadratic which
vanishes at the two subdomain vertices of the edge and has a maximum of 1 on
the edge. In addition to the definition of w on the interface, we give values for
in the subdomain such that 6 = (t - Vw)ti,, where t is the unit tangent vector of
the edge and 7)., is the edge cut-off function. We denote these basis functions by
w’  k=1,2,3.

e’

Lemma 22. The Reissner-Mindlin energy of the edge basis function wgk 18 bounded
by %(Prlog%) where C does not depend on H, h, and &, but depends on the shape
reqularity of the elements of the subdomain.

Proof. We have the same assumptions as in the proof of Lemma 19. w; is defined
1
by ﬁ g(x,y) where g(z,y) is the second order polynomial of (z,y) chosen so
S RS
that g(x,y) is 1 at the midpoint of the edge being considered and vanishes at all
vertices and the midpoints of the other edges. g(x,y) is the standard basis function
in P, with a midpoint node. As in Lemma 19, we can prove that the square of
the H'-seminorm of this function is bounded by %(1 + log%) using Lemma 17

instead of Lemma 18. O

Similarly, we can define 6 edge basis functions related to the normal direction.
But they did not give much improvement in our numerical experiments.

4.5 Local Problems

Let Wqg = W — U)O, HdL = HL - 9%, and HHdB = de - GdL. Then, Hed =
HdL + HGdB = de.
From Lemma 21 and inequality (4.19), we know that

m H
‘edﬁil(ﬂi) < Cﬁ(l + logﬁ)za(ev ‘9)91 (427>

If we use the Friedrichs inequality, we obtain

m H
104l 1720,y < CE(1+ZOQ_)2H2'2“(979)Q-

. Z. (4.28)
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Values of w component of wg
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Figure 4.7: 3d plots of the w edge basis function w?.
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From the equation 110 = Vw, we have the inequality ||Vw||%2(9i) < ||9||%2(Qi)‘
Therefore,

2 m H 27172
Similarly,
7 H
leallisey < Cg(1+logy 2 HEal6, 0)a. (4.30)

Let x; be nonnegative C°° functions in R? such that

X; = 0 on Q\Q;,

N
ZXj =1on Q,
j=1

VX~ < C8; Y,
Vx| < CO72.

The construction of y; is standard, cf. [11].

We define the local components of the Schwarz decomposition as follows: w; :=
I"(xjwq) and Or; == I"(x;0ar +waVx;). Here I" is the standard interpolator onto
the piecewise quadratic continuous functions on each element and I” is the stan-
dard interpolator onto the piecewise linear continuous functions on each element
as in Lemma 19. Because ) | ;X =1and > ; Vx; = 0, the above formulas provide
a decomposition. For the bubble functions, we use the condition Vw = I16.

We need to use Lemma 9 of section 2.6 for the overlapping region. We know

that derivatives of x; are nonzero only in a d-neighborhood of the boundary of
subdomains. We find using (4.27), (4.28), (4.29), and (4.30), that

o4



IV I"(Xi0az + waV xi)| 7200

IV (x;0a + waV ;)| 720
C(HedLvXjH%Q(Qi) + HvaedLH%Q(Qi) +
||de2Xj||%2(Qi) + ||Vvawd||%2(Qi))

102 7 )

IN A

IN

1
C(§||9dL||%2(Qi) + IVOarllZ20, +

1 1
sillwdliz, ) + 52l VwallZz,)

IN

1
C(ﬁWdH%Z(Qi) +[IV0al[72(,) +
1 H, 1
ﬁ(l + ?)deH?{l(B(Q;)) + guwdm{l(m))

2

IN

u? h

52

T H ,H: H
o ((1 +log=—)*=ta(0,0)q, + (1 + logﬁ)za(ﬁ, 0)q, +

(1+ Lo A1+ (0, 6) ey + (1+ log 3% Va0, 6)a,)

h o

m H H
< Cﬁ(l + ?3(1 + logﬁ)zb(u,u)B(Q;).

h

For the bubble functions on each element, we have
C
n?

105515y < 1105511721

IA

C
ﬁHij - HLJ'H%Q(K)

C ~
- ﬁHV(Ih(ijd)) — I"(x;j0ar + waV x;)172 k)

IN

C ~
ﬁHV(Ih(ijd)) — V(xjwq) + V(xjwa)
—1"(X;0ar + waV X)) 72

C ~
w2 IV (Ogwa)) = V (xjwa) |72k

IA

C
+ﬁHvawd - Ih(XjedL)H%?(K)

C
+osllwaVx; = M(waVx)Ze -

25

(4.31)

(4.32)



The first term of (4.32) can be bounded by
Cuvz(ijd)H%%K)
< C| |de2Xj + QVvawd + va2(wd)H2L2(K)
< OllwaV2 X122 00 + 21V X Vwal F2 ey + 11XV 0al T2 10)-

If we add the above bound over the subdomain 2;, we then have

C ~
|V Ogwa)) = V (x;jwa)l |72

1 1
< C(gdeH%?(m,ai) + ?"deH%Q(Qmi) +1V0allZ20,)
m H H
< Cﬁ(l + 3)3(1 + lOQﬁ)zb(ua u)B(2)- (4.33)

The second term of (4.32) is bounded similarly by

C
g Vws — IM(x30a)|[720)

IN

C C
ﬁHvawd - XjedLH%Q(K) + ﬁHXj@dL - Ih(XjedL)H%?(K)

IN

C C
ﬁHXjedBH%%K) + 73X — 1M(x30a)| |72 x)
< Cl0asli ) + ClIV O0an) 72k
Therefore, using the bound for the linear part of the 6 in (4.33), we have
C
ﬁHvawd - Ih(XjedL)H%%Qi)

7 H H
< Ol )0+ log )b, wacay, (4.34)

We can bound the sum of the third term of (4.32) over ©; by
C
12

4.6 The Additive and Multiplicative Operators

H H
(1 + 3)3(1 + lng)2b(u, U)B(Q;)

In total, we have the bound

N N
Zb(uj,uj)gi < sz 1013110
j=0 Jj=0

mZ H H
< O g (Lt ) (Lt log ) ™blu, u)scay.
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Summing over the subdomains, the decomposition is stable with the bound

(1 + 5)3(1 + logﬁ)z.

(m
1 ) h

c2<C

Therefore, our overlapping method satisfies Assumption 1. Because we use
exact solvers, Assumptions 2 and 3 are automatically satisfied. We can define
the additive operator by (2.5) and the multiplicative operator by (2.6) and (2.7).
We can use Theorem 4 to get a bound of the condition number of the additive
operator.

Theorem 14. In case exact solvers are employed on all subspaces, the condition
number of the additive Schwarz operator, for sufficiently small t, is bounded by

CRR(1+ 501 + log

where C depends on N€¢, but is otherwise independent of t, h, H, and 0.

Similarly, we have a bounded condition number of the multiplicative operator.
We show some numerical results in sections 4.10.

4.7 The Case of t=00

4.7.1 Coarse Problem

If t = 0o, the Reissner-Mindlin plate problem is just the linear elasticity prob-
lem. For more detail, see [23]. Bubble functions are zero in a discrete harmonic
function. We define basis functions on the interface and then use discrete harmonic
extensions of these boundary values. For each 6;, we define a vertex basis function
92%, 1= 1,2, k = 1,2,3, which is linear on each edge and has the value 1 at a
vertex.

Lemma 23. The square of the a-seminorm of the vertex basis function Hgvk s
bounded by Cm where C' does not depend on H, h, and §, but depends on the
shape reqularity of the elements of the subdomain.

We define a coarse component u° of u by
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This coarse interpolant reproduces both null space functions of  of the a-seminorm.
We have,

b(uo, UO)QZ.

IA

Cl|0][72(0,)

. H
< Cm(1+logﬁ)||9||?{1(m>

m H
Cﬁ(l + logﬁ)b(u,u)m

IN

by using Korn’s inequality, Lemma 12, after replacing ||0||2,, @) by

inf,cpp |0 — T||?{1(Qi)'

4.7.2 Local Problems

Lethd = w—w" and 7, = 07, — 6% . We define the local components as follows;
w; = ]h Wy and HL' = [h 'HdL . We find
j X j X )
a(b;,0;)a, < Cmlb;[3n
Crin| [VI"(x;0a)| 720
Cm(H@dVXjH%Z(Qi) + ||vaed||%2(ﬂi)

IA A

IN

21
Cm(ﬁHedH%?(Qi,é) + ||V9d||i2(9i))

~ H
Cr(1 + g)”edH?{l(Qi)

IA

IN

- H H
Cm(1+ g)(l + log%)HeH?{l(Qi)

by Lemma 9. By replacing [|0][7,1q,) by infrerp [|0 — 7|71 q,), we obtain

m H H

a(t;,05)a, < Cg(lJrg)(lﬂLlOgﬁ)HHH?{l(Qi)
m H H

< _ J— —_— .

The condition number is bounded by C%(l + L) (1 + logih).

If we do not include the coarse basis functions of this section, then the condition
number of the additive operator grows with the number of subdomains for large
t, such as t > 1. When we added them in our numerical experiments, the additive
method was quasi-optimal and scalable for any ¢, especially for large ¢. But it does
not improve the condition number of the additive method for small ¢ which are of
more interest. The Reissner-Mindlin problem with large ¢ does not have physical
meaning and there is no strong reason for us to add unnecessary variable w to
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the linear elasticity problem. If we were to include these coarse basis functions,
we need to deal with a larger coarse space and it would increase the computation
time.

4.8 Changes of Thickness ¢t or the Lamé con-
stants

It is of interest to consider cases where the thickness and the Lamé parameters
change across the domain. For simplicity, we assume that the thickness and the
Lamé constants are piecewise constant and that we can divide the domain into
triangular subdomains such that ¢, 4, and A are constants on each subdomain. We
can see that the proof of previous sections does not depend on ¢, i, and A if ¢, A and
% are bounded from above. Therefore, we still get the same C (%)2(1 +1log®)?2(1+
%)3 bound even when ¢, 1, and A change over the domain.

4.9 Higher Order Falk-Tu Elements

We can use higher order Falk-Tu elements as in (3.33). Note that we again
choose a discontinuous stress variable.

We can decompose O, into two parts: the space of polynomials, @, and the
space of bubble functions, ®;p5. On each element, we then have a(0 + 6p,0; +
0p) > C(a(0r,0r) + a(lp,0p)) for 6, € O, and g € Oyp because we consider
a finite dimensional space. In discrete harmonic functions, we can consider 0 as
being dependent on 0; and w. We know that VW, C [1@,5 and @, C 1103,
and that w = II6 implies ||w||2, < [|0]|3.. Therefore, we can easily modify our
proof for the higher order Falk-Tu elements and obtain the same bound.

4.10 Numerical Experiments

In the numerical experiments, L is the length of one side of a square domain,
v and E are the parameters of elasticity, H is the size of the coarse mesh, h that
of the fine mesh, ¢ that of the overlap, and ¢ the thickness of the plate. Results
are given for the elasticity parameters v = 0.8 and £ = 0.1. Experiments for
each parameter set is done about 100 times with random right hand sides and the
average iteration counts and condition numbers are given. We use the additive
method (2.5) and symmetric multiplicative method (2.6) with the conjugate gra-
dient algorithm to solve the linear system of equations. The stopping criteria for

llrnll;2

the conjugate gradient algorithm is Trolla < 1077. We have calculated the condi-
l
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Table 4.1: Results for L =1
increasing number of subdomains =

functions.

> h

T _y, %

n
ZX

n
4

1

= 4, and decreasing h = -, and with an
without the w quadratic coarse basis

n

Iter ‘ cond

ITter ‘ cond

ITter ‘ cond

ITter ‘ cond

t

10

0.1

0.001

0.00001

12
24
36
48
60
72
84

81.5 | 383.2
162.4 | 704.6
207.9 | 949.9
233.1 | 1015.7
251.5 | 972.2
265.9 | 1022.1
281.0 | 976.6

36.3
63.5
92.2
122.0
150.2
179.9
208.7

70.5
309.9
T72.7

1492.8
2500.6
3823.5
5483.0

31.1
38.0
49.9
61.1
73.0
87.0
101.7

29.8
42.3
79.3
114.3
171.6
236.3
308.0

80.2 | 379.6
153.2 | 662.8
191.3 | 851.7
208.0 | 767.0
208.0 | 746.9
215.0 | 714.4
209.9 | 607.7

Table 4.2: Results for L = 1, % =4,
an increasing number of subdomains =
functions.

4, and decreasing h = %, and with

x % with the w quadratic coarse basis

ESEE s

n
4

Iter ‘ cond
0.00001
59.3 | 78.1
68.7 | 72.4
73.7 | 75.2
75.0 | 76.3
75.2 | 774
76.9 | 77.5
77.0 | 76.6

Tter ‘ cond
0.1

Iter ‘ cond
0.001
58.0 | 77.5
66.0 | 69.1
67.6 | 68.1
67.0 | 64.4
65.0 | 66.6
64.0 | 65.4
62.0 | 62.6

n Iter ‘ cond
t 10

12 || 35.2
24 || 64.0
36 || 93.0
48 || 121.9
60 || 151.2
72 | 180.1
84 || 209.7

25.1
37.0
49.0
60.8
74.0
87.1
100.7

17.5
35.9
73.7
107.2
161.7
220.6
291.6

70.5
310.1
772.9
1494.3
2503.0
3826.3
5484.9

tion number by constructing the matrix of coefficients (1.3) given by the conjugate
gradient method given in section 1.3.

4.10.1 The Additive Operator

The condition number as a function of the number of subdomains are given in
Tables 4.1 and 4.2. As expected, the condition number grows with the number of
subdomains for large t, but it is bounded for small .
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Figure 4.8: The condition number as a function of the number of subdomains
without the w quadratic coarse basis functions.
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Figure 4.9: The condition number as a function of the number of subdomains with
the w quadratic coarse basis functions.
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Table 4.3: Results for L =1, & =4, % = 4, and decreasing h = %, and with an

'
increasing number of subdomains = {5 x 5.

ay

7 || Tter ‘ cond || Iter ‘ cond
t 100 10

12 || 41.6 | 17.50 || 40.0 | 18.13
24 || 45.0 | 20.69 || 43.7 | 18.61
36 || 46.0 | 21.09 || 44.0 | 18.21
48 || 46.0 | 20.07 || 44.9 | 17.96
60 || 46.0 | 18.90 || 44.5 | 18.92
72 | 46.0 | 18.08 || 44.7 | 19.69
84 || 46.0 | 18.38 || 45.0 | 20.24
96 || 46.0 | 18.76 || 45.0 | 20.57

If we add more coarse basis functions for the linear elasticity problem, we then
can get condition number that does not increase as the number of subdomains
increases for large t. The results with the extended coarse space for large ¢ are in
Table 4.3. These results do not depend on the number of subdomains.
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Table 4.4: Results for L =1, h = %, % = 4, the number of subdomains 3 x 3, and
increasing % = 3 without the w quadratic coarse basis functions.

Iter ‘ cond || Iter ‘ cond | Iter ‘ cond | Iter ‘ cond | Iter ‘ cond
1000 10 0.1 0.001 0.00001
38.91 69.1 || 36.2| 70.5 || 31.1 | 29.7 | 80.2 | 379.0 || 81.3 | 386.2
45.5 | 66.3 || 40.7 | 67.2 | 32.9 | 28.8 || 80.0 | 284.0 || 80.8 | 299.9
458 | 64.2 || 41.8 | 64.1 | 33.7| 31.1 || 79.5 | 307.5 || 80.4 | 337.4
46.1 | 64.4 || 42.5| 65.1 | 34.3 | 31.8 || 79.2 | 313.9 || 80.0 | 358.0
46.9 | 62.8 || 43.2 | 63.7 || 34.5 | 31.9 || 79.0 | 301.4 || 81.6 | 361.3
24 || 474 | 62.9 || 43.5 | 64.0 || 34.6 | 33.4 || 79.0 | 288.1 || 89.2 | 354.4
28 || 47.7 | 63.3 || 43.6 | 64.4 || 35.0 | 34.4 || 79.2 | 268.8 || 89.6 | 345.3

| = =
S| | ro| ®| | FIY

Table 4.5: Results for L =1, h = %, % = 4, the number of subdomains 3 x 3, and
increasing % = 7 with the w quadratic coarse basis functions.

Iter ‘ cond | Iter ‘ cond || Iter ‘ cond | Iter ‘ cond | Iter ‘ cond
1000 10 0.1 0.001 0.00001
39.0 694 | 352 | 704 | 25.1 | 17.5 || 58.0 | 78.1 || 59.1 | 79.0
46.2 | 65.6 || 41.6 | 66.1 || 28.0 | 17.2 || 59.5 | 79.0 || 61.9 | 82.5
47.0 | 65.5 || 42.6 | 63.9 || 29.4 | 19.0 || 60.0 | 80.4 | 64.2 | 88.0
47.6 | 64.7 || 43.6 | 64.0 || 30.2 | 20.2 || 59.3 | 83.9 || 64.9 | 90.2
20 || 48.0 | 64.1 | 44.0 | 63.8 || 31.0 | 20.7 || 59.3 | 81.9 || 66.5 | 92.9
24 || 48.1 | 64.2 || 44.4 | 63.7 || 31.0 | 21.1 || B9.6 | 78.1 || 67.3 | 94.2
28 || 48.1 | 64.4 || 44.3 | 63.6 || 31.0 | 21.6 || 60.1 | 74.9 | 67.8 | 94.5

S| 55| oo] | = i

Results with varying % are given in Table 4.4, Table 4.5, Figure 4.10, and
Figure 4.11.
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Table 4.6: Results for h = =

the w quadratic coarse basis functions.

= % = 12, and decreasing % =12,6,4, 3, 2.4, 2 without

Table 4.7: Results for h =
the w quadratic coarse basis functions.

720 h

= 12, and decreasing & = 12,6,4,3,2.4, 2 with

% Iter ‘ cond || Iter ‘ cond || Iter ‘ cond Iter ‘ cond
t 10 0.1 0.001 0.00001

12 || 114.8 | 1439.2 || 62.1 | 96.3 || 484.9 | 7153.2 || 542.0 | 7387.8
6 93.5 | 564.2 || 51.0 | 56.4 | 210.4 | 1070.9 || 228.9 | 1324.4
4 73.9 | 290.6 || 45.0 | 47.1 || 145.3 | 581.9 | 162.1 | 804.3
3 61.4 | 162.3 || 40.1 | 41.1 || 116.9 | 438.9 || 132.6 | 620.3

2.4 || 50.9 96.6 | 36.4 | 36.7 || 72.8 | 216.9 | 110.1 | 463.6
2 42.2 59.0 || 32.7 | 29.8 || 83.1 | 293.0 || 94.6 | 398.9

1 H

% Iter ‘ cond || Iter ‘ cond || Iter ‘ cond || Iter ‘ cond
t 10 0.1 0.001 0.00001

12 || 116.2 | 1417.1 || 61.4 | 102.3 || 211.5 | 960.1 || 244.4 | 1033.7
6 94.5 | 525.2 || 48.0 | 47.7 | 94.7 | 139.0 || 102.8 | 151.8
4 74.9 | 287.0 || 41.0 | 38.4 || 68.9 | 77.2 || 79.0 96.4
3 62.4 | 165.1 || 36.0 | 32.9 || 60.0 | 53.9 || 67.0 67.5
2.4 || 51.4 96.7 | 33.0| 25.1 || 53.3 | 44.0 || 60.5 57.4
2 42.6 59.2 29.0 | 22.2 48.2 | 39.8 55.1 50.9

Results with varying % are given in Table 4.6, Table 4.7, Figure 4.12, and
Figure 4.13. The condition number depends on % It grows faster with % when ¢

is small.
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Table 4.8: Results for L =1, % =4, % = 4, decreasing h = %, and increasing the
number of subdomains = 7 x 7 with the w quadratic coarse basis functions.
Iter ‘ cond | Iter ‘ cond || Iter ‘ cond

t 0.1 0.001 0.00001

12 || 6.0 | 1.59 || 15.9 | 6.10 || 16.0 | 6.26

24| 9.0 | 2.50 || 19.0 | 5.66 || 19.0 | 5.96

36 || 13.0 | 4.32 || 19.0 | 5.45 || 20.0 | 6.22

48 || 16.0 | 6.18 || 18.9 | 5.33 || 21.0 | 6.37

60 || 20.0 | 8.87 | 18.0 | 5.05 || 21.0 | 6.50

72 1| 23.8 | 11.55 || 18.0 | 4.76 || 21.7 | 6.55

84| 27.2 1 14.90 || 17.0 | 4.49 || 22.0 | 6.54

96 || 31.0 | 20.15 || 16.9 | 4.27 || 22.0 | 6.56

4.10.2 The Multiplicative Operator

We have also tested the multiplicative operator numerically with the additional
w quadratic basis functions in subsection 4.4.3. The multiplicative operator has
much smaller condition number than the additive operator. Results of the mul-
tiplicative operator are given in Tables 4.8, 4.9, and 4.10 and Figures 4.14, 4.15,

and 4.16.
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Table 4.9: Results for L =1, h =+

H

= =4, the number of subdomains 3 x 3, and

n’ 4§
increasing % = % with the w quadratic coarse basis functions.
% Iter ‘ cond || Iter ‘ cond || Iter ‘ cond
t 0.1 0.001 0.00001
4 1| 6.0 | 1.59 || 15.9 | 6.17 || 15.9 | 6.20
8 | 7.0 | 1.79 || 16.0 | 6.61 || 16.6 | 6.99
12 7.0 | 1.91 || 15.8 | 6.40 || 16.6 | 7.13
16 || 7.0 | 1.99 || 15.5 | 5.90 || 16.6 | 6.87
20| 8.0 | 2.05 || 15.6 | 5.72 | 16.6 | 6.82
24 || 8.0 | 2.10 || 15.2 | 5.74 | 16.8 | 7.13
28 | 8.0 | 2.14 || 15.0 | 5.83 | 16.9 | 7.65
321 80 | 218 || 15.0 | 5.95 | 16.9 | 8.15
36 | 8.0 | 2.21 || 15.0 | 6.04 || 17.0 | 8.55
40 | 8.0 | 2.24 || 15.0| 6.09 || 17.0 | 8.86
10
o
8t ///
7L I B ///
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Figure 4.15: The condition number as a function of % with the w quadratic coarse

basis functions.
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Table 4.10: Results for h = %, % = 12, and decreasing % =12,6,4,3,2.4,2 with

the w quadratic coarse basis functions.

= | Tter ‘ cond | Iter ‘ cond | Iter ‘ cond
t 0.1 0.001 0.00001

12 || 17.0 | 6.11 || 57.3 | 57.76 || 62.8 | 66.98
6 || 13.0] 4.02 || 24.2 | 10.33 || 28.0 | 13.30
4 | 10.0| 3.18 || 19.0 | 6.42 | 22.0 | 8.37
3 9.0 | 2.62 || 153 | 5.19 || 182 | 6.61
2.4 80 | 2.32 || 13.7| 4.34 || 16.0 | 5.37
2 7.0 | 207 || 12.0 | 3.73 || 13.6 | 4.58

—t=0.1
—1=0.001
—1=0.00001

10" _ 1

condition numbers
\

10
H/3

Figure 4.16: The condition number as a function of % with the w quadratic coarse
basis functions.
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Chapter 5

BDDC methods for the
Reissner-Mindlin Plate

5.1 Introduction

In this final chapter, we will discuss two BDDC methods for the Reissner-
Mindlin Plate. They will differ in details and concern two different finite element
models. Experimentally the performance of two different algorithms are quite
similar. First, we will discuss work described in [8] while in the final section, and
we will report on our own recent progress.

5.2 Notation

As in section 4.3, we can eliminate the stress variable for the discretized problem
and obtain problem (4.10) where b is defined in (4.11):
Find 6, € ©), and w;, € W), such that

b((ehawh)v (¢,U)) = (g,v) - (f>¢)> ¢ € Gha RS Wh- (51)

We will use notation similar to that of section 2.4 but replacing W by U. In
each subdomain, we have U® := @E:) X W,EZ). We also define U® := Uff) —|—U$Z) =
Uﬁ) + UX) + U?). We also need to consider the product spaces Uy, Ur, and Ur.

S is the Schur complement of the plate problem derived from the b operator
in (4.11) on subdomain €. S is the direct sum of the S® on Uy, S is the Schur
complement restricted to ﬁp, and S the Schur complement restricted to Ur. Then,
the discrete problem becomes: R R

Find ur € Uy such that Sur = f for a proper fr.

For more notation of the spaces, restriction operators, and Schur complements,
see section 2.4.
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We define the positive scaling factors
ol(z) = N1, zely (5.2)

where N, is the number of subdomains which have x on their boundaries. We
will not include any vertex variables in the dual space and therefore 0] () = 5 if
x is a node of the dual space since all nodes for the dual space are on the edges.
Therefore, we have

~ 1 ~
ReaRpy = S Realf.

As in section 2.7, we can write a coarse stiffness matrix as

N
)T (i i
S =3 R S0, RO 5.3
i=1
with
(0) (0) 0 no | Bl BiA Bl
Srfn = Br;r[ - [BI'EI BI'EA] i i )T (5.4)
By Bia Biiz
and the extension matrix @ : ﬁn — INJF as defined by
N () (4) (i)"
hT, | B B B ;
¢ =Riy— Ry Y [0RY ]| O 0 W |Bi. (55)
= BY Bia Bfia
We can use the exact local stiffness matrix, SX), which is defined by
i i i ) 56
S0 = 5y - BB Bl 50
Sa is the direct sum of the SX).
We then define the BDDC preconditioner as in (2.22) in section 2.7:
Mgpoe = RhpREASA' ReaRpy + Rb 1 @Sgh® Ry (5.7)

5.3 BDDC Methods for MITC elements

In this section, we present the BDDC methods for the MITC elements as in
[8]; some notations and representations have been modified. We assume that the
subdomains are shape regular rectangles and use the MITC9 elements. We know
that the MITC elements satisfy properties P1-P6 of subsection 3.3.1.

We choose Uy as the space of the subdomain vertex nodal values. Each rectan-
gular subdomain has 4 vertices and 12 primal variables and we have approximately
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% = 3 coarse degrees of freedom per subdomain. The local space Ug) is defined

as the subspace of U(Fi ) for which the values at the subdomain vertices vanish.

Let & represent the set of the edges of I';. For u® = (0 w®) € UY and the
edge e € &;, we first define the following edge seminorm on the rotation variables:

09 o) == inf e . 5.8
| |’Y( ) wEH(l)(Q),’LMe:@(i”e || (¢)||L2(QZ) ( )

We then define the interface seminorm of 4,

12 i) |2
WOy = D[] (59)
ect;
with
}u(i)}i(e) = \9(i>}i(e)+ht‘2H(H9(i)—Vw)'tHsz(e)’ (5.10)

where t is the unit tangent vector of the edge e. It follows from property P6
that (II0") — Vw) - t is well defined on the edge e. Because we use shape regular
subdomains, we can see that [u|, ) and |[RW RO 4@| ) are equivalent for
ecl;NT;.

Using properties P1-P6, we can prove the following lemma for the interface
seminorm 7(I';). For a proof, see [8, section 5.2].

Lemma 24. There exists a constant C, which is independent of H and h, such
that,

i) 0|2 i (i)

}“()}T(ri) < C ‘U()}Su), vu” € Uy, (5.11)
i)|? )2 i D) BT (i

Wy = C/H) [y, vu® e RYRY UY. (5.12)

From this, we can easily prove an extension lemma.

Lemma 25 (extension lemma). There exists a constant C, which is independent
of H and h, such that,

N 12 , , N .
RORE"O| < O/ [uy, . va? e RORPUR.  (5.13)

We can define an average operator Ep on INJF as in section 2.7.
ED = Erégr. (514)

Let us denote the set of indices j such that Q; N Q; # @ by =;.
For a given ar = I;4 € Ur with @1 € U(FZ), define ug; and ug as follows:

N N
Ug = Z Rl(—xl)éjU(]’Z == Z Rg),r‘u(],i (515)
i=1 =1
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and ug, is a minimizer of s (u® u) among all functions u(i E UY such that
RYRY 40 = RYRTr. We also define u; = ) — ug; € RVRY U,
We then have

i ~ i T 1 i T
RY Epir =Y RYRY 6lujo+ 5 STRYRY (5.16)
JEE; JEE;
and
) 2 ] 2
i ~ i HNT i HT
JEZ; S JEE; S(@)

Using the extension lemma, the second term of (5.17) can be bounded by

CH
o Z |uJ|S(J) < 5 Z ‘u ‘sm (5.18)

JEE; JEE;

The first term of (5.17) can be bounded by

2
i T
RY E RY Sl

JEE;

0
2
i T
S 4 |ui’0|§(i) + 4 ui,o — Rl(") Z Rl(—xj) (5;[1,6]'70
JEE; S(4)
2
S 4 ‘ ‘S(l) +4 Z R (ST R(] RF Ui 0 — Uj70)
J€~—41 S(0)
~ (i 2 (3 2
<4 }u( )‘s(i) —I— Z ‘R RF) Ui — Ujp) -
o=y 7(Li5)
~(i 2 CH ) 2
<4 }“( )‘s(i) - h (|“i70|T<Fij) + |“J'70|r(rij>>
JEE;
~(7) 12 CH 2 2
<4 }“( )‘sm + e (|Uz’70|s<i> + |Uj,0|s<j))
JEE;
H 2
== > |aVg - (5.19)
JEE;
By summing over the subdomains, we have
- CH . ~
|EDUF| < —|UF| ur € Ur, (5.20)

which is similar to Lemma 11. Following the arguments in section 2.7, we then
have the following bound for the BDDC operator with the MITC elements.
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Theorem 15. The BDDC operator has the following bound of the condition num-

ber CH
K(MghpeS) < 5

where C' is independent of H and h.

In numerical experiments reported in [8], we can see that the bound of condition
number is better than what the theory predicts; we can expect to have a bound
which is the power of (1 + logZl).

5.4 BDDC Methods for Falk-Tu elements

In this section, we present our BDDC methods for the Falk-Tu elements. We
assume that the subdomains are shape regular triangles.

We choose Uy as the space of the subdomain vertex nodal values and the values
fek 0 -nds for all edges. Each triangular subdomain has 3 vertices, 3 edges, and 12

primal variables and we have approximately % + % = 3 coarse degrees of freedom

per subdomain. The local space Ug) is defined as the subspace of Ug) where the
values at the subdomain vertices and fek 0 - n ds vanish.
We first tested an extension lemma on an edge e;; numerically and calculated

. . 12
‘Rg)Rg)TUO) <

sup —
RO ROTRORTuY  [u9]s6)
for a number of values of H/h and t. If ul) € ng)ng)Tng)ﬁg)TUg), it vanishes
at all nodes of 0€;\e;;. The results in Table 5.1 and Figure 5.1 suggest that we
have a constant bound.

Conjecture 1 (extension lemma). There exists a constant C, which is independent
of H and h, such that,

@) pGT. )|
Ry Ry u o

| < Clu9%,, vu¥ e RORD'RORYUY.  (5.21)

Next, we tested an edge lemma on an edge e;; numerically. For u® e U(Fi), let

ug) be the coarse interpolant defined as (4.15) and ¥,; be the edge cut-off function

of e;j. We calculated
2

wez‘j(u(i) o u‘()i)) (@)
sup £ (5.22)

) i) 12
u®eul? u® (g0
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Table 5.1: Maximum of the generalized eigenvalues for H =1, h =

k?

ing % = k between two interior subdomains for the extension lemma.

H/h | t=0.1 t=0.01 t=0.001 | t=0.0001 | t=0.000010
9 | 4.907158 | 10.953264 | 13.286568 | 13.336906 | 13.337417
18 | 5.417579 | 11.342027 | 13.208633 | 13.414581 | 13.416773
27 | 5.530311 | 11.634899 | 13.038411 | 13.426350 | 13.430772
36 | 5.571774 | 11.766864 | 12.788679 | 13.454008 | 13.462269
45 | 5.591386 | 11.839829 | 12.501084 | 13.447404 | 13.460537
54 | 5.602162 | 11.885327 | 12.262782 | 13.440867 | 13.459785
63 | 5.608703 | 11.915788 | 12.088357 | 13.434974 | 13.460689
72 | 5.612968 | 11.937174 | 12.078051 | 13.426620 | 13.460161

14

12

101

—— =10
—— =102

L1 and increas-

=107 |
=107
t=107°

maximum eigen value
=

H/h

Figure 5.1: Maximum eigenvalue as a function of % for the extension lemma.
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Table 5.2: Maximum of the generalized eigenvalues for H =1, h =

ing % = k for the edge lemma.

1
L

H/h t=0.1 t=0.01 t=0.001 t=0.0001 t=0.000010
9 | 39.252590 | 293.059058 | 523.887444 | 530.591379 | 530.660677
18 | 43.503106 | 271.781051 | 697.637776 | 729.347650 | 729.696130
27 | 46.257163 | 262.949783 | 783.727702 | 856.560695 | 857.440410
36 | 48.442702 | 260.211920 | 826.903401 | 951.151252 | 952.829761
45 | 50.389569 | 259.449082 | 846.192946 | 1026.722797 | 1029.509209
54 | 52.288230 | 259.385027 | 851.902182 | 1089.687970 | 1093.882972
63 | 54.297223 | 259.587166 | 850.017478 | 1143.603560 | 1149.555093
72 | 58.094214 | 259.891252 | 844.084585 | 1190.658638 | 1198.521906

for a number of values of H/h and t. I1;u

u® — u(()i)

(@)

suggest that we have a C(1 + log?)? bound.

Conjecture 2 (edge lemma). There exists a constant C, which is independent of

H and h,

¢eij (u(l)

such that,

)

)

‘ 2

S(4)

H
< C(1+log—

h

)2 }u(i) ﬁg(i) )

For a given ar = ILa® € Ur with a® € Ul(f), we have

‘R(i)E |
r Lpur

S(i)

JEE;

< 20a®|5, +2

3 RORY" dlat

7

S (@)

a® - 3" RYRY slat)

JEE;

vu) €

is continuous across the interface and
vanishes at all primal variables. The results in Table 5.2 and Figure 5.2

Ul

(5.24)

2

S(4)

and increas-
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Figure 5.2: y/maximum eigenvalue as a function of % for the edge lemma.

The second term is bounded by

i — 3 RORY 50

JEE;

S (@)
2

_ R%Z) Z Rg)T(;;(Rg)Rg)Tﬂ(i) _ ﬂ(j))

JEE:

S(4)
2
() p@)" 4@ _ g0
< -
- Z R R )‘S(i)
Jeuz
i T . ’iT (i i 2 i NT s . 2
<X (\Rw RORE 0 -, + AR 0 -,
WA
L2
(i) 2@ _ 4,9
S C(1+l0g ‘U ‘S(z)‘FCZ welj J Ug )‘S(j)
JEE;
< 1+log Z‘u 50 - (5.26)
JEE;
By summing over the subdomains, we have
Epirls < C(1+log o Pl ir € U 5.27
|[Eptur|s < C(1+ OQE) |ir|3, ar € Ur, (5.27)

which is similar to Lemma 11. Therefore, we can prove that the BDDC operator
with the Falk-Tu elements have a C(1 + logZ)? bound if our two conjectures hold.
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Table 5.3: Results for L =1, % = 4, and with an increasing number of subdomains.

NoS || Miaz ‘ iter || Mgz ‘ iter || Az ‘ iter || Mz ‘ iter || Aga ‘ iter
t 1071 1072 1073 10~ 107°
18 6.4 |19.0 12.6 | 279 || 13.3 | 29.0 || 13.4 | 29.0 || 13.3 | 29.0
72 56 | 21.01 14.0 | 31.0 || 18.5 | 35.0 || 18.4 | 35.0 || 184 | 35.0
162 5.5 | 21.0 14.0 | 30.0 || 21.9 | 36.0 || 21.1 | 36.0 || 21.1 | 36.0
288 5.5 [ 21.0 | 13.0 | 29.0 || 23.0 | 36.0 || 21.2 | 36.0 || 21.2 | 36.0
450 55 [ 21.0 | 11.9 | 28.0 || 23.0 | 37.0 || 20.1 | 37.0 || 20.1 | 37.0
648 55 1220 | 10.8 | 27.0 || 22.6 | 37.0| 18.8 | 37.0 | 18.8 | 37.0
882 5.5 [22.0 | 10.0 | 26.0 || 22.0 | 38.0| 17.6 | 37.0| 17.5 | 37.0

1152 5.5 | 22.0 94 250 21.3 | 38.0 | 16.5 | 38.0 || 16.4 | 38.0

1458 || 5.5 [ 22.0 89 |25.0| 20.5 |38.0| 15.6 |38.01 15.5 | 38.0

1800 || 5.5 [ 22.0 86 |25.0| 19.7 | 38.0| 14.9 | 38.0 || 14.8 | 38.0

5.4.1 Numerical Experiments

When discussing our numerical experiments, we use the same notation as in
section 4.10. We also use the same elasticity parameters and stopping criteria as in
that section. Because the minimum eigenvalue of out BDDC operator is bounded
below by 1, we will report the maximum eigenvalue and the number of iterations
only.

We have tested our BDDC methods with an increasing number of subdomains.
The results are in given Table 5.3 and Figure 5.3. We see that the condition
number does not grow with the number of subdomains.

We have also tested our BDDC methods with an increasing value of H/h. The
results are given in Table 5.4 and Figures 5.4 and 5.5. They suggest a C(1 +log%)2
bound.

Compared to results in [8], we see that the iteration counts are similar for two
methods for the two different finite element. Examining the maximum eigenvalues,
we find that the one of our methods is about twice as large as the one in [8].
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Figure 5.3: Maximum eigenvalue of the preconditioned system as a function of the
number of subdomains

Table 5.4: Results for L = 1, number of subdomains 4 x 4, and with an increasing
H/h.

H/h || Ao ‘ iter || Ama ‘ iter || Ama ‘ iter || Ama ‘ iter || Ao ‘ iter
t 107! 1072 103 1074 107°
3 5.2 | 183 10.9 | 270 | 11.2 | 289 || 11.2 | 29.0 || 11.2 | 28.9
4 6.0 |20.0 | 13.1 |30.7]| 14.9 | 32.0 | 14.9 | 32.0 | 14.9 | 32.0
) 6.6 | 21.0| 144 |32.0] 16.8 | 35.0 || 16.9 | 35.0 | 16.9 | 35.0
6 7.1 1220 152 |33.0] 18.0 [ 37.0 18.0 | 37.0| 18.0 | 37.0
7 7.5 123.0] 159 |34.0] 18.9 | 38.0 189 | 38.0| 18.9 | 38.0
8 79 124.0 16.5 | 35.0 19.6 | 40.0 || 19.6 | 40.0 || 19.6 | 40.0
9 8.3 | 25.0 17.1 {359 204 | 41.0 || 20.3 | 41.0 | 20.3 | 41.0
12 9.2 126.0| 186 | 37.0 | 22.7 | 43.7 | 22.3 | 43.9 | 22.3 | 43.9
15 10.0 | 27.0 || 19.8 | 38.0 || 25.6 | 46.0 || 24.4 | 46.0 || 24.3 | 46.0
18 10.6 | 28.0 || 20.9 | 39.0 || 28.1 | 48.0 | 26.3 | 48.0 | 26.2 | 48.0
21 11.2 | 289 || 21.7 | 40.0 || 30.3 | 50.0 || 28.5 | 49.9 | 28.5 | 49.9
24 11.6 | 29.3 || 22.6 | 40.4 | 33.6 | 51.9| 299 | 51.2 || 29.8 | 51.4
27 12.1 | 30.0 || 23.2 | 41.0 | 35.2 | 53.0| 31.5 | 53.0 || 31.1 | 53.0
30 || 12.7 [ 30.9 | 23.7 | 41.5 || 37.1 | 54.0 || 32.9 | 54.0 || 32.9 | 54.0
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Figure 5.4: y/maximum eigenvalue of the preconditioned system as a function of
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