
A numerical method for simulating the dynamics of 3D

axisymmetric vesicles suspended in viscous flows

Shravan K. Veerapaneni∗, Denis Gueyffier†, George Biros‡, Denis Zorin§

CIMS Technical Report TR2009-920

Version: March 2009

Abstract

We extend “A boundary integral method for simulating the dynamics of inextensible vesicles suspended

in a viscous fluid in 2D”, Veerapaneni et al. Journal of Computational Physics, 228(7), 2009 to the

case of three dimensional axisymmetric vesicles of spherical or toroidal topology immersed in viscous

flows. Although the main components of the algorithm are similar in spirit to the 2D case—spectral

approximation in space, semi-implicit time-stepping scheme—the main differences are that the bending

and viscous force require new analysis, the linearization for the semi-implicit schemes must be rederived,

a fully implicit scheme must be used for the toroidal topology to eliminate a CFL-type restriction, and

a novel numerical scheme for the evaluation of the 3D Stokes single-layer potential on an axisymmetric

surface is necessary to speed up the calculations. By introducing these novel components, we obtain a

time-scheme that experimentally is unconditionally stable, has low cost per time step, and is third-order

accurate in time. We present numerical results to analyze the cost and convergence rates of the scheme.

To verify the solver, we compare it to a constrained variational approach to compute equilibrium shapes

that does not involve interactions with a viscous fluid. To illustrate the applicability of method, we

consider a few vesicle-flow interaction problems: the sedimentation of a vesicle, interactions of one and

three vesicles with a background Poiseuille flow.

1 Introduction

Vesicles are closed lipid membranes suspended in a viscous solution. They are common in biological systems,

and play an important role in intracellular and intercellular transport; artificial vesicles are used in a variety
∗Courant Institute of Mathematical Sciences, New York University, New York 10012, shravan@cims.nyu.edu
†NASA Goddard Institute for Space Studies, New York NY 10025, dgueyffier@giss.nasa.gov
‡College of Computing, Georgia Institute of Technology, Atlanta GA 30332, gbiros@gmail.com
§Courant Institute of Mathematical Sciences, New York University, New York 10012, dzorin@cims.nyu.edu

1

of drug-delivery systems, and to study the properties of biomembranes. The vesicle evolution dynamics are

characterized by a competition between membrane elastic energy, nonlinearity, surface inextensibility, and

non-local interactions due to the hydrodynamic coupling. The design of efficient computational methods for

such flows has received limited attention compared to other types of particulate flows. In [25] , we introduced

an algorithm for vesicle simulations in two dimensions. In this paper, we take the first step towards efficient

high-order three-dimensional simulations by considering axisymmetric vesicle flows for the case where there

is no viscosity contrast across the vesicle membrane. The equations that govern the motion of a single vesicle

in three dimensions are
∂x
∂t

= v∞ + S[fb + fσ] (vesicle position evolution),

divγ
∂x
∂t

= 0 (surface inextensibility),
(1)

where γ is the vesicle membrane, divγ is the surface divergence operator, x is a Lagrangian point on γ, fσ is

a force (tension) due to surface inextensibility, fb is a force due to bending, v∞ is the far-field velocity of the

bulk fluid, and S is the single-layer Stokes operator, defined in § 2. The first equation describes the motion

of the vesicle boundary; the second equation expresses the local inextensibility of γ.

Our main goal is to extend the ideas presented in [25] to the axisymmetric case of vesicles with spherical

or toroidal topology. The extension is non-trivial because in three dimensions the bending energy has a

much more complicated form and cannot be reduced to a linear expression in arc-length derivatives as in the

two-dimensional case. Furthermore, the qualitative numerical behavior of bending forces is also different:

an unconditionally stable semi-implicit linearized scheme with no CFL-type restriction on the time step,

similar to the two-dimensional case, could only be found for the spherical topology. For vesicles with

toroidal topology (admittedly less common, but observed in nature [18]), eliminating CFL-type time-step

restrictions requires a fully implicit time-marching scheme. Our main contribution is the development of

efficient numerical schemes for (1) for spherical and toroidal topologies with the following components:

• they require a single linear solve per time step for spherical topology, and a small number of iterations

for toroidal topology;

• they include an efficient preconditioner to enforce the surface-incompressibility constraint;

• they are spectrally accurate in space and third-order accurate in time.

Another important part of the algorithm is a novel numerical scheme for evaluation of the 3D Stokes single-

layer potential on an axisymmetric surface, needed to achieve an optimal complexity of the algorithm. For

verification, we compare equilibrium shapes obtained using the proposed method with shapes obtained using

a variational approach that does not involve computing viscous forces. Finally, to illustrate the capabilities

of the method, we consider sedimentation of vesicles under gravity and interactions of multiple vesicles with

a background Poiseuille flow.

2

Limitations. The main limitations of our scheme are the lack of adaptivity (both in space and time) and

the dependence of the stable time step on the shear rate in a shear flow. While one would hope that a fully

implicit scheme would eliminate or reduce these time-step restrictions, our experiments indicate that even

a fully-implicit Newton scheme (§4.3) does not yield noticeable speed-ups. This is because for large time

steps we were not able to converge the Newton iterations. The time-steps for which we were able to converge

the Newton iterations were very close to the time steps for which the semi-implicit scheme was stable. An

additional limitation of the overall scheme is that we do not consider topology changes or vesicles flows with

a viscosity contrast across the membrane, which would require solution of an additional boundary integral

equation.

Related work. There has been a lot of work on modeling 3D axisymmetric particulate flows. In [25] , we

discussed vesicle-related algorithms. An excellent review of such methods can be found in [15] (Table 1, pg.

289; for vesicles see the “liquid capsules” entry).

Several groups have focused on determining stationary shapes of three-dimensional vesicles using semi-

analytic [19, 4, 6], or numerical methods like the phase-field [9, 8] and membrane finite element methods

[10, 13]. These approaches are based on a constrained variational approach (i.e., minimizing the bending

energy subject to area and volume constraints) and cannot be used for interactions of multiple vesicles in

shear flows.

A full three-dimensional simulation of a single vesicle incorporating the hydrodynamic coupling, local

inextensibility and the bending forces has been reported in [11, 20]. A closely related work is also that of

[16], in which, a nearly inextensible interface was considered for the axisymmetric motion of red blood cells

inside a cylindrical tube.

In all, however, there has been little work in developing fast algorithms for axisymmetric vesicle flows.

Contents. In §2, we formulate the integro-differential equations (1) that govern vesicle dynamics. The

spatial and temporal discretizations are described in §3 and §4 respectively. In §5, we present numerical

results for a number of problems involving single and multiple vesicles suspended in a viscous fluid. We

conduct numerical experiments to investigate the stability and convergence order of different time-stepping

schemes. The verification of the solver and several important details (semi-analytic solutions for the quiescent

case, expressions for the force and Stokes convolutions in the axisymmetric case, and an analysis of the

approximation error for high-order derivatives and ways to improve accuracy) are presented in the Appendix.

3

2 Problem Formulation

For simplicity, we first discuss the formulation for a single vesicle suspended in an unbounded viscous fluid.

Let p(x) and v(x) denote the fluid pressure and velocity fields, and let γ denote the membrane of the vesicle.

The motion of the background fluid is described by the Stokes equations,

− µ4v +∇p = 0 and div v = 0 in R3\γ, (2)

where µ is the viscosity of the fluid. The no-slip boundary condition on γ and the free-space boundary

condition requires that

v = ẋ on γ, lim
x→∞

v(x)− v∞(x) = 0, (3)

where ẋ is the total derivative of the motion of material point on the vesicle surface (i.e., its velocity) and

v∞ is the far-field velocity of the background fluid. The continuity of the forces across the interface results in

a stress vector jump across the interface γ of magnitude f . To derive an expression for f we have to consider

the constitutive properties of the vesicle membrane. The standard assumptions for vesicles [18] consider a

surface elastic energy that consists of two terms:

E(H,σ) =
∫
γ

1
2
κBH

2 + σ dγ, (4)

where κB is the bending modulus and H is the mean curvature. The first term is the bending energy and

the second term is required to enforce the local inextensibility constraint of the surface. In other words, the

tension σ is a Lagrange multiplier that enforces the constraint. The interfacial force can be derived from the

surface energy by taking its L2−gradient

f = −δE
δx
,

In order to derive a formula for f in terms of the curvature and the parameterization of the surface, we need

to introduce a few quantities. Let x(u, v) : U → γ be a parametrization of the surface. The corresponding

fundamental form coefficients are [21],

E = xu · xu, F = xu · xv, G = xv · xv (first fundamental form), (5)

L = xuu · n, M = xuv · n, N = xvv · n (second fundamental form). (6)

The normal to the surface and the area element are defined by

n = (xu × xv)/
√
EG− F 2, dA =

√
EG− F 2 du dv = W dudv. (7)

We can now define the mean and Gaussian curvatures as

H =
1
2
EN − 2FM +GL

W 2
, K =

LN −M2

W 2
. (8)

4

Then, following [26], the gradient or first variation of (4) is given by

δE =
∫
γ

(
∆SH + 2H(H2 −K)

)
n · δx− (σ∆Sx +∇Sσ) · δx dγ, (9)

where ∆S is the Laplace-Beltrami operator defined by

∆Sφ =
1
W

((
Eφv − Fφu

W

)
v

+
(
Gφu − Fφv

W

)
u

)
, for some scalar function φ. (10)

From (9), we define the bending and tension forces as

fb = −(∆SH + 2H(H2 −K))n, fσ = σ∆Sx +∇Sσ. (11)

The force density exerted by the vesicle membrane on the fluid is given by f = fb + fσ. Using classical

potential theory [14], the solution of (2, 3), combined with the local inextensibility constraint of the membrane

can be written as

ẋ = v∞(x) + S[fb + fσ](x) and divγ (S[fσ]) = −divγ (v∞ + S[fb]) . (12)

This is a system of two integro-differential equations for two unknowns: the position of the membrane x and

the tension σ. The single layer potential operator is defined by S[f](x) =
∫
γ
G(x,y)f(y) dy, where G is the

free-space Green’s function for the Stokes operator and is given by

G(x,y) =
1

8πµ

(
1
||r||

I +
r⊗ r
||r||3

)
, r = x− y. (13)

Next, we present the reduction of these equations to one spatial variable in the axisymmetric case.

2.1 Axisymmetric formulation

Assuming symmetry in the ‘v’ direction, the positions and the interfacial forces take the following form

x =


x1(u) cos v

x1(u) sin v

x2(u)

 , f =


f1(u) cos v

f1(u) sin v

f2(u)

 . (14)

The parametric domain {u, v} ∈ U is [0, 2π]× [0, 2π] for toroidal topologies; representing all variables in

the trigonometric basis guarantees that the resulting functions, are well-defined as a function on the toroidal

domain [(R + cosu) cos v, (R + cosu) sin v, sinu], with R =
√

2. A sphere can be regarded as a degenerate

torus with R = 0, with each point of the sphere corresponding to two points on the torus. To make this

mapping one-to-one we consider only one half of the parametric domain [0, π]× [0, 2π]. For x to be a smooth

function on the sphere, it is necessary and sufficient that x1 is an odd and x2 is an even periodic function of

u; in other words, a trigonometric series for x1 and x2 have only nonzero coefficients for sines and cosines

respectively. Similarly, any scalar function defined on the surface needs to be even in u.

5

We can now write the bending and tension forces in terms of u. Let s be the arclength parameter, that is,

s(u) =
∫ u

0
||x(u′)|| du′. In the Appendix B, we derive the expressions for the forces in terms of the principal

curvatures κ and β; here, we just state the result:

fb =
1
2

(
4S(κ+ β) +

(κ+ β)(κ− β)2

2

)
n, fσ = (σxs)s − σβn, (15)

and at the poles, we have lim
x1→0

fb = κssn, lim
x1→0

fσ = σsxs − 2σκn. (16)

Next, we derive the axisymmetric form of the single layer potential. Without loss of generality, we assume

that the targets on the surface are located at the cross-section v = 0. Then, the target and source points

have the form x = [x1, 0, x2]T and y(u, v) = [y1 cos v, y1 sin v, y2]T respectively (for notational clarity, we

drop the explicit dependence of xi and yi, i = 1, 2, on u). The single layer potential can be written as

S[f] =


F1

0

F2

 =
∫ 2π

0

dv

∫ π

0

du

(
1
|r|

I +
r⊗ r
|r|3

)
f1 cos v

f1 sin v

f2

 y1||yu||,

where r =


y1 cos v − x1

y1 sin v

y2 − x2

 ; |r| =
[
x2

1 + y2
1 − 2x1y1 cos v + (x2 − y2)2

]1/2
.

S[f] =

 F1

F2

 =
∫ 2π

0

dv

∫ π

0

du

 cos v
|r| + (y1 cos v−x1)(y1−x1 cos v)

|r|3
(y1 cos v−x1)(y2−x2)

|r|3
(y1−x1 cos v)(y2−x2)|

|r|3
1
|r| + (y2−x2)2

|r3|

 f1

f2

 y1||yu||.

(17)

All the integrals with respect to ‘v’ are computed analytically using equations (55–59). In summary, the

axisymmetric form of the 3D Stokes operator is given by

S[f](x) =
∫ π

0

K(x, u)f(u)y1(u)||yu|| du. (18)

The kernel K is composed of elliptic integrals of first and second kind.

Gravitational force. If there is a density difference across the membrane of a vesicle, then the vesicle

experiences an additional force due to gravity given by

fg = (ρin − ρout)(g · x)n. (19)

Then, the governing equations that include gravitational forces are

ẋ = v∞ + S[fb + fσ + fg]; divγ(S[fσ]) = −divγ(v∞ + S[fb + fg]). (20)

6

Scaling. Following [11], we set the length and time scales as R0 =
√

A
4π and τ = µR3

0
κB

respectively, where

A is the surface area of the vesicle. In the absence of external flows and gravity, it is known that vesicle

dynamics are characterized by a single parameter [11], the reduced volume(ν) = 6
√
πV

A3/2 .

Since we are dealing with an axisymmetric problem, we must consider an axisymmetric v∞, for example a

velocity field with parabolic profile that smoothly decays to zero away from the axis of symmetry, to resemble

the profile of a Poiseuille flow. Typically, we consider velocity profiles of the form v∞ = c
(
w2 − x2

1(u)
)
, where

c and w are constants. Notice that the curvature of this velocity profile is ∂2v∞
∂x2

1
= −2c, and the corresponding

shear rate is ∂v∞
∂x1

= −2cx1(u). We introduce the nondimensional entity ĉ = cµR4
0

κB
that parametrizes such

external flows.

In the presence of gravity, an additional parameter that governs the vesicle dynamics is the nondimen-

sional gravity parameter, given by ĝ = (ρin−ρout)gR4
0

κB
.

Multiple Vesicles. The governing equations in the multiple vesicle case are given by

ẋj = v∞(xj) + Sj [fb + fσ](xj) +
K∑
k=1
k 6=j

Sk[fb + fσ](xj), (21)

divγj (Sj [fσ]) = −divγj

v∞(xj) + Sj [fb](xj) +
K∑
k=1
k 6=j

Sk[fb + fσ](xj)

 . (22)

where we separate the terms accounting for the interactions with other vesicles.

To summarize, (21) and (22) give the update and incompressibility constraints, the forces fb and fσ are

given by (15) and (16), and the single layer is given by (17). These equations form a closed system of

equations for x(u) and σ(u).

3 Spatial discretization scheme

We have chosen the spatial discretization scheme to enable efficient and high-order computation of derivatives

for computing bending and tension forces fb and fσ and accurate computation of integrals (17) involving

singular kernels. We use the trigonometric polynomial bases to represent the position of the interface and

functions defined on it. The coordinate functions x1 and x2 are given by the coefficients x̂1(k) and x̂2(k): 1

x1(u) =
M∑
k=1

x̂1(k) sin(ku), x2(u) =
M∑
k=0

x̂2(k) cos(ku). (23)

(Recall that for smoothness x1(u) is required to be odd and x2(u) even). Similarly, σ(u) =
∑M
k=0 σ̂(k) cos(ku).

The spatial to spectral transform and vice-versa are computed efficiently using the forward and inverse fast

1In the case of torus, we use Fourier basis, x(u) =
PM/2−1
k=−M/2 x̂(k)e−iku.

7

sine- and cosine-transforms. This representation allows for an efficient derivative computation:

x1u(u) =
M∑
k=1

kx̂1(k) cos(ku), x2u(u) = −
M∑
k=1

kx̂2(k) sin(ku). (24)

Since we assume that the shape of the vesicle is smooth, this derivative approximation is spectrally accurate.

We make a few more remarks on the derivative accuracy and the effects of round-off error in the Appendix D.

3.1 Quadrature Scheme

The kernels in (18) have a logarithmic singularity, which can be verified by examining their asymptotic

expansions. Let z ∈ (0, 1), then we have the following expansions around z = 0,

EllipticK(1− z) = c0 − 1
2 ln z +

(
c1 − 1

4 ln z
)
z +

(
c2 − 5

32 ln z
)
z2 +O(z3) (first kind),

EllipticE(1− z) = d0 +
(
d1 − 1

2 ln z
)
z +

(
d2 − 1

8 ln z
)
z2 +O(z3) (second kind),

for some constants ck and dk, k ≥ 0. To resolve the logarithmic singularity, we use the high-order Gauss-

trapezoidal rules of [1] that compute integrals of the form
∫ 1

0
φ(z) ln z + ψ(z) dz, where φ(z) and ψ(z) are

smooth functions. To compute (18), we split the interval of integration into two parts: (0, u′) and (u′, π),

where u′ is the evaluation point on the boundary, that is, y(u′) = x. In each interval, we use the Gauss-

trapezoidal rule to handle the singularity at u = u′. To compute the integrand at the Gauss points, we use

Fourier interpolation.

Special quadrature for the poles. Substituting x1 = 0 in (17), we get

S[f] =

 F1

F2

 =
∫ 2π

0

∫ π

0

 cos v
|r| + y1 cos v

|r|3
(y1 cos v)(y2−x2)

|r|3
y1(y2−x2)
|r|3

1
|r| + (y2−x2)2

|r3|

 f1

f2

 y1||yu|| dudv (25)

where |r| =
√
y2

1 + (y2 − x2)2. Performing analytic integration in the ‘v’ direction, we get the following

expressions for F1 and F2:

F1 = 0; F2 = 2π
∫ π

0

y2
1(y2 − x2)
|r|3

f1||yu||+
(
y1

|r|
+
y1(y2 − x2)2

|r|3

)
f2||yu|| du. (26)

Notice that the kernel is non-singular and hence the quadrature rule is modified accordingly.

Trigonometric discretization of the surface and the high-order quadrature scheme allow us, for a given

smooth surface position, to compute the velocities of surface points with spectral accuracy.

4 Time-Stepping scheme

As a starting point, we consider the explicit scheme that has been used by several authors [11, 20, 5] for

vesicle simulations. While it has a low cost per time step, we demonstrate that this scheme suffers from

8

severe stability constraints on the time-step size. The maximal stable step size for this scheme is often

significantly smaller than the step size needed to resolve the physics of the vesicle motion.

Our second time-stepping scheme is an extension of the semi-implicit scheme that we introduced in [25].

We have shown that in the two-dimensional case, the numerical stiffness can be circumvented by regarding

the stiffest terms of the right-hand side of the equations as linear spatially-variant operators acting on the

surface point positions and tensions, e.g., Q(x)x. Then, Q(x) is treated explicitly and x implicitly. Such

methods are usually referred to as semi-implicit or implicit-explicit methods [2]. Apart from improving the

numerical stability, these methods have the advantage that they lead to linear algebraic equations at every

time-step. Finally, we discuss a third, fully implicit scheme in which the nonlinear equations are solved for

each time step using an inexact Newton method.

The nonlinearity of the underlying system of equations renders their analysis quite difficult, and we

rely on numerical experiments to analyze the behavior of our schemes. Overall, we have observed that (i)

the semi-implicit scheme performs very well for spherical vesicles, eliminating the numerical stiffness and

delivering orders-of-magnitude computational savings compared to the explicit scheme; and (ii) for toroidal

vesicles, the semi-implicit may be inadequate and an implicit scheme is required.

4.1 Explicit Scheme

Let us introduce a linear operator L defined by Lσ = divγ (S[fσ]). Then, given the current position of

the membrane, we first compute the tension by inverting L and then update the position explicitly. More

precisely, let 4t be a fixed time-step size and let the position at n4t, denoted by xn, be known. Then, the

following steps are performed to compute xn+1:

1. Compute the bending force fnb

2. Compute rn = divγ (S[fnb]), with all the operators defined on xn

3. Solve Lσn = rn

4. Compute the tension force fnσ

5. Update the positions xn+1 = xn +4tS[fnb + fnσ]

Computationally, the most expensive part of this scheme is computing σn by inverting L (Step 3). This step

does not scale well with the number of unknowns because the condition number of L grows linearly with

the number of spatial discretization points M , see Figure 1. Hence, when a Krylov iterative scheme is used

to solve for σn, the number of iterations grow proportionally to the number of spatial discretization points.

For instance, using the GMRES method [17] to invert L would require O(
√
M) iterations.

We now describe a preconditioner that eliminates this ill-conditioning. In [25] we showed that, on the

unit circle, the Fourier transform diagonalizes the operator L. We derived the spectrum Λc of L analytically

9

M 17 33 65 129 257

cond(L) 76.2 103.6 215.7 440.2 890.6

Figure 1: In this table, we report the condition number of the operator L, which we have computed numer-

ically as a function of the spatial discretization points for the vesicle geometry depicted to the left.

and used its inverse as a preconditioner for solving the inextensibility constraint on a general boundary.

Specifically, we proposed a preconditioner P given by (Equation 22 of[25]):

P = F−1Λ−1
c F , Λc = diag

{
λ−M

2
, λ−M

2 +1, . . . , λM
2 −1

}
, (27)

where F is the Fourier transform operator and λk is the kth–eigenvalue of L defined on unit circle and given

by2 λk = − |k|8 .

[

20 40 60 80 100 120
0

5

10

15

20

25

|
λ

Λ
1

Λ
2

Λ
3

Λ
4

Λ
5

Λ
c

|

1 2 3 4 5

Figure 2: Plot of the eigenvalue magnitudes of the operator L defined on vesicle shapes with same surface

area. For comparision, we also show the spectrum of the corresponding operator defined on the unit circle.

We were unable to compute the spectrum of L analytically for the case of the unit sphere. In Figure 2, we

plot the spectrum of the operator L, which we computed numerically for different boundary configurations.

We observe that the spectra follow a similar pattern with the spectra of P . This motivated the use of P as
2There is a factor of two difference from the expression in [25] because of the difference in constants multiplying the

corresponding Green’s functions.

10

a preconditioner for the 3D case as well. In order to do that, we first need to extend the parametric domain

of the constraint equation from u = [0, π] to the parametric domain of the unit circle defined in v = 0 plane,

which is u = [0, 2π]. Recalling that scalar functions are even in u, the extension is simply Lσ |2π−u = Lσ|u
and r(2π − u) = r(u), where r is the right-hand side of the constraint equation. Now the preconditioner is

applied to solve Lσ = r for σ at discrete equidistant points in [0, 2π] and then only the values at the points

within [0, π] are retained. In our numerical experiments, we have found that this preconditioner works very

well for solving the constraint equation on general geometries.

By incorporating spectral representations, high-order quadrature rules, fast spatial transforms and the

preconditioner, we have minimized the computational cost per time-step of the explicit scheme. However,

the fundamental drawback of the explicit scheme is the severe constraint on the size of the time-step, which

still persists. We address this important issue in the next two schemes.

4.2 Semi-Implicit Scheme

In semi-implicit schemes, the linear part of the stiffest terms is treated implicitly [2]. Theoretically, such

schemes were proved to be unconditionally stable for advection-diffusion problems [3]. Despite the lack

of a theoretical proof, they have been demonstrated to be efficient in many other problems of interest in

computational physics [12, 22]. In [25], we proposed two semi-implicit schemes for simulating the 2D vesicle

dynamics and showed, using numerical experiments, that they dramatically improve the stable time-step

sizes over the explicit scheme. The scheme that follows is an extension of those schemes to the axisymmetric

case.

The main challenge is to simplify the nonlinear expressions for the forces and to identify an appropriate

linearization that is both easy to compute and results in a stable scheme. First, we rewrite the bending force

in a different form to facilitate the identification of the stiffest terms. In [25], we argued that, because of the

inextensibility constraint, forces of certain form (specifically, aligned with virtual forces corresponding to the

constraint) can be added or subtracted from the bending force without altering the dynamics (Appendix A of

[25]). This was used to derive a simpler form for the bending force. In the axisymmetric case, similarly, forces

in the form (hxs)s−hβn, for some smooth scalar field h(s), can be added to fb, as for any vesicle deformation

satisfying the inextensibility constraint, these forces do not do any work. By substituting h(s) = (κ−β)2

4 and

modifying fb, we get the following form for the bending force,

fb(x) =
1
2
4S(κ+ β)n +

1
2

(κ− β)(κ− β)sxs, lim
x1→0

fb = κssn. (28)

Again, we would like to emphasize that, as in the 2D case, we use a modified version of the bending force

to simplify the implementation. The force in (28) is composed of a normal and a tangential component.

Now, we can easily select the terms with highest order spatial derivatives for implicit treatment. While

11

counting the order of derivatives applied to the coordinate functions in each term, one should be cautious

of its behavior at the poles. For instance, although β = x2s

x1
may seem to have only a single derivative with

respect to s, at the poles we have limx1→0 β(u) = κ(u), and thus, it has second-order derivatives. Therefore,

the two terms in the normal component, 4Sκ and 4Sβ, have fourth-order derivatives in ‘u’ and hence are

candidates for implicit treatment. Similarly, in the tangential component, the term (κ− β)s has the highest

(third) order spatial derivatives. Following these observations, we are now ready to propose the semi-implicit

scheme. We assume that the position of the spatial points {xn(uk)}Mk=1 at time n4t is known. The goal is

to obtain the corresponding positions and tensions, {xn+1(uk), σn+1(uk)}Mk=1, at (n+1)4t. For the simplest

(first-order accurate) time discretization, our semi-implicit scheme is

1
4t
(
xn+1 − xn

)
= S

[
fn+1
b + fn+1

σ

]
(xn), (29)

L(xn)σn+1 = −divγnS
[
fn+1
b

]
(xn), (30)

where S[f](xn) = 2π
∫ π

0
G(xn(u′),xn(u))xn1 |xnu| du for any force field f . In the following definition of forces,

for notational simplicity, we drop the subscript on the terms that are treated explicitly. For example, we

substitute κn by κ and so on.

fn+1
b = 1

2
4S

`
κn+1 + βn+1

´
n + 1

2
(κ− β)

`
κn+1 − βn+1

´
s
xs bending force,

fn+1
σ =

`
σn+1xs

´
s
− σn+1βn tension force,

κn+1 = x1s
1
|xu|

„
xn+1
2u
|xu|

«
u

− x2s
1
|xu|

„
xn+1
1u
|xu|

«
u

, βn+1 = 1
x1

„
xn+1
2u
|xu|

«
curvatures,

limx1→0 β
n+1 = 1

x1u

„
xn+1
2u
|xu|

«
u

limx1→04S
`
κn+1 + βn+1

´
= 2

`
κn+1 + βn+1

´
ss

pole conditions.

Substituting these expressions in (29, 30), we get a coupled linear system of equations for xn+1 and σn+1.

However, these equations are ill-conditioned and hence are computationally expensive to solve. Next, we

discuss preconditioning techniques that can be used to accelerate the linear solves.

Combining (29, 30), we can write the semi-implicit scheme more compactly as follows

1
4t
(
xn+1 − xn

)
= Q(xn)xn+1, (31)

where the operator Q(x) includes all explicit terms from the bending and the inextensibility constraint

equations. Because of the bending force term, Q(x) is highly ill-conditioned operator. In Table 1, we list

the minimum eigenvalue of Q for a specific boundary configuration. Asymptotically, it grows as O(−M3).

Therefore, the condition number of the matrix (I −4tQ) grows as O(M3) and as a result, the number of

GMRES iterations required to solve (I −4tQ)xn+1 = xn grow as O(M3/2). To avoid this increase in the

number of iterations, we design a preconditioner. While computing the inverse of (I −4tQ) is difficult even

for simpler geometries, it turns out that mesh-independent behaviour can be achieved using a preconditioner

12

M 17 33 65 129 257

λmin -1.74e+03 -2.25e+04 -2.34e+05 -2.09e+06 -1.74e+07

Table 1: Minimum eigenvalues of Q(x) defined on the vesicle geometry shown in Figure 1 for different spatial

discretizations. We computed these values numerically.

based on the analytic spectrum Λc [25] of the two-dimensional bending operator for a unit circle (similar to

the preconditioner for the constraint equation). The preconditioner Pt, for (29) is defined as 3

Pt =

 F−1(1−4tΛc)−1F 0

0 F−1(1−4tΛc)−1F

 , (32)

where Λc = diag
{
λ−M

2
, λ−M

2 +1, . . . , λM
2 −1

}
, λk = −|k|

3

8
. (33)

We use the GMRES method to solve the coupled linear set of equations (29, 30), iterating on the Schur

complement of the position unknown and at each iteration we need to invert the inextensibility operator.

We use P (defined in (27)) as a preconditioner for the constraint equation (30) and Pt as a preconditioner for

the evolution equation (29). The total cost per time-step of this scheme exceeds that of an explicit scheme

by a factor that is equal to the number of iterations required to solve (29). Through numerical experiments,

we observed that this number is nearly mesh-independent. This preconditioner is applicable on spherical

vesicles only. We have not derived preconditioners for the case of toroidal vesicles.

The background velocity and the gravitational force are treated explicitly. In the case of multiple vesicles,

the interaction forces are also treated explicitly.

Versions of this scheme with higher order in time are readily obtained using backward difference formula

[2] as in the 2D case [25]. In the case of spherical vesicles, this scheme overcomes the high-order stiffness

and allows for stable time-step sizes that are orders of magnitude higher than those allowed by the explicit

scheme (see Section 5). Therefore, the semi-implicit scheme yields significant cost savings by not having

to take too many unnecessary time-steps. In the case of toroidal vesicles, we observed that, in practice,

the semi-implicit scheme still has a stability constraint. Next, we present a time-scheme that has higher

computational cost per time-step but performs well in the case of toroidal vesicles.

4.3 Inexact Newton Scheme

Following equation (31), we define the Jacobian (J) and residual (R) as follows

J(x) = 1−4tQ(x); Rn(x) = J(x)x− xn. (34)

3Again, note that, in order to use Pt, we first need to extend the parametric domain from [0, π] to [0, 2π].

13

In the semi-implicit scheme, we solved the linear algebraic equation J(xn)xn+1 = xn to update the positions.

On the other hand, in a fully implicit scheme, we solve the nonlinear equation J(xn+1)xn+1 = xn, typically,

by using one of the many variants of Newton scheme. This is computationally expensive but can, in principle,

lead to a more stable method.

In an inexact Newton scheme, instead of solving the nonlinear equation, the Jacobian is replaced by an

approximation and a search direction that minimizes the residual is found at each Newton iteration:

1. Set J̃ = J(xn) compute inexact Jacobian

2. x0 = J̃−1xn

3. k = 0

4. while minλ ‖R[xk − λJ̃−1R(xk)]‖ > ε‖R(xk)‖ & k < MaxIts check for residual convergence

5. p = −J̃−1R(xk) determine descent direction

6. λm ← minλ ‖R(xk + λp)‖ line search

7. xk+1 = xk + λmp

8. k = k + 1

9. end while

10. xn+1 = xk update positions

5 Results

In this section, we present numerical experiments to demonstrate the stability and convergence of our nu-

merical scheme.

Example 1. First, we verify the accuracy of our spatial discretization scheme. Consider a vesicle’s surface

defined by

x(u, v) =


x1(u) cos v

x1(u) sin v

x2(u)

 , x1(u) = (
√

cos2 u+ 9 sin2 u+ cos2 4u) sinu

x2(u) = − 1
2 (
√

cos2 u+ 9 sin2 u+ cos2 4u) cosu
, u ∈ [0, π], v ∈ [0, 2π].

(35)

In Figure 3, we report the errors in computing the two principal curvatures on this surface. Since we use

spectral differentiation, the errors decay rapidly. In Table 2, we report the errors in computing the single

layer potential using a fourth-order quadrature scheme described in Section 3.

Example 2. In the second example, we consider the motion of a vesicle suspended in a external parabolic

flow, shown in Figure 4. The surface parameters of the initial vesicle shape are given by

x1(u) = (
√

cos2 u+ 9 sin2 u) sinu, x2(u) = −1
3

(
√

cos2 u+ 9 sin2 u) cosu. (36)

14

M κ β

9 2.52e+03 1.77e+00

17 1.43e-03 1.54e-03

33 1.01e-05 3.42e-06

65 1.08e-10 3.14e-11

129 1.91e-13 2.73e-13

Figure 3: Relative errors in computing the curvatures numerically on the shape shown. The reference values

are computed analytically. As expected, we observe spectral convergence.

M 9 17 33 65 129 257

Quadrature

error
2.21e-02 1.50e-04 1.10e-05 8.50e-07 5.26e-08 2.99e-09

Table 2: Relative errors in computing S[n] defined on the boundary shown in Figure 3. The singular

integrals are computed analytically in the v-direction and a fourth-order quadrature rule is used to compute

the resulting integrals in the u-direction. Reference values are computed numerically by a finer discretization

(M = 513).

For any non-zero shear rate, the vesicle undergoes large deformations to reach an equilibrium parachute-like

shape and then translates with a constant velocity. Although the vesicle is suspended in an unbounded flow,

the resultant equilibrium shape is similar to the ones obtained through numerical experiments in [24] for

capillary flows.

We study the stability and convergence properties of various schemes based on this simulation. In Table

3, we list the maximum allowable time-step size 4tmax for the explicit and the semi-implicit schemes. We

determine 4tmax by starting from an arbitrarily large time-step and checking if the numerical simulation is

stable. If not, we reduce the step size by half and repeat the experiment until we get a stable simulation

(this explains the repeated numbers in Table 3). We can infer from the table that the explicit scheme

requires 4tmax to be inversely proportional to the cube of M (approximately). On the other hand, 4tmax

is independent of M for the semi-implicit scheme.

Notice, however, that 4tmax is inversely proportional to the shear rate. The inexact Newton scheme

has similar behavior too see Table 4. When we tried to use a larger time step, we could not converge the

nonlinear iterations. In all our numerical experiments with spheroidal vesicles, we observed that the semi-

implicit scheme performs as well as the inexact Newton scheme. Since, relatively, the computational cost

per time-step of the semi-implicit scheme is much lower, it is the method choice for spheroids.

Since the interior of the vesicle is filled with an incompressible fluid, the volume enclosed by it is preserved.

15

(a) (b)

Figure 4: (a) Snapshots of an oblate vesicle suspended in an external parabolic flow with v∞ =(
0, 0, c

(
1− x2

1
4R2

0

))
, where c is a constant; (b) cross-sectional plot of streamlines at the end of the simu-

lation. The vesicle reaches an equilibrium parachute-like shape and translates with a constant velocity. For

this simulation, we report the stability of our numerical scheme in Table 3, accuracy in Table 5, and the

performance of the preconditioner in Table 6.

M Explicit scheme Semi-implicit scheme

ĉ = 0 200 0 200

17 2.75e-03 5.48e-05 2.50e-01 4.88e-04

33 3.44e-04 6.85e-06 2.50e-01 4.88e-04

65 2.15e-05 4.28e-07 2.50e-01 4.88e-04

129 2.69e-06 5.35e-08 2.50e-01 4.88e-04

257 3.36e-07 6.69e-09 2.50e-01 4.88e-04

Table 3: Stable (nondimensional) time-step sizes for first-order explicit and semi-implicit schemes for a

spheroidal vesicle whose initial configuration is shown in Figure 4. Here, ĉ is the nondimensional curvature

of the external parabolic flow profile. While the explicit scheme suffers from a severe stability restriction on

the time-step size, the semi-implicit scheme is devoid of such restrictions. However, the semi-implicit scheme

requires that the time-step size is inversely proportional to the shear rate.

M ĉ = 2 20 200

33 1.56e-02 3.90e-03 4.88e-04

129 1.56e-02 3.90e-03 4.88e-04

Table 4: Stable time-step sizes in the case of the inexact Newton scheme for the simulation in Figure 4.

16

M
|Af−A|

A
Vf−V
V

q = 1 q = 3 q = 1 q = 3

17 1.34e-03 6.31e-04 4.50e-04 4.42e-04

33 8.93e-04 1.55e-04 6.10e-05 1.81e-05

65 4.89e-04 3.88e-05 6.65e-06 7.87e-07

129 2.54e-04 9.28e-06 3.66e-06 6.07e-08

Table 5: Surface area and the enclosed volume must be preserved in a vesicle simulation. Here, we report

the relative errors in the area and volume measured at the end of the simulation shown in Figure 4. q is the

convergence order of the semi-implicit scheme, M is the number of spatial discretization points and 4t = 1
M .

As the surface is locally inextensible, the total surface area must also be preserved. In Table 5, we report

the relative errors in preserving the total volume and surface area of the vesicle shown in Figure 4.

Next, for the same simulation , we study the performance of the preconditioner for inverting the inexten-

sibility constraint. In Table 6, we list the average number of iterations required for solution using GMRES.

The preconditioner reduces the number of iterations from O(
√
M) to nearly O(1).

Example 3. We consider the vesicle with oscillatory initial shape, defined in equation (35), and simulate

its motion to equilibrium in the absence of an external flow. We show snapshots in Figure 5. The advantage

of the semi-implicit scheme is clear in this example: we can simulate the dynamics with a drastically smaller

number of time-steps in comparison to an explicit method.

The flow field around the vesicle can be computed by the following expression

v(x) =
∫
γ

G(x,x′)[fb(x′) + fσ(x′)] dγ(x′), x ∈ R3. (37)

We plot the streamlines corresponding to this simulation in Figure 6.

Example 4. We consider a toroidal vesicle suspended freely in a viscous fluid. The surface parameters are

given by

x1(u) = (1 + 0.03 cos 5u) cosu, x2(u) = (1 + 0.03 cos 5u) sinu. (38)

In Figure 7, we show the snapshots of the vesicle relaxing to an equilibrium Willmore torus. We also list the

maximum time-step sizes for different discretizations allowed by the inexact Newton and the semi-implicit

schemes. As mentioned before, the fully implicit scheme outperforms the semi-implicit scheme for toroidal

geometries.

Simulations in the presence of gravity. Presence of gravitational field alters the dynamics in many

interesting ways. We observed that, in the absence of external flow, if the parameter ĝ is low, a vesicle

17

Preconditioner None P

M ε = 10−6 ε = 10−12 ε = 10−6 ε = 10−12

17 9 10 8 10

33 16 19 9 17

65 26 36 8 17

129 40 58 8 18

257 58 86 8 18

513 84 127 8 19

Table 6: Performance of the preconditioner to solve the inextensibility constraint. Here, we report the

number of GMRES iterations required to solve the discrete inextensibility constraint equation within a

relative tolerance of ε. Without a preconditioner, this number increases approximately proportional to
√
M .

This is because the condition number of L increases linearly with M . On the other hand, the preconditioner

P yields nearly mesh-independent convergence.

M 17 33 65 129 257 513

None 5 12 30 72 174 423

Pt 6 11 13 15 15 15

Table 7: Number of GMRES iterations to solve the discrete evolution equation (31) for two cases: (i) without

using any preconditioner and (ii) using the preconditioner Pt defined in (32). Notice that, asymptotically,

they grow superlinearly for the former case and are nearly constant for the later case. These values are for

the simulation shown in Figure 4. The GMRES tolerance, in this example, is set to 10−6.

18

 0 75∆t15∆t5∆t3∆t 100∆t

ε = 297.8 57.857.858.8 73.4103.0

Figure 5: Snapshots of a freely suspended vesicle, with complicated initial shape, relaxing to equilibrium. We require

M = 128 to resolve the initial shape to double precision (ε = 10−12). The advantage of the semi-implicit scheme

is conspicuous from this experiment: while a fully explicit demands more than a million time-steps to simulate the

dynamics, the semi-implicit scheme requires fewer than hundred time-steps.

reaches an equilibrium shape and translates with a constant velocity. These equilibrium shapes are same as

the ones obtained in quiescent fluid suspension.

On the other hand, when ĝ is high, the vesicle deforms either to a gourd shape or a stomatocyte-like shape

corresponding to prolate and oblate initial shapes respectively. We show two such simulations in Figure 8.

The behavior of vesicles in the gravity field will be considered in greater detail in a separate article.

Finally, we show a multiple vesicle simulation in Figure 9. The semi-implicit scheme, with the explicit

treatment of the interaction forces, has been used for this simulation.

6 Conclusions and future work

We have presented a numerical scheme for the simulation the motion of axisymmetric vesicles of spherical

and toroidal topologies in viscous fluid flows. Our numerical schemes overcome the stringent restrictions on

the time-step size of an explicit scheme with modestly higher computational cost per time-step. We have also

introduced a new scheme for computing Stokes potential on an axisymmetric surface. Overall, the methods

achieves high-order accuracy in space and time.

We are currently working on extending these schemes to arbitrary shaped vesicles in 3D. This requires

many additional components like accurate surface representations, preconditioners, and high-order accurate

calculation of derivatives.

19

Vmax = 12.93 1.80 0.67

t = 0.01

1.0

0.10.05

0.5t = 0.25

Vmax = 0.33 0.16 0.05

Figure 6: Snapshots of streamlines in the plane of symmetry for the simulation in Figure 5.

20

t=0 t=0.075 t=0.5

M S.I. I.N.

20 1.0e-02 3.0e-03

40 2.5e-03 3.0e-03

60 1.2e-03 3.0e-03

80 6.2e-04 3.0e-03

Figure 7: Toroidal star-shaped vesicle relaxing to a Willmore torus. The difference between the surface at

each step and the Willmore torus is magnified by a factor 9. In this case, we have observed that the inexact

Newton scheme (I.N.) has better stability properties than the semi-implicit scheme (S.I.). Here, we report

the stable time-step sizes, for both the schemes, as a function of the number of spatial discretization points.

A Equilibrium shapes from constrained minimization

Alternatively to fluid-formulation, we can obtain the equilibrium shapes by minimizing the bending energy

subject to constraints on the global surface area and volume. Introducing Lagrange multipliers σ and p,

which correspond to the constraints on area and volume, we can write the Lagrangian as

L =
1
2

∫
γ

H2dγ + σ

(∫
γ

dγ −A
)

+ p

(∫
Ω

dΩ− V
)
. (39)

By taking variations, we obtain the forces due to bending and the constraints. To find the equilibrium, we

can use a steepest descent-like algorithm in which the pseudo-velocity of the boundary is given by

∂x
∂t

= (vκ − σ(κ+ β) + p) n, (40)

where vκ =
1
2

(
4S(κ+ β) +

(κ+ β)(κ− β)2

2

)
.

The unknowns σ and p, which are functions of time alone, are computed by requiring that the rate of change

of the area and volume of the vesicle must vanish.

Ȧ = 2π
∫ π

0

ẋ1|xα|+
x1

|xα|
(x1uẋ1u + x2uẋ2u) du (41)

= 2π
∫ π

0

(
v1

x1
+ xs · vs

)
x1|xα| du = 0. (42)

This expression can also be obtained by integrating the surface divergence of the velocity field, that is,

Ȧ =
∫
γ
∇S · vsdγ. If vn is the component of the velocity normal to the surface, then the rate of change of

volume is given by

V̇ = 2π
∫ π

0

vnx1ds = 0. (43)

Substituting the velocity (40) in (42) and (43), we get the following expressions for the unknowns σ and p,

σ =
〈vκ〉 〈κ+ β〉 −A 〈(κ+ β)vκ〉
〈κ+ β〉2 −A 〈(κ+ β)2〉

; p =
σ 〈κ+ β〉 − 〈vκ〉

A
, where 〈f〉 :=

∫
γ

f dγ. (44)

21

g

Figure 8: Snapshots of a deforming prolate and an oblate vesicle suspended in a viscous fluid in the

presence of gravity. In this example, the reduced volumes of the prolate of the oblate vesicles are 0.78 and

0.65 respectively; ĝ = 100.

t = 0 10.5

Figure 9: Snapshots of three vesicles suspended in an external parabolic flow.

22

We can compute the equilibrium shapes by starting from an arbitrary shape, updating the shape using a

time-marching scheme on (40) until the surface velocity vanishes. At every time-step, the spatial constants

σ and p are computed using (44). We computed the equilibrium shapes using this approach and compared

with those obtained by solving (1), and as expected, they match very well.

B Interfacial forces

Here, we give more details on the derivation of the expressions for bending and tension forces in the axisym-

metric case. Starting from the special form the positions take in the axisymmetric case (14), we can reduce

the fundamental form coefficients to single variable as follows

E = xu · xu = |xu|2, F = xu · xv = 0, G = xv · xv = x2
1.

W =
√
EG− F 2 = x1|xu|, n = (xu × xv)/W = 1

|xu|


−x2u cos v

−x2u sin v

x1u


L = xuu · n = x1ux2uu−x2ux1uu

|xu| , M = xuv · n = 0, N = xvv · n = x1x2u

|xu|

(45)

Let κ be the cross-section curvature and s be the arclength parameter. We have su = |xu| and κ =

x1sx2ss − x2sx1ss. Let β = x2s

x1
, then the curvatures can be compactly written as

K =
LN −W 2

W 2
= κβ, H =

1
2
EN − 2FM +GL

W 2
=

1
2

(κ+ β). (46)

i.e., κ and β are the principal curvatures. Substituting the expressions for the Gauss and mean curvatures

in (11), we get the axisymmetric form of the bending force

fb =
1
2

(
4S(κ+ β) +

(κ+ β)(κ− β)2

2

)
n. (47)

The Laplace-Beltrami operator, defined in (10) can be simplified to the following form

4Sφ =
1
W

(
Gφu
W

)
u

=
1
x1

(x1φs)s (48)

Finally, the tension forces become

fσ = ∇sσ + σ4Sx =
G

W 2
φuxu − 2Hσn (49)

= σsxs − σ(κ+ β)n = (σxs)s − σβn (50)

Pole conditions. Using the fact that scalar functions in u are even functions and x1(u) is an odd function,

we can compute the limits by Taylor’s expansion around zero. As x1 → 0, we have

β(u)→ κ(u), 4Sφ→ φss (51)

and hence fb → 2κssn, fσ → (σsxs − 2σκn). (52)

23

C Stokes kernel

The convolution with the Stokes kernel (defined in (17)) can be computed analytically in the ‘v’ direction.

Here we state the result after introducing the following notation. Let r =


y1 cos v − x1

y1 sin v

y2 − x2

 and |r| =

[
x2

1 + y2
1 − 2x1y1 cos v + (x2 − y2)2

]1/2. Also let,

P =
√

(y2 − x2)2 + (y1 + x1)2; M =
√

(y2 − x2)2 + (y1 − x1)2) (53)

and K = EllipticK
(

2
√
y1x1

P

)
; E = EllipticE

(
2
√
y1x1

P

)
(54)

Recalling that |r| =
[
x2

1 + y2
1 − 2x1y1 cos v + (x2 − y2)2

]1/2, we obtain∫ 2π

0

dv

|r|
=

4K
P
, (55)∫ 2π

0

cos v dv
|r|

=
2

y1x1P
(
(y2

1 + x2
1 + (y2 − x2)2)K − P 2E

)
, (56)∫ 2π

0

(y1 cos v − x1)(y1 − x1 cos v) dv
|r|3

=
2(y2 − x2)2

y1x1PM2

(
M2K − (y2

1 + x2
1 + (y2 − x2)2)E

)
, (57)∫ 2π

0

(y1 cos v − x1) dv
|r|3

=
2

x1PM2

(
−M2K + (y2

1 + (y2 − x2)2 − x2
1)E
)
, (58)∫ 2π

0

dv

|r|3
=

4E
PM2

. (59)

The resulting kernels in (55 - 59) are functions of single variable u. Notice that, as x→ y, K and E become

singular since 2
√
y1x1

P → 1.

D Derivative accuracy

Theoretically, the error in computing the derivative using (23) should decay super-algebraically. However,

in practice, the overall error is also dictated by the round-off errors which grow as O(Nε), where ε is the

machine precision. For high-order derivatives, this becomes even more prominent as the round-off error

growth is O(Nkε) in computing a derivative of order k. We illustrate this behavior in Figure 10, using the

MATLAB code of Trefethen [23] for Fourier differentiation (http://www.comlab.ox.ac.uk/nick.trefethen/p7.m).

Since, inherently, the derivative is an ill-conditioned operator, this behavior is typical for most of the

numerical methods, in particular, for spectral methods [7].

While we cannot avoid the round-off errors, we can enhance the accuracy of the force computations by

a technique that we shall call full expansion. Suppose we numerically computed the functions ys and x. Let

Dh be the discrete Fourier differentiation operator (for odd and even functions defined in equation 23), then

24

0 200 400 600 800 1000

10−15

10−10

10−5

100

N

de
riv

at
iv

e
er

ro
r

f(x) = 1/(1+sin2(x/2))

1st
2nd
3rd
4th

Figure 10: Relative errors in computing f(x) using Fourier differentiation operator.

we define the expanded form of the scalar function βs as follows (note that β = ys

x)

βs =
1
sα
Dh

(
x2s

x1

)
(non-expanded form) (60)

=
1
sα

[
(x1sα)Dh(x2α)−Dh(x1sα)x2α

(x1sα)2

]
(expanded form). (61)

In the expanded form, a Fourier approximation of non-bandlimited functions is minimized. While the gain

in accuracy is not substantial for low-order derivatives, it could be significant in computing the bending force

which involves fourth-order derivatives. Similar to equation (61), a fully expanded form of the bending force

is obtained by the use of the chain rule to avoid approximating functions of the form φ(u)
W (u) , where φ(u) is a

scalar function. We list the errors in Table 8.

References

[1] Bradley K. Alpert. Hybrid Gauss-trapezoidal quadrature rules. SIAM Journal on Scientific Computing,

20(5):1551–1584, 1999.

[2] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differential Equations and

Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 1998.

25

M non-expanded fully expanded

ω = 1 5 9 1 5 9

20 1.10e-006 8.91e-002 2.65e-001 8.31e-011 3.64e-013 3.10e+000

40 1.20e-010 8.16e-002 7.81e-001 1.32e-009 4.26e-012 3.55e-012

80 1.23e-009 4.05e-003 3.74e-002 4.38e-008 2.44e-011 1.98e-011

160 5.84e-008 1.40e-006 4.29e-003 1.48e-007 8.91e-011 3.14e-011

320 5.03e-007 1.91e-011 4.48e-005 3.42e-005 3.00e-008 1.80e-009

Table 8: Relative errors in computing the bending force using the non-expanded and the fully expanded

expressions on a perturbed sphere. The reference values are computed analytically. Here, ω is the order of the

perturbation, more specifically, the surface parameters are given by x1(u) = (1+0.1 cosωu) sinu and x2(u) =

(1 + 0.1 cosωu) cosu. In both cases, the errors decay rapidly, because of the spectrally convergent scheme,

and then start to grow, because of the round-off errors. However, the fully expanded force computation

improves the errors significantly compared to the non-expanded version.

[3] Uri M. Ascher, Steven J. Ruuth, and Brian T. R. Wetton. Implicit-explicit methods for time-dependent

partial differential equations. SIAM Journal on Numerical Analysis, 32(3):797–823, 1995.

[4] Malcolm I. G. Bloor and Michael J. Wilson. Method for efficient shape parametrization of fluid mem-

branes and vesicles. Physical Review E, 61(4):4218–4229, Apr 2000.

[5] Pozrikidis C. Effect of membrane bending stiffness on the deformation of capsules in simple shear flow.

Journal of Fluid Mechanics, 440:269–291, August 2001.

[6] F. Campelo and A. Hernandez-Machado. Dynamic model and stationary shapes of fluid vesicles. The

European Physical Journal E: Soft Matter and Biological Physics, 20:37, 2006.

[7] Wai Sun Don and Alex Solomonoff. Accuracy enhancement for higher derivatives using Chebyshev

collocation and a mapping technique. SIAM Journal on Scientific Computing, 18(4):1040–1055, 1997.

[8] Q. Du and J. Zhang. Adaptive finite element method for a phase field bending elasticity model of vesicle

membrane deformations. SIAM Journal on Scientific Computing, 30(3):1634–1657, 2007.

[9] Qiang Du, Chun Liu, and Xiaoqiang Wang. A phase field approach in the numerical study of the elastic

bending energy for vesicle membranes. Journal of Computational Physics, 198(2):450–468, 2004.

[10] Feng Feng and William S. Klug. Finite element modeling of lipid bilayer membranes. Journal of

Computational Physics, 220(1):394–408, 2006.

26

[11] Martin Kraus, Wolfgang Wintz, Udo Seifert, and Reinhard Lipowsky. Fluid vesicles in shear flow.

Physical Review Letters, 77(17), 1996.

[12] M. C. A. Kropinski. An efficient numerical method for studying interfacial motion in two-dimensional

creeping flows. Journal of Computational Physics, 171(2):479–508, 2001.

[13] L. Ma and W. S. Klug. Viscous regularization and r-adaptive remeshing for finite element analysis of

lipid membrane mechanics. Journal of Computational Physics, 227(11):5816–5835, 2008.

[14] Henry Power and L. Wrobel. Boundary Integral Methods in Fluid Mechanics. Computational Mechanics

Publications, 1995.

[15] C. Pozrikidis. Interfacial dynamics for Stokes flow. Journal of Computational Physics, 169(2):250–301,

2001.

[16] C. Pozrikidis. Axisymmetric motion of a file of red blood cells through capillaries. Physics of Fluids,

17(3):14, 2005.

[17] Yousef Saad. Iterative Methods for Sparse Linear Systems, 2nd edition. SIAM, Philadelpha, PA, 2003.

[18] U. Seifert. Configurations of fluid membranes and vesicles. Advances in Physics, 46:13–137, January

1997.

[19] Udo Seifert, Karin Berndl, and Reinhard Lipowsky. Shape transformations of vesicles: Phase diagram

for spontaneous- curvature and bilayer-coupling models. Physical Review A, 44(2):1182–1202, 1991.

[20] S. Sukumaran and U. Seifert. Influence of shear flow on vesicles near a wall: A numerical study.

Physical Review E, 64, 2001.

[21] Victor A Toponogov. Differential Geometry of Curves and Surfaces: A Concise Guide. A Birkhauser

book, 2006.

[22] Anna-Karin Tornberg and Leslie Greengard. A fast multipole method for the three-dimensional Stokes

equations. Journal of Computational Physics, 227(3):1613–1619, 2008.

[23] L. N. Trefethen. Spectral Methods in Matlab. Society for Industrial and Applied Mathematics, Philadel-

phia, PA, USA, 2000.

[24] M. Mader V. Vitkova and T. Podgorski. Deformation of vesicles flowing through capillaries. EURO-

PHYSICS LETTERS, 68(3):398–404, 2004.

27

[25] Shravan K. Veerapaneni, Denis Gueyffier, Denis Zorin, and George Biros. A boundary integral method

for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D. Journal of

Computational Physics, 228(7):2334–2353, 2009.

[26] J. L. Weiner. On a problem of Chen, Willmore, et al. Indiana University Mathematics Journal, 27:19–35,

1978.

28

	Introduction
	Problem Formulation
	Axisymmetric formulation

	Spatial discretization scheme
	Quadrature Scheme

	Time-Stepping scheme
	Explicit Scheme
	Semi-Implicit Scheme
	Inexact Newton Scheme

	Results
	Conclusions and future work
	Equilibrium shapes from constrained minimization
	Interfacial forces
	Stokes kernel
	Derivative accuracy

