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Abstract. A BDDC (balancing domain decomposition by constraints)oathm is developed for elliptic
problems with mortar discretizations for geometricallynfmnforming partitions in both two and three spatial
dimensions. The coarse component of the preconditioneefisatl in terms of one mortar constraint for each
edge/face which is an intersection of the boundaries of agiadubdomains. A condition number bound of the
form C'max; {(1 + log(H;/h;))3} is established. In geometrically conforming cases, thetd@an be improved
to C'max; {(1 + log(H,/h;))?}. This estimate is also valid in the geometrically noncomfmg case under an
additional assumption on the ratio of mesh sizes and jumpiseo€oefficients. This BDDC preconditioner is also
shown to be closely related to the Neumann-Dirichlet prdi@mer for the FETI-DP algorithms of [9, 11] and it
is shown that the eigenvalues of the BDDC and FETI-DP methoelthe same except possibly for an eigenvalue
equal to 1.
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1. Introduction. This study focuses on a scalable BDDC algorithm for solvingdr
systems arising from mortar finite element discretizatiohglliptic problems. A BDDC
method was first introduced by Dohrmann [4] as an improvemigtie balancing Neumann-
Neumann method and using different coarse finite elemeespd he coarse space consists
of a weighted sum of functions each of which minimizes thalaliscrete energy norm with
certain constraints on the subdomain interfaces; comgirafithe solutions at vertices, or
average or momentum matching condition on solutions ovgegfaces are considered in
[4, 16, 17, 19, 20]. The resulting coarse problem then givemee local coupling between
the subdomains than for the older balancing methods and fmreedom in choosing the
constraints to improve the convergence. An additional athge is that all linear systems will
have positive definite, symmetric matrices at least for caning finite element problems.

The constraints on the coarse finite element space are asimsame as those of a
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FETI-DP algorithm. In a FETI-DP algorithm, a linear systesmiulated for a set of dual
variables is solved after eliminating the primal unknowelated to the primal constraints,
given by average matching condition over edges/faces dimoty of the solutions at ver-
tices. The resulting linear system, in itself, containsarse problem while its preconditioner
is built only from subdomain problems. In a BDDC method, &#insystem of the primal
variables is solved iteratively with a preconditioner thas both coarse and subdomain com-
ponents. This provides BDDC methods with more flexibiliypwing for the use of inexact
coarse problems. Thus, an inexact coarse problem can beimed by applying the BDDC
method recursively to the coarse problem; see Tu [22, 233.uBe of inexact local problems
for the BDDC preconditioners has also been considered bypd Mdidlund [18].

Recently the BDDC methods have been shown to be closelyedetatthe FETI-DP
methods. A condition number bound of the BDDC operator was given by Mandel and
Dohrmann [19]. They proved@(1 + log(H/h))? bound that is comparable to that for the
FETI-DP methods. Further, Mandel, Dohrmann, and TezaurgB6wed that the eigen-
values of the FETI-DP and BDDC operators are the same exosgtigy for eigenvalues
equal to 0 and 1. Recently, a new formulation of the BDDC meétias given by Li and
Widlund [17]. They introduced a change of variables as weka average operator for the
BDDC method based on the jump operator used in [15] in theyaisabf FETI-DP methods.
The change of variables greatly simplifies the analysisa# &lso led to a successful and
robust implementation of FETI-DP algorithms [12, 13].

In this paper, we will first describe a BDDC algorithm with anao discretization and a
change of variables. Primal constraints on edges/facéstanduced. We consider quite gen-
eral geometrically non-conforming partitions and the selbgeneration of the mortar method
as well as the dual basis mortar methods. A preconditioribeis proposed which uses a cer-
tain weight matrixD, that leads to the condition number boufitimax; { (1 + log(H;/h;))*}.
Section 4 is devoted to proving the condition number bourtdrims of a bound of an average
operatorEp in a certain norm. The algorithm can also be applied to a gé&arally conform-
ing partition and then gives a better bourtdmax; { (1 + log(H;/h;))*}. The same bound
can be established for geometrically non-conforming pants with an additional assumption
on the mesh sizes.

In Section 5, we show that the preconditioner proposed farBIDDC algorithm is
closely connected to the Neumann-Dirichlet preconditiai¢he FETI-DP algorithm given
in [9, 11]. By establishing connections between the aveeagkjump operators, the spectra
of the BDDC and FETI-DP algorithms are then shown to be theesexaept possibly for
an eigenvalue equal to 1. This approach was used by Li anduddl17] and provided a
simpler proof for the condition number bound of the BDDC aition. Our BDDC algorithm
is also applicable to elasticity problems employing a prelitioner that is closely connected
to the Neumann-Dirichlet preconditioner of the FETI-DPfaifation developed in [10].
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In the final section, numerical results show that the FETI-dDB BDDC algorithms
perform very similarly when the same set of primal constsade selected.

Throughout this papet; denotes a generic constant that does not depend on any mesh
parameters and coefficients of the elliptic problems.

We note that this paper originated from two projects devetdigeparately by the first and
the second authors; the contribution of the third authoahegith a suggestion that a theory
could be developed for the geometrically non-conformirggca

2. Finite element spaces and mortar matching constraints.

2.1. A model problem and mortar methods. We consider a model elliptic problem in
a polygonal/polyhedral domain ¢ R? (R3): find u € H}(Q) such that

=V (p(x)Vu) = f(z) VreQ,

(2.1)
u=0 0nos,

wherep(z) > po > 0 andf(z) € L*(Q).
Let 2 be partitioned into disjoint polygonal/polyhedral subdons

N
a-Ja.
i=1

We assume that the partition can be geometrically non-corifm, see discussion below, and
thatp(z) = p;, « € Q, for some positive constapt.

We denote byX; the P;-conforming finite element space on a quasi-uniform triangu
lation T; of each subdomaif;. TheT; might not align across subdomain interfaces. The
spacédV; is the trace space of; on9df2;. We then introduce the product spaces

For functions in these spaces, we will impose the mortar hiagocondition across the inter-
faces using suitable Lagrange multiplier spaces.

In a geometrically non-conforming partition, the intettsee of the boundaries of neigh-
boring subdomains can be only a part of a edge/face of a sudidoiret us define the entire
interface by

r=||Jonoo; |\ oo
ij

Among the subdomain edges/faces, we select nonmortar/éatgess; for which

UFi=T, EnF.=0,1#k
l
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Since the subdomain partition can be geometrically norferaring, a single nonmortar
edgeffacd; C 012; may intersect several subdomain boundasi@s. This providest; with
a partition

F[ = UFij’ Fij =900; N 6QJ
J

A dual or a standard Lagrange multiplier spadeis given for each nonmortar edge/fake
We require that the spadd; has the same dimension as the sgﬁd@) = W;|r NH(F)
and that it contains the constant functions. Constructidrssich Lagrange multiplier spaces
were introduced in [1, 3] for standard Lagrange multiplipases and in [24, 25] for dual
Lagrange multiplier spaces; see also [8].

For (w1, -+ ,wy) € W, we definep € L*(F)) by ¢ = w; on F;; C F,. The mortar
matching condition for the geometrically non-conformiragtition is given by

2.2) / (w; — d)Ads =0, VA€ My, V.
F,

We write its matrix representation as
N

(2.3) > BOw =0,
=1

with w(® a vector representation af; using nodal basis functions. We further define the
following product spaces by gathering the spaﬁ:ﬁsandv?/(ﬂ) given on each nonmortar
edges/faces:

(2.4) M=[[M. W.=][WE).

The mortar finite element method for problem (2.1) is to agpnate the solution by
Galerkin's method in the mortar finite element space

X = {v € X : v satisfies the mortar matching condition (2.2)

2.2. Finite element spaces with a change of variablesn this subsection, we introduce
a change of variables for the unknowns in the sg&ceThis change of variables is based on
the primal constraints that will be imposed in our BDDC altfon. In mortar discretizations,
we may consider the following sets of primal constraintsteseconstraints, vertex and edge
average constraints, or edge average constraints onlyéospatial dimensions, and vertex
constraints and face average constraints, or face avemugtraints only for three spatial
dimensions. We note that vertex constraints are appreidy for the first generation of the
mortar method. In order to reduce the number of primal cairgs, we can select only some
edges/faces or some vertices as primal where the primatrednts will be imposed. Such
choices have been considered for the FETI-DP algorithmsamniibirming finite elements in
[14] and for mortar finite elements in [10].
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In our BDDC formulation, we will introduce certain primalgstraints over edges/faces
that are selected from the mortar matching constraintg.(#2 considet{v;; » }, the basis
functions inM,; that are supported iE-j, and define

bij =Y Vijk
P

We assume that at least one such basis funetign exists for eaclf;; C F;.

We now introduce the following primal constraints fav,--- ,wy) € W over each
edgefface;
(2.5) /F(wz —w;);; ds =0,
and define
(2.6) W= {w e W : w satisfies the primal constraints (2}5)

Note thatiV ¢ W C W, whereW is the restriction ofX to I'. For the case of a geo-
metrically conforming partition, i.e., whef;; is a full face of two subdomains, the above
constraints are edge/face average matching conditiorubegg; = 1. In addition to the
above constraints, vertex constraints can be considerdbddirst generation mortars if the
partition is geometrically conforming.

We now introduce a change of variables, following Li and Wil [17], based on the
primal constraints and in the two dimensional case. This@agh can also be extended to
the three dimensional case without any difficulty.

We recall thatF" C 99, is a nonmortar edge/face and tHdt;; }; is a partition of F
given by F;; = F N 99, a mortar edge/face &t;. We denote by z;}! _, the unknowns
of w; € W; at the nodes irF related to the Lagrange multipliefs);; .} and by{vx},_,
the unknowns at the remaining nodesAin We will now define a transform that retains
the unknowns{v,}7_, and changegz;},_, into {Z;}}_, so that for a fixedn, chosen
arbitrarily, z,,, satisfies

=N fF” wiwij dS
Zm = —F—————.
wa wij dS

Let

A fFij akwij ds _ fpi]. Prijds
CT Ty uds T T g ds

WheregzNSk and ¢, are the nodal basis functions of the unknowpsndzy, respectively. For
a simpler presentation, we assume that 2 but the following can be generalized to any
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We then consider the following transforfi, ;:

V1 V1 1 0 0 -- 0 0 0 - 0 V1
(%) (%) 0 (%)
zZ1 /2\1 0 0 1 s 0 A 0 cee 0 /2\1
Zm—1 - TFij 2m71 - 0 0 O e 1 A O e O 2m71
Zm Zm et e 1o Tme1r A oty oo Zm
Zm—+1 /Z\m+l 0 0 0 s 0 A 1 s 0 /Z\m-‘,-l
2 21 o 0 0 --- 0 A 0 e 1 21
U1
va
21
/Z\m—l
=A 2\771 + /Z\O 3
2'\m+1
1 i
where

2o =c1v1 + Vs + 1121 + -+ Tm—1Zm—1 + Tm412m+1 + - - - + 1121,

et R Rk
- E:ﬁgﬂhfC7 b ham

We see that this transform satisfies the requirements saat@ee. The transforiiy,; can be
applied to each facg;; C F independently.

A , k#m

For the case when an edgecC 0%; is a mortar edge, there exist$)a across the inter-
face with a nonmortar side. We then considgy = I' N 0€;. In this case, the unknowns
{z}! _, are related to the nodes i with its basis functions supported #;; and the re-
maining unknowns it are denoted byv;, },_, . The transform,; is then defined for these
unknowns as before.
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By gathering the transforni&g,; of all ' C 09;, we get a transforri(®) /V[Z- — W;

of the form
(1) (4)
T(Z) _ Tr'r‘ Trc 7
0 I

wherec andr stand for the unknowns retained by the transform and theiréngaunknowns,
respectively, anWi denotes the space of new unknowns. With this set of new unkaaive
local stiffness matrix, the mortar matching matrix, andltreal force vector are written as

a6 )t (i) (i =0 i) (i ~(i i)t @
S()zT()S()T(), B():B()T()7 g():T()g()_

The unknowng,,, the unknowns for the averages over the edges, are the praral
ables. With this set of new variables, the spﬁ?ﬁén (2.6) can be represented as

(2.7) W =Wa® W,

whereW consists of functions with a zero value at the primal vagaldndii’;; consists
of functions with a zero value at the other variables. We (tebng) the restriction of the
primal unknownsu; € Wy to the subdomaif2;. By using the set of new unknowns, the
mortar matching condition (2.3) can be written as

(2.8) Bawa + Briwn = 0.

Here
N . .
Ba=(BY-BY"), Bu=Y BYRY,
=1

whereBg) andBX) are submatrices a8 with columns corresponding to the primal vari-
ables and the remaining unknowns, respectively.

Furthermore the mortar matching condition on function8iwill be imposed by using
non-redundant Lagrange multipliers. We select the nonsrddnt Lagrange multipliers as
follows. From the bases d¥/;, we eliminate one basis element amojng; « } 1 for each
F;; C F and denote the reduced Lagrange multiplier spacé/fy The non-redundant
Lagrange multiplier space is then defined as

M =[]
l

The mortar matching condition (2.2) is imposed on the sri/évfcd{)y using the non-
redundant Lagrange multipliepss€ M. To simplify the notation, we use the same notation
as in (2.8) for this case, i.e.,

Bawa + Brown = 0.
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The spacéVa can be split into
Wa =Wan ® WA m,

wheren andm denote unknowns at nonmortar edges/faces (interior) andetimaining un-
knowns, respectively. The above equation can be written as

(2.9) B, w,, + Byw,, + Bown = 0.

After the change of variables, we order the local Schur cempht matrix and the local
Schur complement vector into

al) a6 (1)

g6 — S(AA (A%'I ~() _ g(A
“la g )0 97T -0
Stna S 9n

and define a matrix and vectors by

95)

~(1)
g
s Saa  San 4 N ()P (0)
(2.10) S = P BN =Y RGO,
A ST P
~(N)
/N
where
SAA = diagfil (§(AZ)A) R
— ntaa MNEa(N _at
(2.11) Sna = (R'SE - RM'SN). San = Sha,

N
Sun =3 RY S RY.
i=1
3. A BDDC algorithm for the mortar discretizations. In this section, we formulate
a BDDC operator for the elliptic problem described in Setthl. We consider the same
finite element space and subdomain partition as in Sectibm2d use the unknowns after
the change of variables introduced in Section 2.2. We wilitahe hats for the transformed
matrices to simplify the notation.
We recall the mortar matching condition (2.9). Since therinaB,, is invertible, we
solve (2.9) forw,,

wy, = — B, Y(Bpwpn, + Briwr).

We then define the matrix

-B,'B,, —B;'Bn
I 0 )
0 I

(3.1) Rr
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which maps(w!,, wk )" into a vector(w?,, w!,, w};)* that satisfies the mortar matching con-
dition (2.9). Let us define the mortar finite element space by

o~

W = {w €W : (wn,wn,wy) satisfies (2.9} .

In the BDDC method, we approximate the solution of the atliptoblem in the mortar finite
element spac@ and obtain the following discrete problem:

(3.2) RLSRr [ ™) = RL (T,
wrt gn

whereg,, is the component of the vectgp in (2.10) other than the nonmortar part.
We now introduce a coarse finite element space based on thalmonstraints so as to
solve (3.2) efficiently. In each subdomain, we solve theofgihg problem

3.3) (SX)A S?H) (‘I’(A)>:< K )
SiA - St ) \ 1y Fih I

where the matrix[g) is the identity matrix of a dimension equal to the number dmgait
variables of2;. We then obtain

g _ (YR _ [~ (58N SEnt
1y 1y

i i i) o(i) ~1aG
Fi = 55~ SEASEL 5

and also

Let Rg) Wi — Wr(f) restrict the global primal variables to the subdon@jnFrom ¥ (9,
we construct the coarse finite element spdicas follows:

vRY
U =
g RV
Each columny of the matrix¥ is related to a primal variable. Since, the veatoe W has
the same values at the primal variables, we take (1% , 44" from the vector) and define

a matrix¥ with the columns). We then obtain
(3.4) T =Rh =Y (RO (SO0 SSh R,

=1
whereRY : Wi — Wa x Wp and(RX))t : WX) — Wa x Wy are zero extensions.

Let us now define

Dnn

(35) RD-,F = Dmm RF?
Drn
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where the matrice®,,,,, D.,.,, and Dy will be specified later. We then propose the follow-
ing preconditionen/ ~* for the problem (3.2)

(3.6) M~ =R, { (Sglﬁ 8) + @(\Iﬁs\y)lﬁt} Rpr,
where
S = diag, (S(i))
andSan is givenin (2.11). We will show that
USU = Fy,
where
N

Frim = St — SnaSxaSam = Z(Rl(ji))t (51(1% - Sl('Ii)A(SX)A)_IS(Ai%I) Rg)-
=1

From the definition of’, we have

N
visw =Y (R () sOwDRY,

i=1
and from (3.3), we obtain
3.7) VST =Y (RY) R RY = Fm.

=1
Using the block Cholesky decomposition@hs in Li and Widlund [17] and above, see

also (2.10), we have

-1 Saa 0
0 0

N
(- S s st )
i=1

N t

(- om0 sy )
=1

By combining the above equation with (3.4) and (3.7), we iobta

~ S<L o0 _ —_
S = < 3A 0) + (VST

Therefore, the BDDC operator, see (3.2), with the precamtir M —! in (3.6) can be written
as

(3.8) Bppc = R 1S'Rp rRLSRr.
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4. Condition number analysis using a bound or¥'p. In this section, we will estimate
the condition number of the BDDC operator by using an apgraattoduced in [16]. A
bound for the average operatby, in a certain norm is central in the analysis. We recall the
definitions of Rr andRp r in (3.1) and (3.5), respectively. The operaify is defined as

4.2) Ep= RFR}),F,
where the weight matri¥o will be chosen so that

(P1) RtRpr = RppRr =1
H\°
(P2) |EDw|2§ < C’mlax { <1 + IOgh_Z> } |w|2§

Here|w|2 = (Sw,w). We then have

Win, —Bfn sz “IDpnzn + DmmWm

wr _B%I(B;)_IDnnzn + Dhnwn

where

2p = — B, Y (Bmwi, + Briwn).
In order to satisfy property (P1), the weight matfixis chosen so that
(4.2) Dppn =0, Dppm=1, Dpp=1.

REMARK 4.1. The weights above lead to an operaigy of the form

W, - B, Y(Bmwp, + Brwn)
ED Wm = W
wr1 w1t

that does not involve any averages across the interfacesnirast to the average operator
considered for conforming finite elements. We will stillldap the average operator just
borrowing the name from the conforming case.

We will now show that the average operafop satisfies property (P2) with the weight
matrix D just given. As a preparation, we need to establish an edifoathe mortar pro-
jection of a functionw in W in the Hé({Q(F)-norm. For an edge/facE C 0f;, the space
HééQ(F) consists of functions for which the zero extension to the ifimundaryos?; be-
longs to the Sobolev spadé'/?(99;). It is equipped with the norm

2
Hw”iSéz(F) - |w|i”/2(F) * /F % ds(z).

This norm has the well-known property

(4.3) clw] g2 90,y < Hw||Hé(§2(F) < Clwlgrr290,)
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wherew is the zero extension af to 92; \ F; see [7, Lemmal.3.2.6].

We recall that the subdomalin; intersect the subdomain; along F;; C F whereF
is @ nonmortar edge/face #f2; and thatp = w; on F;;. We then haves € H'/2=¢(F),
0 < e < 1/2 and the following estimate; see Proposition 3.2 in [2].

LEMMA 4.2. Assume thaf2; and(2; are scaled by the diametéei; of the(2;. For
¢ € HY/27¢(F) and0 < ¢ < 1/2, we have

€H¢||§11/2—e(p) <C Z ;113 /2,00,
J

We need the following assumption on the coefficients of thpta problem.
AssumMPTION4.3. The coefficients satisfy

pi < Cpj

where(2; and 2; are the nonmortar side and the mortar side of the commonfset=
o, N QQJ
For any setd C 99; andw; € W;, we define a nodal value interpolaht(w;) € W; as

wj(x) re ANV,
0 at the other nodes.

(4.4) Ta(wi)(z) = {

HereV; denotes the set of nodes in the finite element spécd.et F' C 9€2; be a nonmortar
edge/face. We denote iy F') the set containing the indices of the subdomains that ie¢ers
F, and by the mortar projection given on the edge/fdceWe now provide the following
bound for functions € L?(F) and with7rv = 0 ondF'.

LEMMA 4.4.With Assumption 4.3 on thg, w = (w1,--- ,wy) € W satisfies

H\*
leFF((b — wl)”i]&éz(F) <C (1 + |Ogh—z) Z( )<S(k)wk7wk>a
kel(F

whereF' C 01, is a nonmortar edge/face.
Proof. For any functiorv(z) € L*(F) or L?(;), let us define

o(z) = v(Hz), =z € ForQy,

whereH; is the diameter of th@;, andF’ andﬁl denote the dilated sets. From the definition
of the mortar projection, we see that
(4.5) 7r(v) = 750,
wherer ; denotes the mortar projection based on the finite elemenesfitated byH;.
We now consider

12 2 N2
(6 = w113y < 21 () + 2w
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Let

(b:wj—cij, {U\;:wi—cij OnFijzanﬂaQi,

where

fF wzl/)” dS fF” U)jl/}ij dS
fF Py ds fF” pijds

We then havep, @; € HY/2=<(F)for0 < ¢ < 1/2 and¢ — w; = ¢ — @;, and can thus
replacep andw,; above by;g andw;, respectively.
By using a scaling argument and the identity (4.5), we have

e (@272 ) = HE 217w @2,

(F) §2(F)

= H’Ld_2||ﬂ—ﬁ(¢)”2 1/2(ﬁ)

(4.6) <2872 (756 — Q)22 5, + 175 QDI )

wherquAS is the L2-projection of$ on the finite element spac}@i(ﬁ), i.e., the dilated finite
element space provided for the nonmortar edge/fé.ce
From an inverse inequality, the continuity of; in L*(F ) the approximation property
of Q for a functiong € H1/2~ “(F ) Lemma 4.2, and a scaling argument, we obtain
758 = Q)I31/2 5y < Chi 16— Q4117 5,

< Ch;'hl- 26H¢>|IH1/2 “«(F)

< O3B o,

Replacing$ with 5 in the above estimate and using a Poincaré inequality andlag argu-
ment, we find

756 = QA)I20ss 5, < Chi™ -lzmn] 2 o

(4.7) < Cl%l?‘dh;*e*1 > wjl3 2,00,

.
We now estimate
I @Dy ) = e (1(@0) + Q5= 1p(@D) [
(4.8) < O (ILp(QO) 2,12 ) + 171 1Q0 = I(QB) 2.7 ) -

wherel;(w;) is the nodal value interpolant described in (4.4). Here, axeetused that  is
a bounded map iﬂ{é({ (F) aswellasinL?(F ) and also used an inverse inequality. By using
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Lemma 4.24 in [21], an inverse inequality, the stability@fn H'/2=<(F ) Lemma 4.2, a
Poincaré inequality, and a scaling argument, we obtain

~ H;
5@, < © (141062 ) 103

Hi\"~_o,
_c(1+|ogE) B NQO e

IN

H; 9%
c<1+logh—i> RN
H; e
§C<1+Iogﬁ> Py IanJnl/m
(4.9) <CH (”'Ogh_Z) h; 2%‘1;ij|?/2,agj-

We note thaQ$ — Iﬁ(Qg/b\) has nonzero value only at the nodes on the bounda@. of
In two dimensions, by using Lemma 4.15 in [21], we obtain

100 — I5(Q) 2. 7 < ChillQSI2 7
< G (14107 ) 1Q3I 15
and in three dimensions, by using Lemma 4.17 in [21], we al#ain
||Q$— I (Q¢)HL2(F < Ch HQ¢||L2(3F)
< Chz (1+|Og ) |‘Q¢HH1/2(F

i (2
The same estimate, as before, for the tﬁr@mﬁHHl/z(ﬁ)

gives
- N2 2—dp Hi\ > 9 4 2
(4.10) [|Qo— Iﬁ(Q@HLz(ﬁ) < CH; %h; (1 + |097> hi ~e Z [w;lY)2,00,-
J
Combining (4.6) with (4.7)-(4.10) results in

H\~ 5. _ i
@y gy < € (1410070 ) Bt 30 25D ).
00 7 — Pj

The desired bound follows by lettirg= 1/(2|Iogﬁi|) and using the assumption thay p; <
C. We note thab; = h;/H; and quﬁjzf) = 1. The same analysis applied|mF(wi)|\ill,2(F)
gives

3
szWF(U}z)H2 1/2(F) (1+|Og ) (S(l)wi,wi).
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REMARK 4.5. For the geometrically conforming case, Lemma 4.4 is valith &ifactor
(1 + log(H;/h;))? using the same analysis as above. Therefore, in this caseptein a
better condition number estimate; see also Remark 4.8 bdlb&estimate improves the one
in [9, 11] by using the projectiod; we do not need the assumption on the mesh gizaad
h;

N
ch(&) for somed <y < 1,

considered in [9, 11] wher€); is the nonmortar side anf}; is the mortar side.
With the help of Lemma 4.4, we can establish property (P2)feroperato .

LEMMA 4.6. With Assumption 4.3, the operatfi, satisfies

\Epwl < C L tog ) L2
puwlg < Cmax ghi w5

Proof. Using the weight matridD in (4.2), the average operatél, in (4.1) is given by

Wy, wy, — B, Y (Brwy, + Bpwy, + Browr)
ED Wm | — Wm )
wrt wrt

see Remark 4.1. Let
2p = wy, — B, Y (Bywy, + Bpw, + Briwn),

and construct; by restricting the unknown&:,,, wy,,, wir) to the subdomaif;. Similarly,
we constructy; from (w,,, w.,, wrr). We note thaf{w;, - - - ,wy) satisfies the primal con-
straints on the edges/faces. By definitions (21, ,2n) € W, i.e., z satisfies the mortar
matching condition, and each s of the form

zi:wi—l— Z ES)FF((]S—’U}Z),
FCoQ;

whereF is a nonmortar edge/face é12;, ES) is the zero extension of functions defined on
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Ftoall of 0Q; \ F, and¢ = w; on F;;(:= 0Q; N 9Q;) C F. We then obtain

N

|ED’U)|2§ = Z<S(l)21, Zi>

i=1

< CZ ( Dwiwi) + Y (SOEDwr(¢ —wi), B mr(d — wi>>>

FCoQ;

Z wzawz +Z Z Pi ‘ﬂ-F(b wz)H2 1/2(F

i=1 i=1 FCOQ;

gAd) M
< leax { (1 + |Ogh_i) } Z<5(1)wi,wi>

=1

HN\?| =
< C'max { (1 + |Ogh—_z) } (Sw, w).

Here we have used th&$ (D w;, w;) ~ pi|wi|§ll/2(am), the relation in (4.3), and Lemma 4.4.
0
By using the properties (P1) and (P2), we can show the foligvgondition number
bound of the BDDC operator (3.8). A similar proof is given indnd Widlund [16] in an
analysis of a BDDC algorithm for the Stokes problem with @wnfing meshes.
THEOREM4.7. With Assumption 4.3, we have the condition number bound

o 3
Ii(BDDc) < C'max { (1 + Iogh—z> } .

Proof. We let
M~ =RY .ST'Rpr, S=RLSRy,
and we then have
Bppe = M~'8.
We will now provide a lower bound by proving
(u,u)g < (u, M_1§u>§.
Letw = §‘1RD1p§u. From property (P1)R{-Rpr = Rp, rRr = I, we obtainu =
S~LRLSw. We then consider
(u,u)g = u'Su
= u'RLSw
= (w, Rru)g
< (w, w> *(Rru, Rpu> 12

<A(w, w>;/2<u u}i/2
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Here we have used the Cauchy-Schwarz inequality. Squanidga@ncelling a common fac-
tor, we obtain

(u,u)g < (w,w)z.
By combining the above estimate with

(w, w)z = ut§R57F§—1§§—1RD7P§u
= <U,R§)_’F§_1RDI§U>§

(4.11) = (u, M~ *Su)g,

we obtain the desired lower bound.
We will now find an upper bound by proving

3
<M*1§u,M*1§u>1§/2 < szax { (1 + Iog%) } <U,u>lA/2.

We consider

(M~ Su, M71§u>§ = (Rp rw, Rp rw)g
= <RFRtD,FwaRFRtD,Fw>§

= |ED’UJ|2§

3
< C'max { (1 + Iog%) } |w|2§

The last inequality follows from Lemma 4.6. Combining theeb estimate with (4.11), we
obtain
N . o\ .
(M~'Su, M~ Su)z < C'max { <1 + Iogh—;> } (u, M~'Su) 5.
By applying the Cauchy-Schwarz inequality to the te(rmM‘1§u)§, the desired upper
bound follows[O

REMARK 4.8. The analysis above can be modified for the geometricallyororifg
case and leads to the condition number bound

Hi\?
H(BDDC) SC’max{(l—i—logh—l) },

when Assumption 4.3 holds; see Remark 4.5.

REMARK 4.9. For a geometrically non-conforming partition, the numbé&pdmal con-
straints tends to be bigger than for a conforming partitiorcase only edge/face constraints
are used. We note that there have been several previougstutiich explore the possibility
of selecting primal constraints for only some of the edges#; see [10, 14, 15].
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Q,
Q ' _'le !
| Fi v v|::I éF”
NS (IS
- ditdiR R
|:Ik i ik ik
{ v.¥ o Q,

F1G. 1. Geometrically non-conforming partition: white circlesoghes invjj (C99Q4),7 =1kor ij (C
0Q;), j = 1, k), black circles (nodes imf;j (C09y),7 =1Lk or/\fiij (C 8%;), j = 1, k), each faces, F;j,
F;J and FLJJ for j = 1, k are described.

We will now provide a better estimate for geometrically nmonforming partitions under
an assumption on the meshes that is considered in [9, 11]. W\prawe our result only for
the two-dimensional case; in three dimensions there are salgitional technical difficulties.
We conjecture that the result also holds in that case.

ASSUMPTION4.10. The mesh sizgs; andh; satisfy

h; A7
—ch(&) forsomed < v < 1,
h; pi

where(?; is the nonmortar side an@; is the mortar side.

LEMMA 4.11.With Assumptions 4.3 and 4.1@;,--- ,wy) € W satisfies

H,\?
_ 2 3 (5™
pillmr (9 wZ)”Héé%F)SO@%){@HO%J } (5, k),

kel(F)
whereF C 09); is a nonmortar edge/face ardF) is the set of the indices of the subdomains
that intersect?".

Proof. We consider the case in Figure 1. The nonmortar ddge 09; is partitioned
into F;; andFj;, and¢ is given byw; on Fj;, j = [, k. Since the functiofjw,, - - - ,wy) € w
satisfies the primal constraints, we have

/ (¢ — w;) i ds :/ (wj —wi)hi; =0, j=1k,
F;. F;.

and we then define
o — fF” U)l’l/)w dS B fFij U)j’l/)ij dS
ij fFi- 1/)1-3- ds fF” wij ds ’

L9

j=1k.
Let

Wi = Wi — Cij and (Ezwj—cij on F‘ij, j:l,k.
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We note thatp — w; = 5— w;.

Let V)’ be the set of nodes ¥; with nodal basis functions supportedfi;. We denote
by F; the union of these supports. We note thigt C F;;. The set)’ andF; are defined
similarly; see Figure 1.

Let ;7 be the set of nodes iW; \ V7 with nodal basis functions with support that
intersectst;. The set/\/;j is defined similarly. In general, we may assume that the numbe
of nodes in each sé¢;’ andV;” is bounded uniformly with respect to the mesh parameters.

We consider
(4.12)
|mr(p — wi)H?{ééz(F) = ||7F Z IFf'] — Cij) Z IFz i — Cij)
=Lk =Lk
2
+¢> Z IFIJJ —cij) — Wi + Z IFZJ — ¢ij)
j=lk j=lk Héé2(F)

Since the first two terms in the above equation aréfﬂf(F), the continuity of the
mortar projection i)}’ (F) and Lemma 4.24 in [21] give

2 2
17 (Lps (wi = cig) gz oy < ClMps (w5 = i)z

H' 2
(4.13) §0(1+Iogh—;> lw; = cijl /200,
and
2
(4.14) e (I (wi — ci;))]? <c (14109 lw; — 55|
: PR, = G g2 ey = I ¢ T2 (090

We now bound the third term in (4.12) as follows:

T )|
||7TF ¢ Z F — Cij )HH[%Z(F)

=L,k

<Ch mr(d— > Ipi (wj — cii)izcr)

J=l.k
<Ch7'|$— Z IFJ —cij) T2
j=lk
(4.15) <Chit Y flwy — e — Ipi (w; —cij)2(m,)
7=,k
<Ch7M Y hjllwg = cijll oo 00,
J=l.k
(4.16) <Ch;' > h (1+I09—> lwj = €ijll /2 (a0,

7=,k
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We have used an inverse inequality, the continuity pfin L?(F) and Lemma 4.15 in [21].
The expression in (4.15) has nonzero values at the nod/&’;'jin By using the fact that the
number of nodes im\/;] is bounded independently of any mesh parameters (at mest ithr
Figure 1), we have

lwj = €ij = Iy (wj = ci N72(my) < Chjllw; = cijllF<(a0,)-

Similarly, we have a bound for the last term in (4.12):

(|7 F (0 Z IF1 — Gy )||2352(F)
=Lk
H; 2
(4.17) <C(1+logy ) D llwi = cislif e gon,)
Y=Lk

As aresult, (4.12), (4.13), (4.14), (4.16), and (4.17) give
Hi\?
(6 = )y < C i { (1+1007) }
2 h 2
Z H’LUi—CinHlm(@Qi) + {1+ = hi ij CinH1/2(89j) :

j=l,k
A Poincaré inequality can be applied to the functiais- ¢;; andw; — ¢;; and this replaces
the norms by semi-norms. By using the relation

pi|wi|?{1/2(69i) ~ (SDwy, wy),

we obtain the following bound

)\
. — w12 < il
pillTr (¢ wl)HHéf(F) _C’krenlzg){(1+loghk>

By using Assumptions 4.3 and 4.10, we then have

1—v
O+h)m<c H(m) <c.
hi ) pj Pj

Therefore the required bound holds with a const@nthich does not depend further on the
mesh parameters and the jumps of the coefficiéhts.

By using Lemma 4.11 and the same analysis as in Theorem 4.4bteén a better
condition number bound for the geometrically non-conforgiiase.

THEOREM 4.12. For a geometrically non-conforming subdomain partitiordan two
dimensions, the BDDC operator satisfies

o 2
k(Bppc) < C'max { (1 + Iogh—z> } ,

when Assumptions 4.3 and 4.10 hold.
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5. A connection between FETI-DP and BDDC methodslIn this section, we will
show that the BDDC algorithm developed in the previous sestis closely connected to the
FETI-DP algorithm developed by the first author in [9, 10] daydher jointly with Lee in
[11]. These two algorithms will be shown to share the sametspexcept possibly for an
eigenvalue equal to 1.

A study comparing the spectra of the BDDC algorithm to thathaf FETI-DP algo-
rithm was carried out by Mandel, Dohrmann and Tezaur [20t@mforming finite elements.
They showed that these two algorithms have the same setef\gityes except possibly for
eigenvalues equal to 0 and 1. Recently, a quite simple priahiofact was given by Li and
Widlund [17]. They formulated the BDDC operators as welllesEETI-DP operators using
a change of variables and introducing certain projectionisaverage operators. These pro-
jections and average operators provide an important conegetween the FETI-DP and
the BDDC operators.

We first formulate a FETI-DP operator with the change of \ades introduced in Sec-
tion 2.2. We then show that the FETI-DP operator has es#lgritia same spectrum as the
BDDC operator by establishing several properties of thgeptions and average operators
that are used in the analysis by Li and Widlund [17].

After the change of variables, the linear system considieréite FETI-DP formulation

is given by
Saa  San Bl uA gn
(5.1) Sua Sun Bi | |un | =|gn |,
Ba  Bp 0 A 0

where the matriceSaa, Sam, Stna, andSn are defined in (2.11) and the matricBg and
By are obtained from the mortar matching condition (2.8). We tieat the subscripig and
A stand for the unknowns or submatrices related to the primaébles and the remaining
part, respectively, and thate M, the non-redundant Lagrange multiplier space.

After eliminating the unknowns andu;, we obtain an equation for € M:

(5.2) BrS—'BEX =d,
where
~ Saan  Sam
(5.3) Br=(Ba Bpnp), S= ,
( ) Stna St

andd is also the result of Gaussian elimination.
We will now express the Neumann-Dirichlet preconditionensidered in [9, 10, 11]
using the change of variables. We recall the spgéGe defined in (2.4) and then define

W, = {wn e Wy, : / ’wn’L/Jij ds =0, VFij, VE C 08, Vl} s
F,;j



22 KIM, DRYJA AND WIDLUND

whereF' C 09); are nonmortar edges/faces with the partit{dn, } ;. For the geometrically
conforming case, the spadzA@/‘n consists of functions with zero average on each nonmortar
edge/face” because);; = 1.

The Neumann-Dirichlet preconditiongf 1, is defined by

(BE(wn), \)*
e MoPA N = 0 TSEw,). Ew,)’
where E(w,,) is the zero extension afy, to all the interfaces an& = (B(1> . -B<N>).
Here we consideh € M, a non-redundant Lagrange multiplier space, and hence tiie m
tar matching matrixB has one less row for each nonmortar edge/face than in thaalrig
formulationin [9, 10, 11].
We recall the spacl’a given in (2.7) and note that it can be splitinto

Wa =Wan ® WA m,

wheren andm denote the unknowns of the nonmortar edges/faces and nealgass/faces,
respectively. The vectors in these spaces are represgnthd bnknowns after the change of
variables. The spadé ,, is then identical th/n except that the bases are different.
By using the change of variables, (5.4) can be written as
<§ E(MA n)a /\>2

(5.5) MoPA A= | M8, G B woan), B ’
(MppA, A) wan€Wan (S E(wa ), E(wan))

)

where
B = (f}(l) E(N)) , S =diagSD).

The matricesS and B act on the new unknownsg) andwg) that result from the change of
variables. The extensioﬁ(wAvn) = (w1, ,wn) IS given by

Wherewg) is zero on the mortar edges/fac&éi,) is equal tawa ,, onthe nonmortar edges/faces,
andwg) is zero.
The formula (5.5) can be written as

<anA n )\>2
5.6 MppA, A\) = —_
( ) < DPA, > wA,{?EaV)éA,n <SnnwA,nawA,n>

Here the matrice®,, andS,,,, are submatrices dBx andSanx in (5.1) corresponding to the
nonmortar part. We see thélf,,, : Wa , — Wa ,, andB,, : Wa ,, — ‘M are invertible. The
maximum in (5.6) occurs whes},,wa , = B! A and hence it follows that

MBIlD = (sz)_lsnntl-



A BDDC METHOD WITH MORTAR DISCRETIZATION 23

Further this matrix can be written as

(5.7) Mpp = BsrSBL 1,
where
Yon B
B%,F = Emfn Bfn
Y Bﬁ

with the weights given by
Enn = (BZBn)_la Emm = Oa EHH =0.

Here the matrixB,,, is a submatrix ofBa corresponding to the unknowns of the mortar part.
Therefore the FETI-DP operator with the Neumann-Diricpieticonditionerd/ 1, is
given by

MppFpp = BspSBL 1 BrS™'BY,
while the preconditioned BDDC operator is given by
Bppc = R, 1S'Rp rRESRr.
Let us now define the following jump and average operators
Py = By rBr, Ep = RrRp .

The following results are provided in [17, Section 5].
THEOREM5.1. Assume thaPs, and Ep satisfy
1. Ep+Ps=1,
2. E% = Ep, P2 = Px,
3. EpPs = PsEp =0.
Then the operatong}gFDp and Bp p¢ have the same eigenvalues except possibly for the
eigenvalue equal to 1.
We will now show that the assumptions in Theorem 5.1 hold lierdperatorsd’s; and
Ep. We express the spadzAi‘ by using the unknowns,,, w,,, andwy:

t t t\t .
W= {(wn7wm7wn) . \V/U)n, W, wH}7
and we recall the mortar finite element space

W= {w e W B, w,, + Brwn + Bhw, = 0}.

We note thatPs, and Ep are operators defined on the spiE’e
LEMMA 5.2. The operatord’s; and Ep satisfy
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1. Ep+ Py =1,
2. E%:ED, P§:PEI
3. EpPs, = PsEp =0.

Proof. From
E1n7n = 07 EHH = 07 Enn = (BZBn)_lu
Dmm = I, DHH = I, Dnn = 07
we have
B, Y(Bnwp, + Brwn + Buwy,)
PEw = 0 )
0
—B;l(Bmwm + ann)
EDw = W
w
Hence,
Ep+ Py =1.

We will now show thatF? = Ep. Since RangeEp) € W and Epw = w for all
w E I7V\, we obtain

Ep(Epw) = Epw forallw € w.
This implies that
(5.8) E} = Ep.
FromEp + P, = I andE?% = Ep, we have
Ep(Ep+ Ps)=Ep
and therefore
EpPs =0.
Moreover, fromPsw = 0 forall w € W and RangeFp) € W, we can show that
PyEp =0.
To show thatP% = P, we consider

Ps(Ep + Ps) = Py,
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and fromPs Ep = 0, we obtain

P2 = Px.

REMARK 5.3. Other FETI-DP preconditioners in two dimensions with défe weights

Y

have been developed and shown to give a condition numbedboun
Cmax {(1 + log(H;/h:))*}

for some geometrically conforming cases with nonzero weigh,,, and X; see [6, 5].
We have not found a weight matiixthat results in£p + Ps, = I for such a choice of.

6. Numerical tests. In this section, we discuss numerical tests which comparetfi
ciency of the BDDC method and that of the FETI-DP method.{Fes [0, 1], we solve the
elliptic problem with the exact solutiom(x, y) = sin(7z)(1 — y)y;

—Au=finQ,
uw=0 onofl.

We have carried out experiments for both matching and noteirey grids employing the
mortar matching conditions across the interfaces. The C@j(@ate Gradient) iteration
continues until the residual norm has been reduced by arfagtd.

The domain? is divided into square subdomains as in Figure 2. For magcpirds,
we introduce uniform meshes withnodes on each horizontal and vertical edge. To make
the meshes non-matching across subdomain interfaces, mezage triangulations in each
subdomain in the following way: for each subdomain, we ckoosandom quasi-uniform
nodes on each horizontal and vertical edges. From thesespnedegenerate nonuniform
structured grids in each subdomain. Since we choose the samber of quasi-uniform
nodes: for all subdomains, the mesh sizes of neighboring subdasvaamcomparable.

First, we compare the two algorithms with the matching gedsploying the mortar
matching condition and primal constraints at the verti¢eSlable 1, we dividg? into N =
4 x 4 subdomains (see Figure 2) and increase the number of mod&®s computel?- and
H'-errors between the exact solution and the solution of #rative method, the number of
CG iterations, and the minimum and the maximum eigenvaltiteedBDDC and the FETI-
DP operators. For thél!-error, we compute the brokeii!-norm based on the subdomain
partition. Table 2 shows the numerical results when weafix 1 = 4 and increaséV, the
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QSS

QOO QlO

FI1G. 2. Partition of subdomains wheN = 4 x 4

number of subdomains. Fd¥ = 8 x 8, 16 x 16 and32 x 32, we divide2 into square
subdomains in the same manner asfoe= 4 x 4. We see that both methods gives the same
accuracy. The minimum eigenvalues of the BDDC operatorlarays equal to 1 while those
of the FETI-DP operator are greater than 1. The maximum e#&ees of both operators are
almost the same.

In Table 3 and 4, we perform the same computations for norcinrag grids. The results
shows similar patterns for the minimum and maximum eigareslas for matching grids
except that the minimum eigenvalues of FETI-DP operatovexae to 1 when the number
of nodes increases; see Table 3.

From the numerical results, we see that the BDDC operataayaivinas the minimum
eigenvalue 1 while the FETI-DP operator has all its eigaresfjreater than 1 and that these
operators have almost the same maximum eigenvalues. dgneracan conclude that the
two algorithms perform quite similarly.

TABLE 1
(Matching grids) Comparison of FETI-DP and BDDC methods mheincreases with a fixed number of
subdomainV = 4 x 4

MppFpp Bppc

n—11| [lu—u"o | ||u—2u"1 | Iter | Amin Amax Iter | Amin Amax
4 4.1293e-4| 5.7497e-2|| 10 | 1.43| 4.01 11 | 1.00| 4.01
8 1.0399e-4| 2.8798e-2|| 12 | 1.35| 5.64 13 | 1.00| 5.64
16 2.6057e-5| 1.4405e-2|| 14 | 1.31| 7.64 15 | 1.00| 7.64
32 6.5183e-6| 7.2036e-3|| 15 | 1.31| 1.00e+1| 16 | 1.00 | 1.00e+1
64 1.6315e-6| 3.6019e-3|| 16 | 1.35| 1.27e+1| 18 | 1.00| 1.27e+1
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TABLE 4
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