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Abstract
We present a hierarchical model that learns image de-

compositions via alternating layers of convolutional sparse
coding and max pooling. When trained on natural images,
the layers of our model capture image information in a va-
riety of forms: low-level edges, mid-level edge junctions,
high-level object parts and complete objects. To build our
model we rely on a novel inference scheme that ensures each
layer reconstructs the input, rather than just the output of
the layer directly beneath, as is common with existing hier-
archical approaches. This scheme makes it possible to ro-
bustly learn multiple layers of representation and we show
a model with 4 layers, trained on images from the Caltech-
101 dataset. We use our model to produce image decom-
positions that, when used as input to standard classification
schemes, give a significant performance gain over low-level
edge features and yield an overall performance competitive
with leading approaches.

1. Introduction
Discovering good representations for images is the key

to recognizing the objects they contain. Local region de-
scriptors such as SIFT and HOG have catalyzed dramatic
improvements in recognition performance over the last few
years. However, these descriptors capture limited infor-
mation from the image; essentially finding edges and then
pooling them. Building higher-order representations that
capture corners, junctions and common object parts would
have great potential to improve recognition performance.

Many leading object detection algorithms use multi-
layered object representations, most notably the approach of
Felzsenszwalb et al. [3]. In this framework, the model parts
exist at multiple scales with the dependencies between them
capturing their relative location. The local appearance for
each part relies on a discriminatively trained filter to match
within a HOG pyramid. However, given the latent part po-
sitions, the model is linear in its parameters which limits its
complexity and hence performance.

Multi-layered non-linear models are potentially far more
powerful but are difficult to train effectively. The most ob-
vious example is the Convolutional Neural Network (Con-

vNets) [10] which performs well on certain tasks such as
classifying handwritten digits, but less so on more chal-
lenging data. The reasons are two-fold: (i) they still suffer
from the problem of vanishing gradients1, which prevents
very deep networks from being learned; (ii) they must be
trained in a supervised manner and have many parameters,
thus require an inconveniently large amount of labeled data.
The latter objection has been overcome by Deep Belief Net-
works (DBNs) [6] which incorporate an unsupervised pre-
training phase to initialize the network parameters. Convo-
lutional DBNs [11] have shown promising results, but are
still difficult to train. While ConvNets use back-propagation
to minimize the loss function relative to the input, the unsu-
pervised training schemes, such as contrastive divergence,
cannot do this. Instead, each layer of the DBN attempts to
reconstruct the output of the layer below and the model is
built greedily in a layer-by-layer fashion. The problem with
this approach is that the upper layers of the model have no
direct connection back to the input, thus the reconstruction
errors accumulate as the number of layers increases.

In this paper we introduce a novel hierarchical model
that is non-linear and overcomes many of the issues out-
lined above. Instead of using explicit nonlinear functions in
the model, we instead use sparsity [12, 13] to iteratively re-
weight a linear system, thus generating non-linear behavior.
This formulation has a number of advantages: (i) we can
train each layer’s loss function directly with respect to the
input, irrespective on the number of layers; (ii) the training
is unsupervised and efficient, being predominantly based on
linear conjugate gradients; (iii) nevertheless, the resulting
model is highly non-linear; (iv) it a top-down generative
model which performs explaining away at each layer.

Each layer of the model captures information at differ-
ent image scales, ranging from edges up to entire scenes.
Correspondingly, the model features at each layer increase
in sophistication, from edges, to corners, curves and junc-
tions, to model parts and finally to entire objects and scenes.

1ConvNets and neural networks use multiple layers of saturating non-
linearities. When back-propagating through them the gradients become so
attenuated that they do not reach more than a few layers from the top, thus
the first layers of the network remain untrained.
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The structure of each layer is based on a Deconvolutional
Network [18], which is essentially a convolutional form of
sparse coding [2, 8]. However, the overall topology, train-
ing and inferences schemes differ significantly from those
used in [18].

Our model performs a decomposition of the full image,
in the spirit of Zhu and Mumford [20] and Tu and Zhu
[16]. This differs from other hierarchical models, such as
Fidler and Leonardis [4] and Zhu et al. [19], that only model
a stable sub-set of image structures at each level, rather
than all pixels. Another key aspect of our approach is that
we learn the decomposition from natural images. Several
other hierarchical models such as the HMax model of Serre
et al. [14, 15] and Guo et al. [5] use hand-crafted features
at each layer.

2. Approach
Our model produces an over-complete image representa-

tion that can be used as input to standard object classifiers.
Unlike many image representations, ours is learned from
natural images and, given a new image, requires inference
to compute. The model decomposes an image in a hierar-
chical fashion using multiple alternating layers of convolu-
tional sparse coding (deconvolution [18]) and max-pooling.
Each of the deconvolution layers attempts to directly min-
imize the reconstruction error of the input image under a
sparsity constraint on an over-complete set of feature maps.
The cost function Cl(y) for layer l comprises two terms: (i)
a likelihood term that keeps the reconstruction of the input
ŷl close to the original input image y; (ii) a regularization
term that penalizes the `1 norm of the 2D feature maps zk,l

on which the reconstruction ŷl depends. The weighting be-
tween the two terms is controlled by λl:

Cl(y) =
λl

2
‖ŷl − y‖22 +

Kl∑
k=1

|zk,l|1 (1)

Unlike existing approaches [2, 8, 18], our convolutional
sparse coding layers attempt to directly minimize the re-
construction error of the input image, rather than the output
of the layer below.

Deconvolution: Consider the first layer of the model,
as shown in Fig. 1. The reconstruction ŷ1 (comprised of
c color channels) is formed by convolving each of the 2D
feature maps zk,1 with filters fc

k,1 and summing them:

ŷc
1 =

K1∑
k=1

zk,1 ∗ fc
k,1 (2)

where ∗ is the 2D convolution operator. The filters f are the
parameters of the model common to all images. The feature
maps z are latent variables, specific to each image. Since
K1 > 1 the model is over-complete, but the regularization
term in Eqn. 1 above ensures that there is a unique solu-
tion. We describe the inference scheme used to discover

the optimal z1 and the closely related learning approach for
estimating f1 in Sections 2.1 and 2.2 respectively. For no-
tational brevity, we combine the convolution and summing
operations of layer l into a single matrix Fl and convert the
multiple 2D maps zk,l into a single vector zl:

ŷ1 = F1z1 (3)

Pooling: On top of each deconvolutional layer, we per-
form a max-pooling operation on the feature maps z from
the layer below. This pooling occurs both spatially (within
each 2D z map) and also between adjacent maps. In the case
of the first layer, each element in the pooled map pj,1(x, y)2

is the absolute maximum (preserving sign) over a neigh-
borhood N(x, y, j) in z1. A typical neighborhood is 3 × 3
spatially (non-overlapping) and 2 in the k dimension:

[pj,1(x, y), sj,1(x, y)] = max |zk′,1(x′, y′)|
∀x′,y′,k′∈N(x,y,j)

sign(zk′,1(x′, y′))

(4)
The location of the maxima within each pooling region is
recorded in switch variables s1. For brevity we express
the pooling operation in matrix form, where p1 = Ps1z1,
Ps1 being a binary selection matrix (for switch settings s1).
The corresponding unpooling operation Us1 = PT

s1
takes

the elements in p1 and places them in z1 at the locations
specified by s1, the remaining elements being set to zero:
ẑ1 = Us1p1. The pooling operations mean that as we as-
cend the model each element in the feature maps can recon-
struct larger and larger regions of the input image.

Multiple Layers: The architecture remains the same for
higher layers in the model but the number of feature maps
Kl may vary. At each layer we reconstruct the input through
the filters and switches of the layers below. We define a
reconstruction operator Rl that takes feature maps zl from
layer l and alternately convolves (F ) and unpools them (Us)
down to the input:

ŷl = F1Us1F2Us2 . . . Flzl = Rlzl (5)

Note that ŷl depends only on the feature maps zl, not
the maps from any lower layers. In other words, when
we project down to the image, we do not impose spar-
sity on any of the intermediate layer reconstructions
ẑl−1, . . . , ẑ1. However, the reconstruction operator Rl does
depend on the pooling switches in the intermediate layers
(sl−1 . . . s1) since they determine the unpooling operations
Usl−1 . . . Us1 . The switches are configured by the values of
zl−1 . . . z1 from previous iterations. Fig. 1 illustrates two
layers of deconvolution and pooling within our model.

2.1. Inference

For a given layer l, inference involves finding the feature
maps zl that minimize Cl(y), given an input image y and
filters f . The model structure outlined above is designed

2 j is the map index (1 . . . K) and x, y are the spatial coordinates.
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Figure 1. Left: A visualization of two layers of our model. Each layer consists of a deconvolution and a max-pooling. The deconvolution
layer is a convolutional form of sparse coding that decomposes input image y into feature maps z1 (green) and learned filters f1 (red),
which convolve together and sum to reconstruct y. The filters have c planes, each used to reconstruct a different channel of the input
image. Each z map is penalized by a per-element `1 sparsity term (purple). The max-pooling layer pools within and between feature maps,
reducing them in size and number to give pooled maps p (blue). The locations of the maxima in each pooling region are recorded in
switches s (yellow). The second deconvolution/pooling layer is conceptually identical to the first, but now has two input channels rather
than three. In practice, we have many more feature maps per layer and have up to 4 layers in total. Middle: A block diagram view of the
inference operations within the model for layer 2. See Section 2.1 for explanation. Right: A toy instantiation of the model on the left,
trained using a single input image of a (contrast-normalized) circle. The switches and sparsity terms are not shown. Note the sparse feature
maps (green) and effect of the pooling operations (blue). Since the input is grayscale, the planes of the 1st layer filters are identical.

to make inference tracible for large models with many hun-
dreds of feature maps.

For each layer we need to solve a large `1 convolutional
sparse coding problem and we adapt the continuation ap-
proach of Zeiler et al. [18]. This introduces a set of auxil-
iary variables w (one for each element in z) to separate the
likelihood and regularization terms:

Cl(y) =
λl

2
‖ŷl − y‖22 +

Kl∑
k=1

|zk,l|1 (6)

=
λl

2
‖ŷl − y‖22 +

βl

2

Kl∑
k=1

‖zk,l − wk,l‖22 +
Kl∑

k=1

|wk,l|1(7)

where βl is the continuation parameter. Cl(y) can then be
minimized in an alternating fashion. First we fix zk,l to
give a separable 1D problem for each element in wk,l (w-
subproblem). Then we fix wk,l and solve for zk,l, which
is a quadratic problem that can be solved very efficiently
(z-subproblem). Starting with a small value of βl, we al-
ternate between the two subproblems, increasing βl until it
strongly ties zk,l to wk,l.

w-subproblem: Given fixed zk,l, each element of the
optimal wk,l can be found in closed form:

wk,l = max(|zk,l| −
1
βl

, 0)
zk,l

|zk,l|
(8)

z-subproblem: Given fixed wk,l, we need to minimize
the following expression with respect to zl:

λl

2
‖ŷl − y‖22 +

βl

2

Kl∑
k=1

‖zk,l − wk,l‖22 (9)

Since our model contains no explicit non-linearities, the
derivative of ŷl with respect to zl is linear, given fixed
switch settings s1 . . . sl−1 and is equal to RT

l :
∂ŷl

∂zl
= FT

l Psl−1 . . . FT
2 Ps1F

T
1 = RT

l (10)

Intuitively, RT
l takes a signal at the input and alternately

filters it (FT ) and pools it (Ps) up to layer l. Taking deriva-
tives of Eqn. 9 and setting equal to zero, we obtain the fol-
lowing linear system in zl:

(λlR
T
l Rl + βlI)zl = λlR

T
l y + βlwl (11)

The left-hand side of the system is never explicitly formed.
Instead, we compute the matrix-vector product by mapping
zl back to the input (via Rl) and then passing it forward
again up to layer l (via RT

l ), and finally adding βl to all ele-
ments. The right hand side of the system is formed by prop-
agating y upto layer l and adding the per-element weights
βlwl. Both the reconstruction R and propagation RT oper-
ations are very quick, just consisting of convolutions, sum-
mations, pooling and unpooling operations, all of which are
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amenable to parallelization. This makes it possible to effi-
ciently solve the system in Eqn. 11 using linear conjugate
gradients (CG), even with massively over-complete layers
where zl may be up to 105 in length.

While the z-subproblem is linear, the model as a whole is
not. The non-linearity arises from two sources: (i) sparsity,
as induced in the w-subproblem, and (ii) the settings of the
switches s which change the pooling/unpooling within Rl.

We perform both inference and learning in a layer-by-
layer fashion, starting at the bottom. As we move up, the
filters and switches of layers below the current one are held
fixed. During inference, after solving the z-subproblem
(Eqn. 11), we update the switch settings for the current layer
using Eqn. 4. Additionally, since we want a reconstruc-
tion that is consistent with these switch settings (for layers
above), we perform a pool/unpool operation on zl:

zl ← Usl
Psl

zl (12)

2.2. Learning

In learning the goal is to estimate the filters f in
the model, which are shared across all images Y =
{y1, . . . yi, . . . , yN}. For a given layer l, we perform in-
ference to compute zi

l . Taking derivatives of Eqn. 1 and
setting to zero, we obtain the following linear system in fl:

N∑
i=1

zi
l

T
P i

sl−1
RiT

l−1ŷ
i =

N∑
i=1

zi
l

T
P i

sl−1
RiT

l−1y
i (13)

where ŷi is the reconstruction of the input using the current
value of fl. We solve this system using linear conjugate
gradients. As with inference, the matrix-vector product of
left-hand side is computed efficiently by mapping down to
the input and back up again using the Rl and RT

l operations.
After solving Eqn. 13, we normalize fl to have unit length.

The overall algorithm for learning all layers of the model
is given in Algorithm 1. The procedure for inference is iden-
tical, except the fl update on line 14 is not performed. In
practice, we find that just two CG iterations for the zl and
fl systems (lines 7,14) are sufficient, rather than solving to
convergence.

2.3. Relation to existing models

We now explain how our model differs from other fea-
ture learning approaches. The key differences are: (i) we
train each layer to reconstruct the input y, not the layer im-
mediately below (i.e. zl−1) like most other approaches; (ii)
by careful design of our model and its inference scheme,
we are able to do this efficiently while keeping the model
non-linear. The first difference is vital in practice, since
without it the reconstruction constraint is too weak to drive
the learning of good filters. The second difference makes it
possible train models with a large number of feature maps,
needed for a good representation.

Algorithm 1 Learning Image Decompositions.
Require: Training set Y , # layers L, # epochs E
Require: Regularization weights λl, # feature maps Kl

Require: Continuation parameters: βInc
l , βMax

l

1: for l = 1 : L do
2: Init. features/filters: zi

l ∼ N (0, ε), fl ∼ N (0, ε), wi
l = 0

3: for epoch = 1 : E do
4: for i = 1 : N do
5: βl = 1/λl

6: while βl < βMax
l do

7: Update zi
l by solving Eqn. 11 (z-prob) using CG

8: Update wi
l using Eqn. 8 (w-prob)

9: Update switches si
l using Eqn. 4

10: Pool/unpool zi
l , using Eqn. 12

11: βl = βl · βInc
l

12: end while
13: end for
14: Update fl by solving Eqn. 13 using CG
15: end for
16: end for
17: Output: filters f , feature maps z and switches s.

Convolutional Networks [10] apply the filters f to the
image y, rather than the feature maps z as we do. In other
words, each layer in a convolutional network is bottom-up
(feed-forward), while ours is top-down (generative). Al-
though slower, each of our sparse coding layers performs
explaining away, thus has more modeling power than a lin-
ear transformation plus non-linearity. These non-linearities,
which complicate training significantly in ConvNets, are
absent in our model. Finally, ConvNets are purely su-
pervised, while our approach is unsupervised. Predictive
Sparse Decomposition [7] adds a sparse coding compo-
nent to ConvNets that allows unsupervised training, how-
ever each layer only reconstructs the layer beneath, unlike
in our model.

Deep Belief Networks [6, 11], composed of multiple lay-
ers of Restricted Boltzmann Machines, are a popular ap-
proach with similarities to ours. However, each RBM layer
has a factored representation that does not directly perform
explaining away. Training is relatively slow and they only
reconstruct the output of the layer below.

The closest approaches to ours are those based on con-
volutional sparse coding [2, 8, 18]. Our deconvolutional
layers are the same as those used in Zeiler et al. [18], but
their model does not include any form of pooling, and they
only attempt to reconstruct the layer below. Furthermore,
to assist training it is common [8, 10, 18] to manually im-
pose sparse connectivity between the feature maps of dif-
ferent layers. In contrast, our model has full connectivity
between layers, which allows our model to learn more com-
plex structures.
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3. Application to object recognition

Our model is purely unsupervised and so must be com-
bined with a classifier to perform object recognition. In
view of its simplicity and performance, we use the Spatial
Pyramid Matching (SPM) of Lazebnik et al. [9].

Given a new image, performing inference with our
model decomposes it into multiple layers of feature maps
and switch configurations. We now describe a novel ap-
proach for using this decomposition in conjunction with the
SPM classifier. While the filters are shared between images,
the switch settings are not, thus the feature maps of two
images are not directly comparable since they use different
bases Rl. This makes direct use of the higher-level feature
maps problematic and we propose a different approach.

We examine the activations of single elements in the fea-
ture maps in the top level of the model (by projecting them
back to the input pixel domain), and these produce a soft
decomposition of the original image. Shown in Fig. 3, they
contain good reconstructions of select image structures, as
extracted by the model, while neighboring content is sup-
pressed. For each image i, we take the set of M largest
absolute activations from the top layer feature maps and
project each one separately down to the input to create M
different images (ŷi,1, . . . , ŷi,M ), each containing various
image parts generated by our model. This is only practical
for high layers with large receptive fields.

Instead of directly inputting ŷi,1, . . . , ŷi,M to the SPM,
we instead use the corresponding reconstructions of the 1st
layer feature maps (i.e. ẑi,1

1 , . . . , ẑi,M
1 ), since activations at

this layer are roughly equivalent to unnormalized SIFT fea-
tures (the standard SPM input [9]). After computing sepa-
rate pyramids for each ẑi,m

1 , we average all M of them to
give a single pyramid for each image. We can also apply
SPM to the actual 1st layer feature maps zi

1, which are far
denser and have even coverage of the image3. The pyramids
of the two can be combined to boost performance.

4. Experiments
We train our model on the entire training set of 3060

images from the Caltech 101 dataset (30 images per class).
Pre-processing: Each image is converted to gray-scale

and resized to 150×150 (zero padding to preserve the aspect
ratio). Local subtractive and divisive normalization (i.e. the
patch around each pixel should have zero mean and unit
norm) is applied using a 13×13 Gaussian filter with σ = 5.

Model architecture: We use a 4 layer model, with
7 × 7 filters, E = 10 epochs of training, βInc

l = 10 and
βMax

l = 1000/λl at all layers. Various parameters, tim-
ings and statistics are shown in Table 1. Due to the effi-
cient inference scheme, we are able to train with many more
feature maps and more data than other approaches, such as

3Specific details: pixel spacing=2, patch size=16, codebook size=2000.

Property Layer 1 Layer 2 Layer 3 Layer 4
# Feature maps 15 50 100 150

Pooling size 3x3x3 3x3x2 3x3x2 3x3x1
λl 1 0.01 0.001 0.0001

Inference time (s) 0.6 1.1 1.5 13.5
z pixel field 7x7 21x21 63x63 189x189

Feature map dims 156x156 58x58 26x26 15x15
# Filter Params 735 7,350 122,500 367,500
Total # z & s 378,560 178,200 71,650 37,500

Table 1. Parameter settings (top 3 rows) and statistics (lower 5
rows) of our model.

[2, 8, 11]. By the 4th layer, the receptive field of each fea-
ture map element (z pixel field) covers the entire image,
making it suitable for the novel feature extraction process
described in Section 3. At lower layers of the model, the
representation has many latent variables (i.e. z’s and s’s)
but as we ascend, the number drops. Counterbalancing this
trend, the number of filter parameters grows dramatically as
we ascend and the top layers of the model are able to learn
object specific structures.

Timings: With 3060 training images and E = 10
epochs, it takes around 48 hours to train the entire 4 layer
model. For inference, a single epoch suffices in the lower
layers (to set the switches), but 5 are needed at the top layer.
The total inference time per image is 16.7 secs (see Table 1
for per layer breakdown). Both these timings are for a Mat-
lab implementation on a single six-core CPU. As previously
discussed, the inference can easily be parallelized, thus a
dramatic speed improvement could be expected from a GPU
implementation.

4.1. Model visualization
The top-down nature of our model makes it easy to in-

spect what it has learned. In Fig. 2 we visualize the fil-
ters in the model by taking each feature map separately and
picking the single largest absolute activation over the entire
training set. Using the switch settings particular to that ac-
tivation we projecting it down to the input pixel space. At
layer 1, we see a range of oriented Gabors of differing fre-
quencies, as well as some DC filters. In layer 2, a range
of edge junctions and curves can be seen, built from com-
binations of the 1st layer filters. For a few selected filters
(highlighted in color), we show the 25 largest activations
across all images, not just the largest. Each group shows
clustering with a certain degree of variation, as produced
by the varying switch settings for that particular activation.
E.g. the sliding configuration of the T-junction (green box).
Reflecting their large receptive field, the filters in layer 3
show a range of complex compositions. The highlighted
boxes show the model able to cluster quite complex struc-
tures. Note that the groupings produced are quite different
to a pixel-space clustering of image patches since they are:
(i) far from rectangular in shape; (ii) utilize the constrained
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Figure 2. A visualization of the filters learned by our model, as well as image reconstructions and feature map histograms for each layer.
See Section 4.1 for explanation. This figure is best viewed in electronic form.
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Figure 3. Columns 1–5: The largest 5 absolute activations in the 4th layer projected down to the input pixel space, for 4 different examples.
Note how distinct structures within the image are reconstructed, despite the model being entirely unsupervised. See Section 3 for details
on their use for recognition. Columns 6–8: sum of first 5 columns; reconstruction using all 4th layer activations; original input image.

geometric transformations offered by the switches below.
The 4th layer filters show fairly complete reconstructions of
entire objects. In many cases, the background has been sup-
pressed and only consistent structures are captured. Fig. 2
also shows reconstructions from each layer of the model for
4 example input images. Note that unlike related models,
such as Lee et al. [11], the sharp image edges are preserved
in the reconstructions, even from the 4th layer. Finally, at
the top of Fig. 2, log-histograms of the feature map activa-
tions are shown for each layer. As we ascend the model,
the distribution becomes increasingly heavy-tailed, reflect-
ing increased sparsity at higher layers. Further plots, show-
ing the raw feature maps, filters and videos of inference tak-
ing place can be found in the supplementary material.

In Fig. 3 we show the pixel space reconstructions of the
top M = 5 single feature map activations inferred from
4 different images (see Section 3 for more details). Note
how a single element reconstructs complex groupings in
the input image, thereby providing a soft decomposition.
For example, the 2nd max for the human face reconstructs
the left eye, nose, ear and mouth of the man, but little else.
Conversely, the 5th max only focuses on reconstructing the
hair. Similarly, different maxes within the schooner image
(bottom row) pick out the hull and sails. The structures
within each max reconstruction consist of textured regions
(e.g. center of flower), as well as edge structures. They also
tend to reconstruct the object better than the background.
For comparison, Fig. 3 also shows the summation of the 5

max images (
∑5

m=1 ŷi,m
4 ); the full reconstruction using all

elements of layer 4 (ŷi
4) and the original input image yi.

4.2. Evaluation on Caltech 101
We use M = 50 decompositions from our model to pro-

duce input for training the Spatial Pyramid Match (SPM)
classifier of Lazebnik et al. [9]. The classification results
on the Caltech 101 test set are shown in Table 2.

Applying the SPM classifier to layer 1 features z1 from

Our model - layer 1 66.5%
Our model - layer 4 70.3%
Our model - layer 1 + 4 71.1%
Chen et al. [2] layer-1+2 65.7± 0.7%
Kavukcuoglu et al. [8] 65.7± 0.7%
Zeiler et al. [18] layer-1+2 66.9± 1.1%
Boureau et al. [1] (Hard) 70.9± 1.0%
Jarrett et al. [7] 65.6± 1.0%
Lazebnik et al. [9] 64.6± 0.7%
Lee et al. [11] layer-1+2 65.4± 0.5%
Boureau et al. [1] (Soft) 75.7± 1.1%
Yang et al. [17] (Soft) 73.2± 0.5%

Table 2. Recognition performance on Caltech-101 of our model
and a range of other approaches, grouped by similarity. Group 1:
our approach; group 2: related convolutional sparse coding meth-
ods combined with SPM classifier; group 3: other methods using
SPM classifier; group 4: methods using soft quantization in place
of hard k-means in SPM classifier.
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our model produces similar results (66.5%) to many other
approaches, including those using convolutional sparse cod-
ing (2nd group of rows in Table 2). However, using the max
activations from layer 4 in the SPM classifier, as detailed
in Section 3, we obtain a significant performance improve-
ment of around 4%, surpassing the majority of hierarchical
and sparse coding approaches that also use the same SPM
classifier (middle two groups in Table 2). Summing the
SVM kernels resulting from the max activations from layer
4 and the layer 1 features, we achieve 71.1%. The only ap-
proach based on the SPM with comparable performance is
that of Boureau et al. [1], based on Macrofeatures. Current
state-of-the-art techniques [1, 17]4 use soft quantization of
the descriptors, in place of the hard k-means quantization
used in the SPM. We expect that using Macrofeatures and
soft quantization would also boost our performance.

4.3. Comparison to layer-wise reconstruction

In Fig. 4 we show the results of training a model which
only attempts to minimize the reconstruction of the layer
below, i.e. Cl = ‖ẑl−1−zl−1‖22+|zl|1. Even in high layers,
the filter projections are simple and are unable to give good
reconstructions.

Layer 3Layer 1

Layer 2 Input

L3 recon

Figure 4. A visualization of the filters from a model trained to
reconstruct just the output of the layer below. Without each layer
being connected directly back to the input, complex filters cannot
be obtained.

5. Discussion
The novel methods introduced in this paper allows us to

learn rich image models with many layers. Existing sparse
coding variants have not demonstrated the ability to learn
more than 2 layers of representation. Our model is able
to accurately reconstruct input images, even from layers 4.
The decompositions produced by our model can be com-
bined with standard classifiers to give excellent classifica-
tion rates on Caltech 101. Matlab code for our algorithm is
available at www://xyz.abc.

4In Table 2, we only consider approaches based on a single feature type.
Approaches that combine hundreds of different features with multiple ker-
nel learning methods outperform the methods listed in Table 2.
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