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Abstract. In the theory for domain decomposition algorithms of the iterative substructuring
family, each subdomain is typically assumed to be the union of a few coarse triangles or tetrahedra.
This is an unrealistic assumption, in particular, if the subdomains result from the use of a mesh
partitioner in which case they might not even have uniformly Lipschitz continuous boundaries. The
purpose of this study is to derive bounds for the condition number of these preconditioned conjugate
gradient methods which depend only on a parameter in an isoperimetric inequality and two geometric
parameters characterizing John and uniform domains. A related purpose is to explore to what extent
well known technical tools previously developed for quite regular subdomains can be extended to
much more irregular subdomains. Some of these results are valid for any John domains, while an
extension theorem, which is needed in this study, requires that the subdomains are uniform. The
results, so far, are only complete for problems in two dimensions. Details are worked out for a
FETI–DP algorithm and numerical results support the findings. Some of the numerical experiments
illustrate that care must be taken when selecting the scaling of the preconditioners in the case of
irregular subdomains.
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1. Introduction. In the theory of domain decomposition methods of iterative
substructuring type, we typically assume that each subdomain is quite regular, e.g.,
the union of a small set of coarse triangles or tetrahedra; see, e.g., [34, Assumption
4.3]. However, such an assumption is unlikely to hold especially if the subdomains
result from using a mesh partitioner in which case the subdomain boundaries might
not even be uniformly Lipschitz continuous, i.e., the number of patches which cover
∂Ω, and in each of which the boundary is the graph of a Lipschitz continuous function,
might not be uniformly bounded independently of the finite element mesh size. We
also note that the shape of the subdomains are likely to change if the mesh size is
altered and a mesh partitioner is used. The purpose of this paper is to develop a
theory for domain decomposition methods under much weaker assumptions on the
partitioning and to categorize the rate of convergence in terms of a few geometric
parameters. We will denote the nonoverlapping subdomains by Ωi and the interface
between them by Γ.

So far, complete results have only been obtained for problems in the plane. To
simplify our presentation, we will also focus on scalar elliptic problems of the following
form:

−div (ρ(x)∇u(x)) = f(x) x ∈ Ω, (1.1)

with a homogeneous Dirichlet boundary condition on a measurable part, ∂ΩD, of ∂Ω,
the boundary of Ω, and a Neumann boundary condition on its complement ∂ΩN .
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The coefficient ρ(x) is strictly positive and assumed to be a constant ρi for x ∈ Ωi.
As for many other algorithms, our results hold equally well for compressible elasticity
problems in two dimensions; see [34, Chapter 8] for a discussion, [22] for further details
on FETI–DP for linear elasticity, and the discussion below.

We use linear continuous finite elements and triangulations with shape regular
triangles, i.e., the diameter of an element is bounded uniformly by a constant times
the radius of the largest inscribed circle. We assume that each subdomain is a union
of elements. We denote the finite element space on Ω by W h(Ω) and assume that all
elements vanish on ∂ΩD.

The analysis will be carried out for a FETI–DP algorithm but the results imme-
diately carry over to the corresponding BDDC algorithm, see, e.g., [24], as well as to
a class of inexact FETI–DP methods; see [20]. The tools that we will develop can
also be used in the analysis of a number of other domain decomposition algorithms,
in particular, those of [11, 12]; our study originated within this collaborative project
with Clark Dohrmann. For a collection of auxiliary results used in the analysis of it-
erative substructuring algorithms, in the case of regular subdomains, see [34, Section
4.6].

Thus, our study requires the generalization of some technical tools used in the
proof of bounds of the convergence rate of the FETI–DP algorithm. We also have
to modify the basic line of reasoning in the proof of our main result; a proof for
triangular subdomains and constant coefficients was first given in [27], see also [30,
Chapter 2] for a proof more similar to ours. Four auxiliary results, namely a Poincaré
inequality, a Sobolev-type inequality for finite element functions, bounds for certain
edge terms, and a finite element extension theorem will be required in our proof; see
Lemmas 2.3, 4.3, 4.4, and 4.5. We will work with John domains and uniform domains,
see Definitions 2.1 and 2.4; the latter are also known as Jones or (ε, δ)-domains. We
will express our bounds on the rate of convergence of our algorithm in terms of a few
parameters identified in Definitions 2.1 and 2.4 and Lemma 2.2.

We will also consider the problem of linear, isotropic elasticity in two dimensions:

−div (2µε(u) + λtr (ε(u))I) = f in Ω ⊂ IR2. (1.2)

We assume zero Dirichlet conditions on one part of the boundary of ∂Ω with non-
vanishing measure and traction conditions on the remaining part of the boundary.
FETI–DP methods have been analyzed for linear elasticity and regular subdomains
in [22]; see [19] and [21] for numerical results.

A crucial tool in any such study is the second Korn inequality, Lemma 2.6; for a
proof for uniform domains, see Durán and Muschietti [14] and for John domain, see
Acosta, Durán, and Muschietti [1]. The proof in [14] has many details in common to
Jones’ proof of extension theorems for Sobolev spaces, [18], and the constant in the
inequality depends only on the same geometric parameters as the result of Lemma 2.5.

The remainder of this article is organized as follows. In Section 2, we provide a
Poincaré inequality for general domains and introduce John and uniform domains. In
Section 3, we describe our FETI–DP algorithm and in Section 4, we develop a conver-
gence theory for our FETI–DP algorithm for subdomains which are uniform. Finally,
in Section 5, we present numerical results which confirm our theoretical findings. We
note that we find a striking difference in the performance of the iterative method
between the scaling based on our theory and another based on diagonal elements of
the stiffness matrix in cases when the subdomain boundaries are highly irregular.



FETI–DP ALGORITHMS ON IRREGULAR SUBDOMAINS 3

2. A Poincaré inequality, John and uniform domains. We will first intro-
duce John domains and then consider a Poincaré inequality for such domains. Finally,
we will introduce uniform domains; the latter are needed in order to prove an exten-
sion theorem. We note that this final assumption on the subdomains is not required in
our analysis of domain decomposition algorithms based on overlapping subdomains;
see [11, 12].

We next give the definition of a John domain; see [17] and the references therein.
In the proofs of several of our auxiliary results, we will assume that the subdomains
belong to this class.

Definition 2.1 (John domain). A domain Ω ⊂ IRn – an open, bounded, and

connected set – is a John domain if there exists a constant CJ ≥ 1 and a distinguished

central point x0 ∈ Ω such that each x ∈ Ω can be joined to it by a rectifiable curve

γ : [0, 1] → Ω with γ(0) = x0, γ(1) = x and |x − γ(t)| ≤ CJ · distance(γ(t), ∂Ω) for

all t ∈ [0, 1].
This condition can be viewed as a twisted cone condition. We note that certain

snowflake curves with fractal boundaries are John domains, see Section 5, and that
the boundary of a John domain can be arbitrarily much longer than its diameter.

The John condition allows us to estimate the diameter of the region Ω from above
in terms of |Ω|1/n and CJ ; it is elementary to prove that the diameter can be bounded
from below and above in terms of |Ω|1/n with one of the bounds depending on CJ .
Restrictions on the boundary are of course also imposed.

In any analysis of any domain decomposition method with more than one level,
we need a Poincaré inequality. This inequality is closely related to an isoperimetric
inequality. The next lemma is due to Maz’ja [28] and Federer and Fleming [16]; see
also Lin and Yang [25, Theorem 5.3.2] or Maz’ja [29].

Lemma 2.2 (Isoperimetric inequality). Let Ω ⊂ IRn be a domain and let u be

sufficiently smooth. Then,

inf
c∈R

(∫

Ω

|u − c|n/(n−1) dx

)(n−1)/n

≤ γ(Ω, n)

∫

Ω

|∇u| dx,

if and only if,

[min(|A|, |B|)]1−1/n ≤ γ(Ω, n)|∂A ∩ ∂B|. (2.1)

Here, A ⊂ Ω is an arbitrary open set, and B = Ω \ Ā; γ(Ω, n) is the best possible

constant and |A| is the measure of the set A, etc.

We note that the domain does not need to be star-shaped or Lipschitz. It is known
that if γ(Ω, 2) is bounded and the domain satisfies a certain separation property, then
the domain must be a John domain; see [8]. For n = 2, the best choice of c = ūΩ, the
average of u over the domain. A small value of γ(Ω, n) is desirable for our purposes.

In two dimensions, we immediately obtain the standard Poincaré inequality by
using the Cauchy-Schwarz inequality.

Lemma 2.3 (Poincaré’s inequality). Let Ω be a John domain in the plane. Then,

‖u − ūΩ‖
2
L2(Ω) ≤ (γ(Ω, 2))2|Ω|‖∇u‖2

L2(Ω) ∀u ∈ H1(Ω).

For n = 3 such a bound is obtained by using Hölder’s inequality several times. In
Lemma 2.3, we then should replace |Ω| by |Ω|2/3.

Throughout, we will use a weighted H1(Ωi)−norm defined by

‖u‖2
H1(Ωi)

=

∫

Ωi

∇u · ∇udx + 1/H2
i

∫

Ωi

|u|2dx = |u|2H1(Ωi)
+ 1/H2

i

∫

Ωi

|u|2dx.
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Here Hi is the diameter of Ωi. The weight for the L2−term results from the standard
H1−norm on a domain with diameter one and a dilation. We will use Lemma 2.3 to
remove L2−terms in our estimates.

We finally define uniform domains. It is known, and easy to see, that any uniform
domain is a John domain. It is also easy to construct John domains that are not
uniform domains. According to Jones [18, Theorem 4], they form the largest class
of domains for which an extension theorem holds in two dimensions; see Lemma 2.5
below. We note that it follows from [18, Theorem C] that if a domain is uniform, so
is its complement.

Definition 2.4 (Uniform domains). A domain Ω ⊂ IRn is a uniform domain

if there exists a constant CU such that any pair of points x1 ∈ Ω and x2 ∈ Ω can

be joined by a rectifiable curve γ(t) : [0, 1] → Ω with γ(0) = x1, γ(1) = x2, and

where the Euclidean arc length of γ ≤ CU |x1 − x2| and mini=1,2 |xi − γ(t)| ≤ CU ·
distance(γ(t), ∂Ω) for all t ∈ [0, 1]. Note that domains with boundaries formed by
von Koch curves as in Section 5 are also uniform domains.

We will use a main result for uniform domains; see Jones [18, Theorem 1].
Lemma 2.5. Let Ω ⊂ IRn be a uniform domain. There then exists a bounded,

linear operator EΩ : H1(Ω) → H1(IRn), which extends any element in H1(Ω) to one

defined for all of IRn, i.e., (EΩu)|Ω = u for all u ∈ H1(Ω). The norm of this operator

depends only on CU (Ω) and the dimension n.
As previously noted, for a result on linear elasticity, we also need a second Korn

inequality for uniform domains; see Durán and Muschietti [14, Corollary 2.8].
Lemma 2.6 (Korn inequality for uniform domains). Let Ω ⊂ IRn be a bounded

uniform domain. Then, there exists a constant C > 0, which depends only on the

uniformity constant CU (Ω) and the dimension n, such that

|u|2H1(Ω) ≤ C ‖ε(u)‖2
L2(Ω)

for all u ∈ {u ∈ H1(Ω) :
∫
Ω

(
∂ui

∂xj
−

∂uj

∂xi

)
dx = 0, i, j = 1, . . . , n}.

3. The FETI–DP algorithm. Let a domain Ω ⊂ IR2 be decomposed into N
nonoverlapping subdomains Ωi of diameter Hi, each of which is a union of finite
elements with matching finite element nodes on the boundaries of neighboring subdo-
mains across the interface Γ :=

⋃
i6=j ∂Ωi∩∂Ωj . Here ∂Ωi and ∂Ωj are the boundaries

of Ωi and Ωj , respectively. The interface Γ is the union of edges and vertices. The
nodes on an edge are shared by exactly two subdomains and the edges are open sub-
sets of Γ. The vertices are endpoints of the edges. For a more detailed definition of
faces, edges, and vertices in two and three dimensions, see [22, Section 3] and [19,
Section 2].

For each subdomain Ωi, i = 1, . . . , N , we assemble the local stiffness matrices
K(i) and load vectors f (i) from the contributions of the individual elements. We
denote the vector of unknowns of the subdomain Ωi by u(i) and we then partition

the unknowns of u(i) into a vector of primal variables u
(i)
Π and a vector of nonprimal

variables u
(i)
B . We can obtain fast convergence by choosing only vertices as primal

variables, since we are only considering two dimensional problems, see [15, 27, 30]. To
simplify the description of the algorithm, we will assume that all vertices are primal.

The nonprimal variables are those of u
(i)
I , associated with the interior nodes of the

subdomain, and the dual displacement variables of the vector u
(i)
∆ associated with the

remaining edge nodes. We will enforce the continuity of the solution in the primal
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unknowns of u
(i)
Π by making them global; we subassemble the subdomain stiffness

matrices K(i) with respect to this set of variables and denote the resulting matrix by

K̃. For all other interface variables, i.e., those of the u
(i)
∆ , we will introduce Lagrange

multipliers to enforce continuity.
Here are some more details: we partition the stiffness matrices according to the

different sets of unknowns and obtain,

K(i) =

[
K

(i)
BB K

(i) T
ΠB

K
(i)
ΠB K

(i)
ΠΠ

]
, K

(i)
BB =

[
K

(i)
II K

(i) T
∆I

K
(i)
∆I K

(i)
∆∆

]
,

and f (i)T = [f
(i)T
B f

(i)T
Π ], f

(i)T

B = [f
(i)T

I f
(i)T

∆ ].

We next define the block diagonal matrices

KBB = diagN
i=1(K

(i)
BB), KΠB = diagN

i=1(K
(i)
ΠB), KΠΠ = diagN

i=1(K
(i)
ΠΠ),

and load vectors fT
B = [f

(1) T
B , . . . , f

(N)T
B ], fT

Π = [f
(1) T
Π , . . . , f

(N)T
Π ].

Assembling the local subdomain matrices and load vectors with respect to the
primal variables, we obtain the partially assembled global stiffness matrix K̃ and the
load vector f̃ ,

K̃ =

[
KBB K̃T

ΠB

K̃ΠB K̃ΠΠ

]
, f̃ =

[
fB

f̃Π

]
,

where a tilde marks an assembled quantity. It is easy to see that, with all vertices
primal, the matrix K̃ is positive definite.

To enforce the continuity of the remaining interface variables u
(i)
∆ , we introduce

a jump operator BB with entries 0,−1, or 1 and a vector of Lagrange multipliers λ.
The FETI–DP saddlepoint problem is then given by




KBB K̃T
ΠB BT

B

K̃ΠB K̃ΠΠ 0
BB 0 0







uB

ũΠ

λ


 =




fB

f̃Π

0


 . (3.1)

By eliminating uB and ũΠ from (3.1), we obtain

Fλ = d, (3.2)

with

F = BBK−1
BBBT

B + BBK−1
BBK̃T

ΠBS̃−1
ΠΠK̃ΠBK−1

BBBT
B , S̃ΠΠ = K̃ΠΠ − K̃ΠBK−1

BBK̃T
ΠB,

and d = BBK−1
BBfB − BBK−1

BBK̃T
ΠBS̃−1

ΠΠ(f̃Π − K̃ΠBK−1
BBfB).

To define the Dirichlet preconditioner M , we need to introduce a scaled variant of

the jump operator BB , which we denote by BB,D = [B
(1)
B,D, . . . , B

(N)
B,D]. The matrix

B
(i)
B,D is associated with the subdomain Ωi and defined as follows: each row of B

(i)
B

with a nonzero entry corresponds to a Lagrange multiplier connecting the subdomain

Ωi with a neighboring subdomain Ωj at a node x ∈ ∂Ωi,h ∩ ∂Ωj,h. We obtain B
(i)
B,D

by multiplying each such row of B
(i)
B by

δ†i :=
ρj

ρj + ρi
; (3.3)
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see [22] or [34, Section 6.4] for further details. We will refer to this scaling as the
ρ-scaling. The Dirichlet preconditioner is then given by

M−1 = BB,D(RB
∆)T S∆∆RB

∆BT
B,D, where

S∆∆ = diagN
i=1(S

(i)
∆∆), S

(i)
∆∆ = K

(i)
∆∆−K

(i)
∆I(K

(i)
II )−1K

(i)T
∆I , and RB

∆ = diagN
i=1(R

B (i)
∆ ).

The matrices R
B (i)
∆ are restriction operators with entries 0 or 1 which restrict the

nonprimal degrees of freedom u
(i)
B of a subdomain to its dual part u

(i)
∆ .

Our FETI–DP method is the preconditioned conjugate gradient algorithm applied
to the symmetric, positive definite system (3.2), using the preconditioner M−1. We
note that, as usual for iterative substructuring methods, the local Schur complements

S
(i)
∆∆ do not have to be built explicitly. Instead local linear systems are solved in each

iteration step.

4. Convergence theory. We recall that W h(Ωi) is the standard finite element
space of continuous, piecewise linear functions on Ωi which vanish on ∂ΩD. The
corresponding finite element trace spaces are denoted by W (i) := W h(∂Ωi ∩ Γ), i =
1, . . . , N . The product space of the W (i) is denoted by W and its partially assembled
subspace, with the primal variables global, is denoted by W̃ . We will denote by hi the
smallest diameter of the finite elements in the subdomain Ωi.

We can now formulate our main result, which is also valid for compressible elas-
ticity with Lamé parameters which are constant in each subdomain.

Theorem 4.1 (Condition number estimate). Let the domain Ω ⊂ IR2 be parti-

tioned into subdomains which are uniform in the sense of Definition 2.4 and which are

partitioned into shape regular elements. Then, with M the Dirichlet preconditioner,

F the FETI–DP operator, and with hi the smallest diameter of any element in Ωi,
the condition number of the conjugate gradient method satisfies

κ(M−1F ) ≤ C max
i

(1 + log(Hi/hi))
2.

Here C is a constant which depends only on the parameters CJ (Ωi) and CU (CΩi) of

Definitions 2.1 and 2.4, the Poincaré parameters γ(Ωi, 2) of the subdomains, and the

shape regularity of the finite elements.

We will denote by H the discrete harmonic extension operator; H(v) is the mini-
mal energy extension of the restriction of the finite element function v to the interface
Γ. For each edge E ij , we also need to define an edge cut-off function θEij , which is the
discrete harmonic function which equals 1 at all nodes on the edge E ij , common to
Ωi and Ωj , and which vanishes at all other interface nodes.

In order to prove Theorem 4.1, we only need to establish the following result;
see [22, Section 8] for a proof of a three-dimensional counterpart. We denote the

restriction operator from W̃ to W (i) by R(i), i = 1, . . . , N .
Lemma 4.2. Let E ij be an edge common to the boundaries of Ωi and Ωj . For all

w̃ ∈ W̃ and with w(i) := R(i)w, w(j) := R(j)w, we have

ρi|H(θEij δ†i (w(i) − w(j)))|2H1(Ωi)
≤ C(1 + log(Hi/hi))

2ρi|w
(i)|2H1(Ωi)

+ C(1 + log(Hj/hj))2ρj |w
(j)|2H1(Ωj)

.
(4.1)

To prove this lemma, we need three auxiliary results, in addition to Poincaré’s in-
equality. The first is a discrete Sobolev inequality. This inequality (4.2) is well-known
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in the theory of iterative substructuring methods. Proofs for domains satisfying an
interior cone condition are given in [6] and [7, Section 4.9] and a different proof is
given in [34, page 102]. For a proof for John domains, see [12].

Lemma 4.3 (Discrete Sobolev inequality). Let Ωi ⊂ IR2 be a John domain. Then,

‖u− ūΩi
‖2

L∞(Ωi)
≤ C(1 + log(Hi/hi))

2|u|2H1(Ωi)
, (4.2)

for all u ∈ W h(Ωi). The constant C depends only on the John parameter CJ(Ωi) of

Ωi and the shape regularity of the finite elements.

Another important tool provides estimates of certain edge terms. For regular
subdomains in two dimensions, this lemma was first given in [13].

Lemma 4.4 (Edge lemma). Let Ωi be a John domain, E ij ⊂ ∂Ωi be an edge, and

θEij ∈ W h(Ωi) be a finite element function which equals 1 at all nodes of E ij , vanishes

at the other nodes on ∂Ωi, and is discrete harmonic in Ωi. For u ∈ W h(Ωi), we have

|H(θEij u)|2H1(Ωi)
≤ C (1 + log(Hi/hi))

2‖u‖2
H1(Ωi)

, (4.3)

|θEij |2H1(Ωi)
≤ C(1 + log(Hi/hi)), (4.4)

and

‖θEij‖2
L2(Ωi)

≤ CH2
i (1 + log(Hi/hi)). (4.5)

Here, C depends only on the John parameter C(Ωi) of Ωi and the shape regularity

of the finite elements. The logarithmic factor of (4.5) can be removed if all angles of

the triangulation are acute.

Proof. We will establish inequality (4.3) by using ideas similar to those of [34,
Proofs of Lemmas 4.24 and 4.25.]. We will construct a function ϑEij which has the
same boundary values as θEij and which satisfies the two inequalities (4.3) and (4.4).
Since θEij and H(θEij u) are discrete harmonic, the two inequalities (4.3) and (4.4)
will then hold. We note that ϑEij , which we will construct will not be a finite element
function, and that the same is true for ϑEij u. But it is easy to see that the gradient
of the finite element interpolant of ϑEij will satisfy the same bound as ∇ϑEij . We can
also use [34, Lemma 4.31] to complete the argument for ϑEij u.

We first construct two curves, as in Definition 2.1, which connect the endpoints
of the edge E ij to the point x0.

For each point of the curves, it is now possible to construct a circular disk, con-
tained in Ωi, with a radius as in Definition 2.1. We will replace this set by a union
of rectangles contained in the union of a smaller family {Bk} of disks creating two
polygonal curves connecting the two end points of the edge. These two curves parti-
tion Ωi into three parts. We will make ϑEij

identically 1 in the set next to the edge
and make it vanish in the set most distant from the edge and we will bring the values
of this function from 1 to 0 across the third, interior set.

The two John curves, that meet in x0, can be quite complicated. We will therefore
replace them by the union of line segments which connect the centers of the family
of circular disks Bk for each of the John curves. These disks, in turn, will be used to
construct the family of rectangles Rk,k+1. We are able to estimate the sides of these
rectangles as a function of the distance r to the closest endpoint of the edge E ij and
we will use the union of these rectangles to construct a function ϑEij with a bound
on its gradient which is inversely proportional to r.
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xk+1

xk

Rk,k+1

xk+2

xk+3

Bk+1Bk

Fig. 4.1. The circular disks Bk and Bk+1, their centers xk and xk+1 and the rectangle Rk,k+1.

The circular disks are constructed as in [12, Section 3] in which a number of
properties are also derived; they are collected in Lemma 3.3 of the same paper. This
material is essentially all borrowed from [17]. We will recall some of these results.

Let γ(t) be one of the chosen John curves from the central point x0 ∈ Ωi to a
vertex V , one of the endpoint of the edge E ij . A family of circular disks Bk, k ≥ 0
is introduced as follows: the first disk is B0 := B(x0, dist(x0, ∂Ω)/4), the open set
centered at x0 and with radius r0 = dist(x0, ∂Ω)/4. The other disks are defined
similarly as Bk := B(xk , rk), centered at xk and with radius rk := |x−xk|/(4CJ), k ≥
1. All the xk lie on the John curve and all the Bk are subsets of Ωi . Given Bk, we
select xk+1 ∈ ∂Bk as the last point of exit of γ(t) from Bk.

The following properties are established in [12]: there exists a constant M(CJ )
such that

1. no point in Ω belongs to more than M disks;
2. the number of xk that are at a distance larger than r from V is bounded by

M log(H/r);
3. rk+1 ≥ (4CJ − 1)/(4CJ + 1) rk .

Let the rectangle Rk,k+1 be the largest rectangle inscribed in the closure of
Bk ∪ Bk+1 and with two sides parallel to the line segment between xk and xk+1;
see Figure 4.1. Since xk+1 is on ∂Bk, one side of the rectangle is of length 2rk and it
is also easy to show, by using the lower bound on rk+1, that the other is bounded from
below by Crk where C is a positive constant independent of k. We also see that the
distance from any point on [xk, xk+1] to the boundary of the rectangle exceeds Crk

for a constant C > 0 and the same bound clearly holds for the union of the rectangles.
We denote by N(h) the index of the first xk which lies in the union of the elements

which have V as a vertex. We take the union of all rectangles Rk,k+1 with k <
N(h) and the elements which have the subdomain vertex on its boundary. We then
triangulate the resulting region using only nodes on the boundary of this set. We
assign the value 1 to ϑEij on the side of this set which is closest to the edge E ij and
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let this function vanish on the other side. In between, we use linear interpolation on
the triangulation, just constructed, to define ϑEij .

For each rectangle Rk,k+1, we can estimate the gradient of ϑEij by C/rk. Using
Lemma 4.3, we then find that

|ϑEij u|2H1(Rk,k+1)
≤ C(1 + log(H/h))‖u‖2

H1(Ωi)
.

The contributions from the elements which have the vertex V as a vertex can be
estimated quite easily. Inequality (4.4) now follows by using the estimate of the
number of rectangles.

The estimate of |ϑEij |H1(Ωi) follows from the same type of arguments.
For the L2(Ωi)-bound, we note that ϑEij −θEij vanishes on the subdomain bound-

ary and that we can estimate the L2(Ωi)-norm of ϑEij − θEij in terms of the smallest
eigenvalue of the Dirichlet problem for the Laplacian and the H1(Ωi)-bound just estab-
lished. The bound for θEij then follows from the trivial bound ‖ϑEij‖L2(Ωi) ≤ |Ωi|

1/2.
If all angles of the triangulation are acute, the finite element discretization will

satisfy a maximum principle; see Ciarlet and Raviart [9]. Then 0 ≤ θEij ≤ 1 and we
can easily estimate the L2−norm of θEij in same way as for ϑEij .

�

The next lemma was proven for Lipschitz domains and quite general conforming
finite elements in Widlund [35], using a technique by Astrakhatsev [2]; see also Toselli
and Widlund [34] for a different proof. Here, we present a proof for more general
domains by different means. We note that, in essence, this is a result, for a quite
irregular interface, on the classical Dirichlet-Neumann algorithm for two subdomains
as introduced in [34, Section 1.3.3].

Lemma 4.5 (Extension lemma). Let Ωi and Ωj be subsets of IRn and two sub-

domains with a common (n − 1)-dimensional interface E ij . Furthermore, let Ωi be a

uniform domain, let V h
i = {vh ∈ W h(Ωi) : vh(x) = 0 at all nodes of ∂Ωi \ E

ij}, and

let V h
j = {vh ∈ W h(Ωj) : vh(x) = 0 at all nodes of ∂Ωj \ E

ij}. Then, there exists an

extension operator

Eh
ji : V h

j −→ V h
i ,

with the following properties:

1. (Eh
jiuh)|Ωj

= uh ∀uh ∈ V h
j ,

2. ‖Eh
jiuh‖H1(Ωi) ≤ C‖uh‖H1(Ωj) ∀uh ∈ V h

j ,

where the constant C > 0 depends only on the uniformity parameter CU (CΩi) of the

complement of Ωi and the shape regularity of the finite elements and is otherwise

independent of the finite element mesh sizes hi and hj and the diameters Hi and Hj .

Proof. The proof uses Lemma 2.5 and a result on finite element interpolation of
nonsmooth functions given in Scott and Zhang [33]; see also Brenner and Scott [7,
Section 4.8]. Their results represent a refinement of well known work by Clément [10].

From Lemma 2.5 and the fact that the complement of a uniform domain is uni-
form, we know that there exists an extension operator

ECΩi
: H1(CΩi) −→ H1(IRn),

and a positive constant C, which depends only on the uniformity constant CU (CΩi),
such that

‖ECΩi
u‖H1(IRn) ≤ C ‖u‖H1(CΩi) ∀u ∈ H1(CΩi), (4.6)
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with (ECΩi
u)|CΩi

= u for u ∈ H1(CΩi).
Let Ωij = Ωi ∪ Ωj ∪ E ij . It is shown in Scott and Zhang [33] that there exists a

boundary value preserving finite element interpolation operator

Πh : H1
0 (Ωij) −→ W h(Ωij) ∩ H1

0 (Ωij),

with Πhvh = vh ∀vh ∈ W h(Ωij) ∩ H1
0 (Ωij), (4.7)

and ‖Πhv‖H1(Ωij) ≤ C ‖v‖H1(Ωij) ∀v ∈ H1(Ωij). (4.8)

The constant C is independent of the mesh parameters and Hi and Hj . In their
proof, Scott and Zhang construct a dual basis for the standard nodal basis of the
finite element space in terms of integrals over elements or (n−1)-simplices, i.e., edges
in two and faces in three dimensions. There is a great deal of flexibility and, in
particular, for each node - and its associated degree of freedom - one can choose any
element of which it is a vertex. For all nodes in Ωj , we select elements of Ωj and for
the nodes in Ωi \ E ij elements of Ωi. This will guarantee that the values in Ωj will
not be changed when the operator Πh is applied; cf. (4.7).

Any finite element function uh ∈ V h
j can now be extended by zero outside of Ωij .

This extended function, ũ, has the same H1-norm as uh. We next define

Eh
jiuh := Πh(ECΩi

ũ),

and obtain, by using (4.6) and (4.8),

‖Eh
jiuh‖H1(Ωi) ≤ C ‖ECΩi

ũ‖H1(IRn) ≤ C ‖ũ‖H1(CΩi) = C ‖uh‖H1(Ωj).

The constant C depends only on the shape regularity of the finite elements and the
uniformity constant CU (CΩi). By construction, we also have

(Eh
jiuh)|Ωj

= uh ∀uh ∈ V h
j .

�

We now present a proof of Lemma 4.2:
Proof. [Lemma 4.2] Consider an arbitrary w ∈ W̃ and let w(i) := R(i)w and

w(j) := R(j)w. Our scaling factors (3.3) satisfy the following elementary estimate, see
[22, Lemma 8.4],

ρi(δ
†
i )2 = ρi

ρ2
j

(ρi + ρj)2
≤ min{ρi, ρj}.

Proceeding as in [22] or [30], we find

ρi|H(θEij δ†i (w(i) − w(j)))|2H1(Ωi)

= ρi|H(θEij δ†i ((w(i) − wi,Ωi
) − (w(j) − wj,Ωj

) + (wi,Ωi
− wj,Ωj

)))|2H1(Ωi)

≤ 3 min{ρi, ρj}
(
|H(θEij (w(i) − wi,Ωi

))|2H1(Ωi)
+ |H(θEij (w(j) − wj,Ωj

))|2H1(Ωi)

+ |θEij (wi,Ωi
− wj,Ωj

)|2H1(Ωi)

)
.
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We have added and subtracted the averages wi,Ωi
=

∫
Ωi

w(i)dx/
∫
Ωi

1dx and wj,Ωj
=∫

Ωj
w(j)dx/

∫
Ωj

1dx. We can estimate the first term above using Lemmas 2.3 and 4.4

and find that,

min{ρi, ρj}|H(θEij (w(i) − wi,Ωi
))|2H1(Ωi)

≤ C(1 + log(Hi/hi))
2ρi‖w

(i) − wi,Ωi
‖2

H1(Ωi)

≤ C(1 + log(Hi/hi))
2ρi|w

(i)|2H1(Ωi)
.

We have the same type of bound for the second term. By using that the harmonic
extension always has the least energy of all possible extensions, Lemma 4.5, and a
Friedrichs inequality, we obtain

|H(θEij (w(j) − wj,Ωj
))|2H1(Ωi)

≤ |Eh
ji(H(θEij (w(j) − wj,Ωj

)))|2H1(Ωi)

≤ C ‖H(θEij (w(j) − wj,Ωj
))‖2

H1(Ωj )

≤ C |H(θEij (w(j) − wj,Ωj
))|2H1(Ωj ).

We can then proceed exactly as for the first term.
There remains to estimate the third term:

|θEij (wi,Ωi
− wj,Ωj

)|2H1(Ωi)
= |θEij |2H1(Ωi)

|wi,Ωi
− wj,Ωj

|2.

The energy of θEij is estimated in Lemma 4.4. Adding and subtracting the common
value wi,Vik = wj,Vik at a primal vertex V ik, which is an end point of E ij , we find that

|wi,Ωi
− wj,Ωj

|2 ≤ 2|wi,Ωi
− wi,Vik |2 + 2|wj,Ωj

− wj,Vik |2.

For the first term on the right hand side, we obtain using the discrete Sobolev in-
equality (4.2),

|wi,Vik − wi,Ωi
|2 ≤ ‖w(i) − wi,Ωi

‖2
L∞(Ωi)

≤ C(1 + log(Hi/hi))|w
(i)|2H1(Ωi)

.
(4.9)

We can proceed in the same way with the second term.
�

5. Numerical results. In this section, we present numerical results for some
irregular (and regular) subdomains for the Poisson and linear elasticity problems in
two dimensions using linear finite elements. In our FETI–DP algorithm, all subdo-
main vertices are primal and there are no additional primal variables. We solve the
linear systems of equations by the conjugate gradient method until a relative residual
reduction of rtol=1e− 10 is reached. Our FETI–DP implementation [19] uses PETSc
[4, 3, 5].

5.1. Geometries. We examine the effect of three different types of geometries.
We first consider the case of the unit square, discretized using a structured mesh, and
decomposed into 4×4 subdomains. We consider a regular, see Figure 5.2 (upper), and
an irregular, ragged decomposition; see Figure 5.2 (lower) of this mesh. The irreg-
ular decomposition is constructed in the following way. We start with quadrilateral
elements and the unit square decomposed into square subdomains. We then reassign
some elements to neighboring subdomains in the following way: All elements, except
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those touching the subdomain vertices, are reassigned in an alternating way. Each
quadrilateral is then replaced by two triangles. Such ragged decompositions have
previously been considered by Mandel, Dohrmann, and Tezaur [26].

We then consider 3 × 3 subdomains and an unstructured mesh. We consider a
standard, regular decomposition, see Figure 5.4, and one where the interface Γ is
defined in a recursive way; see Figure 5.3, as a fractal snowflake. These subdomains
are obtained by first partitioning the unit square into smaller squares. We then replace
the middle third of each edge by two other edges of an equilateral triangle, increasing
the length of the interface by a factor 4/3. The middle third of each of the resulting
shorter edges is then replaced in the same way and this process is repeated until the
desired refinement level is reached. This procedure gives us an interface which is
snowflake-like; see Figure 5.1.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Fig. 5.1. A snowflake-shaped subdomain, recursion level 4.
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Fig. 5.2. Upper: Structured mesh, regular subdomains, N=16, H/h=4,8,12. Lower: Structured
mesh irregular (ragged) subdomains, N=16, H/h=4,8,12.

5.2. Poisson’s Equation. We first consider the Poisson problem for our differ-
ent geometries using homogeneous Dirichlet boundary conditions and different values
of H/h. For unstructured meshes, we approximate H/h by (dof)1/2, the square root
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Fig. 5.3. Unstructured mesh, irregular subdomains (snowflakes), N=9. Level 0, 2, and 4.
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Fig. 5.4. Unstructured mesh, regular subdomains, N=9. Refinement level 0, 1, and 2.

of the total number of degrees of freedom. We compare the iteration numbers and the
condition numbers for two different scalings. The ρ-scaling is the standard scaling as
in (3.3) which uses the local coefficient of the PDE; see also [34, 23, 22]. The results
of this paper are only valid for this type of scaling.

Since we treat only problems with constant coefficients, the ρ-scaling reduces to
the multiplicity scaling of [31, 32]. We can therefore describe this scaling as follows:
the multiplicity of a node is the number of subdomains it belongs to. The multiplicity
scaling then scales the contribution from and to each node by the inverse of the
multiplicity.

The stiffness scaling, cf. [31, 32], refers to a common practice in iterative sub-
structuring codes which has been introduced for problems with variable coefficients
to approximate the ρ-scaling. In the stiffness scaling, the diagonals of the local stiff-
ness matrices are used to approximate the local coefficients. If we have constant
coefficients, a structured mesh, and a regular decomposition into subdomains the
stiffness scaling reduces to the multiplicity scaling but it does not for an irregular
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decomposition.

Indeed, in the case of a structured mesh and a regular decomposition, see Fig-
ure 5.2 (upper), we get the same results for the two types of scalings, see Table 5.1,
and the expected C(1 + log(H/h))2 behavior of the condition number; see Figure 5.6.

However, for an irregular decomposition, as in Figure 5.2 (lower), we find a signif-
icant deterioration of the condition number and the rate of convergence for increasing
values of H/h, see Table 5.2 and Figure 5.5.

From Figure 5.5, we can see that for the ρ-scaling, we can again numerically
confirm the expected C(1 + log(H/h))2 bound for the condition number. However,
we see a linear growth in H/h of the condition number if stiffness scaling is used. The
growth of the condition number is also reflected in the iteration count.

Poisson: Structured Regular
ρ stiff

H/h total dof |Γ| it cond it cond
4 289 84 4 1.63 4 1.63
8 1 089 180 5 2.22 5 2.22

16 4 225 372 6 2.96 5 2.96
32 16 641 756 7 3.84 7 3.84
64 66 049 1 524 7 4.85 7 4.85

128 263 169 3 060 8 6.02 8 6.02
192 591 361 4 596 9 6.76 9 6.76
256 1 050 625 6 132 8 7.31 8 7.31
320 1 640 961 7 668 11 7.75 11 7.75
368 2 362 369 9 204 11 8.13 11 8.13
448 3 214 849 10 740 11 8.45 11 8.45
512 4 198 401 12 276 10 8.73 10 8.73
576 5 313 025 13 812 11 8.99 11 8.99

Table 5.1
Poisson: Structured mesh, regular subdomains. ρ-scaling vs. stiffness scaling, N=16.

Poisson: Structured Irregular (Ragged)
ρ stiff

H/h total dof |Γ| it cond it cond
4 289 180 19 4.95 15 3.21
8 1 089 468 23 6.50 18 5.27

16 4 225 1 044 24 7.45 21 9.75
32 16 641 2 196 25 8.47 25 20.36
64 66 049 4 500 26 9.61 32 44.74

128 263 169 9 108 27 10.89 41 100.07
192 591 361 13 716 27 11.70 48 159.88
256 1 050 625 18 324 27 12.32 54 222.50
320 1 640 961 22 932 28 12.82 60 287.20
368 2 362 369 27 540 28 13.24 65 353.54
448 3 214 849 32 148 28 13.60 70 421.25
512 4 198 401 36 756 28 13.92 74 490.13
576 5 313 025 41 364 28 14.20 77 560.02

Table 5.2
Poisson: Structured mesh, irregular subdomains. ρ-scaling vs. stiffness scaling, N=16.
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Fig. 5.5. Poisson (Table 5.2): Structured irregular (ragged), N=16. Left: ρ-scaling. Semilog

Plot of
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10
0

10
1

10
2

10
3

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

H/h

√
c
o
n
d

Poisson, Structured Regular, ρ−Sc./Stiff.−Sc.

Fig. 5.6. Poisson (Table 5.1): Structured regular, N=16. Semilog plot of
√

cond vs. H/h.
ρ-scaling and stiffness scaling give identical results.

In order to verify that the condition number is independent of the number of
subdomains for a fixed H/h also in the irregular case, we choose H/h = 16 in Table 5.3
and increase the number of subdomains N . We see that the iteration count as well
as the condition numbers are indeed uniformly bounded.

N 16 64 256 1 024 4 096

Regular ρ cond 2.96 3.28 3.35 3.38 3.38
it 6 14 16 16 15

stiff cond 2.96 3.28 3.35 3.38 3.38
it 6 14 16 16 15

Irregular ρ cond 7.45 8.01 8.13 8.12 8.10
it 24 27 30 29 29

stiff cond 9.75 10.62 10.60 10.75 10.73
it 21 27 31 31 30

Table 5.3
Poisson: Structured regular/irregular, condition number, H/h=16.

We then consider the case where we have an interface which is similar to a fractal
snowflake. The finite element meshes are unstructured. We note that the number of
nodes on the interface grows rapidly with the level of refinement of the snowflakes; cf.
Tables 5.4 and 5.5. In spite of this, Tables 5.4 and 5.5, show that the condition number
of the preconditioned FETI–DP operator only exceeds that of the trivial case by a
factor of 3 resulting in a doubling of the number of conjugate gradient iterations if ρ-
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scaling is used. Figure 5.7 indicates that the condition number satisfies a logarithmic
bound in the square root of the total degrees of freedom. We also get such a bound
for the unstructured regular case; see Table 5.5 and Figure 5.8.

In contrast, in the case where stiffness scaling is applied, the condition number is
superlinear in the square root of the number of degrees of freedom.

Poisson: Unstructured Irregular (Snowflakes)
ρ stiff

level total dof |Γ| it cond it cond
0 498 56 9 1.90 9 1.89
1 528 92 14 2.66 12 2.80
2 841 188 16 3.38 21 7.49
3 4 166 764 19 5.15 37 37.58
4 19 160 3 068 21 7.37 70 190.40
5 81 340 12 284 23 10.08 128 940.87
6 331 895 49 148 25 13.29 240 4 494.98

Table 5.4
Poisson: Unstructured mesh, irregular subdomains, N=9, ρ-scaling vs. stiffness scaling.

Poisson: Unstructured Regular
ρ stiff

total dof |Γ| it cond it cond
398 56 8 1.90 9 1.89

1 688 104 8 2.40 10 2.39
5 430 200 10 3.04 12 3.07

21 513 404 11 3.83 13 3.95
85 641 812 12 4.75 15 4.94

341 745 1 628 13 5.79 16 6.06
Table 5.5

Poisson: Unstructured mesh, regular subdomains, N=9, ρ-scaling vs. stiffness scaling.
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Fig. 5.7. Poisson (Table 5.4): Unstructured irregular (snowflakes), N=9. Left: ρ-scaling.

Semilog plot of
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dof. Right: Stiffness scaling. Plot of cond vs.
√

dof.

5.3. Elasticity. We have repeated all the experiments of Section 5.2 for the
problem of linear elasticity. We essentially get the same results. We confirm the
C(1 + log(H/h))2 bound for all cases where the ρ-scaling is applied, and we see a
linear or even superlinear behavior in H/h of the condition number for the cases
where the stiffness scaling is used with unstructured interfaces.
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ρ-scaling (lower curve) and stiffness scaling (upper curve) give similar results.

Elasticity: Structured Regular
ρ stiff

H/h total dof |Γ| it cond it cond
4 578 168 12 2.11 12 2.11
8 2 178 360 14 2.97 14 2.97

16 8 450 744 17 4.03 17 4.03
32 33 282 1 512 20 5.30 20 5.30
64 132 098 2 048 22 6.78 22 6.78

128 526 338 6 120 24 8.73 24 8.72
192 1 182 722 9 192 26 10.32 26 10.32
256 2 101 250 12 264 27 11.35 27 11.35
320 3 281 922 15 336 29 12.19 29 12.19
368 4 724 738 18 408 30 12.90 30 12.90
448 6 429 698 21 480 31 13.52 31 13.52
512 8 396 802 24 552 30 14.07 30 14.07
576 10 626 050 27 624 32 14.56 32 14.56

Table 5.6
Elasticity: Structured mesh, regular subdomains, ρ-scaling vs. stiffness scaling, N=16.

Elasticity: Structured Irregular (Ragged)
ρ stiff

H/h total dof |Γ| it cond it cond
4 578 360 39 19.42 27 10.98
8 2 178 936 60 33.93 42 19.45

16 8 450 2 088 66 38.87 51 33.11
32 33 282 4 392 69 41.69 61 65.72
64 132 098 9 000 70 45.06 77 139.13

128 526 338 18 216 71 48.87 103 299.05
192 1 182 722 27 432 72 51.29 121 468.50
256 2 101 250 36 648 72 53.07 138 644.49
320 3 281 922 45 864 73 54.52 156 825.07
368 4 724 738 55 080 73 55.71 169 1 009.14
448 6 429 698 64 296 74 56.77 180 1 196.07
512 8 396 802 73 512 74 57.67 195 1 385.60
576 10 626 050 82 728 74 58.50 204 1 577.28

Table 5.7
Elasticity: Structured mesh, irregular subdomains, ρ-scaling vs. stiffness scaling, N=16.
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Fig. 5.9. Elasticity (Table 5.7): Structured irregular (ragged), N=16. Left: ρ-scaling. Semilog

plot of
√

cond vs. H/h. Right: Stiffness scaling. Plot of cond vs. H/h.
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Fig. 5.10. Elasticity (Table 5.6): Structured regular, N=16. Semilog plot of
√

cond vs. H/h.
ρ-scaling and stiffness scaling give identical results.

N 16 64 256 1 024 4 096

Regular ρ cond 4.03 4.98 5.76 6.20 6.40
it 17 22 24 26 26

stiff cond 4.03 4.98 5.76 6.20 6.40
it 17 22 24 26 26

Irregular ρ cond 38.87 43.41 47.77 50.28 51.60
it 66 72 76 78 79

stiff cond 33.11 47.56 55.81 62.81 67.12
it 51 69 80 85 89

Table 5.8
Elasticity: Structured regular/irregular, condition number, H/h=16.
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