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Abstract. The Reissner-Mindlin plate theory models a thin plate with thickness t. The condi-
tion numbers of finite element approximations of this model deteriorate badly as the thickness t of
the plate converges to 0. In this paper, we develop an overlapping domain decomposition method
for the Reissner-Mindlin plate model discretized by the Falk-Tu elements with the convergence rate
which does not deteriorate when t converges to 0. It is shown that the condition number of this
overlapping method is bounded by C(1 + %)3(1 —+ log%)z. Here H is the maximum diameter of the
subdomains, § the size of overlap between subdomains, and h the element size. Numerical examples
are provided to confirm the theory.
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1. Introduction. The Reissner-Mindlin plate theory is developed to describe
the behavior of a thin plate. If we use standard low order polynomial elements to
discretize a Reissner-Mindlin plate, we then can suffer from locking problems when the
plate is thin and therefore the Kirchhoff condition, Vw = 0, is too severe. For example,
if we use continuous piecewise linear functions to approximate both the displacement
and rotation variables with zero boundary condition, the rotation variables would
be 0. To overcome that, many mixed elements have been developed, see [9, pp.195-
232], [10, chapter 5.6], and [1,2,5-7,16-19,21,22,24, 26,27, 30, 32].

The Kirchhoff (biharmonic) plate problem is related to the Reissner-Mindlin plate
theory. For the Kirchhoff plate, see [10, chapter 6.5], [9] and [12, chapter 5.9]. These
two models have similar interior solutions but differ significantly in a boundary layer
of a width of order of t. It is known that as t converges to 0, the solution of the
Reissner-Mindlin Plate model converges to the solution of the Kirchhoff Plate model;
see [3] and [4].

There are many studies which develop preconditioners for the Kirchhoff plate prob-
lem, see [13-15,25,28]. [25] and [28] can be extended to the Reissner-Mindlin plate
problem for elements which are spectrally equivalent to Kirchhoff plate elements.
For MITC element approximation of the Reissner-Mindlin plate problem, a BDDC
method has been developed, see [8].

The goal of this paper is to develop an overlapping domain decomposition method
for the Reissner-Mindlin plate discretized by the Falk-Tu elements.

In section 2, we present the Reissner-Mindlin plate theory. In Section 3, we intro-
duce the Falk-Tu elements. An overlapping domain decomposition method is intro-
duced in section 4. We prove our bound in section 5 and provide some comments in
sections 6 and 7. We report on some numerical results in section 8.

2. The Continuous Problem. Let the plate occupy the region P, = Q x
(—%,—i—%), where © is a bounded domain of diameter 1 in R%2. We are interested
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2 3. DISCRETIZATION BY THE FALK-TU ELEMENT

in the case when the plate is thin, i.e., t is small. In this problem, we consider
three displacement components u;, i=1,2,3. We use a reduction of dimension for the
z-direction, and assume the following four conditions, cf. [10, chapter 6.5]:

H1. The linearity hypothesis.

H2. The displacement in the z-direction does not depend on the z-coordinate.

H3. The points on the middle surface are deformed only in the z-direction.

H4. The normal stress o33 vanishes.

Under the above hypotheses, we can write the displacement components as,

u’i(xayvz) = —ZHZ(ZZT,y), for 1:172
UB(Q?,ZJ,Z) = '(U(I,y)

Here w is the transversal displacement and 6 = (61, 602) the rotation. If we adopt the
Kirchhoff condition Vw = 6, this becomes the Kirchhoff Plate model; see [10, chapter
6.5] and [9]. These two models have similar interior solutions but differ significantly
in a boundary layer of a width of order of t. As t converges to 0, the solution of the
Reissner-Mindlin Plate model converges to the solution of the Kirchhoff Plate model;
see [3] and [4].

In the above setting, we solve the Reissner-Mindlin equations of the form

—divCe(0) — Xt 3(Vw — ) = —f

2.1
—div(Vw — ) = A '#?g 21)

where C = A~ A7 = (1 +v)7/E — vtr(1)I/E, and 1 is the 2 by 2 identity matrix.
The related Reissner-Mindlin energy, see [10, chapter 6.6], is

1 1
J(0,w) = B /QCE(H) ce(0) + EAFQ ; |Vw — 0> — /Q gw + A f-0. (2.2)

This problem can have a locking problem and we can handle that by using mixed
finite element methods; see [10], [9]. By introducing the shear stress v = At =2(Vw—0),
we obtain the following variational problem, cf. [10, chapter 6.6], [9], [8]:

Find § € Hy(Q),w € H}(Q),y € L*(Q) such that

a(0,¢) + (v, Vv —¢) = (g,v) — (f,¢), ¢ € Hy(Q),v € H)(Q)

1 ) (2.3)
(Vw—0,n) — A" t*(v,n) =0, n € L*(Q).

3. Discretization by the Falk-Tu Element. We use the following conforming
elements, i.e., O, C Hy(R), W), C H}(Q),and T, € L*(R2). Let I be the L* projector
of Hy(Q) onto T',. Then, as in [10], [9], the discrete problem becomes:

Find 6, € O, w;, € Wy, v, € T'j, such that

a(eha(b) + (/WHVU _H(b) = (g,’l}) - (fa(b)a (b S Ghav S Wh

) (31)
(Vwp — 116k, 1) — X~ (v, m) = 0, neTh.

In the Falk-Tu element method, see [9], [23], we choose

On =M+ B*, W), = M?,, T}, = M}
on the triangulation. Here Mﬁ)o is the space of piecewise kth order polynomials in
H;(Q), M;O the space of piecewise kth order polynomials in H§(€2), MJ; the space

of piecewise kth order polynomials in H®, and B* the space of piecewise kth order
polynomial bubble functions.



On Wh, Ln

Fic. 3.1. the Falk-Tu element with k=2.

Because we choose a discontinuous stress variable, we can eliminate it on the element
level as in [20], [8]. Then, the problem becomes :
Find 0}, € Oy, w, € W such that

a(eha(b) + t%(vwh - Heh,v’l) - H¢) = (g,U) - (f7¢)7 ¢ € Ghuv € Wh' (32)

The discrete Reissner-Mindlin energy
A
a(@h, Hh) + t—2(th — 116y, Vwy, — Hoh) (33)

will be estimated later in the proof.

For natural boundary conditions, the dimension of the null space of this Reissner-
Mindlin energy is 3. The first null element is given by w = 1 and 6 = (0,0), the
second by w = z and 6 = (1,0), and the third by w = y and § = (0,1). These null
space functions will play an important role for the subdomain problems defined later.

We have the following error estimate. For a proof, we refer to the lecture notes
edited by Boffi and Gastaldi [9, pp.213-216].

THEOREM 3.1. For sufficiently smooth solutions of the continuous problem, we
have

16 = Onllo + [lw — wr s < Ch*(|[fllo + [lgllo) (3.4)

where C is independent of h.
4. The Domain Decomposition Methods.

4.1. Decomposition of the Domain. We decompose the given domain 2 into
a set of shape regular nonoverlapping subdomains {Q;}Y,, see [33], [10], [12]. We
assume, when developing the theory, that the subdomains are triangles in the plane.
H is the maximum of the diameters of the subdomains. We then, decompose each
subdomain into quasi-uniform and shape-regular elements and introduce our finite
element spaces on this triangulation. The nodes of the fine elements should match
across the interface. We extend each subdomain by adding layers of elements and
denote the set of N extended subdomains by {Q/}Y ;. We denote the size of the
overlap between extended subdomains by §; and assume I;?’, i=1,...,N, is bounded
from below. For more details, see [33, chapters 2 and 3].

4.2. Abstract Schwarz Methods. We consider a finite dimensional space V
on the triangulation. Discretizing equation (3.2) by the finite element method, we
will get a linear system

Au=f (4.1)
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with A symmetric, positive definite and very ill conditioned for small t.
We will consider a family of spaces {V;, i=0,...,N} and construct extension operators

Rl V= V;

The subspace V will usually be associated with a coarse problem and the remaining
spaces are defined on the extended subdomains Q;. The V;, i=1,...,N, are contained
in (H}(Q%))3. We obtain a Schwarz decomposition

N
V=R{Vo+> RI'Vi
i=1
We introduce exact local problems on the local spaces V; such that with A; =
RiARl-T, the Schwarz operators P; : V. — V are defined by RiTAi_lRiA for i =
0,...,N. With exact solvers, the P;s are projections. We define the additive Schwarz
preconditioner by

N
A;dl = Z RlTAl_lRl

i=0
and the additive Schwarz operator by
N
Pag =) P
i=0

We know that a stable decomposition of the space V into V; implies that the additive
operator has a condition number bounded by (N¢ + 1)C2 where Cj is a parameter
related to the stable decomposition and N€ is a constant related to the coloring of
the decomposition {2/}. For more detail, see [33, chapters 2 and 3]. In numerical
examples reported later, we will use uniform triangles as subdomains and N¢ will not
be larger than 13. Therefore, what remains is to find a stable decomposition of V into
V;. We are then able to use the abstract theory of Schwarz methods.

4.3. The Discrete Harmonic Extension. On each nonoverlapping subdo-
main €);, we define an extension operator

RiT:Vi—>V

where V; is a subspace defined on §2; with natural boundary conditions. RZT is similar
to RY but it is defined on ; only. We then obtain the linear system

Aiui = fz with u; € ‘71
where /L = RlAFEZ

We can rewrite A; with respect to the components of the interface and interior basis
functions of A;.

{ {L‘,U f:li,lr } [ Ui, T } _ [ fir ]
Airr Airr Uj,r fir |

Given u; r, we can calculate the interior values by solving

A rruir + A gruir = 0. (4.2)
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This is a discrete harmonic function on €;, see [33, chapter 4]. When we define
the coarse basis functions, we will define their values on the interface only and then
calculate discrete harmonic extensions to the interior values of subdomains. We define
each coarse basis function in detail in section 5. For the coarse problem, we will also
use an exact solver.

5. The Algorithm and the Results.

5.1. Definition of the Operator C and Bilinear Forms. We will consider
the operator A in more detail and find the relation between a(6,6) and H! norm of
0. Let,

14w vir(T)

AT: I3 5 1
1 1 -V 0 T11 (51)
= — e 4 1 O T22
E\o o0 14w 12

Then C, the inverse of A, is defined by

Ce:= A 'e
E 1 v 0 €11
:1_72) v 1 0 €99
1-v 00 1—v €12
2 2v
E (w2 (-2
=500 | ™ T €22
20+ \ Y Y €12
= 1% 0 €11
=u| &% & 0 €22
0 0 2 €12
where
E
- 5.3
A ) (5:3)
With
1 2 62 44l
. - x x Yy
€)= 2(9§+9; 202 ) (54)
define
a(6.6) = [ (€=(0).2(0)
Q
Tl + 420, 5
- ool ). 4
o u(02 +6,) 3(02 + 1) (5.5)
20 11 2V o q  2H oo
— [ (=g 0 el
(o0t + PEbi0l + T+

[jm”@ﬁ+w%wb@+%my

1—v
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Thus,

W00 [ a0iol+ 6363+ S02 4062+ o)) +
2v

— VvV

(O + 050 + 0505 + 0,0y)

e~
~
—_

2
=2 [ (0):e(¢) + —— [ divédive,
Q 1-v /g

or

a(8, ¢) :2/Qua(9):€(¢)+2'u—y | divedivg

1—v

= / 2ue(8) : e(d) + A / divodive (5.6)
Q

Q

2
where \ := i

1—v

The bilinear form a(6,6) is that of the standard linear elasticity operator. We can
easily show that a(6, ) is bounded by the square of the H!-seminorm of 6 if the Lamé
parameters p and A are bounded. More precisely, we get the bound

a(6,0) < max(2u, \)|6]%: . (5.7)

From now on, let /m := max(2u, A).
We will use the scaled H! norm for each subdomain:

1
lullF uy = lulFra,) + ﬁ”uﬂiz(m)- (5.8)

5.2. Discrete Harmonic Extension. The energy of the interior part of u,
which is orthogonal to discrete harmonic functions in a-seminorm, can be bounded by
the sum of the energy of each local component of u. Therefore, it is enough to consider
discrete harmonic functions when establishing the stable decomposition. From now
on, we will assume that u is discrete harmonic in each subdomain.

Because the support of each bubble function is contained in a single element, the
bubble functions are determined by the values of the piecewise linear parts of 6 and
w if u is discrete harmonic to minimize the Reissner-Mindlin energy. Therefore, we
can consider the bubble function as a dependent functions in the harmonic extension
function.

Let us consider one element K only and assume that the piecewise linear part of 6
and w are already determined. Let 01 be the piecewise linear part of . Using the
bubble basis functions 6%, k=1,2,...6, we can write Vw — [0, = Y p_, Bx0% with
certain coefficients (3.

Note that the square of the L2-norm of the divergence of 8 is positive definite.
Therefore, the two components of the a-seminorm are equivalent over the bubble
function space and a(fp,6p) is equivalent to m|0p|3. .

Let us write the bubble function on the element K as g = 22:1 akﬁlﬁg. ‘We can
then choose optimal coefficients ay, k=1, ...,6 for the bubble functions to minimize
the Reissner-Mindlin energy of u. We know that the a-seminorm does not depend on
the scaling and the square of the L2-norm of bubble functions is on the order of h2.
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Let 8 be diagonal matrix with the diagonal entries (1, (a,...,06, and let a =
(a1, az,...,a6)t. Let F and G be the matrices for the a-seminorm and the L2-norm
of the bubble functions on a reference element, respectively. Let F = B'FB3, G =
B'Gf, and let 1 be the 6-dimensional column vector with all entries 1. We know
that h21'8'31 is equivalent to ||[Vw — 9L||2L2(K)' Then Reissner-Mindlin energy of
(0, + aB6%,w) is equivalent to

~ 2 ~
a(0r,0r) + ma'Fa + IZ—Q(l —a)'G(1 - a).

This is minimized by

h? - -
a=—K'G1 where
t2
h2
K :=mF + t_2G and

K = 3'Kp

and
1—a=mK 'F1.

If we plug this « into the above energy formula, the Reissner-Mindlin energy is equiv-
alent to
PP e s A o h? e A
a(0r,,60r) +mt_2t_21 GK "FK "Gl+m t_21 FK'GK™'F1
h2

h2
=a(f,0r) + mt—21t5t(t—2GK*1FK*1G +mFK 'GK 'F)A1.

Because F, G and K are positive definite, so are GK 'FK~'G and FK " 'GK~'F.
We can bound the quadratic forms of these two positive definite matrices by each other
in terms of ™, h and t. We then find that GK~'FK~'G is equivalent to ¢~2I where

c:=m+ ’Z—j Similarly, FK 'GK~'F is equivalent to ¢2I.
The Reissner-Mindlin energy is equivalent to

h2 t ot h’2 2 2
a(eL,eL)+mt—21 ﬁ (t_207 I+mc I)ﬁl
h2
=a(f,01) + mt—21tﬁt(c*11)f)’1

h2
=a(f,0r) +c*1mt—21t5t51

m

— _h21'p'A1.
+mt2—|—h2 A

= CL(@L, 0L)
Using the equivalence of h*1°3'41 and ||Vw — L7k, the Reissner-Mindlin en-
ergy is equivalent to

m||Vw — 0p][72 )
mit2 + h?

a(0r,01) + (5.9)
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U1

€3 €2

(% (%
2 e1 3

Fic. 5.1. One subdomain and its vertices and edges.

Overall, we can conclude that minimizing the Reissner-Mindlin energy over the
(0L, 0B, w) space is equivalent to minimizing the expression of the equation (5.9)
over the (01, w) space. This is called the stabilized Reissner-Mindlin energy of the
(0L, w) space.

There are two terms: a(fr,0r) and MQLWHVw —0L||2. in the stabilized Reissner-
Mindlin energy. The a-seminorm increases linearly with m and the ratio between the
two terms is m If t=0, this ratio is # and larger than 1. If this ratio is small,
then the problem is close to the linear elasticity problem; this ratio should be large for
Reissner-Mindlin plate problem to be physically reasonable. If t is sufficiently small,
then we can find & such that mt? + h? = h? and we can consider the case of t> 0 as
being similar to the case of t= 0 with a mesh size h.

Therefore, if t is bounded from above, we can consider t as being 0. In interesting
problems for a Reissner-Mindlin plate, t is in this good range and we, therefore assume

that t is 0 from now on.
5.3. The Case of t=0.

5.3.1. The Coarse Problem. We now provide details on the coarse basis func-
tions. We define them on the interface and use their discrete harmonic extensions. We
consider the subdomains €2;, one by one, to define the coarse basis functions. From
now on, we consider only one of the floating subdomains Q; with 99; (9Q = 0.

For each 6;, i=1,2, we define a vertex basis function which vanishes at all interface
nodes except at a subdomain vertex where its value is 1. We denote these vertex basis
functions by 9?)%, i=1,2, k=1,2,3. Because there are two components of 8, we have 6
vertex basis functions for each subdomain.

LEMMA 5.1. The Reissner-Mindlin energy of the vertex basis function Hgvk 1
bounded by Cm where C does not depend on H, h and §, but depends on the shape
regularity of the elements.

Proof. We can find a bubble function 5 such that the I18g 4+ 6, = 0 where 0, is
a piecewise continuous linear functions with zero values at the interface and interior
nodes except at the subdomain vertex being considered. This 6 vanishes except in
the elements which contain the subdomain vertex. The number of such elements are
bounded by the shape regularity. The H!-seminorm of this function is bounded by a
constant. Because Vw = II6, the Reissner-Mindlin energy is equal to the square of
the a-seminorm and we can bound the Reissner-Mindlin energy in terms of the square
of the H'-seminorm. O

For the other coarse basis functions, we need to prove several lemmas.

LEMMA 5.2. Let &1, &2, &3 be the values of the barycentric functions of the subdo-
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Values of w component of 92 M

Fic. 5.2. 3d plot of the 6 vertex basis function 0(1)’1).

main at (x,y). Let

%
gv
gtagtyg

Then, the gradient of Y; is bounded by % where r 1s the minimum distance to the two



10 5. THE ALGORITHM AND THE RESULTS

vertices of the edge i. The second order partial derivatives of Y; are bounded by T%

Proof. Without loss of generality, we prove the lemma for Y; only. We use the
Figure 5.1 of the triangle to define the indices of e, ez, es, v1, va, and vs. Let

f =363 and g := €363 + €3€2. Then,

_ £
&+ 686 + 88

o

f+g

We can easily show that f + g > Cmin(7?,r?) where 7 is the minimum distance
to the other vertex vy of the triangle which is not on the edge e;. min(7,r) is the
minimum distance to the three vertices of the triangle.

For f, we can also show that f < Cr27.

We calculate the first order partial derivatives of f,

f;E = 26252@6?% + 25353,15%
fy = 268,85 + 2638363,

and find that |f,| < Cri® and |f,| < Cris.

The second order partial derivatives of f are

fzz = 2((52,96)253% + 52,9696525?? + 253,152,15352
+(£3,2)285 + €3,006385 + 260,063,28362)

foy = 2(62,y€2.065 + L2600y &5 + 260,083,663
83,583,285 + E3,0y8385 + 283,062,4E362)

fyy = 2((5274)253% + §2yy€2§§ + 253,7452,745352
+(£3,9)65 + €3,y €385 + 260, E3,4E360),

and we find that |fz[? < CF?, |fsy]? < CF%, and |fyy]? < CF?. Similarly, we can
calculate the first and second order partial derivatives of g and obtain a bound of
them by taking the maximum of the bounds of the two terms in g. We find that
lg] < Cr?72, |gz| < OTF, |gy| < Cr7, |gaal® < C, |gayl* < C, and |gyy|* < C.

We next calculate the partial derivative of T; with respect to x and find

AN fe(f +9) = [(fe + 92)

Ox (f+9)?
9fe — [

(e
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If we use the bounds just derived, then

|6T1 | Cr2/ri + Or?itr?
or ' =  Cmin(r?,72)32

T
< Cmax(r—'7#° r3F)
< Cmazx(r=',1)

C

< -
;

Similarly, we get |%| <&
Y . .
For the second order derivative of T, we have

9Ty _ (gfmc + 9ufr — foge — fgxx)(f+g)2 . 2(f+g)(fx +gz)(gfz - fgx)

Ox? (f+9)* (f +9)*
(gfmm - fgzw)(f +g) - 2(f;v +gz)(9fw - fgm)

(f+9)°

This can be bounded by

9%Y, (27272 + 270 (P27 + r272) 4 (rF° + r7) (r272r7S 4 r2747)
Oz |~ (f+9)3
2547 (.22 SN (355
QU + (7))
(f+9)
46 46
< (jw
~ " min(rS,79)

< Cr*®max(r=9,779)
< Cmax(r—27% )

< Cmazx(r=2,1)

< C

r2

.. 92T
Similarly, we get |%3H| < g
Also,

*Y1 _ (9yfa+ 9foy — fy9o — F9ay)(f +9)° _ 2(f +9)(fy + 9)(9fc — f9a)

oxdy (f+9)* (f+9)*
_ (9y Sz + 9foy = fy9a — f92y)(f +9) _ 2(fy + 9y)(9fa — fa)
(f +9)* (f+9)°
This can be bounded by
0%, < (P27 (r272) + (r7) (r375)
dxdy| — (f+9)?

C

—7'2'
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LEMMA 5.3. Under the same assumptions as in Lemma 5.2, the gradient of Y; in
(5.10) vanishes on the edges of a triangle.

Proof. In the proof of Lemma 5.2, we have established that

oY1 gfs — f9s

or  (f+9)?

We have

9fe = (& + §63)(26260.065 + 26383,23)
=287663(63 + £63) (£2,083 + E3.062).

Therefore, this term vanishes on the edges of a triangle. Similarly,

[0 = 365 (26161,085 + 26262267 + 26161 285 + 26383267
= &8585 (261,285 + 26282261 + 261,065 + 28363 061)

which also vanishes on the edges. O

LEMMA 5.4. We define Y; by equation (5.10) as in Lemma 5.2. Let M be a C?
function on the closure of the triangle. For a given edge e;, we assume that M goes
to 0 at least linearly at the two vertices of the edge e;. Then, the gradient of MY; is
bounded by a constant and the second order partial derivatives of MY; are bounded by
%, where r is the minimum distance to the two vertices of the edge i. The value of
MY ; is equal to that of M on the edge e; and to 0 on the other edges. The gradient
of MY ; is equal to that of M on the edge e; and to 0 on the other edges.

Proof. Let us consider the edge e;. Let M = MTY;.

It is easy to see that the value of M is equal to that of M on the edge e; and to 0
on the other edges from the construction of ;.

By Lemma 5.3, on the edges of the triangle,

M
8— = Tl,zM + TlMx
ox

=T M,.

Since T vanishes on e3 and ez and is equal to 1 on ey, we find that V(M Y,) = VM
on the edge e; and that it vanishes on the other edges.

By Lemma 5.2, we can bound |%| as

oM
ox
< gT—FO
r
<C.

Similarly, we have |%| <C.
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If we use Lemma 5.3 again, we find that

02 M

8%2 S |T1,zzM| + 2|T1,1Mz| + |T1me|

S%r—i—g—i-C
T T

IN

.. 2 17 2 27
Similarly, we have |gm§/fj| < g and |86u]\24| < g O

LEMMA 5.5. For a given vertex v;, let ej, ey, be the two edges adjacent to v;. Let
us assume that M; and My are C? functions on the closure of the triangle and that
they go to 1 at least linearly at v;. We also assume that M; goes to 0 linearly at
the other vertex of e; and that M goes to 0 linearly at the other vertex of er. Let
M := Y;jM; + Yy M. Then, VM is bounded by a constant and the second order
partial derivatives of M are bounded by %, where r is the minimum distance to the

vertices of the triangle. The value of M is equal to the value of M; on the edge ej, to
the value of My on ey and vanishes on the third edge. The gradient ofM 18 equal to
the gradient of M; on the edge e;, to the gradient of M) on the edge e, and vanishes
on the other edge.

Proof. Without loss of generality, we can assume that j=1, k=2 and i=3. Let us
define a linear function M3 which vanishes on the edge e3 and is equal to 1 at vs.

If we use the fact that 1 = Y7 + T3 4+ T3, we can express M as

M =T, M, + YoM,
=T My + YoMy — M3+ Ms
=T (M — M3) + Yo(Ma — Ms) — T3Msz + Ms.

If we apply Lemma 5.4 to T1(M; — M3), To(Ms — M3) and YT3Ms3, and add M3 to
the terms, we then can complete the proof. O

We define a displacement vertex basis function wgk by giving the value 1 for w at
one of the subdomain vertices, 0 at the others, and making it linear on the edges of
the subdomain. In addition to the definition of w on the interface, we give values for
f; on the two edges of the subdomain vertex being considered such that § = éijtwe ’
where /; is the length of the edge, t is the unit tangent vector of an edge adjacent to
our chosen subdomain vertex, and v, is the edge cut-off function. The edge cut-off
function is a piecewise linear function defined on the edge and has values 1 on all
nodes except at the two ends of the edge where the cut-off function vanishes. Note
that we make the value 0 to 8 at the subdomain vertices for continuity.

LEMMA 5.6. The Reissner-Mindlin energy of the vertex basis function wgk s
bounded by %—’?(1 + log%) where C does not depend on H, h, and §, but depends
on the shape regularity of the elements.

Proof. Let us assume that the lengths of three edges of a subdomain are ¢1, ¢>, and
{3 and that their relative lengths are bounded; this follows from the shape regularity
of the elements. We first prove the lemma for wgl using notation as in Figure 5.1.

Let us assume that the vertex basis function has the value 1 at the vertex vy, and
that the two edges es,e3 of that vertex can be expressed by asx + by = co and
asx + bsy = cs respectively. (ag,be) is the unit tangent vector of the edge ez from
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| I

U2 €3 U1 U1 €2 V3
The boundary values of the The boundary values of the
w component of w9 on es. w component of w) on e;.
The height is 1. The height is 1.

S
/ N\ [0

1

V2 €3 V1 (%) €2 / V3
The boundary values of the The boundary values of the
6 components of w9 on es. 6 components of w9 on es.
The heights depends on t and /¢;. The heights depend on t and /5.
U2 \w €1 U3 V2 \91 61\ 0y U3

The boundary values of 6 and w vanish on the edge e;.

Fic. 5.3. Values of wgl on the interface.

vz to v1, and (as,bs) is the unit tangent vector of the edge e3 from vs to v1 and let
(a},b}) be the unit normal vector of the edge e;.

Let again &1,&2, &3 be the values of barycentric functions of the subdomain at (x,y).
Let

1

e a; b;
w; = - —r+-y+¢
Sl wrs wrs wY AR A ALY
& & &

for i=2,3, where ¢; is chosen so that the equation ‘;—jx + Z—iy 4+ ¢; = 1 at our chosen
vertex vy. Further, let w = w; + ws. From Lemma 5.5, we know that w satisfies the
boundary condition prescribed by the definitions of the basis function given above.
We also know that the gradient of w is bounded by % and that the second derivatives
of w are bounded by % where r is the minimum distance to the vertices.

Then, define wy, = I"(w) and 6, = I"(Vw) on each element of the subdomain except
in the elements next to each vertex where 6, is defined by the linear components of 6.
Here I is the standard second order interpolation operator and I" is the standard first
order interpolation operator. We can easily find bubble functions from the equation
II0 = Vw on each element. Because the scaling does not affect the H'-seminorm
and there are a bounded number of elements next to any vertex because of the shape
regularity, we can bound the a-seminorm of the basis function on the elements next
to the vertices easily as in Lemma 5.1.

For each element K which does not touch a subdomain vertex, we have

|9L|§{1(K) < |V2w|§11(K).

Therefore,

2m H
1
|9L|%11(Qi) S CA /Ch Wrdrdﬁ + C

C H
< ﬁ(l—l—log%) + C.
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Values of w component of 003
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FIG. 5.4. 3d plot of the w vertex basis function w.

For the bubble function 0z, we know that

0p = Vwy, — 0, = V(IMw) — I"(Vw) = V(I'w — w) + (Vw — I"(Vw)).

15
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02

s

0
V9 1 e3 U1
< pd

Boundary values of 6 of 82, on es.

All other boundary values of 6 and w of 62, are 0.

F1c. 5.5. Values of 923 on the interface.

Therefore for each element K, which does not touch a subdomain vertex,

C
1087 () < ﬁ||98||%2(1<)
C —~
< ﬁ(”v(fhw — )2 x) + |IVw = " (V) |[72 (1))

< OV = w)[[ Lo (1) + [V = I' (V)| F e ()
< OR?|| V2wl [ ()

h2
- H2%?

There are on the order of ‘;{—22 elements in each subdomin and the number of elements
with a distance r from a vertex is about ;. Therefore, to bound |93|%{1(Qi)7 we need
to estimate

H

H H
"1 ih RB? "1 h

2o Yl

=

where r = ¢h. This sum is bounded by %(1 + log%).

In total, the square of the H'-seminorm of the function in the proof is bounded by
%(1 + log%). Because we choose § and w such that I1§ = Vw, we can bound the
Reissner-Mindlin energy by %—@(1 + log%).

We can prove similar bounds for wg2 and wg3. a

We define a rotational edge basis function Hgk for each edge e, by prescribing
0 = ni., where n is the unit normal vector of the edge ey, pointing into the right half
plane, and ., is the edge cut-off function. We set all the boundary values of w to
Zero.

LEMMA 5.7. The Reissner-Mindlin energy of the edge basis function HSk is bounded
by C (1 + log%) where C does not depend on H, h, and §, but depends on the shape
regularity of the elements of the subdomain.

Proof. We have the same assumptions as in the proof of Lemma 5.6. Consider

1
.7 &k / / /
wr = T (@ + by +¢)
where ¢}, is chosen so that wy = 0 on the edge e;. As in Lemma 5.6, we can prove that
the square of the H'-seminorm of the function is bounded by C(1 + log(£)) using
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0

5.3 The Case of t

0
e

Values of w component of 6

0
e

Values of 91 component of 8

0
e

Values of 92 component of 6

0
e

FiG. 5.6. 3d plot of the 6 edge basis function 0.

Lemma 5.4 instead of Lemma 5.5. O

In total, we have 9 vertex basis functions and 3 edge basis functions. Therefore, on

average, we have 3 basis functions for each subdomain.



18 5. THE ALGORITHM AND THE RESULTS

We now define a coarse interpolant u® by

> 23 3 f 0 -n
uy = Zw(vi)wgi + Z Z 0:(v;)07,, + Z ekﬁe 02 (5.11)
i=1 i=1 j=1

k=1 k

where n is the unit normal vector of the boundary of the subdomain pointing into
the right half plane. We can easily check that this coarse interpolant reproduces all
functions in the null space of the Reissner-Mindlin energy and thus satisfies the null
space property, cf. [31].

From [33, remark 4.13], we know that

H
[l < CO+log)llullir @y, we H(Q)NV. (5.12)
And it is easy to prove that
lullF2c) < 2H]|ullF1(q,)

where € is an edge and that

u-n u? l[ul|n2
— T <cC —VH<C = < OV2|ull 1o 5.13
i e Wi ul| () (5.13)

Using inequalities (5.12) and (5.13) and Lemmas 5.1, 5.6 and 5.7 of this section to
bound the energy of the coarse interpolant (5.11), we obtain the following bound:

H
a(uo, uo)e; 1+ log—-)*||wllFs o, +Cm(1+109 116117 o

C
H =
Using the equation Vw = I16, we can show that

IVl _ 41613
H? - H?

Because u reproduce all the null space functions, we can use a Poincaré inequality
by shifting by some null space functions and find that

C H.,

H

a(uo, uo)o,

LEMMA 5.8. Under the condition of 110 = Vw, the a-seminorm and the H'-
seminorm are equivalent for 6. This equivalence does not depend on H, h but depends
on the shape regularity of elements and the Lamé constants. In particular, we have
the relation |0|?{1(Qi) < %a(@,@)

Proof. We can prove this lemma on each element of diameter h. Let us consider
one element only and assume that one of its nodes is at (0,0). Then, we can use the
following transformation to the reference element:

w(z,y) = %(w(hm, hy) —w(0,0)) + w(0,0)
0(z,y) = O(hx, hy).
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Then, Va(z,y) = Vw(hz, hy) = T0(hz, hy) = T0(z,y) on the reference element.
We can easily see that the a-seminorm and the H!-seminorm are invariant under this
dilation. Therefore, it is enough to prove the lemma on the reference element.

On each element, we have 12 basis functions for §. Among them are three null
basis functions for a(f, §) and two null basis functions for the H! norm. Two of these
null basis functions are common. The remaining null basis function for a(6,6) is
(—y,z) and this is not a valid basis function for this problem because of the condition
Vw = 116.

Because we consider a finite dimensional problem and the null space of the two
seminorms are the same, the two seminorms are equivalent and we get the bound
|9|%Il(ﬂl) < %a(@,@) a

Using Lemma 5.8 and inequality (5.14), we can prove that

7 H
a(u®,u’) < Cm(l + logz)%(u, w). (5.15)
I
We note that if the material becomes more incompressible, the decomposition be-
comes less stable.

If 9Q; (0N # O with a strictly positive measure, we can define similar basis func-
tions except on 0f2. In such subdomain, we can prove a bound of the square of the
a-seminorm by using a Friedrichs inequality.

If 09); intersects 0f2 only at one or a few points, we need to modify the proof. Let
us assume that 0€; intersects 0 at (0,0). Let us find az+by+c such that a = ‘[Qi 01,

b= [q, 02 and ¢ = [ (w— ax — by). Because 61 vanishes at a point, we have that

10112,y < |01 — al|L=(q,) + lal
< 2[|01 — al|L= ()

H
<Cy/1+ logz||6‘1 —allgr (o))
H
< C\/1+109E|91|H1(m> (5.16)

which is a variation of inequality (5.12). Similarly, we have

H
||92||%°°(Qi) <C(1+ ZOQE)|92|%{1(Q7_») (5.17)

We also have that

0-n H
/7 < Cllfll= (0, < O/ 1+ log—[0] a1 (0,)- (5.18)

which is a variation of inequality (5.13).
For w,

loll o= ey < [l = a = by = el o= e+ [el + [Jaz + byl 1=(en)
<2/lw — ax — by — c|[p~(a,) + (la| + [b]) H

H
< C\/ 1+ ZOQEH?U —ax — by — c||g1 (o, + (Ja| + b)) H
H
< Cy[1+log—|w —ax —by — c|m (o, + (lal + B)H.  (5.19)
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Using the equation V(w — ax — by — ¢) =II(0 — (a, b)), we can show that
IV(w = az — by — 0)|[72(0,) < 4110 — (a,b)l[7q,)-
The first term of (5.19) is bounded by

/ H H
C 1+log%||6‘—(a,b)||L2(Ql) S CH 1+logz|6‘|H1(Ql)

by the Poincaré inequality.

H
lal < H?|61]|z~ (0, < CH?\[1+ logg|91|H1(szi>

We can obtain similar bound for |b| and

/ H
||'(U||LOO(QZ,) < CH\/1+ logﬁ|9|H1(Qi). (520)

Using Lemmas 5.1, 5.6 and 5.7 of this section and inequalities (5.16), (5.17), (5.20)
and (5.18) instead of (5.12) and (5.13), we obtain the following bound:

H
a(uo, UO) S Oﬁl(l + lo‘gz)2|9|%l(£21) (521)
Using Lemma 5.8 and inequality (5.21), we can prove that

a(u®,u’) < C’ﬂ(l + log%)Qa(u, u). (5.22)
W

Remark. We can also define a w edge basis function on each edge. These basis func-
tions are not necessary in our proof, however they make the constant in decomposition
smaller. We will compare numerical results with such w edge basis functions with re-
sults without them in section 8. In our experiments, the condition numbers of the
preconditioned system with these additional basis functions are much smaller than
those without.

On each edge of a subdomain, we prescribe the values of a quadratic which vanishes
at the two subdomain vertices of the edge and has a maximum of 1 on the edge. In
addition to the definition of w on the interface, we give values for € in the subdomain
such that 6 = (t - Vw)ty., where t is the unit tangent vector of the edge and ., is
the edge cut-off function. We denote these basis functions by wgk, k=1,2,3.

LEMMA 5.9. The Reissner-Mindlin energy of the edge basis function wgk 1s bounded
by %—’?(1 + log%) where C does not depend on H, h, and §, but depends on the shape
regularity of the elements of the subdomain.

Proof.1 We have the same assumptions as in the proof of Lemma 5.6. w; is defined

by mg(a@ y) where g(x,y) is the second order polynomial of (z,y) chosen so
that 1g(:zcz, y)sis 1 at the midpoint of the edge being considered and vanishes at all
vertices and midpoints of the other edges. g(x,y) is the standard basis function in
P> with the midpoint node. As in Lemma 5.6, we can prove that the square of the
H!-seminorm of this function is bounded by %(1 + log%) using Lemma 5.4 instead
of Lemma 5.5. O

Similarly, we can define 8 edge basis functions related to the normal direction. But
they did not give much improvement in our numerical experiments.
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Values of w component of cog
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F1G. 5.7. 38d plot of the w edge basis function w?
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5.3.2. Local Problems. Let wg = w—w°, 041, = HL—H% and 10,5 = Vwg—04r,.
Then, 1164 = 041, + 11035 = Vwy.
From Lemma 5.8 and inequality (5.15), we know that
m H
10alir 0.) < Cﬁ(l + 1093)%(% u)g,- (5.23)
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If we use the Friedrichs inequality, we obtain
2 m H.yo
10720,y < OF(l +log7)*Hia(u, u)o,. (5.24)

From the equation I1§ = Vw, we have the inequality ||Vw||72 ) < [10l[72(q,)- There-
fore,

m H
Similarly,
i H
||wd||%2(ﬂi) < C%(l + logz)sza(u,u)Qi. (5.26)

Let ; be nonnegative C* functions in R? such that
x; = 0 on Q\£;

N
ijzlonﬁ
j=1

Vx| pee < €671
IV2x;|| L < C5;72.

The construction of x; is standard, cf, e.g., [11].
We define the local components of the Schwarz decomposition as follows: w; :=

I"(xjwq) and Or; := I"(x;0ar + waVx;). Here I is the standard interpolator onto
the piecewise quadratic continuous functions on each element and I”" is the standard
interpolator onto the piecewise linear continuous functions on each element as in
Lemma 5.6. Because > x; = 1 and ) Vy; = 0, the above formulas provide a
decomposition. For the bubble functions, we use the condition Vw = II6.

Given 0; > 0, let Q;5, C € be the set of points that are within a distance ¢ of
o\ 09. Let B(€;) be the union of the subdomains which intersect ;. We need to
use [33, lemma 3.10].

LEMMA 5.10. There exist a constant C such that

H;
||U||%2(Qi,5i) <C8(1+ ?)”11’”%{1((22)

H;
< C8(1+ ?)HuH?p(B(m))'

We know that derivatives of x; are nonzero only in a é-neighborhood of the boundary
of subdomains. We find using (5.23), (5.24), (5.25) and (5.26), that
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102513 0y < VT (X50az + waVx;)l|Zz2 (0,
<V(x;0ar + waVx;)l 720,
< C([10a2 VX572 () + X5 Varll72q,) +
||de2Xj||2L2(Qi) + ||VXijd||%2(Qi))

1
< O(é_izHGdLHQL?(Qi) +[VOarl 2o, +
1 1
g”wdH%%QMi) + 5_2||V“Jd||%2(szi))

1
< 0(5—_2||9d||%2(m) +[VOal[72 (0, +

1 H; 1
@(1 + 5—i)||wd||%11(3(9i)) + @de”?{l(ﬂi))
T H ., H? H
< C% ((1 + logz)2 521 a(u,u)o, + (14 logz)Qa(u,u)Qi

H H H , H
(1+ logﬁ)2(1 + F)Ba(u,u)]_g(ﬂi) + (14 logﬁ)Q(g)za(u’u)Qi)

W H; H
< Cﬁ(l +57) (14 log =) a(u, u)p(a,). (5.27)

For the bubble functions on each element, we have

C
10851 (k) < ﬁ”ijH%?(K)

C
< ﬁ”vwa‘ — 017, x)

O —~
< 5lIVUIM(gwa)) = 1" (x;0az + wa¥Vx;)l1 72 ()

IN

C —
73|IV (Gwa)) = V(xjwa) + V(xjwa) = I"(x0az +waVx;)l72 k)

IN

c —~ C
IV OGwa) = VOGuallZe e + 3511 Vwa = I (¢ 0a) |17z )

ol haVx; — 1 a0 B ey (5.25)
The first term of (5.28) can be bounded by
ClIV2 (xjwa)ll72 )
< CllwaV2x; + 2Vx;Vwa + x; V2 (wa)l |72k
< CllwaV2x;51172(xy + 211V X Vwal|Z2 50y + [1x5 VOal 72 () -

If we add the above bound over the subdomain §2;, we then have
C = 9
ﬁHV(I (xjwa)) — V(ijd)”m(m)

1 1
< 0(5_4||wd||%2(m,5i) + ﬁ“vwd”%?(szmi) + ||V9d||%2(szi))

7 H; H
< CL5 (14 S (1 + log ) au, w) p(a). (5.20)
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The second term of (5.28) is bounded similarly by
c
7zl Vwa — 1"(xj0an)l172x)

C C
73X Vwa = Xi0arl7z () + 7z lIxibaz — 1"(xj0an)l172 (i)

IN

C C
ﬁ”XjedBHQL?(K) +53lIxi0az — 1"(xj0an)l172(x)
< Clbaslin i) + ClIV (x;0ar)|[72 (-
Therefore, using the bound for the linear part of the 6 in (5.29), we have

C m H; H
ﬁ”vawd - Ih(XjedL)”%?(Qi) < Oﬁ(l + ?)3(1 + ZOQW)QG(% u) p(a,)-(5.30)

We can bound the sum of the third term of (5.28) over ; by %(1 + E3a+

lOg%)2CL(’UJ, U)B(Qi)'
In total, we have

N N
> alug,ug)a, < Cm Y 10531,
=0 =0
m2 H; H
< C?(l + ?)3(1 + logg)%(ua u) B(Q,)-

Summing over the subdomains, the decomposition is stable with the bound

(%)20 + 1 41022

CGi=C 5 h

THEOREM 5.11. In case exact solver are employed on all subspaces, the condition
number of the additive Schwarz operator for sufficiently small t is bounded by

COP 1+ 501+ tog )

where C depends on N¢, but is otherwise independent of t, h, H, and §.
5.4. The Case of t=cc.

5.4.1. Coarse Problem. If t=co, the Reissner-Mindlin plate problem is just

the linear elasticity problem. For more details, see [20].

We define basis functions on the interface and then use discrete harmonic extensions
of these boundary values.

For each 6", we define a vertex basis function 67, ~which is linear on each edge and
has the value the 1 at a vertex.

LEMMA 5.12. The square of the a-seminorm of the vertex basis function 9?)% 18
bounded by Cm where C does not depend on H, h, and 0, but depends on the shape
regularity of the elements of the subdomain.

We define a coarse component ug of u by



25

This coarse interpolant reproduces both null space functions of 6 of the a-seminorm.
We have,
2
auo, uo)o, < Cm ||9||L2(Q )

<Cm (1+109 )||9||H1(Q)

<C—(1+ log%)a(u,u)

SE

by using Korn’s inequality, see, e.g., [10], after replacing ||9||§{1(Q¢) by inf,crp |0 —
TH%{l(Qi)'
5.4.2. Local Problems. Let wy = w — w°, 841 = 0 — 9%. We define the local

components as follows; w; := f’:(xjwd) and 07, := I"(x;0a41). Because Y x; = 1 and
>~ Vx; =0, the above formulas provide a decomposition. We find

a(0;,0;)0, < Cinl0;] g,
< Ca|IVI"(xj0a) 1720y
< Crin([10aV X172 (00 + 11X VOal 720,

21
< Cm(5—2||9d||%2(m,5) +1V0al[72(0,))

< Cm(l+ )

5><1+zog SIS

< O
<Cm(l+ 5

by Lemma 5.10. By replacing ||9||%11(Qi) by inf,crp |0 — T||%11(Qi)’ we obtain

=

H
a(0;,0;)a; < C—(1+ 5)(1+109 6N,

=

< c%a + %)(1 +logH) (0,0)0,

The condition number is bounded by C%(l + ) (1 + logih).

If we do not include the coarse basis functions of this section, then the condition
number of the additive operator grows rapidly with the number of subdomains for
large t, like ¢ > 1. When we added them in our numerical experiments, the additive
method was quasi-optimal and scalable for any t, especially for large t. But it does
not improve the condition number of the additive method for small t which are of
more interest. The Reissner-Mindlin problem with large t does not have physical
meaning and there is no strong reason for us to add unnecessary variable w to the
linear elasticity problem. If we were to include these coarse basis functions, we need
to deal with a larger coarse space and it would increase the computation time.

6. Changes of Thickness t or the Lamé constants. It is of interest to con-
sider cases where the thickness and the Lamé parameters change across the domain.
For simplicity, we assume that the thickness and the Lamé constants are piecewise
constant. In this case, we can divide the domain into triangle subdomains such that
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t, i, A are constants on each subdomain. We can see that the proof of previous sec-
tions does not depend on ¢, and A if ¢ and % are bounded from above. Therefore,

we still get the same C’(%)Q(l +log2)2(1+ £) bound even when ¢, ;1 and A change
over the domain.

7. Higher Order Falk-Tu Element. The kth order Falk-Tu elements are de-
fined as follows; see [9], [23]:
On =M + B2 Wy, = Mf,, T, = M.
Here MZO is the space of piecewise kth order polynomials in Hg(Q2), M, the space

a
of piecewise kth order polynomials in H§(€2), ]\44; the space of piecewise kth order
polynomials in H*, and B* the space of piecewise kth order bubble functions. So far,
we have considered the case k = 2. Note that we again choose a discontinuous stress
variable. The discrete problem is:
Find 6, € Oy, w;, € W), such that

a(On, o) + %(th — by, Vv —119) = (g,v) = (f,¢),¢ € On,v € W)

We have an error estimate similar to theorem 3.1. For a proof, see [9, pp213].
THEOREM 7.1. For sufficiently smooth solutions of the continuous problem, we
have for 1 <r <k-—1

10 = Onllo + llw — wrlls < CA™ (011 + [l + tllVlr + [7]r41)

where C is independent of h.

We can decompose O;, into two parts, the polynomial 67, and the bubble function
0. We then have a(0;, +60p,0,+65) > C(a(01,01)+a(0p,05)) because we consider
a finite dimensional space. We know that VW, C I10p and 0, C g and that w = 116
implies that |[w||2, < ||0]|2.. Therefore, we can easily modify our proof for the higher
order Falk-Tu element and obtain the same bound.

8. Numerical Experiments. In the numerical experiments, L is the length of
one side of a square domain, v, E and A are the parameters of elasticity, H is the size
of the coarse mesh, h that of the fine mesh, ¢ that of the overlap, and t the thickness
of the plate. Results are given for the elasticity parameters v = 0.8, £ = 0.1, A =0.1.
Experiments for each parameter set is done about 100 times with random right hand
sides and the average iteration counts and condition numbers are given. We use the
additive method and the conjugate gradient algorithm to solve the linear system of
equations. The stopping criteria for the CG algorithm is % <1077, We calculated
the condition number by constructing a matrix of coefﬁcien‘és given by the conjugate

gradient method as in O’Leary and Widlund, cf. [29].

The condition numbers as a function number of subdomains are given in Tables 8.1
and 8.2. As expected, the condition number grows with the number of subdomains
for large t, but it is bounded for small t.
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TABLE 8.1

Results for L =1, % =4, % =4, and decreasing h = %, increasing the number of subdomains
= % X 4 without the w quadratic coarse basis functions.
n Tter | cond Tter | cond Tter | cond Tter | cond
t 10 0.1 0.001 0.00001

12 || 36.3 70.5 31.1 | 29.8 80.2 | 379.6 || 81.5 | 383.2
24 || 63.5 | 309.9 38.0 | 42.3 || 153.2 | 662.8 || 162.4 | 704.6
36 || 92.2 | 7727 499 | 79.3 || 191.3 | 851.7 || 207.9 | 949.9
48 || 122.0 | 1492.8 || 61.1 | 114.3 || 208.0 | 767.0 || 233.1 | 1015.7
60 || 150.2 | 2500.6 || 73.0 | 171.6 || 208.0 | 746.9 || 251.5 | 972.2
72 || 179.9 | 3823.5 || 87.0 | 236.3 || 215.0 | 714.4 || 265.9 | 1022.1
84 || 208.7 | 5483.0 || 101.7 | 308.0 || 209.9 | 607.7 || 281.0 | 976.6

1000

m —~ —
o ~—
S |
>
c
g |
= —1t=0.1
g 400/ ~t=0.001 1
~=0.00001
300r =
200F ]
100 ]

50 100 150 200 250 300 350 400
Number of subdomains

Fic. 8.1. The condition numbers as a function of the number of subdomains without the w
quadratic coarse basis functions.
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TABLE 8.2
Results for L =1, % =4, % =4, and decreasing h = %, increasing the number of subdomains
= % X 7 with the w quadratic coarse basis functions.

n Iter | cond Iter | cond || Iter | cond || Iter | cond
t 10 0.1 0.001 0.00001

12 || 35.2 70.5 25.1 17.5 || 58.0 | 77.5 || 59.3 | 78.1
24 || 64.0 310.1 37.0 | 35.9 || 66.0 | 69.1 || 68.7 | 72.4
36 || 93.0 772.9 49.0 73.7 || 67.6 | 68.1 || 73.7 | 75.2
48 || 121.9 | 1494.3 || 60.8 | 107.2 || 67.0 | 64.4 || 75.0 | 76.3
60 || 151.2 | 2503.0 || 74.0 | 161.7 || 65.0 | 66.6 || 75.2 | 77.4
72 || 180.1 | 3826.3 || 87.1 | 220.6 || 64.0 | 65.4 || 76.9 | 77.5
84 || 209.7 | 5484.9 || 100.7 | 291.6 || 62.0 | 62.6 || 77.0 | 76.6

100

801 b

oo |

50r b
—1=0.1

—1=0.001
30t —1t=0.00001 |

40"

condition numbers

20 b

50 100 150 200 250 300 350 400
Number of subdomains

F1G. 8.2. The condition numbers as a function of the number of subdomains with the w quadratic
coarse basis functions.
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Results for L =1, &£ =4, &L — 4, and decreasing h = %, increasing the number of subdomains

> h

6

=15 X 13-

% ITter | cond || Tter | cond
t 100 10

12 || 41.6 | 17.50 || 40.0 | 18.13
24 || 45.0 | 20.69 || 43.7 | 18.61
36 || 46.0 | 21.09 || 44.0 | 18.21
48 || 46.0 | 20.07 || 44.9 | 17.96
60 || 46.0 | 18.90 || 44.5 | 18.92
72 || 46.0 | 18.08 || 44.7 | 19.69
84 || 46.0 | 18.38 || 45.0 | 20.24
96 || 46.0 | 18.76 || 45.0 | 20.57

If we add more coarse basis functions for linear elasticity probelm, then we can get
condition numbers that do not increase as the number of subdomains increases for
large t. The results with the increased coarse space for large t are in Table 8.3. These
results do not depend on the number of subdomains.
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Results are for L=1, h =

8.

1

n’

H

without the w quadratic coarse basis functions.

TABLE 8.4
5 = 4, the number of subdomains 3 x 3, and increasing % =

NUMERICAL EXPERIMENTS

% Iter | cond || Iter | cond || Iter | cond || Iter | cond Iter | cond
t 1000 10 0.1 0.001 0.00001
4 38.9 | 69.1 36.2 | 70.5 31.1 | 29.7 || 80.2 | 379.0 || 81.3 | 386.2
8 | 45.5 | 66.3 || 40.7 | 67.2 ][ 32.9 | 28.8 || 80.0 | 284.0 || 80.8 | 299.9
12 [ 45.8 | 64.2 |[ 41.8 | 64.1 || 33.7 | 31.1 || 79.5 | 307.5 || 80.4 | 3374
16 || 46.1 | 64.4 || 425 | 65.1 || 34.3 | 31.8 || 79.2 | 313.9 || 80.0 | 358.0
20 || 46.9 | 62.8 432 | 63.7 || 34.5 | 319 79.0 | 3014 || 81.6 | 361.3
24 || 4741 62.9 || 435 | 64.0 || 34.6 | 33.4 || 79.0 | 288.1 || 89.2 | 354.4
28 || 47.7 | 63.3 436 | 64.4 35.0 | 344 79.2 | 268.8 || 89.6 | 345.3
400
50~
3001 S~ o R
" ~
3 250F |
QO
=
=}
< 200 .
o
= —1=0.1
©
§ 150 —1t=0.001 |
—t=0.00001
100} 1
50f 1
0 Il
10"
H/h

F1c. 8.3. The condition numbers as a function of % without the w quadratic coarse basis
functions.

Results with varying % are given in Tables 8.4 and 8.5 and Figures 8.3 and 8.4.



TABLE 8.5
Results are for L=1, h = %, % =4, the number of subdomains 3 X 3, and increasing % =
with the w quadratic coarse basis functions.
% Tter | cond || Iter | cond || Iter | cond || Tter | cond || Iter | cond
t 1000 10 0.1 0.001 0.00001
4 39.0 | 69.4 || 35.2 | 70.4 || 25.1 | 17.5 || 580 | 78.1 || 59.1 | 79.0
8 || 46.2 | 65.6 || 41.6 | 66.1 || 28.0 | 17.2 || 59.5 | 79.0 || 61.9 | 82.5
12 || 47.0 | 65.5 || 42.6 | 63.9 || 29.4 | 19.0 || 60.0 | 80.4 || 64.2 | 88.0
16 || 47.6 | 64.7 || 43.6 | 64.0 || 30.2 | 20.2 || 59.3 | 83.9 || 64.9 | 90.2
20 || 48.0 | 64.1 || 44.0 | 63.8 || 31.0 | 20.7 || 59.3 | 81.9 || 66.5 | 92.9
24 || 48.1 | 64.2 || 44.4 | 63.7 || 31.0 | 21.1 || 59.6 | 78.1 || 67.3 | 94.2
28 || 48.1 | 64.4 || 44.3 | 63.6 || 31.0 | 21.6 || 60.1 | 74.9 || 67.8 | 94.5
100
901 b
80— — ]
70r b
4
S 60 .
IS
S
S so- .
o
% —1t=0.1
g 40r —t=0.001
30t —1=0.00001 |
200 I ——
101 b
0 |
10"
H/h
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n

3

FiG. 8.4. The condition numbers as a function of % with the w quadratic coarse basis functions.
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TABLE 8.6

Results for h = 7—12, % = 12, and decreasing % =12,6,4,3,2.4,2 without the w quadratic coarse
basis functions.

Iter | cond Iter | cond Iter cond Iter cond
10 0.1 0.001 0.00001
114.8 | 1439.2 || 62.1 | 96.3 || 484.9 | 7153.2 || 542.0 | 7387.8
93.5 564.2 || 51.0 | 56.4 || 210.4 | 1070.9 || 228.9 | 1324.4
73.9 290.6 || 45.0 | 47.1 || 145.3 | 581.9 | 162.1 | 804.3
61.4 162.3 || 40.1 | 41.1 || 116.9 | 438.9 | 132.6 | 620.3
2.4 || 50.9 96.6 36.4 | 36.7 72.8 216.9 || 110.1 | 463.6
2 42.2 59.0 32.7 | 29.8 83.1 293.0 94.6 398.9

w| | | | el

T P //
//// i
/
7 —1=0.1
3 - /
107 — —1t=0.001
_— —t=0.00001

condition numbers

10
H/d

Fic. 8.5. The condition numbers as a function of % without the w quadratic coarse basis
functions.

Results with varying % are given in Tables 8.6 and 8.7 and Figures 8.5 and 8.6. The
condition number depends on %. It grows faster with % when t is small.



Results for h =

basis functions.

1 H
)

TABLE 8.7

3 Tter | cond Iter | cond Tter cond Tter cond
t 10 0.1 0.001 0.00001
12 || 116.2 | 1417.1 || 61.4 | 102.3 || 211.5 | 960.1 || 244.4 | 1033.7
6 94.5 525.2 || 48.0 | 47.7 94.7 | 139.0 || 102.8 | 151.8
4 74.9 287.0 || 41.0 | 38.4 68.9 77.2 79.0 96.4
3 62.4 165.1 36.0 | 32.9 60.0 53.9 67.0 67.5
2.4 51.4 96.7 33.0 | 25.1 53.3 44.0 60.5 57.4
2 42.6 59.2 29.0 | 22.2 48.2 39.8 55.1 50.9
1035
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Fic. 8.6. The condition numbers as a function of % with the w quadratic coarse basis functions.

H/5
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=5. 7, = 12, and decreasing % =12,6,4,3,2.4,2 with the w quadratic coarse
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