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Abstract. In the theory of domain decomposition methods, it is often assumed that each
subdomain is the union of a small set of coarse triangles or tetrahedra. In this study, extensions to
the existing theory which accommodates subdomains with much less regular shape are presented;
the subdomains are only required to be John domains. Attention is focused on overlapping Schwarz
preconditioners for problems in two dimensions with a coarse space component of the preconditioner
which allows for good results even for coefficients which vary considerably. It is shown that the
condition number of the domain decomposition method is bounded by C(1 + H/δ)(1 + log(H/h))2 ,
where the constant C is independent of the number of subdomains and possible jumps in coefficients
between subdomains. Numerical examples are provided which confirm the theory and demonstrate
very good performance of the method for a variety of subregions including those obtained when a
mesh partitioner is used for the domain decomposition.
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1. Introduction. In the theory for overlapping Schwarz domain decomposition
methods, we typically assume that each subdomain is quite regular, e.g., the union
of a small set of coarse triangles or tetrahedra; see, e.g., [22, Assumption 4.3]. How-
ever, this is often unrealistic, especially if the subdomains result from using a mesh
partitioner. The subdomain boundaries might then not even be uniformly Lipschitz
continuous, i.e., the number of patches, covering the boundary of the region, in each
of which the boundary is the graph of a Lipschitz continuous function, might not
be uniformly bounded independently of the finite element mesh size. We note that
the existing theory for iterative substructuring establishes bounds on the convergence
rates of the algorithms which are insensitive to even large jumps in the material prop-
erties across subdomain boundaries as reflected in the coefficients of the problem.
The theory for overlapping Schwarz methods is less restrictive as far as the subdo-
main shapes are concerned, see, e.g., [22, Chapter 3], but relatively little has been
known on the effect of large changes in the coefficients; see however [20] and recent
work reported in [11] and [21].

The purpose of this paper is to begin the development of a theory under much
weaker assumptions on the partitioning; a similar study for iterative substructuring
methods is also under way and will be reported in a paper [14], by Oliver Rheinbach
and the second and third authors of this paper. Our results in this paper concern
an overlapping Schwarz algorithm which combines a coarse space adopted from an
iterative substructuring method, [22, Algorithm 5.16], with local preconditioner com-
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ponents selected as in classical overlapping Schwarz methods, i.e., they are based
on solving problems on overlapping subdomains. This choice of the coarse compo-
nent will allow us to prove results which are independent of coefficient jumps. We
note that there are earlier studies on multilevel methods [9, 19] in which the coarsest
components are similarly borrowed from iterative substructuring algorithms.

We will use nonoverlapping subdomains, and denote them by Ωi, i = 1, . . . , N , as
well as overlapping subdomains Ω′

j , j = 1, . . . , N ′. The interface between the Ωi will
be denoted by Γ.

So far, complete results have only been obtained for problems in the plane. To
simplify our presentation, we will also confine ourselves to scalar elliptic problems of
the following form:

−∇ · (ρ(x)∇u(x)) = f(x), x ∈ Ω ⊂ IR2, (1.1)

with a Dirichlet boundary condition on a measurable subset ∂ΩD of ∂Ω, the boundary
of Ω, and a Neumann condition on ∂ΩN = ∂Ω \ ∂ΩD. The coefficient ρ(x) is strictly
positive and assumed to be a constant ρi for x ∈ Ωi. We use piecewise linear, contin-
uous finite elements and triangulations with shape regular elements and assume that
each subdomain is the union of a set of elements. The weak formulation of the elliptic
problem is written in terms of a bilinear form,

a(u, v) :=
N

∑

i=1

ai(u, v) :=
N

∑

i=1

ρi

∫

Ωi

∇u · ∇vdx.

Our study requires the generalization of some technical tools used in the proof of
a bound of the convergence rate of this type of algorithm. Some of the standard tools,
such as those collected in [22, Section 4.6], are no longer available and we therefore also
have to modify the reasoning in the proof of our main result. Three auxiliary results,
namely a Poincaré inequality, a Sobolev-type inequality for finite element functions,
and a bound for certain edge terms, will be required in our proof; see Lemmas 2.2,
3.2, and 3.4. We will work with John domains, introduced in Section 2, and will be
able to express our bounds on the convergence of our algorithm in terms of a few
geometric parameters.

2. A Poincaré inequality and John domains. In any analysis of any domain
decomposition method with more than one level, we need a Poincaré inequality. This
inequality is closely related to an isoperimetric inequality; see [10], [17] and also [16]
and [18].

Lemma 2.1 (Isoperimetric inequality). Let Ω ⊂ IRn be a domain – an open,
bounded, and connected set – and let u be sufficiently smooth. Then,

inf
c∈R

(
∫

Ω

|u − c|n/(n−1) dx

)(n−1)/n

≤ γ(Ω, n)

∫

Ω

|∇u| dx,

if and only if,

(min(|A|, |B|))1−1/n ≤ γ(Ω, n)|∂A ∩ ∂B|. (2.1)

Here, A ⊂ Ω is an arbitrary open set, and B = Ω \ Ā; γ(Ω, n) is the best possible
constant and |A| is the measure of the set A, etc.

We note that the domain does not need to be star-shaped or Lipschitz. However,
it is known that in the plane, if the parameter γ(Ω, n) and Ω are bounded, then the
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domain must be a John domain; see [6]. For a definition of John domains, see below.
We also note that a small value of γ(Ω, n) is desirable for our purposes; we note that
this imposes restrictions on the boundary.

For two dimensions, we immediately obtain a standard Poincaré inequality by
using the Cauchy-Schwarz inequality. We note that the best choice of c is ūΩ, the
average of u over the domain.

Lemma 2.2 (Poincaré’s inequality). Consider a domain Ω ⊂ IR2. Then,

‖u− ūΩ‖
2
L2(Ω) ≤ (γ(Ω, 2))2|Ω|‖∇u‖2

L2(Ω), ∀u ∈ H1(Ω).

For n = 3 a similar bound is obtained by using Hölder’s inequality several times.
In Lemma 2.2, we then should replace |Ω| by |Ω|2/3.

Throughout, we will use weighted H1(Ωi)−norms defined by

‖u‖2
H1(Ωi)

:= |u|2H1(Ωi)
+ 1/H2

i ‖u‖
2
L2(Ωi)

:=

∫

Ωi

∇u · ∇udx + 1/H2
i

∫

Ωi

|u|2dx.

Here, Hi is the diameter of Ωi. The weight originates from a dilation of a domain with
diameter 1. We will use Lemma 2.2 to remove L2-terms from full H1-norms.

We will also use another variant of the Poincaré inequality.
Lemma 2.3 (Poincaré, L1−variant). Consider a domain Ω ⊂ IR2. Then,

‖u− ūΩ‖L1(Ω) ≤ γ(Ω, 2)|Ω|1/2‖∇u‖L1(Ω), ∀u ∈ W 1,1(Ω).

Proof. By the Cauchy-Schwarz inequality:

‖u− ūΩ‖L1(Ω) ≤ |Ω|1/2‖u− ūΩ‖L2(Ω).

The proof is then completed by using Lemma 2.1.
We next give a definition of a John domain; see [12] and the references therein.
Definition 2.4 (John domain). A domain Ω ⊂ IRn is a John domain if there

exists a constant CJ ≥ 1 and a distinguished central point x0 ∈ Ω such that each x ∈ Ω
can be joined to it by a rectifiable curve γ : [0, 1] → Ω such that γ(0) = x0, γ(1) = x
and distance(γ(t), ∂Ω) ≥ C−1

J |x − γ(t)| for all t ∈ [0, 1].
This condition can be viewed as a twisted cone condition. We note that certain

snowflake curves with fractal boundaries are John domains and that the length of
the boundary of a John domain can be arbitrarily much larger than its diameter; see
Figure 5.1. We also note that by restricting the refinement locally, the contribution to
the arc length of the boundary from a small neighborhood of one point can be made
to dominate. A John domain can have cusps facing inwards, but not outwards; this
means however that there can be no cusps on the interface since any cusp would face
outwards for one of two neighboring subdomains; see [18].

We also note that the John condition allows us to estimate the diameter of a region
Ω from above in terms of |Ω|1/n. It is then elementary to prove that the diameter of Ω
can be bounded from below and above by |Ω|1/n with one of the constants depending
on CJ .

3. The algorithm, technical tools, and the main result. The domain Ω ⊂
IR2 of the elliptic problem is decomposed into nonoverlapping subdomains Ωi, each of
which is the union of elements, and with the finite element nodes on the boundaries



4 DOHRMANN, KLAWONN, AND WIDLUND

of neighboring subdomains matching across the interface Γ, which is the union of the
parts of the subdomain boundaries which are common to at least two subdomains.
The interface Γ is composed of edges and vertices. An edge E ik is an open subset of
Γ, which contains the nodes which are only shared by the boundaries of a particular
pair of subdomains Ωi and Ωk. The subdomain vertices V` are end points of edges
and are typically shared by more than two; see [15, Definition 3.1] for more details
on how these sets can be defined for quite general situations. We denote the standard
finite element space of continuous, piecewise linear functions on Ωi by V h(Ωi) and
assume that these functions vanish on ∂Ωi ∩ ∂ΩD.

We will view our algorithm as an additive Schwarz method, as in [22, Chapters
2 and 3], defined in terms of a set of subspaces. To simplify the discussion, we will
use exact solvers for both the coarse problem and the local ones. All that is then
required for the analysis of our algorithm is an estimate of a parameter in a stable
decomposition of any elements in the finite element space; see [22, Assumption 2.2
and Lemma 2.5]. Thus, we need to estimate C2

0 in

a(u0, u0) +
N ′

∑

j=1

aΩ′

j
(uj , uj) ≤ C2

0a(u, u), ∀u ∈ V h,

for some {uj}, such that

u =

N ′

∑

j=0

RT
j uj , uj ∈ Vj .

Here aΩ′

j
(u, v) is the bilinear form obtained by integrating only over the subdomain

Ω′
j and RT

j : Vj −→ V h is an interpolation operator from the space of the j-th

subproblem, Vj , into the space V h. These local spaces Vj , j = 1, . . .N ′, are defined as

Vj = V h(Ω′
j) ∩ H1

0 (Ω′
j). (3.1)

This is the same standard choice as in [22, Chapter 3]. We will assume that each Ω′
j

has a diameter comparable to those of the subdomains Ωi which it intersects.
Associated with each local space Vj is a projection Pj defined by

aΩ′

j
(P̃ju, v) = a(u, v), ∀v ∈ Vj , and Pj = RT

j P̃j .

The coarse space V0 is spanned by functions defined by their values on the interface
and extended as discrete harmonic functions into the interiors of the subdomains Ωi.
The discrete harmonic extensions minimize the energy; see [22, Section 4.4]. There will
be one basis function, θV`(x), for each subdomain vertex; it is the discrete harmonic
extension of the interface values of the standard nodal basis function. For each edge
E ik there is also a basis function, θEik(x) ∈ V h, which equals 1 at all nodes on the
edge and vanishes at all other interface nodes. The vertex and edge functions provide
a partition of unity. We will use a projection P0 onto V0, which is defined by

a(P0u, v) = a(u, v), ∀v ∈ V0. (3.2)

The additive Schwarz operator, the preconditioned operator used in our iteration,
is given by

Pad =

N ′

∑

j=0

Pj .
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By using [22, Lemmas 2.5 and 2.10], we find that the condition number κ(Pad)
of the additive Schwarz operator can be bounded by (NC + 1)C2

0 where NC is the
minimal number of colors required to color the subdomains Ω′

j such that no pair of
intersecting subdomains have the same color.

The overlap between the subdomains is characterized by parameters δj , as in [22,
Assumption 3.1]; δj is essentially the minimum width of the neighborhood Ωj,δj

of
∂Ω′

j which is also covered by neighboring overlapping subdomains.
We can now formulate our main result, which is also valid for compressible elas-

ticity with piecewise constant Lamé parameters, with jumps only across the interface,
provided that the coarse space is enriched to include all rigid body functions; see
[8, 7]. The extension to the case of linear elasticity requires a Korn inequality [1]; see
also [22, Chapter 8].

Theorem 3.1 (Condition number estimate). Let Ω ⊂ IR2 be partitioned into
nonoverlapping subdomains Ωi, which are John domains, each with a shape regular
triangulation. The condition number of our domain decomposition method then sat-
isfies

κ(Pad) ≤ C (1 + H/δ)(1 + log(H/h))2,

where C > 0 is a constant which only depends on the John and Poincaré parameters
of the subdomains, the number of colors required for the overlapping subdomains, and
the shape regularity of the elements.

As in many domain decomposition results, H/h is shorthand for maxi(Hi/hi),
where hi is the diameter of the smallest element of Ωi. Similarly, H/δ is the largest
ratio of Hi and the smallest of the δj of the overlapping subregions that intersect Ωi.

The logarithmic factor of our main result can, as shown in [8], be improved to a
first power if the subregions satisfy [22, Assumption 4.3]. If, in addition, the coeffi-
cients do not have large jumps across the interface and the coarse space is enriched
to contain all piecewise linear functions on the coarse mesh, we can also eliminate the
logarithmic factors altogether by using the proof of [22, Theorem 3.13].

To prove this theorem, we need two auxiliary results, in addition to Poincaré’s
inequality. The first is a discrete Sobolev inequality:

Lemma 3.2 (Discrete Sobolev inequality). Let Ω be a John domain in the plane
with diameter H. Then,

‖u − ūΩ‖
2
L∞(Ω) ≤ C(1 + log(H/h))|u|2H1(Ω), ∀u ∈ V h(Ω). (3.3)

The constant C > 0 depends only on the John parameter CJ (Ω) and the shape regu-
larity of the elements.

We note that this lemma is well-known in the theory of iterative substructuring
methods. Proofs for domains satisfying an interior cone condition are given in [3] and
in [5, Sect. 4.9]; see also [2]. For a different proof, see [22, Lemma 4.15]. For a proof
that this inequality is sharp, see [4].

In preparation for our proof of this result for John domains, we will formulate and
prove a lemma which is directly inspired by a paper by Haj lasz [12]. We first introduce
at set of circular disks. We consider a John domain Ω with diameter H and with a
triangulation using a mesh size h. Let γ(t) be a John curve from a central point x0 ∈ Ω
to an arbitrary point x. A family of circular disks Bi, i ≥ 0 is introduced as follows:
the first disk is B0 := B(x0, dist(x0, ∂Ω)/4), the open set centered at x0 and with
radius r0 = dist(x0, ∂Ω)/4. We will assume that x lies outside 2B0, the concentric
disk with twice the radius of B0; the other case is trivial. The other disks are defined
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similarly as Bi := B(xi, ri), centered at xi and with radius ri := |x − xi|/4CJ , i ≥ 1.
All the xi lie on the John curve and all the Bi are clearly subsets of Ω . Given Bi, we
select xi+1 ∈ ∂Bi as the last point of exit of γ(t) from Bi.

Several properties of the Bi can now be established.
Lemma 3.3. There exists a constant M(CJ ) such that
1. no point in Ω belongs to more than M of the Bi,
2. |Bi ∪ Bi+1| ≤ M |Bi ∩ Bi+1|,
3. ri → 0, xi → x as i → ∞,
4. The number of xi that are at a distance larger than r from x by can be

estimated by M log(H/r).
Proof. Our proof will rely heavily on arguments developed in [12], in particular,

on the proof of Theorem 10 of that paper, which we will reproduce in part; see also
references to earlier contributions in that paper.

Let a point y belong to Bk, Bk+1, . . . Bk+p. Then,

|x − y| ≤ |x − xk+m| + |xk+m − y| ≤ (4CJ + 1)rk+m, m = 0, . . . , p.

Similarly,

4CJrk+n = |x − xk+n| ≤ |x − y| + |y − xk+n| ≤ |x − y| + rk+n, n = 0, . . . , p.

Therefore, we have

(4CJ − 1)rk+n ≤ (4CJ + 1)rk+m, m, n = 0, . . . , p.

Since no center of a disk belongs to any other disk, it is then easy to show that, for
m 6= n,

|xk+n − xk+m| ≥ (4CJ − 1)/(4CJ + 1)rk, (3.4)

which provides a uniform bound on p since only a finite number of points can satisfy
(3.4).

The second statement now follows easily by using the bound on the ratio of the
radii of the two circles and elementary geometry.

We next consider a circle, centered at x, which covers all of Ω. We decompose this
circle into annuli with a fixed ratio between the outer and inner circles of any annulus.
It is easy to see that the number of xi contained in each annulus will be uniformly
bounded since the radii of the disks in an annulus is determined by the distance to x.
This shows that ri → 0 and also that we can, by a simple covering argument, bound
the number of xi that are at a distance larger than r from x by M log(H/r).

Proof. [Lemma 3.3] We will now confine x to be a centroid of an element K;
following [5, Formula (4.9.6)] we can then easily obtain our estimate for any x ∈ K.
We denote by N(h) the index of the first Bi which lies entirely inside K. We will
work with averages ūBi

of sufficiently smooth functions over the circular disks. We
note that the average of a linear function over a circular disk Bi coincides with the
value at its center if Bi ⊂ K.

Then, following [12],

|u(xN(h)) − ūB0
| ≤

N(h)−1
∑

i=0

|ūBi
− ūBi+1

| (3.5)

≤

N(h)−1
∑

i=0

(|ūBi
− ūBi∩Bi+1

| + |ūBi∩Bi+1
− ūBi+1

|). (3.6)
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The expression |ūBi
−ūBi∩Bi+1

| is invariant under a shift of u by a constant. Replacing
u by u− ūBi

, we find by elementary arguments that

|ūBi
− ūBi∩Bi+1

| ≤
|Bi|

|Bi ∩ Bi+1|
−

∫

Bi

|u − ūBi
|.

Here −
∫

Bi
v denotes the average of v over the disk Bi. The second term above can be

estimated similarly and we can now use the second statement of Lemma 3.3 to obtain

|u(xN(h)) − ūB0
| ≤ M

N(h)−1
∑

i=0

−

∫

Bi

|u − ūBi
|.

By using Lemma 2.3 for the disks, we obtain

−

∫

Bi

|u − ūBi
| ≤ C

∫

Bi

|∇u(z)|

ri
dz.

We now use the Cauchy-Schwarz inequality and obtain

|u(xN(h)) − ūB0
|2 ≤ CN(h)

N(h)−1
∑

i=0

∫

Bi

|∇u(z)|2dz.

By using the finite covering property, the sum can be estimated by
∫

Ω |∇u(z)|2dz.
Given that BN(h) is the first disk which is a subset of K, we can show that |xN(h)−x|
is bounded from below by a fixed fraction of the distance of x of ∂K. In fact, xN(h)

is within 2rN(h)−1 to ∂K and we have a good enough upper bound for rN(h)−1. We
can now use the logarithmic estimate of N(h), the fourth statement of Lemma 3.3,
and find,

|u(xN(h)) − ūB0
|2 ≤ C log(H/h)

∫

Ω

|∇u(z)|2dz.

It is also elementary to estimate |ūB0
−ūΩ|. We then have a bound for one point in the

element K and, as already indicated, we can easily estimate the difference between
the values at any pair of points as in [5, Formula (4.9.6)].

The second important tool provides estimates of the edge functions.
Lemma 3.4. The edge function θEik can be bounded as follows:

‖θEik‖2
H1(Ωi)

≤ C(1 + log(Hi/hi)), (3.7)

and

‖θEik‖2
L2(Ωi)

≤ CH2
i (1 + log(Hi/hi)). (3.8)

We can remove the logarithmic factor from (3.8) if all angles in the triangulation are
acute.

Proofs of these results are given in [14].

4. Proof of Theorem 3.1. As in many other proofs of results on domain de-
composition algorithms, we will work with one subdomain at a time. With local
bounds, there are now no difficulties in handling variations of the coefficients across
the interface.
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We recall that the coarse space is spanned by the θV` , the discrete harmonic
extensions of the restrictions of the standard nodal basis functions to Γ, and the edge
functions θEik . The vertex basis functions have a bounded energy, while, according to
(3.7), the edge functions have an energy that grows in proportion to (1 + log(H/h)).
The coarse space component u0 ∈ V0 in the decomposition of an arbitrary finite
element function u(x) can be chosen as

u0(x) =
∑

`

u(V`)θV`(x) +
∑

ik

ūEikθEik (x).

Here, ūEik is the average of u over the edge. This interpolation formula is the two-
dimensional analog of [22, Formula (5.13)] and it reproduces constants.

In the case of linear elasticity, we must include the restriction of all rigid body
modes to the edges. Then, the restriction of any rigid body mode to a subdomain
will be included in the coarse space as is necessary. In this case, we extend the values
given on the interface into the subdomains by solving homogeneous discrete elasticity
problems.

Returning to the scalar elliptic case, we note that in the case of regular edges,
we can estimate the edge averages by using the Cauchy–Schwarz inequality and an
elementary trace theorem. In our more general case, we instead get two logarithmic
factors after estimating the edge averages by ‖u‖L∞

and using Lemmas 3.2 and 3.4.
The norm of the vertex terms of u0 are bounded by one logarithmic factor. Replacing
u(x) by u(x)− ūΩi

and using Lemma 2.2, to remove the L2−terms of the H1−norms,
we find that

|u0|
2
H1(Ωi)

≤ C(1 + log(H/h))2|u|2H1(Ωi)
, (4.1)

and consequently,

a(u0, u0) ≤ C(1 + log(H/h))2a(u, u).

Similarly, we can prove

‖u − u0‖
2
L2(Ωi)

≤ C(1 + log(H/h))2H2
i |u|

2
H1(Ωi)

. (4.2)

If all angles of the triangulation of Ωi are acute, then by Lemma 3.4, we can remove
one of the logarithmic factors and if the subdomain boundaries are regular, there are
no logarithmic factors on the right hand side of (4.2); see [22, Lemma 4.25] for a three
dimensional result for regular subdomains.

We now turn to the estimate related to the local spaces. Again, we will carry
out the work on one subdomain Ωi at a time. Let w := u − u0 and define a local
term in the decomposition by uj = Ih(θjw). We borrow extensively from [22, Sections
3.2 and 3.6]. Thus, Ih interpolates into V h and the θj ∈ RT

j Vj , provide a partition
of unity. These functions vary between 0 and 1 and their gradients are bounded by
|∇θj | ≤ C/δj and they vanish outside the areas of overlap.

Remark 1. Should the overlap between the subdomains be more generous in
places, then we can modify the relevant θj making them vary from 0 to 1 over a
distance of δj effectively making the set Ωj,δj

more evenly wide.
We note that the number of Ω′

j that intersect Ωi is uniformly bounded; we will
only consider the contribution from one of them, Ω′

j . As in our earlier work, the only
term that requires a careful consideration is ∇θjw. We cover the set Ωj,δj

∩ Ωi by



DOMAIN DECOMPOSITION FOR LESS REGULAR SUBDOMAINS 9

square patches with sides on the order of δj and note that on the order of Hi/δj of
them will suffice. Just as in the proof of [22, Lemma 3.11], we have

∫

Ωi

|∇θjw|2 ≤ C/δ2
j (δ2

j |w|2H1(Ωi)
+ (Hi/δj)δ2

j ‖w‖2
H1(Ωi)

).

The proof is completed by using the bounds in (4.1) and (4.2).

5. Numerical Examples. Numerical examples are presented in this section for
the three different types of subdomains shown in Figure 5.1. Type 1 subdomains
have a square geometry and are partitioned into square bilinear elements. Type 2
subdomains also consist of square bilinear elements, but their boundaries have a
ragged shape. Type 3 subdomains employ equilateral linear triangles, and their edges
can have both straight line and fractal segments. Examples are also presented for
subdomains obtained from a mesh partitioner.

The main purpose of the first group of numerical examples is to verify certain
estimates used in the proof of Theorem 3.1. For Type 1 and Type 2 subdomains, the
ratio H/h is increased by a factor of 2 with each additional level of mesh refinement.
At the i-th (i ≥ 0) level of refinement for Type 3 subdomains,

H/h = (H/Hf )3i+1,

where H/Hf = 5 is fixed for Type 3a subdomains, and H/Hf = 5 + 2i for Type 3b.
We note that in the asymptotic limit the fractal segment lengths grow by a factor
of 4/3 with each mesh refinement for both Type 3 subdomains, whereas the straight
line segment lengths remain bounded. The primary difference between Type 3a and
3b subdomains is that H/Hf is fixed in the former while H/Hf increases without
bound in the latter. Thus, for Type 3b subdomains, the protruding regions bounded
by fractal segments decrease in area while fractal segment lengths continue to increase
with mesh refinement.

We recall the estimates (4.1) and (4.2) from the proof of Theorem 3.1 and consider
the associated Rayleigh quotients

rH1 =
|u0|

2
H1(Ωi)

|u|2H1(Ωi)

and rL2
=

‖u − u0‖
2
L2(Ωi)

|u|2H1(Ωi)

,

and also the Rayleigh quotient

rP =
|u|2H1(Ωi)

‖u‖2
L2(Ωi)

.

Stationary values of these Rayleigh quotients correspond to eigenvalues of generalized
eigenproblems. For example, a stationary value of rP is an eigenvalue λ of

Kφ = λMφ,

where K and M are the stiffness and mass matrices, respectively, of the finite element
discretization of Ωi with Neumann boundary conditions. We note in this case that
the reciprocal of the smallest positive eigenvalue provides an estimate of the constant
in Lemma 2.2. Maximum values of rH1 and rL2

, along with the smallest positive
stationary value of rP , are plotted versus 1 + log(H/h) in Figure 5.2. We observe
essentially the same dependence on log(H/h) for all four subdomain types. The
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Type 1

Type 2

H
(H−H

f
)/2

Type 3

Fig. 5.1. Three types of subdomains used in the numerical examples. Two levels of mesh

refinement are shown, and the Type 3 subdomains have a constant value of H/Hf = 5. For each

refinement of Type 3 subdomains, every element edge on the fractal part of the boundary is first

divided into three shorter edges of 1/3 the length. The middle one of these edges is then replaced by

two other edges with which it forms an equilateral triangle. Thus, for fixed H/Hf , the length of the

fractal part of the boundary increases by a factor of 4/3 with each additional level of refinement.
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Fig. 5.2. Rayleigh quotients for different subdomain types.

Fig. 5.3. Sample domain decompositions used in numerical examples. Subdomain boundaries

are shown in red.

maximum value of rH1 appears to vary linearly with log(H/h) in the asymptotic
limit, whereas the maximum value of rL2

appears to be converging to a constant.
This behavior is consistent with (4.1) and (4.2), but the estimates do not appear to
be sharp for the different subdomain types and ranges of H/h considered. Consistent
with the isoperimetric inequality, the rightmost plot in Figure 5.2 suggests that the
smallest positive stationary value of rP is uniformly bounded. We have yet to identify
a subdomain shape with numerical behavior essentially different from the regular-
shaped case.

The next group of numerical examples are for the domain decompositions shown
in Figure 5.3. For Type 3 subdomains, we fix H/Hf = 5. Homogeneous essential
boundary conditions are applied to the bottom edge of each domain, and ρi = 1 for
each subdomain. Preconditioned conjugate gradients is used to solve the associated
linear systems to a relative residual tolerance of 10−8 for random right-hand-sides.
The amount of overlap is specified by the integer dj . If Ωi,h contains all the nodes in
the closure of Ωi, then the nodes in overlapping subdomain Ω′

i is the union of Ωi,h with
all nodes a graph distance dj or less from one or more nodes in Ωi,h. We note that
nodes on the boundary of subdomain Ωi are also contained in Ωi,h; the designation
nonoverlapping refers to an element rather than a nodal decomposition.

The numbers of iterations and condition number estimates from conjugate gradi-
ent iterations are reported in Table 5.1. The condition numbers from Table 5.1 are
also plotted in Figure 5.4. Provided the overlap dj + 1 remains in fixed proportion to
H/h, i.e., H/δ is constant, the growth in condition number appears to be bounded
by C(1 + log(H/h)) for all three subdomain types considered. These results are con-
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Table 5.1
Results for domain decompositions shown in Figure 5.3. Table headings iter, cond, and ndof

denote the number of iterations, condition number estimates, and the number of unknowns in the

problem, respectively. Material properties are the same for all subdomains.

Type H/h dj iter cond ndof
1 8 1 25 9.11 1056

16 3 29 11.07 4160
32 7 31 12.99 16,512
64 15 32 14.87 65,792
128 31 34 16.71 262,656

2 8 1 28 13.53 1056
16 3 30 15.70 4160
32 7 32 17.81 16,512
64 15 33 19.76 65,792
128 31 34 21.60 262,656

3 15 3 30 18.56 1830
45 11 34 22.79 16,290
135 35 36 26.66 146,070
405 107 37 30.14 1,313,010

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
5

10

15

20

25

30

35

1+log(H/h)

co
nd

iti
on

 n
um

be
r

 

 

Type 1

Type 2

Type 3

Fig. 5.4. Condition numbers versus 1 + log(H/h) for three different subdomain types.

sistent with Theorem 3.1, but suggest that the estimate in the theorem may not be
sharp.

The next group of examples is identical to the previous one, but we now set
ρi = 1 for the bottom two rows of subdomains and ρi = σ for the top two rows
of subdomains in Figure 5.3. Consistent with the theory, the results in Table 5.2
suggest that condition numbers are bounded independently of material property jumps
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Table 5.2
Results for domain decompositions shown in Figure 5.3. The bottom two rows of subdomains

have ρi = 1 and the top two rows have ρi = σ. Material property jumps are aligned with subdomain

boundaries.

Type H/h dj σ iter cond ndof
1 16 3 10−4 32 10.10 4160

10−2 29 10.16
1 29 11.07

102 30 11.45
104 32 11.45

2 16 3 10−4 33 11.86 4160
10−2 32 12.19

1 30 15.70
102 31 16.75
104 32 16.76

3 45 11 10−4 34 18.84 16,290
10−2 33 18.92

1 34 22.79
102 33 27.72
104 35 27.86

16 Subdomains 36 Subdomains 65 Subdomains

Fig. 5.5. Sample domain decompositions obtained from a mesh partitioner.

between subdomains.

The final group of examples deals with subdomains generated by a mesh parti-
tioner. Consider a graph in which each vertex of the graph corresponds to a finite
element. There is an edge between two vertices in the graph if the corresponding finite
elements share an edge, i.e., they have two nodes in common. The graph partitioning
software Metis [13] was used to decompose such graphs into N subdomains. Example
domain decompositions obtained in this manner are shown in Figure 5.5 for the same
square geometry considered in previous examples. Results in Table 5.3 suggest that
using a general-purpose mesh partitioner to generate subdomains does not degrade
performance significantly. Results are also shown in the table for problems in which
ρ(x) = σ in the upper right quadrant of the square domain and ρ(x) = 1 elsewhere.
The bottom part of Table 5.3 shows results for a 5x5 checkerboard where ρ(x) = 1
in red squares and ρ(x) = σ in black squares. Except for the checkerboard problem
decomposed into 25 square subdomains, the subdomain boundaries are not aligned
with jumps in material properties. Although our theory does not apply to such cases,
good performance is evident for both regular and irregular domain decompositions.

Acknowledgments. The authors are grateful to Professor Fanghua Lin of the
Courant Institute for introducing the third author to John domains and Poincaré’s
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Table 5.3
Results for square subdomains and subdomains obtained from a mesh partitioner, where N des-

ignates the number of subdomains. In the upper right quadrant of the square domain ρ(x) = σ, and

elsewhere ρ(x) = 1. For N = 64 and H/h = 16, the mesh partitioner generated one subdomain con-

sisting of two disconnected components. These two components were treated as distinct subdomains

resulting in N = 65. Results in the bottom part of the table are for a checkerboard arrangement of

material properties.

square mesh
subdomains partitioner

N H/h σ dj iter cond iter cond ndof
16 16 1 3 29 11.07 31 10.31 4160

32 7 31 12.99 33 11.96 16,512
36 16 3 31 11.87 36 14.05 9312

32 7 33 14.11 39 14.78 37,056
64/65 16 3 33 12.25 38 14.49 16,512

64 32 7 36 14.63 41 15.42 65,792
25 16 10−4 3 31 11.55 38 17.18 6480

10−2 31 11.55 38 17.18
1 30 11.56 37 17.15

102 34 14.34 38 17.14
104 34 14.58 38 17.14

5x5 checkerboard with (16 · 5)2 total elements
20 10−4 3 34 28.39 6480

1 36 14.39
104 41 32.53

25 10−4 3 26 9.40 46 46.87 6480
1 30 11.56 37 17.15

104 26 9.55 37 18.86
30 10−4 3 36 16.69 6480

1 34 13.09
104 43 24.44
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inequality for very general domains. They are also grateful to Professors Piotr Haj lasz
and Marcus Sarkis for their interest and insight.
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