
Domain Decomposition Methods for Reissner-Mindlin
Plates discretized with the Falk-Tu Elements

TR2011-937

by

Jong Ho Lee

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Mathematics

New York University

January 2011

Professor Olof B. Widlund



c© Jong Ho Lee
All rights reserved, 2011



Acknowledgements

I thank my advisor Professor Olof Widlund. Without his help, I could not do
this dissertation. Thanks so much for his effort and advice, and I am fortunate
to work with him. He encouraged me to do research and gave me a lot of help to
write dissertation.

I also thank my colleague Duksoon Oh for discussion and help. I got much help
from him for research and computing.

Thanks also to all members in Courant.

iii



Abstract

The Reissner-Mindlin plate theory models a thin plate with thickness t. The
condition number of finite element approximations of this model deteriorates badly
as the thickness t of the plate converges to 0. In this thesis, we develop an over-
lapping domain decomposition method for the Reissner-Mindlin plate model dis-
cretized by Falk-Tu elements with a convergence rate which does not deteriorate
when t converges to 0. We use modern overlapping methods which use the Schur
complements to define coarse basis functions and show that the condition number
of this overlapping method is bounded by C(1 + H

δ
)3(1 + logH

h
)2. Here H is the

maximum diameter of the subdomains, δ the size of overlap between subdomains,
and h the element size. Numerical examples are provided to confirm the the-
ory. We also modify the overlapping method to develop a BDDC method for the
Reissner-Mindlin model. We establish numerically an extension lemma to obtain
a constant bound and an edge lemma to obtain a C(1+ logH

h
)2 bound. Given such

bounds, the condition number of this BDDC method is shown to be bounded by
C(1 + logH

h
)2.
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Chapter 1

Introduction

1.1 An Overview

When we solve an elliptic partial differential equation (PDE) numerically, we
first need to discretize the problem using finite element, finite difference, or other
methods. After discretization, we have a large sparse linear system to solve to get
a numerical solution. Typically, accuracy of approximated solution from discrete
methods depends on the mesh size, denoted by h. As the mesh size decreases, we
can get a more exact numerical solution, but the linear system to solve becomes
larger and more ill-conditioned. Therefore, we need to precondition the linear
system so that the preconditioned system has a smaller condition number and
converges to the solution faster when using Krylov space methods.

Domain decomposition methods give scalable and efficient preconditioners that
can be used with Krylov space methods and parallel computers. In domain decom-
position methods, we divide the original domain into many smaller subdomains so
that we can solve a smaller linear system of each subdomain using direct solver
separately. If we use only local solvers, information can be exchanged only between
neighboring subdomains in each iteration. By also using a coarse solver, which has
only few degrees of freedoms per subdomain, we can prevent the condition number
of preconditioned system from increasing for many subdomain cases.

Domain decomposition methods can be categorized into two classes: over-
lapping Schwarz methods and iterative substructuring methods. In overlapping
Schwarz methods, we use overlapping subdomains with an overlap δ and get better-
conditioned methods with larger δ. In iterative substructuring methods, we reduce
the space of unknowns to the space of interface unknowns by eliminating the un-
knowns in the interior of subdomains resulting in Schur complements. We will
concentrate on BDDC (balancing domain decomposition methods by constraints)
methods in this thesis.

We consider Reissner-Mindlin plate theory which has been developed to de-
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scribe the behavior of a thin plate under exterior force. We describe the displace-
ment of the plate by three variables: one displacement variable and two rotations,
after a reduction of dimension, see subsection 3.2.1. If we use naive standard low
order polynomial elements, the finite element model can suffer from locking prob-
lems. There are now many good finite elements developed on Reissner-Mindlin
plate theory, which avoid this problem.

There are a number of studies which develop preconditioners for the Kirchhoff
plate problem, see [13, 15, 14, 33, 39]. [33] and [39] can be extended to the Reissner-
Mindlin plate problem for elements which are spectrally equivalent to Kirchhoff
plate elements. For MITC element approximation of the Reissner-Mindlin plate
problem, a BDDC method has also been developed, see [8].

In this dissertation, we develop overlapping Schwarz methods on Reissner-
Mindlin plate theory by finding proper coarse basis functions. There is relation
between the displacement variable and rotations, and we use this relation to get
good coarse basis functions. We then modify overlapping Schwarz methods to
a BDDC method using primal constraints of BDDC methods which are related
to the coarse basis functions of the overlapping Schwarz methods. We developed
methods which are independent of t for small t, quisi-optimal, and scalable.

We will first review some basic functional analysis tools, the conjugate gradient
method and mixed finite element methods.

1.2 Functional Analysis Tools

1.2.1 Sobolev Spaces

We assume that Ω is a Lipschitz domain in R2 or R3. L2(Ω) is the space of real
valued functions defined as

L2(Ω) =

{
u : Ω → R|

∫

Ω

u2 dx <∞
}
.

This is a Hilbert space with the inner product

(u, v)L2(Ω) =

∫

Ω

uv dx

and an induced norm

||u||2L2(Ω) = (u, u)L2(Ω) =

∫

Ω

u2 dx.

In the following when we say derivatives, they are weak derivatives as in [10,
chapter 2.1]. H1(Ω) ⊂ L2(Ω) is the space of real valued functions which have first

2



order weak derivatives and satisfies
∫

Ω

u2 dx <∞ and

∫

Ω

∇u · ∇u dx <∞.

This is also a Hilbert space with the scaled norm

||u||2H1(Ω) :=

∫

Ω

∇u · ∇u dx +
1

H2
Ω

∫

Ω

u2 dx

where HΩ is a diameter of the domain Ω; this scaling factor is obtained by dilation
from a region of unit diameter. The corresponding H1-seminorm is given by

|u|2H1(Ω) =

∫

Ω

∇u · ∇u dx.

H1
0 (Ω) is the closure of C∞

0 (Ω) in H1(Ω) with respect to the H1-norm. In H1
0 (Ω),

the H1-norm and H1-seminorm are equivalent.
Similarly, we define H2(Ω) as the space with functions that have bounded L2

norms and L2 bounded first and second order derivatives.
We also define the divergence of a vector-valued function u with two or three

components by

div u := ∇ · u =
n∑

i=1

∂ui
∂xi

(1.1)

where ui is the i-th component of u. H(div,Ω) ⊂ L2(Ω)n is the space with the
inner product given by

(u,v)div,Ω =

∫

Ω

div u div v dx +
1

H2
Ω

∫

Ω

u · v dx.

We note thatH1(Ω)n ⊂ H(div,Ω). We define the curl of the scalar-valued function
p and the rotation of the vector-valued function u with two components by

curl p :=

(
∂p
∂x2

− ∂p
∂x1

)
, rot u :=

∂u2

∂x1

− ∂u1

∂x2

. (1.2)

Similar to H(div,Ω), H(rot,Ω) ⊂ (L2(Ω))2 is the space with the inner product

(u,v)rot,Ω =

∫

Ω

rot u rot v dx +
1

H2
Ω

∫

Ω

u · v dx.

3



1.2.2 Trace and Extension Theorems

Let Ω be a Lipschitz domain in Rn, n = 2, 3, and Γ be an open subset of ∂Ω
with non-vanishing (n− 1)-dimensional measure.

We define the H1/2(Γ)-seminorm by

|u|2H1/2(Γ) =

∫

Γ

∫

Γ

|u(x) − u(y)|2
|x− y|n dxdy

where n is the dimension of Ω. With the H1/2(Γ)-norm defined by

||u||2H1/2(Γ) = |u|2H1/2(Γ) +
1

HΓ
||u||2L2(Γ) ,

H1/2(Γ) is the space of functions which have bounded H1/2(Γ)-norms.

Lemma 1 (Trace theorem). Let Ω be a Lipschitz domain. Then, there is a bounded
linear operator γ0 : H1(Ω) → H1/2(∂Ω) such that γ0u = u on ∂Ω if u is continu-
ously differentiable.

We also have the extension theorem.

Lemma 2. Let Ω be a Lipschitz domain. Then, there exists a continuous lifting
operator R0 : H1/2(∂Ω) → H1(Ω) such that γ0(R0u) = u, u ∈ H1/2(∂Ω).

1.2.3 Poincaré and Friedrichs Inequalities

In domain decomposition theory, Poincaré and Friedrichs inequalities are pow-
erful tools for the analysis. See [41] for a proof of the following theorem.

Theorem 1. Let Ω ⊂ Rn be a bounded Lipschitz domain and let fi, i = 1, ..., L, be
linear functionals in H1(Ω), such that, if v is constant in Ω,

L∑

i=1

|fi(v)|2 = 0 ↔ v = 0.

Then, there exist constants, depending only on Ω and the functionals fi, such that,
for u ∈ H1(Ω),

||u||2L2(Ω) ≤ C1|u|2H1(Ω) + C2

L∑

i=1

|fi(u)|2.

From Theorem 1 and simple scaling arguments, we have Poincaré and Friedrichs
inequalities which will be used many times in our proofs, cf. [47, chapter A.4].
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Lemma 3 (Poincaré and Friedrichs Inequalities). Let Ω ⊂ Rn be a bounded Lips-
chitz domain with diameter H. Then, there exists a constant C1, that depends only
on the shape of Ω but not on its size, such that

||u− ū||2L2(Ω) ≤ C1H
2
Ω|u|2H1(Ω)

for ∀u ∈ H1(Ω). Here ū is the mean of u over Ω. Similarly, if Γ ⊂ ∂Ω has
nonvanishing (n-1)-dimensional measure and a diameter of order HΩ, then

||u||2L2(Ω) ≤ C2H
2
Ω|u|2H1(Ω) + C3HΩ ||u||2L2(Γ)

for ∀u ∈ H1(Ω).

1.3 The Conjugate Gradient Method

We can solve a sparse linear system using Krylov space methods. Especially if
we solve a symmetric positive definite problem

Au = b,

where A is a symmetric positive definite matrix, we can use the Conjugate Gradient
method. For more detail, see [47, chapter C] and [48]. The Conjugate Gradient
method is given as follows:

1. Initialize: r0 = b−Au0

2. Iterate k = 1, 2, · · · until convergence

βk =< rk−1, rk−1 > / < rk−2, rk−2 > [β1 = 0]

pk = rk−1 + βkpk−1 [p1 = r0]

αk =< rk−1, rk−1 > / < pk, Apk >

uk = uk−1 + αkpk

rk = rk−1 − αkApk

We see that in this iterative method A is used only in a matrix-vector multiplication
and we do not need to construct A explicitly.

We define the A-norm as follows:

||x||A =
√
xTAx.

Then, we have the following convergence lemma for the Conjugate Gradient method.

5



Lemma 4. Let A be symmetric and positive definite. Then, the iterate uk of the
Conjugate Gradient method minimizes ||u∗ − u||A over the space

u0 + span{Air0, i = 0, 1, ..., k − 1}

where u∗ is the solution of Au = b and r0 = b− Au0.
The Conjugate Gradient method also satisfies the error bound

∣∣∣∣uk − u∗
∣∣∣∣
A
≤ 2(

√
κ2(A) − 1√
κ2(A) + 1

)k
∣∣∣∣u0 − u∗

∣∣∣∣
A

where κ2(A) is the spectral condition number of A.

As Lemma 4 suggests, the convergence rate of the Conjugate Gradient method
depends greatly on the condition number of A. If we can find a good precondi-
tioner M , a symmetric positive definite matrix with κ2(M

−1A) << κ2(A), we can
consider the modified linear system, which has a symmetric operator,

M−1/2AM−1/2v = M−1/2b, v = M1/2u.

The algorithm of the preconditioned Conjugate Gradient method is given as
follows:

1. Initialize: r0 = b−Au0

2. Iterate k = 1, 2, · · · until convergence

Precondition: zk−1 = M−1rk−1

βk =< zk−1, rk−1 > / < zk−2, rk−2 > [β1 = 0]

pk = zk−1 + βkpk−1 [p1 = z0]

αk =< zk−1, rk−1 > / < pk, Apk >

uk = uk−1 + αkpk

rk = rk−1 − αkApk

We have the following convergence lemma.

Lemma 5. Let A and M be symmetric and positive definite. Then, the precondi-
tioned Conjugate Gradient method satisfies

∣∣∣∣uk − u∗
∣∣∣∣
A
≤ 2(

√
κ2(M−1A) − 1√
κ2(M−1A) + 1

)k
∣∣∣∣u0 − u∗

∣∣∣∣
A
.

6



Therefore, we need to find M which is a good approximation to A and is
computationally inexpensive when designing domain decomposition methods.

We can compute an approximation of the condition number of A when we use
the Conjugate Gradient method to solve the system. For more detail, see [30] and
[43]. From the coefficients of the Conjugate Gradient method, we can construct
the following symmetric tridiagonal matrix,

J (k) =




1/α1 −√
β1/− α1 · · · · · ·

−√
β1/α1 (1/α2 + β1/α1) −√

β2/α2 · · ·

. . .
. . .

. . .
. . .



. (1.3)

Then, J (k) is a matrix representation of the restriction of the matrix A to the space
span{Air0, i = 0, 1, ..., k−1}. An approximation of the condition number of A can
be obtained from the condition number of J (k). The eigenvalues of J (k) interlace
those of J (k+1) and an improved estimate of the condition number can be obtained
in each step. Extreme eigenvalues of J (k) typically converge quite rapidly.

1.4 Mixed Finite Element Methods

In this section, we consider abstract mixed finite element methods for saddle
point problems. For more details, see [9, pp.34-41] and [10].

Let X and M be two Hilbert spaces and suppose that a(·, ·) and b(·, ·) are two
continuous bilinear forms on X ×X and X ×M such that

|a(u, v)| ≤ ||a|| ||u||X ||v||X , ∀u ∈ X, ∀v ∈ X,

|b(v, γ)| ≤ ||b|| ||v||X ||γ||M , ∀v ∈ X, ∀γ ∈M.

We consider the solution of the following saddle point problem:
Given f ∈ X ′ and g ∈M ′, find (u, γ) ∈ X ×M such that

a(u, v) + b(v, γ) =< f, v >, ∀v ∈ X,

b(u, µ) =< g, µ >, ∀µ ∈M. (1.4)

We have the following theorem on the existence, uniqueness and stability of the
saddle point problem. For a proof, see [10, chapter 3.4].

Theorem 2. If there exists a constant α > 0 such that

a(v, v) ≥ α ||v||2X , ∀v ∈ V := {v ∈ X| b(v, µ) = 0, ∀µ ∈M}, (1.5)
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and β > 0 such that

inf
µ∈M

sup
v∈X

b(v, µ)

||v||X ||µ||M
≥ β, (1.6)

then there exists a unique solution (u, γ) to (1.4) and the norms of the solution
satisfy

||u||X ≤ α−1 ||f ||X′ + β−1(1 +
||a||
α

)||g||M ′,

||γ||M ≤ β−1(1 + ||a||
α

) ||f ||X′ + β−1(1 +
||a||
α

)
||a||
β

||g||M ′ . (1.7)

(1.6) is called the inf-sup condition and the assumption of Theorem 2 is called
the Babuška-Brezzi condition. Next, we consider two finite element spaces Xh ⊂ X
and Mh ⊂M . We then have the discrete saddle point problem as follows:

Find (uh, γh) ∈ Xh ×Mh such that

a(uh, vh) + b(vh, γh) = < f, vh >, ∀vh ∈ Xh, (1.8)

b(uh, µh) = < g, µh > ∀µh ∈Mh. (1.9)

For the error bound of finite element methods, we have the following theorem, cf.
[10, chapter 4.3].

Theorem 3. Suppose the hypotheses of Theorem 2 hold and suppose Xh and Mh

satisfy the Babuška-Brezzi condition with α > 0 and β > 0 which are independent
of h. Then, we have

||u− uh||X + ||γ − γh||M ≤ C

(
inf

vh∈Xh

||u− vh||X + inf
µh∈Mh

||γ − µh||M
)
. (1.10)

In some cases, such as in Reissner-Mindlin plate theory, we need to consider
saddle point problems with penalty terms. Suppose that in addition to the bilinear
forms a and b, we have

c : M ×M −→ R, c(µ, µ) ≥ 0, ∀µ ∈M,

which is a continuous bilinear form on M ×M . We also will use a parameter t
which is a small real number. Saddle point problem with the penalty term has the
following form:

Find (u, γ) ∈ X ×M such that

a(u, v) + b(v, γ) = < f, v >, ∀v ∈ X,

b(u, µ) − t2c(γ, µ) = < g, µ >, ∀µ ∈M. (1.11)

In this problem, we need the ellipticity of a on the entire space X, rather than
just on the kernel V to get the stability of the solution. If we have the ellipticity
and an inf-sup condition, we then have the uniform stability and error bounds as
in Theorem 2 and 3 for all 0 ≤ t ≤ 1.
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Chapter 2

Domain Decomposition Methods
and an Abstract Theory

2.1 Introduction

Overlapping Schwarz methods have been developed to solve numerical PDE
efficiently. One level additive overlapping methods were originally introduced by
Matsokin and Nepomnyaschikh [40] and Nepomnyaschikh [42]. They were im-
proved to more powerful two level overlapping methods in [25, 26, 27] and other
related papers. Modern overlapping methods using Schur complements were intro-
duced in [23] and [24]. They have been applied successfully in many fields other
than for the Poisson problem. With a large overlap, we can get a small condition
number for the overlapping methods.

The traditional overlapping methods are not suitable for the case where we
have jumps of the coefficients. Such a problem can have a bilinear form

∫

Ω

ρ(x)∇u · ∇v dx

where ρ(x) can vary over the domain. With proper scaling, iterative substructuring
methods can handle the jumps of coefficients successfully and the condition number
of operators do not depend on the change of coefficients.

Among iterative substructuring methods, the FETI-DP and BDDC (Balancing
Domain Decomposition by Constraints) methods are well known. In this thesis, we
mainly consider the BDDC methods. The BDDC methods were first introduced
by Dohrmann in [22] as a variant of the Balancing Neumann-Neumann methods
with an additional coarse level solver. It has now been applied in other fields as in
[34] and three-level BDDC methods have been introduced in [49] and [50].

In this chapter, we introduce the abstract Schwarz theory. We then introduce
the overlapping Schwarz methods and the BDDC methods for the Poisson problem

9



and give condition number bounds for them.

2.2 Abstract Theory of Schwarz Methods

We consider a finite dimensional Hilbert space W . Given a symmetric, positive
definite bilinear form a(·, ·), we have a matrix representation given by A which is a
symmetric, positive definite matrix; see [47, appendix B]. Similarly, we can express
an element f ∈W ′ as a vector. We then have to find u ∈W such that

Au = f. (2.1)

We consider a family of spaces W (i), i = 0, ..., N with interpolation operators

R(i)T

: W (i) → W, i = 0, ..., N,

and assume that W has the following decomposition

W =
N∑

i=0

R(i)T

W (i). (2.2)

We next consider local symmetric, positive definite stiffness matrices

Ã(i) : W (i) → W (i), i = 0, ..., N,

with corresponding local bilinear forms a(i)(·, ·). If Ã(i) = R(i)AR(i)T
, we say that

we use exact solvers. We then define projection-like operators

Pi := R(i)T

Ã(i)−1

R(i)A : W → R(i)T

W (i) ⊂ W, i = 0, ..., N, (2.3)

and if we use exact solvers, they are projections since

P 2
i = R(i)T

Ã(i)−1

R(i)AR(i)T

Ã(i)−1

R(i)A = R(i)T

Ã(i)−1

Ã(i)Ã(i)−1

R(i) = Pi. (2.4)

The additive Schwarz operator is defined by

Pad =

N∑

i=0

Pi, (2.5)

and the symmetric multiplicative Schwarz operator by

Pmu = I − Emu, (2.6)

where the multiplicative error propagation operator Emu is defined by

Emu = (I − PN) · · · (I − P1)(I − P0)(I − P1) · · · (I − PN ). (2.7)

For bounds of the condition numbers of the Schwarz operators, we need some
assumptions, cf. [47, chapter 2.3].
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Assumption 1. (Stable Decomposition) A decomposition (2.2) is stable, i.e.,

N∑

i=0

u(i)T

Ã(i)u(i) ≤ C2
0u

TAu. (2.8)

The minimum eigenvalue of the additive Schwarz operator Pad is bounded
below by C−2

0 , see [47, Lemma 2.5].

Assumption 2. There exist constants 0 ≤ ǫij ≤ 1, 1 ≤ i, j ≤ N , such that

|a(R(i)T

u(i), R(j)T

u(j))| ≤ ǫija(R
(i)T

u(i), R(i)T

u(i))1/2a(R(j)T

u(j), R(j)T

u(j))1/2

for u(i) ∈W (i) and u(j) ∈W (j). We will denote the spectral radius of E = {ǫij} by
ρ(E).

For a decomposition of W , we can color the subspaces {W (i), i = 0, ..., N} such
that if two subspaces W (j) and W (k) have the same color, then they are orthogonal,
i.e.,

a(R(j)T

u(j), R(k)T

u(k)) = 0, u(j) ∈W (j), u(k) ∈W (k).

We assume that we color the subspaces using N c colors and can then show

ρ(E) ≤ N c. (2.9)

Assumption 3. There exists ω > 0, such that

a(R(i)T

u(i), R(i)T

u(i)) ≤ ωã(i)(u(i), u(i)), u(i) ∈ range(Ã(i)−1

R(i)A), 0 ≤ i ≤ N.

Basic convergence theorems on the additive and multiplicative Schwarz opera-
tors can be found in [47, chapter 2.3]

Theorem 4. Let Assumptions 1, 2, and 3 be satisfied. Then, we have the following
bounds on the additive Schwarz operator and the multiplicative error propagation
operator Emu:

κ(Pad) ≤ C2
0ω(ρ(E) + 1),

||Emu||2a = ||I − Pmu||2a ≤ 1 − 2 − ω

(8ρ(E)2 + 1)C2
0

< 1, if 0 < ω < 2.

2.3 Problem Setting

In this chapter, we mainly consider second order scalar elliptic problems on
a bounded domain Ω ⊂ Rn, n = 2, 3. ∂Ω is the boundary of Ω and we impose
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homogenous Dirichlet boundary conditions on ∂Ω. The problem is to find u ∈
H1

0 (Ω) such that

∫

Ω

ρ(x)∇u · ∇v dx =

∫

Ω

fv dx, ∀v ∈ H1
0 (Ω). (2.10)

Here we assume that there exists a constant ρ0 such that ρ(x) ≥ ρ0 > 0.
Let TH be a shape-regular coarse triangulation of Ω. We decompose Ω into

N nonoverlapping subdomains Ωi, i = 1, ..., N, with diameters Hi and H =
maxi{Hi}. We assume that each subdomain Ωi is the union of elements of TH and
that the number of such elements in Ωi is uniformly bounded. If ∂Ωi ∩ ∂Ω = ∅,
Ωi is called a floating subdomain.

We also have a fine quasi uniform triangulation of each subdomain Ωi with
mesh size hi. We denote maxi{Hi/hi} by H/h. We assume that ρ(x) is constant
in each subdomain Ωi and denote its value by ρi.

The finite element nodes on the boundaries of neighboring subdomains should
match across the interface Γ := ∪i6=j∂Ωi ∩ ∂Ωj . We denote the space of finite ele-
ment nodes on the interface Γ by Γh. We also define Γi, the interface on subdomain
Ωi, by Γi := Γ ∩ ∂Ωi, and denote the space of finite element nodes on Γi by Γi,h.
The interface can be partitioned into faces, edges and vertices in R3 and into edges
and vertices in R2; see [47, chapter 4.2] for more detail.

We also define local bilinear forms and linear functionals by

a(i)(u, v) :=

∫

Ωi

ρi∇u · ∇v dx, f (i)(v) =

∫

Ωi

fv dx, i = 1, · · · , N. (2.11)

2.4 Notation

In the following, W (i) is the vector space of values at the nodes in Ωi. Each
W (i) can be decomposed into the vector space of subdomain interior nodal values
and the vector space of subdomain interface nodal values, W (i) = W

(i)
I

⊕
W

(i)
Γ .

W
(i)
Γ can be further decomposed into the vector space of primal nodal values and

the vector space of dual nodal values, W
(i)
Γ = W

(i)
Π

⊕
W

(i)
∆ . Terminologies of

primal nodal values and dual nodal values came from the FETI-DP methods. In
FETI-DP methods, we allow discontinuity for dual nodal values and ensure the
continuity using Lagrange multiplier. We choose few degrees as primal values on
each subdomain and the remaining interface nodal values are dual nodal values.
For more detail, see [35].

Associated product spaces, which allow discontinuity across the interface, are
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denoted by

W :=

N∏

i=1

W (i), WI :=
∏N

i=1W
(i)
I , WΓ :=

N∏

i=1

W
(i)
Γ ,

WΠ :=
N∏

i=1

W
(i)
Π , and W∆ :=

N∏

i=1

W
(i)
∆ .

Therefore, we have W = WI

⊕
WΓ and WΓ = WΠ

⊕
W∆.

The finite element solutions are continuous across the interface and we denote
the continuous subspace of WΓ by ŴΓ and the continuous subspace of W by Ŵ ,
respectively. For BDDC methods, we need a larger subspace W̃Γ ⊂ WΓ, which can
be written by

W̃Γ := W∆

⊕
ŴΠ =

(
N∏

i=1

W
(i)
∆

)
⊕

ŴΠ,

where ŴΠ is the continuous, coarse-level, primal variable subspace. We will always
assume that the basis has been changed so that each primal constraint corresponds
to an explicit degree of freedom and W∆ consists of functions with zero values at
the primal degrees of freedom.

We define several restriction and extension operators. RΓ∆ and RΓΠ are the
restriction operators from the space W̃Γ onto W∆ and ŴΠ, respectively. For each
subdomain component, R

(i)
∆ : W∆ → W

(i)
∆ , and R

(i)
Π : ŴΠ → W

(i)
Π map global

interface vectors to their components on Γi, respectively. R
(i)
Γ : ŴΓ → W

(i)
Γ , R̂Π :

ŴΓ → ŴΠ and R̂
(i)
∆ : ŴΓ → W

(i)
∆ map ŴΓ to proper components. RΓ : ŴΓ → WΓ

is the direct sum of R
(i)
Γ and R̃Γ : ŴΓ → W̃Γ is the direct sum of R̂Π and R̂

(i)
∆ .

Now we need to define positive scaling factors

δ†i (x) :=
ργi∑
j∈Nx

ργj
, x ∈ Γi,h

for γ ∈ [1/2,∞). Here Nx is the set of indices of the subdomains which have x on
their boundaries. The scaling factors give us a partition of unity:

∑

j∈Nx

δ†j (x) = 1, x ∈ Γh.

Let D(i) be the diagonal matrix with the elements δ†i (x) corresponding to the node
x ∈ Γi,h.

By multiplying each row of R
(i)
Γ , R

(i)
∆ , and R̂

(i)
∆ with the corresponding δ†i (x), we

can define R
(i)
D,Γ, R

(i)
D,∆, and R̂

(i)
D,∆, respectively. The scaled restriction operators
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RD,Γ and RD,∆ are the direct sums of R
(i)
D,Γ and R

(i)
D,∆, respectively. R̃D,Γ is the

direct sum of R̂Π and R̂
(i)
D,∆. From these definitions, we see that

RT
ΓRD,Γ = RT

D,ΓRΓ = I, R̃T
Γ R̃D,Γ = R̃T

D,ΓR̃Γ = I. (2.12)

2.5 Schur Complement Systems and Discrete

Harmonic Extensions

We can rewrite A(i) with respect to interface and interior basis functions of A(i)

and consider [
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

][
u

(i)
I

u
(i)
Γ

]
=

[
0

f
(i)
Γ

]
.

Given u
(i)
Γ , we can calculate the interior values by solving

A
(i)
IIu

(i)
I + A

(i)
IΓu

(i)
Γ = 0. (2.13)

This is a discrete harmonic function on Ωi, see [47, chapter 4]. We use the notation

u(i) := Hi(u
(i)
Γ ) and call Hi the discrete harmonic extension operator into Ωi. We

denote the piecewise discrete harmonic extension of uΓ to the entire domain Ω by
H(uΓ).

The related Schur complements are written as

S(i) = A
(i)
ΓΓ − A

(i)
ΓIA

(i)−1

II A
(i)T

ΓI , i = 1, ..., N. (2.14)

S is the direct sum of the S(i) on the product space WΓ. Note that S is singular

if there are any floating subdomains. Let Ŝ :=
∑N

i=1R
(i)T

Γ S(i)R
(i)
Γ and let

S̃ :=

N∑

i=1

[
RT

ΓΠR
(i)T

Π RT
Γ∆R

(i)T

∆

]
S(i)

[
R

(i)
Π RΓΠ

R
(i)
∆ RΓ∆

]
. (2.15)

They are Schur complements restricted to ŴΓ and W̃Γ, respectively.
We have the following lemma on the discrete harmonic functions.

Lemma 6. Let u
(i)
Γ be the restriction of a finite element function u to ∂Ωi ∩ Γ.

Then, the discrete harmonic extension u(i) = Hi(u
(i)
Γ ) of u

(i)
Γ into Ωi satisfies

u(i)T

A(i)u(i) = min
v(i)|∂Ωi∩Γ=u

(i)
Γ

v(i)T

A(i)v(i)

and
u

(i)T

Γ S(i)u
(i)
Γ = u(i)T

A(i)u(i).
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Analogously, if uΓ is the restriction of a finite element function to Γ, the piecewise
discrete harmonic extension u = H(uΓ) of uΓ into the interior of the subdomain
satisfies

uTAu = min
v|Γ=uΓ

vTAv

and
uTΓ ŜuΓ = uTAu.

In practice, we do not need to calculate the Schur complement explicitly. The
action of S(i) or S(i)−1

can be calculated by solving proper Dirichlet or Neumann
problems on Ωi.

We can obtain the following reduced global problem on the interface by remov-
ing the interior part:

ŜΓuΓ = gΓ, (2.16)

with

gΓ =
N∑

i=1

R
(i)T

Γ

(
f

(i)
Γ − A

(i)
ΓIA

(i)−1

II f
(i)
I

)
.

2.6 Overlapping Schwarz Methods

We present modern overlapping Schwarz methods which use Schur complements
rather than classic overlapping Schwarz methods as in [23] and [24].

In this section, we assume that ρ(x) ≡ 1. We now extend each subdomain Ωi

to a larger region Ω′
i such that Ω′

i does not cut through any fine elements. This can
be done by repeatedly adding a layer of elements. We assume that for i = 1, ..., N,
there exists δi > 0, such that, if x belongs to Ω′

i, then

dist(x, ∂Ω′
j\∂Ω) ≥ δi

for a suitable j = j(x), possibly equal to i, with x ∈ Ω′
j . We denote the maximum

of Hi

δi
by

H

δ
:= max

i

{
Hi

δi

}
.

We also assume that the {Ω′
i} can be colored using at most N c colors as ex-

plained in section 2.2. There is a partition of unity given by family of functions
related to the overlapping subdomains. For a proof, we refer to [47, chatper 3.2]
and [16, Lem. 2.4].

Lemma 7 (Partition of Unity). Let {Ω′
i} be an overlapping partition with the over-

lap δi. Then, there exists a family of nonnegative functions in W 1,∞(Ω), {χi, 1 ≤
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i ≤ N}, such that

χi = 0 on Ω\Ωi

N∑

i=1

χi = 1 on Ω

||∇χi||L∞ ≤ Cδ−1
i

where C is a constant independent of the δi and the Hi.

We also use a coarse space W0 ⊂ Ŵ of functions which are linear on the
interface and discrete harmonic in each subdomain. The functions in W0 have
degrees of freedom at the subdomain vertices only. R0T

: W0 → Ŵ is the matrix
with columns representing the basis functions of W0.

Let B(Ω′
i) be the union of the nonoverlapping subdomains which intersect Ω′

i.
We then have the following lemma related to the stable decomposition of Assump-
tion 1.

Lemma 8. For u ∈ Ŵ , there exists u0 ∈W0 such that

||u− u0||L2(Ωi)
≤ CH|u|H1(B(Ω′

i))
, (2.17)

|u0|H1(Ωi) ≤ C|u|H1(B(Ω′

i))
. (2.18)

The local spaces are the finite element spaces of functions that are piecewise
linear on the fine meshes and vanish on the boundaries of the extended subdomain,
Ω′
i:

W (i) := {u ∈ H1
0 (Ω′

i)| u|K ∈ P1, K ∈ Ti} ⊂ Ŵ .

The local interpolators R(i)T
: W (i) → Ŵ extend functions in W (i) by zero to the

whole of Ω.
Given δi > 0, let Ωi,δi ⊂ Ω′

i be the set of points that are within a distance δ of
∂Ω′

i \ ∂Ω. We will need to use [47, lemma 3.10].

Lemma 9. There exists a constant C such that, for u ∈ H1(Ω′
i),

||u||2L2(Ωi,δi
) ≤ Cδ2

i (1 +
Hi

δi
) ||u||2H1(Ω′

i)

≤ Cδ2
i (1 +

Hi

δi
) ||u||2H1(B(Ω′

i))
.

We then define the overlapping additive preconditioned operator Pad. We can
prove a bound for the condition number of Pad, refer [47, chapter 3.6].
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Theorem 5. The condition number of the additive Schwarz operator satisfies

κ(Pad) ≤ C

(
1 +

H

δ

)

where C depends on N c, but is independent of h, H, and δ.

2.7 BDDC Methods

2.7.1 Algorithm

We consider the continuous space of interface nodal values, ŴΓ, in BDDC
methods to solve the reduced problem (2.16). Therefore, all functions are defined
on interface only.

In BDDC methods, we need to choose the primal variables. We can choose
ŴΠ to be spanned by vertex nodal finite element basis functions and edge cut-
off functions of all the edges of Γ. An edge cut-off function is a piecewise linear
function defined on the edge and has values 1 at all interface nodes except at the
two ends of the edge where it vanishes. The local subspace W

(i)
∆ is the subspace of

W
(i)
Γ where the values at the subdomain vertices and the edge averages vanish.
We define a coarse Schur complement by

SΠΠ :=
N∑

i=1

R
(i)T

Π



A

(i)
ΠΠ − [A

(i)
ΠI A

(i)
Π∆]

[
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
A

(i)T

ΠI

A
(i)T

Π∆

]
R

(i)
Π , (2.19)

and define an extension matrix Φ : ŴΠ → W̃Γ by

Φ = RT
ΓΠ −RT

Γ∆

N∑

i=1

[0 R
(i)T

∆ ]

[
A

(i)
II A

(i)
I∆

A
(i)
∆I A

(i)
∆∆

]−1 [
A

(i)T

ΠI

A
(i)T

Π∆

]
R

(i)
Π . (2.20)

We will use ΦT R̃D,Γ as the restriction operator for the coarse space.

We define S∆ as the direct sum of subdomain Schur complements S
(i)
∆ which

are defined by

S
(i)
∆ := A

(i)
∆∆ −A

(i)
∆IA

(i)−1

II A
(i)
I∆. (2.21)

We use S
(i)
∆ as the local stiffness matrix and R̂

(i)T

D,∆ as the extension operator for

each W
(i)
∆ .

We then define the BDDC preconditioner as an additive preconditioner:

M−1
BDDC := R̃T

D,ΓR
T
Γ∆S

−1
∆ RΓ∆R̃D,Γ + R̃T

D,ΓΦS−1
ΠΠΦT R̃D,Γ. (2.22)
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By some algebra, we can rewrite the BDDC preconditioner using S̃ in (2.15)
by

M−1
BDDC = R̃T

D,ΓS̃
−1R̃D,Γ (2.23)

and the Schur complement on Ŵ by

Ŝ = R̃T
Γ S̃R̃Γ. (2.24)

2.7.2 Condition Number Bound

We follow the proof in [34], [49], and [50] to prove the condition number bound.

First, we show the lower bound. For a given uΓ ∈ ŴΓ, let wΓ := MBDDCuΓ. By
(2.12), we have that

uTΓMBDDCuΓ = uTΓR̃
T
Γ S̃S̃

−1R̃D,ΓwΓ

≤
(
R̃ΓuΓ, R̃ΓuΓ

)1//2

eS

(
S̃−1R̃D,ΓwΓ, S̃

−1R̃D,ΓwΓ

)1/2

eS

=
(
uTΓR̃

T
Γ S̃R̃ΓuΓ

)1/2 (
wTΓ R̃

T
D,ΓS̃

−1S̃S̃−1R̃D,ΓwΓ

)1/2

=
(
uTΓ ŜuΓ

)1/2 (
uTΓMBDDCM

−1
BDDCMBDDCuΓ

)1/2

=
(
uΓŜuΓ

)1/2 (
uTΓMBDDCuΓ

)1/2
.

Therefore, we obtain uTΓMBDDCuΓ ≤ uΓŜuΓ.

Lemma 10. Eigenvalues of the BDDC method are bounded below by 1.

For the upper bound, we define an average operator ED : W̃Γ → ŴΓ ⊂ W̃Γ by

ED := R̃ΓR̃
T
D,Γ. (2.25)

ED is an identity operator on ŴΓ.
We have the following lemma for ED, see [47, Lemma 6.36] and [35, Lemma 1]

for a proof:

Lemma 11.
|EDuΓ|2eS ≤ C(1 + log(H/h))2|uΓ|2eS, uΓ ∈ W̃Γ, (2.26)

where C is independent of H, h, and ρi.
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We define wΓ := MBDDCuΓ for a given uΓ ∈ ŴΓ again. By Lemma 11, (2.23),
(2.24), and (2.12), we have that

uTΓ ŜuΓ =
(
uTΓR̃

T
Γ

)
S̃
(
R̃ΓR̃

T
D,ΓS̃

−1R̃T
D,ΓwΓ

)

=
(
R̃ΓuΓ, R̃ΓuΓ

)1/2

eS

(
EDS̃

−1R̃T
D,ΓwΓ, EDS̃

−1R̃T
D,ΓwΓ

)1/2

eS

≤
(
uTΓR̃

T
Γ S̃R̃ΓuΓ

)1/2

C(1 + log(H/h))
(
S̃−1R̃T

D,ΓwΓ, S̃
−1R̃T

D,ΓwΓ

)1/2

eS

= C(1 + log(H/h))
(
uΓŜuΓ

)1/2 (
uTΓMBDDCuΓ

)1/2
.

We obtain uΓŜuΓ ≤ C(1 + log(H/h))2uTΓMBDDCuΓ.
Therefore, we have the following bound for the BDDC operator.

Theorem 6. The BDDC operator has the following bound of the condition number

κ(M−1
BDDCŜ) ≤ C(1 + log(H/h))2

where C is independent of H, h, and ρi.

Lemma 10 is common to the BDDC operators for any problems. Therefore, we
just need to estimate the upper bound of eigenvalues and to prove the property
similar to Lemma 11 for the Reissner-Mindlin plate problem in chapter 5.

We can find a close relation between the BDDC methods and the FETI-DP
methods, see [35] and [38] for more detail. For the FETI-DP methods, see [47]
for definition and proofs. The preconditioned FETI-DP operator and the BDDC
operator have the same eigenvalues if they use the same primal constraints.
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Chapter 3

The Reissner-Mindlin Plate
Theory

3.1 Introduction

Elasticity theory concerns the deformation of bodies under external forces and
the calculation of the stress and strain of bodies from the deformation. In this
theory, we consider bodies in R3. We follow the presentations in [10, chapter 6].

Among materials with the linear elasticity property, we will mainly consider
thin plates with a thickness t. By a reduction of dimension, we can describe the
deformation of a thin plate by the displacement (w) and rotation (θ) variables in
the Reissner-Mindlin Plate theory. If we impose the Kirchhoff condition, ∇w =
θ, or t = 0, we obtain the Kirchhoff (biharmonic) problem. For the Kirchhoff
plate, see [10, chapter 6.5], [9] and [12, chapter 5.9]. In the continuous case, the
solution of the Reissner-Mindlin problem converges well to that of the Kirchhoff
problem, see [3] and [4]. However, we can suffer from the locking if we do not use
proper finite elements because the Kirchhoff condition is too severe on the discrete
level. If we, e.g., use continuous piecewise linear functions to approximate both
the displacement and rotation variables with a homogenous Dirichlet boundary
condition, the rotation variables would vanish.

By introducing a reduction operator Π for θ and mixed finite element methods,
we can avoid the locking problem. See [9, pp.195-232], [10, chapter 5.6], and [2, 5, 7,
1, 17, 18, 19, 20, 28, 29, 36, 46, 32, 6, 37, 44] for good finite elements on Reissner-
Mindlin plate. In this chapter, we will introduce several finite elements for the
Reissner-Mindlin Plate. We will also give some regularity results and convergence
results from the Reissner-Mindlin Plate and the Kirchhoff Plate theory.
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3.2 Linear Elasticity

We assume that we know the original body Ω̄ which is the closure of Ω, a
bounded open set in R3. We call Ω̄ the reference configuration. Under external
force, we can view the deformation in terms of a mapping

φ : Ω̄ −→ B ⊂ R3,

where B is the deformed body of Ω̄. We refer to a point in the original body as
xR and to a point in the deformed body as xB, i.e., xB = φ(xR).

Using the function I to denote the identity mapping, we can express φ as

φ = I + u. (3.1)

Here u is called the displacement. In the following, we assume that φ is sufficiently
smooth. φ represents a deformation, if det(∇φ)> 0, because it maps a subdomain
with positive volume into a subdomain with positive volume. If we use a linear
approximation, we have

||φ(xB + zB) − φ(xB)||2l2 ≃ ||∇φ · zB||2l2
= zTB(∇φ)T∇φzB. (3.2)

Therefore, the matrix
C := ∇φT∇φ

describes the change of length and is called the Cauchy-Green strain tensor. The
deviation of Cauchy-Green strain tensor from the identity matrix,

ε :=
1

2
(C − I), (3.3)

is called the strain. In the linear elasticity theory, we ignore higher order terms,
i.e., keeping only the first order leads to the symmetric gradient:

εij :=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.4)

We assume that there are two types of external forces; surface forces and body
forces. Mathematically we can express the body force by a function f : B → R3

with a force fdV acting on a volume element dV . Surface force can be written
by a function t(xB,n) : B × S2 → R3 where S2 is the unit sphere in R3 denoting
the space of the unit outward-pointing normal vector n. If dA is the area element,
then the surface force acting on dA is t(xB,n)dA. t(xB,n) is called the Cauchy
stress vector.

We assume the following equilibrium state.
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Assumption 4 (Axiom of Static Equilibrium). There exists a vector field t such
that in every subdomain V of B, the body forces f and the stresses t satisfy

∫

V

f(xB) dxB +

∫

∂V

t(xB,n) ds = 0, (3.5)
∫

V

xB ∧ f(xB) dxB +

∫

∂V

xB ∧ t(xB,n) ds = 0. (3.6)

where ∧ is the vector product in R3.

In the following, S3 denotes the space of symmetric 3 × 3 matrices, S3
+ the

space of positive definite matrices in S3, M3
+ the space of 3 × 3 matricies with

positive determinants, Q3
+ the space of 3 × 3 orthogonal matricies with positive

determinants, and Ck(A,B) the space of Ck functions from the space A to the
space B. Equilibrium axiom implies the existence of Cauchy stress tensor, T , as
follows:

Theorem 7 (Cauchy’s Theorem). Let t(·,n) ∈ C1(B,R3), t(xB, ·) ∈ C0(S2,R3),
and f ∈ C(B,R3) in Assumption 4. Then there exists a symmetric tensor field
T ∈ C1(B, S3) with the following properties:

t(xB,n) = T (xB)n, xB ∈ B, n ∈ S2, (3.7)

div T (xB) + f(xB) = 0, xB ∈ B, (3.8)

T (xB) = T T (xB), xB ∈ B. (3.9)

We also assume that the material is frame indifferent.

Assumption 5 (Axiom of Material Frame-Indifference). The Cauchy stress vector
t(xB,n) = T (xB)n is independent of the choice of coordinates, i.e., Qt(xB,n) =
t(QxB , Qn) for any Q ∈ Q3

+.

We now define two properties of materials.

Definition 1. A material is called elastic if there exists a mapping T̂ : M3
+ → S3

which satisfies
T (xB) = T̂ (∇φ(xR)). (3.10)

The mapping T̂ is called the response function.

Definition 2. A material is called isotropic if

T̂ (F ) = T̂ (FQ), ∀Q ∈ Q3
+. (3.11)
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So far we have discussed the argument on the deformed bodyB. With Σ(xR) :=
det(∇φ(xR))(∇φ(xR))−1T (φ(xR))(∇φ(xR))−T and the neglected errors of the higher
orders, we have

divR Σ + fR = 0 (3.12)

in a reference body. For Σ, we have the response function such as

Σ̂(F ) := det(F )F−1T̂ (F )F−T .

We have the following theorem for an elastic material.

Theorem 8. If a material is frame indifferent and isotropic, a response function
Σ̂ : M3

+ → S3 has the form Σ̂(F ) = σ(FF T ) such that

σ : S3
+ → S3

σ(B) = c1I + c2trace(B)B + o(B) as B → 0. (3.13)

with proper constants c1 and c2.

If we plug C = ∇φT∇φ = I + 2ε into σ(C), we have

σT (I + 2ε) = c̃1I + c̃2trace(ε) + c̃3ε+ o(ε) as ε→ 0. (3.14)

Normally, the situation ε = 0 corresponds to an unstressed condition and we
assume that c̃1 = 0. We can express the stress as follows if we ignore the terms of
the higher orders:

σ = λtrace(ε)I + 2µε. (3.15)

Here λ and µ are called the Lamé constants. We can express the Lamé constants
in terms of the Young’s modulus of elasticity E and the Poisson ratio ν:

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
.

From this relation between ε and σ, we obtain the following boundary value
problem:

−div σ(x) = f(x), x ∈ Ω,

σ(x) = λtrace(ε(x))I + 2µε(x), x ∈ Ω,

u(x) = 0, x ∈ Γ0 ⊂ ∂Ω,

σ(x)n(x) = g(x), x ∈ Γ1 = ∂Ω\Γ0.
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3.2.1 The Reissner-Mindlin Plate

In the following, we consider a thin plate with thickness t. Let the plate occupy
the region Pt = Ω × (− t

2
,+ t

2
), where Ω is a bounded domain of diameter 1 in R2.

We are interested in the case when the plate is thin, i.e., t is small. In this problem,
we consider three displacement components ui, i = 1, 2, 3. We use a reduction of
dimension for the z-direction, and assume the following four conditions, cf. [10,
chapter 6.5]:

H1. The linearity hypothesis.
H2. The displacement in the z-direction does not depend on the z-coordinate.
H3. The points on the middle surface are deformed only in the z-direction.
H4. The normal stress σ33 vanishes.
Under the above hypotheses, we can write the displacement components as,

ui(x, y, z) = −zθi(x, y), for i = 1, 2,

u3(x, y, z) = w(x, y).

Using H4 with a reduction of dimension for the z-direction, we have a variational
problem:

Minimize the Reissner-Mindlin energy

J(θ, w) =
1

2

∫

Ω

Cε(θ) : ε(θ) dxdy +
1

2
̺t−2

∫

Ω

|∇w − θ|2 dxdy

−
∫

Ω

gw dxdy +

∫

Ω

f · θ dxdy,

where C = A−1, Aτ = (1 + ν)τ/E − νtrace(τ)I/E, and I is the 2 by 2 identity
matrix. The Reissner-Mindlin equations are

−div Cε(θ) − ̺t−2(∇w − θ) = −f ,

−div (∇w − θ) = ̺−1t2g. (3.16)

For simplicity, we assume that θ and w vanish on ∂Ω.
This problem can have a locking problem and we can handle that by using

mixed finite element methods; see [9], [10]. By introducing the shear stress γ =
̺t−2(∇w− θ), we obtain the following variational problem, cf. [9], [8], [10, chapter
6.6]:

Find θ ∈ H1
0(Ω), w ∈ H1

0 (Ω), and γ ∈ L2(Ω) such that

a(θ, φ) + (γ,∇v − φ) = (g, v)− (f , φ), φ ∈ H1
0(Ω), v ∈ H1

0 (Ω),

(∇w − θ, η) − ̺−1t2(γ, η) = 0, η ∈ L2(Ω). (3.17)

Here a(θ, φ) :=
∫
Ω
(Cε(θ), ε(φ)). For the bilinear form a(·, ·), there is Korn’s in-

equality which ensures its positive definiteness on H1
0(Ω).
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Lemma 12 (Korn’s inequality). Let Ω ⊂ R2 be an open bounded set with a piece-
wise smooth boundary. In addition, suppose Γ ∈ ∂Ω has a positive one-dimensional
measure. Then there exists a positive number C(Ω,Γ) which is independent of HΩ

such that
∫

Ω

ε(u) : ε(u) dxdy ≥ C(Ω,Γ) ||u||2H1(Ω) for all u ∈ H1
Γ(Ω). (3.18)

Here H1
Γ(Ω) is the closure of {u ∈ C∞(Ω)2| u(x) = 0 for x ∈ Γ} with respect to

the H1-norm.

Proof. See [10, chapter 6.3].

We know that a(θ, θ) is not elliptic on the space H1
0(Ω)×H1

0 (Ω) because of the
w component. Therefore, we cannot use the general theory of Section 1.4 directly.
For the stability and other related issues, it is useful to introduce the Helmholtz
decomposition. For a proof, see [10, Lemma 6.1].

Lemma 13. Assume that Ω ⊂ R2 is simply connected. Then every function γ ∈
L2(Ω) is uniquely decomposable in the form

γ = ∇r + curl p

with r ∈ H1
0 (Ω) and p ∈ H1(Ω)/R.

We can rewrite (3.17) as a perturbed Stokes equation:

Find (r, θ, p, w) ∈ H1
0(Ω) × H1

0(Ω) ×H1(Ω)/R ×H1
0 (Ω) such that

(∇r,∇v) = (g, v), v ∈ H1
0 (Ω), (3.19)

a(θ, φ) − (curl p, φ) = (∇r, φ) − (f , φ), φ ∈ H1
0(Ω), (3.20)

−(θ, curl q) − ̺−1t2(curl p, curl q) = 0, q ∈ H1(Ω)/R, (3.21)

(∇w,∇s) = (θ + ̺−1t2∇r,∇s), s ∈ H1
0 (Ω). (3.22)

Now a(θ, θ) is elliptic on H1
0(Ω) by Korn’s inequality and if we check the inf-

sup condition for each line of equations above, we can establish the existence and
uniqueness of the solution. For more details, see Theorem 9 in subsection 3.2.2.

Note that for a known r with t = 0, (3.20) and (3.21) is the Stokes equation
for (θ2,−θ1, p). Therefore, there is a connection between the Reissner-Mindlin
problem and the Stokes problem.

3.2.2 The Kirchhoff Plate

In addition to hypotheses H1-H4, we can assume the Kirchhoff condition:
H5. θ = ∇w.
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Now θ is not independent being a function of w and we require that w ∈ H2
0 (Ω).

The energy (3.16) becomes

J(θ, w) =
1

2

∫

Ω

Cε(θ) : ε(θ) dxdy +

∫

Ω

f · θ dxdy. (3.23)

The variational problem (3.17) becomes:
Find w ∈ H2

0 (Ω) such that

a(∇w,∇v) = (g, v) − (f ,∇v), v ∈ H2
0 (Ω). (3.24)

Let us denote the solution of this Kirchhoff plate problem by w0 and define θ0 :=
∇w0. As t → 0, we know that θ → θ0 and w → w0. The two models have similar
interior solutions but differ in a boundary layer of a width of order of t. You can
find more results and examples on the differences of the two models in [3] and [4].

We have some regularity results and convergence results.

Theorem 9. Let Ω be a convex polygon or a bounded domain with a smooth bound-
ary in the plane. For any t ∈ (0,1], f ∈ H−1(Ω), and g ∈ H−1(Ω), there exists a
unique solution (r, θ, p, w) ∈ H1

0 (Ω)×H1
0(Ω)×H1(Ω)/R×H1

0 (Ω) satisfying (3.19)-
(3.22). Moreover, if f∈ L2(Ω) and g ∈ L2(Ω), then θ ∈ H2(Ω), w ∈ H2(Ω), and
there exists a constant C independent of t, f , and g such that

||θ||H2(Ω) + ||w||H2(Ω) + t ||γ||H1(Ω) + ||div γ||L2(Ω) ≤ C(||g||L2(Ω) + ||f ||L2(Ω)). (3.25)

Finally, we have

∣∣∣∣θ − θ0
∣∣∣∣
H1(Ω)

+
∣∣∣∣w − w0

∣∣∣∣
H2(Ω)

≤ Ct(||g||L2(Ω) + ||f ||L2(Ω)). (3.26)

Proof. See [9, pp.202-203].

3.3 Finite Elements for Reissner-Mindlin Plate

We can use conforming finite elements, i.e., Θh ⊂ H1
0(Ω), Wh ⊂ H1

0 (Ω), and
Sh ⊂ L2(Ω). Let Π : H1

0(Ω) + Sh → Sh be a reduction operator which will be
specified later. Then, as in [9, 10], the discrete problem becomes:

Find θh ∈ Θh, wh ∈Wh, and γh ∈ Sh such that

a(θh, φ) + (γh,∇v − Πφ) = (g, v) − (f , φ), φ ∈ Θh, v ∈Wh

(∇wh − Πθh, η) − ̺−1t2(γh, η) = 0, η ∈ Sh. (3.27)

We now discuss some conforming finite elements.
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Figure 3.1: the MITC7 element.

3.3.1 The MITC7 Elements

For this element, we partition the domain into triangles. We choose, see [10,
chapter 6.6], [9, pp.210-213], [21, pp.268-272],

Θh = M
1
1,0 + B

3, Wh = M2
1,0, Sh = RT ⊥

1

on the triangulation. Here M
k
a,0 is the space of piecewise kth order polynomials in

H
a
0(Ω), Mk

a,0 the space of piecewise kth order polynomials in Ha
0 (Ω), Mk

a the space

of piecewise kth order polynomials in H
a, B

k the space of piecewise kth order
polynomial bubble functions, and RT ⊥

1 the space of Raviart-Thomas elements of
order k, a subspace of H(rot,Ω). More specifically, Sh is defined by

Sh := {γ ∈ H(rot,Ω) | γ|K ∈ (P1(K))2 + P1(K)(y,−x)T , ∀K},

where P1(K) denotes the space of linear functions on the triangular element K. It
can be proved that a function in Sh(K) is uniquely determined by assigning

· the moments up to first order of its tangential component on each
edge of K (6 degrees of freedom) and
· its mean values over K (2 degrees of freedom).

For a given u = (u1, u2), we define Π : H1
0(Ω) + Sh → Sh by requiring that

∫

K

Πu dxdy =

∫

K

u dxdy,
∫

e

(Πu · t) p1(s) ds =

∫

e

(u · t) p1(s) ds

for every triangle K ∈ Th and every edge e of K. Here t is the tangent vector to
the edge e and p1(s) is any first order polynomial on each edge. Π is similar to the
interpolation operator of the Raviart-Thomas element except that it is related to
the rotation instead of the divergence.

For the MITC7 element, we have the following convergence theorem.
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Theorem 10. For the MITC7 element and a sufficiently smooth solution (θ, γ, w),
we have for 1 ≤ r ≤ 2

||θ − θh||L2(Ω) + ||w − wh||L2(Ω) ≤ Chr+1(||θ||Hr+1(Ω) + t ||γ||Hr(Ω) + ||γ||Hr−1(Ω)).

Proof. See [9, pp.212-213].

Considering the Helmholtz decomposition, functions of Sh cannot be generally
represented in the form

γh = ∇rh + curl ph, ∀γh ∈ Sh,

with proper finite element spaces for rh and ph. However, the MITC7 element has
a discrete Helmholtz decomposition with proper definitions.

First, the MITC7 element has the following 5 properties in terms of an auxiliary
space

Qh := {q ∈ L2
0(Ω) | q|K ∈ P1(K), ∀K ∈ Th}

where L2
0(Ω) denotes the space of functions in L2(Ω) with a vanishing mean.

P1: ∇Wh ⊂ Sh.
P2: rot Sh ⊂ Qh.
P3: rot Πφ = Π0rot φ for φ ∈ H1

0(Ω), with Π0 : L2
0(Ω) → Qh denoting

the L2−projection.
P4: If η ∈ Sh satisfies rot η = 0, then η = ∇v for some v ∈ Wh.
P5: (Θ⊥

h , Qh) satisfies the inf-sup condition for the Stokes problem,
i.e., there exists a constant C which is independent of h such that

sup
06=φ∈Θh

(rot φ, q)

||φ||H1(Ω)

≥ C ||q||L2(Ω) , ∀q ∈ Qh. (3.28)

We define the discrete curl operator curlh as follows:

(curlh qh, η)L2(Ω) = (qh, rot η)L2(Ω), ∀η ∈ Sh. (3.29)

Because Sh ⊂ H0(rot,Ω), curlh is well defined. Then, Sh for the MITC7 element
has a discrete Helmholtz decomposition described by the following theorem.

Theorem 11. Suppose properties P1, P2, and P5 hold. Then, there exists an L2−
orthogonal decomposition such that

Sh = ∇Wh ⊕ curlh Qh.

Proof. See [10, Theorem 6.6.5].
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Figure 3.2: the MITC9 element.

This leads to an alternative discrete variational problem:
Find (rh, θh, ph, wh) ∈Wh × Θh ×Qh ×Wh such that

(∇rh,∇v) = (g, v), v ∈Wh,

a(θh, φ) − (curl ph, φ) = (∇rh, φ) − (f , φ), φ ∈ Θh,

−(θh, curl q) − ̺−1t2(curl ph, curl q) = 0, q ∈ Qh, (3.30)

(∇wh,∇s) = (θh + ̺−1t2∇rh,∇s), s ∈Wh.

In addition to these five properties, P1-P5, the MITC7 element has the following
property.

P6: For each edge e of the element K, let t be the tangent vector of e.
Then the composite operator (Πθ|e) · t depends only on θ|e · t.

3.3.2 The MITC9 Elements

In this element, we partition the domain into rectangles, see [9, pp.221-223]
and [8]. On each element K ∈ Th, we choose,

Θh = {θ ∈ H1
0(Ω) | θ|K ∈ [Q2(K)]2, ∀K ∈ Th},

Wh = {w ∈ H1
0(Ω)| w|K ∈ [Q2(K) ∩ P3(K), ∀K ∈ Th}, (3.31)

Sh = {γ ∈ H0(rot,Ω) |
γ|K ∈ span[(1, x, y, xy, y2) × (1, x, y, x2, xy)] ∀K ∈ Th}

where Pk(K) denotes the space of kth order polynomial functions on the rectangu-
lar element K and Q2(K) the standard space of biquadratic polynomial functions.

For a given u = (u1, u2), we define Π : H1
0(Ω) + Sh → Sh by requiring that

∫

K

Πu dxdy =

∫

K

u dxdy,
∫

e

(Πu · t)p1(s) ds =

∫

e

(u · t)p1(s) ds
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Figure 3.3: the Falk-Tu element with k=2.

for every rectangle K ∈ Th and every edge e of K.
It is known that the MITC9 element satisfies the 6 properties P1-P6 of subsec-

tion 3.3.1 like the MITC7 element when we define the auxiliary space Qh by

Qh := {q ∈ L2
0(Ω) : q|K ∈ P1(K), ∀K ∈ Th}.

For a proof, see [17] and [18].

3.3.3 The Falk-Tu Elements

In the Falk-Tu element, see [9], [31], we choose

Θh = M
1
1,0 + B

4, Wh = M2
1,0, Sh = M

1
0

on the triangulation. Here M
k
a,0 is the space of piecewise kth order polynomials in

H
a
0(Ω), Mk

a,0 the space of piecewise kth order polynomials in Ha
0 (Ω), Mk

a the space

of piecewise kth order polynomials in H
a, and B

k the space of piecewise kth order
polynomial bubble functions.

Note that we choose a discontinuous stress variable in the Falk-Tu element.
The Π operator is defined as the L2 projector from H1

0(Ω) to Sh.
We have the following error estimate. For a proof, we refer to the lecture notes

edited by Boffi and Gastaldi [9, pp.213-216].

Theorem 12. For sufficiently smooth solutions of the continuous problem, we have

‖θ − θh‖L2(Ω) + ‖w − wh‖H1(Ω) ≤ Ch2(‖f‖L2(Ω) + ‖g‖L2(Ω)) (3.32)

where C is independent of h.

The kth order Falk-Tu elements are defined as follows; see [9], [31]:

Θh = M
k−1
1,0 + B

k+2, Wh = Mk
1,0, Sh = M

k−1
0 . (3.33)

Note that we again choose a discontinuous stress variable. The Π operator is again
defined as the L2 projector from H1

0(Ω) to Sh.
We have an error estimate similar to Theorem 12. For a proof, see [9, p. 213].
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Theorem 13. For sufficiently smooth solutions of the continuous problem, we have
for 1 ≤ r ≤ k − 1

‖θ − θh‖L2(Ω) + ‖w − wh‖H1(Ω) ≤
Chr+1(||θ||Hr+1(Ω) + ||w||Hr+2(Ω) + t ||γ||Hr(Ω) + ||γ||Hr+1(Ω)) (3.34)

where C is independent of h.
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Chapter 4

Overlapping Methods Using the
Falk-Tu Elements for the
Reissner-Mindlin Plate

4.1 Introduction

In this chapter, we use the Falk-Tu elements to discretize the Reissner-Mindlin
problem. For simplicity, we assume that the subdomains are shape-regular tri-
angles. We first define coarse basis functions and local spaces for an overlapping
method. We then show a C(1+ H

δ
)3(1+ logH

h
)2 bound for our overlapping method.

As we saw in section 2.2, we can use the same coarse and local spaces to additive
and multiplicative Schwarz methods. We also give numerical results on additive
and multiplicative Schwarz methods.

4.2 Definition of the Operator C and Bilinear

Forms

We will consider the operator A of subsection 3.2.1 in more detail and find a
relation between a(θ, θ) and the H1-norm of θ. Let,

Aτ :=
1 + ν

E
τ − ν × trace(τ)

E
I

=
1

E




1 −ν 0
−ν 1 0
0 0 1 + ν






τ11
τ22
τ12


 .

(4.1)
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Then C, the inverse of A, is defined by

Cε := A−1ε

=
E

(1 − ν2)




1 ν 0
ν 1 0
0 0 1 − ν






ε11

ε22

ε12




=
E

2(1 + ν)




2
1−ν

2ν
1−ν 0

2ν
1−ν

2
1−ν

0

0 0 2






ε11

ε22

ε12




= µ




2
1−ν

2ν
1−ν

0
2ν

1−ν
2

1−ν 0

0 0 2






ε11

ε22

ε12


 (4.2)

where

µ :=
E

2(1 + ν)
. (4.3)

With

ε(θ) :=
1

2

(
2θ1

x θ2
x + θ1

y

θ2
x + θ1

y 2θ2
y

)
, (4.4)

define

a(θ, φ) :=

∫

Ω

(Cε(θ), ε(φ)) dxdy (4.5)

=

∫

Ω






2µ
1−ν θ

1
x + 2µν

1−ν θ
2
y

2µ
1−ν θ

2
y + 2µν

1−ν θ
1
x

µ(θ2
x + θ1

y)


 ,




φ1
x

φ2
y

1
2
(φ2

x + φ1
y)




 dxdy

=

∫

Ω

(
2µ

1 − ν
θ1
xφ

1
x +

2µν

1 − ν
θ2
yφ

1
x +

2µ

1 − ν
θ2
yφ

2
y) dxdy + (4.6)

∫

Ω

(
2µν

1 − ν
θ1
xφ

2
y + (φ2

x + φ1
y)(θ

2
x + θ1

y)µ) dxdy.

Thus,

a(θ, φ)

µ
=

∫

Ω

2(θ1
xφ

1
x + θ2

yφ
2
y +

1

2
(θ2
x + θ1

y)(φ
2
x + φ1

y)) dxdy +
∫

Ω

2ν

1 − ν
(θ1
xφ

1
x + θ2

yφ
2
y + θ2

yφ
1
x + θ1

xφ
2
y) dxdy

= 2

∫

Ω

ε(θ) : ε(φ) dxdy +
2ν

1 − ν

∫

Ω

div θ div φ dxdy,
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or

a(θ, φ) = 2

∫

Ω

µε(θ) : ε(φ) dxdy +
2µν

1 − ν

∫

Ω

div θ div φ dxdy

=

∫

Ω

2µε(θ) : ε(φ) dxdy + λ

∫

Ω

div θ div φ dxdy (4.7)

where λ :=
2µν

1 − ν
.

The bilinear form a(θ, θ) is that of the standard linear elasticity operator. We can
easily show that a(θ, θ) is bounded by the square of the H1-seminorm of θ if the
Lamé parameters µ and λ are bounded. More precisely, we get the bound

a(θ, θ) ≤ m̃|θ|2H1 (4.8)

with m̃ := max(2µ, λ).
We will use the scaled H1-norm for each subdomain:

||u||2H1(Ωi)
= |u|2H1(Ωi)

+
1

H2
i

||u||2L2(Ωi)
. (4.9)

4.3 Discrete Harmonic Extension

We use the Falk-Tu element to discretize (3.17). Because we choose a discontin-
uous stress variable, we can eliminate it on the element level as in [8], [23]. Then,
the problem becomes:

Find θh ∈ Θh and wh ∈ Wh such that

b((θh, wh), (φ, v)) = (g, v)− (f , φ), φ ∈ Θh, v ∈Wh (4.10)

where b is defined by

b((θ, w), (φ, v)) := a(θ, φ) +
̺

t2
(Πθ −∇u,Πφ−∇v). (4.11)

The discrete Reissner-Mindlin energy

b((θh, wh), (θh, wh)) = a(θh, θh) +
̺

t2
(∇wh − Πθh,∇wh − Πθh) (4.12)

will be estimated later in the proof. We define u := (θ, w) and U := Θh ×Wh.
For natural boundary conditions, the dimension of the null space of this Reissner-

Mindlin energy is 3. The first null element is given by θ = (0, 0) and w = 1, the
second by θ = (1, 0) and w = x, and the third by θ = (0, 1) and w = y. These null
space functions will play an important role for the subdomain problems defined
later.
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The energy of the interior part of u, which is orthogonal to discrete harmonic
functions in b-seminorm, can be bounded by the sum of the energy of local com-
ponents of u. Therefore, it is enough to consider discrete harmonic functions when
establishing stable decompositions. From now on, we will assume that u is discrete
harmonic in each subdomain.

Because the support of each bubble function is contained in a single element, the
bubble functions are determined by the values of the piecewise linear parts of θ and
w if u is discrete harmonic to minimize the Reissner-Mindlin energy. Therefore, we
can consider the bubble function as a dependent functions in a discrete harmonic
function.

Let us consider one element K only and assume that the piecewise linear part
of θ and w are already determined. Let θL be the piecewise linear part of θ. Using
the bubble basis functions θkB , k = 1, 2, ..., 6, we can write ∇w− θL =

∑6
k=1 βkΠθ

k
B

with certain coefficients βk.
Note that the square of the L2-norm of the divergence of θB is positive definite.

Therefore, the two components of the a-seminorm are equivalent over the bubble
function space and a(θB, θB) is equivalent to m̃|θB|2H1 .

Let us write the bubble function on the element K as θB =
∑6

k=1 αkβkθ
k
B. We

can then choose optimal coefficients αk, k = 1, 2, ..., 6, for the bubble functions to
minimize the Reissner-Mindlin energy of u. We know that the a-seminorm does
not depend on the scaling and the square of the L2-norm of the bubble functions
is on the order of h2.

Let β be the diagonal matrix with the diagonal entries β1, β2, ..., β6, and let
α = (α1, α2, ..., α6)

t. Let F and G be the matrices representing the a-seminorm
and the L2-norm of the bubble functions on a reference element, respectively. Let
F̃ = βtFβ, G̃ = βtGβ, and let 1 be the 6-dimensional column vector with all
entries 1. We know that h21tβtβ1 is equivalent to ||∇w − θL||2L2(K). Then the

Reissner-Mindlin energy of (θL + θB, w) is equivalent to

a(θL, θL) + m̃αtF̃α +
h2

t2
(1 − α)tG̃(1 − α).

This is minimized by

α =
h2

t2
Õ−1G̃1 where

O := m̃F +
h2

t2
G and

Õ := βtOβ

= m̃F̃ +
h2

t2
G̃
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and

1 − α = m̃Õ−1F̃1.

If we plug this α into the above energy formula, the Reissner-Mindlin energy is
equivalent to

a(θL, θL) + m̃
h2

t2
h2

t2
1tG̃Õ−1F̃ Õ−1G̃1 + m̃2h

2

t2
1tF̃ Õ−1G̃Õ−1F̃1

= a(θL, θL) + m̃
h2

t2
1tβt(

h2

t2
GO−1FO−1G+ m̃FO−1GO−1F )β1.

Because F ,G, andO are positive definite, so areGO−1FO−1G and FO−1GO−1F .
We can bound the quadratic forms of these two positive definite matrices by each
other in terms of m̃, h, and t. We then find that GO−1FO−1G is equivalent to
c−2I where c := m̃+ h2

t2
. Similarly, FO−1GO−1F is equivalent to c−2I.

The Reissner-Mindlin energy is equivalent to

a(θL, θL) + m̃
h2

t2
1tβt(

h2

t2
c−2I + m̃c−2I)β1

= a(θL, θL) + m̃
h2

t2
1tβt(c−1I)β1

= a(θL, θL) + c−1m̃
h2

t2
1tβtβ1

= a(θL, θL) +
m̃

m̃t2 + h2
h21tβtβ1.

Using the equivalence of h21tβtβ1 and ||∇w − θL||2L2(K), the Reissner-Mindlin
energy is equivalent to

a(θL, θL) +
m̃||∇w − θL||2L2(K)

m̃t2 + h2
. (4.13)

Overall, we can conclude that minimizing the Reissner-Mindlin energy over the
(θL, θB, w) space is equivalent to minimizing the expression of the equation (4.13)
over the (θL, w) space. This is called the stabilized Reissner-Mindlin energy of the
(θL, w) space.

There are two terms: a(θL, θL) and m̃
m̃t2+h2 ||∇w−θL||2L2 in the stabilized Reissner-

Mindlin energy. The a-seminorm increases linearly with m̃ and the ratio between
the two terms is 1

m̃t2+h2 . If t = 0, this ratio is 1
h2 and larger than 1. If this ratio is

small, then the problem is close to the linear elasticity problem; this ratio should
be large for Reissner-Mindlin plate problem to be physically reasonable. If t is
sufficiently small, then we can find h̃ such that m̃t2 +h2 = h̃2 and we can consider
the case of t > 0 as being similar to the case of t = 0 with a mesh size h̃.
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Figure 4.1: One subdomain and its vertices and edges.

Therefore, if t is bounded from above, we can consider t as being 0. In interest-
ing problems for a Reissner-Mindlin plate, t is in this good range and we, therefore
assume that t is 0 and Πθ = ∇w from now on. Then, Reissner-Mindlin energy
becomes

b(u, u) = a(θ, θ) ≃ a(θL, θL) +
m̃||∇w − θL||2L2(K)

h2

with the condition Πθ = ∇w.

4.4 The Coarse Problem

4.4.1 Coarse Basis Functions

We now provide details on our coarse basis functions. We define them on the
interface and use their discrete harmonic extensions. We consider the subdomains
Ωi, one by one, to define the coarse basis functions. From now on, we consider
only one of the floating subdomains Ωi with ∂Ωi

⋂
∂Ω = ∅.

For each θi, i = 1, 2, we define a vertex basis function which vanishes at all
interface nodes except at a subdomain vertex where its value is 1. We denote
these vertex basis functions by θ0

i,vk
, i = 1, 2, k = 1, 2, 3. Because there are two

components of θ, we have 6 vertex basis functions for each subdomain.

Lemma 14. The Reissner-Mindlin energy of the vertex basis function θ0
i,vk

is
bounded by Cm̃ where C does not depend on H, h and δ, but depends on the
shape regularity of the elements.

Proof. We can find a bubble function θB such that the ΠθB + θL = 0 where θL
is a piecewise continuous linear functions with zero values at the interface and
interior nodes except at the subdomain vertex being considered. This θB vanishes
except in the elements which contain the subdomain vertex. The number of such
elements are bounded by the shape regularity. The H1-seminorm of this function
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Figure 4.2: 3d plots of the θ vertex basis function θ0
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is bounded by a constant. Because ∇w = Πθ, the Reissner-Mindlin energy is equal
to the square of the a-seminorm and we can bound the Reissner-Mindlin energy
in terms of the square of the H1-seminorm. Because discrete harmonic functions
have minimal energy, we can complete the proof.

For the other coarse basis functions, we need to prove several lemmas.

Lemma 15. Let ξ1, ξ2, ξ3 be the values of the barycentric functions of the subdo-
main at (x,y). Let

Υi :=

1
ξ2i

1
ξ21

+ 1
ξ22

+ 1
ξ23

. (4.14)

Then, the gradient of Υi is bounded by C
r

where r is the minimum distance to the
two vertices of the edge ei. The second order partial derivatives of Υi are bounded
by C

r2
.

Proof. Without loss of generality, we prove the lemma for Υ1 only. We use the
Figure 4.1 of the triangle to define the indices of e1, e2, e3, v1, v2, and v3. Let
f := ξ2

2ξ
2
3 and g := ξ2

1ξ
2
2 + ξ2

1ξ
2
3 . Then,

Υ1 =

1
ξ21

1
ξ21

+ 1
ξ22

+ 1
ξ23

=
ξ2
2ξ

2
3

ξ2
2ξ

2
3 + ξ2

1ξ
2
2 + ξ2

1ξ
2
3

=
f

f + g
.

We can easily show that f + g ≥ Cmin(r̃2, r2) where r̃ is the minimum distance
to the other vertex v1 of the triangle which is not on the edge e1. Here, min(r̃, r)
is the minimum distance to the three vertices of the triangle.

For f , we can also show that f ≤ Cr2r̃4.
We calculate the first order partial derivatives of f ,

fx = 2ξ2ξ2,xξ
2
3 + 2ξ3ξ3,xξ

2
2 ,

fy = 2ξ2ξ2,yξ
2
3 + 2ξ3ξ3,yξ

2
2 ,

and find that |fx| ≤ Crr̃3 and |fy| ≤ Crr̃3.
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The second order partial derivatives of f are

fxx = 2((ξ2,x)
2ξ2

3 + ξ2,xxξ2ξ
2
3 + 2ξ3,xξ2,xξ3ξ2

+(ξ3,x)
2ξ2

2 + ξ3,xxξ3ξ
2
2 + 2ξ2,xξ3,xξ3ξ2),

fxy = 2(ξ2,yξ2,xξ
2
3 + ξ2ξ2,xyξ

2
3 + 2ξ2,xξ3,yξ2ξ3

+ξ3,yξ3,xξ
2
2 + ξ3,xyξ3ξ

2
2 + 2ξ3,xξ2,yξ3ξ2),

fyy = 2((ξ2,y)
2ξ2

3 + ξ2,yyξ2ξ
2
3 + 2ξ3,yξ2,yξ3ξ2

+(ξ3,y)
2ξ2

2 + ξ3,yyξ3ξ
2
2 + 2ξ2,yξ3,yξ3ξ2),

and we find that |fxx|2 ≤ Cr̃2, |fxy|2 ≤ Cr̃2, and |fyy|2 ≤ Cr̃2. Similarly, we can
calculate the first and second order partial derivatives of g and obtain a bound of
them by taking the maximum of the bounds of the two terms in g. We find that
|g| ≤ Cr2r̃2, |gx| ≤ Crr̃, |gy| ≤ Crr̃, |gxx|2 ≤ C, |gxy|2 ≤ C, and |gyy|2 ≤ C.

We next calculate the partial derivative of Υ1 with respect to x and find

∂Υ1

∂x
=

fx(f + g) − f(fx + gx)

(f + g)2

=
gfx − fgx
(f + g)2

.

If we use the bounds just derived, then

|∂Υ1

∂x
| ≤ Cr2r̃2rr̃3 + Cr2r̃4rr̃

Cmin(r2, r̃2)2

≤ Cr3r̃5max(r−4, r̃−4)

≤ Cmax(r−1r̃5, r3r̃)

≤ Cmax(r−1, 1)

≤ C

r
.

Similarly, we get |∂Υ1

∂y
| ≤ C

r
.

For the second order derivative of Υ1, we have

∂2Υ1

∂x2
=

(gfxx + gxfx − fxgx − fgxx)(f + g)2

(f + g)4
− 2(f + g)(fx + gx)(gfx − fgx)

(f + g)4

=
(gfxx − fgxx)(f + g) − 2(fx + gx)(gfx − fgx)

(f + g)3
.
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This can be bounded by

∣∣∣∣
∂2Υ1

∂x2

∣∣∣∣ ≤ C
(r2r̃2r̃2 + r2r̃4)(r2r̃4 + r2r̃2) + (rr̃3 + rr̃)(r2r̃2rr̃3 + r2r̃4rr̃)

(f + g)3

≤ C
(r2r̃4)(r2r̃2) + (rr̃)(r3r̃5)

(f + g)3

≤ C
r4r̃6 + r4r̃6

min(r6, r̃6)

≤ Cr4r̃6max(r−6, r̃−6)

≤ Cmax(r−2r̃6, r4)

≤ Cmax(r−2, 1)

≤ C

r2
.

Similarly, we get |∂2Υ1

∂y2
| ≤ C

r2
.

Also,

∂2Υ1

∂x∂y
=

(gyfx + gfxy − fygx − fgxy)(f + g)2

(f + g)4
− 2(f + g)(fy + gy)(gfx − fgx)

(f + g)4

=
(gyfx + gfxy − fygx − fgxy)(f + g)

(f + g)4
− 2(fy + gy)(gfx − fgx)

(f + g)3
.

This can be bounded by

∣∣∣∣
∂2Υ1

∂x∂y

∣∣∣∣ ≤ C
(r2r̃4)(r2r̃2) + (rr̃)(r3r̃5)

(f + g)3

≤ Cr4r̃6max(r−6, r̃−6)

≤ Cmax(r−2r̃6, r4)

≤ C

r2
.

Lemma 16. Under the same assumptions as in Lemma 15, the gradient of Υi,
defined in (4.14), vanishes on the edges of a triangle.

Proof. In the proof of Lemma 15, we have established that

∂Υ1

∂x
=
gfx − fgx
(f + g)2
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We have

gfx = (ξ2
1ξ

2
2 + ξ2

1ξ
2
3)(2ξ2ξ2,xξ

2
3 + 2ξ3ξ3,xξ

2
2)

= 2ξ2
1ξ2ξ3(ξ

2
2 + ξ2

3)(ξ2,xξ3 + ξ3,xξ2).

Therefore, this term vanishes on the edges of a triangle. Similarly,

fgx = ξ2
2ξ

2
3(2ξ1ξ1,xξ

2
2 + 2ξ2ξ2,xξ

2
1 + 2ξ1ξ1,xξ

2
3 + 2ξ3ξ3,xξ

2
1)

= ξ1ξ
2
2ξ

2
3(2ξ1,xξ

2
2 + 2ξ2ξ2,xξ1 + 2ξ1,xξ

2
3 + 2ξ3ξ3,xξ1)

which also vanishes on the edges.

Lemma 17. Let Υi be the function defined by equation (4.14). Let M be a C2

function on the closure of the triangle. For a given edge ei, assume that M goes to
0 at least linearly at the two vertices of the edge ei. Then, the gradient of MΥi is
bounded by a constant and the second order partial derivatives of MΥi are bounded
by C

r
, where r is the minimum distance to the two vertices of the edge ei. The

value of MΥi is equal to that of M on the edge ei and to 0 on the other edges. The
gradient of MΥi is equal to that of M on the edge ei and to 0 on the other edges.

Proof. Let us consider the edge e1. Let M̃ = MΥ1.
It is easy to see that the value of M̃ is equal to that of M on the edge e1 and

to 0 on the other edges from the construction of Υ1.
By Lemma 16, on the edges of the triangle,

∂M̃

∂x
= Υ1,xM + Υ1Mx

= Υ1Mx.

Since Υ1 vanishes on e2 and e3 and is equal to 1 on e1, we find that ∇(MΥ1) =
∇M on the edge e1 and that it vanishes on the other edges.

By Lemma 15, we can bound |∂M̃
∂x

| as

∣∣∣∣∣
∂M̃

∂x

∣∣∣∣∣ ≤ |Υ1,xM | + |Υ1Mx|

≤ C

r
r + C

≤ C.

Similarly, we have |∂M̃
∂y

| ≤ C.
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If we use Lemma 16 again, we find that
∣∣∣∣∣
∂2M̃

∂x2

∣∣∣∣∣ ≤ |Υ1,xxM | + 2|Υ1,xMx| + |Υ1Mxx|

≤ C

r2
r +

C

r
+ C

≤ C

r
.

Similarly, we have | ∂2M̃
∂x∂y

| ≤ C
r

and |∂2M̃
∂y2

| ≤ C
r
.

Lemma 18. For a given vertex vi, let ej and ek be the two edges adjacent to vi.
Let Mj and Mk be C2 functions on the closure of the triangle going to 1 at least
linearly at vi. We also assume that Mj goes to 0 linearly at the other vertex of ej
and that Mk goes to 0 linearly at the other vertex of ek. Let M̃ := ΥjMj + ΥkMk.
Then, ∇M̃ is bounded by a constant and the second order partial derivatives of M̃
are bounded by C

r
, where r is the minimum distance to the vertices of the triangle.

The value of M̃ is equal to the value of Mj on the edge ej, to the value of Mk on
ek, and vanishes on the third edge. The gradient of M̃ is equal to the gradient of
Mj on the edge ej, to the gradient of Mk on the edge ek, and vanishes on the other
edge.

Proof. Without loss of generality, we can assume that j = 1, k = 2, and i = 3.
Let us define a linear function M3 which vanishes on the edge e3 and is equal to 1
at v3.

If we use the fact that 1 = Υ1 + Υ2 + Υ3, we can express M̃ as

M̃ = Υ1M1 + Υ2M2

= Υ1M1 + Υ2M2 −M3 +M3

= Υ1(M1 −M3) + Υ2(M2 −M3) − Υ3M3 +M3.

If we apply Lemma 17 to Υ1(M1 −M3), Υ2(M2 −M3), and Υ3M3, and add M3 to
the terms, we then can complete the proof.

We define a displacement vertex basis function w0
vk

, k = 1, 2, 3, by giving w the
value 1 at one of the subdomain vertices, 0 at the others, and making it linear on
the edges of the subdomain. In addition to the definition of w on the interface,
we give values for θi on the two edges of the subdomain vertex being considered
such that θ = 1

ℓj
tψej

where ℓj is the length of the edge, t the unit tangent vector

of an edge adjacent to our chosen subdomain vertex, and ψej
the edge cut-off

function defined in section 2.7. Note that we make the value of θ equal to 0 at the
subdomain vertices for continuity.

43



   
   

   
 

e3v2 v1

The boundary values of the
w component of w0

v1
on e3.

The height is 1.

``````````
e2v1 v3

The boundary values of the
w component of w0

v1
on e2.

The height is 1.

�
� A

A� @

�	
θ2

��	

θ1

e3v2 v1

The boundary values of the
θ components of w0

v1 on e3.
The heights depends on t and ℓ1.

�
� A

A
@ �

@I θ2

�	
θ1

e2v1 v3

The boundary values of the
θ components of w0

v1 on e2.
The heights depend on t and ℓ2.

e1v2 v3@Iw e1v2 v3@I θ1 @I θ2

The boundary values of θ and w vanish on the edge e1.
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on the interface.

Lemma 19. The Reissner-Mindlin energy of the vertex basis function w0
vk

is

bounded by C m̃
H2 (1 + logH

h
) where C does not depend on H, h, and δ, but depends

on the shape regularity of the elements.

Proof. Let us assume that the lengths of the three edges of a subdomain are ℓ1, ℓ2,
and ℓ3 and that their relative lengths are bounded; this follows from the shape
regularity of the subdomains. We first prove the lemma for w0

v1 using notation in
Figure 4.1.

Let us assume that the vertex basis function has the value 1 at the vertex v1,
and that the two edges e2, e3 of that vertex can be expressed by a2x + b2y = c2
and a3x + b3y = c3 respectively. (a2, b2) is the unit tangent vector of the edge e2
from v3 to v1, and (a3, b3) is the unit tangent vector of the edge e3 from v2 to v1

and let (a′i, b
′
i) be the unit normal vector of the edge ei.

Let again ξ1, ξ2, ξ3 be the values of barycentric functions of the subdomain at
(x, y). Let

wi =

1
ξ2i

1
ξ21

+ 1
ξ22

+ 1
ξ23

(
ai
ℓi
x+

bi
ℓi
y + ci)

for i = 2, 3, where ci is chosen so that the equation ai

ℓi
x + bi

ℓi
y + ci = 1 at our

chosen vertex v1. Further, let w = w2 + w3. From Lemma 18, we know that w
satisfies the boundary condition prescribed by the definitions of the basis function
given above. We also know that the gradient of w is bounded by C

H
and that the
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Figure 4.4: 3d plots of the w vertex basis function w0
v.
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second derivatives of w are bounded by C
Hr

where r is the minimum distance to
the vertices.

Then, define wh = Ĩh(w) and θL = Ih(∇w) on each element of the subdo-
main except in the elements next to each vertex where θL is defined by the linear

components of θ. Here Ĩh is the standard second order interpolation operator to
M2

1 and Ih is the standard first order interpolation operator to M
1
1, see subsection

3.3.3 for the definitions of M2
1 and M

1
1. We can easily find bubble functions by

using the equation Πθ = ∇w on each element. Because the scaling does not affect
the H1-seminorm and there are a bounded number of elements next to any vertex
because of the shape regularity, we can bound the a-seminorm of the basis function
on the elements next to the vertices easily as in Lemma 14.

For each element K which does not touch a subdomain vertex, we have

|θL|2H1(K) ≤
∣∣∣∣∇2w

∣∣∣∣2
L2(K)

.

Therefore,

|θL|2H1(Ωi)
≤ C

∫ 2π

0

∫ H

ch

1

H2r2
rdrdθ + C

≤ C

H2
(1 + log

H

h
) + C.

For the bubble function θB, we know that

ΠθB = ∇wh − θL = ∇(Ĩhw) − Ih(∇w) = ∇(Ĩhw − w) + (∇w − Ih(∇w)).

Therefore for each element K, which does not touch a subdomain vertex,

|θB|2H1(K) ≤ C

h2
||θB||2L2(K)

≤ C

h2
(||∇(Ĩhw − w)||2L2(K) + ||∇w − Ih(∇w)||2L2(K))

≤ C(||∇(Ĩhw − w)||2L∞(K) + ||∇w − Ih(∇w)||2L∞(K))

≤ Ch2||∇2w||2L∞(K)

≤ C
h2

H2r2
.

There are on the order of H2

h2 elements in each subdomain and the number of
elements with a distance r from a vertex is about r

h
. Therefore, to bound |θB|2H1(Ωi)

,
we need to estimate

C

H
h∑

i=1

1

H2

ih

h

h2

i2h2
= C

H
h∑

i=1

1

H2

h

ih
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Figure 4.5: Values of θ0
e3 on the interface.

where r = ih. This sum is bounded by C
H2 (1 + logH

h
).

In total, the square of the H1-seminorm of the function in the proof is bounded
by C

H2 (1 + logH
h
). Because we choose θ and w such that Πθ = ∇w, we can bound

the Reissner-Mindlin energy by Cm̃
H2 (1 + logH

h
).

We can prove similar bounds for w0
v2

and w0
v3

.

We define a rotational edge basis function θ0
ek

, k = 1, 2, 3, for each edge ek by
prescribing θ = nψek

where n is the unit normal vector of the edge ek pointing into
the right half plane, and ψek

is the edge cut-off function. We set all the boundary
values of w to zero.

Lemma 20. The Reissner-Mindlin energy of the edge basis function θ0
ek

is bounded

by Cm̃(1 + logH
h
) where C does not depend on H, h, and δ, but depends on the

shape regularity of the elements of the subdomain.

Proof. We have the same assumptions as in the proof of Lemma 19. Consider

wk :=

1
ξ2k

1
ξ21

+ 1
ξ22

+ 1
ξ23

(a′kx+ b′ky + c′k)

where c′k is chosen so that wk = 0 on the edge ek. As in Lemma 19, we can prove
that the square of the H1-seminorm of this function is bounded by C(1 + log(H

h
))

using Lemma 17 instead of Lemma 18.

4.4.2 Coarse Interpolant in Stable Decomposition

In total, we have 9 vertex basis functions and 3 edge basis functions. Therefore,
on average, we have 3 basis functions for each subdomain.

We now define a coarse interpolant u0 by

u0 =
3∑

k=1

w(vk)w
0
vk

+
2∑

i=1

3∑

k=1

θi(vk)θ
0
i,vk

+
3∑

k=1

∫
ek

(Ih(θψek
) · n) ds∫

ek
ψek

ds
θ0
ek
. (4.15)
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We can easily check that this coarse interpolant reproduces all functions in the null
space of the Reissner-Mindlin energy and thus satisfies the null space property, cf.
[45].

From [47, remark 4.13], we know that

||u||2L∞(Ωi)
≤ C(1 + log

H

h
)||u||2H1(Ωi)

, u ∈ H1(Ωi) ∩ V. (4.16)

And it is easy to prove that

||u||2L2(e) ≤ 2H||u||2H1(Ωi)

where e is an edge and that

∣∣∣∣

∫
e
(Ih(uψe) · n) ds∫

e
ψe ds

∣∣∣∣ ≤ C

√∫

e

u2

H2
ds
√
H ≤ C

||u||L2(e)√
H

≤ C
√

2||u||H1(Ωi). (4.17)

Using inequalities (4.16) and (4.17) and Lemmas 14, 19, and 20 of this section to
bound the energy of the coarse interpolant (4.15), we obtain the following bound:

b(u0, u0)Ωi
≤ Cm̃

H2
(1 + log

H

h
)2||w||2H1(Ωi)

+ Cm̃(1 + log
H

h
)2||θ||2H1(Ωi)

.

Using the equation ∇w = Πθ, we can show that

||∇w||2L2(Ωi)

H2
≤

4||θ||2L2(Ωi)

H2
.

Because u0 reproduces all the null space functions, we can use a Poincaré
inequality by shifting by some null space functions and find that

b(u0, u0)Ωi
≤ Cm̃

H2
(1 + log

H

h
)2||w||2H1(Ωi)

+ Cm̃(1 + log
H

h
)2||θ||2H1(Ωi)

≤ Cm̃(1 + log
H

h
)2|θ|2H1(Ωi)

. (4.18)

Lemma 21. Under the condition of Πθ = ∇w, the a-seminorm and the H1-
seminorm are equivalent for θ. This equivalence does not depend on H and h but
depends on the shape regularity of elements and the Lamé constants. In particular,
we have the relation |θ|2H1(Ωi)

≤ C
µ
a(θ, θ).
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Proof. We can prove this lemma on each element of diameter h. Let us consider
one element only and assume that one of its nodes is at (0, 0). Then, we can use
the following transformation to the reference element:

w̃(x, y) =
1

h
(w(hx, hy) − w(0, 0)) + w(0, 0),

θ̃(x, y) = θ(hx, hy).

Then, ∇w̃(x, y) = ∇w(hx, hy) = Πθ(hx, hy) = Πθ̃(x, y) on the reference element.
We can easily see that the a-seminorm and the H1-seminorm are invariant under
this dilation. Therefore, it is enough to prove the lemma on the reference element.

On each element, we have 12 basis functions for θ. Among them are three
null basis functions for a(θ, θ) and two null basis functions for the H1-norm. Two
of these null basis functions are common. The remaining null basis function for
a(θ, θ) is (−y, x) and this is not a valid basis function for this problem because of
the condition ∇w = Πθ.

Because we consider a finite dimensional problem and the null space of the two
seminorms are the same, the two seminorms are equivalent and we get the bound
|θ|2H1(Ωi)

≤ C
µ
a(θ, θ).

Using Lemma 21 and inequality (4.18), we can prove that

b(u0, u0)Ωi
≤ C

m̃

µ
(1 + log

H

h
)2b(u, u)Ωi

. (4.19)

We note that if the material becomes more incompressible, the decomposition
becomes less stable.

If ∂Ωi

⋂
∂Ω 6= ∅ with a strictly positive measure, we can define similar basis

functions except on ∂Ω. In such a subdomain, we can prove a bound of the square
of the a-seminorm by using a Friedrichs inequality.

If ∂Ωi intersects ∂Ω only at one or a few points, we need to modify the proof.
Let us assume that ∂Ωi intersects ∂Ω at (0,0). Let us find θ̄1x+ θ̄2y+ ŵ such that
θ̄1 =

∫
Ωi
θ1 dxdy, θ̄2 =

∫
Ωi
θ2 dxdy, and ŵ =

∫
Ωi

(w − θ̄1x − θ̄2y) dxdy. Because θ1
vanishes at a point, we have that

||θ1||L∞(Ωi) ≤ ||θ1 − θ̄1||L∞(Ωi) + |θ̄1|
≤ 2||θ1 − θ̄1||L∞(Ωi)

≤ C

√
1 + log

H

h
||θ1 − θ̄1||H1(Ωi)

≤ C

√
1 + log

H

h
|θ1|H1(Ωi) (4.20)
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which is a variation of inequality (4.16). Similarly, we have

||θ2||2L∞(Ωi)
≤ C(1 + log

H

h
)|θ2|2H1(Ωi)

(4.21)

We also have that
∫

e

θ · n
ℓ

ds ≤ C||θ||L∞(Ωi) ≤ C

√
1 + log

H

h
|θ|H1(Ωi). (4.22)

which is a variation of inequality (4.17).
For w, we have

||w||L∞(Ωi) ≤ ||w − θ̄1x− θ̄2y − ŵ||L∞(Ωi) + |ŵ| + ||θ̄1x+ θ̄2y||L∞(Ωi)

≤ 2||w − θ̄1x− θ̄2y − ŵ||L∞(Ωi) + (|θ̄1| + |θ̄2|)H

≤ C

√
1 + log

H

h
||w − θ̄1x− θ̄2y − ŵ||H1(Ωi) + (|θ̄1| + |θ̄2|)H

≤ C

√
1 + log

H

h
|w − θ̄1x− θ̄2y − ŵ|H1(Ωi) + (|θ̄1| + |θ̄2|)H.(4.23)

Using the equation ∇(w − θ̄1x− θ̄2y − ŵ) = Π(θ − (θ̄1, θ̄2)), we can show that

||∇(w − θ̄1x− θ̄2y − ŵ)||2L2(Ωi)
≤ 4||θ − (θ̄1, θ̄2)||2L2(Ωi)

.

The first term of (4.23) is bounded by

C

√
1 + log

H

h
||θ − (θ̄1, θ̄2)||L2(Ωi) ≤ CH

√
1 + log

H

h
|θ|H1(Ωi)

by the Poincaré inequality. Also,

|θ̄1| ≤ H2||θ1||L∞(Ωi) ≤ CH2

√
1 + log

H

h
|θ1|H1(Ωi)

We can obtain a similar bound for |θ̄2| and

||w||L∞(Ωi) ≤ CH

√
1 + log

H

h
|θ|H1(Ωi). (4.24)

Using Lemmas 14, 19, and 20 of this section and inequalities (4.20), (4.21),
(4.24), and (4.22) instead of (4.16) and (4.17), we obtain the following bound:

b(u0, u0)Ωi
≤ Cm̃(1 + log

H

h
)2|θ|2H1(Ωi)

. (4.25)

Using Lemma 21 and inequality (4.25), we can prove that

b(u0, u0)Ωi
≤ C

m̃

µ
(1 + log

H

h
)2 b(u, u)Ωi

. (4.26)
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4.4.3 Additional Coarse Basis Functions

We can also define a w edge basis function on each edge. These basis functions
are not necessary in our proof, however they make the constant in decomposition
smaller. We will compare numerical results of the additive method with such w
edge basis functions with results without them in section 4.10. In our experiments,
the condition numbers of the preconditioned system with these additional basis
functions are much smaller than those without.

On each edge of a subdomain, we prescribe the values of a quadratic which
vanishes at the two subdomain vertices of the edge and has a maximum of 1 on
the edge. In addition to the definition of w on the interface, we give values for θ
in the subdomain such that θ = (t · ∇w)tψek

where t is the unit tangent vector of
the edge and ψek

is the edge cut-off function. We denote these basis functions by
w0
ek

, k = 1, 2, 3.

Lemma 22. The Reissner-Mindlin energy of the edge basis function w0
ek

is bounded

by Cm̃
H2 (1+ logH

h
) where C does not depend on H, h, and δ, but depends on the shape

regularity of the elements of the subdomain.

Proof. We have the same assumptions as in the proof of Lemma 19. wi is defined

by
1

ξ2
i

1

ξ2
1
+ 1

ξ2
2
+ 1

ξ2
3

g(x, y) where g(x, y) is the second order polynomial of (x, y) chosen so

that g(x, y) is 1 at the midpoint of the edge being considered and vanishes at all
vertices and the midpoints of the other edges. g(x, y) is the standard basis function
in P2 with a midpoint node. As in Lemma 19, we can prove that the square of
the H1-seminorm of this function is bounded by C

H2 (1 + logH
h
) using Lemma 17

instead of Lemma 18.

Similarly, we can define θ edge basis functions related to the normal direction.
But they did not give much improvement in our numerical experiments.

4.5 Local Problems

Let wd = w − w0, θdL = θL − θ0
L, and ΠθdB = ∇wd − θdL. Then, Πθd =

θdL + ΠθdB = ∇wd.
From Lemma 21 and inequality (4.19), we know that

|θd|2H1(Ωi)
≤ C

m̃

µ2
(1 + log

H

h
)2a(θ, θ)Ωi

. (4.27)

If we use the Friedrichs inequality, we obtain

||θd||2L2(Ωi)
≤ C

m̃

µ2
(1 + log

H

h
)2H2

i a(θ, θ)Ωi
. (4.28)
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Figure 4.7: 3d plots of the w edge basis function w0
e .
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From the equation Πθ = ∇w, we have the inequality ||∇w||2L2(Ωi)
≤ ||θ||2L2(Ωi)

.
Therefore,

||wd||2H1(Ωi)
≤ C

m̃

µ2
(1 + log

H

h
)2H2

i a(θ, θ)Ωi
. (4.29)

Similarly,

||wd||2L2(Ωi)
≤ C

m̃

µ2
(1 + log

H

h
)2H4

i a(θ, θ)Ωi
. (4.30)

Let χi be nonnegative C∞ functions in R2 such that

χj = 0 on Ω\Ωj ,
N∑

j=1

χj = 1 on Ω,

||∇χj||L∞ ≤ Cδ−1
j ,

||∇2χj||L∞ ≤ Cδ−2
j .

The construction of χj is standard, cf. [11].
We define the local components of the Schwarz decomposition as follows: wj :=

Ĩh(χjwd) and θLj := Ih(χjθdL+wd∇χj). Here Ĩh is the standard interpolator onto
the piecewise quadratic continuous functions on each element and Ih is the stan-
dard interpolator onto the piecewise linear continuous functions on each element
as in Lemma 19. Because

∑
j χj = 1 and

∑
j ∇χj = 0, the above formulas provide

a decomposition. For the bubble functions, we use the condition ∇w = Πθ.
We need to use Lemma 9 of section 2.6 for the overlapping region. We know

that derivatives of χj are nonzero only in a δ-neighborhood of the boundary of
subdomains. We find using (4.27), (4.28), (4.29), and (4.30), that
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|θLj |2H1(Ωi)
= ||∇Ih(χjθdL + wd∇χj)||2L2(Ωi)

≤ ||∇(χjθdL + wd∇χj)||2L2(Ωi)

≤ C(||θdL∇χj ||2L2(Ωi)
+ ||χj∇θdL||2L2(Ωi)

+

||wd∇2χj ||2L2(Ωi)
+ ||∇χj∇wd||2L2(Ωi)

)

≤ C(
1

δ2
i

||θdL||2L2(Ωi)
+ ||∇θdL||2L2(Ωi)

+

1

δ4
i

||wd||2L2(Ωi,δi
) +

1

δ2
i

||∇wd||2L2(Ωi)
)

≤ C(
1

δ2
i

||θd||2L2(Ωi)
+ ||∇θd||2L2(Ωi)

+

1

δ2
i

(1 +
Hi

δi
)||wd||2H1(B(Ω′

i))
+

1

δ2
i

||wd||2H1(Ωi)
)

≤ C
m̃

µ2

(
(1 + log

H

h
)2H

2
i

δ2
i

a(θ, θ)Ωi
+ (1 + log

H

h
)2a(θ, θ)Ωi

+

(1 + log
H

h
)2(1 +

H

δ
)3a(θ, θ)B(Ω′

i)
+ (1 + log

H

h
)2(
H

δ
)2a(θ, θ)Ωi

)

≤ C
m̃

µ2
(1 +

H

δ
)3(1 + log

H

h
)2b(u, u)B(Ω′

i)
. (4.31)

For the bubble functions on each element, we have

|θBj |2H1(K) ≤ C

h2
||θBj||2L2(K)

≤ C

h2
||∇wj − θLj ||2L2(K)

=
C

h2
||∇(Ĩh(χjwd)) − Ih(χjθdL + wd∇χj)||2L2(K)

≤ C

h2
||∇(Ĩh(χjwd)) −∇(χjwd) + ∇(χjwd)

−Ih(χjθdL + wd∇χj)||2L2(K)

≤ C

h2
||∇(Ĩh(χjwd)) −∇(χjwd)||2L2(K)

+
C

h2
||χj∇wd − Ih(χjθdL)||2L2(K)

+
C

h2
||wd∇χj − Ih(wd∇χj)||2L2(K). (4.32)
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The first term of (4.32) can be bounded by

C||∇2(χjwd)||2L2(K)

≤ C||wd∇2χj + 2∇χj∇wd + χj∇2(wd)||2L2(K)

≤ C||wd∇2χj||2L2(K) + 2||∇χj∇wd||2L2(K) + ||χj∇θd||2L2(K).

If we add the above bound over the subdomain Ωi, we then have

C

h2
||∇(Ĩh(χjwd)) − ∇(χjwd)||2L2(Ωi)

≤ C(
1

δ4
i

||wd||2L2(Ωi,δi
) +

1

δ2
i

||∇wd||2L2(Ωi,δi
) + ||∇θd||2L2(Ωi)

)

≤ C
m̃

µ2
(1 +

H

δ
)3(1 + log

H

h
)2b(u, u)B(Ω′

i)
. (4.33)

The second term of (4.32) is bounded similarly by

C

h2
||χj∇wd − Ih(χjθdL)||2L2(K)

≤ C

h2
||χj∇wd − χjθdL||2L2(K) +

C

h2
||χjθdL − Ih(χjθdL)||2L2(K)

≤ C

h2
||χjθdB||2L2(K) +

C

h2
||χjθdL − Ih(χjθdL)||2L2(K)

≤ C|θdB|2H1(K) + C||∇(χjθdL)||2L2(K).

Therefore, using the bound for the linear part of the θ in (4.33), we have

C

h2
||χj∇wd − Ih(χjθdL)||2L2(Ωi)

≤ C
m̃

µ2
(1 +

H

δ
)3(1 + log

H

h
)2b(u, u)B(Ω′

i)
. (4.34)

We can bound the sum of the third term of (4.32) over Ωi by

C

µ2
(1 +

H

δ
)3(1 + log

H

h
)2b(u, u)B(Ω′

i)
.

4.6 The Additive and Multiplicative Operators

In total, we have the bound

N∑

j=0

b(uj , uj)Ωi
≤ Cm̃

N∑

j=0

|θj |2H1(Ωi)

≤ C
m̃2

µ2
(1 +

H

δ
)3(1 + log

H

h
)2b(u, u)B(Ω′

i)
.
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Summing over the subdomains, the decomposition is stable with the bound

C2
0 ≤ C(

m̃

µ
)2(1 +

H

δ
)3(1 + log

H

h
)2.

Therefore, our overlapping method satisfies Assumption 1. Because we use
exact solvers, Assumptions 2 and 3 are automatically satisfied. We can define
the additive operator by (2.5) and the multiplicative operator by (2.6) and (2.7).
We can use Theorem 4 to get a bound of the condition number of the additive
operator.

Theorem 14. In case exact solvers are employed on all subspaces, the condition
number of the additive Schwarz operator, for sufficiently small t, is bounded by

C(
m̃

µ
)2(1 +

H

δ
)3(1 + log

H

h
)2

where C depends on N c, but is otherwise independent of t, h, H, and δ.

Similarly, we have a bounded condition number of the multiplicative operator.
We show some numerical results in sections 4.10.

4.7 The Case of t=∞
4.7.1 Coarse Problem

If t = ∞, the Reissner-Mindlin plate problem is just the linear elasticity prob-
lem. For more detail, see [23]. Bubble functions are zero in a discrete harmonic
function. We define basis functions on the interface and then use discrete harmonic
extensions of these boundary values. For each θi, we define a vertex basis function
θ0
i,vk

, i = 1, 2, k = 1, 2, 3, which is linear on each edge and has the value 1 at a
vertex.

Lemma 23. The square of the a-seminorm of the vertex basis function θ0
i,vk

is
bounded by Cm̃ where C does not depend on H, h, and δ, but depends on the
shape regularity of the elements of the subdomain.

We define a coarse component u0 of u by

u0 =

2∑

i=1

3∑

k=1

θi(vk)θ
0
i,vk
.
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This coarse interpolant reproduces both null space functions of θ of the a-seminorm.
We have,

b(u0, u0)Ωi
≤ Cm̃||θ||2L2(Ωi)

≤ Cm̃(1 + log
H

h
)||θ||2H1(Ωi)

≤ C
m̃

µ
(1 + log

H

h
)b(u, u)Ωi

by using Korn’s inequality, Lemma 12, after replacing ||θ||2H1(Ωi)
by

infr∈RB ||θ − r||2H1(Ωi)
.

4.7.2 Local Problems

Let wd = w−w0 and θdL = θL−θ0
L. We define the local components as follows;

wj := Ĩh(χjwd) and θLj := Ih(χjθdL). We find,

a(θj , θj)Ωi
≤ Cm̃|θj|2H1(Ωi)

≤ Cm̃||∇Ih(χjθd)||2L2(Ωi)

≤ Cm̃(||θd∇χj ||2L2(Ωi)
+ ||χj∇θd||2L2(Ωi)

≤ Cm̃(
1

δ2
||θd||2L2(Ωi,δ)

+ ||∇θd||2L2(Ωi)
)

≤ Cm̃(1 +
H

δ
)||θd||2H1(Ωi)

≤ Cm̃(1 +
H

δ
)(1 + log

H

h
)||θ||2H1(Ωi)

by Lemma 9. By replacing ||θ||2H1(Ωi)
by infr∈RB ||θ − r||2H1(Ωi)

, we obtain

a(θj , θj)Ωi
≤ C

m̃

µ
(1 +

H

δ
)(1 + log

H

h
)||θ||2H1(Ωi)

≤ C
m̃

µ
(1 +

H

δ
)(1 + log

H

h
)a(θ, θ)Ωi

.

The condition number is bounded by C m̃
µ
(1 + H

δ
)(1 + logH

h
).

If we do not include the coarse basis functions of this section, then the condition
number of the additive operator grows with the number of subdomains for large
t, such as t > 1. When we added them in our numerical experiments, the additive
method was quasi-optimal and scalable for any t, especially for large t. But it does
not improve the condition number of the additive method for small t which are of
more interest. The Reissner-Mindlin problem with large t does not have physical
meaning and there is no strong reason for us to add unnecessary variable w to
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the linear elasticity problem. If we were to include these coarse basis functions,
we need to deal with a larger coarse space and it would increase the computation
time.

4.8 Changes of Thickness t or the Lamé con-

stants

It is of interest to consider cases where the thickness and the Lamé parameters
change across the domain. For simplicity, we assume that the thickness and the
Lamé constants are piecewise constant and that we can divide the domain into
triangular subdomains such that t, µ, and λ are constants on each subdomain. We
can see that the proof of previous sections does not depend on t, µ, and λ if t, λ and
λ
µ

are bounded from above. Therefore, we still get the same C( m̃
µ
)2(1+ logH

h
)2(1+

H
δ
)3 bound even when t, µ, and λ change over the domain.

4.9 Higher Order Falk-Tu Elements

We can use higher order Falk-Tu elements as in (3.33). Note that we again
choose a discontinuous stress variable.

We can decompose Θh into two parts: the space of polynomials, ΘhL, and the
space of bubble functions, ΘhB. On each element, we then have a(θL + θB, θL +
θB) ≥ C(a(θL, θL) + a(θB, θB)) for θL ∈ ΘhL and θB ∈ ΘhB because we consider
a finite dimensional space. In discrete harmonic functions, we can consider θB as
being dependent on θL and w. We know that ∇Wh ⊂ ΠΘhB and ΘhL ⊂ ΠΘhB,
and that w = Πθ implies ||w||2L2 ≤ ||θ||2L2. Therefore, we can easily modify our
proof for the higher order Falk-Tu elements and obtain the same bound.

4.10 Numerical Experiments

In the numerical experiments, L is the length of one side of a square domain,
ν and E are the parameters of elasticity, H is the size of the coarse mesh, h that
of the fine mesh, δ that of the overlap, and t the thickness of the plate. Results
are given for the elasticity parameters ν = 0.8 and E = 0.1. Experiments for
each parameter set is done about 100 times with random right hand sides and the
average iteration counts and condition numbers are given. We use the additive
method (2.5) and symmetric multiplicative method (2.6) with the conjugate gra-
dient algorithm to solve the linear system of equations. The stopping criteria for

the conjugate gradient algorithm is
||rn||l2
||r0||l2

≤ 10−7. We have calculated the condi-
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Table 4.1: Results for L = 1, H
h

= 4, H
δ

= 4, and decreasing h = 1
n
, and with an

increasing number of subdomains = n
4
× n

4
without the w quadratic coarse basis

functions.

n Iter cond Iter cond Iter cond Iter cond
t 10 0.1 0.001 0.00001
12 36.3 70.5 31.1 29.8 80.2 379.6 81.5 383.2
24 63.5 309.9 38.0 42.3 153.2 662.8 162.4 704.6
36 92.2 772.7 49.9 79.3 191.3 851.7 207.9 949.9
48 122.0 1492.8 61.1 114.3 208.0 767.0 233.1 1015.7
60 150.2 2500.6 73.0 171.6 208.0 746.9 251.5 972.2
72 179.9 3823.5 87.0 236.3 215.0 714.4 265.9 1022.1
84 208.7 5483.0 101.7 308.0 209.9 607.7 281.0 976.6

Table 4.2: Results for L = 1, H
h

= 4, H
δ

= 4, and decreasing h = 1
n
, and with

an increasing number of subdomains = n
4
× n

4
with the w quadratic coarse basis

functions.

n Iter cond Iter cond Iter cond Iter cond
t 10 0.1 0.001 0.00001
12 35.2 70.5 25.1 17.5 58.0 77.5 59.3 78.1
24 64.0 310.1 37.0 35.9 66.0 69.1 68.7 72.4
36 93.0 772.9 49.0 73.7 67.6 68.1 73.7 75.2
48 121.9 1494.3 60.8 107.2 67.0 64.4 75.0 76.3
60 151.2 2503.0 74.0 161.7 65.0 66.6 75.2 77.4
72 180.1 3826.3 87.1 220.6 64.0 65.4 76.9 77.5
84 209.7 5484.9 100.7 291.6 62.0 62.6 77.0 76.6

tion number by constructing the matrix of coefficients (1.3) given by the conjugate
gradient method given in section 1.3.

4.10.1 The Additive Operator

The condition number as a function of the number of subdomains are given in
Tables 4.1 and 4.2. As expected, the condition number grows with the number of
subdomains for large t, but it is bounded for small t.
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Figure 4.8: The condition number as a function of the number of subdomains
without the w quadratic coarse basis functions.
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Figure 4.9: The condition number as a function of the number of subdomains with
the w quadratic coarse basis functions.
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Table 4.3: Results for L = 1, H
h

= 4, H
δ

= 4, and decreasing h = 1
n
, and with an

increasing number of subdomains = n
12

× n
12

.

H
h

Iter cond Iter cond
t 100 10
12 41.6 17.50 40.0 18.13
24 45.0 20.69 43.7 18.61
36 46.0 21.09 44.0 18.21
48 46.0 20.07 44.9 17.96
60 46.0 18.90 44.5 18.92
72 46.0 18.08 44.7 19.69
84 46.0 18.38 45.0 20.24
96 46.0 18.76 45.0 20.57

If we add more coarse basis functions for the linear elasticity problem, we then
can get condition number that does not increase as the number of subdomains
increases for large t. The results with the extended coarse space for large t are in
Table 4.3. These results do not depend on the number of subdomains.
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Table 4.4: Results for L = 1, h = 1
n
, H

δ
= 4, the number of subdomains 3×3, and

increasing H
h

= n
3

without the w quadratic coarse basis functions.

H
h

Iter cond Iter cond Iter cond Iter cond Iter cond
t 1000 10 0.1 0.001 0.00001
4 38.9 69.1 36.2 70.5 31.1 29.7 80.2 379.0 81.3 386.2
8 45.5 66.3 40.7 67.2 32.9 28.8 80.0 284.0 80.8 299.9
12 45.8 64.2 41.8 64.1 33.7 31.1 79.5 307.5 80.4 337.4
16 46.1 64.4 42.5 65.1 34.3 31.8 79.2 313.9 80.0 358.0
20 46.9 62.8 43.2 63.7 34.5 31.9 79.0 301.4 81.6 361.3
24 47.4 62.9 43.5 64.0 34.6 33.4 79.0 288.1 89.2 354.4
28 47.7 63.3 43.6 64.4 35.0 34.4 79.2 268.8 89.6 345.3

Table 4.5: Results for L = 1, h = 1
n
, H

δ
= 4, the number of subdomains 3×3, and

increasing H
h

= n
3

with the w quadratic coarse basis functions.

H
h

Iter cond Iter cond Iter cond Iter cond Iter cond
t 1000 10 0.1 0.001 0.00001
4 39.0 69.4 35.2 70.4 25.1 17.5 58.0 78.1 59.1 79.0
8 46.2 65.6 41.6 66.1 28.0 17.2 59.5 79.0 61.9 82.5
12 47.0 65.5 42.6 63.9 29.4 19.0 60.0 80.4 64.2 88.0
16 47.6 64.7 43.6 64.0 30.2 20.2 59.3 83.9 64.9 90.2
20 48.0 64.1 44.0 63.8 31.0 20.7 59.3 81.9 66.5 92.9
24 48.1 64.2 44.4 63.7 31.0 21.1 59.6 78.1 67.3 94.2
28 48.1 64.4 44.3 63.6 31.0 21.6 60.1 74.9 67.8 94.5

Results with varying H
h

are given in Table 4.4, Table 4.5, Figure 4.10, and
Figure 4.11.
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Figure 4.10: The condition number as a function of H
h

without the w quadratic
coarse basis functions.
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Figure 4.11: The condition number as a function of H
h

with the w quadratic coarse
basis functions.
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Table 4.6: Results for h = 1
72
, H
h

= 12, and decreasing H
δ

= 12, 6, 4, 3, 2.4, 2 without
the w quadratic coarse basis functions.

H
δ

Iter cond Iter cond Iter cond Iter cond
t 10 0.1 0.001 0.00001
12 114.8 1439.2 62.1 96.3 484.9 7153.2 542.0 7387.8
6 93.5 564.2 51.0 56.4 210.4 1070.9 228.9 1324.4
4 73.9 290.6 45.0 47.1 145.3 581.9 162.1 804.3
3 61.4 162.3 40.1 41.1 116.9 438.9 132.6 620.3

2.4 50.9 96.6 36.4 36.7 72.8 216.9 110.1 463.6
2 42.2 59.0 32.7 29.8 83.1 293.0 94.6 398.9

Table 4.7: Results for h = 1
72
, H

h
= 12, and decreasing H

δ
= 12, 6, 4, 3, 2.4, 2 with

the w quadratic coarse basis functions.
H
δ

Iter cond Iter cond Iter cond Iter cond
t 10 0.1 0.001 0.00001
12 116.2 1417.1 61.4 102.3 211.5 960.1 244.4 1033.7
6 94.5 525.2 48.0 47.7 94.7 139.0 102.8 151.8
4 74.9 287.0 41.0 38.4 68.9 77.2 79.0 96.4
3 62.4 165.1 36.0 32.9 60.0 53.9 67.0 67.5

2.4 51.4 96.7 33.0 25.1 53.3 44.0 60.5 57.4
2 42.6 59.2 29.0 22.2 48.2 39.8 55.1 50.9

Results with varying H
δ

are given in Table 4.6, Table 4.7, Figure 4.12, and
Figure 4.13. The condition number depends on H

δ
. It grows faster with H

δ
when t

is small.
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Figure 4.12: The condition number as a function of H
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coarse basis functions.
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Figure 4.13: The condition number as a function of H
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with the w quadratic coarse
basis functions.
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Table 4.8: Results for L = 1, H
h

= 4, H
δ

= 4, decreasing h = 1
n
, and increasing the

number of subdomains = n
4
× n

4
with the w quadratic coarse basis functions.

n Iter cond Iter cond Iter cond
t 0.1 0.001 0.00001
12 6.0 1.59 15.9 6.10 16.0 6.26
24 9.0 2.50 19.0 5.66 19.0 5.96
36 13.0 4.32 19.0 5.45 20.0 6.22
48 16.0 6.18 18.9 5.33 21.0 6.37
60 20.0 8.87 18.0 5.05 21.0 6.50
72 23.8 11.55 18.0 4.76 21.7 6.55
84 27.2 14.90 17.0 4.49 22.0 6.54
96 31.0 20.15 16.9 4.27 22.0 6.56

4.10.2 The Multiplicative Operator

We have also tested the multiplicative operator numerically with the additional
w quadratic basis functions in subsection 4.4.3. The multiplicative operator has
much smaller condition number than the additive operator. Results of the mul-
tiplicative operator are given in Tables 4.8, 4.9, and 4.10 and Figures 4.14, 4.15,
and 4.16.
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Figure 4.14: The condition number as a function of the number of subdomains
with the w quadratic coarse basis functions.
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Table 4.9: Results for L = 1, h = 1
n
, H

δ
= 4, the number of subdomains 3×3, and

increasing H
h

= n
3

with the w quadratic coarse basis functions.

H
h

Iter cond Iter cond Iter cond
t 0.1 0.001 0.00001
4 6.0 1.59 15.9 6.17 15.9 6.20
8 7.0 1.79 16.0 6.61 16.6 6.99
12 7.0 1.91 15.8 6.40 16.6 7.13
16 7.0 1.99 15.5 5.90 16.6 6.87
20 8.0 2.05 15.6 5.72 16.6 6.82
24 8.0 2.10 15.2 5.74 16.8 7.13
28 8.0 2.14 15.0 5.83 16.9 7.65
32 8.0 2.18 15.0 5.95 16.9 8.15
36 8.0 2.21 15.0 6.04 17.0 8.55
40 8.0 2.24 15.0 6.09 17.0 8.86
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Figure 4.15: The condition number as a function of H
h

with the w quadratic coarse
basis functions.
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Table 4.10: Results for h = 1
72
, H

h
= 12, and decreasing H

δ
=12,6,4,3,2.4,2 with

the w quadratic coarse basis functions.
H
δ

Iter cond Iter cond Iter cond
t 0.1 0.001 0.00001
12 17.0 6.11 57.3 57.76 62.8 66.98
6 13.0 4.02 24.2 10.33 28.0 13.30
4 10.0 3.18 19.0 6.42 22.0 8.37
3 9.0 2.62 15.3 5.19 18.2 6.61

2.4 8.0 2.32 13.7 4.34 16.0 5.37
2 7.0 2.07 12.0 3.73 13.6 4.58
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Figure 4.16: The condition number as a function of H
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with the w quadratic coarse
basis functions.
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Chapter 5

BDDC methods for the
Reissner-Mindlin Plate

5.1 Introduction

In this final chapter, we will discuss two BDDC methods for the Reissner-
Mindlin Plate. They will differ in details and concern two different finite element
models. Experimentally the performance of two different algorithms are quite
similar. First, we will discuss work described in [8] while in the final section, and
we will report on our own recent progress.

5.2 Notation

As in section 4.3, we can eliminate the stress variable for the discretized problem
and obtain problem (4.10) where b is defined in (4.11):

Find θh ∈ Θh and wh ∈ Wh such that

b((θh, wh), (φ, v)) = (g, v) − (f , φ), φ ∈ Θh, v ∈Wh. (5.1)

We will use notation similar to that of section 2.4 but replacing W by U. In
each subdomain, we have U(i) := Θ

(i)
h ×W (i)

h . We also define U(i) := U
(i)
Γ +U

(i)
I :=

U
(i)
Π + U

(i)
∆ + U

(i)
I . We also need to consider the product spaces UΓ, ÛΓ, and ŨΓ.

S(i) is the Schur complement of the plate problem derived from the b operator
in (4.11) on subdomain Ωi. S is the direct sum of the S(i) on UΓ, Ŝ is the Schur

complement restricted to ÛΓ, and S̃ the Schur complement restricted to ŨΓ. Then,
the discrete problem becomes:

Find uΓ ∈ UΓ such that ŜuΓ = f̂Γ for a proper f̂Γ.

For more notation of the spaces, restriction operators, and Schur complements,
see section 2.4.
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We define the positive scaling factors

δ†i (x) := N−1
x , x ∈ Γi (5.2)

where Nx is the number of subdomains which have x on their boundaries. We
will not include any vertex variables in the dual space and therefore δ†i (x) ≡ 1

2
if

x is a node of the dual space since all nodes for the dual space are on the edges.
Therefore, we have

RΓ∆R̃
T
D,Γ =

1

2
RΓ∆R̃

T
Γ .

As in section 2.7, we can write a coarse stiffness matrix as

SΠΠ =

N∑

i=1

R
(i)T

Π S
(i)
ΠΠR

(i)
Π (5.3)

with

S
(i)
ΠΠ = B

(i)
ΠΠ − [B

(i)
ΠI B

(i)
Π∆]

[
B

(i)
II B

(i)
I∆

B
(i)
∆I B

(i)
∆∆

]−1 [
B

(i)T

ΠI

B
(i)T

Π∆

]
(5.4)

and the extension matrix Φ : ÛΠ → ŨΓ as defined by

Φ = RT
ΓΠ −RT

Γ∆

N∑

i=1

[0 R
(i)T

∆ ]

[
B

(i)
II B

(i)
I∆

B
(i)
∆I B

(i)
∆∆

]−1 [
B

(i)T

ΠI

B
(i)T

Π∆

]
R

(i)
Π . (5.5)

We can use the exact local stiffness matrix, S
(i)
∆ , which is defined by

S
(i)
∆ := B

(i)
∆∆ − B

(i)
∆IB

(i)−1

II B
(i)
I∆. (5.6)

S∆ is the direct sum of the S
(i)
∆ .

We then define the BDDC preconditioner as in (2.22) in section 2.7:

M−1
BDDC := R̃T

D,ΓR
T
Γ∆S

−1
∆ RΓ∆R̃D,Γ + R̃T

D,ΓΦS−1
ΠΠΦT R̃D,Γ. (5.7)

5.3 BDDC Methods for MITC elements

In this section, we present the BDDC methods for the MITC elements as in
[8]; some notations and representations have been modified. We assume that the
subdomains are shape regular rectangles and use the MITC9 elements. We know
that the MITC elements satisfy properties P1-P6 of subsection 3.3.1.

We choose ÛΠ as the space of the subdomain vertex nodal values. Each rectan-
gular subdomain has 4 vertices and 12 primal variables and we have approximately
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12
4

= 3 coarse degrees of freedom per subdomain. The local space U
(i)
∆ is defined

as the subspace of U
(i)
Γ for which the values at the subdomain vertices vanish.

Let Ei represent the set of the edges of Γi. For u(i) = (θ(i), w(i)) ∈ U
(i)
Γ and the

edge e ∈ Ei, we first define the following edge seminorm on the rotation variables:

|θ(i)|γ(e) := inf
ψ∈H

1
0(Ω),ψ|e=θ(i)|e

||ε(ψ)||L2(Ωi)
. (5.8)

We then define the interface seminorm of u(i),

∣∣u(i)
∣∣2
τ(Γi)

:=
∑

e∈Ei

∣∣u(i)
∣∣2
τ(e)

(5.9)

with∣∣u(i)
∣∣2
τ(e)

:=
∣∣θ(i)

∣∣2
γ(e)

+ ht−2
∣∣∣∣(Πθ(i) −∇w) · t

∣∣∣∣2
L2(e)

, (5.10)

where t is the unit tangent vector of the edge e. It follows from property P6
that (Πθ(i) −∇w) · t is well defined on the edge e. Because we use shape regular
subdomains, we can see that |u(i)|τ(e) and |R(j)R(i)T

u(i)|τ(e) are equivalent for
e ∈ Γi ∩ Γj.

Using properties P1-P6, we can prove the following lemma for the interface
seminorm τ(Γi). For a proof, see [8, section 5.2].

Lemma 24. There exists a constant C, which is independent of H and h, such
that,

∣∣u(i)
∣∣2
τ(Γi)

≤ C
∣∣u(i)

∣∣2
S(i) , ∀u(i) ∈ U

(i)
Γ , (5.11)

∣∣u(i)
∣∣2
τ(Γi)

≥ C(h/H)
∣∣u(i)

∣∣2
S(i) , ∀u(i) ∈ R

(i)
Γ R̂

(i)T

∆ U
(i)
∆ . (5.12)

From this, we can easily prove an extension lemma.

Lemma 25 (extension lemma). There exists a constant C, which is independent
of H and h, such that,

∣∣∣R(i)
Γ R

(j)T

Γ u(j)
∣∣∣
2

S(i)
≤ C(H/h)

∣∣u(j)
∣∣2
S(j) , ∀u(j) ∈ R

(j)
Γ R̂

(j)T

∆ U
(j)
∆ . (5.13)

We can define an average operator ED on ŨΓ as in section 2.7.

ED := R̃ΓR̃
T
D,Γ. (5.14)

Let us denote the set of indices j such that Ωj ∩ Ωi 6= ∅ by Ξi.

For a given ũΓ = Πiũ
(i) ∈ ŨΓ with ũ(i) ∈ U

(i)
Γ , define u0,i and u0 as follows:

u0 =

N∑

i=1

R
(i)
Γ δ

†
iu0,i =

N∑

i=1

R
(i)
D,Γu0,i (5.15)
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and u0,i is a minimizer of s(i)(u(i), u(i)) among all functions u(i) ∈ U
(i)
Γ such that

R
(i)
Π R

(i)T

Γ u(i) = R
(i)
Π R̃

T
Γ ũΓ. We also define ui = ũ(i) − u0,i ∈ R

(i)
Γ R̂

(i)T

∆ U
(i)
∆ .

We then have

R
(i)
Γ EDũΓ =

∑

j∈Ξi

R
(i)
Γ R

(j)T

Γ δ†juj,0 +
1

2

∑

j∈Ξi

R
(i)
Γ R

(j)T

Γ uj (5.16)

and

∣∣∣R(i)
Γ EDũΓ

∣∣∣
2

S(i)
≤ 2

∣∣∣∣∣
∑

j∈Ξi

R
(i)
Γ R

(j)T

Γ δ†juj,0

∣∣∣∣∣

2

S(i)

+
1

2

∣∣∣∣∣
∑

j∈Ξi

R
(i)
Γ R

(j)T

Γ uj

∣∣∣∣∣

2

S(i)

. (5.17)

Using the extension lemma, the second term of (5.17) can be bounded by

CH

h

∑

j∈Ξi

|uj|2S(j) ≤
CH

h

∑

j∈Ξi

∣∣ũ(j)
∣∣2
S(j) . (5.18)

The first term of (5.17) can be bounded by

2

∣∣∣∣∣R
(i)
Γ

∑
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R
(j)T

Γ δ†juj,0
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h

∑

j∈Ξi

(
|ui,0|2S(i) + |uj,0|2S(j)

)

≤ CH

h

∑
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∣∣2
S(j) . (5.19)

By summing over the subdomains, we have

|EDũΓ|2eS ≤ CH

h
|ũΓ|2eS, ũΓ ∈ ŨΓ, (5.20)

which is similar to Lemma 11. Following the arguments in section 2.7, we then
have the following bound for the BDDC operator with the MITC elements.
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Theorem 15. The BDDC operator has the following bound of the condition num-
ber

κ(M−1
BDDCŜ) ≤ CH

h

where C is independent of H and h.

In numerical experiments reported in [8], we can see that the bound of condition
number is better than what the theory predicts; we can expect to have a bound
which is the power of (1 + logH

h
).

5.4 BDDC Methods for Falk-Tu elements

In this section, we present our BDDC methods for the Falk-Tu elements. We
assume that the subdomains are shape regular triangles.

We choose ÛΠ as the space of the subdomain vertex nodal values and the values∫
ek
θ ·n ds for all edges. Each triangular subdomain has 3 vertices, 3 edges, and 12

primal variables and we have approximately 9
6

+ 3
2

= 3 coarse degrees of freedom

per subdomain. The local space U
(i)
∆ is defined as the subspace of U

(i)
Γ where the

values at the subdomain vertices and
∫
ek
θ · n ds vanish.

We first tested an extension lemma on an edge eij numerically and calculated

sup
u(j)∈R

(j)
Γ R

(i)T

Γ R
(i)
Γ

bR
(j)T

∆ U
(j)
∆

∣∣∣R(i)
Γ R

(j)T

Γ u(j)
∣∣∣
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S(i)

|u(j)|2S(j)

for a number of values of H/h and t. If u(j) ∈ R
(j)
Γ R

(i)T

Γ R
(i)
Γ R̂

(j)T

∆ U
(j)
∆ , it vanishes

at all nodes of ∂Ωj\eij . The results in Table 5.1 and Figure 5.1 suggest that we
have a constant bound.

Conjecture 1 (extension lemma). There exists a constant C, which is independent
of H and h, such that,

∣∣∣R(i)
Γ R

(j)T

Γ u(j)
∣∣∣
2

S(i)
≤ C

∣∣u(j)
∣∣2
S(j) , ∀u(j) ∈ R

(j)
Γ R

(i)T

Γ R
(i)
Γ R̂

(j)T

∆ U
(j)
∆ . (5.21)

Next, we tested an edge lemma on an edge eij numerically. For u(i) ∈ U
(i)
Γ , let

u
(i)
0 be the coarse interpolant defined as (4.15) and ψeij

be the edge cut-off function
of eij . We calculated

sup
u(i)∈U

(i)
Γ

∣∣∣ψeij
(u(i) − u

(i)
0 )
∣∣∣
2

S(i)

|u(i)|2S(i)

(5.22)
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Table 5.1: Maximum of the generalized eigenvalues for H = 1, h = 1
k
, and increas-

ing H
h

= k between two interior subdomains for the extension lemma.

H/h t=0.1 t=0.01 t=0.001 t=0.0001 t=0.000010
9 4.907158 10.953264 13.286568 13.336906 13.337417
18 5.417579 11.342027 13.208633 13.414581 13.416773
27 5.530311 11.634899 13.038411 13.426350 13.430772
36 5.571774 11.766864 12.788679 13.454008 13.462269
45 5.591386 11.839829 12.501084 13.447404 13.460537
54 5.602162 11.885327 12.262782 13.440867 13.459785
63 5.608703 11.915788 12.088357 13.434974 13.460689
72 5.612968 11.937174 12.078051 13.426620 13.460161
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Figure 5.1: Maximum eigenvalue as a function of H
h

for the extension lemma.
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Table 5.2: Maximum of the generalized eigenvalues for H = 1, h = 1
k
, and increas-

ing H
h

= k for the edge lemma.

H/h t=0.1 t=0.01 t=0.001 t=0.0001 t=0.000010
9 39.252590 293.059058 523.887444 530.591379 530.660677
18 43.503106 271.781051 697.637776 729.347650 729.696130
27 46.257163 262.949783 783.727702 856.560695 857.440410
36 48.442702 260.211920 826.903401 951.151252 952.829761
45 50.389569 259.449082 846.192946 1026.722797 1029.509209
54 52.288230 259.385027 851.902182 1089.687970 1093.882972
63 54.297223 259.587166 850.017478 1143.603560 1149.555093
72 58.094214 259.891252 844.084585 1190.658638 1198.521906

for a number of values of H/h and t. Πiu
(i)
0 is continuous across the interface and

u(i) − u
(i)
0 vanishes at all primal variables. The results in Table 5.2 and Figure 5.2

suggest that we have a C(1 + logH
h
)2 bound.

Conjecture 2 (edge lemma). There exists a constant C, which is independent of
H and h, such that,

∣∣∣ψeij
(u(i) − u

(i)
0 )
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2

S(i)
≤ C(1 + log

H

h
)2
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S(i) , ∀u(i) ∈ U
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Γ . (5.23)

For a given ũΓ = Πiũ
(i) ∈ ŨΓ with ũ(i) ∈ U
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Γ , we have
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Figure 5.2:
√

maximum eigenvalue as a function of H
h

for the edge lemma.

The second term is bounded by
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Γ ũ(i) − ũ(j))
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∣∣∣
2

S(i)

≤
∑

j∈Ξi

(∣∣∣R(i)
Γ R

(j)T

Γ R
(j)
Γ R

(i)T
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By summing over the subdomains, we have

|EDũΓ|2eS ≤ C(1 + log
H

h
)2|ũΓ|2eS, ũΓ ∈ ŨΓ, (5.27)

which is similar to Lemma 11. Therefore, we can prove that the BDDC operator
with the Falk-Tu elements have a C(1+ logH

h
)2 bound if our two conjectures hold.
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Table 5.3: Results for L = 1, H
h

= 4, and with an increasing number of subdomains.

NoS λmax iter λmax iter λmax iter λmax iter λmax iter
t 10−1 10−2 10−3 10−4 10−5

18 6.4 19.0 12.6 27.9 13.3 29.0 13.4 29.0 13.3 29.0
72 5.6 21.0 14.0 31.0 18.5 35.0 18.4 35.0 18.4 35.0
162 5.5 21.0 14.0 30.0 21.9 36.0 21.1 36.0 21.1 36.0
288 5.5 21.0 13.0 29.0 23.0 36.0 21.2 36.0 21.2 36.0
450 5.5 21.0 11.9 28.0 23.0 37.0 20.1 37.0 20.1 37.0
648 5.5 22.0 10.8 27.0 22.6 37.0 18.8 37.0 18.8 37.0
882 5.5 22.0 10.0 26.0 22.0 38.0 17.6 37.0 17.5 37.0
1152 5.5 22.0 9.4 25.0 21.3 38.0 16.5 38.0 16.4 38.0
1458 5.5 22.0 8.9 25.0 20.5 38.0 15.6 38.0 15.5 38.0
1800 5.5 22.0 8.6 25.0 19.7 38.0 14.9 38.0 14.8 38.0

5.4.1 Numerical Experiments

When discussing our numerical experiments, we use the same notation as in
section 4.10. We also use the same elasticity parameters and stopping criteria as in
that section. Because the minimum eigenvalue of out BDDC operator is bounded
below by 1, we will report the maximum eigenvalue and the number of iterations
only.

We have tested our BDDC methods with an increasing number of subdomains.
The results are in given Table 5.3 and Figure 5.3. We see that the condition
number does not grow with the number of subdomains.

We have also tested our BDDC methods with an increasing value of H/h. The
results are given in Table 5.4 and Figures 5.4 and 5.5. They suggest a C(1+ logH

h
)2

bound.
Compared to results in [8], we see that the iteration counts are similar for two

methods for the two different finite element. Examining the maximum eigenvalues,
we find that the one of our methods is about twice as large as the one in [8].
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Figure 5.3: Maximum eigenvalue of the preconditioned system as a function of the
number of subdomains

Table 5.4: Results for L = 1, number of subdomains 4× 4, and with an increasing
H/h.

H/h λmax iter λmax iter λmax iter λmax iter λmax iter
t 10−1 10−2 10−3 10−4 10−5

3 5.2 18.3 10.9 27.0 11.2 28.9 11.2 29.0 11.2 28.9
4 6.0 20.0 13.1 30.7 14.9 32.0 14.9 32.0 14.9 32.0
5 6.6 21.0 14.4 32.0 16.8 35.0 16.9 35.0 16.9 35.0
6 7.1 22.0 15.2 33.0 18.0 37.0 18.0 37.0 18.0 37.0
7 7.5 23.0 15.9 34.0 18.9 38.0 18.9 38.0 18.9 38.0
8 7.9 24.0 16.5 35.0 19.6 40.0 19.6 40.0 19.6 40.0
9 8.3 25.0 17.1 35.9 20.4 41.0 20.3 41.0 20.3 41.0
12 9.2 26.0 18.6 37.0 22.7 43.7 22.3 43.9 22.3 43.9
15 10.0 27.0 19.8 38.0 25.6 46.0 24.4 46.0 24.3 46.0
18 10.6 28.0 20.9 39.0 28.1 48.0 26.3 48.0 26.2 48.0
21 11.2 28.9 21.7 40.0 30.3 50.0 28.5 49.9 28.5 49.9
24 11.6 29.3 22.6 40.4 33.6 51.9 29.9 51.2 29.8 51.4
27 12.1 30.0 23.2 41.0 35.2 53.0 31.5 53.0 31.1 53.0
30 12.7 30.9 23.7 41.5 37.1 54.0 32.9 54.0 32.9 54.0
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