
A Unified Construction of the Glushkov, Follow,

and Antimirov Automata?,??

(TR2006-880)

Cyril Allauzen and Mehryar Mohri

Courant Institute of Mathematical Sciences
251 Mercer Street, New York, NY 10012, USA

{allauzen, mohri}@cs.nyu.edu
http://www.cs.nyu.edu/~{allauzen,mohri}

Abstract. Many techniques have been introduced in the last few decades
to create ε-free automata representing regular expressions: Glushkov au-
tomata, the so-called follow automata, and Antimirov automata. This
paper presents a simple and unified view of all these ε-free automata
both in the case of unweighted and weighted regular expressions. It de-
scribes simple and general algorithms with running time complexities
at least as good as that of the best previously known techniques, and
provides concise proofs. The construction methods are all based on two
standard automata algorithms: epsilon-removal and minimization. This
contrasts with the multitude of complicated and special-purpose tech-
niques and proofs put forward by others to construct these automata.
Our analysis provides a better understanding of ε-free automata repre-
senting regular expressions: they are all the results of the application of
some combinations of epsilon-removal and minimization to the classical
Thompson automata. This makes it straightforward to generalize these
algorithms to the weighted case, which also results in much simpler algo-
rithms than existing ones. For weighted regular expressions over a closed
semiring, we extend the notion of follow automata to the weighted case.
We also present the first algorithm to compute the Antimirov automata
in the weighted case.

1 Introduction

The construction of finite automata representing regular expressions has been
widely studied due to its multiple applications to pattern-matching and many

? This work was partially funded by the New York State Office of Science Technology
and Academic Research (NYSTAR).

?? This project was sponsored in part by the Department of the Army Award Number
W23RYX-3275-N605. The U.S. Army Medical Research Acquisition Activity, 820
Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering
acquisition office. The content of this material does not necessarily reflect the position
or the policy of the Government and no official endorsement should be inferred.

other areas of text processing [1, 22]. The most classical construction, Thomp-
son’s construction [14, 25], creates a finite automaton with a number of states
and transitions linear in the length m of the regular expression. Figure 1(a)
shows an example. The time complexity of the algorithm is also linear, O(m).
But Thompson’s automaton contains transitions labeled with the empty string
ε which create a delay in pattern matching.

Many alternative techniques have been introduced in the last few decades to
create ε-free automata representing regular expressions, in particular, Glushkov
automata [11], follow automata [13], and Antimirov automata [2].

The Glushkov automaton, or position automaton, was independently intro-
duced by [11] and [17]. Figure 1(b) shows an example for a particular regular
expression. The automaton has exactly n + 1 states but up to n2 transitions,
where n is the number of occurrences of alphabet symbols appearing in the ex-
pression. For a reasonable expression, m = O(n), making it quadratically larger
than the Thompson automaton. When using bit-parallelism for regular expres-
sion search, due to its smaller number of states, the Glushkov automaton can be
represented with half the number of machine words required by the Thompson
automaton [21, 22].

Several techniques have been suggested for constructing the Glushkov au-
tomaton. In [3], the construction is based on the recursive definition of the follow
function and has a complexity of O(n3). The algorithm described by [4] has com-
plexity of O(m + n2) and is based on an optimization of the recursive definition
of the follow function. It requires the expression to be first rewritten in star-
normal form, which can be done non-trivially in O(m). Several other quadratic
algorithms have been given: that of [9] which is based on an optimization of the
follow recursion, and that of [23], based on the ZPC structure, which consists of
two mutually linked copies of the syntactic tree of the expression.

The Antimirov or partial derivatives automaton was introduced by [2]. Fig-
ure 1(d) shows an example. It is in general smaller than the Glushkov automaton
with up to n+1 states and up to n2 transitions. It was in fact proven by [8] (see
[13] for a simpler proof) to be the quotient of the Glushkov automaton for some
equivalence relation. The complexity of the original construction algorithm by
[2] is O(m5). [8] presented an algorithm whose complexity is O(m2).

Finally, the follow automaton was introduced by [13], it is the quotient of the
Glushkov automaton by the follow equivalence: two states are equivalent if they
have the same follow and the same finality. Figure 1(c) presents an example. The
author gave an O(m+n2) algorithm where some ε-transitions are removed from
the automaton at each step of the construction of the Thompson construction as
well as at the end. An O(m + n2) algorithm using the ZPC structure was given
in [7], which requires the regular expression to be rewritten in star-normal form.

Some of these results have been extended to weighted regular expressions
over arbitrary semirings. The generalization of the Thompson construction triv-
ially follows from [24]. The Glushkov automaton can be naturally extended to
the weighted case [5], and an O(m2) construction algorithm based on the gener-
alization of the ZPC construct was given by [6]. The Antimirov automaton was

generalized to the weighted case by [16], but no explicit construction algorithm
or complexity analysis was given by the authors.

This paper presents a simple and unified view of all these ε-free automata
(Glushkov, follow, and Antimirov) both in the case of unweighted and weighted
regular expressions. It describes simple and general algorithms with running time
complexities at least as good as that of the best previously known techniques, and
provides concise proofs. The construction methods are all based on two standard
automata algorithms: epsilon-removal1 and minimization as summarized by the
following table:

Automaton Algorithm Complexity

Glushkov rmeps(T) O(mn)

Follow min(rmeps(T)) O(mn)

Antimirov r̂meps(min(rmeps(bT))) O(m log m + mn)

Where T is the Thompson automaton, T is the automaton derived from T

by marking alphabet symbols with their position in the expression. When the
symbols are marked, the same notation denotes the operation that removes the
marking. T̂ is obtained by marking some ε-transitions in T , making it determin-
istic (the ε-transitions marked are removed by the r̂meps operation).

This contrasts with the multitude of complicated and special-purpose tech-
niques and proofs put forward by others to construct these automata. No need
for fine-tuning some recursions, no requirement that the regular expression be
in star-normal form, and no need to maintain multiple copies of the syntactic
tree.

Our analysis provides a better understanding of ε-free automata representing
regular expressions: they are all the results of the application of some combina-
tions of epsilon-removal and minimization to the classical Thompson automata.
This makes it straightforward to generalize these algorithms to the weighted
case by using the generalization of ε-removal and minimization [18, 19]. This
also results in much simpler algorithms than existing ones.

In particular, this leads to a straightforward algorithm for the construction
of the Glushkov automaton of a weighted regular expression, and, in the case
of closed semirings, allows us to generalize the notion of follow automaton to
the weighted case. We also give the first explicit construction algorithm of the
Antimirov automaton of a weighted expression. When the semiring is k-closed (or
only ε-k-closed for the regular expression in the Glushkov case), the complexities
of the construction algorithms are the same as in the unweighted case.

2 Preliminaries

Semirings A semiring (K,⊕,⊗, 0, 1) is a ring that may lack negation. K is
closed if a∗ =

⊕
n≥0 an is defined for all a ∈ K, and k-closed if there exists

1 ε-removal is less well known as an algorithm because it has often been and continue
to be only presented as part of determinization in many textbooks.

0
1ε
2

ε
1a

2b
ε εε

ε
ε

ε

ε

ε
4ε

6ε
ε

3ε ε

4
b

3
a

ε

ε ε

ε

ε
5ε

ε 5
a

ε
ε ε

ε ε

6
b

ε
ε ε

(a)

0

1

a

2b

3
a

6
b

4

b

a
b b

a

b
b

a
b

b

a

b

b

5

a

a
b b a

0 1,2,
3,6

a
b

a
b

4,5
b
a
b

a
b

0 1,2a
b

6a
b

3,4,5
b

b
a

b
a
b

b

(b) (c) (d)

Fig. 1. (a) The Thompson automaton, (b) Glushkov automaton, (c) Follow automaton,
and (d) Antimirov automaton representing the regular expression α = (a+b)(a∗+ba∗+
b∗)∗. This regular expression is the running example from [13].

k ≥ 0 such that a∗ = ak for all a ∈ K. Examples of semirings are the boolean
semiring (B,∨,∧, 0, 1), the tropical semiring (R+ ∪ {∞}, min, +,∞, 0), and the
real semiring (R+, +,×, 0, 1).

Weighted automata A weighted automaton A over a semiring K is a 7-uple
(Σ, Q, E, I, F, λ, ρ) where: Σ is a finite alphabet; Q is a finite set of states; I ⊆ Q

the set of initial states; F ⊆ Q the set of final states; E ⊆ Q× (Σ ∪{ε})×K×Q

a finite set of transitions; λ : I → K the initial weight function; and ρ : F → K

the final weight function mapping F to K.

Given a transition e ∈ E, we denote by i[e] its input label, p[e] its origin or
previous state and n[e] its destination state or next state, w[e] its weight. Given
a state q ∈ Q, we denote by E[q] the set of transitions leaving q.

A path π = e1 · · · ek is an element of E∗ with consecutive transitions: n[ei−1] =
p[ei], i = 2, . . . , k. We extend n and p to paths by setting: n[π] = n[ek] and
p[π] = p[e1]. A cycle π is a path whose origin and destination states coincide:
n[π] = p[π]. We denote by P (q, q′) the set of paths from q to q′ and by P (q, x, q′)
the set of paths from q to q′ with input label x ∈ Σ∗ . These definitions can
be extended to subsets R, R′ ⊆ Q, by: P (R, x, R′) = ∪q∈R, q′∈R′P (q, x, q′). The
labeling function i and the weight function w can also be extended to paths:
i[π] = i[e1] · · · i[ek], w[π] = w[e1] ⊗ · · · ⊗ w[ek]. The weight associated by A to

each input string x ∈ Σ∗ is [[A]](x) =
⊕

π∈P (I,x,F) λ(p[π])⊗w[π]⊗ρ(n[π]), [[A]](x)

is defined to be 0 when P (I, x, F) = ∅.

General algorithms Let A be a weighted automaton over K. The shortest distance
from p to q is defined as d[p.q] =

⊕
π∈P (p,q) w[π]. It can be computed using the

generic single-source shortest-distance algorithm of [20] if K is k-closed for A, or
using a generalization of Floyd-Warshall [15, 20] if K is closed for A.

The general ε-removal algorithm of [19] consists of first computing the ε-
closure of each state p in A,

closure(p) = {(q, w)|w = dε[p, q] =
⊕

π∈P (p,q),i[π]=ε

w[π] 6= 0}, (1)

and then, for each state p, of deleting all the outgoing ε-transitions of p, and
adding out of p all the non-ε transitions leaving each state q ∈ closure(p) with
their weight pre-⊗-multiplied by dε[p, q]. If K is k-closed for the ε-cycles of A,2

then the generic single-source shortest-distance algorithm [20] can be used to
compute the ε-closures.

Weight pushing [18] is a normalization algorithm that redistribute the weights
along the paths of A such that

⊕
e∈E[q] w[e] + ρ(q) = 1 for every state q ∈ Q,

we will denote by push(A) the resulting automaton. The algorithm requires
that K is zero-sum free, weakly left divisible and closed or k-closed for A since
it depends on the computation of d[q, F] for all q ∈ Q. It was proved in [18]
that, if A is deterministic (i.e. if no two transitions leaving any state share the
same label and if it has a unique initial state), then the algorithm consisting
of weight pushing followed by unweighted minimization (considering the pairs
(label,weight) as a single symbol) leads to a minimal automaton equivalent to
A, denoted by min(A).

See figure 2 for an illustration of these algorithms, more detailed descriptions
are given in the appendix.

Regular expressions A weighted regular expression over the semiring K is recur-
sively defined by: ∅, ε and a ∈ Σ are regular expressions, and if α and β are
regular expressions then kα, αk for k ∈ K, α + β, α · β and α∗ are also regular
expressions. We denote by |α| the length of α, and by |α|Σ the width α, i.e. the
number of occurrences of alphabet symbols in α. Let pos(α) = {1, 2, . . . , |α|Σ}
be the set of (alphabet symbol) positions in α. An unweighted regular expression
can be seen as a weighted expression over the boolean semiring (B,∨,∧, 0, 1).
We denote by AT (α) the Thompson automaton of α and by IAT (α) and FAT (α)

its unique initial and final states. For i ∈ pos(α), we defined pi and qi as the
states such that the alphabet symbol at the i-th position in α corresponds to
the transition from pi to qi. These states are the only states having respectively
a non-ε outgoing or incoming transition.

2 For A to be well defined, K needs to be closed for the ε-cycles of A.

0

1ε/ 3 3/1

b/5

a/3
ε/7

c/8

2
ε/ 2
a/6

a/4
ε/9

0/75
2/1

b/5

c/24
a/24

1/25

a/45 c/8

a/8
a/15

(a) (b)

0

1

a/2

b/2

c/4

2

d/3

f/1

3/1

f/3
g/1

f/6

g/2

0

1

a/(1/8)

b/(1/8)

c/(1/4)

2

d/(3/8)

f/(1/8)

3/1

f/(3/4)
g/(1/4)

f/(3/4)

g/(1/4)

0 1

a/(1/8)

b/(1/8)
c/(1/4)
d/(3/8)
f/(1/8)

2/1f/(3/4)
g/(1/4)

(c) (d) (e)

Fig. 2. (a) A weighted automaton A1 over the real semiring (R+, +,×, 0, 1). (b) The
result of the application of ε-removal to A. (c) A weighted automaton A2 over the real
semiring (R+, +,×, 0, 1). (d) The result of weight pushing. (e) The result of minimiza-
tion. The initial weight in the last two automata is 64.

3 Glushkov Automaton

Let α be a weighted regular expression over the alphabet Σ and the semiring
K. We denote by α the weighted regular expression obtained by marking each
symbol of α with its position. The Glushkov or position automaton AG(α) of α is
is defined by the 7-uple (Σ, pos0(α), E, 0, 1, F, ρ) where pos0(α) = pos(α) ∪ {0},

E = {(i, a, w, j) : (j, w) ∈ follow(α, i) and pos(α, j) = a}, (2)

and for i ∈ pos0(α), i ∈ F iff there exist w ∈ K such that (i, w) ∈ last0(α), and
then ρ(i) = w.

The functions null(α) ∈ K, first(α) ⊆ pos(α) × K, last(α) ⊆ pos(α) × K

and follow(α, i) ⊆ pos(α) × K are recursively defined over the subterms of α as
shown in the tables below. We also define follow(α, 0) = first(α) and last0(α) as
last(α)∪{(0, null(α))} if null(α) 6= 0, and last(α) otherwise. For X ⊆ pos(α)×K,
k ∈ K and i ∈ pos(α), k ·X = {(i, k × w)|(i, w) ∈ X} if k 6= 0, 0 ·X = ∅ (X · k
is defined similarly), and 〈X, i〉 = w if there exists w such that (i, w) ∈ X , and
〈X, i〉 = 0 otherwise. The union of two weighted subsets X and Y is defined by
X∪Y = {(i, 〈X, i〉⊕〈Y, i〉)|〈X, i〉⊕〈Y, i〉 6= 0}. For example, {(i, w)}∪{(i, w′)} =
{(i, w ⊕ w′)}.

null first last

∅ 0 ∅ ∅
ε 1 ∅ ∅
ai 0 {(i, 1)} {(i, 1)}
kβ k ⊗ null(β) k · first(β) last(β)
βk null(β)⊗ k first(β) last(β) · k
β + γ null(β)⊕ null(γ) first(β) ∪ first(γ) last(β) ∪ last(γ)
β · γ null(β)⊗ null(γ) first(β) ∪ null(β) · first(γ) last(β) · null(γ) ∪ last(γ)
β∗ null(β)∗ null(β)∗ · first(β) last(β) · null(β)∗

· follow(·, i)

∅ ∅
ε ∅
ai ∅
kβ follow(β, i)
βk follow(β, i)

· follow(·, i)

β + γ


follow(β, i) if i ∈ pos(β)
follow(γ, i) if i ∈ pos(γ)

β · γ


follow(β, i) ∪ 〈last(β), i〉 · first(γ) if i ∈ pos(β)
follow(γ, i) if i ∈ pos(γ)

β∗ follow(β, i) ∪ 〈last(β∗), i〉 · first(γ)

null(α) = null(α) is the value associated by α to ε. For α to be well defined,
null(β)∗ must be defined for every subterm b∗. There is in fact a very simple
relationship between the first, last and follow functions and the ε-closures of the
states in the Thompson automaton that admit a non-ε incoming transition.

Lemma 1. Let α be a weighted regular expression. Let A = AT (α). Then

(i) (i, w) ∈ first(α) iff (pi, w) ∈ closure(IA);
(ii) (i, w) ∈ follow(α, j) iff (pi, w) ∈ closure(qj); and
(iii) (i, w) ∈ last(α) iff (FA, w) ∈ closure(qi).

Proof. The proof is by induction on the length of the regular expression. If α = a,
α = ε or α = ∅, then the properties trivially hold. Due to lack of space, we will
only treat the case α = β ·γ, other cases can be treated similarly. Let A = AT (α),
B = AT (β) and C = AT (γ).

If α = β · γ, then closureA(IA) = closureB(IB) ∪ [[B]][ε] · closureC(IA), thus
(i) recursively holds since [[B]][ε] = null(β). If j ∈ pos(γ), then closureA(qj) =
closureC(qj). Otherwise j ∈ pos(β) and

closureA(qj) = closureB(qj) ∪ 〈closureB(qj), FB〉 · closureC(IC). (3)

Thus, (ii) and (iii) recursively hold. ut

The following theorem follows directly from the lemma just presented.

Theorem 1. Let α be a weighted regular expression. Then:

AG(α) = rmeps(AT (α)). (4)

Let α be a weighted regular expression α over K. We will say that K is ε-k-closed
for α if there exist k such that for every subterm β∗ of α, null(β)∗ = null(β)k.

Lemma 2. Let A be the Thompson automaton of a weighted regular expression
over a k-closed semiring. There is a queue discipline for which the complexity of
the single-source shortest-distance algorithm from any state in A is linear.

Proof. We define the subterm depth of a state q in A as the number of subterms
β + γ and β∗ it belongs to. We then use a larger subterm-depth first queue
discipline. The queue can be maintained in constant time since (1) there is at
most two states having the same subterm depth in the queue at anytime and (2)
if d is the maximal subterm depth of an element in the queue at a given time,
the subterm depth of the state inserted next will be d− 1, d or d + 1. ut

Theorem 2. Let α be a weighted regular expression over a semiring K that is ε-
k-closed for α. The Glushkov automaton of α can be constructed in time O(mn)
by applying ε-removal to its Thompson automaton.

Proof. If K is ε-k-closed for α, then K is k-closed for all the paths considered
during the computation of the ε-closures and, by Lemma 2, each ε-closure can
be computed in O(m). Since n + 1 closures need to be computed, the total
complexity is in O(mn + n2) = O(mn). ut

In the unweighted case, the unpublished manuscript [10] showed that the
Glushkov automaton could be obtained by removing the ε-transitions from the
Thompson automaton. However, the authors used a special-purpose ε-removal
algorithm and not the classical ε-removal algorithm, limiting the scope of their
results.

4 Follow Automaton

The follow automaton of an unweighted regular expression α, denoted by AF (α)
was introduced by [13]. It is the quotient of AG(α) by the equivalence relation
≡F defined over pos0(α) by:

i ≡F j iff

{
{i, j} ⊆ last0(α) or {i, j} ∩ last0(α) = ∅, and
follow(α, i) = follow(α, j).

(5)

Theorem 3. For any regular expression α, the following identities hold:

AF (α) = min(AG(α))

AF (α) = min(AG(α)).

Note that it is mentioned in [13] that minimization could be used to construct
the follow automata but the authors claim that the complexity of minimiza-
tion would be in O(n2 log n) making this approach less efficient. The following
theorem shows that minimization has in fact a better complexity in this case.
Observe that AG(α) is deterministic.

Theorem 4. The time complexity of the Hopcroft’s minimization algorithm when
applied to AG(α) is linear, i.e., in O(n2) where n = |α|Σ .

Proof. Due to space constraints, we will give only a sketch of the proof. The
log |Q| factor in Hopcroft’s algorithm corresponds to the number of times the
incoming transitions at a given state q are used to split a subset (tentative
equivalence class). In AG(α), transitions sharing the same label have all the
same destination state (the automaton is 1-local), thus each incoming transition
of a state q can only be used once to split a subset. ut

This theorem actually holds for all 1-local automata.
This leads to a simple algorithm for constructing the follow automaton of a

regular expression α:

AF (α) = min(rmeps(AT (α))). (6)

whose complexity O(mn) is identical to that of the more complicated and special-
purpose algorithms of [13, 7]. When the semiring K is weakly divisible, zero-sum
free, and closed, we can then define the follow automaton of a weighted regular
expression α as: AF (α) = min(AG(α)).

Theorem 5. If K is k-closed, then AF (α) can be computed in O(mn).

Proof. The shortest-distance computation required by weight pushing can be
done in O(m) in the case of AT (α) and is preserved by ε-removal. The weighted
automaton push(AG(α)) is 1-local when considered as a finite automaton over
pairs (label, weight), thus theorem 4 can be applied. ut

5 Antimirov Automaton

In the following we will consider pairs (w, α) with w ∈ K, and we define k ·
(w, α) = (k ⊗ w, α), (w, α) · k = (w, αk) and (w, α) · β = (w, α · β). These
operations can naturally be extended to multisets3 of pairs (weight, expression).

The partial derivative of α with respect to a ∈ Σ is the multiset of pairs
(weight, expression) recursively defined by:

∂a(ε) = ∂a(1) = ∅ ∂a(β + γ) = ∂a(β) ∪ ∂a(γ)
∂a(b) = ε if a = b, ∅ otherwise ∂a(β · γ) = ∂a(β) · γ ∪ null(β) · ∂a(γ)
∂a(kβ) = k · ∂a(β) ∂a(β∗) = null(β)∗ · ∂a(β) · β∗

∂a(βk) = ∂a(β) · k

The partial derivative of α with respect to the string s ∈ Σ∗, denoted ∂s(α), is re-
cursively defined by ∂sa(α) = ∂a(∂s(α)). Let D(α) = {β : (w, β) ∈ ∂s(α) with s ∈
Σ∗ and w ∈ K}. Note that for D(α) to be well-defined, we need to define when
two expressions are the same. Here we will only allow the following identities:
∅ ·α = α · ∅ = ∅, ∅+ α = α + ∅ = ∅, 0α = α0 = ∅, ε ·α = α · ε = α, 1α = α1 = α,
k(k′α) = (k ⊗ k′)α, (αk)k′ = α(k ⊗ k′) and (α + β) · γ = α · γ + β · γ. 4

3 By multisets, we mean that {(w, α)} ∪ {(w′, α)} = {(w, α), (w′, α)}.
4 These identities are the trivial identities considered in [16] except for the last two

which were added to simplify our presentation. Any larger set of identities can be
handled with our method by rewriting α in the corresponding normal form.

The Antimirov or partial derivatives automaton of α is defined by the 7-
uple (Σ, D(α), E, α, 1, F, null) where E = {(β, a, w, γ)|w =

⊕
(w′,γ)∈∂a(β) w′}

and F = {β ∈ D(α)|null(β) 6= 0}.

Let Σ̂ = Σ ∪ {ε1+, ε2+, ε1∗, ε
2
∗}. We denote by ÂT (α) the weighted automaton

over Σ̂ obtained by recursively marking some of the ε-transitions of AT (α) as
follows: if α = β + γ, we label by ε1+ (resp. ε2+) the ε-transition from IAT (α) to
IAT (β) (resp. IAT (γ)); if α = β∗, we label by ε1∗ (resp. ε2∗) the two ε-transitions

to IAT (β) (resp. FAT (α)). Observe that ÂT (α) can be viewed as an automaton

recognizing the expression α̂ over Σ̂ recursively defined by ∅̂ = ∅, ε̂ = ε, â = a,

k̂β = kβ̂, β̂k = β̂k, β̂ + γ = ε1+β̂ + ε2+γ̂, β̂ · γ = β̂ · γ̂ and β̂∗ = (ε1?β̂)∗ε2?.
For i ∈ pos0(α), we use the same notation qi (with q0 = I) for the correspond-

ing states in AT (α), ÂT (α) and rmeps(ÂT (α)). For a state q in rmeps(ÂT (α)),

we define by L(q) the language recognized from q considering rmeps(ÂT (α)) as
an unweighted automaton over pairs (symbol,weight). Lemma 3 follows from our
marking of the ε-transitions.

Lemma 3. For i ∈ pos0(α), L(qi) uniquely defines a regular expression over Σ,
denoted by δi (or δα

i when there is an ambiguity).

Lemma 4. For all i ∈ pos0(α) and j ∈ pos(α), we have for pj, qi in AT (α)
that:

(pj , w) ∈ closure(qi) iff (w, δj) ∈ ∂a(δi). (7)

Proof. The proof is by induction on the length of the regular expression. If
α = a, α = ε or α = ∅, then the properties trivially hold. Due to the lack of
space, we will only treat the case α = β · γ, other cases can be treated similarly.
Let A = AT (α), B = AT (β) and C = AT (γ).

If qi is in C, then δα
i = δ

γ
i and closureA(qi) = closureC(qi). Therefore, if

(w, pj) ∈ closureA(qi), pj is in C and then δα
j = δ

γ
j . Hence (7) recursively holds.

If qi is in B, then δα
i = δ

β
i · γ and we have:

∂a(δα
i) = ∂a(δβ

i) · γ ∪ null(δβ
i) · ∂a(γ) (8)

closureA(qi) = closureB(qi) ∪ null(δβ
i) · closureC(IC). (9)

By induction, we have that (pj , w) ∈ closureB(qi) iff (w, δ
β
j) ∈ ∂a(δβ

i), and
(pj , w) ∈ closureC(IC) iff (w, δ

γ
j) ∈ ∂a(δγ

0) = ∂a(γ). Hence (7) follows. ut

Observe that δ0 = α, hence lemma 4 implies that the δi are the derived terms
of α, more precisely, i 7→ δi is a surjection from pos0(α) onto D(α). This leads
us to the following result, where minB is unweighted minimization when each
pair (label,weight) is treated as regular symbol and r̂meps denotes the removal
of the marked ε’s.

Theorem 6. We have AA(α) = r̂meps(minB(rmeps(ÂT (α)))).

Proof. Note that rmeps(ÂT (α)) is deterministic. During minimization, two states
qi and qj are equivalent iff L(qi) = L(qj), i.e. δi = δj (by lemma 3). Hence, there

is a bijection between D(α) and the set of states of minB(rmeps(ÂT (α))) having
an incoming transition with label in Σ, and hence between D(α) and the set of

states of A = r̂meps(minB(rmeps(ÂT (α)))). Lemma 4 ensures that the transi-
tions in A is consistent with the definition of AA(α). ut

Theorem 7. If K is ε-k-closed, then AA(α) can be computed in O(m log m +
mn).

Theorem 7 follows from the fact that rmeps(ÂT (α)) has O(m) states and
transitions. In the unweighted case, this complexity is a good as the more com-
plicated and best known algorithm of [8].

In the weighted case, the use of minimization over (label,weight) pairs is
sub-optimal since states that would be equivalent modulo a ⊗-multiplicative fac-
tor are not merged. When possible, using weighted minimization instead would
lead to a smaller automaton in general. Hence, if K is closed, we can defined

the normalized Antimirov automaton of α as r̂meps(minK(rmeps(ÂT (α)))). This
automaton would always be smaller than the Antimirov automaton and the au-
tomaton of unitary derived terms of [16]5. If K is k-closed, it can be constructed
in O(m log m + mn).

Remark When the condition about k-closedness (resp. ε-k-closedness for α) of K

is relaxed to the closedness of K (resp. that α is well-defined), all our construc-
tion algorithms can still be used by replacing the generic single-source shortest-
distance algorithm with a generalization of the Floyd-Warshall algorithm [15,
20], leading to a complexity in O(m3). It is not hard however to maintain the
quadratic complexity by modifying the generic single-source shortest-distance
algorithm to take advantage of the special topology of the Thompson automa-
ton.

In the unweighted case, every regular expression can be staightforwardedly
rewritten in ε-normal form such that m = O(n). In that case, our O(mn) or
O(m log m+mn) complexities become O(m+n2) which is what is often reported
in the literature.

6 Conclusion

We presented a simple and unified view of ε-free automata representing un-
weighted and weighted regular expressions. We showed that standard unweighted
and weighted epsilon-removal and minimization can be used to create the Glushkov,
follow, and Antimirov automata and that the complexities of these algorithms
match those of the best known algorithms. This provides a better understanding

5 This automaton can be viewed in our approach as the result of a simpler form of
reweighting than weight pushing, the reweighting used by weighted minimization.

of the ε-free automata representing regular expressions. It also suggests using
other combinations of epsilon-removal and minimization for creating ε-free au-
tomata. For example, in some contexts, it might be beneficial to use reverse-
epsilon-removal rather than epsilon-removal [19]. Note also that the Glushkov
automaton can be constructed on-the-fly since Thompson’s construction and
epsilon-removal both admit an on-demand implementation.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, Principles, Techniques and

Tools. Addison Wesley: Reading, MA, 1986.
2. V. M. Antimirov. Partial derivatives of regular expressions and finite automaton

constructions. Theoretical Computer Science, 155(2):291–319, 1996.
3. G. Berry and R. Sethi. From regular expressions to deterministic automata. The-

oretical Computer Science, 48(3):117–126, 1986.
4. A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical Com-

puter Science, 120(2):197–213, 1993.
5. P. Caron and M. Flouret. Glushkov construction for series: the non commutative

case. International Journal of Computer Mathematics, 80(4):457–472, 2003.

6. J.-M. Champarnaud, É. Laugerotte, F. Ouardi, and D. Ziadi. From regular
weighted expressions to finite automata. In Proceedings of CIAA 2003, volume
2759 of Lecture Notes in Computer Science, pages 49–60. Springer-Verlag, 2003.

7. J.-M. Champarnaud, F. Nicart, and D. Ziadi. Computing the follow automaton
of an expression. In Proceedings of CIAA 2004, volume 3317 of Lecture Notes in

Computer Science, pages 90–101. Springer-Verlag, 2005.

8. J.-M. Champarnaud and D. Ziadi. Computing the equation automaton of a regular
expression in O(s2) space and time. In Proceedings of CPM 2001, volume 2089 of
Lecture Notes in Computer Science, pages 157–168. Springer-Verlag, 2001.

9. C.-H. Chang and R. Page. From regular expressions to DFA’s using compressed
NFA’s. Theoretical Computer Science, 178(1-2):1–36, 1997.

10. D. Giammarresi, J.-L. Ponty, and D. Wood. Glushkov and Thompson construc-
tions: a synthesis. http://www.cs.ust.hk/tcsc/RR/1998-11.ps.gz, 1998.

11. V. M. Glushkov. The abstract theory of automata. Russian Mathematical Surveys,
16:1–53, 1961.

12. J. Hopcroft. An n log n algorithm for minimizing states in a finite automaton. In
Z. Kohavi and A. Paz, editors, Proceedings of the International Symposium on the

Theory of Machines and Computations, pages 189–196. Academic Press, 1971.
13. L. Ilie and S. Yu. Follow automata. Information and Computation, 186(1):146–162,

2003.
14. S. C. Kleene. Representations of events in nerve sets and finite automata. In C. E.

Shannon, J. McCarthy, and W. R. Ashby, editors, Automata Studies, pages 3–42.
Princeton University Press, 1956.

15. D. J. Lehmann. Algebraic structures for transitives closures. Theoretical Computer

Science, 4:59–76, 1977.
16. S. Lombardy and J. Sakarovitch. Derivatives of rational expressions with multi-

plicity. Theoretical Computer Science, 332(1-3):142–177, 2005.
17. R. McNaughton and H. Yamada. Regular expressions and state graphs for au-

tomata. IEEE Transactions on Electronic Computers, 9(1):39–47, 1960.

18. M. Mohri. Finite-State Transducers in Language and Speech Processing. Compu-

tational Linguistics, 23:2, 1997.
19. M. Mohri. Generic e-removal and input e-normalization algorithms for weighted

transducers. International Journal of Foundations of Computer Science, 13(1):129–
143, 2002.

20. M. Mohri. Semiring Frameworks and Algorithms for Shortest-Distance Problems.
Journal of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

21. G. Navarro and M. Raffinot. Fast regular expression search. In Proceedings of

WAE’99, volume 1668 of Lecture Notes in Computer Science, pages 198–212.
Springer-Verlag, 1999.

22. G. Navarro and M. Raffinot. Flexible pattern matching. Cambridge University
Press, 2002.

23. J.-L. Ponty, D. Ziadi, and J.-M. Champarnaud. A new quadratic algorithm to
convert a regular expression into automata. In Proceedings of WIA’96, volume
1260 of Lecture Notes in Computer Science, pages 109–119. Springer-Verlag, 1997.

24. M.-P. Schützenberger. On the definition of a family of automata. Information and

Control, 4:245–270, 1961.
25. K. Thompson. Regular expression search algorithm. Communications of the ACM,

11(6):365–375, 1968.

A General algorithms

A.1 Shortest distance

A generic single-source shortest-distance algorithm in weighted automata was
presented in [20]. The algorithm is a generalization of the classical shortest-
distance algorithms. It does not require the semiring to be idempotent. For a
weighted automaton A over K, the condition for the algorithm to work is that
K must be k-closed for A, i.e. there exist k ∈ N such that for any cycle c in A,
w[c]∗ = w[c]k.

shortest-distance(A, s)

1 for each p ∈ Q do

2 d[p]← r[p]← 0

3 d[s]← r[s]← 1
4 S ← {s}
5 while S 6= ∅ do

6 q ← head(S)
7 dequeue(S)
8 R← r[q]

9 r[q]← 0
10 for each e ∈ E[q] do

11 if d[n[e]] 6= d[n[e]] ⊕ (R⊗ w[e]) then

12 d[n[e]]← d[n[e]] ⊕ (R⊗ w[e])
13 r[n[e]]← r[n[e]] ⊕ (R⊗ w[e])
14 if n[e] 6∈ S

15 enqueue(S, n[e])

16 d[s]← 1

Fig. 3. Pseudocode of the generic shortest-distance algorithm.

The algorithm is also generic in the sense that it works with any queue
discipline. The pseudocode of the algorithm is given figure 3. The complexity of
the algorithm depends on the queue discipline chosen for S, more precisely it is
in:

O(|Q|+ (T⊕ + T⊗ + C(A))|E|max
q∈Q

N(q) + (C(I) + C(X))
∑

q∈Q

N(q)) (10)

where N(q) denotes the number of times state q is extracted from the queue S,
C(X) the cost of extracting a state from S, C(I) the cost of inserting a state in
S, and C(A) the cost of an assignment.

In the case of an acyclic automaton, using the topological order queue disci-
pline, the complexity of the algorithm is linear, i.e., O(|Q|+ |E|). In the case of
the tropical semiring, using Fibonacci heaps, the complexity of the algorithm is
O(|E| + |Q| log |Q|).

ε-removal(A)

1 for each p ∈ Q do

2 E[p]← {e ∈ E[p] : i[e] 6= ε}
3 for each (q, w) ∈ C[p] do B C[p] = closure(p)
4 E[p]← E[p] ∪ {(p, a, w ⊗ w′, r) : (q, a, w′, r) ∈ E[q] and a 6= ε}
5 if q ∈ F then

6 F ← F ∪ {p}
7 ρ[p]← ρ[p]⊕ (w ⊗ ρ[q]

Fig. 4. Pseudocode of the ε-removal algorithm.

A.2 Epsilon removal

Let A be a weighted automaton over K with ε-transitions. Let Aε be the automa-
ton obtained by deleting all the transitions not labeled by ε from A. A general
ε-removal algorithm based on the generic shortest distance algorithm presented
above was given in [19]. This algorithms works if the semiring K is k-closed for
Aε.

The algorithm is divided in two steps. The first step consists of computing
the ε-closure of each state p in A. Let dε[p, q] denote the ε-distance from p to q,
for p, q ∈ Q:

dε[p, q] =
⊕

π∈P (p,q),i[π]=ε

w[π]. (11)

The ε-closure of p is then defined as

closure(p) = {(q, dε[p, q])|dε[p, q] 6= 0}. (12)

The ε-closure of p can be computed by using the generic shortest-distance algo-
rithm on Aε with source p.

The second step consist of, for each state p having at least an incoming
non-ε transition, deleting all the outgoing ε-transitions of p, and adding out of
p all the non-ε transitions leaving each state q ∈ closure(p) with their weight
pre-⊗-multiplied by dε[p, q]. The pseudocode of this second step is given figure
4.

A.3 Weight pushing

Weight pushing is an algorithm for normalizing the distribution of the weights
along the paths of a weighted automata [18].

Let A be a weighted automaton over K and assume that K is weakly left
divisible and zero sum free. For every state q ∈ Q, assume that the shortest
distance from q to F :

dF [q] =
⊕

π∈P (q,F)

(w[π] ⊗ ρ(n[π])) (13)

is well defined in K. The weight pushing algorithm consists of computing each
dF [q] and of reweighting A in the following way:

∀e ∈ E such that dF [p[e]] 6= 0, w[e]← dF [p[e]]−1 ⊗ (w[e]⊗ dF [n[e]])
∀q ∈ I, λ[q] ← λ[q] ⊗ dF [q]
∀q ∈ F such that dF [q] 6= 0, ρ[q] ← dF [q]−1 ⊗ ρ[q]

(14)

The complexity of the reweighting step is linear in the size of A under the
assumption that the cost of the ⊗ operation is constant. The first step can be
achieve by applying the shortest-distance algorithm on the reverse of A, hence
the complexity of this step is as discussed in section A.1.

Weight pushing has two interesting properties: (1) it does no change the
weight of successful paths, (2) the resulting weighted automaton is stochastic,
i.e. for any state q, the ⊕-sum of the weight of the outgoing transitions in q is
equal to 1.

A.4 Weighted minimization

A weighted automaton A is deterministic if no two transitions leaving any state
share the same label and if it has a unique initial state. A deterministic weighted
automaton is minimal if there exists no other deterministic automaton having a
smaller number of states and realizing the same function.

A general weighted minimization was presented in [18]. Let A be a weighted
automaton over K, the algorithm consists of the execution of the following steps:

1. weight pushing,
2. (unweighted) automata minimization, considering each pair (label, weight)

as a single label.

Assuming that the conditions of application of weight pushing hold, the resulting
weighted automaton, denoted by min(A), is minimal and equivalent to A. The
complexity of the second step is in O(|E| log |Q|) using the Hopcroft algorithm
[12].

