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Abstract. A BDDC (balancing domain decomposition by constraints) algorithm is developed for elliptic

problems with mortar discretizations for geometrically non-conforming partitions in both two and three spatial

dimensions. The coarse component of the preconditioner is defined in terms of one mortar constraint for each

edge/face which is an intersection of the boundaries of a pair of subdomains. A condition number bound of the

form C maxi

˘

(1 + log(Hi/hi))3
¯

is established. In geometrically conforming cases, the bound can be improved

to C maxi

˘

(1 + log(Hi/hi))
2

¯

. This estimate is also valid in the geometrically nonconforming case under an

additional assumption on the ratio of mesh sizes and jumps ofthe coefficients. This BDDC preconditioner is also

shown to be closely related to the Neumann-Dirichlet preconditioner for the FETI–DP algorithms of [9, 11] and it

is shown that the eigenvalues of the BDDC and FETI–DP methodsare the same except possibly for an eigenvalue

equal to 1.
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1. Introduction. This study focuses on a scalable BDDC algorithm for solving linear

systems arising from mortar finite element discretizationsof elliptic problems. A BDDC

method was first introduced by Dohrmann [4] as an improvementof the balancing Neumann-

Neumann method and using different coarse finite element spaces. The coarse space consists

of a weighted sum of functions each of which minimizes the local discrete energy norm with

certain constraints on the subdomain interfaces; continuity of the solutions at vertices, or

average or momentum matching condition on solutions over edges/faces are considered in

[4, 16, 17, 19, 20]. The resulting coarse problem then gives amore local coupling between

the subdomains than for the older balancing methods and morefreedom in choosing the

constraints to improve the convergence. An additional advantage is that all linear systems will

have positive definite, symmetric matrices at least for conforming finite element problems.

The constraints on the coarse finite element space are basically the same as those of a
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FETI–DP algorithm. In a FETI–DP algorithm, a linear system formulated for a set of dual

variables is solved after eliminating the primal unknowns related to the primal constraints,

given by average matching condition over edges/faces or continuity of the solutions at ver-

tices. The resulting linear system, in itself, contains a coarse problem while its preconditioner

is built only from subdomain problems. In a BDDC method, a linear system of the primal

variables is solved iteratively with a preconditioner thathas both coarse and subdomain com-

ponents. This provides BDDC methods with more flexibility, allowing for the use of inexact

coarse problems. Thus, an inexact coarse problem can be introduced by applying the BDDC

method recursively to the coarse problem; see Tu [22, 23]. The use of inexact local problems

for the BDDC preconditioners has also been considered by Li and Widlund [18].

Recently the BDDC methods have been shown to be closely related to the FETI–DP

methods. A condition number bound of the BDDC operator was first given by Mandel and

Dohrmann [19]. They proved aC(1 + log(H/h))2 bound that is comparable to that for the

FETI–DP methods. Further, Mandel, Dohrmann, and Tezaur [20] showed that the eigen-

values of the FETI–DP and BDDC operators are the same except possibly for eigenvalues

equal to 0 and 1. Recently, a new formulation of the BDDC method was given by Li and

Widlund [17]. They introduced a change of variables as well as an average operator for the

BDDC method based on the jump operator used in [15] in the analysis of FETI–DP methods.

The change of variables greatly simplifies the analysis; it has also led to a successful and

robust implementation of FETI–DP algorithms [12, 13].

In this paper, we will first describe a BDDC algorithm with a mortar discretization and a

change of variables. Primal constraints on edges/faces areintroduced. We consider quite gen-

eral geometrically non-conforming partitions and the second generation of the mortar method

as well as the dual basis mortar methods. A preconditioner isthen proposed which uses a cer-

tain weight matrixD, that leads to the condition number bound:Cmaxi

{
(1 + log(Hi/hi))

3
}

.

Section 4 is devoted to proving the condition number bound interms of a bound of an average

operatorED in a certain norm. The algorithm can also be applied to a geometrically conform-

ing partition and then gives a better bound:Cmaxi

{
(1 + log(Hi/hi))

2
}

. The same bound

can be established for geometrically non-conformingpartitions with an additional assumption

on the mesh sizes.

In Section 5, we show that the preconditioner proposed for our BDDC algorithm is

closely connected to the Neumann-Dirichlet preconditioner of the FETI–DP algorithm given

in [9, 11]. By establishing connections between the averageand jump operators, the spectra

of the BDDC and FETI–DP algorithms are then shown to be the same except possibly for

an eigenvalue equal to 1. This approach was used by Li and Widlund [17] and provided a

simpler proof for the condition number bound of the BDDC algorithm. Our BDDC algorithm

is also applicable to elasticity problems employing a preconditioner that is closely connected

to the Neumann-Dirichlet preconditioner of the FETI–DP formulation developed in [10].
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In the final section, numerical results show that the FETI–DPand BDDC algorithms

perform very similarly when the same set of primal constraints are selected.

Throughout this paper,C denotes a generic constant that does not depend on any mesh

parameters and coefficients of the elliptic problems.

We note that this paper originated from two projects developed separately by the first and

the second authors; the contribution of the third author began with a suggestion that a theory

could be developed for the geometrically non-conforming case.

2. Finite element spaces and mortar matching constraints.

2.1. A model problem and mortar methods.We consider a model elliptic problem in

a polygonal/polyhedral domainΩ ⊂ R2 (R3): find u ∈ H1
0 (Ω) such that

−∇ · (ρ(x)∇u) = f(x) ∀x ∈ Ω,

u = 0 on∂Ω,
(2.1)

whereρ(x) ≥ ρ0 > 0 andf(x) ∈ L2(Ω).

Let Ω be partitioned into disjoint polygonal/polyhedral subdomains

Ω =

N⋃

i=1

Ωi.

We assume that the partition can be geometrically non-conforming, see discussion below, and

thatρ(x) = ρi, x ∈ Ωi for some positive constantρi.

We denote byXi theP1-conforming finite element space on a quasi-uniform triangu-

lation Ti of each subdomainΩi. TheTi might not align across subdomain interfaces. The

spaceWi is the trace space ofXi on∂Ωi. We then introduce the product spaces

X :=

N∏

i=1

Xi, W :=

N∏

i=1

Wi.

For functions in these spaces, we will impose the mortar matching condition across the inter-

faces using suitable Lagrange multiplier spaces.

In a geometrically non-conforming partition, the intersection of the boundaries of neigh-

boring subdomains can be only a part of a edge/face of a subdomain. Let us define the entire

interface by

Γ =


⋃

ij

∂Ωi ∩ ∂Ωj


 \ ∂Ω.

Among the subdomain edges/faces, we select nonmortar edges/facesFl for which

⋃

l

F l = Γ, Fl ∩ Fk = ∅, l 6= k.
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Since the subdomain partition can be geometrically non-conforming, a single nonmortar

edge/faceFl ⊂ ∂Ωi may intersect several subdomain boundaries∂Ωj. This providesFl with

a partition

F l =
⋃

j

F ij , Fij = ∂Ωi ∩ ∂Ωj .

A dual or a standard Lagrange multiplier spaceMl is given for each nonmortar edge/faceFl.

We require that the spaceMl has the same dimension as the space
◦

W (Fl) := Wi|Fl
∩H1

0 (Fl)

and that it contains the constant functions. Constructionsof such Lagrange multiplier spaces

were introduced in [1, 3] for standard Lagrange multiplier spaces and in [24, 25] for dual

Lagrange multiplier spaces; see also [8].

For (w1, · · · , wN ) ∈ W , we defineφ ∈ L2(Fl) by φ = wj onFij ⊂ Fl. The mortar

matching condition for the geometrically non-conforming partition is given by

(2.2)
∫

Fl

(wi − φ)λds = 0, ∀λ ∈Ml, ∀Fl.

We write its matrix representation as

(2.3)
N∑

i=1

B(i)w(i) = 0,

with w(i) a vector representation ofwi using nodal basis functions. We further define the

following product spaces by gathering the spacesMl and
◦

W (Fl) given on each nonmortar

edges/faces:

(2.4) M =
∏

Ml, Wn =
∏ ◦

W (Fl).

The mortar finite element method for problem (2.1) is to approximate the solution by

Galerkin’s method in the mortar finite element space

X̂ := {v ∈ X : v satisfies the mortar matching condition (2.2)} .

2.2. Finite element spaces with a change of variables.In this subsection, we introduce

a change of variables for the unknowns in the spaceW . This change of variables is based on

the primal constraints that will be imposed in our BDDC algorithm. In mortar discretizations,

we may consider the following sets of primal constraints; vertex constraints, vertex and edge

average constraints, or edge average constraints only for two spatial dimensions, and vertex

constraints and face average constraints, or face average constraints only for three spatial

dimensions. We note that vertex constraints are appropriate only for the first generation of the

mortar method. In order to reduce the number of primal constraints, we can select only some

edges/faces or some vertices as primal where the primal constraints will be imposed. Such

choices have been considered for the FETI–DP algorithms andconforming finite elements in

[14] and for mortar finite elements in [10].
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In our BDDC formulation, we will introduce certain primal constraints over edges/faces

that are selected from the mortar matching constraints (2.2). We consider{ψij,k}k, the basis

functions inMl that are supported inF ij , and define

ψij =
∑

k

ψij,k.

We assume that at least one such basis functionψij,k exists for eachFij ⊂ Fl.

We now introduce the following primal constraints for(w1, · · · , wN ) ∈ W over each

edge/faceFij

(2.5)
∫

Fij

(wi − wj)ψij ds = 0,

and define

(2.6) W̃ = {w ∈ W : w satisfies the primal constraints (2.5)} .

Note thatŴ ⊂ W̃ ⊂ W , whereŴ is the restriction ofX̂ to Γ. For the case of a geo-

metrically conforming partition, i.e., whenFij is a full face of two subdomains, the above

constraints are edge/face average matching condition becauseψij = 1. In addition to the

above constraints, vertex constraints can be considered for the first generation mortars if the

partition is geometrically conforming.

We now introduce a change of variables, following Li and Widlund [17], based on the

primal constraints and in the two dimensional case. This approach can also be extended to

the three dimensional case without any difficulty.

We recall thatF ⊂ ∂Ωi is a nonmortar edge/face and that{Fij}j is a partition ofF

given byFij = F ∩ ∂Ωj , a mortar edge/face ofΩj . We denote by{zk}l
k=1 the unknowns

of wi ∈ Wi at the nodes inF related to the Lagrange multipliers{ψij,k} and by{vk}
p
k=1

the unknowns at the remaining nodes inF . We will now define a transform that retains

the unknowns{vk}
p
k=1 and changes{zk}l

k=1 into {ẑk}l
k=1 so that for a fixedm, chosen

arbitrarily, ẑm satisfies

ẑm =

∫
Fij

wiψij ds∫
Fij

ψij ds
.

Let

h̃k =

∫
Fij

φ̃kψij ds∫
Fij

ψij ds
, hk =

∫
Fij

φkψij ds∫
Fij

ψij ds
,

whereφ̃k andφk are the nodal basis functions of the unknownsvk andzk, respectively. For

a simpler presentation, we assume thatp = 2 but the following can be generalized to anyp.
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We then consider the following transformTFij :




v1

v2

z1
...

zm−1

zm

zm+1

...

zl




= TFij




v1

v2

ẑ1
...

ẑm−1

ẑm

ẑm+1

...

ẑl




=




1 0 0 · · · 0 0 0 · · · 0

0 1 0 · · · 0 0 0 · · · 0

0 0 1 · · · 0 A 0 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 1 A 0 · · · 0

c1 c2 r1 · · · rm−1 A rm+1 · · · rl

0 0 0 · · · 0 A 1 · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 A 0 · · · 1







v1

v2

ẑ1
...

ẑm−1

ẑm

ẑm+1

...

ẑl




= A




0

0

1
...
...
...
...
...
...
...

1




ẑm +




v1

v2

ẑ1
...

ẑm−1

ẑ0

ẑm+1

...

...

...

ẑl




,

where

ẑ0 = c1v1 + c2v2 + r1ẑ1 + · · · + rm−1ẑm−1 + rm+1ẑm+1 + · · · + rlẑl,

A =

∫
Fij

ψij ds
∑l

k=1 hk

, c1 = −
h̃1

hm
, c2 = −

h̃2

hm
, rk = −

hk

hm
, k 6= m.

We see that this transform satisfies the requirements statedabove. The transformTFij can be

applied to each faceFij ⊂ F independently.

For the case when an edgeF ⊂ ∂Ωi is a mortar edge, there exists aΩj across the inter-

face with a nonmortar side. We then considerFij = F ∩ ∂Ωj . In this case, the unknowns

{zk}l
k=1 are related to the nodes inF with its basis functions supported inF ij and the re-

maining unknowns inF are denoted by{vk}
p
k=1. The transformTFij is then defined for these

unknowns as before.
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By gathering the transformsTFij of all F ⊂ ∂Ωi, we get a transformT (i) : Ŵi → Wi

of the form

T (i) =

(
T

(i)
rr T

(i)
rc

0 I

)
,

wherec andr stand for the unknowns retained by the transform and the remaining unknowns,

respectively, and̂Wi denotes the space of new unknowns. With this set of new unknowns, the

local stiffness matrix, the mortar matching matrix, and thelocal force vector are written as

Ŝ(i) = T (i)tS(i)T (i), B̂(i) = B(i)T (i), ĝ(i) = T (i)t
g(i).

The unknownŝzm, the unknowns for the averages over the edges, are the primalvari-

ables. With this set of new variables, the spaceW̃ in (2.6) can be represented as

(2.7) W̃ = W∆ ⊕WΠ,

whereW∆ consists of functions with a zero value at the primal variables andWΠ consists

of functions with a zero value at the other variables. We denote byR(i)
Π the restriction of the

primal unknownsuΠ ∈ WΠ to the subdomainΩi. By using the set of new unknowns, the

mortar matching condition (2.3) can be written as

(2.8) B∆w∆ +BΠwΠ = 0.

Here

B∆ =
(
B

(1)
∆ · · ·B

(N)
∆

)
, BΠ =

N∑

i=1

B
(i)
Π R

(i)
Π ,

whereB(i)
Π andB(i)

∆ are submatrices of̂B(i) with columns corresponding to the primal vari-

ables and the remaining unknowns, respectively.

Furthermore the mortar matching condition on functions inW̃ will be imposed by using

non-redundant Lagrange multipliers. We select the non-redundant Lagrange multipliers as

follows. From the bases ofMl, we eliminate one basis element among{ψij,k}k for each

Fij ⊂ Fl and denote the reduced Lagrange multiplier space byM l. The non-redundant

Lagrange multiplier space is then defined as

M =
∏

l

M l.

The mortar matching condition (2.2) is imposed on the spaceW̃ by using the non-

redundant Lagrange multipliersλ ∈ M . To simplify the notation, we use the same notation

as in (2.8) for this case, i.e.,

B∆w∆ +BΠwΠ = 0.
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The spaceW∆ can be split into

W∆ = W∆,n ⊕W∆,m,

wheren andm denote unknowns at nonmortar edges/faces (interior) and the remaining un-

knowns, respectively. The above equation can be written as

(2.9) Bnwn +Bmwm +BΠwΠ = 0.

After the change of variables, we order the local Schur complement matrix and the local

Schur complement vector into

Ŝ(i) =

(
Ŝ

(i)
∆∆ Ŝ

(i)
∆Π

Ŝ
(i)
Π∆ Ŝ

(i)
ΠΠ

)
, ĝ(i) =

(
ĝ
(i)
∆

ĝ
(i)
Π

)

and define a matrix and vectors by

(2.10) S̃ =

(
S∆∆ S∆Π

SΠ∆ SΠΠ

)
, g∆ =




ĝ
(1)
∆
...

ĝ
(N)
∆


 , gΠ =

N∑

i=1

R
(i)
Π

t
ĝ
(i)
Π ,

where

S∆∆ = diagN
i=1

(
Ŝ

(i)
∆∆

)
,

SΠ∆ =
(
R

(1)
Π

t
Ŝ

(1)
Π∆ · · · R

(N)
Π

t
Ŝ

(N)
Π∆

)
, S∆Π = St

Π∆,

SΠΠ =

N∑

i=1

R
(i)
Π

t
Ŝ

(i)
ΠΠR

(i)
Π .

(2.11)

3. A BDDC algorithm for the mortar discretizations. In this section, we formulate

a BDDC operator for the elliptic problem described in Section 2.1. We consider the same

finite element space and subdomain partition as in Section 2.1 and use the unknowns after

the change of variables introduced in Section 2.2. We will omit the hats for the transformed

matrices to simplify the notation.

We recall the mortar matching condition (2.9). Since the matrix Bn is invertible, we

solve (2.9) forwn

wn = −B−1
n (Bmwm +BΠwΠ).

We then define the matrix

(3.1) RΓ =




−B−1
n Bm −B−1

n BΠ

I 0

0 I


 ,
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which maps(wt
m, w

t
Π)t into a vector(wt

n, w
t
m, w

t
Π)t that satisfies the mortar matching con-

dition (2.9). Let us define the mortar finite element space by

Ŵ =
{
w ∈ W̃ : (wn, wm, wΠ) satisfies (2.9)

}
.

In the BDDC method, we approximate the solution of the elliptic problem in the mortar finite

element spacêW and obtain the following discrete problem:

(3.2) Rt
ΓS̃RΓ

(
wm

wΠ

)
= Rt

Γ

(
gm

gΠ

)
,

wheregm is the component of the vectorg∆ in (2.10) other than the nonmortar part.

We now introduce a coarse finite element space based on the primal constraints so as to

solve (3.2) efficiently. In each subdomain, we solve the following problem

(3.3)

(
S

(i)
∆∆ S

(i)
∆Π

S
(i)
Π∆ S

(i)
ΠΠ

)(
Ψ

(i)
∆

I
(i)
Π

)
=

(
0

F
(i)
ΠΠI

(i)
Π

)
,

where the matrixI(i)
Π is the identity matrix of a dimension equal to the number of primal

variables ofΩi. We then obtain

Ψ(i) =

(
Ψ

(i)
∆

I
(i)
Π

)
=

(
−(S

(i)
∆∆)−1S

(i)
∆ΠI

(i)
Π

I
(i)
Π

)

and also

F
(i)
ΠΠ = S

(i)
ΠΠ − S

(i)
Π∆S

(i)
∆∆

−1
S

(i)
∆Π.

LetR(i)
Π : WΠ →W

(i)
Π restrict the global primal variables to the subdomainΩi. FromΨ(i),

we construct the coarse finite element spaceΨ as follows:

Ψ =




Ψ(1)R
(1)
Π

...

Ψ(N)R
(N)
Π


 .

Each columnψ of the matrixΨ is related to a primal variable. Since, the vectorψ ∈ W has

the same values at the primal variables, we takeψ = (ψt
∆, ψ

t
Π)t from the vectorψ and define

a matrixΨ with the columnsψ. We then obtain

(3.4) Ψ = Rt
Π −

N∑

i=1

(R
(i)
∆ )t(S

(i)
∆∆)−1S

(i)
∆ΠR

(i)
Π ,

whereRt
Π : WΠ →W∆ ×WΠ and(R

(i)
∆ )t : W

(i)
∆ →W∆ ×WΠ are zero extensions.

Let us now define

(3.5) RD,Γ =




Dnn

Dmm

DΠΠ


RΓ,



10 KIM, DRYJA AND WIDLUND

where the matricesDnn,Dmm andDΠΠ will be specified later. We then propose the follow-

ing preconditionerM−1 for the problem (3.2)

(3.6) M−1 = Rt
D,Γ

{(
S−1

∆∆ 0

0 0

)
+ Ψ(ΨtSΨ)−1Ψ

t

}
RD,Γ,

where

S = diagi

(
S(i)

)

andS∆∆ is given in (2.11). We will show that

ΨtSΨ = FΠΠ,

where

FΠΠ = SΠΠ − SΠ∆S
−1
∆∆S∆Π =

N∑

i=1

(R
(i)
Π )t

(
S

(i)
ΠΠ − S

(i)
Π∆(S

(i)
∆∆)−1S

(i)
∆Π

)
R

(i)
Π .

From the definition ofΨ, we have

ΨtSΨ =

N∑

i=1

(R
(i)
Π )t(Ψ(i))tS(i)Ψ(i)R

(i)
Π ,

and from (3.3), we obtain

(3.7) ΨtSΨ =

N∑

i=1

(R
(i)
Π )tF

(i)
ΠΠR

(i)
Π = FΠΠ.

Using the block Cholesky decomposition ofS̃ as in Li and Widlund [17] and above, see

also (2.10), we have

S̃−1 =

(
S−1

∆∆ 0

0 0

)

+

(
Rt

Π −
N∑

i=1

(R
(i)
∆ )t(S

(i)
∆∆)−1S

(i)
∆ΠR

(i)
Π

)
F−1

ΠΠ

(
Rt

Π −
N∑

i=1

(R
(i)
∆ )t(S

(i)
∆∆)−1S

(i)
∆ΠR

(i)
Π

)t

.

By combining the above equation with (3.4) and (3.7), we obtain

S̃−1 =

(
S−1

∆∆ 0

0 0

)
+ Ψ(ΨtSΨ)−1Ψ

t
.

Therefore, the BDDC operator, see (3.2), with the preconditionerM−1 in (3.6) can be written

as

(3.8) BDDC = Rt
D,ΓS̃

−1RD,ΓR
t
ΓS̃RΓ.
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4. Condition number analysis using a bound onED. In this section, we will estimate

the condition number of the BDDC operator by using an approach introduced in [16]. A

bound for the average operatorED in a certain norm is central in the analysis. We recall the

definitions ofRΓ andRD,Γ in (3.1) and (3.5), respectively. The operatorED is defined as

(4.1) ED = RΓR
t
D,Γ,

where the weight matrixD will be chosen so that

(P1) Rt
ΓRD,Γ = Rt

D,ΓRΓ = I

(P2) |EDw|
2
eS
≤ Cmax

i

{(
1 + log

Hi

hi

)3
}
|w|2eS .

Here|w|2
eS

= 〈S̃w, w〉. We then have

Rt
ΓRD,Γ

(
wm

wΠ

)
=

(
−Bt

m(Bt
n)−1Dnnzn +Dmmwm

−Bt
Π(Bt

n)−1Dnnzn +DΠΠwΠ

)
,

where

zn = −B−1
n (Bmwm +BΠwΠ).

In order to satisfy property (P1), the weight matrixD is chosen so that

(4.2) Dnn = 0, Dmm = I, DΠΠ = I.

REMARK 4.1. The weights above lead to an operatorED of the form

ED




wn

wm

wΠ


 =




−B−1
n (Bmwm +BΠwΠ)

wm

wΠ




that does not involve any averages across the interfaces in contrast to the average operator

considered for conforming finite elements. We will still call ED the average operator just

borrowing the name from the conforming case.

We will now show that the average operatorED satisfies property (P2) with the weight

matrixD just given. As a preparation, we need to establish an estimate for the mortar pro-

jection of a functionw in W̃ in theH1/2
00 (F )-norm. For an edge/faceF ⊂ ∂Ωi, the space

H
1/2
00 (F ) consists of functions for which the zero extension to the whole boundary∂Ωi be-

longs to the Sobolev spaceH1/2(∂Ωi). It is equipped with the norm

‖w‖2

H
1/2

00
(F )

= |w|2H1/2(F ) +

∫

F

w(x)2

dist(x, ∂F )
ds(x).

This norm has the well-known property

(4.3) c|w̃|H1/2(∂Ωi) ≤ ‖w‖
H

1/2

00
(F )

≤ C|w̃|H1/2(∂Ωi),



12 KIM, DRYJA AND WIDLUND

wherew̃ is the zero extension ofw to ∂Ωi \ F ; see [7, Lemma1.3.2.6].

We recall that the subdomainΩj intersect the subdomainΩi alongFij ⊂ F whereF

is a nonmortar edge/face in∂Ωi and thatφ = wj on Fij . We then haveφ ∈ H1/2−ǫ(F ),

0 < ǫ ≤ 1/2 and the following estimate; see Proposition 3.2 in [2].

LEMMA 4.2. Assume thatΩi and Ωj are scaled by the diameterHi of theΩi. For

φ ∈ H1/2−ǫ(F ) and0 < ǫ ≤ 1/2, we have

ǫ‖φ‖2
H1/2−ǫ(F ) ≤ C

∑

j

‖wj‖
2
1/2,∂Ωj

.

We need the following assumption on the coefficients of the elliptic problem.

ASSUMPTION4.3. The coefficients satisfy

ρi ≤ Cρj

whereΩi and Ωj are the nonmortar side and the mortar side of the common setFij =

∂Ωi ∩ ∂Ωj.

For any setA ⊂ ∂Ωi andwi ∈Wi, we define a nodal value interpolantIA(wi) ∈ Wi as

(4.4) IA(wi)(x) =

{
wi(x) x ∈ A ∩ Vi,

0 at the other nodes.

HereVi denotes the set of nodes in the finite element spaceWi. LetF ⊂ ∂Ωi be a nonmortar

edge/face. We denote byI(F ) the set containing the indices of the subdomains that intersect

F , and byπF the mortar projection given on the edge/faceF . We now provide the following

bound for functionsv ∈ L2(F ) and withπF v = 0 on∂F .

LEMMA 4.4. With Assumption 4.3 on theρi, w = (w1, · · · , wN ) ∈ W̃ satisfies

ρi‖πF (φ− wi)‖
2

H
1/2

00
(F )

≤ C

(
1 + log

Hi

hi

)3 ∑

k∈I(F )

〈S(k)wk, wk〉,

whereF ⊂ ∂Ωi is a nonmortar edge/face.

Proof. For any functionv(x) ∈ L2(F ) orL2(Ωl), let us define

v̂(x) = v(Hix), x ∈ F̂ or Ω̂l,

whereHi is the diameter of theΩi, andF̂ andΩ̂l denote the dilated sets. From the definition

of the mortar projection, we see that

(4.5) π̂F (v) = π bF v̂,

whereπ bF denotes the mortar projection based on the finite element space dilated byHi.

We now consider

‖πF (φ− wi)‖
2

H
1/2

00
(F )

≤ 2‖πF (φ)‖2

H
1/2

00
(F )

+ 2‖πF (wi)‖
2

H
1/2

00
(F )
.
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Let

φ̃ = wj − cij , w̃i = wi − cij onFij = ∂Ωj ∩ ∂Ωi,

where

cij =

∫
Fij

wiψij ds∫
Fij

ψij ds
=

∫
Fij

wjψij ds∫
Fij

ψij ds
.

We then havẽφ, w̃i ∈ H1/2−ǫ(F ) for 0 < ǫ ≤ 1/2 andφ − wi = φ̃ − w̃i, and can thus

replaceφ andwi above byφ̃ andw̃i, respectively.

By using a scaling argument and the identity (4.5), we have

‖πF (φ)‖2

H
1/2

00
(F )

= Hd−2
i ‖π̂F (φ)‖2

H
1/2

00
( bF )

= Hd−2
i ‖π bF (φ̂)‖2

H
1/2

00
( bF )

≤ 2Hd−2
i

(
‖π bF (φ̂−Qφ̂)‖2

H
1/2

00
( bF )

+ ‖π bF (Qφ̂)‖2

H
1/2

00
( bF )

)
,(4.6)

whereQφ̂ is theL2-projection ofφ̂ on the finite element spaceWi(F̂ ), i.e., the dilated finite

element space provided for the nonmortar edge/faceF̂ .

From an inverse inequality, the continuity ofπ bF in L2(F̂ ), the approximation property

of Q for a functionφ̂ ∈ H1/2−ǫ(F̂ ), Lemma 4.2, and a scaling argument, we obtain

‖π bF (φ̂−Qφ̂)‖2

H
1/2

00
( bF )

≤ Cĥ−1
i ‖φ̂−Qφ̂‖2

L2( bF )

≤ Cĥ−1
i ĥ1−2ǫ

i ‖φ̂‖2
H1/2−ǫ( bF )

≤ Cĥ−2ǫ
i ǫ−1

∑

j

‖ŵj‖
2
1,∂bΩj

.

Replacingφ̂ with ̂̃φ in the above estimate and using a Poincaré inequality and a scaling argu-

ment, we find

‖π bF (φ̂−Qφ̂)‖2

H
1/2

00
( bF )

≤ Cĥ−2ǫ
i ǫ−1

∑

j

|ŵnj |
2
1,∂bΩj

≤ CH2−d
i ĥ−2ǫ

i ǫ−1
∑

j

|wj |
2
1/2,∂Ωj

.(4.7)

We now estimate

‖π bF (Qφ̂)‖2

H
1/2

00
( bF )

=
∥∥∥π bF

(
I bF (Qφ̂) +Qφ̂− I bF (Qφ̂)

)∥∥∥
2

H
1/2

00
( bF )

≤ C
(
‖I bF (Qφ̂)‖2

H
1/2

00
( bF )

+ ĥ−1
i ‖Qφ̂− I bF (Qφ̂)‖2

L2( bF )

)
,(4.8)

whereI bF (wi) is the nodal value interpolant described in (4.4). Here, we have used thatπ bF is

a bounded map inH1/2
00 (F̂ ) as well as inL2(F̂ ), and also used an inverse inequality. By using
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Lemma 4.24 in [21], an inverse inequality, the stability ofQ in H1/2−ǫ(F̂ ), Lemma 4.2, a

Poincaré inequality, and a scaling argument, we obtain

‖I bF (Qφ̂)‖2

H
1/2

00
( bF )

≤ C

(
1 + log

Hi

hi

)2

‖Qφ̂‖2
H1/2( bF )

≤ C

(
1 + log

Hi

hi

)2

ĥ−2ǫ
i ‖Qφ̂‖2

H1/2−ǫ( bF )

≤ C

(
1 + log

Hi

hi

)2

ĥ−2ǫ
i ‖φ̂‖2

H1/2−ǫ( bF )

≤ C

(
1 + log

Hi

hi

)2

ĥ−2ǫ
i ǫ−1

∑

j

‖ŵj‖
2
1/2,∂bΩj

≤ CH2−d
i

(
1 + log

Hi

hi

)2

ĥ−2ǫ
i ǫ−1

∑

j

|wj |
2
1/2,∂Ωj

.(4.9)

We note thatQφ̂ − I bF (Qφ̂) has nonzero value only at the nodes on the boundary ofF̂ .

In two dimensions, by using Lemma 4.15 in [21], we obtain

‖Qφ̂− I bF (Qφ̂)‖2
L2( bF )

≤ Cĥi‖Qφ̂‖
2
∞, bF

≤ Cĥi

(
1 + log

Hi

hi

)
‖Qφ̂‖2

H1/2( bF )

and in three dimensions, by using Lemma 4.17 in [21], we also obtain

‖Qφ̂− I bF (Qφ̂)‖2
L2( bF )

≤ Cĥi‖Qφ̂‖
2
L2(∂ bF )

≤ Cĥi

(
1 + log

Hi

hi

)
‖Qφ̂‖2

H1/2( bF )
.

The same estimate, as before, for the term‖Qφ̂‖2
H1/2( bF )

gives

(4.10) ‖Qφ̂− I bF (Qφ̂)‖2
L2( bF )

≤ CH2−d
i ĥi

(
1 + log

Hi

hi

)
ĥ−2ǫ

i ǫ−1
∑

j

|wj |
2
1/2,∂Ωj

.

Combining (4.6) with (4.7)-(4.10) results in

ρi‖πF (φ)‖2

H
1/2

00
(F )

≤ C

(
1 + log

Hi

hi

)2

ĥ−2ǫ
i ǫ−1

∑

j

ρi

ρj
〈S(j)wj , wj〉.

The desired bound follows by lettingǫ = 1/(2|loĝhi|) and using the assumption thatρi/ρj ≤

C. We note that̂hi = hi/Hi and log(ĥ−2ǫ
i ) = 1. The same analysis applied to‖πF (wi)‖

2

H
1/2

00
(F )

gives

ρi‖πF (wi)‖
2

H
1/2

00
(F )

≤ C

(
1 + log

Hi

hi

)3

〈S(i)wi, wi〉.
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REMARK 4.5. For the geometrically conforming case, Lemma 4.4 is valid with a factor

(1 + log(Hi/hi))
2 using the same analysis as above. Therefore, in this case, weobtain a

better condition number estimate; see also Remark 4.8 below. The estimate improves the one

in [9, 11] by using the projectionQ; we do not need the assumption on the mesh sizeshi and

hj

hj

hi
≤ C

(
ρj

ρi

)γ

for some0 ≤ γ ≤ 1,

considered in [9, 11] whereΩi is the nonmortar side andΩj is the mortar side.

With the help of Lemma 4.4, we can establish property (P2) forthe operatorED.

LEMMA 4.6. With Assumption 4.3, the operatorED satisfies

|EDw|
2
eS
≤ C max

i

{(
1 + log

Hi

hi

)3
}
|w|2eS .

Proof. Using the weight matrixD in (4.2), the average operatorED in (4.1) is given by

ED




wn

wm

wΠ


 =




wn −B−1
n (Bnwn +Bmwm +BΠwΠ)

wm

wΠ


 ,

see Remark 4.1. Let

zn = wn −B−1
n (Bnwn +Bmwm +BΠwΠ),

and constructzi by restricting the unknowns(zn, wm, wΠ) to the subdomainΩi. Similarly,

we constructwi from (wn, wm, wΠ). We note that(w1, · · · , wN ) satisfies the primal con-

straints on the edges/faces. By definition,z = (z1, · · · , zN) ∈ Ŵ , i.e.,z satisfies the mortar

matching condition, and eachzi is of the form

zi = wi +
∑

F⊂∂Ωi

E
(i)
F πF (φ− wi),

whereF is a nonmortar edge/face in∂Ωi, E
(i)
F is the zero extension of functions defined on
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F to all of ∂Ωi \ F , andφ = wj onFij(:= ∂Ωj ∩ ∂Ωi) ⊂ F . We then obtain

|EDw|
2
eS

=

N∑

i=1

〈S(i)zi, zi〉

≤ C

N∑

i=1

(
〈S(i)wi, wi〉 +

∑

F⊂∂Ωi

〈S(i)E
(i)
F πF (φ− wi), E

(i)
F πF (φ− wi)〉

)

≤ C

N∑

i=1

〈S(i)wi, wi〉 +

N∑

i=1

∑

F⊂∂Ωi

ρi‖πF (φ− wi)‖
2

H
1/2

00
(F )

≤ Cmax
i

{(
1 + log

Hi

hi

)3
}

N∑

i=1

〈S(i)wi, wi〉

≤ Cmax
i

{(
1 + log

Hi

hi

)3
}
〈S̃w, w〉.

Here we have used that〈S(i)wi, wi〉 ≃ ρi|wi|2H1/2(∂Ωi)
, the relation in (4.3), and Lemma 4.4.

By using the properties (P1) and (P2), we can show the following condition number

bound of the BDDC operator (3.8). A similar proof is given in Li and Widlund [16] in an

analysis of a BDDC algorithm for the Stokes problem with conforming meshes.

THEOREM 4.7. With Assumption 4.3, we have the condition number bound

κ(BDDC) ≤ Cmax
i

{(
1 + log

Hi

hi

)3
}
.

Proof. We let

M−1 = Rt
D,ΓS̃

−1RD,Γ, Ŝ = Rt
ΓS̃RΓ,

and we then have

BDDC = M−1Ŝ.

We will now provide a lower bound by proving

〈u, u〉bS ≤ 〈u,M−1Ŝu〉bS .

Let w = S̃−1RD,ΓŜu. From property (P1),Rt
ΓRD,Γ = Rt

D,ΓRΓ = I, we obtainu =

Ŝ−1Rt
ΓS̃w. We then consider

〈u, u〉bS = utŜu

= utRt
ΓS̃w

= 〈w,RΓu〉eS

≤ 〈w,w〉
1/2
eS

〈RΓu,RΓu〉
1/2
eS

≤ 〈w,w〉
1/2
eS

〈u, u〉
1/2
bS
.
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Here we have used the Cauchy-Schwarz inequality. Squaring and cancelling a common fac-

tor, we obtain

〈u, u〉bS ≤ 〈w,w〉eS .

By combining the above estimate with

〈w,w〉eS = utŜRt
D,ΓS̃

−1S̃S̃−1RD,ΓŜu

= 〈u,Rt
D,ΓS̃

−1RD,ΓŜu〉bS

= 〈u,M−1Ŝu〉bS ,(4.11)

we obtain the desired lower bound.

We will now find an upper bound by proving

〈M−1Ŝu,M−1Ŝu〉
1/2
bS

≤ Cmax
i

{(
1 + log

Hi

hi

)3
}
〈u, u〉

1/2
bS
.

We consider

〈M−1Ŝu,M−1Ŝu〉bS = 〈Rt
D,Γw,R

t
D,Γw〉bS

= 〈RΓR
t
D,Γw,RΓR

t
D,Γw〉eS

= |EDw|
2
eS

≤ Cmax
i

{(
1 + log

Hi

hi

)3
}
|w|2eS .

The last inequality follows from Lemma 4.6. Combining the above estimate with (4.11), we

obtain

〈M−1Ŝu,M−1Ŝu〉bS ≤ C max
i

{(
1 + log

Hi

hi

)3
}
〈u,M−1Ŝu〉bS .

By applying the Cauchy-Schwarz inequality to the term〈u,M−1Ŝu〉bS, the desired upper

bound follows.

REMARK 4.8. The analysis above can be modified for the geometrically conforming

case and leads to the condition number bound

κ(BDDC) ≤ Cmax
i

{(
1 + log

Hi

hi

)2
}
,

when Assumption 4.3 holds; see Remark 4.5.

REMARK 4.9. For a geometrically non-conforming partition, the number of primal con-

straints tends to be bigger than for a conforming partition in case only edge/face constraints

are used. We note that there have been several previous studies which explore the possibility

of selecting primal constraints for only some of the edges/faces; see [10, 14, 15].
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FIG. 1. Geometrically non-conforming partition: white circles (nodes inVij

j
(⊂ ∂Ωj), j = l, k or Vij

i
(⊂

∂Ωi), j = l, k), black circles (nodes inN ij
j

(⊂ ∂Ωj), j = l, k or N ij
i

(⊂ ∂Ωi), j = l, k), each facesF , Fij ,

F i
ij andF j

ij
for j = l, k are described.

We will now provide a better estimate for geometrically non-conforming partitions under

an assumption on the meshes that is considered in [9, 11]. We will prove our result only for

the two-dimensional case; in three dimensions there are some additional technical difficulties.

We conjecture that the result also holds in that case.

ASSUMPTION4.10.The mesh sizeshi andhj satisfy

hj

hi
≤ C

(
ρj

ρi

)γ

for some0 ≤ γ ≤ 1,

whereΩi is the nonmortar side andΩj is the mortar side.

LEMMA 4.11.With Assumptions 4.3 and 4.10,(w1, · · · , wN ) ∈ W̃ satisfies

ρi‖πF (φ− wi)‖
2

H
1/2

00
(F )

≤ C max
k∈I(F )

{(
1 + log

Hk

hk

)2
}
∑

k∈I(F )

〈S(k)wk, wk〉,

whereF ⊂ ∂Ωi is a nonmortar edge/face andI(F ) is the set of the indices of the subdomains

that intersectF .

Proof. We consider the case in Figure 1. The nonmortar edgeF ⊂ ∂Ωi is partitioned

intoFil andFik andφ is given bywj onFij , j = l, k. Since the function(w1, · · · , wN ) ∈ W̃

satisfies the primal constraints, we have
∫

Fij

(φ− wi)ψij ds =

∫

Fij

(wj − wi)ψij = 0, j = l, k,

and we then define

cij =

∫
Fij

wiψij ds∫
Fij

ψij ds
=

∫
Fij

wjψij ds∫
Fij

ψij ds
, j = l, k.

Let

w̃i = wi − cij and φ̃ = wj − cij on Fij , j = l, k.
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We note thatφ− wi = φ̃− w̃i.

LetV ij
i be the set of nodes inVi with nodal basis functions supported inFij . We denote

by F i
ij the union of these supports. We note thatF i

ij ⊂ Fij . The setV ij
j andF j

ij are defined

similarly; see Figure 1.

Let N ij
i be the set of nodes inVi \ V ij

i with nodal basis functions with support that

intersectsFij . The setN ij
j is defined similarly. In general, we may assume that the number

of nodes in each setN ij
j andN ij

i is bounded uniformly with respect to the mesh parameters.

We consider

‖πF (φ− wi)‖
2

H
1/2

00
(F )

=

∥∥∥∥∥∥
πF


∑

j=l,k

IF j
ij

(wj − cij) −
∑

j=l,k

IF i
ij

(wi − cij)

(4.12)

+φ̃−
∑

j=l,k

IF j
ij

(wj − cij) − w̃i +
∑

j=l,k

IF i
ij

(wi − cij)



∥∥∥∥∥∥

2

H
1/2

00
(F )

.

Since the first two terms in the above equation are inH
1/2
00 (F ), the continuity of the

mortar projection inH1/2
00 (F ) and Lemma 4.24 in [21] give

‖πF (IF j
ij

(wj − cij))‖
2

H
1/2

00
(F )

≤ C‖IF j
ij

(wj − cij)‖
2

H
1/2

00
(F )

= C‖IF j
ij

(wj − cij)‖
2

H
1/2

00
(F j

ij)

≤ C

(
1 + log

Hj

hj

)2

‖wj − cij‖
2
H1/2(∂Ωj)

,(4.13)

and

(4.14) ‖πF (IF i
ij

(wi − cij))‖
2

H
1/2

00
(F )

≤ C

(
1 + log

Hi

hi

)2

‖wi − cij‖
2
H1/2(∂Ωi)

.

We now bound the third term in (4.12) as follows:

‖πF (φ̃−
∑

j=l,k

IF j
ij

(wj − cij))‖
2

H
1/2

00
(F )

≤ Ch−1
i ‖πF (φ̃−

∑

j=l,k

IF j
ij

(wj − cij))‖
2
L2(F )

≤ Ch−1
i ‖φ̃−

∑

j=l,k

IF j
ij

(wj − cij)‖
2
L2(F )

≤ Ch−1
i

∑

j=l,k

‖wj − cij − IF j
ij

(wj − cij)‖
2
L2(Fij)(4.15)

≤ Ch−1
i

∑

j=l,k

hj‖wj − cij‖
2
L∞(∂Ωj)

≤ Ch−1
i

∑

j=l,k

hj

(
1 + log

Hj

hj

)
‖wj − cij‖

2
H1/2(∂Ωj)

.(4.16)
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We have used an inverse inequality, the continuity ofπF in L2(F ) and Lemma 4.15 in [21].

The expression in (4.15) has nonzero values at the nodes inN ij
j . By using the fact that the

number of nodes inN ij
j is bounded independently of any mesh parameters (at most three in

Figure 1), we have

‖wj − cij − IF j
ij

(wj − cij)‖
2
L2(Fij)

≤ Chj‖wj − cij‖
2
L∞(∂Ωj)

.

Similarly, we have a bound for the last term in (4.12):

‖πF (w̃i −
∑

j=l,k

IF i
ij

(wi − cij))‖
2

H
1/2

00
(F )

≤ C

(
1 + log

Hi

hi

) ∑

j=l,k

‖wi − cij‖
2
H1/2(∂Ωi)

.(4.17)

As a result, (4.12), (4.13), (4.14), (4.16), and (4.17) give

‖πF (φ− wi)‖
2

H
1/2

00
(F )

≤ C max
k∈I(F )

{(
1 + log

Hk

hk

)2
}

∑

j=l,k

(
‖wi − cij‖

2
H1/2(∂Ωi)

+

(
1 +

hj

hi

)
‖wj − cij‖

2
H1/2(∂Ωj)

)
.

A Poincaré inequality can be applied to the functionswi − cij andwj − cij and this replaces

the norms by semi-norms. By using the relation

ρi|wi|
2
H1/2(∂Ωi)

≃ 〈S(i)wi, wi〉,

we obtain the following bound

ρi‖πF (φ− wi)‖
2

H
1/2

00
(F )

≤ C max
k∈I(F )

{(
1 + log

Hk

hk

)2
}

∑

j=l,k

(
〈S(i)wi, wi〉 +

(
1 +

hj

hi

)
ρi

ρj
〈S(j)wj , wj〉

)
.

By using Assumptions 4.3 and 4.10, we then have
(

1 +
hj

hi

)
ρi

ρj
≤ C

(
1 +

(
ρi

ρj

)1−γ
)

≤ C.

Therefore the required bound holds with a constantC which does not depend further on the

mesh parameters and the jumps of the coefficients.

By using Lemma 4.11 and the same analysis as in Theorem 4.4, weobtain a better

condition number bound for the geometrically non-conforming case.

THEOREM 4.12. For a geometrically non-conforming subdomain partition and in two

dimensions, the BDDC operator satisfies

κ(BDDC) ≤ Cmax
i

{(
1 + log

Hi

hi

)2
}
,

when Assumptions 4.3 and 4.10 hold.
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5. A connection between FETI–DP and BDDC methods.In this section, we will

show that the BDDC algorithm developed in the previous sections is closely connected to the

FETI–DP algorithm developed by the first author in [9, 10] andby her jointly with Lee in

[11]. These two algorithms will be shown to share the same spectra except possibly for an

eigenvalue equal to 1.

A study comparing the spectra of the BDDC algorithm to that ofthe FETI–DP algo-

rithm was carried out by Mandel, Dohrmann and Tezaur [20] forconforming finite elements.

They showed that these two algorithms have the same set of eigenvalues except possibly for

eigenvalues equal to 0 and 1. Recently, a quite simple proof of this fact was given by Li and

Widlund [17]. They formulated the BDDC operators as well as the FETI–DP operators using

a change of variables and introducing certain projections and average operators. These pro-

jections and average operators provide an important connection between the FETI–DP and

the BDDC operators.

We first formulate a FETI–DP operator with the change of variables introduced in Sec-

tion 2.2. We then show that the FETI–DP operator has essentially the same spectrum as the

BDDC operator by establishing several properties of the projections and average operators

that are used in the analysis by Li and Widlund [17].

After the change of variables, the linear system consideredin the FETI–DP formulation

is given by

(5.1)




S∆∆ S∆Π Bt
∆

SΠ∆ SΠΠ Bt
Π

B∆ BΠ 0







u∆

uΠ

λ


 =




g∆

gΠ

0


 ,

where the matricesS∆∆, S∆Π, SΠ∆, andSΠΠ are defined in (2.11) and the matricesB∆ and

BΠ are obtained from the mortar matching condition (2.8). We note that the subscriptsΠ and

∆ stand for the unknowns or submatrices related to the primal variables and the remaining

part, respectively, and thatλ ∈M , the non-redundant Lagrange multiplier space.

After eliminating the unknownsu∆ anduΠ, we obtain an equation forλ ∈M :

(5.2) BΓS̃
−1Bt

Γλ = d,

where

(5.3) BΓ =
(
B∆ BΠ

)
, S̃ =

(
S∆∆ S∆Π

SΠ∆ SΠΠ

)
,

andd is also the result of Gaussian elimination.

We will now express the Neumann-Dirichlet preconditioner considered in [9, 10, 11]

using the change of variables. We recall the spaceWn, defined in (2.4) and then define

W̃n :=

{
wn ∈ Wn :

∫

Fij

wnψij ds = 0, ∀Fij , ∀F ⊂ ∂Ωi, ∀i

}
,
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whereF ⊂ ∂Ωi are nonmortar edges/faces with the partition{Fij}j . For the geometrically

conforming case, the spacẽWn consists of functions with zero average on each nonmortar

edge/faceF becauseψij = 1.

The Neumann-Dirichlet preconditionerM−1
DP is defined by

(5.4) 〈MDPλ, λ〉 = max
wn∈fWn

〈BE(wn), λ〉2

〈SE(wn), E(wn)〉
,

whereE(wn) is the zero extension ofwn to all the interfaces andB =
(
B(1) · · ·B(N)

)
.

Here we considerλ ∈ M , a non-redundant Lagrange multiplier space, and hence the mor-

tar matching matrixB has one less row for each nonmortar edge/face than in the original

formulation in [9, 10, 11].

We recall the spaceW∆ given in (2.7) and note that it can be split into

W∆ = W∆,n ⊕W∆,m,

wheren andm denote the unknowns of the nonmortar edges/faces and mortaredges/faces,

respectively. The vectors in these spaces are represented by the unknowns after the change of

variables. The spaceW∆,n is then identical tõWn except that the bases are different.

By using the change of variables, (5.4) can be written as

(5.5) 〈MDPλ, λ〉 = max
w∆,n∈W∆,n

〈B̂ Ê(w∆,n), λ〉2

〈Ŝ Ê(w∆,n), Ê(w∆,n)〉
,

where

B̂ =
(
B̂(1) · · · B̂(N)

)
, Ŝ = diag(Ŝ(i)).

The matriceŝS andB̂ act on the new unknownsw(i)
∆ andw(i)

Π that result from the change of

variables. The extension̂E(w∆,n) = (w1, · · · , wN ) is given by

wi =

(
w

(i)
∆

w
(i)
Π

)
,

wherew(i)
∆ is zero on the mortar edges/faces,w

(i)
∆ is equal tow∆,n on the nonmortar edges/faces,

andw(i)
Π is zero.

The formula (5.5) can be written as

(5.6) 〈MDPλ, λ〉 = max
w∆,n∈W∆,n

〈Bnw∆,n, λ〉2

〈Snnw∆,n, w∆,n〉
.

Here the matricesBn andSnn are submatrices ofB∆ andS∆∆ in (5.1) corresponding to the

nonmortar part. We see thatSnn : W∆,n → W∆,n andBn : W∆,n → M are invertible. The

maximum in (5.6) occurs whenSnnw∆,n = Bt
nλ and hence it follows that

M−1
DP = (Bt

n)−1SnnB
−1
n .
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Further this matrix can be written as

(5.7) M−1
DP = BΣ,ΓS̃B

t
Σ,Γ,

where

Bt
Σ,Γ =




Σnn

Σmm

ΣΠΠ







Bt
n

Bt
m

Bt
Π




with the weights given by

Σnn = (Bt
nBn)−1, Σmm = 0, ΣΠΠ = 0.

Here the matrixBm is a submatrix ofB∆ corresponding to the unknowns of the mortar part.

Therefore the FETI–DP operator with the Neumann-DirichletpreconditionerM−1
DP is

given by

M−1
DPFDP = BΣ,ΓS̃B

t
Σ,ΓBΓS̃

−1Bt
Γ,

while the preconditioned BDDC operator is given by

BDDC = Rt
D,ΓS̃

−1RD,ΓR
t
ΓS̃RΓ.

Let us now define the following jump and average operators

PΣ = Bt
Σ,ΓBΓ, ED = RΓR

t
D,Γ.

The following results are provided in [17, Section 5].

THEOREM 5.1. Assume thatPΣ andED satisfy

1. ED + PΣ = I,

2. E2
D = ED, P 2

Σ = PΣ,

3. EDPΣ = PΣED = 0.

Then the operatorsM−1
DPFDP andBDDC have the same eigenvalues except possibly for the

eigenvalue equal to 1.

We will now show that the assumptions in Theorem 5.1 hold for the operatorsPΣ and

ED. We express the spacẽW by using the unknownswn, wm, andwΠ:

W̃ =
{
(wt

n, w
t
m, w

t
Π)t : ∀wn, wm, wΠ

}
,

and we recall the mortar finite element space

Ŵ = {w ∈ W̃ : Bmwm +BΠwΠ +Bnwn = 0}.

We note thatPΣ andED are operators defined on the spaceW̃ .

LEMMA 5.2. The operatorsPΣ andED satisfy



24 KIM, DRYJA AND WIDLUND

1. ED + PΣ = I,

2. E2
D = ED, P

2
Σ = PΣ,

3. EDPΣ = PΣED = 0.

Proof. From

Σmm = 0, ΣΠΠ = 0, Σnn = (Bt
nBn)−1,

Dmm = I, DΠΠ = I, Dnn = 0,

we have

PΣw =




B−1
n (Bmwm +BΠwΠ +Bnwn)

0

0


 ,

EDw =




−B−1
n (Bmwm +BΠwΠ)

wm

wΠ


 .

Hence,

ED + PΣ = I.

We will now show thatE2
D = ED. Since Range(ED) ∈ Ŵ andEDw = w for all

w ∈ Ŵ , we obtain

ED(EDw) = EDw for all w ∈ W̃ .

This implies that

(5.8) E2
D = ED.

FromED + PΣ = I andE2
D = ED, we have

ED(ED + PΣ) = ED

and therefore

EDPΣ = 0.

Moreover, fromPΣw = 0 for all w ∈ Ŵ and Range(ED) ∈ Ŵ , we can show that

PΣED = 0.

To show thatP 2
Σ = PΣ, we consider

PΣ(ED + PΣ) = PΣ,
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and fromPΣED = 0, we obtain

P 2
Σ = PΣ.

REMARK 5.3. Other FETI–DP preconditioners in two dimensions with different weights

Σ =




Σnn

Σmm

ΣΠΠ




have been developed and shown to give a condition number bound

Cmax
i

{
(1 + log(Hi/hi))

2
}

for some geometrically conforming cases with nonzero weights Σmm andΣΠΠ; see [6, 5].

We have not found a weight matrixD that results inED + PΣ = I for such a choice ofΣ.

6. Numerical tests. In this section, we discuss numerical tests which compare the effi-

ciency of the BDDC method and that of the FETI–DP method. ForΩ = [0, 1]2, we solve the

elliptic problem with the exact solutionu(x, y) = sin(πx)(1 − y)y;

−∆u = f in Ω,

u = 0 on∂Ω.

We have carried out experiments for both matching and non-matching grids employing the

mortar matching conditions across the interfaces. The CG (Conjugate Gradient) iteration

continues until the residual norm has been reduced by a factor 10−6.

The domainΩ is divided into square subdomains as in Figure 2. For matching grids,

we introduce uniform meshes withn nodes on each horizontal and vertical edge. To make

the meshes non-matching across subdomain interfaces, we generate triangulations in each

subdomain in the following way: for each subdomain, we choosen random quasi-uniform

nodes on each horizontal and vertical edges. From these nodes, we generate nonuniform

structured grids in each subdomain. Since we choose the samenumber of quasi-uniform

nodesn for all subdomains, the mesh sizes of neighboring subdomains are comparable.

First, we compare the two algorithms with the matching gridsemploying the mortar

matching condition and primal constraints at the vertices.In Table 1, we divideΩ intoN =

4 × 4 subdomains (see Figure 2) and increase the number of nodesn. We computeL2- and

H1-errors between the exact solution and the solution of the iterative method, the number of

CG iterations, and the minimum and the maximum eigenvalues of the BDDC and the FETI–

DP operators. For theH1-error, we compute the brokenH1-norm based on the subdomain

partition. Table 2 shows the numerical results when we fixn − 1 = 4 and increaseN , the
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Ω00

Ω01

Ω10

Ω

Ω

ij

33

FIG. 2. Partition of subdomains whenN = 4 × 4

number of subdomains. ForN = 8 × 8, 16 × 16 and32 × 32, we divideΩ into square

subdomains in the same manner as forN = 4 × 4. We see that both methods gives the same

accuracy. The minimum eigenvalues of the BDDC operator are always equal to 1 while those

of the FETI–DP operator are greater than 1. The maximum eigenvalues of both operators are

almost the same.

In Table 3 and 4, we perform the same computations for non-matching grids. The results

shows similar patterns for the minimum and maximum eigenvalues as for matching grids

except that the minimum eigenvalues of FETI–DP operator converge to 1 when the number

of nodes increases; see Table 3.

From the numerical results, we see that the BDDC operator always has the minimum

eigenvalue 1 while the FETI–DP operator has all its eigenvalues greater than 1 and that these

operators have almost the same maximum eigenvalues. Generally, we can conclude that the

two algorithms perform quite similarly.

TABLE 1

(Matching grids) Comparison of FETI–DP and BDDC methods when n increases with a fixed number of

subdomainN = 4 × 4

M−1
DPFDP BDDC

n− 1 ‖u− uh‖0 ‖u− uh‖1 Iter λmin λmax Iter λmin λmax

4 4.1293e-4 5.7497e-2 10 1.43 4.01 11 1.00 4.01

8 1.0399e-4 2.8798e-2 12 1.35 5.64 13 1.00 5.64

16 2.6057e-5 1.4405e-2 14 1.31 7.64 15 1.00 7.64

32 6.5183e-6 7.2036e-3 15 1.31 1.00e+1 16 1.00 1.00e+1

64 1.6315e-6 3.6019e-3 16 1.35 1.27e+1 18 1.00 1.27e+1
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