
An Abstract Decision Procedure for Satis�ability in the Theory of

Recursive Data Types

Clark Barrett1 Igor Shikanian1 Cesare Tinelli2

1New York University, barrett|igor@cs.nyu.edu
2The University of Iowa, tinelli@cs.uiowa.edu

November 22, 2005

New York University Technical Report: TR2005-878

Abstract

The theory of recursive data types is a valuable modeling tool for software veri�cation. In the

past, decision procedures have been proposed for both the full theory and its universal fragment.

However, previous work has been limited in various ways, including an inability to deal with

multiple constructors, multi-sorted logic, and mutually recursive data types. More signi�cantly,

previous algorithms for the universal case have been based on ineÆcient nondeterministic guesses

and have been described in fairly complex procedural terms.

We present an algorithm which addresses these issues for the universal theory. The algorithm

is presented declaratively as a set of abstract rules which are terminating, sound, and complete.

We also describe strategies for applying the rules and explain why our recommended strategy

is more eÆcient than those used by previous algorithms. Finally, we discuss how the algorithm

can be used within a broader framework of cooperating decision procedures.

1 Introduction

Recursive data types are commonly used in programming. In particular, functional languages
support such structures explicitly. The same notion is also a convenient abstraction for common
data types such as records and data structures such as linked lists used in more conventional
programming languages. The ability to reason automatically and eÆciently about recursive data
types thus provides an important tool for the analysis and veri�cation of programs.

Perhaps the best-known example of a simple recursive data type is the list type used in LISP.
Lists are either the null list or are constructed from other lists using the constructor cons. This
constructor takes two arguments and returns the result of prepending its �rst argument to the list
in its second argument. In order to retrieve the elements of a list, a pair of selectors is provided:
car returns the �rst element of a list and cdr returns the rest of the list.

More generally, we are interested in any set of (possibly mutually) recursive data types, each of
which contains one or more constructors. Each constructor has selectors that can be used to retrieve
the original arguments as well as a tester which indicates whether a given term was constructed
using that constructer. As an example, of the more general case, consider a set of three recursive
data types: nat, list, and tree. nat has two constructors: zero, which takes no arguments (we call
such a constructor a nullary constructor or constant); and succ, which takes a single argument of
type nat, and with a corresponding selector pred. The list type is as before except that we now
specify that the elements of the list are of type tree. The tree type in turn has two constructors:

1

leaf, a constant; and node, which takes two arguments, the �rst of type nat, and the second of type
list, with corresponding selectors data and children respectively. We can represent this set of types
using the following convenient notation based on that used in functional programming languages:

nat := succ(pred : nat) j zero;
list := cons(car : tree; cdr : list) j null;
tree := node(data : nat; children : list) j leaf;

The testers for this set of data types are issucc, iszero, iscons, isnull, isnode, and isleaf.
Propositions about a set of recursive data types can be captured in a sorted �rst-order language

which closely resembles the structure of the data types themselves in that it has function symbols
for each constructor and selector, and a predicate symbol for each tester. For instance, propositions
that we would expect to be true for the example above include the following:

8x : nat: succ(x) 6= zero;
8x : list: x = null _ 9 y : nat; z : list: x = cons(y; z);
8x : tree: isnode(x)! (data(x) = zero _ issucc(data(x))):

In this paper, we discuss a procedure for deciding such formulas. We focus on satis�ability of a
set of literals, which (through well-known reductions) can be used to decide the validity of universal
formulas. We do not consider quanti�er elimination, referring the reader instead to related work
such as [4, 16, 17].

There are three main contributions of this work over earlier work on the topic. First, our setting
is more general: we allow mutually recursive types, each with multiple constructors, selectors,
and testers, and we use the more general setting of multi-sorted logic. The rationale for a multi-
sorted approach is that it more closely corresponds to potential applications such as analysis of
programming languages. In particular, the well-sortedness requirements rule out many syntactical
constructs that would not make sense in practice.

The second contribution is in presentation. We present the theory itself in terms of an initial
model rather than axiomatically as is often done. Also, the presentation of the decision procedure
is given as abstract rewrite rules, making it more
exible and easier to analyze than if it were given
imperatively.

Finally, as described in Section 5, the
exibility provided by the abstract algorithm leads to an
algorithm which is more eÆcient than that given in previous work.

Related Work. Term algebras over constructors provide the natural intended model for recursive
data types. The historically foundational decidability and quanti�er elimination results for term
algebras can be found in [6]. In other early work, [5] addresses the problem of satis�ability of one
equation in a term algebra, modulo other equations. The applications and extension of the quanti�er
elimination procedure to term algebras with queues is handled in [12]. Another contribution to
solving satis�ability of equations over term algebras is given in [15], which extends the language
with a powerful subterm relation predicate. In [4] two dual axiomatizations of term algebras are
presented, one with constructors only, the other with selectors and testers only.

More recently, several papers by Zhang et al. [16, 17] explore decision procedures for a sin-
gle recursive data type. These papers focus on ambitious schemes for quanti�er elimination and
combinations with other theories. Their work is largely orthogonal to ours since we focus on the
quanti�er-free decision problem which is only mentioned brie
y in their work.

Other work with an emphasis on the quanti�er-free case includes that done by Nelson and Oppen
in 1980[10, 11]. In [11], Oppen gives a decision procedure for a single recursive data type with a

2

single constructor. In [10], the theory of lists is shown to be NP-complete when it includes the
constructor null. Thus, an instance of the class of theories covered by the current paper already
yields NP-completeness. As will be evident, the problem solved in this paper is also NP-complete.

Shostak gives an algorithm for a simple theory of lists without null in [13]. He also claims there
is a generalization to arbitrary recursive data types. However, the claim is unsubstantiated and it
is unclear how to generalize to the case of multiple constructors.

Paper Organization. Section 2 describes our formulation of the �rst order theory of recursive
data types. In Section 3, we present the algorithm as a set of abstract rules. The correctness of the
algorithm is shown in Section 4. In Section 5, we discuss the eÆciency of the algorithm and show,
in particular, that it can be exponentially more eÆcient than previous naive algorithms. Finally, in
Section 6, we discuss how the algorithm can be extended, including how to handle �nite sorts.

2 The Theory of Recursive Data Types

Previous work on recursive data types (RDTs) [16, 17] uses �rst-order axiomatizations in an attempt
to capture the main properties of a recursive data type and reason about it. Unfortunately, the
resulting axiomatization is somewhat complicated. This axiomatic approach makes the study of
decision procedures for RDTs and their correctness more diÆcult than it needs to be.

We �nd it simpler and cleaner to use a semantic approach instead, as is done in algebraic
speci�cation. A set of RDTs can be given a simple equational speci�cation over a suitable signature.
The intended model for our theory can be formally, and uniquely, de�ned as the initial model of
this speci�cation. Reasoning about a set of RDTs then amounts to reasoning about formulas that
are true in this particular initial model.

2.1 Specifying RDTs

We formalize RDTs in the context of many-sorted equational logic (see [8] among others). We will
assume that the reader is familiar with the basic notions in this logic, and also with basic notions
of term rewriting.

We start with the theory signature. We assume a many-sorted signature � whose set of sorts
consists of a distinguished sort bool for the Booleans, and p � 1 sorts �1; : : : ; �p for the RDTs.
We also allow and r � 0 additional (non-RDT) sorts �1; : : : ; �r. We will denote by s, possibly
with subscripts and superscripts, any sort in the signature other than bool, and by � any sort in
f�1; : : : ; �rg.

As mentioned earlier, the function symbols in our theory signature correspond to the construc-
tors, selectors, and testers of the set of RDTs under consideration. We assume for each �i (1 � i � p)
a set of mi � 1 constructors of �i. We denote these symbols as Ci

j, where j ranges from 1 to mi. We

denote the arity of Ci
j as n

i
j (0-arity constructors are also called nullary constructors or constants)

and its sort as sij;1 � � � � � si
j;ni

j

! �i. For each constructor Ci
j, we have a set of selectors, which we

denote as Si
j;k, where k ranges from 1 to nij, of sort �i ! sij;k. Finally, for each constructor, there is

a tester.1 isCi
j : �i ! bool.

In addition to these symbols, we also assume that the signature contains two constants, true and
false of sort bool, and an in�nite number of constants of each sort �. The constants are meant to
be names for the elements of that sort, so for instance if �1 were a sort for the natural numbers, we

1To simplify some of the proofs, and without loss of generality, we use functions to bool instead of predicates for
the testers.

3

could use all the numerals as the constants of sort �1. Having all these constants in the signature
is really not necessary for our approach, but it simpli�es the exposition. The real constraint is that
the sorts �1; : : : ; �r be in�nite. We will see in Section 6, however, that our approach can be easily
extended to the case in which some of these sorts are �nite.

To summarize, the set of function symbols of the signature � consists of:

Ci
j : s

i
j;1 � � � � � si

j;ni
j

! �i; for i = 1; : : : ; p; j = 1; : : : ;mi;

Si
j;k : �i ! sij;k; for i = 1; : : : ; p; j = 1; : : : ;mi; k = 1; : : : ; nij ;

isCi
j : �i ! bool; for i = 1; : : : ; p; j = 1; : : : ;mi;

true : bool; false : bool;
An in�nite number of constants for each �l; for l = 1; : : : ; r.

As usual in many-sorted equational logic, we also have p + r + 1 equality symbols (one for each
sort), all written as �.

Our procedure requires one additional constraint on the set of RDTs: It must be well-founded.
Informally, this means that each sort must contain terms that are not cyclic or in�nite. More
formally, we have the following de�nitions by simultaneous induction over constructors and sorts:

� a constructor Ci
j is well-founded if all of its argument sorts are well-founded;

� the sorts �1; : : : ; �r are all well-founded;

� a sort �i is well-founded if at least one of its constructors is well-founded.

We require that every sort be well-founded according to the above de�nition.
In some cases, it will be necessary to distinguish between �nite and in�nite � -sorts:

� a constructor is �nite if it is nullary or if all of its argument sorts are �nite.

� a sort �i is �nite if all of its constructors are �nite, and is in�nite otherwise.

� the sorts �1; : : : ; �r are all in�nite;

As we will see, consistent with the above terminology, our semantics will interpret �nite, resp. in�-
nite, � -sorts indeed as �nite, resp. in�nite, sets.

We denote by T (�) the set of well-sorted ground terms of signature � or, equivalently, the
(many-sorted) term algebra over that signature.

The RDTs with functions and predicates denoted by the symbols of � is speci�ed by the following
set E of (universally quanti�ed) equations. For reasons explained below, we assume that associated
with every selector Si

j;k : �i ! sij;k is a distinguished ground term of sort sij;k containing no selectors

(or testers), which we denote by tij;k.

Equational Speci�cation of the RDT: for i = 1; : : : ; p:

8x1; : : : ; xni
j
: isCi

j(C
i
j(x1; : : : ; xni

j
)) � true (for j = 1; : : : ;mi)

8x1; : : : ; xni
j0
: isCi

j(C
i
j0(x1; : : : ; xni

j0
)) � false (for j; j0 = 1; : : : ;mi, j 6= j0)

8x1; : : : ; xni
j
: Si

j;k(C
i
j(x1; : : : ; xni

j
)) � xk (for k = 1; : : : ; nij , j = 1; : : : ;mi)

8x1; : : : ; xni
j0
: Si

j;k(C
i
j0(x1; : : : ; xni

j0
)) � tij;k (for j; j0 = 1; : : : ;mi, j 6= j0)

The last axiom speci�es what happens when a selector is applied to the \wrong" constructor.
Note that there is no obviously correct thing to do in this case since it would correspond to an error

4

condition in a real application. Our axiom speci�es that in this case, the result is the designated
ground term for that selector. This is di�erent from other treatments (such as [4, 16, 17]) where
the application of a wrong selector is treated as the identity function. There are several reasons
for this di�erence. First, in a multi-sorted logic, the identity function approach does not work in
general because the result may be ill-sorted. Second, by choosing a small designated term (such
as a constant when possible), fewer case splits are required by the decision procedure, making
the procedure more eÆcient. Finally, as described in Section 6.2, the di�erence is immaterial for
formulas in which the appropriateness of the selector can be guaranteed.

By standard results in universal algebra we know that E admits an initial model R. We refer
the reader to [8] for a thorough treatment of initial models. For our purposes, it will be enough to
mention the following properties that R enjoys by virtue of being an initial model.

Lemma 2.1. Where �E is the equivalence relation on �-terms induced by E, let T (�)=�E be the

quotient of the term algebra T (�) by �E .

1. For all ground �-terms t1; t2 of the same sort, t1 �E t2 i� R satis�es t1 � t2.

2. R is isomorphic to T (�)=�E .

Proof. These are applications to R of standard results about initial models. See, for instance
Theorem 5.2.11 and Theorem 5.2.17 of [8].

Lemma 2.2. Let
 be the signature obtained from � by removing the selectors and the testers. The

reduct of R to
 is isomorphic to T (
).

Proof. By Lemma 2.1(2) we can take R to coincide with T (�)=�E , whose elements are the equiv-
alence classes of �E on the ground �-terms. To prove the claim then it is enough to show that (i)
every ground �-term is equivalent in E to a ground
-term, and (ii) no two distinct ground
-terms
belong to the same equivalence class.

Consider the rewrite system R obtained by orienting the equations in E left to right. It is easy
to show that R is terminating. It is also immediate that R contains no critical pairs and so it is
con
uent. It follows by basic results in term rewriting that R is canonical: every �-term has a
unique normal form (wrt. R), and two �-terms are equivalent in E i� they have the same normal
form.

Now, by a simple inductive argument one can show that the normal form of each ground �-term
is a ground
-term, which proves (i) above. It is trivial that every ground
-term is irreducible by
R. This entails that distinct ground
-terms are inequivalent in E , proving (ii).

Informally, the previous lemma means that R does in fact capture the set of RDTs in question,
as we can take the carrier of R to be the term algebra T (
). This also shows that in R each data
type �i is generated using just its constructors, and that distinct ground constructor terms of sort
�i are distinct elements of the data type. Using the two lemmas one can also easily show that in
R the sort bool denotes a two-element set, the sorts �1; : : : ; �r denote in�nite sets, and each sort
�i denotes an in�nite data type if and only if �i is in�nite in the sense speci�ed earlier. From a
more formal point of view, these lemmas will be useful in proving the correctness of the decision
procedure.

3 The Decision Procedure

Before giving a formal description of the algorithm, which is quite technical, we start with an
informal overview based on examples. Our procedure builds on the algorithm by Oppen [11] for

5

a single type with a single constructor. Consider, for example, the list datatype without null

and the following set of literals: fcons(x; y) � z; car(w) � x; cdr(w) � y;w 6� zg. The idea of
Oppen's algorithm is to use a graph which relates terms according to their meaning in the intended
model. Thus, cons(x; y) is a parent of x and y and car(w) and cdr(w) are children of w. The
equations induce an equivalence relation on the nodes of the graph. The Oppen algorithm proceeds
by performing upwards (congruence) and downwards (uni�cation) closure on the graph and then
checking for cycles2 or for a violation of any disequalities. For our example, upwards closure results
in the conclusion w � z, which contradicts the disequality w 6� z.

Suppose we replace w 6� z with v � w and y 6� cdr(v) in the previous set. The new graph
has a node for v, with car(v) as its left child. A right child node with cdr(v) is then added for
completeness. Now, downwards closure forces car(v) � car(w) � x and cdr(v) � cdr(w) � y,
contradicting the disequality y 6� cdr(v).

An alternative algorithm for the case of a single constructor is to introduce new terms and
variables to replace variables that are inside of selectors. For example, for the �rst set of literals
above, we would introduce w � cons(s; t) where s; t are new variables. Now, by substituting and
collapsing applications of selectors to constructors, we get fcons(x; y) � z; w � cons(s; t); x � s; t �
y;w 6� zg. In general, this approach only requires downwards closure.

Unfortunately, with the addition of more than one constructor, things are not quite as simple.
In particular, the simple approach of replacing variables with constructor terms does not work
because one cannot establish a priori whether the value denoted by a given variable is built with
one constructor or another. A simple extention of Oppen's algorithm for the case of multiple
constructors is proposed [16]. The idea is to �rst guess a type completion, that is, a labeling of every
variable by a constructor, which is meant to constrain a variable to take only values built with the
associated constructor. Once all variables are labeled by a single constructor, the Oppen algorithm
can be used to determine if the constraints can be satis�ed under that labeling. The problem is
that the type completion guess is very expensive.

Our strategy combines ideas from all of these algorithms. There is a set of upward and downward
closure rules to mimic Oppen's algorithm. The idea of a type completion is replaced by a set of
labeling rules that can be used to re�ne the set of possible constructors for each term (in particular,
this allows us to delay guessing as long as possible). And the notion of introducing constructors
and eliminating selectors is captured by a set of selector rules. As we will see in Sections 4 and 5,
the
exibility of our rules allows our algorithm to be both complete and eÆcient.

We describe our procedure formally in the following, as a set of derivation rules. We build on
and adopt the style of similar rules for abstract congruence closure [1] and syntactic uni�cation [7].

3.1 De�nitions and Notation

In the following, we will consider well-sorted formulas over the signature � above and an in�nite
set X of variables. To distinguish these variables, which can occur in formulas given to the decision
procedure described below, from other internal variables used by the decision procedure, we will
sometimes call the elements of X input variables.

Given a set � of literals (i.e., equations or negated equations) over � and variables from X,
we wish to determine the satis�ability of � in the algebra R.3 We will assume for simplicity, and
with no loss of generality, that the only occurrences of terms of sort bool are in atoms of the form

2A simple example of a cycle is: cons(x; y) � z; car(x) � z.
3In both theory and practice, the satis�ability of arbitrary quanti�er-free formulas can be easily determined given

a decision procedure for a set of literals. Using the fact that a universal formula 8x'(x) is true in a model exactly
when :'(x) is unsatis�able in the model, this also provides a decision procedure for universal formulas.

6

isCj
k(t) � true, which we will write just as isCj

k(t). We will abbreviate negated equations :(t1 � t2)
between non-Boolean terms as t1 6� t2.

Following [1], we will make use of the sets V�i (V�i) of abstraction variables of sort �i (�i); ab-
straction variables are disjoint from input variables (variables in �) and function as equivalence class
representatives for the terms in �. We denote the set of all variables (both input and abstraction)
in E as Var (E). We will use the expression labels(�i) for the set fC

i
1; : : : ; C

i
mi
g and de�ne labels(�l)

to be the empty set of labels for each �l. We will write sort(t) to denote the sort of the term t.
The rules make use of three additional constructs that are not in the language of �: !, 7!, and

Inst.
The symbol ! is used to represent oriented equations. Its left-hand side is a �-term t and its

right-hand side is an abstraction variable v. Given a variable assignment � into the elements of R,
we say that � satis�es t! v in R i� � satis�es the equation t � v in R.

The symbol 7! denotes labelings of abstraction variables with sets of constructor symbols. It is
used to keep track of possible constructors for instantiating a �i variable.

4 A variable assignment �
satis�es a labeling pair v 7! fCi

j1
; : : : ; Ci

jn
g in R if � satis�es the formula isCi

j1
(v) _ � � � _ isCi

jn
(v)

in R.
Finally, the Inst construct is used to track applications of the Instantiate rules given below. It

is needed to ensure termination by preventing multiple applications of the same Instantiate rule.
It is a unary predicate that is applied only to abstraction variables. It is always satis�ed by every
variable assignment.

Let �C denote the set of all constant symbols in �, including 0-arity constructors. We will
denote by � the set of all possible literals over � and input variables X. Note that this does not
include oriented equations (t ! v), labeling pairs (v 7! L), or applications of Inst. In contrast,
we will denote by E multisets of literals of �, oriented equations, labeling pairs, and applications
of Inst. To simplify the presentation, we will consistently use the following meta-variables: c; d
denote constants (elements of �C) or input variables from X; u; v; w denote abstraction variables; t
denotes a
at term|i.e., a term all of whose proper sub-terms are abstraction variables|or a label
set, depending on the context. u;v denote possibly empty sequences of abstraction variables; and
u! v is shorthand for the set of oriented equations resulting from pairing corresponding elements
from u and v and orienting them so that the left hand variable is greater than the right hand
variable according to �. Finally, v ./ t denotes any of v � t, t � v, v 6� t, t 6� v, or v 7! t. To
streamline the notation, we will sometimes denote function application simply by juxtaposition.

In the derivation rules we assume an arbitrary, but �xed, well-founded ordering � on the ab-
straction variables that is total on variables of the same sort. Each rule consists of a premise and one
or more conclusions. Each premise is made up of a multiset of literals, oriented equations, labeling
pairs, and applications of Inst. Conclusions are either similar multisets or ?, where ? represents a
trivially unsatis�able formula. As we show later, the soundness of our rule-based procedure depends
on the fact that the premise E of a rule is satis�ed in R by a valuation � of Var (E) i� one of the
conclusions E0 of the rule is satis�ed in R by an extension of � to Var(E0).

3.2 The derivation rules

Our decision procedure consists of the following derivation rules on multisets E.

4To simplify the writing of the rules, some rules may introduce labeling pairs for variables with a non-� sort, even
though these play no role.

7

Abstraction rules

Abstract 1
p[c]; E

c! v; v 7! labels(s); p[v]; E
if

p 2 �; c : s;
v fresh from Vs

Abstract 2
p[Ci

ju]; E

Ci
ju! v; p[v]; v 7! fCi

jg; E
if p 2 �; v fresh from V�i

Abstract 3

p[Si
j;�u]; E

Si
j;1u! v1; : : : ; S

i
j;ni

j

u! vni
j
; p[v�];

v1 7! labels(s1); : : : ; vni
j
7! labels(sni

j
); E

if
p 2 �; Si

j;k : �i ! sk;

each v� fresh from Vs�

The abstraction or
attening rules essentially perform a pre-processing step, assigning a new
abstraction variable to every sub-term in the original set of literals. Abstraction variables are then
used as place-holders or equivalence class representatives for those sub-terms. While we would not
expect a practical implementation to actually introduce these variables, it greatly simpli�es the
presentation of the remaining rules.

The Abstract 1 rule replaces input variables or constants. Abstract 2 replaces constuctor
terms, and Abstract 3 replaces selector terms. Notice that in each case, a labeling pair for
the introduced variables is also created. This corresponds to labeling each sub-term with the set of
possible constructors with which it could have been constructed. Also notice that in theAbstract 3
rule, whenever a selector Si

j;k is applied, we e�ectively introduce all possible applications of selectors
associated with the same constructor. This simpli�es the later selector rules and corresponds to the
step in the Oppen algorithm which ensures that in the term graph, any node with children has a
complete set of children.

Literal level rules

Orient
u � v; E

u! v; E
if u � v

Inconsistent
v 6� v; E

?

Remove 1
isCi

j v; E

v 7! fCi
jg; E

Remove 2
:isCi

j v; E

v 7! labels(sort(v)) n fCi
jg; E

The simple literal level rules are almost self-explanatory. The Orient rule is used to replace
an equation between abstraction variables (which every equation eventually becomes after applying
the abstraction rules) with an oriented equation. Oriented equations are used in the remaining
rules below. The Inconsistent rule detects violations of re
exivity. The Remove rules remove
applications of testers and replace them with labeling pairs that impose the same constraints.

Upward (i.e., congruence) closure rules

Simplify 1
u ./ t; u! v; E

v ./ t; u! v; E

Simplify 2
fuuv! w; u! v; E

fuvv! w; u! v; E

Superpose
t! u; t! v; E

u! v; t! v; E
if u � v

Compose
t! v; v ! w; E

t! w; v ! w; E

These rules are modeled after similar rules for abstract congruence closure in [1]. The Simplify
and Compose rules essentially provide a way to replace any abstraction variable with a smaller

8

(according to �) one if the two are known to be equal. The Superpose rule merges two equivalence
classes if they contain the same term. Congruence closure is achieved by these rules because if two
terms are congruent, then after repeated applications of the �rst set of rules, they will become
syntactically identical. Then the Superpose rule will merge their two equivalence classes.

Downward (i.e., uni�cation) closure rules

Decompose
Ci
ju! v; Ci

jv! v; E

Ci
ju! v; u! v; E

Clash 1
Ci
ju! v; Ci

j0v! v; E

?
if j 6= j0

Clash 2
c! v; d! v; E

?
if c; d 2 �C ; c : �; d : �; c 6= d

Cycle
Cin
jn
unuvn ! un�1; : : : ; C

i2
j2
u2u2v2 ! u1; C

i1
j1
u1u1v1 ! u; E

?
if n � 1

The main downward closure rule is the Decompose rule: whenever two terms with the same
constructor are in the same equivalence class, their arguments must be equal. The Clash rules
simply detect instances of terms that are in the same equivalence class that must be disequal in the
intended model. The Cycle rule detects the (inconsistent) cases in which a term would have to be
cyclical.

Selector rules

Instantiate 1
Si
j;1u! u1; : : : ; S

i
j;ni

j

u! uni
j
; u 7! fCi

jg; E

Ci
ju1 � � � uni

j
! u; u 7! fCi

jg; Inst(u); E
if Inst(u) 62 E

Instantiate 2

v 7! fCi
jg; E

Ci
ju1 � � � uni

j
! v; Inst(v); E

u1 7! labels(sij;1); : : : ; uni
j
7! labels(si

j;ni
j

)
if

Inst(v) 62 E;
v 7! L 62 E;
Ci
j �nite constructor;

Sa
b;c(v)! v0 62 E;

uk fresh from Vsi
j;k

Collapse 1
Ci
ju1 � � � uni

j
! u; Si

j;ku! v; E

Ci
ju1 � � � uni

j
! u; uk � v; E

Collapse 2
Si
j;ku! v; u 7! L; E

tij;k � v; u 7! L; E
if Ci

j =2 L

Rule Instantiate 1 is used to eliminate selectors by replacing the argument of the selectors
with a new term constructed using the appropriate constructor. Notice that only terms that have
selectors applied to them can be instantiated and then only once they are unambiguously labeled.
All of the selectors applied to the term are eliminated at the same time. This is why the entire set of
selectors is introduced in the Abstract 3 rule. Rule Instantiate 2 is used for �nite constructors.
For completeness, terms labeled with �nite constructors must always be instantiated, even when no
selectors are applied to them.

The Collapse rules eliminate selectors when the result of their application can be determined.
InCollapse 1, a selector is applied to a term known to be equal to a constructor of the \right" type.

9

In this case, the selector expression is replaced by the appropriate argument of the constructor. In
Collapse 2, a selector is applied to a term which must have been constructed with the \wrong"
constructor. In this case, the designated term tij;k for the selector replaces the selector expression.

Labeling rules

Re�ne
v 7! L1; v 7! L2; E

v 7! L1 \ L2; E
Empty

v 7! ;; E
?

if v : �i

Split 1
Si
j;k(u)! v; u 7! fCi

jg [L; E

Si
j;k(u)! v; u 7! fCi

jg; E Si
j;k(u)! v; u 7! L; E

if L 6= ;

Split 2
u 7! fCi

jg [L; E

u 7! fCi
jg; E u 7! L; E

if
L 6= ;;
fCi

jg [L all �nite constructors

The Re�ne rule simply combines labeling constraints that may arise from di�erent sources for
the same equivalence class. Empty enforces the constraint that every � -term must be constructed
by some constructor. The Split rules are used to re�ne the set of possible constructors for a term
and are the only rules that cause branching. If a term labeled with only �nite constructors cannot
be eliminated in some other way, Split 2 must be applied until it is labeled unambiguously. For
other terms, the Split 1 rule only needs to be applied to distinguish the case of a selector being
applied to the \right" constructor vs a selector being applied to the \wrong" constructor. On either
branch, one of the Collapse rules will apply immediately. We discuss this further in Section 5,
below.

4 Correctness

The satis�ability in R of a set � of �-literals with variables in X can be checked by applying
exhaustively to � the derivation rules in the previous section. This set of rules is very
exible in
that the rules can be applied in any order and still yield a decision procedure for the satis�ability in
R. No speci�c rule application strategy is needed to achieve termination, soundness or completeness.
We formalize this in the following in terms of a suitable notion of derivation for these rules.

A derivation tree (for a set � of �-literals) is a �nite tree with root � and such that for each
internal node E of the tree, its children are the conclusions of some rule whose premise is E. A
refutation tree (for �) is a derivation tree all of whose leaves are ?. We say that a node in a
derivation tree is (ir)reducible if (n)one of the derivation rules applies to it. A derivation is a
sequence of derivation trees starting with the single-node tree containing �, where each tree is
derived from the previous one by the application of a rule to one of its leaves. A refutation is a
�nite derivation ending with a refutation tree.

Before proving correctness, we start with a lemma that gives a few useful invariants. Since the
�rst property below deals with well-sortedness, we �rst de�ne what it means for the extra-logical
constructs to be well-sorted: The oriented equation t ! v is well-sorted if t and v have the same
sort. The expression v 7! L, labeling the variable v with the set L of constructor symbols, is
considered to be well-sorted if L � labels(sort(v)). Applications of Inst are always well-sorted.

Lemma 4.1. Let E0; E1; : : : ; be a branch on a derivation tree. Then the following holds for all

i � 0.

1. If E0 is well-sorted, then for all i, Ei is well-sorted.

10

2. For all u! v 2 Ei, we have u � v.

Proof. A simple examination of each of the rules con�rms that these invariants are maintained.

Before proving termination, we introduce the following de�nitions. For an in�nite constructor

C, de�ne jCj = 0. For a �nite constructor Ci
j, de�ne jC

i
j j to be 1 if Ci

j is nullary and
Pni

j

k=1 js
i
j;kj

otherwise, where for a �nite sort �i, we de�ne j�ij =
Pmi

j=1 jC
i
jj+ 1.

Proposition 4.2 (Termination). Every derivation is �nite.

Proof. It is enough to show that each branch E0; E1; : : : of a derivation tree can be mapped to a
(strictly) descending sequence in a well-founded ordering.

Let � be the set of constructor, selector, and constant symbols from � together with the input
variables from X. Then let A be any well-founded ordering of the elements of �.

For i � 0, Let Si be a pair consisting of �rst, the number of selector symbols in the �-literals
of Ei and second, the total number of selector symbols appearing in Ei. Let Ni be the multiset
consisting of the sizes of the �-literals of Ei, where by size we mean the number of occurrences of
both symbols from � (including �) and input variables, but not of abstraction variables.

Now, for each abstraction variable v, let jvji =
P

C2L jCj+ 1, where L is the intersection of all
labels for v in Ei. De�ne Vi to be the sum of all jvji for all abstraction variables v in Var (Ei) that
do not appear as an argument to Inst in Ei.

Let Mi be the multiset of occurrences of symbols from � in either �-literals of Ei or in oriented
equations from Ei. Let Oi be the multiset of all the occurrences of abstraction variables in Ei.
Finally, let ni be the number of label occurrences in Ei, that is, occurrences of the constructor
symbols in labeling pairs of Ei.

Let >m, Am, and �m be the multiset orderings induced respectively by the usual ordering > over
the natural numbers, the ordering A above, and the given ordering � over the abstraction variables.
Let >2 be the lexicographic ordering of pairs of naturals induced by >. Let �l be the lexicographic
ordering of pairs of naturals, tuples of naturals, multisets of symbols of �, multisets of naturals,
multisets of abstraction variables, and naturals induced by >2; >m; >;Am;�m; >. Observe that
�l is well-founded. We will show that given some Ei, either Ei+1 = ? (in which case the branch
terminates trivially) or (Si; Ni; Vi;Mi; Oi; ni) �l (Si+1; Ni+1; Vi+1;Mi+1; Oi+1; ni+1). The proof is
by cases, considering each of the rules.

The Inconsistent, Clash 1, Clash 2, Cycle, and Empty rules are trivial, since they have the
conclusion ?.

Suppose Abstract 1, Abstract 2, Orient, Remove 1, or Remove 2 is applied. Each of these rules
leaves Si unchanged while removing at least one �-symbol or input variable from a literal (without
changing the other literals). In each of these cases, Ni >m Ni+1. For the case of Abstract 3, the
number of selector symbols appearing in literals is reduced by 1, so Si >2 Si+1.

Suppose one of the congruence closure rules is applied. In each case, with the exception of
Superpose when t is not an abstraction variable, the only change is the replacement of an ab-
straction variable by another smaller abstraction variable. We know the replacement is smaller by
Lemma 4.1(2). Thus, Si, Ni, Vi, and Mi remain the same, while Oi �m Oi+1. In the case where
Superpose is applied and t is not an abstraction variable, t must contain a symbol from �. If t
contains a selector, then clearly Si >2 Si+1. Otherwise, Mi Am Mi+1 (it is easy to see that Si, Ni

and Vi remain the same in this case).
Now consider the Decompose rule. Decompose does not change the values of Si, Ni or Vi.

However, it does eliminate one instance of the Ci
j symbol so that Mi Am Mi+1.

11

Now consider the selector rules. For the Instantiate 1 rule, if kj > 0, then Si >2 Si+1. If
kj = 0, Si and Ni are unchanged but Vi+1 = Vi � juji. By de�nition, juji must be positive. For the

Instantiate 2 rule, Si and Ni are unchanged. But Vi+1 = Vi � jvji +
Pni

j

k=1 jukji+1. By de�nition,

jvji = jCi
j j+ 1 =

Pni
j

k=1 js
i
j;kj+ 1 =

Pni
j

k=1 jukji+1 + 1. Thus, Vi+1 < Vi.
For the collapse rules, exactly one selector symbol is eliminated, so that Si >2 Si+1. Note that

in particular, for rule Collapse 2, by de�nition tji must be a ground term containing no selectors, so

the symbols introduced by tji can only be constructor and constant symbols.
Finally, consider the labeling rules. The Re�ne rule eliminates an occurrence of an abstraction

variable (so that Oi �m Oi+1) while leaving Si, Ni, Vi, and Mi unchanged. The split rules both
produce two conclusions, each of which has fewer constructors appearing in labels than in the
premise. Furthermore, this is the only change, so Si, Ni, Mi, and Oi are unchanged, Vi either
decreases or is unchanged, and ni > ni+1.

Since each rule either terminates the branch or moves downward in a well-founded ordering,
every branch must be �nite.

Lemma 4.3. The premise E of a derivation rule is satis�ed in R by a valuation � of Var(E), i�
one of the conclusions E0 of the rule is satis�ed in R by an extension of � to Var (E0).

Proof. Again, the proof is by cases. For each of the Abstract rules, the if direction is immediate.
In the other direction, for the Abstract 1 rule, suppose that the premise is satis�ed by � in R. We
extend � by setting v to the value of c under R; �. Notice that the labeling pair in the conclusion
must be satis�ed with any assignment. This is trivially the case if v is not of non-� sort. When
v is of sort �i, it is a consequence of the Axiom (schema) 1 in R's speci�cation and the fact that
�(v) is a constructor term by Lemma 2.2. With this observation, it is clear that the extended
variable assignment satis�es the conclusion. For the Abstract 2 rule, a similar argument shows that
an extended variable assignment which assigns v to the value of Ci

ju under R; � must satisfy the
conclusion. For the Abstract 3 rule, the argument is again similar, but this time we must extend �
to map each v� to the value of S

i
j;�u under R; �.

Now consider the literal level rules. The Orient and Inconsistent rules are obvious. Remove 1
follows by de�nition of satisfaction for labeling pairs. The Remove 2 rule relies on the fact that for
any v of sort �i, IsC

i
jv holds for exactly one pair hi; ji. This follows from Lemma 2.2 and Axioms

1 and 2.
In each of the congruence rules, the result follows from basic properties of equality. For the

downward closure rules, the result follows from Lemma 2.2 and basic properties of the term algebra
T (
).

For the Instantiate rules, the result follows from the de�nition of satisfaction for labeling pairs
and the Inst predicate, and Axioms 1, 2, and 3. For Collapse 1 the result follows by Axiom 3, and
for Collapse 2 by Axiom 4, Lemma 2.2 and the de�nition of satisfaction for labeling pairs.

Finally, the labeling rules follow by simple Boolean reasoning and the de�nition of satisfaction
for labeling pairs.

Proposition 4.4 (Soundness). If a set E0 has a refutation tree, then it is unsatis�able in R.

Proof. The proof is immediate by structural induction and the previous lemma.

To prove completeness we will rely on the next two lemmas.

Lemma 4.5. No irreducible leaf E in a derivation tree contains occurrences of selector symbols.

12

Proof. The claim is trivially true is E = f?g, so assume that E 6= f?g. Since E is irreducible, by
the Abstract 3 rule and Lemma 4.1(1), any occurrence of a selector in E must be in an oriented
equation of the form Si

j;k(u) ! vk, where u is an abstraction variable of sort �i. So assume by

contradiction that Si
j;k(u)! vk 2 E. By the Abstract, Re�ne, Simplify 1, and Empty rules we also

know that u has at least one label in E, i.e., u 7! L 2 E with L 6= ;. Furthermore, by the Split
1 rule, L must be a singleton, and in particular, by the Collapse 2 rule, it must be fCi

jg. We also

know that no equation of the form Ci
ju ! u (with u �xed) is in E or in any predecessor node of

E. In fact, an equation of that form, once introduced, is either replaced by the rules by one of the
same form (i.e., Ci

ju
0 ! u, for some u0) or by one of the form Ci

ju
0 ! u0. The latter case can only

happen as a consequence of the Superpose or Compose rules, which however then introduce the
oriented equation u! u0. Such an equation in turn can only be replaced by one the form u! u00.
Therefore, if Ci

ju! u occurred in one of the ancestors of E in the derivation tree, then either some

Ci
jw ! u or some Ci

jw ! w and u ! w would occur in E. But this is not possible because then

either Collapse 1 or Simplify 2 rule would respectively apply to Si
j;k(u)! vk.

Now, observe that Si
j;k(u) ! vk can only be the result of a sequence of upward closure rules

applied to an equation of the form Si
j;k(u

0)! v0k introduced by the Abstract 3 rule. It is easy to see

that such closure rules apply in the same way to all the equations Si
j;1(u

0)! v01; : : : ; S
i
j;ni

j

(u0)! v0
ni
j

introduced by Abstract 3. From the absence of equations of the form Ci
ju ! u in the branch it

follows that E must contain Si
j;1(u)! v1; : : : ; S

i
j;ni

j

(u)! vni
j
. But then the Instantiate rule applies

to E, again contradicting the assumption that E is irreducible.

Lemma 4.6. Every irreducible leaf E other than f?g in a derivation tree is satis�able in R.

Proof. We build a valuation � of Var (E) that satis�es E in R. To start, let

V = fv j t! v 2 E for some tg

Tv = ft j t! v 2 Eg for all v 2 V

Observe that the sets Tu and Tv are disjoint for all distinct u and v, otherwise E would contain
two equations of the form t ! u and t ! v, and so would be reducible by the Superpose rule.
Furthermore, for all v 2 V , Tv contains at most one non-variable term. To see that, recalling that
E contains no occurrences of selector symbols by Lemma 4.5, assume that Tv contains a constant
symbol c of sort �. Clearly it cannot contain a term t of sort other than � because otherwise either
c! v or t! v would be ill-sorted, which is not possible by Lemma 4.1(1). The only other possible
terms of sort � are other constant symbols d. But then, if d ! v were in E, Clash 2 would apply
to E. Now assume that Tv contains a term of the form Ci

ju. Again by well-sortedness, it is enough

to argue that Tv contains no additional terms of the form Ci
j0v. But such terms cannot be in Tv

because otherwise either the Decompose or the Clash 1 rule would apply.
Now consider the relation l over V de�ned as follows:

ul v i� E contains an equation of the form Ci
juuu

0 ! v.

By the Cycle rule and the assumptions on E, the relation l is acyclic and hence well founded. We
can de�ne a valuation � of V into R5 by well founded induction on l.

Let fv1; : : : ; vng be the set of all the l-minimal elements of V such that for i = 1; : : : ; n, ci !
vi 2 E with ci a constant symbol.

6 For i = 1; : : : ; n we de�ne �(vi) = ci. Now let fvn+1; : : : ; vn+kg

5Whose universe, recall, is the term algebra T (
).
6This includes the case in which ci is a constructor of 0-arity.

13

be the remaining l-minimal elements of V . For i = n + 1; : : : ; n + k, if vi is of sort �, we de�ne
�(vi) = di where di is some constant of sort � in T (
) n f�(v1); : : : ; �(vn+i�1)g

7. If vi is of some
sort �j , we know by a previous observation that vi 7! L 2 E with L 6= ;. Note that L must contain
at least one non-�nite constructor. Suppose all constructors are �nite: if L is not a singleton, then
Split 2 applies, contradicting irreducibility of E. If L is a singleton, and C 2 L is nullary, then by
the Instantiate 1 rule, an equation of the form C ! vk is in E. If C 2 L is non-nullary, then by the
Instantiate 2 rule, an equation of the form Cu! vk is in E contradicting l-minimality of vk. We
then de�ne �(vk) = Ci

jt1 � � � tni
j
where Ci

j is some non-zero-arity constructor in L and Ci
jt1 � � � tni

j
is

some term in T (
) n f�(v1); : : : ; �(vn+k�1)g.
We are now left with de�ning �(v) for all non-minimal v 2 V . If v is non-minimal, then there

must be an equation of the form Cu1 � � � uk ! v in E. Furthermore, k � 1 (otherwise v would be
minimal) and ui l v for all i = 1; : : : ; k. We then de�ne �(v) = C�(u1) � � ��(uk).

We now show by induction on l that the valuation � just de�ned is an injection of V into T (
).
Let u; v be two distinct elements of V of the same sort. If u and v are both l-minimal in the set
fv1; : : : ; vng de�ned earlier, then �(u) 6= �(v) because the sets Tv1 ; : : : ; Tvn are mutually disjoint. If
one (or both) of them is in fvn+1; : : : ; vn+kg then �(u) 6= �(v) by construction.

If u, say, is not l-minimal, then both u and v must be of some sort �i. It follows that �(u); �(v)
are terms of the form Ci

j�(u1) � � ��(uni
j
); Ci

j0�(v1) � � ��(vni
j0
), respectively, with nij � 1 and nij0 � 1.

Now, if j 6= j0, then �(u) and �(v) are trivially distinct terms. If j = j0, then by induction �(u1)
and �(v1), say, are distinct, therefore �(u) and �(v) are distinct as well.

Now we can extend � to the whole Var (E) by de�ning it for the remaining (input or abstraction)
variables of E. Each such variable x occurs in an equation of the form x! v in E. Hence we de�ne
�(x) = �(v). For later reference, let �0 be the homomorphic extension of � to the set of �-terms
over Var (E).

The valuation � satis�es every element e of E. This is immediate if e has the form v � v or
the form v 7! L with v : �. If e has the form u 6� v with u; v distinct, then � satis�es e for being
injective over the abstraction variables of E. If e has the form t ! v, then � satis�es e because
�(v) = �0(t) by construction. If e has the form v 7! L where v : �i consider the following two cases.
If Ci

ju1 � � � uk ! v 2 E for some Ci
ju1 � � � uk then it is not diÆcult to show that L must be fCi

jg.

But then �(v) = Ci
j�(u1) � � ��(uk) by construction. If there is no C

i
ju1 � � � uk ! v 2 E, then �(v) is

de�ned as some term Ci
jt1 � � � tk where Ci

j 2 L. In both cases, it is then immediate that � satis�es
v 7! L.

To conclude the proof it is enough to observe that, for being irreducible, E can only contain
elements of the forms listed above.

Proposition 4.7 (Completeness). If a set E0 is unsatis�able in R, then it has a refutation.

Proof. We prove the contrapositive of the proposition. Assume that E0 has no refutations. By
Proposition 4.2, there is a derivation tree for E0 with an irreducible leaf E 6= f?g. By Lemma 4.6,
E is satis�able in R. It follows by a repeated application of Lemma 4.3 that E0 is satis�able in R
as well.

5 Strategies and EÆciency

A strategy is a predetermined methodology for applying the rules. Di�erent strategies may be
more or less eÆcient. Before discussing our recommended strategy, it is instructive to look at the

7Using the assumption that all sorts � are in�nite.

14

closest related work. A naive algorithm for universal formulas is discussed in [16]. Although the
presentation there is somewhat di�erent, the essence of their algorithm can be mimicked by our
rules8 with one small modi�cation: replacing the Split 1 and Split 2 rules with the following basic
Split rule:

Split
u 7! fCi

jg [L; E

u 7! fCi
jg; E u 7! L; E

if L 6= ;

There are four steps in their naive algorithm: guess a \type completion"; simplify; compute the
bidirectional closure; and check for con
icts. These steps are roughly equivalent to the following
strategy: after abstraction, apply the Split rule until it can no longer be applied (this corresponds
to guessing a type completion). Next, apply the selector rules to eliminate all instances of selector
symbols. Then, apply upward and downward closure rules (the bidirectional closure). Finally, check
for con
icts using the remaining rules.

One of the key contributions of this paper is to recognize that this naive strategy can be improved
in two signi�cant ways. First, the split rule should be delayed as long as possible, and second, the
naive split rule can be replaced with the smarter Split 1 and Split 2 rules. These two modi�cations
work together and have the potential to dramatically reduce the size of the resulting derivation.
Notice that with the smarter splitting rules, unless an abstract variable u is labeled with all �nite
constructors, Split 1 is only enabled when some selector is applied to u. By itself, this eliminates
many needless case splits. But by delaying the Split rules (in particular by �rst applying selector
rules), it may be possible to eliminate selectors and thus eliminate additional case splits.

Suppose we have a simple tree data type. It has a binary constructor node : tree � tree ! tree

with two associated selectors, left : tree ! tree and right : tree ! tree. There is also a 0-arity
constructor leaf which is also the designated term for both selectors. Now, consider the following
input:

leftn(Z) � X ^ isnode(Z) ^ Z � X

After applying all available rules except for the Split rules, the result will look something like this:

f Z ! u0;X ! u0; u0 7! fnodeg;node(u1; v1)! u0; un ! u0;
left(u1)! u2; : : : ; left(un�1)! un; u1 7! fleaf;nodeg; : : : ; un 7! fleaf;nodeg;
right(u1)!v2;: : :; right(un�1)!vn; v1 7! fleaf;nodeg; : : : ; vn 7! fleaf;nodegg;

Notice that there are 2n abstraction variables labeled with two labels each. If we eagerly applied
the naive Split rule at this point, the derivation tree would reach size O(22n).

Suppose, on the other hand, that we follow our strategy. Split 1 can only be applied to some
ui; (1 < i < n), so let's say we split on ui. The result is two branches, one with ui 7! fnodeg and
the other with ui 7! fleafg. The second branch induces a cascade of (at most n) applications of
Collapse 2 which in turn results in uk 7! fleafg for each k > i. This eventually results in ? via the
Empty and Re�ne rules. The other branch contains ui 7! fnodeg and results in the application of
the Instantiate rule, but little else, and so we will have to split again, this time on a di�erent ui.
This process will have to be repeated until we have split on all of the ui. At that point, there will
be a cycle from u0 back to u0, and so we will derive ? via the Cycle rule.

Because each split only requires at most O(n) rules and there are n� 1 splits, the total size of
the derivation tree will be O(n2). In fact, we can do better. If we start at un�1 and work our way

8Unfortunately, there is not enough detail in [16] to be sure that this is an accurate characterization of their
algorithm, but this re
ects our best understanding of it.

15

down, each split will take only O(1), so the total size of the derivation tree will be O(n).9 This is
not a coincidence and leads to a �nal strategy suggestion: split on nodes that correspond to the
least deeply nested terms �rst.

Of course, in the worst case, our strategy will still be exponential because the problem is NP-
complete, but with this example as evidence, we claim that our strategy is never worse than the
naive strategy, and is often far superior.

6 Extending the Algorithm

In this section we brie
y discuss several ways in which our algorithm can be used as a component
in solving a larger or related problem.

6.1 Finite Sorts

Here we consider how to lift the limitation imposed before that each of � 2 f�1; : : : ; �rg is in�nite
valued. Since we have no such restrictions on sorts �i, the idea is to simply replace such a � by a
new � -like sort ��, whose set of constructors (all of which will be nullary) will match the domain of
�. For example, if � is a �nite scalar of the form f1; : : : ; ng, then we can let

�� ::== null1 j : : : j nulln;

We then proceed as before, after replacing all occurrences of � by �� and each i by nulli.

6.2 Simulating Partial Function Semantics

As mentioned earlier, it is not clear how best to interpret the application of a selector to the wrong
constructor. One way to play it safe is to modify the model R so that selectors are interpreted
as partial functions. An evaluation of a formula in this model has three possible outcomes: true,
false, or unde�ned. This approach may be especially valuable in a veri�cation application in which
application of selectors is required to be guarded so that no formula should ever be unde�ned.
Fortunately, this approach can easily be implemented as described in [3]: given a formula to check,
a special additional formula called a type-correctness condition is computed (which can be done in
time and space linear in the size of the input formula). These two formulas can then be checked
using a decision procedure that interprets the partial functions (in this case, the selectors) in some
arbitrary way over the unde�ned part of the domain. The result can then be interpreted to reveal
whether the formula would have been true, false, or unde�ned under the 3-valued semantics.

6.3 Cooperating with other Decision Procedures

A �nal point is that that our procedure has been designed to easily integrate into a Nelson-Oppen-
style framework for cooperating decision procedures [9]. In the many-sorted case, the key theoretical
requirements (see [14]) for two decision procedures to be combined are that the signatures of their
theories share at most sort symbols and each theory is stably in�nite over the shared sorts.10

A key operational requirement is that the decision procedure is also able to easily compute and
communicate equality information.

9This does not mean the total time is necessarily O(n). In general, processing a node includes bidirectional closure
and checking for cycles which requires O(n) steps (see [11], for example). So the total processing time is bounded by
O(n �m), where m is the size of the derivation tree. In this case, the total time is bounded by O(n2).

10A many-sorted theory T is stably in�nite over a subset S of its sorts if every quanti�er-free formula satis�able in
T is satis�able in a model of T where the sorts of S denote in�nite sets.

16

The theory of R (i.e., the set of sententences true in R) is trivially stably in�nite over the sorts
�1; : : : ; �r and over any � -sort containing a non-�nite constructor|as all such sorts denote in�nite
sets in R. Also, in our procedure the equality information is eventually completely captured by
the oriented equations produced by the derivation rules, and so entailed equalities can be easily
detected and reported.

7 Conclusion

We have presented an algorithm for deciding the theory of recursive data types. Novel features of
our treatment include the ability to handle mutually recursive multi-sorted data types, a simpler
presentation of the theory, an abstract declarative algorithm, and smarter splitting rules which can
greatly enhance eÆciency. As future work, we propose to treat the subjects mentioned brie
y in
the last section in more detail. Also, though a prototype implementation has been completed, we
have begun work on implementing the decision procedure within the theorem prover CVC Lite [2].

References

[1] L. Bachmair, A. Tiwari, and L. Vigneron. Abstract congruence closure. Journal of Automated

Reasoning, 31:129{168, 2003.

[2] C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In R. Alur and D. A. Peled, editors, Proceedings of the 16th International Conference

on Computer Aided Veri�cation (CAV '04), volume 3114 of Lecture Notes in Computer Science,
pages 515{518. Springer-Verlag, July 2004. Boston, Massachusetts.

[3] S. Berezin, C. Barrett, I. Shikanian, M. Chechik, A. Gur�nkel, and D. L. Dill. A practical
approach to partial functions in CVC Lite. In Proceedings of the 2nd International Workshop

on Pragmatics of Decision Procedures in Automated Reasoning (PDPAR '04), July 2004. Cork,
Ireland.

[4] W. Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[5] D. Kozen. Complexity of �nitely presented algebras. In Proceedings of the 9-th Annual ACM

Symposium on Theory of Computing, pages 164{177, 1977. Boulder, Colorado.

[6] A. I. Mal'cev. On elementary theories of locally free universal algebras. Soviet Mathematical

Doklady, 2(3):768{771, 1961.

[7] A. Martelli and U. Montanari. An eÆcient uni�cation algorithm. ACM Transactions on

Programming Languages and Systems, 4(2):258{282, 1982.

[8] K. Meinke and J. V. Tucker. Universal algebra. In S. Abramsky, D. V. Gabbay, and T. S. E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 1. Claredon Press, 1992.

[9] G. Nelson and D. Oppen. Simpli�cation by cooperating decision procedures. ACM Transactions

on Programming Languages and Systems, 1(2):245{57, 1979.

[10] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure. Journal of
the Association for Computing Machinery, 27(2):356{364, April 1980.

17

[11] D. C. Oppen. Reasoning about recursively de�ned data structures. Journal of the Association
for Computing Machinery, 27(3):403{411, July 1980.

[12] T. Rybina and A. Voronkov. A decision procedure for term algebras with queues. ACM

Transactions on Computational Logic, 2(2):155{181, April 2001.

[13] R. Shostak. Deciding combinations of theories. Journal of the Association for Computing

Machinery, 31(1):1{12, 1984.

[14] C. Tinelli and C. Zarba. Combining decision procedures for sorted theories. In J. Alferes and
J. Leite, editors, Proceedings of the 9th European Conference on Logic in Arti�cial Intelligence

(JELIA'04), Lisbon, Portugal, volume 3229 of Lecture Notes in Arti�cial Intelligence, pages
641{653. Springer, 2004.

[15] K. N. Venkataraman. Decidability of the purely existential fragment of the theory of term
algebras. Journal of the Association of Computing Machinery, 34(2):492{510, April 1987.

[16] T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for term algebras with integer
constraints. In Proceedings of the 2nd International Joint Conference on Automated Reasoning

(IJCAR '04) LNCS 3097, pages 152{167, 2004.

[17] T. Zhang, H. B. Sipma, and Z. Manna. Term algebras with length function and bounded
quanti�er alternation. In Proceedings of the 17th International Conference on Theorem Proving

in Higher Order Logics (TPHOLs '04), volume 3223 of Lecture Notes in Computer Science,
pages 321{336, 2004.

18

