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Abstract. The Reissner-Mindlin plate theory models a thin plate with thickness t. The condi-
tion numbers of finite element approximations of this model deteriorate badly as the thickness t of
the plate converges to 0. In this paper, we develop an overlapping domain decomposition method
for the Reissner-Mindlin plate model discretized by the Falk-Tu elements with the convergence rate
which does not deteriorate when t converges to 0. It is shown that the condition number of this
overlapping method is bounded by C(1 + H

δ
)3(1 + log H

h
)2. Here H is the maximum diameter of the

subdomains, δ the size of overlap between subdomains, and h the element size. Numerical examples
are provided to confirm the theory.
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1. Introduction. The Reissner-Mindlin plate theory is developed to describe
the behavior of a thin plate. If we use standard low order polynomial elements to
discretize a Reissner-Mindlin plate, we then can suffer from locking problems when the
plate is thin and therefore the Kirchhoff condition, ∇w = θ, is too severe. For example,
if we use continuous piecewise linear functions to approximate both the displacement
and rotation variables with zero boundary condition, the rotation variables would
be 0. To overcome that, many mixed elements have been developed, see [9, pp.195-
232], [10, chapter 5.6], and [1, 2, 5–7,16–19,21, 22, 24, 26,27, 30, 32].

The Kirchhoff (biharmonic) plate problem is related to the Reissner-Mindlin plate
theory. For the Kirchhoff plate, see [10, chapter 6.5], [9] and [12, chapter 5.9]. These
two models have similar interior solutions but differ significantly in a boundary layer
of a width of order of t. It is known that as t converges to 0, the solution of the
Reissner-Mindlin Plate model converges to the solution of the Kirchhoff Plate model;
see [3] and [4].

There are many studies which develop preconditioners for the Kirchhoff plate prob-
lem, see [13–15, 25, 28]. [25] and [28] can be extended to the Reissner-Mindlin plate
problem for elements which are spectrally equivalent to Kirchhoff plate elements.
For MITC element approximation of the Reissner-Mindlin plate problem, a BDDC
method has been developed, see [8].

The goal of this paper is to develop an overlapping domain decomposition method
for the Reissner-Mindlin plate discretized by the Falk-Tu elements.

In section 2, we present the Reissner-Mindlin plate theory. In Section 3, we intro-
duce the Falk-Tu elements. An overlapping domain decomposition method is intro-
duced in section 4. We prove our bound in section 5 and provide some comments in
sections 6 and 7. We report on some numerical results in section 8.

2. The Continuous Problem. Let the plate occupy the region Pt = Ω ×
(− t

2 ,+
t
2 ), where Ω is a bounded domain of diameter 1 in R

2. We are interested
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2 3. DISCRETIZATION BY THE FALK-TU ELEMENT

in the case when the plate is thin, i.e., t is small. In this problem, we consider
three displacement components ui, i=1,2,3. We use a reduction of dimension for the
z-direction, and assume the following four conditions, cf. [10, chapter 6.5]:

H1. The linearity hypothesis.
H2. The displacement in the z-direction does not depend on the z-coordinate.
H3. The points on the middle surface are deformed only in the z-direction.
H4. The normal stress σ33 vanishes.
Under the above hypotheses, we can write the displacement components as,

ui(x, y, z) = −zθi(x, y), for i=1,2

u3(x, y, z) = w(x, y).

Here w is the transversal displacement and θ = (θ1, θ2) the rotation. If we adopt the
Kirchhoff condition ∇w = θ, this becomes the Kirchhoff Plate model; see [10, chapter
6.5] and [9]. These two models have similar interior solutions but differ significantly
in a boundary layer of a width of order of t. As t converges to 0, the solution of the
Reissner-Mindlin Plate model converges to the solution of the Kirchhoff Plate model;
see [3] and [4].

In the above setting, we solve the Reissner-Mindlin equations of the form

−divCε(θ) − λt−2(∇w − θ) = −f

−div(∇w − θ) = λ−1t2g
(2.1)

where C = A−1, Aτ = (1 + ν)τ/E − νtr(τ)I/E, and I is the 2 by 2 identity matrix.
The related Reissner-Mindlin energy, see [10, chapter 6.6], is

J(θ, w) =
1

2

∫

Ω

Cε(θ) : ε(θ) +
1

2
λt−2

∫

Ω

|∇w − θ|2 −
∫

Ω

gw +

∫

Ω

f · θ. (2.2)

This problem can have a locking problem and we can handle that by using mixed
finite element methods; see [10], [9]. By introducing the shear stress γ = λt−2(∇w−θ),
we obtain the following variational problem, cf. [10, chapter 6.6], [9], [8]:

Find θ ∈ H1
0(Ω), w ∈ H1

0 (Ω), γ ∈ L2(Ω) such that

a(θ, φ) + (γ,∇v − φ) = (g, v) − (f , φ), φ ∈ H1
0(Ω), v ∈ H1

0 (Ω)

(∇w − θ, η) − λ−1t2(γ, η) = 0, η ∈ L2(Ω).
(2.3)

3. Discretization by the Falk-Tu Element. We use the following conforming
elements, i.e., Θh ⊂ H1

0(Ω), Wh ⊂ H1
0 (Ω), and Γh ⊂ L2(Ω). Let Π be the L2 projector

of H1
0(Ω) onto Γh. Then, as in [10], [9], the discrete problem becomes:

Find θh ∈ Θh, wh ∈Wh, γh ∈ Γh such that

a(θh, φ) + (γh,∇v − Πφ) = (g, v) − (f , φ), φ ∈ Θh, v ∈Wh

(∇wh − Πθh, η) − λ−1t2(γh, η) = 0, η ∈ Γh.
(3.1)

In the Falk-Tu element method, see [9], [23], we choose
Θh = M1

1,0 + B4, Wh = M2
1,0, Γh = M1

0

on the triangulation. Here Mk
a,0 is the space of piecewise kth order polynomials in

Ha
0(Ω), Mk

a,0 the space of piecewise kth order polynomials in Ha
0 (Ω), Mk

a the space

of piecewise kth order polynomials in Ha, and Bk the space of piecewise kth order
polynomial bubble functions.
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Fig. 3.1. the Falk-Tu element with k=2.

Because we choose a discontinuous stress variable, we can eliminate it on the element
level as in [20], [8]. Then, the problem becomes :

Find θh ∈ Θh, wh ∈Wh such that

a(θh, φ) +
λ

t2
(∇wh − Πθh,∇v − Πφ) = (g, v) − (f , φ), φ ∈ Θh, v ∈Wh. (3.2)

The discrete Reissner-Mindlin energy

a(θh, θh) +
λ

t2
(∇wh − Πθh,∇wh − Πθh) (3.3)

will be estimated later in the proof.
For natural boundary conditions, the dimension of the null space of this Reissner-

Mindlin energy is 3. The first null element is given by w = 1 and θ = (0, 0), the
second by w = x and θ = (1, 0), and the third by w = y and θ = (0, 1). These null
space functions will play an important role for the subdomain problems defined later.

We have the following error estimate. For a proof, we refer to the lecture notes
edited by Boffi and Gastaldi [9, pp.213-216].

Theorem 3.1. For sufficiently smooth solutions of the continuous problem, we
have

‖θ − θh‖0 + ‖w − wh‖1 ≤ Ch2(‖f‖0 + ‖g‖0) (3.4)

where C is independent of h.

4. The Domain Decomposition Methods.

4.1. Decomposition of the Domain. We decompose the given domain Ω into
a set of shape regular nonoverlapping subdomains {Ωi}N

i=1, see [33], [10], [12]. We
assume, when developing the theory, that the subdomains are triangles in the plane.
H is the maximum of the diameters of the subdomains. We then, decompose each
subdomain into quasi-uniform and shape-regular elements and introduce our finite
element spaces on this triangulation. The nodes of the fine elements should match
across the interface. We extend each subdomain by adding layers of elements and
denote the set of N extended subdomains by {Ω′

i}N
i=1. We denote the size of the

overlap between extended subdomains by δi and assume Hi

δi
, i=1,...,N, is bounded

from below. For more details, see [33, chapters 2 and 3].

4.2. Abstract Schwarz Methods. We consider a finite dimensional space V
on the triangulation. Discretizing equation (3.2) by the finite element method, we
will get a linear system

Au = f (4.1)
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with A symmetric, positive definite and very ill conditioned for small t.
We will consider a family of spaces {Vi, i=0,...,N} and construct extension operators

RT
i : Vi → V ;

The subspace V0 will usually be associated with a coarse problem and the remaining
spaces are defined on the extended subdomains Ω′

i. The Vi, i=1,...,N, are contained
in (H1

0 (Ω′
i))

3. We obtain a Schwarz decomposition

V = RT
0 V0 +

N∑

i=1

RT
i Vi.

We introduce exact local problems on the local spaces Vi such that with Ai =
RiAR

T
i , the Schwarz operators Pi : V → V are defined by RT

i A
−1
i RiA for i =

0, ..., N . With exact solvers, the Pis are projections. We define the additive Schwarz
preconditioner by

A−1
ad :=

N∑

i=0

RT
i A

−1
i Ri

and the additive Schwarz operator by

Pad :=

N∑

i=0

Pi.

We know that a stable decomposition of the space V into Vi implies that the additive
operator has a condition number bounded by (N c + 1)C2

0 where C0 is a parameter
related to the stable decomposition and N c is a constant related to the coloring of
the decomposition {Ω′

i}. For more detail, see [33, chapters 2 and 3]. In numerical
examples reported later, we will use uniform triangles as subdomains and N c will not
be larger than 13. Therefore, what remains is to find a stable decomposition of V into
Vi. We are then able to use the abstract theory of Schwarz methods.

4.3. The Discrete Harmonic Extension. On each nonoverlapping subdo-
main Ωi, we define an extension operator

R̃T
i : Ṽi → V

where Ṽi is a subspace defined on Ωi with natural boundary conditions. R̃T
i is similar

to RT
i but it is defined on Ωi only. We then obtain the linear system

Ãiui = fi with ui ∈ Ṽi

where Ãi = R̃iAR̃T
i .

We can rewrite Ãi with respect to the components of the interface and interior basis
functions of Ãi.

[
Ãi,II Ãi,IΓ

Ãi,ΓI Ãi,ΓΓ

] [
ui,I

ui,Γ

]
=

[
fi,I

fi,Γ

]
.

Given ui,Γ, we can calculate the interior values by solving

Ãi,IIui,I + Ãi,IΓui,Γ = 0. (4.2)
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This is a discrete harmonic function on Ωi, see [33, chapter 4]. When we define
the coarse basis functions, we will define their values on the interface only and then
calculate discrete harmonic extensions to the interior values of subdomains. We define
each coarse basis function in detail in section 5. For the coarse problem, we will also
use an exact solver.

5. The Algorithm and the Results.

5.1. Definition of the Operator C and Bilinear Forms. We will consider
the operator A in more detail and find the relation between a(θ, θ) and H1 norm of
θ. Let,

Aτ :=
1 + ν

E
τ − νtr(τ)

E
I

=
1

E




1 −ν 0
−ν 1 0
0 0 1 + ν







τ11
τ22
τ12


 .

(5.1)

Then C, the inverse of A, is defined by

Cε := A−1ε

=
E

(1 − ν2)




1 ν 0
ν 1 0
0 0 1 − ν







ε11
ε22
ε12




=
E

2(1 + ν)




2
1−ν

2ν
1−ν

0
2ν

1−ν
2

1−ν
0

0 0 2







ε11
ε22
ε12




= µ




2
1−ν

2ν
1−ν

0
2ν

1−ν
2

1−ν
0

0 0 2







ε11
ε22
ε12




(5.2)

where

µ :=
E

2(1 + ν)
. (5.3)

With

ε(θ) :=
1

2

(
2θ1x θ2x + θ1y

θ2x + θ1y 2θ2y

)
, (5.4)

define

a(θ, φ) :=

∫

Ω

(Cε(θ), ε(φ))

=

∫

Ω







2µ
1−ν

θ1x + 2µν
1−ν

θ2y
2µ

1−ν
θ2y + 2µν

1−ν
θ1x

µ(θ2x + θ1y)


 ,




φ1
x

φ2
y

1
2 (φ2

x + φ1
y)







=

∫

Ω

(
2µ

1 − ν
θ1xφ

1
x +

2µν

1 − ν
θ2yφ

1
x +

2µ

1 − ν
θ2yφ

2
y)+

∫

Ω

(
2µν

1 − ν
θ1xφ

2
y + (φ2

x + φ1
y)(θ2x + θ1y)µ).

(5.5)
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Thus,

a(θ, φ)

µ
=

∫

Ω

2(θ1xφ
1
x + θ2yφ

2
y +

1

2
(θ2x + θ1y)(φ2

x + φ1
y)) +

∫

Ω

2ν

1 − ν
(θ1xφ

1
x + θ2yφ

2
y + θ2yφ

1
x + θ1xφ

2
y)

= 2

∫

Ω

ε(θ) : ε(φ) +
2ν

1 − ν

∫

Ω

divθdivφ,

or

a(θ, φ) = 2

∫

Ω

µε(θ) : ε(φ) +
2µν

1 − ν

∫

Ω

divθdivφ

=

∫

Ω

2µε(θ) : ε(φ) + λ

∫

Ω

divθdivφ

where λ :=
2µν

1 − ν
.

(5.6)

The bilinear form a(θ, θ) is that of the standard linear elasticity operator. We can
easily show that a(θ, θ) is bounded by the square of the H1-seminorm of θ if the Lamé
parameters µ and λ are bounded. More precisely, we get the bound

a(θ, θ) ≤ max(2µ, λ)|θ|2H1 . (5.7)

From now on, let m̃ := max(2µ, λ).
We will use the scaled H1 norm for each subdomain:

||u||2H1(Ωi)
= |u|2H1(Ωi)

+
1

H2
i

||u||2L2(Ωi)
. (5.8)

5.2. Discrete Harmonic Extension. The energy of the interior part of u,
which is orthogonal to discrete harmonic functions in a-seminorm, can be bounded by
the sum of the energy of each local component of u. Therefore, it is enough to consider
discrete harmonic functions when establishing the stable decomposition. From now
on, we will assume that u is discrete harmonic in each subdomain.

Because the support of each bubble function is contained in a single element, the
bubble functions are determined by the values of the piecewise linear parts of θ and
w if u is discrete harmonic to minimize the Reissner-Mindlin energy. Therefore, we
can consider the bubble function as a dependent functions in the harmonic extension
function.

Let us consider one element K only and assume that the piecewise linear part of θ
and w are already determined. Let θL be the piecewise linear part of θ. Using the
bubble basis functions θk

B, k=1,2,...6, we can write ∇w − ΠθL =
∑6

k=1 βkθ
k
B with

certain coefficients βk.
Note that the square of the L2-norm of the divergence of θB is positive definite.

Therefore, the two components of the a-seminorm are equivalent over the bubble
function space and a(θB, θB) is equivalent to m̃|θB|2

H1 .

Let us write the bubble function on the element K as θB =
∑6

k=1 αkβkθ
k
B. We can

then choose optimal coefficients αk, k = 1, ..., 6 for the bubble functions to minimize
the Reissner-Mindlin energy of u. We know that the a-seminorm does not depend on
the scaling and the square of the L2-norm of bubble functions is on the order of h2.
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Let β be diagonal matrix with the diagonal entries β1, β2, ..., β6, and let α =
(α1, α2, ..., α6)

t. Let F and G be the matrices for the a-seminorm and the L2-norm
of the bubble functions on a reference element, respectively. Let F̃ = βtFβ, G̃ =
βtGβ, and let 1 be the 6-dimensional column vector with all entries 1. We know
that h21tβtβ1 is equivalent to ||∇w − θL||2L2(K). Then Reissner-Mindlin energy of

(θL + αβθk
B , w) is equivalent to

a(θL, θL) + m̃αtF̃α+
h2

t2
(1− α)tG̃(1 − α).

This is minimized by

α =
h2

t2
K̃−1G̃1 where

K := m̃F +
h2

t2
G and

K̃ := βtKβ

= m̃F̃ +
h2

t2
G̃

and

1− α = m̃K̃−1F̃1.

If we plug this α into the above energy formula, the Reissner-Mindlin energy is equiv-
alent to

a(θL, θL) + m̃
h2

t2
h2

t2
1tG̃K̃−1F̃ K̃−1G̃1 + m̃2 h

2

t2
1tF̃ K̃−1G̃K̃−1F̃1

= a(θL, θL) + m̃
h2

t2
1tβt(

h2

t2
GK−1FK−1G+ m̃FK−1GK−1F )β1.

Because F , G and K are positive definite, so are GK−1FK−1G and FK−1GK−1F .
We can bound the quadratic forms of these two positive definite matrices by each other
in terms of m̃, h and t. We then find that GK−1FK−1G is equivalent to c−2I where

c := m̃+ h2

t2
. Similarly, FK−1GK−1F is equivalent to c−2I.

The Reissner-Mindlin energy is equivalent to

a(θL, θL) + m̃
h2

t2
1tβt(

h2

t2
c−2I + m̃c−2I)β1

= a(θL, θL) + m̃
h2

t2
1tβt(c−1I)β1

= a(θL, θL) + c−1m̃
h2

t2
1tβtβ1

= a(θL, θL) +
m̃

m̃t2 + h2
h21tβtβ1.

Using the equivalence of h21tβtβ1 and ||∇w − θL||2L2(K), the Reissner-Mindlin en-
ergy is equivalent to

a(θL, θL) +
m̃||∇w − θL||2L2(K)

m̃t2 + h2
. (5.9)
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Fig. 5.1. One subdomain and its vertices and edges.

Overall, we can conclude that minimizing the Reissner-Mindlin energy over the
(θL, θB, w) space is equivalent to minimizing the expression of the equation (5.9)
over the (θL, w) space. This is called the stabilized Reissner-Mindlin energy of the
(θL, w) space.

There are two terms: a(θL, θL) and m̃
m̃t2+h2 ||∇w− θL||2L2 in the stabilized Reissner-

Mindlin energy. The a-seminorm increases linearly with m̃ and the ratio between the
two terms is 1

m̃t2+h2 . If t=0, this ratio is 1
h2 and larger than 1. If this ratio is small,

then the problem is close to the linear elasticity problem; this ratio should be large for
Reissner-Mindlin plate problem to be physically reasonable. If t is sufficiently small,
then we can find h̃ such that m̃t2 + h2 = h̃2 and we can consider the case of t> 0 as
being similar to the case of t= 0 with a mesh size h̃.

Therefore, if t is bounded from above, we can consider t as being 0. In interesting
problems for a Reissner-Mindlin plate, t is in this good range and we, therefore assume
that t is 0 from now on.

5.3. The Case of t=0.

5.3.1. The Coarse Problem. We now provide details on the coarse basis func-
tions. We define them on the interface and use their discrete harmonic extensions. We
consider the subdomains Ωi, one by one, to define the coarse basis functions. From
now on, we consider only one of the floating subdomains Ωi with ∂Ωi

⋂
∂Ω = ∅.

For each θi, i=1,2, we define a vertex basis function which vanishes at all interface
nodes except at a subdomain vertex where its value is 1. We denote these vertex basis
functions by θ0i,vk

, i=1,2, k=1,2,3. Because there are two components of θ, we have 6
vertex basis functions for each subdomain.

Lemma 5.1. The Reissner-Mindlin energy of the vertex basis function θ0i,vk
is

bounded by Cm̃ where C does not depend on H, h and δ, but depends on the shape
regularity of the elements.

Proof. We can find a bubble function θB such that the ΠθB + θL = 0 where θL is
a piecewise continuous linear functions with zero values at the interface and interior
nodes except at the subdomain vertex being considered. This θB vanishes except in
the elements which contain the subdomain vertex. The number of such elements are
bounded by the shape regularity. The H1-seminorm of this function is bounded by a
constant. Because ∇w = Πθ, the Reissner-Mindlin energy is equal to the square of
the a-seminorm and we can bound the Reissner-Mindlin energy in terms of the square
of the H1-seminorm.

For the other coarse basis functions, we need to prove several lemmas.

Lemma 5.2. Let ξ1, ξ2, ξ3 be the values of the barycentric functions of the subdo-
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Fig. 5.2. 3d plot of the θ vertex basis function θ0

1,v.

main at (x,y). Let

Υi :=

1
ξ2

i

1
ξ2

1

+ 1
ξ2

2

+ 1
ξ2

3

. (5.10)

Then, the gradient of Υi is bounded by C
r

where r is the minimum distance to the two
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vertices of the edge i. The second order partial derivatives of Υi are bounded by C
r2 .

Proof. Without loss of generality, we prove the lemma for Υ1 only. We use the
Figure 5.1 of the triangle to define the indices of e1, e2, e3, v1, v2, and v3. Let
f := ξ22ξ

2
3 and g := ξ21ξ

2
2 + ξ21ξ

2
3 . Then,

Υ1 =

1
ξ2

1

1
ξ2

1

+ 1
ξ2

2

+ 1
ξ2

3

=
ξ22ξ

2
3

ξ22ξ
2
3 + ξ21ξ

2
2 + ξ21ξ

2
3

=
f

f + g
.

We can easily show that f + g ≥ Cmin(r̃2, r2) where r̃ is the minimum distance
to the other vertex v1 of the triangle which is not on the edge e1. min(r̃, r) is the
minimum distance to the three vertices of the triangle.

For f , we can also show that f ≤ Cr2r̃4.

We calculate the first order partial derivatives of f ,

fx = 2ξ2ξ2,xξ
2
3 + 2ξ3ξ3,xξ

2
2

fy = 2ξ2ξ2,yξ
2
3 + 2ξ3ξ3,yξ

2
2 ,

and find that |fx| ≤ Crr̃3 and |fy| ≤ Crr̃3.

The second order partial derivatives of f are

fxx = 2((ξ2,x)2ξ23 + ξ2,xxξ2ξ
2
3 + 2ξ3,xξ2,xξ3ξ2

+(ξ3,x)2ξ22 + ξ3,xxξ3ξ
2
2 + 2ξ2,xξ3,xξ3ξ2)

fxy = 2(ξ2,yξ2,xξ
2
3 + ξ2ξ2,xyξ

2
3 + 2ξ2,xξ3,yξ2ξ3

+ξ3,yξ3,xξ
2
2 + ξ3,xyξ3ξ

2
2 + 2ξ3,xξ2,yξ3ξ2)

fyy = 2((ξ2,y)2ξ23 + ξ2,yyξ2ξ
2
3 + 2ξ3,yξ2,yξ3ξ2

+(ξ3,y)2ξ22 + ξ3,yyξ3ξ
2
2 + 2ξ2,yξ3,yξ3ξ2),

and we find that |fxx|2 ≤ Cr̃2, |fxy|2 ≤ Cr̃2, and |fyy|2 ≤ Cr̃2. Similarly, we can
calculate the first and second order partial derivatives of g and obtain a bound of
them by taking the maximum of the bounds of the two terms in g. We find that
|g| ≤ Cr2 r̃2, |gx| ≤ Crr̃, |gy| ≤ Crr̃, |gxx|2 ≤ C, |gxy|2 ≤ C, and |gyy|2 ≤ C.

We next calculate the partial derivative of Υ1 with respect to x and find

∂Υ1

∂x
=
fx(f + g) − f(fx + gx)

(f + g)2

=
gfx − fgx

(f + g)2
.
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If we use the bounds just derived, then

|∂Υ1

∂x
| ≤ Cr2r̃2rr̃3 + Cr2 r̃4rr̃

Cmin(r2, r̃2)2

≤ Cr3r̃5max(r−4, r̃−4)

≤ Cmax(r−1 r̃5, r3r̃)

≤ Cmax(r−1, 1)

≤ C

r
.

Similarly, we get |∂Υ1

∂y
| ≤ C

r
.

For the second order derivative of Υ1, we have

∂2Υ1

∂x2
=

(gfxx + gxfx − fxgx − fgxx)(f + g)2

(f + g)4
− 2(f + g)(fx + gx)(gfx − fgx)

(f + g)4

=
(gfxx − fgxx)(f + g) − 2(fx + gx)(gfx − fgx)

(f + g)3
.

This can be bounded by

∣∣∣∣
∂2Υ1

∂x2

∣∣∣∣ ≤ C
(r2 r̃2r̃2 + r2r̃4)(r2 r̃4 + r2r̃2) + (rr̃3 + rr̃)(r2 r̃2rr̃3 + r2r̃4rr̃)

(f + g)3

≤ C
(r2 r̃4)(r2r̃2) + (rr̃)(r3r̃5)

(f + g)3

≤ C
r4r̃6 + r4r̃6

min(r6, r̃6)

≤ Cr4r̃6max(r−6, r̃−6)

≤ Cmax(r−2 r̃6, r4)

≤ Cmax(r−2, 1)

≤ C

r2
.

Similarly, we get |∂2Υ1

∂y2 | ≤ C
r2 .

Also,

∂2Υ1

∂x∂y
=

(gyfx + gfxy − fygx − fgxy)(f + g)2

(f + g)4
− 2(f + g)(fy + gy)(gfx − fgx)

(f + g)4

=
(gyfx + gfxy − fygx − fgxy)(f + g)

(f + g)4
− 2(fy + gy)(gfx − fgx)

(f + g)3
.

This can be bounded by

∣∣∣∣
∂2Υ1

∂x∂y

∣∣∣∣ ≤ C
(r2r̃4)(r2 r̃2) + (rr̃)(r3 r̃5)

(f + g)3

≤ Cr4 r̃6max(r−6, r̃−6)

≤ Cmax(r−2 r̃6, r4)

≤ C

r2
.
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Lemma 5.3. Under the same assumptions as in Lemma 5.2, the gradient of Υi in
(5.10) vanishes on the edges of a triangle.

Proof. In the proof of Lemma 5.2, we have established that

∂Υ1

∂x
=
gfx − fgx

(f + g)2

We have

gfx = (ξ21ξ
2
2 + ξ21ξ

2
3)(2ξ2ξ2,xξ

2
3 + 2ξ3ξ3,xξ

2
2)

= 2ξ21ξ2ξ3(ξ
2
2 + ξ23)(ξ2,xξ3 + ξ3,xξ2).

Therefore, this term vanishes on the edges of a triangle. Similarly,

fgx = ξ22ξ
2
3(2ξ1ξ1,xξ

2
2 + 2ξ2ξ2,xξ

2
1 + 2ξ1ξ1,xξ

2
3 + 2ξ3ξ3,xξ

2
1)

= ξ1ξ
2
2ξ

2
3(2ξ1,xξ

2
2 + 2ξ2ξ2,xξ1 + 2ξ1,xξ

2
3 + 2ξ3ξ3,xξ1)

which also vanishes on the edges.

Lemma 5.4. We define Υi by equation (5.10) as in Lemma 5.2. Let M be a C2

function on the closure of the triangle. For a given edge ei, we assume that M goes
to 0 at least linearly at the two vertices of the edge ei. Then, the gradient of MΥi is
bounded by a constant and the second order partial derivatives of MΥi are bounded by
C
r
, where r is the minimum distance to the two vertices of the edge i. The value of

MΥi is equal to that of M on the edge ei and to 0 on the other edges. The gradient
of MΥi is equal to that of M on the edge ei and to 0 on the other edges.

Proof. Let us consider the edge e1. Let M̃ = MΥ1.

It is easy to see that the value of M̃ is equal to that of M on the edge e1 and to 0
on the other edges from the construction of Υ1.

By Lemma 5.3, on the edges of the triangle,

∂M̃

∂x
= Υ1,xM + Υ1Mx

= Υ1Mx.

Since Υ1 vanishes on e2 and e3 and is equal to 1 on e1, we find that ∇(MΥ1) = ∇M
on the edge e1 and that it vanishes on the other edges.

By Lemma 5.2, we can bound |∂M̃
∂x

| as

∣∣∣∣∣
∂M̃

∂x

∣∣∣∣∣ ≤ |Υ1,xM | + |Υ1Mx|

≤ C

r
r + C

≤ C.

Similarly, we have |∂M̃
∂y

| ≤ C.
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If we use Lemma 5.3 again, we find that
∣∣∣∣∣
∂2M̃

∂x2

∣∣∣∣∣ ≤ |Υ1,xxM | + 2|Υ1,xMx| + |Υ1Mxx|

≤ C

r2
r +

C

r
+ C

≤ C

r
.

Similarly, we have | ∂2M̃
∂x∂y

| ≤ C
r

and |∂2M̃
∂y2 | ≤ C

r
.

Lemma 5.5. For a given vertex vi, let ej, ek be the two edges adjacent to vi. Let
us assume that Mj and Mk are C2 functions on the closure of the triangle and that
they go to 1 at least linearly at vi. We also assume that Mj goes to 0 linearly at
the other vertex of ej and that Mk goes to 0 linearly at the other vertex of ek. Let

M̃ := ΥjMj + ΥkMk. Then, ∇M̃ is bounded by a constant and the second order

partial derivatives of M̃ are bounded by C
r
, where r is the minimum distance to the

vertices of the triangle. The value of M̃ is equal to the value of Mj on the edge ej, to

the value of Mk on ek and vanishes on the third edge. The gradient of M̃ is equal to
the gradient of Mj on the edge ej, to the gradient of Mk on the edge ek and vanishes
on the other edge.

Proof. Without loss of generality, we can assume that j=1, k=2 and i=3. Let us
define a linear function M3 which vanishes on the edge e3 and is equal to 1 at v3.

If we use the fact that 1 = Υ1 + Υ2 + Υ3, we can express M̃ as

M̃ = Υ1M1 + Υ2M2

= Υ1M1 + Υ2M2 −M3 +M3

= Υ1(M1 −M3) + Υ2(M2 −M3) − Υ3M3 +M3.

If we apply Lemma 5.4 to Υ1(M1 −M3), Υ2(M2 −M3) and Υ3M3, and add M3 to
the terms, we then can complete the proof.

We define a displacement vertex basis function w0
vk

by giving the value 1 for w at
one of the subdomain vertices, 0 at the others, and making it linear on the edges of
the subdomain. In addition to the definition of w on the interface, we give values for
θi on the two edges of the subdomain vertex being considered such that θ = 1

ℓj
tψej

where ℓj is the length of the edge, t is the unit tangent vector of an edge adjacent to
our chosen subdomain vertex, and ψej

is the edge cut-off function. The edge cut-off
function is a piecewise linear function defined on the edge and has values 1 on all
nodes except at the two ends of the edge where the cut-off function vanishes. Note
that we make the value 0 to θ at the subdomain vertices for continuity.

Lemma 5.6. The Reissner-Mindlin energy of the vertex basis function w0
vk

is

bounded by Cm̃
H2 (1 + logH

h
) where C does not depend on H, h, and δ, but depends

on the shape regularity of the elements.
Proof. Let us assume that the lengths of three edges of a subdomain are ℓ1, ℓ2, and

ℓ3 and that their relative lengths are bounded; this follows from the shape regularity
of the elements. We first prove the lemma for w0

v1
using notation as in Figure 5.1.

Let us assume that the vertex basis function has the value 1 at the vertex v1, and
that the two edges e2, e3 of that vertex can be expressed by a2x + b2y = c2 and
a3x + b3y = c3 respectively. (a2, b2) is the unit tangent vector of the edge e2 from
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The boundary values of θ and w vanish on the edge e1.

Fig. 5.3. Values of w0
v1

on the interface.

v3 to v1, and (a3, b3) is the unit tangent vector of the edge e3 from v2 to v1 and let
(a′i, b

′
i) be the unit normal vector of the edge ei.

Let again ξ1, ξ2, ξ3 be the values of barycentric functions of the subdomain at (x, y).
Let

wi =

1
ξ2

i

1
ξ2

1

+ 1
ξ2

2

+ 1
ξ2

3

(
ai

ℓi
x+

bi
ℓi
y + ci)

for i=2,3, where ci is chosen so that the equation ai

ℓi
x + bi

ℓi
y + ci = 1 at our chosen

vertex v1. Further, let w = w1 + w2. From Lemma 5.5, we know that w satisfies the
boundary condition prescribed by the definitions of the basis function given above.
We also know that the gradient of w is bounded by C

H
and that the second derivatives

of w are bounded by C
Hr

where r is the minimum distance to the vertices.

Then, define wh = Ĩh(w) and θL = Ih(∇w) on each element of the subdomain except
in the elements next to each vertex where θL is defined by the linear components of θ.

Here Ĩh is the standard second order interpolation operator and Ih is the standard first
order interpolation operator. We can easily find bubble functions from the equation
Πθ = ∇w on each element. Because the scaling does not affect the H1-seminorm
and there are a bounded number of elements next to any vertex because of the shape
regularity, we can bound the a-seminorm of the basis function on the elements next
to the vertices easily as in Lemma 5.1.
For each element K which does not touch a subdomain vertex, we have

|θL|2H1(K) ≤ |∇2w|2H1(K).

Therefore,

|θL|2H1(Ωi)
≤ C

∫ 2π

0

∫ H

ch

1

H2r2
rdrdθ + C

≤ C

H2
(1 + log

H

h
) + C.
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Fig. 5.4. 3d plot of the w vertex basis function w0
v.

For the bubble function θB, we know that

ΠθB = ∇wh − θL = ∇(Ĩhw) − Ih(∇w) = ∇(Ĩhw − w) + (∇w − Ih(∇w)).
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All other boundary values of θ and w of θ0e3
are 0.

Fig. 5.5. Values of θ0
e3

on the interface.

Therefore for each element K, which does not touch a subdomain vertex,

|θB|2H1(K) ≤
C

h2
||θB ||2L2(K)

≤ C

h2
(||∇(Ĩhw − w)||2L2(K) + ||∇w − Ih(∇w)||2L2(K))

≤ C(||∇(Ĩhw − w)||2L∞(K) + ||∇w − Ih(∇w)||2L∞(K))

≤ Ch2||∇2w||2L∞(K)

≤ C
h2

H2r2
.

There are on the order of H2

h2 elements in each subdomin and the number of elements
with a distance r from a vertex is about r

h
. Therefore, to bound |θB|2

H1(Ωi)
, we need

to estimate

C

H
h∑

i=1

1

H2

ih

h

h2

i2h2
= C

H
h∑

i=1

1

H2

h

ih

where r = ih. This sum is bounded by C
H2 (1 + logH

h
).

In total, the square of the H1-seminorm of the function in the proof is bounded by
C

H2 (1 + logH
h

). Because we choose θ and w such that Πθ = ∇w, we can bound the

Reissner-Mindlin energy by Cm̃
H2 (1 + logH

h
).

We can prove similar bounds for w0
v2

and w0
v3

.

We define a rotational edge basis function θ0ek
for each edge ek by prescribing

θ = nψek
where n is the unit normal vector of the edge ek pointing into the right half

plane, and ψek
is the edge cut-off function. We set all the boundary values of w to

zero.
Lemma 5.7. The Reissner-Mindlin energy of the edge basis function θ0ek

is bounded

by Cm̃(1 + logH
h

) where C does not depend on H, h, and δ, but depends on the shape
regularity of the elements of the subdomain.

Proof. We have the same assumptions as in the proof of Lemma 5.6. Consider

wk :=

1
ξ2

k

1
ξ2

1

+ 1
ξ2

2

+ 1
ξ2

3

(a′kx+ b′ky + c′k)

where c′k is chosen so that wk = 0 on the edge ek. As in Lemma 5.6, we can prove that
the square of the H1-seminorm of the function is bounded by C(1 + log(H

h
)) using



5.3 The Case of t=0 17

−1
−0.5

0
0.5

1

0

0.5

1
−0.1

0

0.1

x

Values of ω component of θ0
e

y

−1
−0.5

0
0.5

1

0

0.5

1
−1

0

1

x

Values of θ
1
 component of θ0

e

y

−1
−0.5

0
0.5

1

0

0.5

1
−1

0

1

x

Values of θ
2
 component of θ0

e

y

Fig. 5.6. 3d plot of the θ edge basis function θ0
e .

Lemma 5.4 instead of Lemma 5.5.

In total, we have 9 vertex basis functions and 3 edge basis functions. Therefore, on
average, we have 3 basis functions for each subdomain.
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We now define a coarse interpolant u0 by

u0 =

3∑

i=1

w(vi)w
0
vi

+

2∑

i=1

3∑

j=1

θi(vj)θ
0
i,vj

+

3∑

k=1

∫
ek
θ · n
ℓek

θ0ek
(5.11)

where n is the unit normal vector of the boundary of the subdomain pointing into
the right half plane. We can easily check that this coarse interpolant reproduces all
functions in the null space of the Reissner-Mindlin energy and thus satisfies the null
space property, cf. [31].

From [33, remark 4.13], we know that

||u||2L∞(Ωi)
≤ C(1 + log

H

h
)||u||2H1(Ωi)

, u ∈ H1(Ωi) ∩ V. (5.12)

And it is easy to prove that

||u||2L2(ε) ≤ 2H ||u||2H1(Ωi)

where ε is an edge and that

∫

ε

u · n
ℓ

≤ C

√∫

ε

u2

H2

√
H ≤ C

||u||L2
ε√

H
≤ C

√
2||u||H1(Ωi). (5.13)

Using inequalities (5.12) and (5.13) and Lemmas 5.1, 5.6 and 5.7 of this section to
bound the energy of the coarse interpolant (5.11), we obtain the following bound:

a(u0, u0)Ωi
≤ Cm̃

H2
(1 + log

H

h
)2||w||2H1(Ωi)

+ Cm̃(1 + log
H

h
)2||θ||2H1(Ωi)

.

Using the equation ∇w = Πθ, we can show that

||∇w||2L2

H2
≤ 4||θ||2L2

H2
.

Because u0 reproduce all the null space functions, we can use a Poincaré inequality
by shifting by some null space functions and find that

a(u0, u0)Ωi
≤ Cm̃

H2
(1 + log

H

h
)2||w||2H1(Ωi)

+ Cm̃(1 + log
H

h
)2||θ||2H1(Ωi)

≤ Cm̃(1 + log
H

h
)2|θ|2H1(Ωi)

. (5.14)

Lemma 5.8. Under the condition of Πθ = ∇w, the a-seminorm and the H1-
seminorm are equivalent for θ. This equivalence does not depend on H, h but depends
on the shape regularity of elements and the Lamé constants. In particular, we have
the relation |θ|2

H1(Ωi)
≤ C

µ
a(θ, θ)

Proof. We can prove this lemma on each element of diameter h. Let us consider
one element only and assume that one of its nodes is at (0,0). Then, we can use the
following transformation to the reference element:

w̃(x, y) =
1

h
(w(hx, hy) − w(0, 0)) + w(0, 0)

θ̃(x, y) = θ(hx, hy).
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Then, ∇w̃(x, y) = ∇w(hx, hy) = Πθ(hx, hy) = Πθ̃(x, y) on the reference element.
We can easily see that the a-seminorm and the H1-seminorm are invariant under this
dilation. Therefore, it is enough to prove the lemma on the reference element.

On each element, we have 12 basis functions for θ. Among them are three null
basis functions for a(θ, θ) and two null basis functions for the H1 norm. Two of these
null basis functions are common. The remaining null basis function for a(θ, θ) is
(−y, x) and this is not a valid basis function for this problem because of the condition
∇w = Πθ.

Because we consider a finite dimensional problem and the null space of the two
seminorms are the same, the two seminorms are equivalent and we get the bound
|θ|2

H1(Ωi)
≤ C

µ
a(θ, θ).

Using Lemma 5.8 and inequality (5.14), we can prove that

a(u0, u0) ≤ C
m̃

µ
(1 + log

H

h
)2a(u, u). (5.15)

We note that if the material becomes more incompressible, the decomposition be-
comes less stable.

If ∂Ωi

⋂
∂Ω 6= ∅ with a strictly positive measure, we can define similar basis func-

tions except on ∂Ω. In such subdomain, we can prove a bound of the square of the
a-seminorm by using a Friedrichs inequality.

If ∂Ωi intersects ∂Ω only at one or a few points, we need to modify the proof. Let
us assume that ∂Ωi intersects ∂Ω at (0,0). Let us find ax+by+c such that a =

∫
Ωi
θ1,

b =
∫
Ωi
θ2 and c =

∫
Ωi

(w − ax− by). Because θ1 vanishes at a point, we have that

||θ1||L∞(Ωi) ≤ ||θ1 − a||L∞(Ωi) + |a|
≤ 2||θ1 − a||L∞(Ωi)

≤ C

√
1 + log

H

h
||θ1 − a||H1(Ωi)

≤ C

√
1 + log

H

h
|θ1|H1(Ωi) (5.16)

which is a variation of inequality (5.12). Similarly, we have

||θ2||2L∞(Ωi)
≤ C(1 + log

H

h
)|θ2|2H1(Ωi)

(5.17)

We also have that
∫

ε

θ · n
ℓ

≤ C||θ||L∞(Ωi) ≤ C

√
1 + log

H

h
|θ|H1(Ωi). (5.18)

which is a variation of inequality (5.13).
For w,

||w||L∞(Ωi) ≤ ||w − ax− by − c||L∞(Ωi) + |c| + ||ax+ by||L∞(Ωi)

≤ 2||w − ax− by − c||L∞(Ωi) + (|a| + |b|)H

≤ C

√
1 + log

H

h
||w − ax− by − c||H1(Ωi) + (|a| + |b|)H

≤ C

√
1 + log

H

h
|w − ax− by − c|H1(Ωi) + (|a| + |b|)H. (5.19)
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Using the equation ∇(w − ax− by − c) = Π(θ − (a, b)), we can show that

||∇(w − ax− by − c)||2L2(Ωi)
≤ 4||θ − (a, b)||2L2(Ωi)

.

The first term of (5.19) is bounded by

C

√
1 + log

H

h
||θ − (a, b)||L2(Ωi) ≤ CH

√
1 + log

H

h
|θ|H1(Ωi)

by the Poincaré inequality.

|a| ≤ H2||θ1||L∞(Ωi) ≤ CH2

√
1 + log

H

h
|θ1|H1(Ωi)

We can obtain similar bound for |b| and

||w||L∞(Ωi) ≤ CH

√
1 + log

H

h
|θ|H1(Ωi). (5.20)

Using Lemmas 5.1, 5.6 and 5.7 of this section and inequalities (5.16), (5.17), (5.20)
and (5.18) instead of (5.12) and (5.13), we obtain the following bound:

a(u0, u0) ≤ Cm̃(1 + log
H

h
)2|θ|2H1(Ωi)

. (5.21)

Using Lemma 5.8 and inequality (5.21), we can prove that

a(u0, u0) ≤ C
m̃

µ
(1 + log

H

h
)2a(u, u). (5.22)

Remark. We can also define a w edge basis function on each edge. These basis func-
tions are not necessary in our proof, however they make the constant in decomposition
smaller. We will compare numerical results with such w edge basis functions with re-
sults without them in section 8. In our experiments, the condition numbers of the
preconditioned system with these additional basis functions are much smaller than
those without.

On each edge of a subdomain, we prescribe the values of a quadratic which vanishes
at the two subdomain vertices of the edge and has a maximum of 1 on the edge. In
addition to the definition of w on the interface, we give values for θ in the subdomain
such that θ = (t · ∇w)tψek

where t is the unit tangent vector of the edge and ψek
is

the edge cut-off function. We denote these basis functions by w0
ek

, k=1,2,3.
Lemma 5.9. The Reissner-Mindlin energy of the edge basis function w0

ek
is bounded

by Cm̃
H2 (1 + logH

h
) where C does not depend on H, h, and δ, but depends on the shape

regularity of the elements of the subdomain.
Proof. We have the same assumptions as in the proof of Lemma 5.6. wi is defined

by
1

ξ2
i

1

ξ2
1

+ 1

ξ2
2

+ 1

ξ2
3

g(x, y) where g(x, y) is the second order polynomial of (x, y) chosen so

that g(x, y) is 1 at the midpoint of the edge being considered and vanishes at all
vertices and midpoints of the other edges. g(x, y) is the standard basis function in
P2 with the midpoint node. As in Lemma 5.6, we can prove that the square of the
H1-seminorm of this function is bounded by C

H2 (1 + logH
h

) using Lemma 5.4 instead
of Lemma 5.5.

Similarly, we can define θ edge basis functions related to the normal direction. But
they did not give much improvement in our numerical experiments.
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Fig. 5.7. 3d plot of the w edge basis function w0
e .

5.3.2. Local Problems. Let wd = w−w0, θdL = θL−θ0L and ΠθdB = ∇wd−θdL.
Then, Πθd = θdL + ΠθdB = ∇wd.
From Lemma 5.8 and inequality (5.15), we know that

|θd|2H1(Ωi)
≤ C

m̃

µ2
(1 + log

H

h
)2a(u, u)Ωi

. (5.23)
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If we use the Friedrichs inequality, we obtain

||θd||2L2(Ωi)
≤ C

m̃

µ2
(1 + log

H

h
)2H2

i a(u, u)Ωi
. (5.24)

From the equation Πθ = ∇w, we have the inequality ||∇w||2
L2(Ωi)

≤ ||θ||2
L2(Ωi)

. There-
fore,

||wd||2H1(Ωi)
≤ C

m̃

µ2
(1 + log

H

h
)2H2

i a(u, u)Ωi
. (5.25)

Similarly,

||wd||2L2(Ωi)
≤ C

m̃

µ2
(1 + log

H

h
)2H4

i a(u, u)Ωi
. (5.26)

Let χj be nonnegative C∞ functions in R
2 such that

χj = 0 on Ω\Ωj

N∑

j=1

χj = 1 on Ω

||∇χj ||L∞ ≤ Cδ−1
i

||∇2χj ||L∞ ≤ Cδ−2
i .

The construction of χj is standard, cf, e.g., [11].

We define the local components of the Schwarz decomposition as follows: wj :=

Ĩh(χjwd) and θLj := Ih(χjθdL + wd∇χj). Here Ĩh is the standard interpolator onto
the piecewise quadratic continuous functions on each element and Ih is the standard
interpolator onto the piecewise linear continuous functions on each element as in
Lemma 5.6. Because

∑
χj = 1 and

∑∇χj = 0, the above formulas provide a
decomposition. For the bubble functions, we use the condition ∇w = Πθ.
Given δi > 0, let Ωi,δi

⊂ Ω′
i be the set of points that are within a distance δ of

∂Ω′
i \ ∂Ω. Let B(Ωi) be the union of the subdomains which intersect Ωi. We need to

use [33, lemma 3.10].

Lemma 5.10. There exist a constant C such that

||u||2L2(Ωi,δi
) ≤ Cδ2i (1 +

Hi

δi
)||u||2H1(Ω′

i)

≤ Cδ2i (1 +
Hi

δi
)||u||2H1(B(Ωi))

.

We know that derivatives of χj are nonzero only in a δ-neighborhood of the boundary
of subdomains. We find using (5.23), (5.24), (5.25) and (5.26), that
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|θLj |2H1(Ωi)
≤ ||∇Ih(χjθdL + wd∇χj)||2L2(Ωi)

≤ ||∇(χjθdL + wd∇χj)||2L2(Ωi)

≤ C(||θdL∇χj ||2L2(Ωi)
+ ||χj∇θdL||2L2(Ωi)

+

||wd∇2χj ||2L2(Ωi)
+ ||∇χj∇wd||2L2(Ωi)

)

≤ C(
1

δ2i
||θdL||2L2(Ωi)

+ ||∇θdL||2L2(Ωi)
+

1

δ4i
||wd||2L2(Ωi,δi

) +
1

δ2i
||∇wd||2L2(Ωi)

)

≤ C(
1

δ2i
||θd||2L2(Ωi)

+ ||∇θd||2L2(Ωi)
+

1

δ2i
(1 +

Hi

δi
)||wd||2H1(B(Ωi))

+
1

δ2i
||wd||2H1(Ωi)

)

≤ C
m̃

µ2

(
(1 + log

H

h
)2
H2

i

δ2i
a(u, u)Ωi

+ (1 + log
H

h
)2a(u, u)Ωi

(1 + log
H

h
)2(1 +

H

δ
)3a(u, u)B(Ωi) + (1 + log

H

h
)2(

H

δ
)2a(u, u)Ωi

)

≤ C
m̃

µ2
(1 +

Hi

δi
)3(1 + log

H

h
)2a(u, u)B(Ωi). (5.27)

For the bubble functions on each element, we have

|θBj |2H1(K) ≤
C

h2
||θBj ||2L2(K)

≤ C

h2
||∇wj − θLj||2L2(K)

≤ C

h2
||∇(Ĩh(χjwd)) − Ih(χjθdL + wd∇χj)||2L2(K)

≤ C

h2
||∇(Ĩh(χjwd)) −∇(χjwd) + ∇(χjwd) − Ih(χjθdL + wd∇χj)||2L2(K)

≤ C

h2
||∇(Ĩh(χjwd)) −∇(χjwd)||2L2(K) +

C

h2
||χj∇wd − Ih(χjθdL)||2L2(K)

+
C

h2
||wd∇χj − Ih(wd∇χj)||2L2(K). (5.28)

The first term of (5.28) can be bounded by

C||∇2(χjwd)||2L2(K)

≤ C||wd∇2χj + 2∇χj∇wd + χj∇2(wd)||2L2(K)

≤ C||wd∇2χj ||2L2(K) + 2||∇χj∇wd||2L2(K) + ||χj∇θd||2L2(K).

If we add the above bound over the subdomain Ωi, we then have

C

h2
||∇(Ĩh(χjwd)) − ∇(χjwd)||2L2(Ωi)

≤ C(
1

δ4i
||wd||2L2(Ωi,δi

) +
1

δ2i
||∇wd||2L2(Ωi,δi

) + ||∇θd||2L2(Ωi)
)

≤ C
m̃

µ2
(1 +

Hi

δi
)3(1 + log

H

h
)2a(u, u)B(Ωi). (5.29)
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The second term of (5.28) is bounded similarly by

C

h2
||χj∇wd − Ih(χjθdL)||2L2(K)

≤ C

h2
||χj∇wd − χjθdL||2L2(K) +

C

h2
||χjθdL − Ih(χjθdL)||2L2(K)

≤ C

h2
||χjθdB||2L2(K) +

C

h2
||χjθdL − Ih(χjθdL)||2L2(K)

≤ C|θdB|2H1(K) + C||∇(χjθdL)||2L2(K).

Therefore, using the bound for the linear part of the θ in (5.29), we have

C

h2
||χj∇wd − Ih(χjθdL)||2L2(Ωi)

≤ C
m̃

µ2
(1 +

Hi

δi
)3(1 + log

H

h
)2a(u, u)B(Ωi).(5.30)

We can bound the sum of the third term of (5.28) over Ωi by C
µ

(1 + Hi

δi
)3(1 +

logH
h

)2a(u, u)B(Ωi).
In total, we have

N∑

j=0

a(uj, uj)Ωi
≤ Cm̃

N∑

j=0

|θj |2H1(Ωi)

≤ C
m̃2

µ2
(1 +

Hi

δi
)3(1 + log

H

h
)2a(u, u)B(Ωi).

Summing over the subdomains, the decomposition is stable with the bound

C2
0 ≤ C(

m̃

µ
)2(1 +

H

δ
)3(1 + log

H

h
)2.

Theorem 5.11. In case exact solver are employed on all subspaces, the condition
number of the additive Schwarz operator for sufficiently small t is bounded by

C(
m̃

µ
)2(1 +

H

δ
)3(1 + log

H

h
)2

where C depends on N c, but is otherwise independent of t, h, H, and δ.

5.4. The Case of t=∞.

5.4.1. Coarse Problem. If t=∞, the Reissner-Mindlin plate problem is just
the linear elasticity problem. For more details, see [20].

We define basis functions on the interface and then use discrete harmonic extensions
of these boundary values.

For each θi, we define a vertex basis function θ0i,vk
which is linear on each edge and

has the value the 1 at a vertex.
Lemma 5.12. The square of the a-seminorm of the vertex basis function θ0i,vk

is
bounded by Cm̃ where C does not depend on H, h, and δ, but depends on the shape
regularity of the elements of the subdomain.

We define a coarse component u0 of u by

u0 =

2∑

j=1

3∑

k=1

θj(vk)θ0j,vk
.
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This coarse interpolant reproduces both null space functions of θ of the a-seminorm.
We have,

a(u0, u0)Ωi
≤ Cm̃||θ||2L2(Ωi)

≤ Cm̃(1 + log
H

h
)||θ||2H1(Ωi)

≤ C
m̃

µ
(1 + log

H

h
)a(u, u)

by using Korn’s inequality, see, e.g., [10], after replacing ||θ||2
H1(Ωi)

by infr∈RB ||θ −
r||2H1(Ωi)

.

5.4.2. Local Problems. Let wd = w − w0, θdL = θL − θ0L. We define the local

components as follows; wj := Ĩh(χjwd) and θLj := Ih(χjθdL). Because
∑
χj = 1 and∑∇χj = 0, the above formulas provide a decomposition. We find

a(θj , θj)Ωi
≤ Cm̃|θj |2H1(Ωi)

≤ Cm̃||∇Ih(χjθd)||2L2(Ωi)

≤ Cm̃(||θd∇χj ||2L2(Ωi)
+ ||χj∇θd||2L2(Ωi)

≤ Cm̃(
1

δ2
||θd||2L2(Ωi,δ)

+ ||∇θd||2L2(Ωi)
)

≤ Cm̃(1 +
H

δ
)||θd||2Ωi

≤ Cm̃(1 +
H

δ
)(1 + log

H

h
)||θ||2Ωi

by Lemma 5.10. By replacing ||θ||2H1(Ωi)
by infr∈RB ||θ − r||2H1(Ωi)

, we obtain

a(θj , θj)Ωi
≤ C

m̃

µ
(1 +

H

δ
)(1 + log

H

h
)||θ||2Ωi

≤ C
m̃

µ
(1 +

H

δ
)(1 + log

H

h
)a(θ, θ)Ωi

.

The condition number is bounded by C m̃
µ

(1 + H
δ
)(1 + logH

h
).

If we do not include the coarse basis functions of this section, then the condition
number of the additive operator grows rapidly with the number of subdomains for
large t, like t > 1. When we added them in our numerical experiments, the additive
method was quasi-optimal and scalable for any t, especially for large t. But it does
not improve the condition number of the additive method for small t which are of
more interest. The Reissner-Mindlin problem with large t does not have physical
meaning and there is no strong reason for us to add unnecessary variable w to the
linear elasticity problem. If we were to include these coarse basis functions, we need
to deal with a larger coarse space and it would increase the computation time.

6. Changes of Thickness t or the Lamé constants. It is of interest to con-
sider cases where the thickness and the Lamé parameters change across the domain.
For simplicity, we assume that the thickness and the Lamé constants are piecewise
constant. In this case, we can divide the domain into triangle subdomains such that
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t, µ, λ are constants on each subdomain. We can see that the proof of previous sec-
tions does not depend on t, µ and λ if t and λ

µ
are bounded from above. Therefore,

we still get the same C( m̃
µ

)2(1 + logH
h

)2(1 + H
δ

)3 bound even when t, µ and λ change
over the domain.

7. Higher Order Falk-Tu Element. The kth order Falk-Tu elements are de-
fined as follows; see [9], [23]:

Θh = Mk−1
1,0 + Bk+2, Wh = Mk

1,0, Γh = Mk−1
0 .

Here Mk
a,0 is the space of piecewise kth order polynomials in Ha

0(Ω), Mk
a,0 the space

of piecewise kth order polynomials in Ha
0 (Ω), Mk

a the space of piecewise kth order
polynomials in Ha, and Bk the space of piecewise kth order bubble functions. So far,
we have considered the case k = 2. Note that we again choose a discontinuous stress
variable. The discrete problem is:
Find θh ∈ Θh, wh ∈Wh such that

a(θh, φ) +
λ

t2
(∇wh − Πθh,∇v − Πφ) = (g, v) − (f , φ),φ ∈ Θh, v ∈Wh

We have an error estimate similar to theorem 3.1. For a proof, see [9, pp213].
Theorem 7.1. For sufficiently smooth solutions of the continuous problem, we

have for 1 ≤ r ≤ k − 1

‖θ − θh‖0 + ‖w − wh‖1 ≤ Chr+1(||θ||r+1 + ||w||r+2 + t||γ||r + ||γ||r+1)

where C is independent of h.
We can decompose Θh into two parts, the polynomial θL and the bubble function

θB. We then have a(θL +θB, θL +θB) ≥ C(a(θL, θL)+a(θB, θB)) because we consider
a finite dimensional space. We know that ∇Wh ⊂ ΠθB and θL ⊂ θB and that w = Πθ
implies that ||w||2

L2 ≤ ||θ||2
L2 . Therefore, we can easily modify our proof for the higher

order Falk-Tu element and obtain the same bound.

8. Numerical Experiments. In the numerical experiments, L is the length of
one side of a square domain, ν,E and λ are the parameters of elasticity, H is the size
of the coarse mesh, h that of the fine mesh, δ that of the overlap, and t the thickness
of the plate. Results are given for the elasticity parameters ν = 0.8, E = 0.1, λ = 0.1.
Experiments for each parameter set is done about 100 times with random right hand
sides and the average iteration counts and condition numbers are given. We use the
additive method and the conjugate gradient algorithm to solve the linear system of

equations. The stopping criteria for the CG algorithm is
||rn||l2
||r0||l2

≤ 10−7. We calculated

the condition number by constructing a matrix of coefficients given by the conjugate
gradient method as in O’Leary and Widlund, cf. [29].

The condition numbers as a function number of subdomains are given in Tables 8.1
and 8.2. As expected, the condition number grows with the number of subdomains
for large t, but it is bounded for small t.
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Table 8.1

Results for L = 1, H
h

= 4, H
δ

= 4, and decreasing h = 1

n
, increasing the number of subdomains

= n
4
×

n
4

without the w quadratic coarse basis functions.

n Iter cond Iter cond Iter cond Iter cond
t 10 0.1 0.001 0.00001
12 36.3 70.5 31.1 29.8 80.2 379.6 81.5 383.2
24 63.5 309.9 38.0 42.3 153.2 662.8 162.4 704.6
36 92.2 772.7 49.9 79.3 191.3 851.7 207.9 949.9
48 122.0 1492.8 61.1 114.3 208.0 767.0 233.1 1015.7
60 150.2 2500.6 73.0 171.6 208.0 746.9 251.5 972.2
72 179.9 3823.5 87.0 236.3 215.0 714.4 265.9 1022.1
84 208.7 5483.0 101.7 308.0 209.9 607.7 281.0 976.6
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Fig. 8.1. The condition numbers as a function of the number of subdomains without the w

quadratic coarse basis functions.
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Table 8.2

Results for L = 1, H
h

= 4, H
δ

= 4, and decreasing h = 1

n
, increasing the number of subdomains

= n
4
×

n
4

with the w quadratic coarse basis functions.

n Iter cond Iter cond Iter cond Iter cond
t 10 0.1 0.001 0.00001
12 35.2 70.5 25.1 17.5 58.0 77.5 59.3 78.1
24 64.0 310.1 37.0 35.9 66.0 69.1 68.7 72.4
36 93.0 772.9 49.0 73.7 67.6 68.1 73.7 75.2
48 121.9 1494.3 60.8 107.2 67.0 64.4 75.0 76.3
60 151.2 2503.0 74.0 161.7 65.0 66.6 75.2 77.4
72 180.1 3826.3 87.1 220.6 64.0 65.4 76.9 77.5
84 209.7 5484.9 100.7 291.6 62.0 62.6 77.0 76.6
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Fig. 8.2. The condition numbers as a function of the number of subdomains with the w quadratic
coarse basis functions.
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Table 8.3

Results for L = 1, H
h

= 4, H
δ

= 4, and decreasing h = 1

n
, increasing the number of subdomains

= n
12
×

n
12

.

H
h

Iter cond Iter cond
t 100 10
12 41.6 17.50 40.0 18.13
24 45.0 20.69 43.7 18.61
36 46.0 21.09 44.0 18.21
48 46.0 20.07 44.9 17.96
60 46.0 18.90 44.5 18.92
72 46.0 18.08 44.7 19.69
84 46.0 18.38 45.0 20.24
96 46.0 18.76 45.0 20.57

If we add more coarse basis functions for linear elasticity probelm, then we can get
condition numbers that do not increase as the number of subdomains increases for
large t. The results with the increased coarse space for large t are in Table 8.3. These
results do not depend on the number of subdomains.
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Table 8.4

Results are for L = 1, h = 1

n
, H

δ
= 4, the number of subdomains 3× 3, and increasing H

h
= n

3

without the w quadratic coarse basis functions.

H
h

Iter cond Iter cond Iter cond Iter cond Iter cond
t 1000 10 0.1 0.001 0.00001
4 38.9 69.1 36.2 70.5 31.1 29.7 80.2 379.0 81.3 386.2
8 45.5 66.3 40.7 67.2 32.9 28.8 80.0 284.0 80.8 299.9
12 45.8 64.2 41.8 64.1 33.7 31.1 79.5 307.5 80.4 337.4
16 46.1 64.4 42.5 65.1 34.3 31.8 79.2 313.9 80.0 358.0
20 46.9 62.8 43.2 63.7 34.5 31.9 79.0 301.4 81.6 361.3
24 47.4 62.9 43.5 64.0 34.6 33.4 79.0 288.1 89.2 354.4
28 47.7 63.3 43.6 64.4 35.0 34.4 79.2 268.8 89.6 345.3
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Fig. 8.3. The condition numbers as a function of H
h

without the w quadratic coarse basis
functions.

Results with varying H
h

are given in Tables 8.4 and 8.5 and Figures 8.3 and 8.4.
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Table 8.5

Results are for L = 1, h = 1

n
, H

δ
= 4, the number of subdomains 3× 3, and increasing H

h
= n

3

with the w quadratic coarse basis functions.

H
h

Iter cond Iter cond Iter cond Iter cond Iter cond
t 1000 10 0.1 0.001 0.00001
4 39.0 69.4 35.2 70.4 25.1 17.5 58.0 78.1 59.1 79.0
8 46.2 65.6 41.6 66.1 28.0 17.2 59.5 79.0 61.9 82.5
12 47.0 65.5 42.6 63.9 29.4 19.0 60.0 80.4 64.2 88.0
16 47.6 64.7 43.6 64.0 30.2 20.2 59.3 83.9 64.9 90.2
20 48.0 64.1 44.0 63.8 31.0 20.7 59.3 81.9 66.5 92.9
24 48.1 64.2 44.4 63.7 31.0 21.1 59.6 78.1 67.3 94.2
28 48.1 64.4 44.3 63.6 31.0 21.6 60.1 74.9 67.8 94.5
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Fig. 8.4. The condition numbers as a function of H
h

with the w quadratic coarse basis functions.
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Table 8.6

Results for h = 1

72
, H

h
= 12, and decreasing H

δ
=12,6,4,3,2.4,2 without the w quadratic coarse

basis functions.

H
δ

Iter cond Iter cond Iter cond Iter cond
t 10 0.1 0.001 0.00001
12 114.8 1439.2 62.1 96.3 484.9 7153.2 542.0 7387.8
6 93.5 564.2 51.0 56.4 210.4 1070.9 228.9 1324.4
4 73.9 290.6 45.0 47.1 145.3 581.9 162.1 804.3
3 61.4 162.3 40.1 41.1 116.9 438.9 132.6 620.3

2.4 50.9 96.6 36.4 36.7 72.8 216.9 110.1 463.6
2 42.2 59.0 32.7 29.8 83.1 293.0 94.6 398.9
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Fig. 8.5. The condition numbers as a function of H
δ

without the w quadratic coarse basis
functions.

Results with varying H
δ

are given in Tables 8.6 and 8.7 and Figures 8.5 and 8.6. The

condition number depends on H
δ

. It grows faster with H
δ

when t is small.
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Table 8.7

Results for h = 1

72
, H

h
= 12, and decreasing H

δ
=12,6,4,3,2.4,2 with the w quadratic coarse

basis functions.

H
δ

Iter cond Iter cond Iter cond Iter cond
t 10 0.1 0.001 0.00001
12 116.2 1417.1 61.4 102.3 211.5 960.1 244.4 1033.7
6 94.5 525.2 48.0 47.7 94.7 139.0 102.8 151.8
4 74.9 287.0 41.0 38.4 68.9 77.2 79.0 96.4
3 62.4 165.1 36.0 32.9 60.0 53.9 67.0 67.5

2.4 51.4 96.7 33.0 25.1 53.3 44.0 60.5 57.4
2 42.6 59.2 29.0 22.2 48.2 39.8 55.1 50.9
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Fig. 8.6. The condition numbers as a function of H
δ

with the w quadratic coarse basis functions.
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