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Abstract. In this paper, a FETI-DP formulation for three dimensional elasticity on non-matching grids over ge-
ometrically non-conforming subdomain partitions is considered. To resolve the nonconformity of the finite elements,
a mortar matching condition is imposed on the subdomain interfaces (faces). A FETI-DP algorithm is then built by
enforcing the mortar matching condition in dual and primal ways. In order to make the FETI-DP algorithm scalable,

a set of primal constraints, which include average and momentum constraints over interfaces, are selected from the
mortar matching condition. A condition number boud¥(1 + log(/h))?, is then proved for the FETI-DP for-
mulation for the elasticity problems with discontinuous material parameters. Only some faces need to be chosen as
primal faces on which the average and momentum constraints are imposed.
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1. Introduction. We will develop an efficient FETI-DP algorithm for solving linear sys-
tems arising from certain non-conforming discretizations of compressible elasticity problems
in three dimensions. We consider a non-conforming finite element space with triangulations
that are nonmatching across subdomain interfaces. Allowing such triangulations helps make
adaptivity for problems with singular points or joints, or with jumps in the material parameters
easier and more economical. Moreover, we are able to triangulate each subdomain indepen-
dently to save the cost for mesh generation especially for three dimensional problems.

Mortar methods have been developed as non-conforming approximations with the goal
of obtaining as accurate an approximate solution as for a conforming approximation; see [3,
1, 13, 30]. For this purpose, mortar matching conditions are imposed on the subdomain so-
lutions across the interfaces. The jumps of the solutions across the subdomain interfaces are
orthogonal to a certain Lagrange multiplier space. This condition can be enforced directly
on the non-conforming finite element functions to produce elements of the mortar finite el-
ement space. Another approach is to impose the condition weakly by introducing Lagrange
multipliers and this leads to a saddle-point problem similar to that considered in FETI-type
algorithms.

FETI-type algorithms were originally developed for second order elliptic problems with
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conforming discretizations. These algorithms belong to the iterative substructuring domain
decomposition methods of dual type. A separate set of interface unknowns is assigned to
each subdomain. Point-wise continuity of solutions across the interfaces is then enforced us-
ing dual Lagrange multipliers, leading to a saddle point problem. The subdomain unknowns
are then eliminated and the resulting linear system for the dual variables is solved iteratively
using a preconditioner. These algorithms have evolved from the one-level FETI methods into
two-level FETI, and FETI-DP methods; see [12, 11, 9]. In FETI-DP methods, a certain set
of continuity constraints is enforced throughout the iteration while the remaining constraints
are imposed weakly by dual Lagrange multipliers. FETI-DP algorithms have been further de-
veloped for three dimensional elliptic problems with discontinuous coefficients by Klawonn,
Widlund and Dryja [23].

FETI-type algorithms have also been applied to the saddle-point problems resulting
from mortar discretizations. A numerical study in [28] showed that such methods applied
to these saddle-point problems are as efficient as the FETI methods for conforming dis-
cretizations. Lee and the author [17] introduced a FETI-DP algorithm for two-dimensional
elliptic problems with discontinuous coefficients and showed a condition number bound,
C(1 + log(H/h))?, with a constanC independent of the coefficients and mesh parameters.
Numerical results show that it is the most efficient one for problems with jump coefficients;
see [5]. This preconditioner is similar to previously developed FETI-DP preconditioners [7, 8]
except that its weights equal zero except for the interface unknowns on the nonmortar sides.
We call this preconditioner the Neumann-Dirichlet preconditioner. This algorithm has later
been extended to the Stokes problem and to three-dimensional elliptic problems; see [16, 14].

The purpose of this study is to extend the FETI-DP algorithm of [17] to three-dimensional
compressible elasticity problems with mortar discretizations and to improve the condition
number bound on geometrically non-conforming partitions given in [16)(tb+log(H/h))?.
FETI-DP methods for three dimensional elasticity problems, with conforming discretization,
have been studied extensively both theoretically and numerically; see [10, 18, 22, 26]. In
[10], Farhatet al. introduced face average constraints in addition to vertex constraints as
primal constraints and observed that these additional constraints help produce a scalable al-
gorithm. Later Klawonn and Widlund [22] considered various primal constraints for elasticity
problems with discontinuous Larparameters. In their work, some faces and edges were se-
lected as fully primal faces and fully primal edges. Edge average constraints on fully primal
faces, and edge average and moment constraints on fully primal edges were then enforced to
get a scalable algorithm. In our FETI-DP formulation, we will introduce face average and
face moment constraints related to the mortar matching conditions.

This paper is organized as follows. In Section 2, we introduce a compressible elasticity
problem and Korn inequalities. In Section 3, we approximate the solution of the model prob-
lem using the mortar discretization. We then build a FETI-DP algorithm by considering the
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mortar matching condition similar to the point-wise continuity constraints in conforming fi-
nite element approximations. Some primal constraints are selected from the mortar matching
condition. In order to make them explicit, we perform a change of unknowns. Section 4 is
devoted to our condition number analysis of the FETI-DP algorithm. In the final section, we
propose an algorithm which selects a quite small number of primal constraints based on the
coefficient distribution.

Throughout this paper; and C' denote generic positive constants independent of the
mesh size, the number of subdomains, and the problem coefficients. We wil] ase H;
to denote the mesh size and the subdomain sitg afespectively.

2. Amodel problem and Korn'’s inequality. Let(2 be a polyhedral domain iR>. The
Sobolev spacéf! () is the set of functions i.?(£2) which are square integrable up to its
first derivatives and equipped with the Sobolev norm;

lolq = ol + g lola

where[v|? o, = [, Vv - Vodz, ||v]loo = [, v*dz, andH denotes the diameter 6f.

We assume thal(2 is divided into two part®)p andof2y on which a Dirichlet bound-
ary condition and a natural boundary condition, respectively, are specified. The subspace
HE(Q) € HY(Q) is the set of functions having zero tracesasny,. We introduce the vector
valued Sobolev spacé& },(2)]* and[H* ()], equipped with the usual product norm.

We then consider the elasticity problem:

findu € [H}(Q)]? such that

(2.1) /QG(X)E(u) te(v) dx—i—/QG(x)ﬁ(x)V uV-vdx = (F,v) VYve[H5HQ)?,

whereG = E/(1 +v) andj§ = v/(1 — 2v) are material parameters which depend on the
Young's moduluskE > 0 and the Poisson ratie € (0,1/2). We assume that is bounded
from above away from /2, excluding the case of incompressible elasticity problems. The
linearized strain tensor is defined by
1 Bui 6uj .o
ij = 5 B} s J = 17 27 )
E(ll) J 2 (61‘3 + 61‘L> b 3

and the tensor product and the force term are given by
3

e e) = 3 eu(wes(v), (F,v)= /

Q

f-vdx+/ g - vdo.
N

i,j=1
Heref is the body force ang is the surface force on the natural boundary p&rt,.
The spacéer(e) has the following six rigid body motions as its basis elements. They
are the three translations

(22) ry =

, T2 , I's

o O =
Il
_ o O
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and the three rotations

Ty — T —23+ 7T 0
03 ) 2 2 ) 30 3 ) R
. rqg = — _— e = — p—
4 H H , I'e H T3 — T3
0 T — T —T9 + T

—.'L'l-f-fﬂ\l , I's =

Herex = (Z1,75,73) € Q and H is the diameter of). This shift and the scaling make

the Lo-norm of the six vectors scale in the same way with When(2 is partitioned into a

set of subdomains, the elasticity problem given on a floating subdomain has purely natural
boundary condition. The Korn inequalities in [22, Section 2] concern this case. Led?

be of positive measure. We define As-inner productu, r)s, by

(u,r)y = / u-rds.
by

The following Korn inequality is provided in [22, Lemma 5]:
LEMMA 2.1.Let(2 be a Lipschitz domain and be a subset a¥{2 with positive measure.
Then there exist a constant> 0, invariant under dilation, such that

cluly,0 < [le(u)lo.0 < uf1,0,

whereu € [H!(Q)]? satisfiefu, )y = 0 for all r € ker(e).

Furthermore, we have similar inequalities for semi-norms defined in the SHacH X))
which is the trace space pf!(Q)]? on ¥ C 99Q. Foru € [H'/2(%)]3, we define two semi-
norms by
(2.4) [uly /2,5 = inf VlLe, |ulgr) = inf lle(¥)lo.-

v e [H1 ()3 v e [H ()3

Vviy =u viss =u

LEMMA 2.2. LetQ) be a Lipschitz domain and be a subset a¥(2 with positive measure.
Then there exists a constant> 0, invariant under dilation, such that

clulijex < lulpE) < |ulijgy,

foru € [H'/2(%)]? satisfying(u,r)s = 0 for all r € ker(e).

This lemma can be found in [22, Lemma 6]. Another important inequality, which follows
from this inequality, is given in [22, Lemma 7]:

LEMMA 2.3. LetQ2 be a Lipschitz domain of diamet&f andY C 92 be an open subset
with positive measure. Then there exists a constant 0 such that

inf |lu— r||(2),2 < CH\U\%(E) vu e [HY2(%)]3.
reker(e)

Here the infimum occurs whansatisfie§u — r, q)s; = 0 for all q € ker(e).
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3. FETI-DP formulation.

3.1. Mortar discretization. We divide the domaif into a geometrically non-conforming
partition {Qi}f\il, where(); are polyhedral and equipped with quasi-uniform triangulations
T;.

AssuMPTION3.1. The subdomain partitiof2;} is locally quasi uniform, i.e., neigh-
boring subdomains have comparable diameters.

We consider a model compressible elasticity problem (2.1) with coeffic@ts and
(B(x) positive constants in each subdomain

G(x)

o =G, B(x)

o = B

The conformingP; —finite element spacK; is associated to the triangulati@i. In addition,
functions in the spacK; satisfy the Dirichlet boundary condition @if2; N 92 . We define
the union of the subdomain boundaries by

r= ([VJ am) \ 99,

The triangulations{7;} ; may not match across the subdomain boundaries. We further
introduce the finite element spad¥; that is the trace space &; on 9Q2; N I'. We note
that the nodal unknowns corresponding to nodex(at are considered as unknowns at the
interior of the subdomains.

We denote the interface of two subdomainsand(2; by F;;, that can be only part of a
face of(2; andQ2;. Among the subdomain faces, we select nonmortar fagesich that

UF=UFy, FENE.=01#Fk
l i,j
Here eachF; is a full face of a subdomain that we call the nonmortar subdomaii.ofVe
call the subdomains on the other part acrbgsas the mortar subdomains.
Such nonmortar faces always exist even for the geometrically non-conforming partitions;
see [27, Section 4.1]. We define the collection of interfaces by

§= U{Fz‘j}-

For an interfaceF);,, we select the set of interfacdd’,,,} from S such that their union
produces the largest connected component that conkajrend lies in the plane defined by

Fy;.. The connected component is, in fact, a union of full faces of subdomains, otherwise a
larger component could be found. We select such full faces as nonmortar faces and the other
part of the interfaces as mortar faces, that can often be only part of a subdomain face. After
having made a selection, we do the same for the colledian{ F,,,} recursively, and we

can find the union of the nonmortar faces, which is equdl.to
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Since the subdomain partition can be geometrically non-conforming, a single nonmortar
face F; C 0Q; may intersect several subdomain boundafi€s. This providesF; with a
partition,

F, = UEj, Fjj = 0Q; N 09Q;.
J

Our bound for the condition number will depend on the relative diameters of faces and sub-
domains.
DEFINITION 3.2. A faceF;; = 09Q; N 0Q; is substantial if its diameter is comparable
to H; and H;.
DEFINITION 3.3. LetT’OLy be a given constant and; be the nonmortar side df;;.
The faceF;; is weakly substantial if its diametéf,; satisfies

(2

Hij)Q maX{Hi,Hj}

H\?
(1 + log <TOLp (1 + logh_’> .

ASSUMPTIONS.4. LetT'O L be a given constant. On each interfagg = 09; N0,
the nonmortar sid€); and the mortar sidé€2; are selected so that
Gi

— < TOLg.
Gji OLa

REMARK 3.5. It is clearly possible to construct a set of subdomains such that Assump-
tion 3.4 is not satisfied in geometrically non-conforming cases. We note that this problem
arises from the specification of the mortar method itself.

We now introduce the finite element space

(3.1) W(F) = {wc H)(F) : w=v|gforveX},

wherei denotes the index of the nonmortar subdomain of the facendv|r, denotes the
trace ofv on the faceF]. This space is spanned by the nodal b4sgis}; _, of the nodes in
Fy given by the triangulatiofl;. Based on the spaoaf(Fl), we construct a dual Lagrange
multiplier spaceéM (F;) with a basis{t },_, satisfying

d)m",bkdsz(smk d)mds mekzl,,n
F

Fy

We refer to [13, 31] for a detailed construction of such a dual Lagrange multiplier space.
The result of our paper is also applicable to the standard Lagrange multiplier space, that was
introduced in [2] for three dimensions. However, the dual Lagrange multiplier space leads
to a computationally more efficient algorithm and also makes the implementation easier than
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with the older version. We note that both spaces contain the constant functions. The mortar
matching condition is then written as

(3.2) /F(vi —¢)-Ads=0 VAeM(R), VF,

wherev; is a function from the nonmortar side agdis a function from the corresponding
mortar parts. More precisely = v; on eachF;; C Fj.
We next introduce several finite element spaces,

N
(3.3) X =][x:
=1
N
w=][wW;
=1
Wn = H W(Fl),
l,nonmortar
M= [] M)

l,nonmortar

Here the space¥V,, andM consist of functions defined on the nonmortar faces, while the
spacesW and X consist of functions, defined on both mortar and nonmortar faces, with
elements that can be discontinuous across the interfaces. Thepae@ be considered

as the trace space of the sp&en the subdomain boundaries. In addition, we define the
mortar finite element space,

X = {v e X : v satisfies (3.2).

The mortar discretization provides (2.1) an approximate solutiamthe spac@A(. In what
follows, we derive a FETI-DP algorithm that solves the system of equations of this mortar
discretization.

3.2. Primal constraints in the FETI-DP formulation. We will build a FETI-DP algo-
rithm that solves the model problem (2.1) in the spateefined in (3.3) by enforcing the
mortar matching condition (3.2) across subdomain interfaces in dual and primal ways. We
select some constraints from the mortar condition and enforce them strongly for the functions
in the spaceX. We call them the primal constraints. The other constraints will be imposed
weakly using Lagrange multipliers.

A proper selection of primal constraints is important for obtaining a scalable FETI-DP
algorithm. In the work by Klawonn and Widlund [22] on elasticity problems, edge average
and edge moment constraints, and vertex constraints are selected. Furthermore the concepts
of an acceptable face path and an acceptable vertex path are introduced in an attempt to reduce
the number of primal constraints.
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FIG. 1. A dual Lagrange basis element (left, the solid line) and the nodal interpdb@l@hj>(u) (right, the
solid lines) to the linear function (the dashed line)

We now select primal constraints from the mortar matching condition. We consider a
nonmortar face&” C 0€); and its partition{ F;; } ; by its mortar neighbors, i.eE;; = 9Q; N
0Q);. We define the spad®l(F;;) as a subspace &I (F") of functions that are supported in
F;;. Six primal constraints are now introduced for ed¢hin the following way.

On each facd;;, we first consider the six rigid body motiods; }¢_, as in (2.2) and
(2.3), with H the diameter of the facE;; andx a point onF;;. We define a nodal interpolant
Ivr,) - [C(Fiy)]® — M(F;) by

I (V)(2) = v(z), =€ Milj,
where M?j is the nodal set corresponding to the Lagrange multiplier spd¢é;;) and
C(F;;) denotes the set of continuous functions Bp; see Fig 1 for a two-dimensional
case. We now select six primal constraints using the interpolated rigid body motions,

/ (Vi*Vj)'I]\/](F'U)(I'l)dS:O7 Vlzl, 76.

REMARK 3.6. WhenF;; is the whole nonmortar facE, M(F;;) contains constant func-
tions. The constraints withl ;) (r1) #_, are then nothing but the average matching con-
dition acrossfF;; because y;(r,,)(r;) = r;, for I = 1,2,3. The remaining constraints with
{In(r,,;) (r1) }i_4, are similar to the moment matching constraints which were introduced for
fully primal edges in [22] except that our constraints use the interpolated rotational rigid
body motions and are imposed on faces. We call the constraints basigd,n ) (r:)}{_,
the moment constraints.

Even though we have introduced a set of primal constraints to make the FETI-DP method
more efficient, the enlarged coarse problem can be a bottleneck for the computation. To
reduce the size of the coarse problem, we will select some interfaces as primal and impose the
six constraints only over them. For the remaining, the non-primal faces, we assume that they
each satisfy an acceptable face path condition. This assumption leads to a FETI-DP method,
with primal constraints only for the primal interfaces, that has a condition humber bound
comparable to one obtained when the six primal constraints are imposed on all interfaces.
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FIG. 2. A primal interfaceF (solid line rectangle) of a face (dashed line rectangle) of subdorfiginThe
supports of the basis elements corresponding to the black nodes and the white nodes ingidsectF'; the values
at the black nodes are unaffected by the transf@im

We now define an acceptable face path. Héfg,denotes the diameter of an interface
Fyj.

DEeFINITION 3.7. (Acceptable face path)Let L. andTOLp be given constants. For a
pair of subdomaing(;,2;) having a common interfacg;;, an acceptable face path is a
path

{0, Qpey -+, Qg U}
from Q; to Q; such that the coefficiewdt;, of 2, satisfy the condition
TOLp % (1 +log(Hi;/hi)) " (1 +log(H;/h:))? * Gy, > min(Gy, G5).
Moreover, the path from one subdomain to another must always be through a primal face and

the number of subdomains appearing in the path is bounded by the cohstant

3.3. The FETI-DP formulation with a change of basis.Let A; be the stiffness matrix
obtained from the finite element discretization of the bilinear form,

a;(u;,v;) == Gi/Q e(u;) : e(vy)de + Glﬂi/g V- -w;V-v;dz,

using the spac&;. Let.S; be the Schur complement of the materlx, that is obtained by
eliminating the interior unknowns. We then write the mortar matching conditionvfee
(w1, ,wn) € Was

N
Z Biwi =0.
i=1

We now express the matricés and B; in a new set of unknowns after a change of
basis (unknowns). This idea was first presented in [21, 24] and algorithmic details were later
described by Klawonn and Widlund [22]. The change of unknowns leads to a much simpler
presentation of the algorithm as well as a more robust implementation; see [19, 20].

Let w; denote the unknowns (or a function) in the spd®. We consider a primal
interface ' C 0€);. Since the partition can be geometrically nonconformifignight be
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only part of a face of);. Let wr denote the restriction of a functiow to a primal face
F C Q;. In other wordsw is the vector of unknowns corresponding to the nodal basis
elements with supports that intersdct see Figure 2. For each primal fage C 09Q;, we

define a transformatiofiz by
W
wp=Tr | |,
WFA

where the six components ofp 7 are given by

S wr - Iy () ds
HZ '

(WF,H)Z =

andv =Tp ( ) has the six zero components, i.e.,

WEA

/V~IM(F)(I‘l)dS:0, lzl,"- ,6.
F

Here H denotes the diameter &f. In addition, the transformatidfir retains the unknowns
at the nodes other than those insideSuch a transform can be built just like in [15, Section
2.2]; we omit the details. Since only the unknowns at the nodes irfsidas been changed,
each transform corresponding to an individual primal fAcean be applied independently.
After the change of unknowns, we order the unknownsand the matrices; andB; as

09w (8) 5o (B H) e m).
Wi Sta Stn

wherell denotes the primal unknowns arx denotes the others, which we call the dual
displacement unknowns. Any interface of a pair of subdomains is either a primal face or
has an acceptable face path, so that each subdomain is connected to at least one neighbor
through a primal face. This fact ensures that the maitﬁg is invertible, since the six primal
constraints are linearly independent; a proof will be provided in Lemma 4.2.

According to the separation of the unknowns, the spa&teas decomposed into

W, = WY x Wi,

WhereWX) andwg) contains the dual unknowns and the primal unknowns, respectively.
We further decompose the spa@éx) of dual unknowns into

W) = (8w € W, W

wheren denotes the unknowns of the nonmortar faces mndenotes the remaining un-
knowns.
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After enforcing the primal constraints on each primal face, we define the following space,
W = {w € W : w satisfies the primal constraints across the primal faces
It can be decomposed into
W = Wa x Wy,

whereWp = ]‘[fil WX) andWr; is the space of global primal unknowns. The sp¥¢a
is further decomposed into

Wa =Wa, x Wa pm,

wheren andm refer to the nonmortar and the remaining part of the interfaces.

Throughout this paper, we use the same notation for a function and the corresponding
vector of unknowns representing the function. ng? denotes a vector of dual unknowns
of w(® or the corresponding finite element function. The same convention applies to the
spacesWu ,, W, M, etc.

We now consider the mortar matching matridgs When the mortar matching con-
straints are imposed o& in W, they are redundant, since the six primal constraints on each
primal face already have been enforcedwonWe therefore eliminate six equations from the
rows of B; for each primal facd” C 912; and obtain the mortar matching constraints for the
spaceW that are nonredundant. We will use the same notalipafter that we have made
them nonredundant.

By introducing Lagrange multiplier& for the mortar matching constraints, we obtain
the following mixed formulation of the problem (2.1):

Saan San BL\ [wa ga
(3.5) Sna  Smn B win | = | 8n|;
Ba B 0 A 0

where each block matrices are obtained from subassembly of blocksaoid B; in (3.4) at
the global primal unknowns and at the dual unknowns.

The FETI-DP algorithm solves this mixed problem iteratively after eliminating all un-
knowns other that\. The elimination of the unknowns o andwy; leads to

(3.6) FppX = d.

We note that the matrik’p p is symmetric and positive definite and it satisfies the well-known
relation, see [25, Lemma 4.3],

(Bw, \)?
3.7 FppA, ) = AR
(3.7) (FppA, A) ﬁ%w&mw’



12 HYEA HYUN KIM

where

S = <SM SM) , B= (BA BH).

Sna  Sun
The FETI-DP algorithm solves (3.6) forusing a preconditioned conjugate gradient method
with an appropriate preconditioner.
We now introduce a precondition@—1 given by

- - (BE(Wa.n),A)?
(38) <M>\’ A> - wA,ineaV}\(’A,n, <SE(WA,7L)a E(WA7")> ,

whereE(wa ,,) is the zero extension af » ,, into the spacé’fV. To be more precise,

E(WAm) = (WA}n,O,O) € WA,n X WA7m x W =W.

We then obtain

_ (BE(wan),A)? (Bw,\)?
(3.9) (MAA) = wa (SE(Wan), Ewan)) < &%W = (FppA, A).

Therefore the lower bound of the FETI-DP algorithm is bounded from below by 1.
The explicit form of the preconditioner

N
(3.10) M~ =" BiD;S;D;B!

=1
is similar to other FETI-DP preconditioners except that the weight matyiis given differ-
ently. The weight matribxD; to the preconditioneﬁ‘1 in (3.8) is expressed by

(BL)'BY ) 0
D, = 0 0
0 0

o o ©

whereB( ., IS the matrix with the columns OB(Z corresponding to the unknowns in the
spaceWA 'n> S€e (3.4). We note thﬁA ' IS square and invertible and that the weight matrix
D, is applied to the unknowns in the spa¥é; = WA’n X W(A?m X W%). We can further
express the preconditioner in a much simpler form,

N By,
(3.11) =S (B2 0 0)si| o
i=1 0

This form shows that muItipIying/\Z*1 by a vector involves solving local elasticity prob-
lems with natural boundary condition on the nonmortar faces and zero Dirichlet boundary
condition on the other part. We calf ! the Neumann-Dirichlet preconditioner.
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FIG. 3. The faceF’, to the right of the solid line, is part of a nonmortar face. The Lagrange multiplier basis of
the black nodes are supportedify M (F') is the space spanned by these basis elements. The union of their supports
is F7, a subset of that is to the right of the dashed lines.

4. Condition number analysis. In this section, we will analyze the condition number
bound of the proposed FETI-DP algorithm. First, we will construct functiofAls’_,, dual
to the spacéer(¢), that satisfy

fm(rk):§mk7 m,k:1,~- a63

2
W
| Hg’F forw e [L*(F))°.

(4.1) |[fm(w)|* < C

Here{r)}°_, is a basis oker (¢) with six rigid body motions scaled with respect to a face
F C 09;; this means that we take € F and H = diam(F') in (2.2) and (2.3). Such a dual
basis was introduced by Klawonn and Widlund [22].

We will now introduce six functionals which are closely related to the primal constraints
applied across a primal fade,

-1y, d .
(4.2) a(w) = Jrw ]}f[(zF)(rl) s, forw e [L2(F))%, I =1,--- ,6.

Here, I, (r;) is the nodal interpolant to the Lagrange multiplier spi€g") provided for
the faceF’ and H is the diameter of".
LEMMA 4.1. For any bounded functioii and any linear functiory, we have

/F £ (9= Ingry(9)) ds| < CRH | fo l9llco-

whereH is the diameter of the fack.

Proof. We consider the case whénis a part of a nonmortar face as in Figure 3. The
subsetF; of F' is the union of the supports of the basis element¥/if¥’). Sincey is linear,
we obtain, at each nodal poiate F7,

@3) 19(2) ~ sy (0)(@)] < Ohlg'| < O gl
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The above bound also holds for any= Fr, because both andl,,(r(g) are linear in each
element inF7. We note thatl ;) (g) vanishes outsidé’.
We now have

/Ff(g_IM(F)(g)) ds = /FI f (9= Ty (9)) ds+/F fgds.

\Fr

From the above bound and (4.3), usidg| < CH? and|F \ F;| < ChH, the required
bound then followsl

LEMMA 4.2. The functionals{gl}?:1 are linearly independent in the spatker(c))’,
whenh is sufficiently small.

Proof. It suffices to show that the matriX with the following entries is invertible,

Gwz/mean&jw=h~ﬁ
F

Here we select; in {r;}$_, so that
/1( Ti)ds=0, i=1,23
7 Ty — X4 s =V, t=1,4,0.
rH

The rigid body motiongr;.}°_, are then orthogonal tér;}>_, with respect to the inner
product,

msz/rﬂ%-
F
We definer; andrg by
T5 =T5 —aqly, Tg=Tg— byry — bsTs,

where

(I'4, I‘5)F
(r47 I'4)F

o (F57r6)F

by = ———— —
’ (T5,T5)F

ay =

The constants,, by, andbs are invariant to scaling. In other words, they are independent of
H andh. We denote by(T; }°_, the rigid body motiongr; }°_, with r5 andrg replaced by
T5 andrg. The rigid body motions{'ﬁ-}?:1 are then orthogonal and the values(sf,r;) r
are scaling invariant. In other words, they are constants independéhaati /.
Using Lemma 4.1, we obtain

(4.4)

/Fj'deS*/Fj'IM(F)(Fk)dS < ChH,
F F

whereC is a constant independent Bf andk. We now consider a matri& with entries,

Gﬂz/aimnmxjx=h~ﬁ
F
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Since ther; are orthogonal, we see, using the bound in (4.4),@151; diagonally dominant
whenh is sufficiently small. Therefore is invertible whert is small enough. The matrix
G can be obtained from the invertible matﬁ§<by using certain column and row operations
and is therefore invertiblél

REMARK 4.3. The proof of Lemma 4.2 also holds for an interfdcehat is not a flat
surface.

Since the six functional§g; } are linearly independent, they provide a basis of the dual
spaceker(¢)) . Thus there exist$ﬁml}fn’l:1 such that

6
(45) fm225mlgl; m:17 76'

=1

Using Lemma 4.1, for any linear functiorfsandg we have

< CllfllscligllschH.

/fgds_/IM(F)(f)IM(F)<g)dS
F F

Whenh is small enough, we then find

(4.6) (Ini () (xr) Ing(ry (k) P < Clrg, mi) p < CH?.

From (4.2), (4.6), and the Cauchy-Schwarz inequality, we obtain

IwiZ ¢
i (w)? < O

The inequality (4.1) follows from (4.5) and the above bound. We denote the dual functionals

described above blyf"}%_, for the given face”. We can then express any rigid body motion
r € ker(e) as a linear combination using the dual basis,

6
r= Z fE (o).
=1

In the following, we will provide several lemmas which will be used to provide an upper
bound of the FETI-DP algorithm equipped with the preconditio&\/ﬂ\feT1 given in (3.8); see
also (3.11). We note that a lower bound with the constant 1 is provided in (3.9).

For a facel” C 0§;, the spacd{é({Q(F) consists of the functions whose zero extension
to the whole boundarg); belongs to the spadd'/2(99;); it is equipped with the norm,

1/2
e 2 w(x)Q
||wHH3(§2(F) = <w|1/2,F+LWdS(I)> )

where

S A R )
whpor = [ [ I ds@asty).
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In addition, a norm for the spadé'/?(F) is defined by

1/2
1
fulh e = (10 e + ol )

whereH - is the diameter of".

These norms can be extended to the product sgaEES (]2 and[H/2(F))3 by using
the usual product norms. Similarly, we can extend the edge and face lemmas given below to
product spaces. These lemmas can be found in Toselli and Widlund [29, Lemmas 4.24 and
4.25]. In the following, W (F') denotes any conforming;—finite element space provided for
a faceF' with its mesh size comparable to that of its nonmortar subdomain. Since the face
F can be only part of a full face of its nonmortar subdom@jn the triangulation equipped
for the faceF can be different from that d®;. The spacdV (F) is the corresponding vector
valued finite element space.

LEMMA 4.4. (Edge lemma) Let E be an edge of a facg;; C 0Q; and F;; has(); as
its nonmortar subdomain. Then, for amye W (F;;), we have

Hi,j
i < € (14108 52 ) 1w,
(3

Let C(F) be the space of continuous functions defined-orFor any subseti C F, we
define an interpolant, : C(F) — W (F) by

4.7) Ly(w)(z) = { w(z), forze AnNh,

0, for the other nodes,

where N is the set of nodes of the finite element sp&icéF’). We note thatl - (w), when
A = F, vanishes at the boundary #f. We can extend the interpolant to a vector valued
functionw € [C(F)]? and we simply denote it by, (w).

LEMMA 4.5. (Face lemma) Let F;; be a face ob(; with ; as its nonmortar subdo-
main. Then, for anw € W (F};), we have

H. 2
) IR

I (), < (14108

We now derive several inequalities for the mortar projection of functions. We recall that
the spaces?v(ﬂ) andM(F;) are given on the nonmortar faég; see Section 3.1.

DEFINITION 4.6. (Mortar projection ) The mortar projectionr; : [L2(F;)]® — Vov(Fl)
is defined by

/F(ﬂ'l(w)—w)-wcls:(), Vip € M(F).
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It is known that the mortar projection is bounded in both fffe- and thef}) *~norms; see
[1, 31].
For any functionw defined onr;; C F;, we definex r,, w by

U)(IIZ’), T € Fija

Fy (@) {o, z€ R\ Fy.

LEMMA 4.7.LetF; C 0€2; be a nonmortar face with its partitiofiF;; } ; and letw be a
function in[H/2(F;;)]3. Then

2
2 2
I, 9y < € (1410052 ) o,

ij
i

Proof. On the facel;;, we consider a quasi—uniform triangulation of which mesh size
is comparable ta,;, that of its nonmortar subdomasp; and denote the corresponding con-
forming P,—finite element space BW (F;;). We then define thé2-projection,

(4.8) Q : [L*(Fy)P® — W(F).
We note that
2 2 2
(4.9) 171 Oy W72 gy < 201 Oy (W= QW22 oy + 2Oy QWD -
The first term above is estimated by
I (X, (W — QW))Hilééz(Fl) < Chy Himlxr, (W — QW) |72,

< Chb_lH(W - QW)”(z),F”

Here we have used an inverse inequality, the continuity;df the L2—norm, and the ap-
proximation property of the projectio combined with an interpolation argument, see [4,
Chapter Il],

1Q@w —wlo,r,; < Chilwllrys  1QWl1E, < Cliwli g,

J — J —

We now decompos@w into interior and boundary parts, using the interpolantw)
defined in (4.7) to the spad®& (F;;),

Qw = IFij (QW) + IaFij (Qw).
Sincelr,, (Qw) is zero at the boundary df;;, we have

XF, (e, (Qw)) € [Hy (R, Ir,(Qw) € [Hof?(Fiy)P*.
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The definition of thefZ},>~norm gives that
HXFi] (IFij (QW)) HH&P(F;) < HIFU' (QW) HHééz(F”)
The second term in (4.9) is then bounded by
2
71, QWD
2 2
< 2fim(x, (L, QW2 073 ) + 2, oy QWD) s
2 —1 2
< € (I, Uy @Iy gy + i o, (@) 5, )

@10 <O (s, @W)IE ) + i hillTor, (@) or, ) -

Here we have used an inverse inequality and the continuity iofthe L2— andH&éQ—norms.
By applying Lemmas 4.5 and 4.4 to the two terms in (4.11), we obtain

h;
h;

2
) 1QWIE e,

2
) W1 .,

(4.12) <C <1 + log

We obtain the required bound from (4.9)—(4.12).

REMARK 4.8. In our previous paper [15], also on geometrically nonconforming parti-
tions, a slightly weaker bound;(1 + log(H/h))3, was proved for three dimensional elliptic
problems. Here we are able to improve this result by using an additional finite element space
W (F;;) and theL?—projection( in the proof.

The following lemma is a simple modification of a result in Dryja, Smith, and Wid-
lund [6, Lemma 4.4]:

LEMMA 4.9.Let F; C 09; be a face. For a linear functiog, we have

H..
2 i b2
15y O, < € (141007 ) Hillo .
LEMMA 4.10.Let F;; C F; whereF; is a nonmortar face of(2;. For a linear function

¢, we have

I, Oy < € (110052 ) g0l

Proof. By applying the estimate in (4.11) of Lemma 4.7tonve have

where(Q is the L?>—projection described in (4.8). Sin€g = ¢, the required bound follows
by using Lemma 4.91
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LEMMA 4.11.LetF; C 0€2; be a nonmortar face with the partitiof¥;; } ; by its mortar
neighbors. We assume that each interfé¢gis either a primal face or has an acceptable
face path, and assume that the primal faces are substantial and the others, non-primal faces,
are weakly substantial. In addition, the subdomain partition satisfies Assumption 3.1. Then,
forw = (wy, -+ ,wy) € W, we have

H\?
Gil|mi(wi — ¢)”ilé(§2(ﬂ) <C { (1 + |0ghi) |w; %L

H;;\ G,
+ZL(Fij)* Z (1+Iog h»J> 5‘Wk|%k
j kEA(i,)) g k

G H;\°
J

Here the constant’ depends ofi'O L r (see Definition 3.3), the restriction gfto F}; is w;,
A(i, j) is the set of subdomain indices of the acceptable face paf;pfind the constant
L(F;;) is the number of the subdomains in the path.

Proof. Since{ F;; }; is a partition of the nonmortar fadg, we can write

W; — ¢ = ZXFU (Wl _Wj)
J

and it suffices to estimate each term in the above expression.

Let {Q, Q.-+, Q,,Q;} be the related acceptable face path/f which passes
through the primal face$Fiy,, Fi k., -, Fr,;}- WhenF;; is a primal face, the path is
simply {Q;,Q;}. Let {ri¥1}, {rkik2} ... {rk=i} be bases ofer(c) scaled with respect to

the primal faces,, Fi, k., - - -+ Fk, j, respectively. We denote the dual basigt{ },,, by
{f!1 .. We introduce the notation,

6

fu(w) =D ik (w)rlk.

m=1

We note thatf;;(r) = r for any rigid body motion: and thatf;,(w;) = fix(wy), sincew
satisfies the primal constraints on the primal fagg
We then have

wi —w; = (W; —13) — fir, (Wi —15) + fir, (Wr, — Thy) = frrby(We, — Ty)
(413) +fk31k2(wk2 _rk2) _szkz(wkz _rk2)+"'

+ frnj(Wj —1j) = (Wj — 1),

where thery, denote any rigid body motions.
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We apply Lemma 4.7 to the first and the last terms of the above equation and obtain

G (i, (9 = )z oy + IO (905 =2 s ) )

2
) (Gl =R, + Gilw, =15,

H;;\* [ H; H; G;
§C<1+|Og h-]) (H|W1251+HJGZ|WJ|QS]>
7 ? 1) J

§0(1+Iog

j
i

H;\? Gi

J
where C(TOLF) denotes a constant which dependsTe@Lr. Here we have also used
Lemmas 2.2 and 2.3, and the assumption that the Faces weakly substantial; see Defini-
tion 3.3.
We next consider the other terms in (4.13). From (4.1) and Lemmas 4.10 and 2.3, each
term can be estimated as

Gi‘ffllkz (sz - rk2)|2 ||7Tl(XFijrfﬁk2)H12q

04> (Fy)

< CG;

”sz - rk2H(2)BQk H;;
%2 (1 + log ]>H-- rkikz)2
e (1 1og G ) Hy e,

<C*C§Z(1+Iog

I{" lfk Iy" ki k
5) w3, ek
K3

k1ka

h

We will show that the factotHy, Hi;/ H}, 1, ) [r5i*2 |12, is bounded by a constant that
depends only o (F;;). The assumption of the acceptable face path givesiihiy) < L
for a given constanL. Since the length of the face path is less than or equal &amd the
subdomain patrtition is locally quasi uniform, the diameter of the subdomains in the path are
comparable tdd;. In addition, the diameter of any primal face of the path is comparable to
H;, because primal faces are substantial. From these observations, we obtain

Hy, H, H,
kik k i i
Hr'ﬂ% 2‘|OO,F7;_7’ S CL(F,LJ), H% - J < C?j,
1R2
and have proved the bound
(4.14) %”rfﬁmnikﬂj < CL(F;;)2.
k1ks

The remaining terms in (4.13) can be bounded in a similar way leading to the required bound
of G;||m(w; — ¢>)||12H%2(Fl). d

REMARK 4.12. The proof for the bound i(4.14)suggests that it is beneficial that the
diameter of the non-primal interfacg;; is smaller than those of the primal interfaces in the
acceptable face path as long as it is weakly substantial with respect to the given constant
TOLp. In addition, the definition of an acceptable face path shows that a smaller diameter
of F;; provides more chances of finding an acceptable pai# pfor a givenTOLp and L.
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We note that the acceptable face path assumption and Assumption 3.4 give

H.. , H.\2 ,
(1 + log h”) g}: < TOLp % (1 + Iogh_l> , L(Fiy;) <L, G <TOLg.
i 71 7

Therefore the bound in Lemma 4.11 is reduced to

2
@1s)  Gllmiw - @)l <0 (14layt ) X Wil
lEN;
whereN, is the set of subdomain indices, that appear on the acceptable face pathcof;.
The constant” depends of'OLr, TOLg, TOL p, andL but does not depend on any mesh
parameters nor on the coefficieidts.

LEMMA 4.13.Assume that every non-primal face satisfies the acceptable face path con-
dition with givenTOLp, L, and coefficientss; and that every primal face is substantial
and every non—primal face is weakly substantial with a giV€n. . In addition, Assump-
tions 3.1 and 3.4 hold with a giveRO L. We then obtain

(Bw, \)? a2 —~
Ty S 1+ log— M
e Swowy = iy (11005 ) (A

where the constant’ depends on th&OLg, TOLg, TOLp, and L but not on any mesh
parameters and coefficient;.
Proof. We consider

2 2

(Bw,N?=| > (wi—¢)-Ads | = > m(wi — @) - Ads

1,nonmorta 4 1, nonmortal B

Sincew € W, w satisfies the primal constraints on any primal f&¢g i.e.,
[ = @) D v ds =0, =1
Fi‘
This implies thatr;(w; — ¢) also satisfies the primal constraints,

/ 7Tl(Wi—¢) 'I]\/[(Fij)<r'm) dS:O7 m = 17 76a
F;

J

becausd(r,,)(r) belong to the Lagrange multiplier spasg( /7). Thereforez,,, defined
on each nonmortar face by

Zn|r, = (Wi — @),

belongs toW 4 ,,. In other wordsg,, has all its six primal components zero on each primal
face. We then define by = E(z,,) the extension ot,, to \NV(: Wan X Wa , x Wrp) by
zero.
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By the definition ofM in (3.8), we find that

(Bw,\)? = (Bz,\)?
< (M, \)(Sz,z).

It suffices to show that

(2

N2
(4.16) (Sz,z) < Cl:qlaXN { <1 + |OgIZ_1) } (Sw,w).

We now consider

N

(Sz,2z) = Z(Sizi,zi>

i=1

N
<CY Y G (m(wi - ¢) i,

i=1 [, nonmortar

N
2
=1 [, nonmortar
whereH’ is the discrete harmonic extension iftg. Here we have used that, see Lemma 2.2
and (2.4),

(Sizi, z;) < CGi‘Hi<Zi)|%7Qi'

From the bound (4.15) and (4.17), we obtain (4.16) with a congtamhich depends on
TOLp, TOLg, TOLp,andL.O

The lower bound in (3.9) and the bound in Lemma 4.13, combined with (3.7), lead to the
following condition number bound.

THEOREM4.14. We assume that the assumptions in Lemma 4.13 hold. We then obtain
the condition number bound,

— H.\2
k(M 'Fpp) < C’i:mz_i.XN { (1 + lOQh»Z) }

IR

Here the constant’ is independent of the mesh parameters and the coeffidignisut de-
pends on the given constaft® Lg, TOLg, TOLp, and L.

5. An algorithm for selecting primal faces. We now introduce an algorithm which
selects a quite small number of primal faces for an arbitrary distributiofGe}Y ;. We
first choose constanfSOLp and L that will be used in the selection. Next we select an
initial set of primal faces and put them in the g&bf primal faces. We then determine non-
primal faces based on the sBtand the given constanfSOLp and L. We then visit the
remaining undetermined faces in a certain order and add some of them, one by one, to the
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setP. Whenever we add an undetermined face to théPsete determine the current set of
non-primal faces based on the updated primali5etVe repeat this process until every face
is determined. In order to choose a small initial primalBetve introduce the concept of an
essentially primal face.
DEFINITION 5.1. (Essentially primal face) A faceF' = 0Q;N012; is essentially primal,
if there is no acceptable face path f(®;, 2;) for the givenTOLp and L, when all faces
exceptF' are chosen to be primal.
We will now explain the algorithm in detail. For the given constdhit3L» and L, we
determine the essentially primal faces and add them to th2 sétprimal faces. Based on
this setP, we determine the non-primal faces. For the remaining undetermined faces, we
order them with respect to decreasing ratios of the coefficients between the two subdomain
; andQ);. If we have more than one face having the same coefficient ratio, we then select
the one with most neighbors. We then add an undetermined face to tReaset determine
the non-primal faces of this updated $&tWe repeat this until every face is determined. The
ordering of the undetermined faces increases our chances that there will exist acceptable face
paths for other faces which are previously undetermined.
Algorithm (TOLp, L, {G;}, {H:}, {h:} given)
Step 1 Determine essentially primal facésand add them to the primal face det
Step 2 Determine non-primal faces based on theRet
Step 3 For the remaining undetermined fadésorder them in decreasing order of the ratio
of the coefficients. If there are more than two faces with the same ratio then order them
in decreasing order of the number of neighbors of the two subdomains which intersect the
current facer.
Step 4 Do until every undetermined facé determined
e Add a current undetermined faé¢eto the primal face seP
e Determine the non-primal faces based on the updated primal fa¢e set
End
We have tested the algorithm for both constant and variable coefficient cases. The do-
main Q = [0, 1] is partitioned intoN® hexagonal subdomains. For the case of constant
coefficients, we také&(z) = 1, and for the case of discontinuous coefficient we distribute
the valued, 10, 102 and10? randomly over the subdomain partition.
In Table 1, we present the number of primal faces wiign.» = 10, L = 6, and
the number of nodesH;/h;) are the same for all subdomains. H&al means the total
number of faces in the subdomain partitidfin denotes the number of primal faces what we
obtain from the algorithm without any limit ohOLp and L. For this case, our algorithm
gives exactly the minimum number of primal facég® — 1, that are required to resolve the
rigid body motions generated by thé* subdomains. The colum@onstandRandomshow
the number of primal faces for the constant coefficient case and the discontinuous coefficient
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N? || Total | Min | Const | Random
23 12 7 7 8

43 144 63 68 89

63 540 | 215 246 322
83 1344 | 511 646 804

103 || 2700 | 999 | 1300 1598
TABLE 1
The number of primal faces from the algorithdv:3 (the number of subdomaing)ptal (the number of faces
over the subdomain partitionMin (the number of primal faces without any limit @7O L p and L), Const (the
number of primal faces for the constant coefficient case WithL p = 10 and L. = 6), Random (the number of
primal faces for the discontinuous coefficient case WithL p = 10 and L = 6)

case, respectively. Comparing these two columns, we see that this algorithm gives a quite
small number of primal faces even for the case with the discontinuous coefficients.
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