Invisible Safety of Distributed Protocols*

Ittai Balaban, Amir Pnueli', and Lenore D. Zuck

1 New York University, New York{bal aban, ami r }@s. nyu. edu
2 University of lllinois at Chicagol enore@s. ui c. edu

Abstract. The method of “Invisible Invariants” has been applied successfully
to protocols that assume a “symmetric” underlying topology, be it cligstass,
or rings. In this paper we show how the method can be applied to proviety sa
properties of distributed protocols running under arbitrary topologiesiy\afety
properties of such protocols have reachability predicates, which, sirgfance,
are beyond the scope of the Invisible Invariants method. To overcomdiffi-
culty, we present a technique, called “coloring,” that allows, in many itets,
to replace the second order reachability predicates by first ordeicptes), re-
sulting in properties that are amenable to Invisible Invariants, wherelietde”

is replaced by “colored.” We demonstrate our techniques on sevistebdted
protocols, including a variant on Luby’s Maximal Independent Setqmol, the
Leader Election protocol used in the IEEE 1394 (Firewire) distributebot®-
col, and various distributed spanning tree algorithms. All examples hese b
tested using the symbolic model checkev.

1 Introduction

Uniform verification of parameterized systeim®ne of the most challenging problems
in verification today. Given a parameterized systé(iV) : P[1]||---|P[N] and a
propertyp, uniform verification attempts to verif§(N) | p for every N > 1. One

of the most powerful approaches to verification which is restricted to finite-state
systems igdeductive verificationThis approach is based on a set of proof rules in
which the user has to establish the validity of a list of pi=siin order to validate a
given property of the system. The two tasks that the userdjasrform are:

1. Identify some auxiliary constructs which appear in thenpises of the rule;
2. Use the auxiliary constructs to establish the logicabhigl of the premises.

When performing manual deductive verification, the first tasksually the more dif-
ficult, requiring ingenuity, expertise, and a good undeditag of the behavior of the
program and the techniques for formalizing these insidgfite.second task is often per-
formed using theorem provers suchrasg1] or sTer [2], which require user guidance
and interaction, and place additional burden on the usex.difficulties in the execu-
tion of these two tasks are the main reason why deductivéication is not used more
widely.

* This research was supported in part by NSF grant CCR-0205570Rdgrant NO0014-99-
1-0131.

A representative case is the verification of invariance ertigs using thévariance
rule of [3], which is described in Fig. 1. In order to prove thatextionyp is an invariant
of programP, the rule calls for amuxiliary assertionp that isinductiveand strengthens
(implies) p. Premise |1 requireg to hold at any initial states, which are characterized
by the assertio®. Premise 12 requires that evepysuccessor of &-state is alsap-
state, wherg is the transition relation. Finally, premise 13 specifieatth strengthens
p. The main challenge in applying INV is identifying a gogdwhenp itself is not
inductive.

1.0 — ¢
2.0 N p— gp/
3. ¢ —p
p
Fig. 1. The Proof Rule INV

In [4, 5] we introduced the method ofvisible invariants which proposes a method
for automatic generation of the auxiliary assertiofor parameterized systems, as well
as an efficient algorithm for checking the validity of thepises of the invariance rule.
See [6] for a tool that implements the idea.

The generation of invisible auxiliary constructs is basedh® following idea: It is
often the case that an auxiliary assertioffior a parameterized system has one of the
formsq(i), Vi.q(i) or, more generallyyi # j.q(i,). We construct an instance of the
parameterized system taking a fixed vahigfor the parameteN. For the finite-state
instantiationS (N,), we compute, usingDD-techniques, some assertign which we
wish to generalize to an assertion in the required form.rdte the projection of)
on process index, obtained by discarding references to all variables whiehlacal
to all processes other thaP[1]. We takeq(i) to be the generalization of, obtained
by replacing each reference to a local variablg].z by a reference taP[i].x. The
obtainedq(:) is our candidate for the body of the inductive assertioni.q(i). We
refer to this part of the process p®j-gen For example, when generating invariants,
is the set of reachable statesX{fV,). The process can easily be generalized to generate
assertions of the typeis, . . ., ix.p(i).

Having obtained a candidate for the assertionve still have to check the validity
of the premises of the proof rule we wish to employ. Under tssuenption that our
assertional language is restricted to the predicates dliggand inequality between
bounded range integer variables (which is adequate for rogtine parameterized sys-
tems we considered), we provedmall modetheorem, according to which, for a cer-
tain type of assertions, there exists a (small) bodfydsuch that such an assertion is
valid for everyN iff it is valid for all N < N,. This enables usingbD techniques to
check the validity of such an assertion. The assertionsredvgy the theorem are those
that can be written in the foriii3;.v (7, j), wherey (i, j) is a quantifier-free assertion
that may refer only to the global variables and the localaldgs of P[i] and P[j],
where the variables are restricted to be stratified. ThussXample, if we have a finite
domain and an index domain (that ranges over the process$lid¥]), stratification
requires that every array is a mapping from the index donmthe finite domain, but
rules out arrays from the index domain into itself.

Being able to validate the premises8[Vy| has the additional important advantage
that the user never sees the automatically generatedanpalisertiorp. This assertion
is produced as part of the procedure and is immediately coaedun order to validate
the premises of the rule. Being generated by symigmip techniques, the representa-
tion of the auxiliary assertions is often extremely unrddeland non-intuitive, and will
usually not contribute to a better understanding of the fanogpr its proof. Because the
user never gets to see it, we refer to this method as the “rdethiavisible invariants’

As shown in [4, 5], many concurrent systems are stratifiedcéor be stratified),
and the result of embeddingva.q(7) candidate inductive invariant in the main proof
rule used for their safety properties results in premisasftil under the small model
theorem. In the past we have not studied protocols for getmpalogies, mainly be-
cause many of these require reachability analysis, whiclotis first order predicate,
and therefore was beyond our methods. Thus, all the systarapplied the invisible
invariant method (or its successors that handle livenésske an underlying “trivial”
topology, be it a star, a clique, or a ring.

In this paper we study applications of the method of invisiblvariants to arbitrary
fixed topologies. We first present a small-model theoremdpaties to such systems
and demonstrate its application on a variant of Luby’s maxkimdependent set proto-
col [7]. We then study protocols whose specifications inelueachability predicates.
To handle reachability with an invisible-invariant-likeategy, we augment a given pro-
tocol with a coloring scheme that starts at one nodeifthiml node), and propagates
colors to adjacent non-colored nodes. At each point in thericg, only nodes that
are reachable from the initial node are colored, and whertoha@ing terminates, all
nodes reachable from the initial node are colored. The tgallows to replace the
second-order reachability predicate with a first ortdobred predicate.

Related Work

We are not aware of any work that deals specifically with aatiberverification of dis-
tributed algorithms. Most related to the work here is theknmr automatic verification
of parameterized systems. Our work extends the work sudviep8]. The X project
(e.g., [9]) models parameterized systems in WS1S on whidhaadti®ns are computed
and checked in MNA. The index predicates (e.g., [10]) combine predicate abstm
with a heuristic, similar to that used here, for construgtjuantified invariants.

There have been numerous verification efforts specificallgeted at various as-
pects of the IEEE 1394 tree identification protocol, amoragrttare [11, 12]. However,
none of these works attempt at full automation. The work B] Heals with the proba-
bilistic aspect of the protocol, which we ignore in the woeported here. (We should,
however, state that we have automatically verified the phitisic aspects of the pro-
tocol using methods that are outside the scope of this pdp@ran in depth survey of
previous verification efforts of the protocol see [11].

The work in [14] uses a coloring scheme, somewhat differdesuh tours, to obtain
over-approximation of reachability predicates for thegmse of shape-analysis. Since
we deal with a fixed topology, our coloring scheme is precighk respect to reachabil-

ity.

The paper is organized as follows: Section 2 demonstrateswemodel Luby’s
maximal independent set and the leader election protosetgion 3 presents the formal
model of programs over arbitrary topologies, as well as dlsmadel result. Section 4
formalizes and demonstrates use of the coloring augmenteiiection 5 summarizes
runtime and verification results, and Section 6 discussesdwork and concludes.

2 Examples of Distributed Protocols

To demonstrate our techniques, we present two examplesioibdited protocols and
their safety properties. The first is a variant of Luby’s nmaai independent set (MIS)
protocol ([7]) and the second is the Leader Election prdtfics], which also serves as
thetree identificatiorprotocol used in the IEEE 1394 bus specification [13].

In all of our examples, we assume a network\oprocesses whose id’s ge. V.
The interconnection among the processes is described totilean matrixQ, where
Q[¢, j] denotes a direct link from to j, and—-Q][i, j] denotes the absence of such a
link. We assume that the communication between neighbdrisdsectional, therefore

Qli, j] = Qlj,] for all and.

2.1 Luby’s MIS Protocol

The goal of the MIS protocol is to define a maximally indeparidet among the partic-
ipating processes, i.e., a set which is independent (no djacaent nodes are members
of it) and is locally maximal (every node outside the set hasighbor in the set). The
protocols proceeds by letting processes, all of whom atwlilyi undecided, to either
enter the set (“win”) or give up (“lose”). Processes thatwieners or losers halt. The
original protocol is synchronous, consisting of a sequesfcgteps, which consist of
three phases: In the first phase, each process draws a numivea fixed range and
sends the result to all its neighbors. In the second phash, @acess that holds the
maximum value among its neighbors joins the set (i.e., wamg) sends a message to
that effect to all its neighbors. In the third, each procéss teceives a message from a
neighbor that joins the set, declares itself a loser.

Since we are interested in safety properties only, and gimeeole of the prob-
abilistic choices it to guarantee convergence — that evesggss eventually wins or
loses — and the particular values used determine how faseogence is achieved, we
ignore the probabilistic aspect of the protocol and let @albe non-deterministically
chosen from{ H, L}. Also, for technical reasons that will become clear when roe@
the small model theorem, we choose to represent the proascasynchronous, where
we impose the synchronicity required by letting each pretesin one of three phases,
and letting the phases of all the processes be shared \ewi&bhhally, to avoid explicit
communication rounds, we assume that the values drawn, lhasxthe win/lose state
of each process, are shared between its neighbors.

Each processhas a variabletate[i] € {playing, lost, won} thatis initially playing,
and a variablghaseli] € {0, 1,2} that is initially 0. Whenphase[i| = k, the process
is in the(k +1)** phase of the three mentioned above. The prograsistrepresented
in Fig. 2. Each process loops as longséste[i] = playing. As a first step in the loop

body, the process waits until all neighbors reach a conseaisout the current phase.
Such a consensus is reached if all playing neighbors havasepihich either equals
to phasel[i] or is the phase followinghase[i]. We represent this synchronization as
an atomic test, allowind’[:] to observe in one step the values of all of its neighbors.
This assumption can be relaxed without affecting the ctmesss of the algorithm.

Q: array [1..N] of array [1..N] of bool whereVi, 5.Q[i, 5] = Q[7, 1]

state: array [1..N] of {playing, won, lost} init Vi.state[i]| = playing

val: array [1..N]of {H, L}

phase: array [1..N] of {0, 1, 2} init Vi.phase[i] = 0

rwhile state[i] = playing do

[await Vj # i.Q[i, 5] A (statelj] = playing) —

phase[j] € {phase[i], phase[i|+1 mod 3}

it) if phaseli] = 0 thenvalli] := {H, L}
H Pli] = elsif phase[i] =1 A wal[i] = H A Vj #i.Q[i,j] — val[j] = L
=1 then state[i] := won

elsif phase[i] =2 A 3j # i.Q[i, j] A state[j] = won then state[i] := lost
| phase|i] := phase[i]+1 mod 3

Fig. 2. Program Ms

The safety properties of M areindependence

Ind : Vi,j. (i #£ 7 A Qli,j] A stateli] = won — state[j] # won)
andmaximality

Max - Vidj # 4. (stateli] = lost — Q[i, j] A state[j] = won)

Note that the maximality property is notvaproperty (rather, it's &3-property) which
is not directly covered by the Invisible Invariant methodsote also that we are not
dealing with the liveness property of the protocol, whichiri that, with probability 1,
every process eventually stops playing.

Another safety property we may wish to establish is that abidity of won/lost
states, i.e., for every,

Sthl : [(state[i] = won — (stateli] = won)) A]

(state[i] = lost — (state[i] = lost))

and that of “non-drift” among the phases of neighbors thay treve been created by
the “de-synchronization” of the protocoal, i.e.,

o (VYi,j. (state[i] = playing A state[j] = playing A Q[i,j] —
Non_drift [(phase[j] — phaseli]) mod 3 < 1)

2.2 Leader Election Protocol

IEEE 1394 specifies a network allowing dynamic connectiod disconnection of
devices. At each point in time, the network is arranged aseg with devices as leaves.
Theleader electiorsub-protocol is invoked during a connection or disconmmecgvent
when, based on the new topology, a leader needs to be dessfraimew. Dynamic
aspects of the network need not be modeled here since ther leladtion sub-protocol
itself assumes a static network (i.e., following a conregtiisconnection event).

As before, we model communication between nodes by shanmgabies. We let
(@ denote the adjacency matrix, and for each proéesge assign a boolean variable
doneli] denoting whethef still participates in the protocol or has determined its par
ent, a boolearieader[i] which is set wheri becomes the leader, and a boolean matrix
parent[1..N,1..N] such thaparent[i, j] is set wherj becomes the parent af

In our modeling of the protocol, we assume that each rigd®e a single indivis-
ible atomic step, can check all therent[1..N,] variables and separent[i, j] and
leader[i] accordingly. This is different from the common synchronmadeling of the
protocol that proceeds in send/receive phases, where atigpbase nodes can send “be
my parent” requests and at receive phases nodes responchtoegjuests. Therepn-
tentionmay occur when two nodes send one anob@my parentequests at the same
phase. The atomicity assumption here bypasses root camteAs discussed later, the
methods proposed here are applicable to less atomic vergiahallow for contention.

Q: array [1..N] of array [1..N] of bool whereVi, j.Q[i, j] < Qlj,]
parent: array [1..N] of array [1..N] of bool init Vi, j.—~parent|i, j]
leader: array [1..N] of bool init Vi.—leader][]
done: : array [1..N] of bool init Vi.~doneli]
while —doneli] do

o if Vk # 1.Q[i, k] — parentlk,i] then (leader][i], done[i]) := (1, 1)
H Pli, j] = elsif (—parent[j, i] A Q[i,] ANVE ¢ {3, j}.Qli, k] — parent[k,i])
7 then (parent|i, j], doneld]) := (1,1)

Fig. 3. Program LEADER-ELECT

The leader election protocol is shown in Fig. 3. For each ntueparent matrix
identifies which node is the parent of another node. ThereV4rg — 1) processes in
the system, each corresponding to a paif) € [1..N]? with i # j. Each such process,
PJi, j], repeatedly performs the following two steps whilewe[i] # 1:

1. The first if-statement executes if all nodes directly @miad toi have: as their
parent. In this casé,becomes the leader and s&tgder[i] to 1.

2. The second if-statement executes if{Bnd; are connected, (2) has no parent,
and (3) all other neighbors ethave: as parent. In this casg¢pecomes parent of

The protocol works as follows: Assume the underlying graph free. Initially, all leaf
nodes (and no internal node) can execute the second step, fhlkeealgorithm climbs

up the tree, each node executing the second step, untildhenbich executes the first
step, is reached.

If the original graph consists of a forest of trees, then adeavill be elected in
each tree. If the original graph has non-tree connected ooengs, then no leader will
be elected in these components. The safety property of tieqml therefore states that
each component contains at most one leader, formally sbgtéte following property:

Unique : Vi # j : reachable(i,) — —(leader[i] A leader[j])

where for everyi, j € [1..N], reachable(i, 7) holds if there isQ)-path leading from
to j, i.e., if there are nodes, . . ., i, € [1..N] such that; = i, i, = j, and for every
0=1,....,k =1, Qlig,i¢s1].

As discussed in the introduction, none of our old methodsbeansed to automat-
ically verify this property. The method described in [16]$asince it depends on the
reachable predicate being based on a relation where each node has abneosucces-
sor, and®, on which our currenteachable is based, does not satisfy this requirement.

3 Formal Model and Verifying Invariance

In this section we present our computational model, as vgdth@ small model property
that forms the basis of the verification method. Both model property are derived
from [5] and only differ in that the version here allows for tmatypes (e.g., th&) and
parent variables in Fig. 3).

3.1 Discrete Systems
As our computational model, we takelscrete systerf = (V, O, p), where

e V — A set ofsystem variablesA stateof .S provides a type-consistent interpreta-
tion of the variabled/. For a states and a system variable € V', we denote by
s[v] the value assigned toby the states. Let X’ denote the set of all states oviér

e © — Theinitial condition: An assertion (state formula) characterizing the initial
states.

e p(V,V’) — Thetransition relation An assertion, relating the valu&sof the vari-
ables in state € X' to the valued/’’ in an S-successor staté € Y.

For an assertiog, we say that € X' is ay-state ifs =).
A computationof a systemS is an infinite sequence of states: sg, sq, s2, ...,
satisfying the requirements:

e Initiality — sq is initial, i.e.,sq = ©.
e Consecution— For eachd = 0,1, ..., the states,,; is anS-successor of,. That
is, (s¢, sev1) E p(V, V') where, for eachy € V, we interprety ass,[v] andv’ as

Se+1[v].

3.2 Finite Network Systems

To allow the automatic decision of validity of assertiong place further restrictions
on the systems we study, leading to what is essentially thdehaf bounded discrete
systems of [5] extended with an additional matrix type. Faviiy, we describe here
a simplified two-type model; the extension for the generaltirtype case is straight-
forward. We allow the following data types parameterizedlhosy positive integerV,
intended to specify the size of the topology:

1. bool: boolean and finite-range scalars; With no loss of gengrali¢ assume that
all finite domain values are encoded as booleans.

2. index: [1..N]

3. Arrays of the typemndex — bool (bool array) andndex — index — bool (bool
matrix)

Constants are introduced as variables with reserved ndrhas, we admit the boolean
constant®) and1, andindex constants such dsand N. We often refer to an element
of typeindex as anode Atomic formulasare defined as follows:

e If z is a boolean variablg3 is abool array, andy is anindex variable, thernz and
Bly] are atomic formulas.

e If y; andy, areindex variables and) is abool matrix, thenQ[y1, y=| is an atomic
formula.

e If ¢; andty areindex terms, thert; = t, is an atomic formula.

A restricted A-assertiofresprestricted E-assertions a formula of the fornvy.o (%, i)
(resp.37.¢(Z, ¥)) whereZ andy are lists ofindex variables, and)(Z, 7) is a boolean
combination of atomic formulae. festricted EA-assertiois an assertioaz. V.4 (&, ¥, @)
where is a list ofindex variables and/y.«4(Z, ¢, @) is a restricted A-assertiofiRe-
stricted AE-assertiomare similarly defined. As the initial conditi@hand the transition
relationp we only allow restricted EA-assertions.

Let V be avocabularyof typed variables, whose types are taken from the regtricte
type system allowed in a system.rdodelM for V consists of the following elements:

e A positive integerN > 0.

e For each boolean variabbec V, a boolean valud/[b] € {0, 1}. It is required that
M[0] =0andM[1] = 1.

For eachindex variablex € V, a natural valué\/ [z] € [1..N].

For each boolean array € V, a boolean functiod/[B] : [1..N] — {0, 1}.

For each boolean matrig € V, a functionM[Q)] : [1..N] — [1..N] — {0, 1}

We define thesizeof model M to be N.

The following theorem states that a restricted AE-asseitialid iff it is valid over
all models of a bounded size. It follows from a similar theoref [5] (which does not
deal with the boolean matrix data-type).

Theorem 1 (Small Model Property). Let ¢: Vi 3Z.¢(y, %) be a closed restricted
AE-assertion. Thep is valid iff it is valid over all models of size not exceed|gy

3.3 Checking Invariance

Consider the INV proof rule of Fig. 1. When validating the pises of INV for re-
stricted A-assertionsand, 13 is a boolean combination of A- and E-assertions, while
I1 and I2 are AE-assertions. We now compute the cut-off beudetermined by the
small model theorem to validate Premises 11 and 12. Assuatelle assertions appear-
ing in INV are of the form:

(V’U,l, vy UeP1 (’LT)) & Efpg(f)

(Vut, .U, 1) ® 3wy, T, 2 ()
s Ayr, -, Yo VEL(Y, T)

Jy1, ..., Yp-VZ.R(Y, T)

BECRI

where® € {Vv,A}. l.e,p andy are assertions that are disjunctions or conjunctions
of a restricted A-assertion and a restricted E-assertimth“handp are restricted EA-
assertions. Ip has free variables, then lébe ¢ plus the number of free variables;in
Defineii,,, 1, d, andb similarly. Theorem 1 now implies:

Corollary 1. The premises of ruleNV are valid overS(N) for all N > 1 iff they are
valid overS(N) for all N < max{a + 7, b + 7y, + 1My, 1y, + ¢}

3.4 Example: Verifying Program Mis

Consider Program M of Section 2. The system is of the form described in Section 3.
Inspecting the structure of assertioBisand p for this system, we see that= 0 and
b = 2 (since the transition relation is of the forsa, j.Vk.R(i, j, k)).

For the property of independence we have- 2. We instantiated the system to
4 processes and, usimyoj-gen generated a candidate universal invariafit j) with
n, = 2 (andm,, = 0). According to Corollary 1, it suffices to validate the pregs of
INV on models no larger thamax{2,2 + 2,2} = 4.

Next, let us consider the property of maximality which candpecified by the
formula p= Vi3j.g(i,J), whereg(i,) is given by

g(i,7): stateli] = lost — (Q[i,j] N statelj] = won)

Being an AE formula by itself, it is not implied by the invi$yiderived inductive asser-
tion. To establish this property, we directly apply rule INVith ¢ = p = Vi3j.g(4, j).

On the face of it, this proafeemso fall outside the scope of the small model theorem
since premise 12 has the forfWi3;.g(i, j)) A p — (YuJv.¢’(u, v)), which is not of the
requiredv3 form. We resolve this difficulty by observing that premiseiddogically
implied by the followingv3 restricted assertion:

Vu(3.9(u) A p — F.g(u,))

Hence, it is sufficient to check this stronger implicatioreothe instancé (4).

To show the stability oftate[i] = won, we only need to show that it is preserved
under transitions, i.e., that.(state[i] = won A p — state’[i] = won). From the small
model theorem (since has two indices under existential quantification) it folkothat

it suffices to check the above fd¥, < 3. The case of stability oftate[i] = lost is
similar.

The property of “non-drift” is established in the standarmywsince it is a universal
assertion witm,, = 2 which is implied by the invisibly derived invariant.

4 Reachability Avoidance

It is very often the case that safety properties of distedugystems include reachabil-
ity predicates which are captured neither by Theorem 1 ndhéyroj-genheuristic.
In this section we define the reachability properties we aterésted in, and show a
methodology that overcomes the challenges they pose tovigiile Invariant method.

4.1 Safety Properties with Reachability

Let S be a distributed system with an underlying topology degttiby the adjacency
matrix Q. Recall thereachable(y, y2) predicate denoting that, is Q-reachable from
y1. In this section we study how to prove invariant propertiethe type (a ® (),
whereq is a restricted A-assertion that allows famchable predicates® € {V, A},
andg is a restricted E-assertion (without reachability pretdish

For simplicity of exposition, we further restriet to have a single occurrence of a
reachable predicate, both arguments of which are bound by the unigusantifier. Our
results can be easily extended to cases whemnas several occurrences @fichable,
and to cases where some argumentgeathable are free. An example of such a prop-
erty is Unique of program LEADER-ELECT in Section 2. Therej is trivial anda has
a singlereachable predicate, both of whose arguments are under the scope ahthe
versal quantification.

For the remaining part of this section we fix a safety property we wish to verify
over S, wheregp = o ® (of the form above.

Let ¢t be someandex variable that does not appear free in eithesr the transition
relation. Without loss of generality, assume thatviy, ..., ix.p(i1, . . . , i), Whereiy
is the first parameter of the (single) reachability prediéatr. Let «[t] be the formula
Vi1, .. yik—1.p(i1,...,ik_1,t), andg[t] be the formulax[t] ® 5. From the choice of
it follows thatS = ¢[t] impliesthatS = ¢.

For example, for propertynique andt = 1, we obtain:

Unique[1]: V4.5 # 1 A reachable(1, j) — —(leader[1] A leader][j])

4.2 Replacing Reachability with a First Order Predicate

The propertyg[t] still contains a reachability predicate and its invariace@not be
handled by the method of Invisible Invariants. We next auginfewith a “coloring
protocol” and replace with a new property$?, such thatp! is of the form described
in Section 3, such that when the augmented system satisfi¢'swe can conclude that
S E ¢[t], and therefors = ¢.

The system and coloring protocol alternate once betweeaidpol” and “coloring”
phases. While in the “protocol” phase, the system behavesSljkand the coloring

10

scheme is inactive. Similarly, while in the “coloring” pleaghe system is inactive, and
the coloring scheme behaves according to its protacol An additional component,
the “phase changer,” determines which phase is first, andiseg (once) between them.
We shall return to the phase changer and first describe theglprotocol.

The coloring protocoktolor,, described in Fig. 4, propagates a marking starting
at the node. We assume &ooleanarray C; that does not appear ifi, all of whose
entries are initiallyd, denoting that all nodes are uncolored. Once activateadioeing
protocol first set&”, [¢], thus marking node. Thereafter, when an uncolored nadeas
a colored neighbaf, Cy[¢] is set. The correctness cblor; is expressed in the following

color; ::
local Cy: array [1..N] of bool init Vi.Cy[i] = 0
‘ [if ((i=1t) V (Q[i,j] A Ci[f] A —Cili])) then Cy[i] := 1]
i#j

Fig. 4. Systemcolor;

theorem, whose proof is by induction on the topology of thievoek:
Theorem 2. Let S[t] = S||color;. Then, for every nodg the following all hold:

1. reachable(t,i) is S-valid iff it is S[t]-valid, i.e., bothS and S[t] have the same
reachability relations;

2. S[t| E (C[i] — reachable(t,)), i.e., every colored node is reachable from

Assumephase andinit_phase are variables not ity that can take on the values
{color, protocol}. Thephase changePHASE is a module which composed with the
S andcolor, that is allowed to change the phase once, when a conditiovhich is an
input to PHASE, is met. The module PASE is described in Fig. 5. Therephase :=
—phase” has the obvious meaning. In Subsection 4.3 we discussihbtwphase and
¥ are initialized.

PHASE(Y) ::
phase, init_phase: {protocol, color} init phase = init_phase
[if (¥ A phase = init_phase) then phase := ﬁphase}

Fig. 5. System RIASE(Y)

Let.S” be the systen§ where each instruction is prefixed bij {phase = protocol) then ...".
Formally, if S is described byV, ©, p) thenS’ is described byV U {phase}, 0, p’)
wherep’ = (phase = protocol A p) V (phase = color A A\ .\, v = v'). Similarly,

11

let color,” be the systentolor; where each instruction is prefixed bif {phase =
color) then ...”. Then systenﬂaug is defined by the compositio$Y ||color,’ || PHASE.

The following claim follows immediately from the definitiaaf Saug
Claim. Let be a safety property ovéf. ThenS |= v iff Saug = .

We next construct, fromp[t], a property¢! such thatS* = ¢! implies that
Saug = ¢[t] (which, according to the previous claim, implies tifat= ¢[t]).
Recall thatgp[t] is of the formVa[t] ® 35 where the single reachability ip[t] appears
in « in the formreachable(t, j). We first replace theeachable(t, j) assertion inx by
C4[j]). If reachable(t, j) appears inx[t] under positive polarity, we add to the resulting
formula the disjunct

3j # k.QUi k] A Celj] A —Cilk]

that captures the situation in which the coloring algorithas not terminated yet. We
take¢! to be the resulting formula.
For example, under this transformatidiizique[1] becomes:

Unique" : Vi.j # 1A Ci[j] — —(leader[1] A leader[j]) (1)

The following theorem, whose proof is in Appendix A, estabés the soundness of
the transformation.

Theorem 3.
Stk ¢ = SaugkF ¢[t]

[Move theorem to tech report]

Note that ¢! is now of the form covered by Corollary 1. For example, to fyeri
Unique', we havea = 0 (since the initial condition has no existential quantifiers
b = 3 since the transition relation of the augment#dhas: and; under existential
guantification, and appears free in it, and= 2, having; universally quantified and
free. Thus, for an auxiliary invariagt, we would obtain a cutoff value efax{n, 3 +
N + My, my + 2} = 3+ n, + m,. We generated @ with n, = 2 andm,, = 0, and
thus verified the premises of INV for every, < 5.

4.3 Determining the Phase Alternation

There are two main choices to be made, namely, whétki¢rphase is protocol or
color, and whethe# is trivially 1 or some non-trivial predicate. In our experiments,
we used the trivial = 1 with init_phase being bothprotocol or color. As to non-
trivial ¥, we had to use it only once, in the verification ocfADER-ELECT, and then
init_phase was set tprotocol and¥ was defined a&ader[t]. We recommend first
trying to use a triviall = 1, and only if it fails under both choices dhit_phase, to
attempt some obvious’s.

12

5 Evaluation

We have evaluated our method on a set of algorithms whichy thié exception of
Luby’s maximal independent set algorithm, are based oniomsgound in [15]. The
test cases consist of the leader election protocol usedasiiming example, a version
of leader election that does not assume atomic parent reéaciesowledge steps, as
well as a distributed spanning tree algorithm. All expermtsevere evaluated using the
TLV symbolic model-checker [17] on a Pentium 3 1GHz PC with 512iMimory, and
can be found ahttp://www.cs.nyu.edu/acsys/dist-protocols/inderlhf summary of
runtime results is shown in Fig. 6. The rest of this sectianmiarizes each test case.

[Algorithm [Runtime (seconds)
Leader Election 5
Leader Election (alternate) 54
Spanning Tree 36
MIS 30

Fig. 6. Runtime Results

The alternate version of leader election allows for conterbetween nodes. While
like the running example it treats the check over all of a r&deighbors as atomic,
the assignment of parents is done in 2 phasesjaesiphase and aacknowledgement
phase. Concretely, the matrixrent is now of type
array [1..N] of array [1..N] of {no, req ack}. Node; is considered the parent off
parent[i, j] = ack.

For both versions of the leader election protocol, we vetifiee propertyUnique
defined in Section 2. For the alternate version we proveddt#ianal property ofim-
ited contentionspecifying that if neighboring nodes have requested plaoed from
some neighbor, then the request is mutual:

Vi #£ 4, k,1: Qli,j] A parentli, k] =req A parent[j,l] =req— k =1

Since this invariant effectively localizes contention hetprotocol to two adjacent
nodes, it serves as the basis for a liveness proof showirigattyacontention eventu-
ally converges with probability 1.

The spanning tree algorithm is similar to the coloring peotaolor; in that an ar-
bitrary node is designated as the root, and nodes are adttegittee in a top-down, dis-
tributed fashion, starting at the root. For this algorithe sought to verify the property
that any node reachable from the root participates in the treless tree propagation
has not yet terminated, expressed as:

p: (Vi t: reachable(t,i) — in_tre€i]) vV (3j # k : Q[j][k] A in_tred;j] A —in_tregk])

where the boolean array _tnee denotes participation of nodes in the tree. However,
we failed to generate an inductive auxiliary assertion tsb implies this property.
Instead, we did successfully verify that A p is an inductive invariant, wherg is the
generated auxiliary assertion.

13

6 Conclusion and Discussion

We have described how the application of the method of Iblgsinvariants to dis-
tributed protocols with an arbitrary fixed topology.

Contrary to common belief, we found that the extension ofntle¢hod to arbitrary,
as opposed to trivial, topologies is rather straightfodi@s demonstrated by the verifi-
cation of Luby’s Ms protocol). Yet, the correctness of many such protocolsesisied
by means of reachability predicates, which cannot be cagtoy the invisible invariant
method. We present a simple coloring augmentation thatva]loy many cases, to re-
place reachability predicates by simpler first order praigdis that can be dealt with by
the invisible invariant methods.

There are several weaknesses to our scheme:

— Many distributed systems are modeled as synchronoughied. fransition relation
is an AEA-assertion. This is beyond the power of our small ehtiteorem, hence
we “de-synchronize” them. We would like to identify the tgpef synchronous
systems our method applies to;

— Our scheme depends on running the “system” and the “col@rome after the
other, switching once from one to the other at some poine@this point is non-
deterministic and the only choice is which protocol to rustfilet, it is sometimes
the case that the switch can happen only when some cond#iatidined. Here
the method is not fully automatic since the user has to gumssdndition, which
requires some familiarity with the protocol.

— Our scheme is dependent on the invisible invariant method,is restricted by
its power. Being a8DD-based method, the size of the instantiation of the system
required may be too large to handle. In additiprgj-gencan only generate invari-
ants of certain syntactic type, and it may be the case thahtlagiants needed are
beyond its power. (For examplproj-gengenerates restricted EA-invariants, is is
extremely limited in the AE-invariants it generates.)

Yet, in spite of the restrictions, we succeeded to autoraliiwerify, for the first
time, some classical examples that have been thoroughtiestin the literature.

We are hopeful that our coloring augmentation can be usedrification of other
systems too, for example, pointer systems. We are curreimttiting on extending the
system to handle mobile networks.

Acknowledgement: We would like to thank Shuvendu Lahiri, who brought the Leade
Election protocol to our attention, and Yi Fang who pointed that our existing small
model theorem can be applied to adjacency matrices.

References

1. Shankar, N., Owre, S., Rushby, J.M.: A tutorial on specificatiaheerification using PVS.
Technical report (1993)

2. Bjarner, N., Browne, |., Chang, E., Gol, M., Kapur, A., Manna, Z., Sipma, H., Uribe, T.:
STeP: The Stanford Temporal Prover, User's Manual. TechniepbR STAN-CS-TR-95-
1562, Computer Science Department, Stanford University (1995)

14

3. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Syste®adety. Springer Verlag,
New York (1995)

4. Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification withsible invariants. In:
TACAS'01, LNCS 2031 (2001) 82-97

5. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parametdrizrification with automati-
cally computed inductive assertions. In: CAV'01, LNCS 2102 (20@1)-234

6. Balaban, I., Fang, Y., Pnueli, A, Zuck, L.: IIV: An invisible invant verifier. In: Computer
Aided Verification (CAV). (2005)

7. Luby, M.: A simple parallel algorithm for the maximal independentmeblem. SIAM
Journal of Computind5(4) (1986) 1036—1053

8. Zuck, L., Pnueli, A.: Model checking and abstraction to the aid ofpaterized systems.
Computer Languages, Systems, and StructB®3-4) (2004) 139-169

9. Baukus, K., Lakhnech, Y., Stahl, K.: Parameterized verificatfamaache coherence proto-
col safety and liveness. In: Proceedings of the 6th Internationdie@amce on Verification,
Model Checking, and Abstract Interpretation. (2002) 317-330

10. Lahiri, S., Bryant, R.: Constructing quantified invariants via prediesstraction. In: Pro-
ceedings of the 5th International Conference on Verification, Modek&hg, and Abstract
Interpretation. (2004) 267-281

11. Romijn, J.M.T.: A timed verification of the IEEE 1394 leader electiavtqmol. In Gnesi,
S., Latella, D., eds.: Proceedings of the Fourth International ERChvkgtop on Formal
Methods for Industrial Critical Systems (FMICS’99). (1999) page23

12. Deuvillers, M., Griffioen, W., Romijn, J., Vaandrager, F.: Veafion of a leader election
protocol: Formal methods applied to IEEE 1394. Technical ReportREER8, Computing
Science Institute, Nijmegen (1997)

13. Daws, C., Kwiatkowska, M., Norman, G.: Automatic verification af tREE 1394 root
contention protocol with KRONOS and PRISM. In Cleaveland, R., Garaleeds.: Proc.
7th International Workshop on Formal Methods for Industrial Critigat&8ms (FMICS’02).
Volume 66.2 of Electronic Notes in Theoretical Computer Science., [Eis€2002)

14. Lev-Ami, T., Immerman, N., Reps, T.W., Sagiv, S., Srivea}s5., Yorsh, G.: Simulating
reachability using first-order logic with applications to verification of linkethdaructures.
In: CADE. (2005) 99-115

15. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers., San Francisco,
CA, USA (1996)

16. Balaban, I., Pnueli, A., Zuck, L.: Shape analysis by predicat&ratiion. In: Proceedings
of the 6th International Conference on Verification, Model Checking, Abstract Interpre-
tation. (2005) 164-180

17. Shahar, E.: The TLV Manual. (2000) http://www.cs.nyu.edu/itlsy

A Proof of Theorem 3

Assume that! is St-valid. From Theorem 2 it suffices to show that evetystate
satisfiesp[t]. Assume that the boolean connectigg,in ¢[¢] is a disjunction (the case
of a conjunction is similarly established). Lebe anS?-state so that satisfiesp?. If
the reachability assertion imis of negative polarity, then from part (2) of Theorem 2 it
follows thats |= —reachable(t,i) — —=C;[i]. Hence, if¢! holds ins, then so does|t].
Assume therefore that the reachability assertion,ineachable(t,), is in positive
polarity. If in s, C[i] is set, or if ~reachable(t, i) holds, then obviously satisfied
¢. Assume therefore that |= reachable(t,i) A ~C4[i]. It can be easily shown from

15

Systemcolor, that there exist nodesandk such thats = Q[i, 5] A Ci[j] A —Cy[k]. Let
o S0, 81, - . be anSt-computation, starting witk that include no idle steps. Moreover,
if s = —color, then let the first transition i be one that setsolor. Note that such a
o must exist. Since onoeolor holds the evaluation af[¢] remains invariant, in that if
for somey, s; = ¢[t], we can conclude that= sy |= ¢[t].

The computatiorr must have a statg, in which the coloring terminates. Singé
is St-valid, ¢' holds insg. Also, since insy, reachable(t,i) < Cy[i], ¢[t] holds ins.
It now follows that¢[t] holds ins. O

16

