A Universal Calculus for
Stream Processing Languages (Extended)

Robert Soulé!, Martin Hirzel?, Robert Grimm', Bugra Gedik?,
Henrique Andrade?, Vibhore Kumar?, and Kun-Lung Wu?

! New York University. soule,rgrimm@cs.nyu.edu
2 IBM Research. hirzel,bgedik,hcma,vibhorek,klwu@us.ibm.com

Abstract. Stream processing applications such as algorithmic trading, MPEG processing,
and web content analysis are ubiquitous and essential to business and entertainment. Language
designers have developed numerous domain-specific languages that are both tailored to the
needs of their applications, and optimized for performance on their particular target platforms.
Unfortunately, the goals of generality and performance are frequently at odds, and prior work
on the formal semantics of stream processing languages does not capture the details necessary
for reasoning about implementations. This paper presents Brooklet, a core calculus for stream
processing that allows us to reason about how to map languages to platforms and how to
optimize stream programs. We translate from three representative languages, CQL, Streamlt,
and Sawzall, to Brooklet, and show that the translations are correct. We formalize three popular
and vital optimizations, data-parallel computation, operator fusion, and operator re-ordering,
and show under which conditions they are correct. Language designers can use Brooklet to
specify exactly how new features or languages behave. Language implementors can use Brooklet
to show exactly under which circumstances new optimizations are correct. In ongoing work,
we are developing an intermediate language for streaming that is based on Brooklet. We are
implementing our intermediate language on System S, IBM’s high-performance streaming
middleware.

1 Introduction

Stream processing applications are everywhere. In finance, algorithmic trading programs federate
live data feeds from independent exchanges to execute trade orders. Media players decode fixed-rate,
MPEG-formatted byte streams, when viewers watch video streamed over the internet and digital
television networks, or from DVD and Blu-ray discs. Search engines use large compute clusters to
analyze snapshots of the web streamed from disk to construct the indices that enable fast information
retrieval.

Informally, all such streaming applications are similar in that they require moving large amounts
of data through several computational steps. These three examples illustrate the diversity of re-
quirements for stream processing with respect to, among other things, program topology, data rate,
and distributed execution. This diversity has led language designers to develop numerous domain-
specific languages [1,3,4,9, 18,20, 23, 25, 27] that are both tailored to the needs of their particular
applications, and optimized for performance on their particular target runtimes. Three prominent
examples are CQL, Streamlt, and Sawzall:

— CQL [1] and other StreamSQL dialects [23] are popularly used for algorithmic trading. CQL
extends SQL’s well studied relational operators with a notion of windows over infinite streams
of data, and relies on classic query optimizations [1], such as moving a selection before a join.

2 Robert Soulé et al.

— Streamlt [25], a synchronous data-flow language with stream abstractions, has been used for
MPEG encoding and decoding [6]. The StreamIt compiler enforces static data transfer rates be-
tween user-defined operators with fixed topologies, and improves performance through operator
fusion, fission, and pipelining [25].

— Sawzall [20], a scripting language for Google’s MapReduce [5] platform, is used for web-related
analysis. The MapReduce framework streams data items through multiple copies of user-defined
map operators and then aggregates the results through reduce operators on a cluster of work-
stations. We view Sawzall as a streaming language in the broader sense, and address it in this
paper to showcase the generality of our work.

These three examples by no means comprise an exhaustive list of stream programming languages,
but they are representative of the design space. In each case, language designers made difficult
choices when considering the trade-offs between performance, usability, and generality. For example,
Streamlt sacrifices generality for performance by restricting data transfer to fixed rates.

When considering these trade-offs, it is essential that language designers understand both how
a language maps to its target platform, and how to optimize stream programs with respect to that
mapping. Unfortunately, while streaming systems are well studied [2, 14-16], prior work on the formal
semantics of stream processing languages does not capture the details necessary for reasoning about
implementation techniques. This paper presents Brooklet, a core calculus for stream programming
languages that universally models any streaming language, and facilitates reasoning about program
implementation®.

The challenge in defining a calculus is deciding what parts of a language constitute the core con-
cepts that need to be modeled in the formal semantics, and what details can be abstracted away. The
two goals of understanding how a language maps to a platform, and how to optimize stream programs
with respect to that mapping, dictate the requirements. First, to understand how a language maps to
an execution environment, we need to understand how the state embodied in its operational building
blocks is implemented on a distributed platform. Therefore, Brooklet makes state explicit as a core
concept. Second, to understand how to optimize stream programs, we need to understand how to
enable language-level determinism on top of the inherent implementation-level non-determinism of a
distributed system. Therefore, Brooklet exposes non-determinism as another core concept. Exposing
non-determinism makes the machinery for achieving global determinism explicit, such as when im-
plementing synchronous data flow. On the other hand, modeling local deterministic computations is
well-understood, so our semantics treat local computations as opaque functions. Since our semantics
are small-step, this abstraction loses none of the fine-grained interleaving effects of the distributed
computation.

In this paper we make the following contributions:

— We define a core calculus for stream processing that is universal, and facilitates reasoning about
program implementation by modeling state and non-determinism as core concepts.

— We translate CQL, Streamlt, and Sawzall to Brooklet, demonstrating the comprehensiveness of
our calculus. This translation also defines the first formal semantics for Sawzall.

— We use our calculus to show the conditions that enable three vital optimizations data-parallel
computation, operator fusion, and operator re-ordering.

3 Brooklet is so named because it is the essence of a stream, and is unrelated to the Brook language [3].

A Universal Calculus for Stream Processing Languages (Extended) 3

This sets a foundation for an implementation of Brooklet, which can serve as a common intermediate
language for stream processing with a rigorous formal semantics. We are in the process of exploring
this implementation on System S [9], IBM’s high-performance streaming middleware.

2 Notation

Throughout the paper, an over-bar, as in g, denotes a finite sequence q1, .. ., ¢,, and the i-th element
in that sequence is written ¢;, where 1 < ¢ < n. The lower-case letter b is reserved for lists, and
e is an empty list. A comma indicates cons or append, depending on the context; for example d, b
is a list consed from the first item d and the remaining items b. A bag is a set with duplicates.
The notation {e : condition} denotes a bag comprehension: it specifies the bag of all e’s where the
condition is true. The symbol () stands for both an empty set and an empty bag. If E is a store, then
the substitution [v +— d|E denotes the store that maps name v to value d and is otherwise identical
to E. Angle brackets identify a tuple. For example, (o, 7) is a tuple that contains the elements o
and 7. In inference rules, an expression of the form d,b = b’ performs pattern matching; it succeeds
if the list &’ is non-empty, in which case it binds d to the first element of ¥’ and b to the remainder
of b'. Pattern-matching also works on other meta-syntax, such as tuple construction. An underscore
character _ indicates a wildcard, and matches anything. Semantics brackets such as [P,]2 indicate
translation. The subscripts . s,. stand for Brooklet, CQL, Streamlt, and Sawzall, respectively.

3 Brooklet

A stream processing language is a language that hides the mechanics of stream processing; it notably
has built-in support for moving data through computations and for composing the computations
with each other. Brooklet is a core calculus for such stream processing languages. It is designed
to model any streaming language, and to facilitate reasoning about language implementation. To
achieve these goals, Brooklet models state and non-determinism as core concepts, and abstracts away
local deterministic computations.

Brooklet syntax: Brooklet semantics: F, - (V,Q) — (V', Q")

P, ::= out in op Brooklet program d,b=Q(q:)

out ::= output q ; Output declaration op = (_,_) «— f(q,v);

in = input 7 ; Input declaration (5/78') = F(f)(d,i, V(D))

op = <dw> — [(g7 >C;2 Z”e”}ﬁor V' = updateV (op, V,d)

q =1 ueue identifier " — undat 3

v n=¢$id Variable identifier @' = updateQ(op, qu“/) (E-FIREQUEUE)
f o u=id Function identifier o (V,Q) —(V', Q)

Brooklet example: IBM market maker. op=(_,0) «— f(_,); (E-UPDATEV)
output result; updateV (op,V,d) = [0 — d]V

input bids, asks; = .

(ibmBids) «— SelectIBM(bids); op *d(qé)'!_Q{(‘)")’

(ibmAsks) <— SelectIBM(asks); Q,f’_ f _'_> be]Q

($1lastAsk) <— Window(ibmAsks) 0" = e re é()50

(ibmSales) <— SaleJoin(ibmBids,$lastAsk); = Vitq: 4 hl i) ZN (E-UPDATEQ)
(result,$cnt) <— Count(ibmSales,$cnt); updateQ(op, Q, qs,b) = Q

Fig. 1. Brooklet syntax and semantics.

4 Robert Soulé et al.

3.1 Brooklet Program Example: IBM Market Maker

As an example of a streaming program, we consider a hypothetical application that trades IBM
stock. Data arrives on two input streams, bids(symbol,price) and asks(symbol,price), and leaves
on the result(cnt,symbol,price) output stream. Since the application is only interested in trading
IBM stock, it filters out all other stock symbols from the input. The application then matches bid
and ask prices from the filtered streams to make trades. To keep the example simple, we assume
that each sale is for exactly one share. The Brooklet program in the bottom left corner of Fig. 1
produces a stream of trades of IBM stock, along with a count of the number of trades.

3.2 Brooklet Syntax

A Brooklet program defines a directed, possibly cyclic, graph of operators containing pure functions
connected by FIFO queues. It uses variables to explicitly thread state through operators. Data items
on a queue model network packets in transit. Data items in variables model stored state; since data
items may be lists, a variable may store arbitrary amounts of historical data. The following line from
the market maker application defines an operator:

(ibmSales) <— SaleJoin(ibmBids, $lastAsk);

The operator reads data from input queue ibmBids and variable $lastAsk. It passes that data as
parameters to the pure function SaleJoin, and writes the result to the output queue ibmSales.
Brooklet does not define the semantics of SaleJoin. Modeling local deterministic computations is
well-understood [17, 19], so Brooklet abstracts them away by encapsulating them in opaque functions.
On the other hand, a Brooklet program does define explicit uses of state. In the example, the following
line defines a window over the stream ibmAsks:

($lastAsk) <— Window(ibmAsks);

The window contains a single tuple corresponding to the most recent ask for an IBM stock, and the
tuple is stored in the variable $lastAsk. Both the Window and SaleJoin operators access $lastAsk.

The Window operator writes data to $lastAsk, but does not use the data stored in the variable in
its internal computations. Operators that incrementally update state must both read and write the
same variable, such as in the Count operator:

(result, $cnt) <— Count(ibmSales, $cnt);

Queues that appear only as operator input, such as bids and asks, are program inputs, and queues
that appear only as operator output, such as result, are program outputs. Brooklet’s syntax uses
the keywords input and output to declare a program’s input and output queues. We say that a
queue is defined if it is an operator output or a program input. We say that a queue is used if it
is an operator input or a program output. Variables may be defined and used in several clauses,
since they are intended to thread state through a streaming application. In contrast, each queue
must be defined once and used once. This restriction facilitates using our semantics for proofs and
optimizations. The complete Brooklet grammar appears in Fig. 1.

3.3 Brooklet Semantics

A program operates on data items from a domain D, where a data item is a general term for anything
that can be stored in queues or variables, including tuples, bags of tuples, lists, or entire relations
from persistent storage. Queue contents are represented by lists of data items. We assume that the
transport network is lossless and order-preserving but may have arbitrary delays, so queues support
only push-to-back and pop-from-front operations.

A Universal Calculus for Stream Processing Languages (Extended) 5

3.3.1 Brooklet Execution Configuration. The function environment Fj maps function names
to function implementations. This environment allows us to treat operator functions as opaque.
For example, Fj(SelectIBM) would return a function that filters out data items whose stock symbol
differs from IBM.

At any given time during program execution, the configuration of the Brooklet program is defined
as a pair (V, @), where V is a store that maps variable names to data items (in the market maker
example, $cnt is initialized to zero and $lastAsk is initialized to the tuple (‘IBM’, 00)), and @ is a
store that maps queue names to lists of data items (initially, all queues except the input queues are
empty).

3.3.2 Brooklet Execution Semantics. Computation proceeds in small steps. Each step fires
Rule E-FIREQUEUE from Fig. 1. To explain this rule, we illustrate each line rule one by one, starting
with the following intermediate configuration of the market maker example:

V= [$1astAsk — (‘IBM’, 119), $cnt — 0]

bids+— e, ibmBids — ((‘IBM’, 119), (IBM’, 124)),
Q= asks+— o ibmAsks+— e,
ibmSales+— o, resultr— e

d,b = Q(g;) : Non-deterministically select a firing queue ¢;. For a queue to be eligible as a firing
queue, it must satisfy two conditions: it must be non-empty (because we are binding d,b to its
head and tail), and it must appear as an input to some operator (because we are executing that
operator’s firing function). This step can select any queue satisfying these two conditions.

E.g., gi = ibmBids, d = (‘IBM’,119), b = ((‘IBM’, 124)).

op = (_,_) « f(q,v); : Because of the single-use restriction, ¢; uniquely identifies an operator.
E.g., op = (ibmSales) «— SaleJoin(ibmBids, $lastAsk);.

(4 ,d) = Fy(f)(d,i,V(¥)) : Use the function name to look up the corresponding function from the
environment. The function parameters are the data item popped from g;; the index ¢ relative to
the operator’s input list; and the current values of the variables in the operator’s input list. For
each output queue, the function returns a list b; of data items to append, and for each output
variable, the function returns a single data item d; to store.

Eg, b = (((‘IBM’, 119, 119>)), d =,
d= (‘IBM’,119), i = 1, V(7) = (‘IBM’,119).

V' = updateV (op, V,a/) : Update the variables using the output d.
E.g., in this example, d = e, 50 V' = V.

Q' = updateQ(op, Q, qi, 5/) : Update the queues: remove the popped data item from the firing queue,
and for each output queue, push the corresponding list of output data items. The example has
only one output queue and datum.

bids— e, ibmBids — ((‘IBM’7 124))7
Eg., Q = asksi— e, ibmAsks — e,
ibmSales — ((‘IBM77 119, 119)), result —e

3.4 Brooklet Execution Function

We denote a program’s input (V, Q) as I, and an output (V’, Q') as Op. Given a function environment
Fy, program P,, and input I, the function —} (Fy, Py, I;) yields the set of all final outputs. An

6 Robert Soulé et al.

execution yields a final output when no queue is eligible to fire. Due to non-determinism, the set
may have more than one element. One possible output Oy of our running example is:

V= [$lastAsk — (‘IBM’, 119), $cnt — 1]
bids+— e, asks+— e ibmSales— e,
Q= ibmBids+— e, ibmAsks+— e, resulti— ((1, ‘IBM, 119))

The example illustrates the finite case. But in some application domains, streams are conceptually
infinite. To use our semantics in that case, we use a theoretical result from prior work: if a stream
program is computable, then one can generalize from all finite prefixes of an infinite stream to the
infinite case [11]. If —} yields the same result for all finite inputs to two programs, then we consider
these two programs equivalent even on infinite inputs.

3.5 Brooklet Summary

Brooklet is a core calculus for stream processing. We designed it to universally model any streaming
language, and to facilitate reasoning about program implementation. Brooklet models state through
explicit variables, thus making it clear where an implementation needs to store data. Brooklet cap-
tures inherent non-determinism by not specifying which queue to fire for each step, thus permitting
all interleavings possible in a distributed implementation.

4 Language Mappings

We demonstrate Brooklet’s generality by mapping three streaming languages CQL, Streamlt, and
Sawzall to it. Each translation exposes implicit uses of state as explicit variables; exposes a mecha-
nism for implementing global determinism on top of an inherently non-deterministic runtime; and
abstracts away local deterministic computations with higher-order wrappers that statically bind
the original function and dynamically adapt the runtime arguments (thus preserving small step
semantics).

4.1 CQL and Stream-Relational Algebra

CQL, the Continuous Query Language, is a member of the StreamSQL family of languages. Stream-
SQL gives developers who are familiar with SQL’s select-from-where syntax an incremental learning
path to stream programming. This paper uses CQL to represent the entire StreamSQL family, be-
cause it has a clean design, has made significant impact [1], and has a formal semantics [2].

4.1.1 CQL Program Example: Bargain Finder. A CQL program P, is a query that computes
a stream or relation from other streams or relations. The following hypothetical example uses CQL
for algorithmic trading:

select IStream(*) from quotes[Now], history
where quotes.ask <= history.low and quotes.ticker == history.ticker

This program finds bargain quotes, whose ask price is lower than the historic low. The program
has two inputs, a stream quotes and a time-varying relation history. A stream in CQL is a bag
of time-tagged tuples. The same information can be more conveniently represented as a mapping
from time stamps to bags of tuples. CQL calls such a mapping a time-varying relation, and each
individual bag of tuples an instantaneous relation. In the example, input history(ticker,low) is the
time-varying relation rp:

= {1 — {(1BM, 119), (XY77,38) }, 2 = { (1BM, 119), (‘XYZ7,35>}}

A Universal Calculus for Stream Processing Languages (Extended) 7

CQL syntax:

P, ::= P, | P CQL program

P = (Relation query)
RName Relation name

| S2R(Pes) Stream to relation

| R2R(P.) Relation to relation

P = (Stream query)
SName Stream name

| R2S(P.y) Relation to stream

RName | SName ::= id Input name

S2R | R2R | R2S :=1id Operator name

CQL example: Bargain finder.
IStream(BargainJoin(Now(quotes), history))

CQL program translation: [F;, P. |2 = (Fy, Py)
[F., SName]? = 0, output SName ; input SName ; e
(TE-SNAME)

[F., RName]? = 0, output RName; input RName;e
(T2-RNAME)

F,,output ¢,; input g; op = [Fe, Pes |2
q, = freshlId() v = freshld()
F, = [S2R — wrapS2R(F.(S2R))|Fy
op = op, (¢, v) — S2R(qo,v);
[F., S2R(P:s)]E = Fy,output q,; input gq; op
(T2-S2R)

Fy,output ¢o; input q; op = [Fe, Per |2
q, = freshld() v = freshld()
F; = [R2S — wrapR2S(F.(R2S))]Fy
op = op, (q,,v) — R2S(qo,v);
[F., R2S(P.)]2 = Fy,output q,; input gq; op’
(T?-R2S)

Fy,output ¢o; input g; op = [Fe, Por |2
n=|Py| qo=freshld() § =7q,...,q,
Viel...n: v = freshld() op' =0Py,...,0D,
F} = [R2R — wrapR2R(F.(R2R))]|(UF,)
op”’ =op’, (¢,,v) «— R2R(q5,);
[F., R2R(P..)]? = F},output q,;input ¢ ;op"
(TP-R2R)

Fig. 2. CQL semantics

CQL domains:

TeT Time
ecTP Tuple
c€X =bag(TP) Instantaneous relation
reR=7 - X% Time-varying relation

S€S =bag(TPxT) Time-varying stream

CQL operator signatures:

S2R : Sx7T — X
R2S : Y x ¥ - X

CQL operator wrapper signatures:
S2R (U XxT)x {1} xS—=(¥xT)xS8
R2S : (IxT)x {1} x X - (¥xT)x X
R2R : (X x 7) x {1...n} x (2¥*T)"
— (X T) x (25*T)n

CQL operator wrappers:
0, T =dq s=d,
s =sU{{e,7):e€0} o
wrapS2R(f)(dq, _,dv) = (o

= f(s',7)
SN
(W.-S2R)
o, 7T =dq o' =dy 0" = f(o,0")
wrapR2S(f)(dg, -, dv) = (o",7),0
(W.-R2S)

o, T =dq d; =d; U{{o,7)}
Vi£i€l.. .n:dj=d;
Jjcl...n:Po:(o,7)€d;
wrapRQR(f)(dq, 173) = .73/

(Wc-R2R-WAIT)
o,7=dy di=diU{{o,7)}
ViZiel...n:d;=d;
Vjel...n:o; = auz(dj,T)
wrapR2R(f)(dq. i, d) = (f(@),7),d

(W.-R2R-READY)

/

(o,7) €d

_— W.-R2R-A
auz(d,7) =0 (vx)

on Brooklet.

The instantaneous relation (1) is {(‘'IBM’,119), (‘XYZ’,38)}. The CQL stream s, represents the

input quotes(ticker,ask):

5y = {((‘IBM’, 119), 1), ((TBM?, 124), 1), ((:XYZ", 35, 2), ((IBM’, 119), 2>}

The subquery quotes[Now] uses the window [Now] to
relation r4:

turn the quotes stream into a time-varying

8 Robert Soulé et al.

rg = {1 - {(‘IBM’, 119), (IBM’, 124>}, 2 {(‘XYZ’, 35), (‘IBM’, 119>}}

The next step of the query joins the quote relation r, with the history relation 7, into a bargains
relation 7p:

Ty = [1 — {(‘IBM’, 119, 119>}, 2 — {{'XYZ’, 35, 35), (‘IBM’, 119, 119)}}

Finally, the IStream operator monitors insertions into relation 7, and emits them as output stream
S, of time-tagged tuples:

5o = {((‘IBM’, 119, 119), 1), ((-XYZ’, 35, 35), 2>}

While CQL uses select-from-where syntax, the CQL semantics use an equivalent stream-relational
algebra syntax (similar to relational algebra in databases):

IStream(BargainJoin(Now(quotes), history))

This algebraic notation makes the operator tree clearer. The leaves are stream name quotes and
relation name history. CQL has three categories of operators. S2R operators turn a stream into
a relation; e.g., Now(quotes) turns stream quotes into relation r4. R2R operators turn one or more
relations into a new relation; e.g., BargainJoin(ry,) turns relations r, and 75, into the bargain
relation 7. Finally, R2S operators turn a relation into a stream; e.g., IStream(ry) turns relation ry
into the stream of its insertions. CQL has no S2S operators, because they would be redundant.
CQL’s R2R operators coincide with traditional database relational algebra.

The CQL grammar is in Fig. 2. A CQL program P, can be either a relation query P, or a stream
query P, and queries are either simple identifiers RName or SName, or composed using operators
from the categories S2R, R2R, or R2S.

4.1.2 CQL Implementation Issues. Before we translate CQL to Brooklet, let us discuss the
two issues of state and non-determinism in CQL.

CQL state. CQL represents global state explicitly as named relations, such as the history relation
from our running example. But in addition, all three kinds of CQL operators implicitly maintain
local state, referred to as “synopses” in [1]. An S2R operator maintains the state of a window on a
stream to produce a relation. An R2S operator stores the previous state of the relation to compute
the stream of differences. Finally, an R2R operator uses state to buffer data from whichever relation
is available first, so it can be retrieved later to compute an output when data with matching time
stamps is available for all relations.

CQL non-determinism. CQL is deterministic in the sense that the output of a program is fully
determined by the times and values of its inputs [2]. Although a program can have independent
inputs, for example, from a customer and from a stock exchange, any timing ambiguities outside
the language are resolved by adding unambiguous time stamps. A CQL implementation might ei-
ther assign time stamps upon receiving data, or use time stamps that are an inherent part of the
input data, such as trading times. However, CQL implementations can permit non-determinism to
exploit parallelism. For example, the implementation need not fully determine the order in which
operators Now and BargainJoin process their data in BargainJoin(Now(quotes), history). They can
run in parallel as long as BargainJoin always waits for its two inputs to have the same time stamp.

Translation to Brooklet will make all state explicit, and will clarify how the implementation
enforces determinism.

A Universal Calculus for Stream Processing Languages (Extended) 9

4.1.3 CQL Translation Example. Given the CQL example program from Fig. 2, the translation
to Brooklet is the program Pj:

output qo;

input quotes, history;

(aq> $vn) <— wrapNow(quotes, $vy);

(ap, $Vq, $vy) — wrapBargainJoin(qq, history, $vq, $vy) ;

(9o, $vo) <— wrapIStream(qy, $v,)
The leaves of the query tree serve as input queues; each subquery produces an intermediate queue,
which the enclosing operator consumes; and the outermost query operator produces the program
output queue. The translation to Brooklet makes the state of the operators explicit. The most
interesting state is that of the wrapBargainJoin operator. Like each R2R operator, it has a function
F.(BargainJoin) that transforms one or more input instantaneous relations of the same time stamp
to one output instantaneous relation. Brooklet models the choice of interleavings by allowing either
queue qq or history to fire independently. Hence, the Brooklet operator processes one data item
each time either queue fires. Assume a data item arrives on the first queue qq. If there is already a
data item with the same time stamp in the variable v, associated with the second queue, Brooklet
performs the join, which may yield data items for the output queue qp,. Otherwise, it simply stores
the data item in vq4 for later.

4.1.4 CQL Translation. Fig. 2 shows the translation from CQL to Brooklet by recursion over
the input program. Besides building up a program, the translation also builds up a function environ-
ment, which it populates with wrappers for the original functions. The translation introduces state,
which the Brooklet wrappers maintain and consult to hand the right input to the wrapped CQL
functions. Working in concert, the rules enforce a global convention: the execution sends exactly
one instantaneous relation on every queue at every time stamp. Operators retain historical data in
variables, e.g., to implement windows.

4.1.5 CQL Discussion. CQL is an SQL dialect for streaming [1]. Arasu and Widom specify
big-step denotational semantics for CQL [2]. We show how to translate CQL to Brooklet, thus giving
an alternative semantics. As we will show below, both semantics define equivalent input/output
behavior for CQL programs. Translations from other languages can use similar techniques, i.e.,
make state explicit as variables; wrap computation in small-step firing functions; and define a global
convention for how to achieve determinism.

4.2 Streamlt and Synchronous Data Flow

Streamlt [26, 25] is a streaming language tailored for parallel implementations of applications such
as MPEG decoding [6]. At its core, Streamlt is a synchronous data flow (SDF) language [16], which
means that each time an operator fires, it consumes a fixed number of data items and produces a
fixed number of data items. In the MPEG example, data items are pictures. Streamlt distinguishes
between primitive and composite operators. A primitive operator (filter in Streamlt terminology)
has optional local state. A composite operator is either a pipeline, a split-join, or a feedback loop.
A pipeline puts operators in sequence, a split-join puts them in parallel, and a feedback loop puts
them in a cycle. The topology of a Streamlt program is restricted to well-nested compositions of
these. All Streamlt operators and programs have exactly one input and one output. We only focus
on Streamlt’s SDF core here, and encapsulate the local deterministic part of the computation in
opaque pure functions, while keeping the parts of the computation that are relevant to streaming.
We omit non-core features such as teleport messaging [6], which delivers control messages between
operators and which could be modeled in Brooklet through shared variables.

10 Robert Soulé et al.

4.2.1 StreamlIt Program Example: MPEG Decoder. The following example Streamlt pro-
gram P; is based on a similar example by Drake et al. [6].

pipeline {
splitjoin {
split roundrobin;
filter { work { tf < FrequencyDecode(peek(1)); push(tf); pop(); }}
filter { work { tm <« MotionVecDecode(peek(1)); push(tm); pop(); }}
join roundrobin;
}
filter { s; work { s,tc < MotionComp(s,peek(1)); push(tc); pop(); }}
}

It illustrates how the Streamlt language can be used to decode MPEG video. The example uses a
pipeline and a split-join to compose three filters. Each filter has a work function, which peeks and
pops from its predecessor stream, computes a temporary value, and pushes to its successor stream.
In addition, the MotionComp filter also has an explicit state variable s for storing a reference picture
between iterations. We omit the full syntax of Streamit for space reasons; the interested reader can
find it in Appendix B.

4.2.2 StreamlIt Implementation Issues. As before, we first discuss the intuition for the im-
plementation before giving the details of the translation.

Streamlt state. Filters can have explicit state, such as s in the example. Furthermore, since Brooklet
queues support only push and pop but not peek, the translation of StreamlIt will have to buffer data
items in a state variable until enough are available to satisfy the maximum peek() argument in the
work function. Round-robin splitters also need a state variable with a cursor that determines where
to send the next data item. A cursor is simply an index relative to the splitter. It keeps track of
which queue is next in round-robin order. Round-robin joiners also need a cursor, plus a buffer for
any data items that arrive out of turn.

StreamlIt mon-determinism. Streamlt, at the language level, is deterministic. Furthermore, since
it is an SDF language, the number of data items peeked, popped, and pushed by each operator is
constant. At the same time, Streamlt permits pipeline-, task-, and data-parallelism. This gives an im-
plementation different scheduling choices, which Brooklet models by non-deterministically selecting
a firing queue. Despite these non-deterministic choices, an implementation must ensure deterministic
end-to-end behavior, which our translation makes explicit with buffering and synchronization.

4.2.3 Streamlt Translation Example. Streamlt program translation turns the StreamlIt MPEG
decoder P; from earlier into a Brooklet program P:
output qout;

input Qin;

(as, gm, $sc) <— wrapRRSplit-2(qip, $sc);

(q¢q, $1) <— wrapFilter-FrequencyDecode(qs, $£);
(dma, $m) <— wrapFilter-MotionVecDecode(qgy, $m);
(g4, $fd, $md, $jc) <— wrapRRJoin-2(qsq, Gma, $fd, $md, $jc);
(Qout»> $s, $mc) <— wrapFilter-MotionComp(qq, $s, $mc);

Each Streamlt filter becomes a Brooklet operator. Streamlt composite operators are reflected in
Brooklet’s operator topology. Streamlt’s SplitJoin yields separate Brooklet split and join operators.
The stateful filter MotionComp has two variables: $s models its explicit state s, and $mc models its
implicit buffer.

A Universal Calculus for Stream Processing Languages (Extended) 11

StreamlIt program xlation excerpt: StreamlIt operator wrappers excerpt:
f = freshId() ¢ =c+1mod N by = din
v = freshld() Viel...N,i#c:bj=e
= = W;-RR-SPLIT
Fy = [f — urapRESplit(j7)) wrapRESpit(N) (om0 =58)

op = (qav) — f(Q(uU);
/ . . Do
[Fs,split roundrobin;,q,qq % = Fb, op di = din, d; Vi#Fi€l...N:d; =d;
u ! . u U
(TP-RR-SPLIT) de ,gj)/ut =d, Vi#cel...N:dj =d; »
bout,c'yd = wrapRRJoin(N)(e,i,c+ 1 mod N,d)
wrapRRJoin(N)(din, 1, c,d) = (bout, dout), €, d"
(W;s-RR-JOIN-READY)

f=freshld()
Vi €0...|q|: v; = freshld()
F, = [f — wrapRRJoin(|7'])]

op = (g=,0) — f(@,0); Vi#i€l...N:dj=d, di = din, d; dc=o
[Fs,join roundrobin;,q.,q |& = Fbp, op wrapRRJoin(N)(din,i,c,d) = o, cﬂ/
(T%-RR-JOIN) (W,-RR-JOIN-WAIT)

Fig. 3. StreamlIt round-robin split and join semantics on Brooklet.

4.2.4 Streamlt Translation. For space reasons, we give only a high-level overview of the
Streamlt translation here (the details are in Appendix B). Similarly to CQL, there are recursive
translation rules, one for each language construct. The base case is the translation of filters, and
the recursive cases compose larger topologies for pipelines, split-joins, and feedback loops. Feedback
loops turn into cyclic Brooklet topologies. The most interesting aspect are the helper rules for split
and join, because they use explicit Brooklet state to achieve Streamlt determinism. Fig. 3 shows the
rules. The input to the splitter is a queue ¢,, and the output is a list of queues §; conversely, the
input to the joiner is a list of queues ¢’, and the output is a single queue ¢,. Both the splitter and
the joiner maintain a cursor to keep track of the next queue in round-robin order. The joiner also
stores one variable for each queue, to buffer data that arrives out-of-turn.

4.2.5 Streamlt Discussion. Our translation from Streamlt to Brooklet yields a program with
maximum scheduling flexibility, allowing any interleavings as long as the end-to-end behavior matches
the language semantics. This makes it amenable to distributed implementation. In contrast, StreamlIt
compilers [25] statically fix one schedule, which also determines where intermediate results are
buffered. The buffering is implicit state, and Streamlt also has explicit state in filters. As we will
see in Section 5, state affects the applicability of optimizations. Prior work on formal semantics for
StreamIt does not model state [26]. By modeling state, our Brooklet translation facilitates reasoning
about optimizations.

4.3 Sawzall and MapReduce

Sawzall [20] is a scripting language for MapReduce [5], which exploits cluster of workstations to
analyze a massive but finite sequence of key/value pairs streamed from disk. In Sawzall, a stateless
map operator transforms data one key/value pair at a time, feeding into a stateful reduce operator.
The reduce operator works on separate keys separately, incrementally aggregating all values for a
key into a single value. Although Sawzall programs are batch jobs, they use incremental operators to
process large quantities of data in a single pass, and we therefore consider it a streaming language.
Our translation provides the first formal semantics for Sawzall.

4.3.1 Sawzall Program Example: Query Log Analyzer. The example Sawzall program in
Fig. 4 is based on a similar example in [20]. The program analyzes a query log to count queries
per latitude and longitude, which can then be plotted on a world map. This program specifies one

12 Robert Soulé et al.

Sawzall syntax: Sawzall operator signatures:

P. == out in emit Sawzall program Jo i K x X1 — Kol fo : Ko X X1 — A5
out =1t : table f; Output aggregator fa:Xox Xo — X

in = q : input; Input declaration

Sawzall operator wrapper signatures:

emit := emit t[f(q)] «— f(q@); Emit statement .
q e Queue name Map : (K:l X Xl) X {1} — (T X Ko X XQ)
f u=id Function name Reduce: (7' x K2 x A2) x {1} x Oz — O.

t = id Table name Sawzall operator wrappers:

Sawzall example: Query log analyzer. emit t0fu ()] «— fo(L); = emit
queryOrigins : table sum; b= wmpMap(Fz,M, R)(d,1)
queryTargets : table sum; k1,21 =d ko = F.(fr)(k1, 1)
logRecord : input; T2 = F.(fz)(k1,71) 1 = hash(kz2) mod R
emit queryOrigins([getOrigin(logRecord)]<—1; Y, =b;, (t,ka,x2,), ..., (t ke, 22,)

emit queryTargets[getTarget(logRecord)]<«—1; Vi#i€l...R: b; =b;

Sawzall program xlation: [F%, P., R].=(Fy, P») wrapMap(F. (emit, emil), R)(d,) — 7

out, qin: input;, emit = P, (W.-Map)
Viel...R:q = freshld() .
1... L0 =
Vi€ l...R:v; = freshld() vi € R:b ° _
fuap = wrapMap(F., emit, R) wrapMap(F., e, R)(_,_) =
Jreauce = wrapReduce(F, out)

(W.-MaP-e)

t, ko, x2 = dg t : table f,[1; € out

Fy = [Map > fuap, Reduce — freduce] ko € d, oy = F.(fa)(za, dy(k2))
0P, = (6) — MaP(Qin); d;, — [kg — mlg]dv
Viel...R:op; = (v;) < Reduce(q;,v;);

wrapReduce(F, out)(dq, _,dy) = ds,

op = op, ,0p
L P O (T2) (W.-REDUCE)

[F.,P.,R]%? = Fy,output e ;input gi,;0p

t,kz,xQqu t : table fu,[]; € out

Sawzall domains: X a4 1 0
ki€l Input key|kz € Ko Output key 2 £ v = k2 > 5] /
r1 € Input value|z2 € X2 Output value wrapReduce(F, out)(dq, _,dv) = d,,
t €T Aggregate name|O, € Ko — X Output table (W.-REDUCE-0)

Fig. 4. Sawzall semantics on Brooklet.

invocation of the map operator, and uses table clauses to specify sum as the reduce operator. The
map operator transforms its input logRecord into two key/value pairs:

(k,z) = (getOrigin(logRecord), 1)

(k',z'y = (getTarget(logRecord), 1)
Here, getOrigin and getTarget are pure functions that compute the latitude and longitude of the host
issuing the query and the host serving the result, respectively. The latitude and longitude together
serve as the key into the tables. Since the number 1 serves as the value associated with the key, the
sum aggregators end up counting query log entries by key. Fig. 4 shows the Sawzall grammar.

4.3.2 Sawzall Implementation Issues. Sawzall has stateful and non-deterministic implemen-
tations.

Sawzall state. The map operator is stateless, whereas the reduce operator is stateful, using state to
incrementalize its aggregation. The implementation in Pike et al.’s paper [20] partitions the reducer
key space into R parts, where R is a command-line argument upon job submission. There are multiple
instances of the reduce operator, one per partition. Because reduction works independently per key,

A Universal Calculus for Stream Processing Languages (Extended) 13

each instance of the reduce operator can maintain the state for its assigned part of the key space
independently.

Sawzall non-determinism. At the language level, Sawzall is deterministic. Sawzall is designed for
MapReduce, and the strength of MapReduce is that at the implementation level, it runs on a cluster
of workstations for scalability. To exploit the parallelism of the cluster, at the implementation level,
MapReduce makes non-deterministic dynamic scheduling decisions. Reducers can start while map
is still in process, and different reducers can work in parallel with each other. Different mappers
can also work in parallel; we will use Brooklet to address this optimization later in the paper, and
describe a translation with a single map operator for now.

4.3.3 Sawzall Translation Example. Given the Sawzall program P, from earlier, assuming
R = 4 partitions, the Brooklet version P, is:

output; /*no output queue, outputs are in variables*/
input qiog;

(q1, 92, 93, q4) <— Map(qieg); /*getOrigin/getTarget*/
($v1) <— Reduce(qy, $vi);

($vy) «— Reduce(qn, $v2);

($v3) «— Reduce(qs, $v3);

($v4) <— Reduce(aqs, $va);

There is one reduce operator for each of the R partitions. Each reducer performs the work for both
aggregators (queryOrigins and queryTargets) from the original Sawzall program. The final reduction
results are in variables $vy...$va.

4.3.4 Sawzall Translation. Fig. 4 specifies the program translation, domains, and operator
wrappers. There is only one program translation rule T2. The translation [F,, P,, R]? takes the
Sawzall function environment, the Sawzall program, and the number of reducer partitions as argu-
ments. All the emit statements become part of the single map operator. The map operator wrapper
uses a hash function to scatter its output over the reducer key space for load balancing. All the out
declarations become part of each of the reduce operators. Each reducer’s variable stores the mapping
from each key in that reducer’s partition to the latest reduction result for that key. If the key is
new, rule W,-REDUCE-{ fires and registers x5 as the initial value. At the end of the run, the results
in the variables are deterministic, because aggregators are associative and reducers work on disjoint
parts of the key space.

4.3.5 Sawzall Discussion. The Sawzall translation is simpler than that of CQL or Streamlt,
because each translated program uses the same simple topology. The translation hard-codes the
data parallelism for the reducers, but generates only one mapper, thus deferring data parallelism
for mappers to a separate optimization step. There was no prior formal semantics for Sawzall, but
Lammel studies MapReduce and Sawzall by implementing an emulation in Haskell [15]. Now that
we have seen how to translate three languages, it is clear that it is possible to model additional
streaming languages or language features on Brooklet. For example, Brooklet can serve as a basis for
modeling teleport messaging [6].

4.4 Translation Correctness

We formulate correctness theorems for CQL and Streamlt with respect to their formal semantics [2,
26]. The proofs are in the Appendix. We do not formulate a theorem for Sawzall, because it lacks
formal semantics; our mapping to Brooklet provides the first formal semantics for Sawzall.

14 Robert Soulé et al.

Theorem 1 (CQL translation correctness). For all CQL function environments F,, programs
P., and inputs I, the results under CQL semantics are the same as the results under Brooklet
semantics after translation [F., P. 2.

Theorem 2 (Streamlt translation correctness). For all Streamlt function environments F,
programs Ps, and inputs I, the results under StreamlIt semantics are the same as the results under
Brooklet semantics after translation [Fs, Ps]P.

5 Optimizations

The previous section used our calculus to understand how a language maps to an execution plat-
form. This section uses our calculus to specify how to use three vital optimizations: data-parallel
computation, operator fusion, and operator re-ordering. Each optimization comes with a correctness
theorem; for space reasons, we leave the proofs to the Appendix.

5.1 Data Parallelism

If an operation is commutative across data items, then the order in which the data items are pro-
cessed is irrelevant. MapReduce uses this observation to exploit the collective computing power of
a cluster for analyzing extremely large data sets [5]. The input data set is partitioned, and copies
of the map operator process the partitions in parallel. In general, the challenge in exploiting such
data parallelism is determining if an operator commutes. Sawzall and Streamlt solve this chal-
lenge by restricting the programming model. In Brooklet, commutativity analysis can be performed
with a simple code inspection. Since a pure function always commutes*, and all state in Brook-
let is explicit in an operator’s signature, a sufficient condition for introducing data-parallelism is
that an operator does not access variables. The transformation must ensure that the output data
is combined in the same order that the input data was partitioned. Brooklet can use the round-
robin splitter and joiner described in the Streamlt translation for this purpose. Thus, the operator
(out) «—wrapMap-LatLong(q) ; can be parallelized with N = 3 copies like this:

(q1, 92, g3, $sc) < Split(q, $sc);

(q®) < wrapMap-LatLong(ql);
(g5) <— wrapMap-LatLong(q2) ;
(g6) <— wrapMap-LatLong(q3);

(out, $v4, $v5, $v6, $jc) <«— Join(g4, 95, 96, $v4, $v5, $v6, $jc);

The following rule describes how to create the new program with N duplicates of the parallelized
operator.
op = (QOut) — f(Qm);
Viel...n:q = freshld() Vi€ l...n:q; = freshld()
F;,op, = [0,split roundrobin,q,q:]2
Viel...n:op, = (q}) « f(qg:);
Fy',0p; = [0, join roundrobin,gou:,q %
(Fy, op) — 5 (Fy U Fy U Fy', op, 0P op,)

(Op-SPLIT)

The precondition is that op does not refer to any state variables. The data parallelism optimization
illustrates that Brooklet facilitates reasoning over shared state. The rules for round-robin split and
join are in Fig. 3.

4 At least in the mathematical sense; in systems, floating point operations do not always commute.

A Universal Calculus for Stream Processing Languages (Extended) 15

Making multiplexers explicit and fixing the degree of parallelism are important to faithfully model
and reason about real-world systems. Possible implementation strategies for avoiding the limitation
of a fixed degree of parallelism include using just-in-time compilation to do splitting online, or
putting code on a larger number of machines and then in practice using only a subset as needed.

Theorem 3 (Correctness of Oy-Split). For all function environments Fy,, Brooklet programs Py,
and degrees of parallelism N, if rule Op-SPLIT yields (Fy, Py) _’i\;m (Fy, Py, then —} (Fy, Py, Iy) =—% (F}, P, I)
for all Brooklet inputs Iy.

5.2 Operator Fusion

In practice, transmitting data between two operators can incur significant overhead. Data needs to
be marshalled /unmarshalled, transferred over a network or written to a mutually accessible location,
and buffered by the receiver, not to mention the expense of context switching. This overhead can
be offset by fusing two operators into one. Streamlt applies this optimization to operators in a
pipelined topology [25]. Operators may be fused if they meet two conditions. First, they appear in a
simple pipeline. Brooklet makes this topology easy to validate because queues are defined and used
exactly once. Second, the state used by the operators must not be modifiable anywhere else in the
program. Again, because Brooklet requires an explicit declaration of all state, this condition can be
verified with a simple code inspection. The following Brooklet program shows two steps in an MPEG
decoder:

(q1,$v1) <« ZigZag(qin,$vl);
(Qout »$v2) <— IQuantization(qi,$v2);

The fused equivalent of the program is:
(Qout s $v1,$v2) «— Fused-ZigZag-IQuant(qiy,$vi,$v2);
The following rule formalizes this optimization:
op; = (q1,v1) < f1(qin,v1); (Jop' = (L) — f'(,2)) = op’ = op,

0py = (qout, v2) — f2(q1,v2); (Fop" = (L) — f'(,)) = op’ = op,
f = freshld() F, = [f — fusedOperator(Fy, f1, f2)|F»

Fy, 0p; opy — FY, (qout, v1,v2) — f(qin,v1,v2);

(Op-FuUsSE)

The preconditions guard against other operators writing variables v; or vy. The following rule defines
the new internal function:
(dtemp, d1) = Fy(f1)(din, 1,d1) (dout, d2) = Fo(f2)(dtemp, 1, d2)
fusedOperator(Fy, f1, f2)(din, _,d1,d2) = (dout, d}, d5)

(Wp-FUSE)

In our example, this combines Fy,(ZigZag) and Fy(IQuantization) into function Fy (Fused-ZigZag-IQuant).
The fusion optimization illustrates that Brooklet facilitates reasoning over topologies.

Theorem 4 (Correctness of O,-Fuse). For all function environments Fy, and Brooklet programs
Py, if rule Op-FUSE yields (Fy, Py) — puse (Fy, PL), then —§ (Fy, Py, Iy) =—§ (FL, P}, 1) for all
Brooklet inputs I.

16 Robert Soulé et al.

5.3 Reordering of Operators

A general rule of thumb for database query optimizations is that it is better to remove more tuples
early in order to reduce downstream computations. The most popular example for this is hoisting
a select operator, because a select reduces the tuple volume for operators it feeds into [1]. A select
is said to commute with another operator if their output result is the same regardless of their
execution order. The following program computes the commission on sales of IBM stock. The input
is sale(ticker, price) and the output is commission(ticker, cost). The commission is 2%.

output commission;

input sale;

(qt) ¢— BrokerCommission(sale);
(commission) <— Select-IBM(qt);

The functions for the two operators are:

F,(BrokerCommission)(d, _)=let (ticker,price) =d in (ticker,0.02 - price)
Fy(Select-IBM)(d, _) =let (ticker, cost) = d in if ticker=‘IBM’ then d else o

We can reorder the two operators for two reasons. First, the BrokerCommission operator is stateless,
and therefore operates on each data item independently, so its semantics do not change when it
sees a filtered stream of data item. Second, the Select-IBM operator only reads the ticker, and
BrokerCommission forwards the ticker unmodified. In other words, Select-IBM does not rely on any
data modified by BrokerCommission and vice versa. The optimized program is:

output commission;

input sale;

(qt) <— Select-IBM(sale);
(commission) <— BrokerCommission(qt);

The following rule encodes the optimization:

op; = (qr) — f1(@; opy = (qout) — f2(qe);
Fy(f1)(d,i) =let (r,w) =d in (r, fi(w,1))
Fo(f2)(d,_) =let (r,_) = d in if fa(r) then d else o
Viel...|q|: ¢ = freshld()
oph = (qow) — f1(q); Viel...|g:op, = (q)) < f2(q:);

— (Op-HOISTSELECT)

Fy, 0py opy — Fy,0p op;
The first two preconditions restrict op; and op, to be stateless operators. The third precondition
specifies that f; forwards a part r of the data item unmodified, and the fourth precondition specifies
that fo is a select that only reads r, and forwards the entire data item unmodified. We have chosen
in Brooklet to abstract away local deterministic computations into opaque functions, because their
semantics are well-studied (e.g., [8,10,21]). We leverage this prior work by assuming that a static
program analysis can determine the restrictions on the read and write sets of operator functions
used for select hoisting.

Theorem 5 (Correctness of O,-HoistSelect). For all function environments F}, and Brooklet
programs Py, if (Fy, Py) — HoistSelect {FY, Pi) by rule Op-HOISTSELECT, then —; (Fy, Py, It) =—; (F}, P, Ip)
for all Brooklet inputs Iy.

A Universal Calculus for Stream Processing Languages (Extended) 17

5.4 Optimizations Summary

We have used our calculus to understand how a language can apply three vital optimizations. The
concise and straightforward formalization of the optimizations validates the design of Brooklet. There
are many other streaming optimizations, including, to name just a few, sharing redundant subqueries
in CQL [1]; pre-aggregating data on the workers performing the map phase of MapReduce [5]; or
eliminating spurious synchronization in Streamlt [25]. Furthermore, there are stronger variants of
the optimizations we sketched; for example, it is sometimes possible to introduce data parallelism
even for stateful operators. We believe that the examples in this section are a useful first step towards
formalizing optimizations for stream processing languages.

6 Related Work

Our approach to defining a core minimal language that allows us to reason about correctness is
inspired by Featherweight Java [13].

There has been extensive prior work in the semantics of stream processing. Stephens [22] provides
a comprehensive survey, but it does not address recent language developments. Brooklet differs from
prior work on streaming semantics because it models state and non-determinism as explicit core con-
cepts. Kahn process networks [14], such as Unix pipes, assume deterministic execution. Synchronous
data flow [16] models, such as Streamlt, assume fixed buffer sizes and static communication patterns.
Hoare’s communicating sequential process [12] assumes no buffering, and synchronous communica-
tion. Gurevich et al. [11] recently studied streaming systems, but focused on their more theoretical
aspects.

The database literature often refers to streaming applications as “continuous queries” [4, 24].
Surprisingly, there is little work from the database community on optimizations of queries with side
effects. Two exceptions are a study of XQuery with side effects [10] and a study of object-oriented
databases [7].

This paper uses CQL, Sawzall, and Streamlt as representative examples of streaming languages,
but there are many more. Spade [9] is a streaming language for composing parallel and distributed
flow graphs for System S, IBM’s scalable data processing middleware. Pig Latin [18] is one of the
languages designed to compose MapReduce or Hadoop jobs. DryadLing [27] runs imperative code
on local machines and uses integrated SQL to generate distributed queries.

7 Conclusion and Outlook

This paper presents Brooklet, a core calculus for stream processing. It represents stream processing
applications as a graph of operators. Operators contain pure functions, thread all state through
explicit variables, and trigger non-deterministically. Explicit state and non-deterministic execution
are central concepts, capturing the reality of distributed implementations. We translate three rep-
resentative languages, CQL, Sawzall, and Streamlt, to Brooklet, thus demonstrating its generality
for language designers. We formalize three vital optimizations, data parallelism, operator fusion,
and operator reordering, in Brooklet, thus demonstrating its usefulness for language implementors.
Brooklet lays the ground work for a variety of future work, including formalization of additional
languages, invention of new abstractions to expose and exploit parallelism, alternative translations
for the languages we formalized, reverse translations from Brooklet back into source languages, type
systems work, exploration of time or space resource constraints, investigations of progress, fairness,
and dead-lock, static analyses for establishing optimization preconditions, and specifications of addi-
tional optimizations. Brooklet also provides the foundation for a common intermediate language for

18 Robert Soulé et al.

stream processing. In ongoing work, we are implementing the translations from CQL, Sawzall, and
Streamlt to Brooklet, the optimizations from Brooklet to Brooklet, and a translation from Brooklet
to C++. The implementation uses System S [9] as a high-performance streaming runtime, which
manages all processes across a cluster and their communications. The long-term goal of our work is
to establish Brooklet as both a formal and practical foundation for stream processing.

Acknowledgements

The authors would like to thank the anonymous reviewers for their comments and suggestions.
We would also like to thank John Field, Rodric Rabbah, and Martin Vechev for their feedback
on earlier versions of this paper, and Nagui Halim for his support of this project. This material is
based upon work supported by the National Science Foundation under Grants No. CNS-0448349
and CNS-0615129.

References

1. A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: Semantic foundations and
query execution. VLDB Journal, pp. 121-142, 2006.
2. A. Arasu and J. Widom. A denotational semantics for continuous queries over streams and relations.
SIGMOD Record, pp. 6-11, 2004.
3. 1. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook for GPUs:
Stream computing on graphics hardware. TOG, pp. 777-786, 2004.
4. J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system for
internet databases. In SIGMOD, pp. 379-390, 2000.
5. J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In OSDI, pp.
137-150, 2004.
6. M. Drake, H. Hoffmann, R. Rabbah, and S. Amarasinghe. MPEG-2 decoding in a stream programming
language. In IPDPS, pp. 86-95, 2006.
7. L. Fegaras. Optimizing queries with object updates. JIIS, pp. 219-242, 1999.
8. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in opti-
mization. TOPLAS, pp. 319-349, 1987.
9. B. Gedik, H. Andrade, K.-L.. Wu, P. S. Yu, and M. Doo. SPADE: The System S declarative stream
processing engine. In SIGMOD, pp. 1123-1134, 2008.
10. G. Ghelli, N. Onose, K. Rose, and J. Siméon. XML query optimization in the presence of side effects.
In SIGMOD, pp. 339-352, 2008.
11. Y. Gurevich, D. Leinders, and J. V. den Bussche. A theory of stream queries. In DBLP, pp. 153—-168,
2007.
12. C. A. R. Hoare. Communicating sequential processes. CACM, pp. 666—677, 1978.
13. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java - a minimal core calculus for Java and GJ.
In TOPLAS, pp. 132-146, 1999.
14. G. Kahn. The semantics of a simple language for parallel programming. In IFIP, pp. 471-475, 1974.
15. R. Lammel. Google’s MapReduce Programming Model — Revisited. Science of Computer Programming
Journal, pp. 208-237, 2007.
16. E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proc. IEEE, pp. 1235-1245, 1987.
17. H. R. Nielson and F. Nielson. Semantics with applications: a formal introduction. John Wiley & Sons,
Inc., 1992.
18. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A not-so-foreign language for
data processing. In SIGMOD, pp. 1099-1110, 2008.
19. B. C. Pierce. Types and programming languages. MIT Press, 2002.

A Universal Calculus for Stream Processing Languages (Extended) 19

20. R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming, pp. 277-298, 2005.

21. M. C. Rinard and P. C. Diniz. Commutativity analysis: a new analysis framework for parallelizing
compilers. In PLDI, pp. 54—67, 1996.

22. R. Stephens. A survey of stream processing. In Acta Inf., pp. 491-541, 1997.

23. The StreamBase dialect of StreamSQL. http://streamsql.org/.

24. D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over append-only databases. In
SIGMOD, pp. 321-330, 1992.

25. W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamlIt: A language for streaming applications. In
CC, pp. 179-196, 2002.

26. W. Thies, M. Karczmarek, M. Gordon, D. Maze, J. Wong, H. Hoffman, M. Brown, and S. Amarasinghe.
StreamlIt: A compiler for streaming applications. In MIT Laboratory for Computer Science Technical
Memo LCS-TM-622, 2001.

27. Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda, and J. Currey. DryadLINQ: A
system for general-purpose distributed data-parallel computing using a high-level language. In OSDI,
pp. 1-14, 2008.

Appendix
A CQL Translation Correctness

This section proves Theorem 1.

A.1 Background on CQL Formal Semantics

Before we can prove that the semantics of CQL on Brooklet are equivalent to previously specified
semantics of CQL, we recapitulate those semantics from [2].

A.1.1 CQL Function Environment. The CQL function environment maps names for stream-
relational operators to functions. These functions are used both to define the CQL denotational
semantics [2], and to define our semantics by translation to Brooklet. In [2] the CQL function envi-
ronment is written M, but we will write it as F, here for consistency with the other languages in
this paper.

As shown in Fig. 2, the signature of an S2R operator, a.k.a. a window, is S x 7 — X. Three
common windows are:

F.(Now)(s,7) ={e: (e,T) € s}
(The Now window returns tuples from the current time stamp 7.)
F.(Range(T))(s,7) = {e: (e,7') € s and max{r — T,0} <7’ < 7}

(The Range(T) window returns tuples from time stamps up to T in the past up to the current time
stamp 7.)

F.(Rows(T))(s,7) ={e: {e,7) €sand 7' <7 and N > |{{e,7") : 7' < 7" < 7}|}

(The Rows (N) window returns the last N tuples before the current time stamp 7.)
As shown in Fig. 2, the signature of an R2S operator is X’ x X' — 3. Three common R2S operators
are:

F.(IStream)(onew,0old) = {€: € € Onew and € & oo1a}
(The IStream operator monitors insertions into a relation.)

F.(DStream)(onew, Oold) = {€: € & Onew and e € oola}

20 Robert Soulé et al.

(The DStream operator monitors deletions from a relation.)
FC(RStrea.m)(Unew, _) = Onew

(The RStream operator streams the current instantaneous relation.)
As shown in Fig. 2, the signature of an R2R operator is X" — Y. Two common R2R operators
are:

FC(JOin(C))(Ulh57 Urhs) = {elhs (&) €rhs . €lhs € Olhs and €rhs € Orhs and C(elhs, erhs)}

(The binary Join(C) operator joins tuples from two relations when they satisfy the join condition
C. In the example in Section 4.1.1, the join condition C was quotes.ask <= history.low. In [2], the
binary R2R operators are illustrated with a semi-join, but we chose a theta-join here, because we
used it for the algorithmic trading example.)

F.(Select(C)(c) ={e:e € o and C(e)}

(The unary Select(C) operator is a filter that returns only tuples that satisfy the selection condition
C. In [2], this operator is called Filter, but we chose to call it Select here to match the terminology
in the optimizations section.)

A.1.2 CQL Execution Semantics Function. The CQL execution semantics function is written
as M in [2], but we will denote it as — here to avoid confusion with the function environment M
and for consistency with the other languages in this paper. It takes as inputs a CQL function
environment F,, program P,, and input I, and returns a CQL output O.. The CQL semantics are
big-step denotational, meaning that they define a mapping from an entire input to an entire output.

Therefore, the CQL input and output domains are defined in a way that is easy to represent globally.
CQL domains for input and output:

o € RName — R Relations store
s € SName — S Streams store
I. € (RName — R) x (SName — S) CQL input
O.eRI(T—=S) CQL output

A CQL input I.. consists of two maps ¢ and ¢, mapping relation names to time-varying relations and
stream names to CQL streams, respectively. A CQL output is either a time-varying relation or a
mapping from time stamps to streams, depending on whether the CQL program is a relation query
or a stream query.

There are three kinds of relation queries, for which the semantics function returns a time-varying
relation (domain R):

— (F., RName, I.) = let g,c = I. in o(RName)
(The semantics of a relation name just retrieve the time-varying relation from the relation store part
of the input.)
— (Fe, S2R(P.s),1.) (1) = F.(S2R)(—} (Fe, Pes, I.)(7),7)
(The semantics of a window recursively invokes —* to obtain the subquery result, and invokes a
window function from the function environment F,.. Recall from Fig. 2 that the non-terminal P
denotes a CQL query returning a stream.)
—5 (Fo, R2R(Per), 1) (1) = let Vi € 1...|Pey| : 75 =% (Fe, Pery, 1)
in F.(R2R)(r1(7),... T B (7))
(The semantics of an R2R operator uses the R2R function from the function environment F, on all
the instantaneous relations for the same time stamp.)

A Universal Calculus for Stream Processing Languages (Extended) 21

There are two kinds of stream queries, for which the semantics function returns a mapping from
time stamps to stream contents up to and including that time stamp (domain 7 — S).

—% (Fe, SName, I.)(1) = let o,¢ = I. in {{e,7') : (e,7") € ¢(SName) and 7' < 7}

(The semantics of a stream name takes a time stamp 7 as a parameter, and returns the stream of
all tuples with lesser or equal time stamps from the input mapping from stream names to streams).
—e (Fe, R25(Per), Ic) (1) = let r == (Fe, Per, Ic)
in U{F.(R2S)(r(7"),r(7' = 1)): 1< 7 <7}
(The semantics of an R2S operator recursively invoke —% to obtain the subquery result, and then
feed the instantaneous relation from the previous and the current time stamp into the operator
function from the function environment F.).

CQL input translation: [I.]: = (V, Q) CQL output translation: [V,Q]? = O.
0, =1, T = time(o) U time(s) [V,QI2 = [Q(gout) I2r (T?)
V=mitVars() Q=[oT]cU[sT]: (TH) [V.QIZ = [Q(gout) [0 ¢
[L]e= (V. Q) ‘ r=[b]%
.. Y =1 olr
) .)) ; ; (T2-RELATION)
time([id — r]o) = time(o) U time(r) T:-TIME-0 [(b,{(o,m))]er =T

[e]e- =0 (T2-RELATION-e)

time(r) ={7:r(r) Zr(r - 1)}

()
()
time([id — s]¢) = time(s) U time(s) (TE-TIME-G) O:.=[b]¢
0., = [r + stream((b, {o,7)))]Oc
()
()

[[(bv <Gv T>)]]Zs =5

[e]2. =10 (T2-STREAM-e)

time(s) = {7 :3Je: {e,T) € s} (T2-STREAM)

time (D) = 0

Q=1[eT]. b=[rT]:
[[id — T]Q,Tﬂi = [id — b]Q

s = stream(b)
(T-DATA-0) s =sU{{e,7):e€0}
stream(b, (o, 7)) = &'

(T2-STREAM-AUX)
7> maxT b=[rT]
[[7", {T} U T}]Z =b, (7"(7'),7')

Q:[[QT]]i b:HS7TﬂZ
[[id — s]s, T]%: = [id — b]Q

(Ti-DATA-T) stream(e) = () (T2-STREAM-AUX-e)

(Ti-DATA-S)

7> maxT b=1[sT]:
d= ({e:(e,7) €s},T)
[s,{T}UT]i =b,d

[0,_1=10 (Ti-DaTa-0,)
[[—7 @]]7& =e (Ti-DATA—@g)

(Ti-DATA-5)

Fig. 5. CQL input and output translation.

A.1.3 CQL Input and Output Translation. The CQL domains are designed as global math-
ematical structures representing everything that ever happens in a program execution. This rep-
resentation suits itself well to modeling with denotational semantics, but it is a mismatch for an
actual implementation, where data arrives piecemeal and must be processed incrementally. It comes

22 Robert Soulé et al.

therefore as no surprise that the representation is also a mismatch for the small-step operational
semantics of Brooklet, since they are designed to facilitate reasoning about implementation.

Due to this representational mismatch, we need a couple of conversion functions that we shall use
in our translation correctness proof. The function [I]’ converts a CQL input to a Brooklet input I,
and the function [Op]2 converts a Brooklet output back to CQL output O.. Denoting them with
semantic brackets [-] is a slight abuse of notation, because the functions do not incorporate any
deep semantics, but rather, are a mechanical (though tedious) conversion from one data format
to another. However, since we denoted program translation as [-]?, denoting input and output
translation as [-]¢ and [-]¢ leads to more consistent notation. Note that besides the subscript .. for
CQL, we introduce the superscripts P%° for program, input, and output, respectively.

The left column of Figure 5 defines the input translation. It first obtains the set T of all “inter-
esting” time stamps, at which either a relation changes, or a stream sends a tuple. Then, it creates
Brooklet queue contents, which are sequences of data items where each data item is a tuple of an
instantaneous relation and a time stamp in 7'. All variables are initialized to the empty set, and all
input queues are initialized to queue contents.

The right column of Figure 5 defines the output translation. Depending on whether the CQL
program is a relation query or a stream query, the output translation turns the contents of the
Brooklet output queue either into a time-varying relation, or into a function from time stamps to
the stream of all tuples seen up to that time stamp.

A.2 CQL Main Theorem and Proof

execute

CQL Input CQL Output

T 1 >

2 I
tranblate tranglate

| 4

\ 3 Y

Brooklet Input Brooklet Output
execute

Fig. 6. CQL translation correctness, structural induction base.
Given the background definitions, we can re-state Theorem 1 more clearly:

Theorem 1 (CQL translation correctness). For all CQL function environments F., programs
P., and inputs I.: _

—e (Fe, Pe, Ie) = [=5 ([Fe, P12, [1c]e) 12
In other words, executing under CQL semantics (—7) yields the same result as translating the
program and the input from CQL to Brooklet ([-]2%), then executing under Brooklet semantics
(=), and finally translating the output from Brooklet back to CQL ([-]2). Fig. 6 illustrates this
graphically.

Proof (Theorem 1). We use an outer structural induction over the query tree, with the two base
cases SName (Lemma 2, stream identity) and RName (Lemma 3, relation identity), and the three
recursive cases S2R, R2S, and R2R (Lemmas 4, 5, and 6). Each of the five cases does an inner
induction over time stamps. Each inner base case is the empty set () of time stamps. Each inner
inductive step assumes that the translation is correct for all time stamps in a set T', and proves that
the translation is correct when adding another time stamp 7 > maxT. O

A Universal Calculus for Stream Processing Languages (Extended) 23

A.3 Detailed Inductive Proof of CQL Correctness

Lemma 1 (CQL Program Shape Correspondence). Every CQL program P. forms a logical
query plan. For all P, = [P.]?,

Py, and P. are trees with equivalent shapes.

Each node in P, is a Brooklet operator that corresponds to exactly one CQL operator in P,.
Each edge in P, corresponds to exactly one queue in Py.

Fach node in P, has a variable. No variables are shared.

There is a single Toot node in both P, and P,.

Crds Lo o =

Proof (Lemma 1). By construction. O

Lemma 2 (SName Translation Correctness). For all CQL function environments F., inputs
I., and primitive programs P. consisting of just a single stream name SName, the first part of the
lemma states:

=2 (Fe, SName, I.) = [=} ([F., SName]:, [1]0)]2

This equality is a special case of Theorem 1. In terms of Fig. 6, it amounts to showing that
T =} in the case where the program P. consists of a single stream name SName.
The second part of the lemma states:

[[_)Z (FC= SName, IC)]]?: :_’Z ([[Fw SName]]i> [[ICM)

This equality is used as the assumption for peer lemmas in the outer induction. In terms of Fig. 6,
it amounts to showing that ~4= {, in the case where the program P. consists of a single stream
name SName.

Proof (Lemma 2). We do an inner induction over the set T of time stamps.

I. Basis: T = 0.
_’: *)Z (QS; IC)

by —* (SName)
Vi [F.,SName]®,[I.]
= P,,Q(SName) = o
by rule Ti-DATA-S.
o=y ([Fe Qs e T]R)
= Q(SName) = o
because no Brooklet semantic rule fires.
™ [—=F (F., SName, I1.)]
= Q(SName) = o
by rule Ti-DATA-s.
LR [[_Uf ([Fe, SName], [1:]¢) 12

by rule T¢,-eo

24 Robert Soulé et al.

To show: (7 = .}
—* (F.,SName,I.) =0

=% ([F., SName]%, [1])]] =0 ‘ ‘
So, —% (SName, I.) = [=} ([Fe, SName]!, [1.]%)]2.

~

To show: (T4 = 4,)
[—: (FC,SName 1)) =
—7 ([Fey SName]?, [%]

I,
So, [=% (F., SName, I,
II. Inductive step: 77 = {7} UT where 7 > maxT.
i. Assume for T"
_>: _>: (QS?IC)
=5
: [F., SName]:, [1]
= Pb, Q(SName) = by,
—p ([Fe, Qs 1L [1e10)
= Q(SName) = by
[=2 (F., SName, I..)],
= Q(S’Name) = b;
[—4 ([Fe, SName]i, [110)]2
=5
rove for T":
—a (QsaIC)
=sUs
where s is defined in the assumption as the stream of tuples at time T', and s’ is the bag
of additional tuples for time {7}, according to —* (SName).
: [F., SName]:, [1]
= Py, Q(SName) = b, by
by rule Ti-DATA-S.
L,: _>Z ([[FcyQS]]f:v [[IC]]E)
= Q(SName) = bs, by
because no Brooklet semantic rule fires.
: [—F (F., SName, 1)]
= Q(SName) = by, by
by rule Ti-DATA-S.
v ([[FC,SName]] [1.19)71¢
=s U s’
by T?-STREAM

)
é: ([[FmSName]]ca[[I]])

-«

*Z#T

ii.

_.w

-«

To show: (7 =.})

(Fc,SName I.)=sUs
[[5 ([F., SName]:, [1. 1%)]]g =sUs’ 4
So, —>’C‘ (SName, I.) = [—7 ([Fe, SName], [1.]%) 12

A Universal Calculus for Stream Processing Languages (Extended) 25

To show: (T4 =14,)

[—% (F., SName, I.)]. = bs, by

*)Z ([[FCa SNameﬂév [[IC]]E) = bs, by

So, [—? (F., SName, I.)|: =—3 ([F., SName]%,[I.]%) O

Lemma 3 (RName Translation Correctness). This is the other base case of the outer induc-
tion, and is formulated analogously to the SName case in Lemma 2.

Proof (Lemma 3). We do an inner induction over the set T' of time stamps, which is analogous to

the proof for Lemma 2. a
execute
CQL Input Qq CQL Output
rem e 2 —
i
3 1
tranklate 7 () i 8(1) tranjlate
| | 6(h| 9()
| SRR SRS
Brooklet Input Qg1 Brooklet Output
execute

Fig. 7. CQL translation correctness, structural induction step.

Lemma 4 (S2R Translation Correctness). For all CQL function environments F,, CQL inputs
1., CQL stream queries P.s, and CQL S2R operators, assume:

[[HZ (Fcypcsa [c)]]i :4’; ([[FCvPCS]]i’ [[IP]]Z)

This equality is the outer induction assumption, and is proven as part of the peer lemmas for
any queries that return streams. In terms of Fig. 7, it amounts to assuming that 3=, for the left
part of the diagram.

The first part of the lemma states:

—5 (Fe, S2R(Pes), 1) = [=5 ([Fe, S2R(Pes) 10, [1:12) 12

This equality is a special case of Theorem 1. In terms of Fig. 7, it amounts to showing that
7=}, } in the case where the program P. has the shape S2R(P.s).
The second part of the lemma states:

[—: (Fe, S2R(Pes),) |t == ([Fe, S2R(P.s) 10, [1 1%)

c

This equality is used as the assumption for peer lemmas in the outer induction. In terms of Fig. 7,
it amounts to showing that =1 in the case where the program P, has the shape S2R(P.s).

Proof (Lemma 4). We do an inner induction over the set T of time stamps.

1. Basis: T = 0.

26

Robert Soulé et al.

—e (Pes, L)

0

v —e (Pes)

i =% (S2R(P.s), I.)

on

0
by —: (S2R(P.,))

=7 [= (S2R(Pag), 1)]E

if

= o by rule T:-DATA-(2

v o [Fe, S2R(Pes)]]iv HICM

= Pb, V('U) = @, Q(QO) = e, Q(qo) =
by rule T.-DATA-R.

VI HZ ([[chpcs}]ia[ucm)

=V()=0,Q(¢) = *,Q(q,) =
because no Brooklet seman‘pic rule fires.
5 ([Fe, S2R(Pes) 6, [1c]2)

= V()=0,Q(q0) = 0, Q(q;) = o

because no Brooklet semantic rule fires.

Lok [[HZ ([[Fm S2R(Pes)]]?'7 [[IPM) 12

by rule T¢ -e

To show: (7
¥ (S2R(P.s),

HH ([[FmS?R(Pcs)]]i, L)) =10 ‘ ‘

So, =& (S2R(Pes), Ic) = [— ([Fe, S2R(Pes) e, [1 J0) 12-

To show: (T4 =14,,)
[[—> (S2R(Pes), Ic) Je = o

([[FC’SQR()16 a[[lc c)=))
SO[[¢ (S2R(Pes), Le) | =—5 ([Fe, S2R(Pes) e, [e]2)-

II. Inductive step: 7/ = {7} UT where 7 > maz T.

i. Assume for T
T = (Pes, 1)
=5
=7 =% (S2R(P.), 1)
=r
Bt [[_>: (SQR(PCS),IC)]]zl:
= b,,,
(r(min T),min T)...{r(mazx T), mazx T)

Voo [F S2R(Pes) e, [e]
=h,V.Q
o= ([Fe Pes L [TE)
V(v) =
Q(QO) :bs
Qlg,) =

A Universal Calculus for Stream Processing Languages (Extended) 27

!

(?5)([[Fc,SZR(es) Ies [&)
(90) =
(45) = b } ‘

ot [=5 ([Fe S2R(Pes) 15, [e 10) 12

ii. Prove for T
—: (P 1)

=sUs
where s is defined in the assumption as the stream of tuples at time T', and s’ is the bag
of additional tuples for time {7}, according to —% (P.s).

=7 =¥ (S2R(Pu), 1)
= F.(S2R)(sU s, T)

=[r+— F.(S2R)(sU s, 7)|r

by —% (S2R(P.s)) and assumption.

R s (SQR(Pes), Ie) [e .
=b,, [F.(S2R)(sU s, 7)]2
by assumption and rule T?-DATA-R.

Vo [Fe, S2R(Pes) chv [[IC]]Z::

!

|'='<©©<

b
V(v) = 0 by rule T?

Q(qo) = @ by rule T:-DATA-0,
Q(g.) = e by rule T:-DATA-0

Lo =y [[FmPCS]]Q[[Ic]]Z)

Lt = ([[Fm S2R(Pes)]]éa [[IC]]Zc)

V(v) = sUs" by rule W.-S2R.
Q(g,) = @ by rule E-FIREQUEUE.
Q(q)) = b, [F.(S2R)(s U s’,7)]’ by assumption, E-FIREQUEUE, W.-S2R, and T%-DATA-R.
Lot = ([[FmS?R(Pcs)]]’c»[[Ic]]é)ﬂS

= [br, [Fe(S2R)(s U ', 7) [,]2
= [1+— F.(S2R)(sU ', 7)]r because
F.(S2R)(s,7) is a curried version of the meaning function —} (S2R) which returns the
tuples for time parameter 7 rather than all the time stamps in the time duration 7 .
[b:]2 =7 by assumptlon and
[[F.(S2R)(sU s, 7)].]% = F.(S2R)(s U s',7) by T9-RELATION and T%-DATA-r

To show: (77 =4,.})

(S2R(s), 1) = [T — F.(S2R)(s U s, 7)|r
[[5 ([Fe S2R(P., e [L])]2 = [r = Fo(S2R)(s U s, 7)]r

S0, =7 (S2R(Pes). 1) = [5 (Lo S2R(Pea) 1o 11 19) 2
To show: (T A =14,,) 4
[=2 (S2R(Pos), 1) 1L = by, [Fo(S2R)(5 U 8/, 7) i

C

28 Robert Soulé et al.

-} ([[Fw SQR(PCS)]]ch [[IC]]l) = by, [[FC(SQR)(S U 3/77')]]lc

c Iy

So.[=% (S2R(Pes), Ie) It == ([Fe, S2R(Pes) I, [Lo 12)- -

[

Lemma 5 (R2S Translation Correctness). This is the second recursive case of the outer induc-
tion, and is formulated analogously to the S2R case in Lemma 4.

Proof (Lemma 5). We do an inner induction over the set T' of time stamps, which is analogous to
the proof for Lemma, 4. O

Lemma 6 (R2R Translation Correctness). This is the third recursive case of the outer induc-
tion, and is formulated analogously to the S2R case in Lemma 4.

Proof (Lemma 6). We do an inner induction over the set 7' of time stamps, which is analogous to
the proof for Lemma 6. O

B Streamlt Mapping Details

Below is our syntax and translation for the SDF subset of Streamlt, which is similar to the “literal
algebra in canonical form” in the earlier formalization of Streamlt semantics [26]. This section is
organized analogously to Fig. 2 and Fig. 4, except that we moved out the program example into
Section 4.2.1.

Streamlt syntax:

Psu=ft|pl|sj|fl Streamlt program
ft = filter {Swork {apspp} } Filter
a =51« f (5pk); Assign
pk == peek(x); Peek
ps = push(t); Push
pp == pop(Q); Pop
pl ::= pipeline { Ps } Pipeline
sj = splitjoin { sp Ps jn } Split-join
fl := feedbackloop { jn body P, loop Ps sp } Feedback loop
sp = split (duplicate | roundrobin) ; Split
jn = join roundrobin; Join
flslt == id Function/state/temporary name
T u=nt Number

Streamlt program translation: [Fs, Ps |} = (Fy, Py)

Gout = freshld() qin = freshld() Fy,0p = [[FS> Ps, qout, @in]]157
[Fs, Ps]t = Fy, output gou ; input ¢in; 0p

5t f(5,pk) =a fo = freshId()
Viel...|s|+1:v; = freshld()
Fy = [fo — wrapFilter (Fs, a,ps, pp)] op = (qout,) — fo(qin,V);

TE-FT
[Fs,filter{s work{a Ds Dp}}, qout, Gin |5 = Fp, 0p (T)

n = |P| Viel...n—1:¢ = freshld()
VZE 1’I’LFbL7®Z = [[F‘saps,“qiyqi—lﬂg

[Fs,pipeline{Ps}, qn,qo]2 = UF},, 0p; ... 0D,

(TE-Pr)

A Universal Calculus for Stream Processing Languages (Extended) 29

n = |Ps| Viel...n: g = freshld() Vi€ l...n:q = freshld()
Fbsaops = [[FS75p7qaqﬂ]]€ VZ G 1n£51307pz: |IFS7PSiaq7llvqi]]€
Fbjyopj:[[Fan,szal]]g Fb:FbsU(UFb)UFbj Tp:OpS@Opj

|IFS7 splitjoin {Spﬁsjn}a(tha ﬂg = Fba@

Viel...4:q; = freshld()
Fb_7‘70pj = [[F57jn,Q1,(QO,Q4)ﬂ§ Fbwm: [[F57PS»QQ,Q1H§
Fb”TPlZ IIF57PS/3q47q3I|€ Fbs7ops = |IFS7Sp7 (q37q5)7q2ﬂ€
F,=Fy,, UF,, UF,, UF, 0p = op; 0Py 0P, 0p;

[Fs, feedbackloop{jn body Ps loop P, sp},qs,qo % = Fy, 0p
f = freshId() op = (@ « f(qa);
Fy = [f — wrapDupSplit(|q|)]
[Fs,split duplicate;,q,qq]% = Fb, 0p
f = freshld() v = freshld()
Fy = [f — wrapRRSplit([g])] op = (q,v) — f(ga,v);
[Fs,split roundrobin;,q,qq]% = Fy, op
f = freshId() Vi €0...q|: vi = freshld()
Fy = [f = wrapRRJoin(|g')] op = (g:,0) < (7', 0);

[Fs,join roundrobin;,q.,q |% = Fp, op

(T%-S3)

(T%-Fu)

(T?-Dup-SPLIT)

(T%-RR-SPLIT)

(TE-RR-JOIN)

StreamlIt domains:
z€Z Data item
Lez” List of data items
z € N Natural number (peek number)

StreamlIt operator wrapper signatures:
wrapFilter D Zx{1}xZ* = Z"x Z*
wrapDupSplit : Z x {1} — Zx
wrapRRSplit : Z x {1} xN— Z* x N
wrapRRJoin : Z* x {1} xN— Z x N

Streamlt operator wrappers:
5,t — f(5,peek(x)) =a z,0=d, 0 =10,d;y,
|¢'| > |pp| Viel...|z|:|¢| >z Viel... |z|:di =0,
E/,aq = f(E7 E) r = |£l‘ - |1Tp| E” = Z;‘_A'_l .. .E‘,Z/l

wrapFilter (a, ps, p) (din, _, dv) = dg, 2, £"

5,t — f(5,peek(z)) = a Z, 4 =d, v =140,d;,
|| <|pp| or Fiel...|z|:|l/| <z

wrapFilter (a, ps, pp) (din, _, dy) = ®,Z, £
Viel...N:b;=din
wrapDupSplit(N)(din,) = b
d=c+1mod N by = din, Viel...Nyi£c:b,=e
wrapRRSplit(N)(din, _,c) = b, ¢

(W,-FILTER-READY)

(W ,-FILTER- WAIT)

(W,-Dup-SPLIT)

(Ws-RR-SPLIT)

30 Robert Soulé et al.

d; = din,d; Vi#iel...N:d;=d;
dg,dout:dlc Vj;écelNd;/:d;
bout,,d = wrapRRJoin(N)(e,i,c+1mod N,d)

— — Ws-RR-JOIN-READY
wrapRRJoin(N)(din, i, ¢, d) = (bout, dout), ', d ()

Vigi€l.. N:d,=d; di=dn,d; d.=oe
wrapRRJoin(N)(din,i,c,d) = o,c,E/

(Ws-RR-JOIN-WAIT)

C Streamlt Translation Correctness
This section proves Theorem 2.

C.1 Background on Streamlt Formal Semantics

Before we can prove that the semantics of Streamlt on Brooklet are equivalent to previously specified
semantics of Streamlt, we recapitulate those semantics from [26]. The StreamIt semantics are spec-
ified over three algebras: the literal algebra, which is a subset of Streamlt; the intermediate algebra,
which looks more like Lisp; and the transform algebra, which is a closed-form function. We will use
the function from the transform algebra to define the Streamlt execution semantics function —.

C.1.1 Streamlt Function Environment. The previous Streamlt semantics are defined on a
simple SDF core of Streamlt, called literal algebra in [26]. It is mostly identical to the Streamlt
syntax that we showed in Section B, except that it does not model state in filters. That means that
the canonical form of a filter ft looks like this:

filter {
work {
(t1, ..., tepysy) < [f(peek(0), ..., peek(xprek — 1));
push(t1); ...; push(zpygy) s
pop(); ...; pop(); /* xpop times */
}
}

Filters differ in the integers zpysy, Tprrk, and zpop, and in the name of the function f. The
Streamlt semantics treat the function f as a black-box. We denote by Fy the Streamlt function
store, which maps from function names to opaque functions. If a filter peeks and pushes xpggk and
xpush data items, respectively, and the filter uses the function name f, then the function Fs(f) in
the function environment has the following signature:

Fs(f) . ZIPEEK N ZIPUSH

This is a pure function invoked each time the filter receives a data item. Our formalization resembles
the formalization in [26] in that it uses black-box functions to abstract away local deterministic
computation. Our formalization of the literal algebra differs from that in [26] in that we have a
single function that returns multiple values to push, instead of having a separate function for each
value to push. We adjust the remainder of this section to account for this difference. We also picked
different letters in some cases, such as x for integers and Z for the domain of Streamlt data items.

C.1.2 Streamlt Intermediate Algebra. The Streamlt intermediate algebra (STA) has a Lisp-
like syntax:

A Universal Calculus for Stream Processing Languages (Extended) 31

StreamlIt intermediate algebra syntax:

Psia == ftgia | Plsia | isia | flsia SIA program
ftoa = (filter z x x f) SIA filter
plgr = (pipeline Psa) SIA pipeline
Sjgra = (splitjoin spgrs Psia jngra) SIA split-join
flgia = (feedbackloop jng;y Psia Psia spgia) SIA feedback loop
Spgra 1:= duplicate | roundrobin SIA split type
Jngra = roundrobin SIA join type

The formalization in [26] only sketches an incomplete translation from the literal algebra to the
intermediate algebra. Here, we present the complete translation, filling in the missing details and
expressing everything in a notation consistent with the rest of this paper. We will denote the trans-
lation as [-]%;,. The input is a StreamlIt function environment F, and program P;, and the output
is an STA function environment Fg;4 and program Psja.

Z = f(zgl 1(0)5 -+ 5 gy 1(IPEEK*1))
oca. oca. WS A—FT
wrapsia(f, b 2ppeK) Glocar) (2) = . (Wsia-F)
Vi€ l...|ps|: fi = freshId()
Fsia = [f1 = wrapgio(Fs(f), 1, [pkl), - .., flps) = wrapg o (Fs(f), [psl, |pk|)]
Psia = (filter |ps| |pp| |pk|)
(T4-F1)

[[FS, filter{work{f(—f(pik) ;pS ﬁ}}]]‘gm = <F5[A, P51A>
The function environment Fgr4 of the intermediate algebra is populated with one function for
each push statement in the literal syntax. These functions differ from the functions in the original
environment in that they obtain their parameters directly from a local index transform gjoca) and a
tape Z. An index transform is a function from integers to integers, and a tape is a sequence of data
items. Therefore, the signature of a function Fgya(f) is:

Fsia(f): (N—=N) — (2" - 2)

The local index transform gioeal € (N — N) maps the peek index 0 < i < zpgrk to a tape index,
and the tape Z € Z* is the sequence of all data items that ever travel on some stream. Hence, the
indirect subscript z,_ ;) reads a data item from the tape.

We just saw the [-]%,, translation rule for filters. The translation rules for recursive syntax
(pipeline, split-join, and feedback loop) are fairly straightforward, since they only make superficial
syntactic changes:

Vi€ 1...|Ps|: (Fsia,, Psia,) = [Fs, Ps, 154
Fsia = UFs1a Psra = (pipeline Psra)

. . 5P (TSIA—PL)
[Fs,pipeline{Ps} %, = (Fsia, Psia)
Vi € 1...|Ps|: (Fsia,, Psia,) = [Fs, Ps; [
Fsia = UFs1a Psia = (splitjoin [splga Psia [3n]g4) (Ts14-S3)
[Fs,splitjoin{sp Ps jn} %4 = (Fsia, Psia)
<FéIA7PéIA> = [[FS7PS/ I;'[A <F.;'/IA3P.§IA> = |IFS7PSN {‘:‘IA
/ 1" . / 11
Fsia = FgaUFd Psia = (feedbackloop [jn]ia;s Psra Psia [sp1%54) (Ts1aFL)
[Fs, feedbackloop{jn P, P. sp} %4 = (Fsia, Psia)
.) p .
[split duplicate]%;, = duplicate (Ts14-SP)

[split roundrobin]%;, = roundrobin

[join roundrobin]%;, = roundrobin (Tsra-JN)

32 Robert Soulé et al.

C.1.3 Streamlt Execution Semantics Function. The previous formal semantics for StreamIt [26]
is a denotational semantics with a meaning function M. We denote the meaning function as —
instead for consistency with the rest of the paper. It is defined by a translation [- [%4,, where STA
stands for Streamlt transform algebra. Here is the definition:
—% (Fs, Ps, Is) = let (Fsia, Psia) = [Fs, Ps]%;, in
let f = [Fsia, Psia]ors in

fgia)(Ls)

In other words, first use [-]%;, to transform from the literal algebra to the intermediate algebra,
then use [-], to transform from the intermediate algebra to the transform algebra. The transform
algebra result is a higher-order function f, which depends on a global stream transform for taking
care of any index shifts incurred by splitters. Since we are at the outermost level, we pass in the
identity index transform g;q. After applying the index transform, the resulting function f takes a
sequence [of data items as a parameters, which is the tape that serves as the single input to the
entire StreamlIt program. In other words, the signature of f = []%p, is:

f:(N=>N)— (2" = 27)

Next, we look at the [-], rule for filters.

iglobal 0 <=ljocal <XPEEK Iqlobal
—-> —> -_ - »@—»
N
- R N . -
z \ z
L 3

Fig. 8. Streamlt index transforms for a filter.

./
sdep((filter zpusu Tropr ZrEEK _))(igobal) = [;gﬁ} - LPOP + TPEEK — ZPOP (Wsra-Fr)

lglobal = gglobal(Sdep (ftSIA)(i/global) - ilocal)

localIndezTransform(ft g4, gelobal, i;’.lobal) (410cal) = iglobal

(Wsra-FT-LOCAL)

Jlocal = local[ndea:Tmnsform(jtSM,gglobal, z"global)
(filter zpusu _ _ f) = ftg

([[Fsia, ftsialsra (gglobal)(g)) , = Fsia(fi, ., mod apysu) (giocat) (2)

“global

(T%a-F1)

The local index 0 < 4jpoca1 < Tprrpk is the peek number. The global index ifglobal is the index on
the output from the filter, and the global index 4gioba is the index on an upstream tape Z that
is separated from the filter by zero or more splitters. The local index transform gjoca transforms
the local index #1ocal O Zglobal. It uses a helper function sdep(ftgra) that turns a global index at a
filter output into the global index at the filter input that it depends on. The sdep(ftg;4) function is

A Universal Calculus for Stream Processing Languages (Extended) 33

computed based on the data rates zpusu, Tpop, and zpggk of the filter. The local index transform
also subtracts the local index 4joca1 to peek into the past, and finally uses the global index transform
Jglobal to take care of any transformation imposed by the context of splitters. Figure 8 illustrates
these transformations. Dashed lines represent intermediate streams that the index transforms skip
past.

Next, we look at the [-]%, rule for pipelines.

[Fsia, (pipeline Psia) |24 (ggional) = [Fsza, Psia [ora (ggiobal) (Ts7a-PL-BASE)

z' = [Fsia, (pipeline Psia) 1% 74 (gglobar) (Z)
Z" = [Fsia, Psia %74 (gia)(Z)

[Fsra, (pipeline Psia, Psra) [57a(ggiobal)(Z) = 27

(Tsa-PL)

The base case of a pipeline with just one stage translates that stage in the context of the global
index transform. The recursive case transforms the input sequence Zz of data items by first running
it through all pipeline stages but one to get z’, and then running it through the last pipeline stage
to get Z7, in the context of an identity index transform g4 because there is no additional splitter
before the last pipeline stage.

Before we can develop the [- %, rule for split-joins, we need another sdep function that describes
how to turn the global index at the output of a pipeline into the global index at its input. The function
is defined using a simple recursion:

sdep((pipeline Psia))(igiona) = sdep(Psia)(igional) (WsTa-PL-BASE)
sdep((pipeline Psia, Psia))(igiona) = sdep(Psia)(sdep((pipeline Psia))(igiobal)) (Wsra-PL)

To develop the sdep function for a split-join, we develop separate sdep functions for splitters and
joiners.

sdepSplit(duplicate, _, _)(iglobal) = %global (Wsra-Sp-Dup)
sdepSplit(roundrobin, n, k) (iglobal) = 1 - iglobal + k (Wsta-Sp-RR)

iglobal mod n < k

(WSTA—JN—RR—O)

sdepJoin(roundrobin, n, k) (iglobal) = Ligli’zﬁj +0

Z‘global mod n 2 k

7 (WSTA—JN—RR—l)
sdepJoin(roundrobin, n, k) (igiobal) = | 2222 | +1

n= |PSIA| k= |PSIA| -1 i/g/lobal = 5d€pJ0m(1”S]A7 n, k)(i/g/l/obal)
ilgloba] = Sdep(PSIAk)(iglobal) iglobal = sdepSplit(spSIA,n, k) (i/global) (Wsr4-SJ)
— ; ; TA-
sdep((splitjoin spgyy Psia jng4)) (iglobal) = %global
Now, we can formulate the translation [-]%;, rule for split-joins.
(splitjoin spgra Psia jhsia) = $jsia n = |Psial k = igona mod n
) . .77
fsra = [[/FSIA7 Psia,]]ZS)TA lglobal — Sdep(Jnsm:m If)(lglobal)
Jglobal = Jglobal © 8dep(spgra,n, k) o sdep(Psia,) (Tra-S1)
A=
([Fsia, 57514 Bra(gaona)(®)) = (fsma(Gaoa) (2)) |
Zglcvbal Zglobal

Fig. 9 illustrates the index transformations. The data item at index i’g’lobal on the output from the
split-join is the same as the data item at index i’global on the output from the kth subprogram. The

34 Robert Soulé et al.

9'global
sdep(sp) sdep(Py)
iglobal ' global I"global

- LN N LN -
Z \ \ \ Z
Fig. 9. Streamlt index transforms for a split-join.

kth subprogram operates in the context of an index transform that incorporates the context of the
split-join, the index shift of the splitter, and the index shift of the subprogram itself.

We do not model feedback loops here, because they were missing from the transform algebra
in [25].

C.1.4 Streamlt Input and Output Translation. In general, the Streamlt domains for input
and output are as follows:

StreamlIt domains for input and output:

Is € (id > 2) x Z* StreamlIt input

Os € Z* StreamlIt output
The input I, consists of a variable store V in the domain id — z and a sequence Z of data items
Z € Z*. The variable store contains initial contents of explicit state variables, and contains the data
to kick-start feedback loops. However, since the StreamlIt semantics in [25] do not model explicit
variables or feedback loops, they only refer to the sequence Z of input data items. The output Oy,
in their case as well as ours, is a simple sequence z’ of data items.

StreamlIt input translation: [I,]: = (V, Q) Streamlt output translation: [V, Q] = O;

V,z=1I, i _Q:[qm'—@] (T) [V,QI5 = Q(qout)
[1:]s =(V,Q)

Fig. 10. Streamlt input and output translation.

The input translation [I]% translates a Streamlt input I, into a Brooklet input by copying the
variable store and by initializing the input queue g, with the sequence of data items. The output
translation [Oy]9 translates a Brooklet output Oy into a Streamlt output by retrieving the sequence
of data items from the output queue go:. Note the superscripts ° that distinguish input and output
translation from program translation [-]?. The translations are formalized in Fig. 10.

C.2 Streamlt Main Theorem and Proof

As we have seen in the background information, the previous denotational semantics for Streamlt [25]
model neither stateful filters nor feedback loops. In our semantics by translation to Brooklet, on the
other hand, we model both features. This was easy to do with our semantics, because it is small-step
operational. But because the features are missing from the previous semantics, a proof can only

A Universal Calculus for Stream Processing Languages (Extended) 35

Input Execute Output
*

F37 P37 Is%Os

S, o) S w
=5 —

= =

Translate
Translate

Fb7Pb>Ib7>Ob
b

Input Execute Output

Fig. 11. Streamlt translation correctness.

show equivalence for programs that do not use them. With that in mind, we can re-state Theorem 2
more clearly:

Theorem 2 (Streamlt translation correctness. For all Streamlt function environments Fy,
programs P;, and inputs I, where the program Ps uses neither stateful filters nor feedback loops:

’: (F57PS7-[5) = |I>Z (IIF&PS]]57 IIIS}]ZS)}]L;
In other words, executing under Streamlt semantics (—%) yields the same result as translating the
program and the input from Streamlt to Brooklet ([-]2*), then executing under Brooklet semantics

(=), and finally translating the output from Brooklet back to StreamlIt ([-]?). Fig. 11 illustrates
this graphically.

Proof (Theorem 2). We use an outer structural induction over the program topology, with the base
case Filter (Lemma 7) and the two recursive cases Pipeline and Split-Join (Lemmas 8 and 9; there
is no lemma for feedback loops, because they are missing in [25]).]

C.3 Detailed Inductive Proof of StreamIt Correctness
Lemma 7 (Filter Translation Correctness). Theorem 2 holds for the special case where the

StreamlIt program Py is a simple stateless filter.

Proof (Lemma 7). Without loss of generality, we assume that the filter f¢ is in canonical form,
repeated here for convenience:
filter { work {

(t1, ..., tIPUSH) “— f(peek(()) s ey peek(;cpEEK —1));
push(t1); ...; push(zpygy) ;s
popQ); ...; pop(); /* zpop times */

} 32

Let z = I be the Streamlt input and z’ = O, be the StreamlIt output, and let 4 be an index in the
program output. We will derive the result for z; along the different edges in the commuting diagram
in Fig. 11.

~: Along this edge, we have z; = (—* (Fg, ﬁj))i, which we can rewrite directly by expanding out
the definition of —7. This rewriting eventually leads us to the following closed-form expression
for z;:

36

Robert Soulé et al.

zi = (— (Fs,ft,f))z
(LLFs 1100 Bera(9:0) ()
([[FSIAvftSIA 1874 (gid)(z)))

— Fs1a(fi moa spyen) (localndeaTransform (fts; 4, gia 1) (%)

= Fsia (fz mod mpUSH)(Ailocal : gid(Sdep(ﬁSIA)(i) - 7:local)(z)
= Fs1a(fi mod wpysu) (Niocal * sdep(flgra)(8) — tiocat))(Z)
= wrapg;a(Fs(£),i mod xpusn, TrEEK) (Nilocal * sdep(ftsra) (i) — tocat)) (%)

= Fu(£)(Zadep(ftsa) ()0 - -+ » Zsdep(ftsia) (i) ~wppEx +1) (i mod wpusi)
= F(f) (Z([IP:]SH-"WPOP+95PEEK_$POP_O)’ T Z((ﬁ]'1POP+$PEEK—ﬁpop—xPEEK‘H)) (i mod zpusH)
= F(£f (z i e 2 ;)

s(£) (I &pisg | *POPTTPEEK —POP)’ V(T appgr |'*POP—2POP+1) (i mod zpusH)

: This edge performs the program translation and input translation from Streamlt to Brooklet. We

end up with the following Brooklet function environment Fy,, program P,, and input I, = (Q, V):
Fy =[f — wrapFilter(ft)]
P, =output qout; input qin; (Qout,V) — £(qin,V);
Q = [qin — Z,dout .}
V=[vr e

: Along this edge, we are determining the ith data item that gets pushed onto the output queue

gout- This data item occurs when rule W,-FILTER-READY has fired (xpésn] times. At that point,
the contents of the variable V' (v) together with the last data item that triggered the firing consists
of zprrxk data items. These data items come from consecutive indices of Q(qi,) by construction of
the wrappers. The index of the last data item that triggered the firing is <$PéSH> +1—zpop),
because at each firing of the W -FILTER-READY rule, we pop xpop inputs and push xpuysph
outputs. Hence, the data items that the wrapper function wrapFilter(ft) passes to the wrappee

function Fs(f) are:

YtapEEK —TPOP)? " Z((Y+l—zpop)

<<“"PUSH TPUSH
In other words, we invoke the same function on the same parameters as in the case. The
result is the sequence of data items to push on the output, and we get the same result z; as in

the = case by subscripting with (i mod zpysH).

—

: Along this edge, we have:

([06]5): = (Q(gout):)
which is the same data item computed by the |, step.

Both of the calculations (~ and }_#) result in the same data item for the ith position of the output.
Since our argument holds for any i, the outputs are fully equal. O

Lemma 8 (Pipeline Translation Correctness). Assuming the translations for all sub-programs
in the pipeline are correct, Theorem 2 holds for the special case where the StreamlIt program Py is a
pipeline.

Proof (Lemma 8). We use the assumption from the outer induction to equate the ~ and 4, cases
for each individual stage. We do an inner induction over the number of pipeline stages. In each stage,
the output queue contents of the previous stage serve as inputs to the next stage. a

A Universal Calculus for Stream Processing Languages (Extended) 37

Lemma 9 (Split-Join Translation Correctness). Assuming the translations for all sub-programs
in the split-join are correct, Theorem 2 holds for the special case where the Streamlt program Py is
a split-join.

Proof (Lemma 9). We chose an arbitrary but fixed subprogram index. We express the contents of
the input tape of that subprogram by using an index transform on the Streamlt side, but direct
split operator execution on the Brooklet side. Then, we use the assumption from the outer induction
to equate the ~ and 4} cases for that subprogram. Finally, we express the contents of the output
tape of the entire split-join by using, again, an index transform on the Streamlt side and direct join
operator execution on the Brooklet side. a

D Data Parallelism Optimization Correctness

This section sketches the proof for Theorem 3.

Let b;, and b,y be the sequences of all data items that ever appear on queues ¢;, and oy,
respectively. Because every Brooklet queue is defined only once and because op is stateless, b;, fully
determines bo,;. Since f commutes, by, has the same contents in both P, and P}. Since round-robin
split-joins preserve order, b,,; has the same order in both P, and Pé . O

E Fusion Optimization Correctness

This section sketches the proof for Theorem 4.

Let b;, and b,y be the sequences of all data items that ever appear on queues ¢;, and oy,
respectively. Because every queue is defined only once and because only op; and op, write v;
and va, by, fully determines b,,;. We can show that by, is the same for both P, and P/ by induction
over b;,. m|

F Selection Hoisting Optimization Correctness

This section sketches the proof for Theorem 5.

The input data on g fully determines the output data on q,.:, because the operators are stateless.
We can show by induction over the input data that the output data is the same for both P, and P;.
The proof relies on the fact that f; only reads data forwarded unmodified by fo and vice versa. O

