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Abstract

Client interactions with modern web-accessible network services are typically organized intosessionsinvolving
multiple requests that read and writesharedapplication data. Therefore when executed concurrently, web sessions
may invalidate each other’s data. Depending on the nature of the business represented by the service, allowing
the session with invalid data to progress might lead to financial penalties for the service provider, while blocking
the session’s progress and deferring its execution (e.g., by relaying its handling to the customer service) will most
probably result in user dissatisfaction. A compromise would be to tolerate someboundeddata inconsistency, which
would allow most of the sessions to progress, while limiting the potential financial loss incurred by the service. In
order to quantitatively reason about these tradeoffs, the service provider can benefit from models that predict metrics,
such as the percentage of successfully completed sessions, for a certain degree of tolerable data inconsistency.

This paper develops such analytical models of concurrent web sessions with bounded inconsistency in shared
data for three popular concurrency control algorithms. We illustrate our models using the samplebuyerscenario from
the TPC-W e-Commerce benchmark, and validate them by showing their close correspondence to measured results
of concurrent session execution in both a simulated and a real web server environment. Our models take as input
parameters of service usage, which can be obtained through profiling of incoming client requests. We augment our
web application server environment with a profiling and automated decision making infrastructure which is shown to
successfully choose, based on the specified performance metric, the best concurrency control algorithm in real time
in response to changing service usage patterns.
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1 Introduction

The Internet currently provides access to a variety of services such as e-mail, banking, on-line shopping, and enter-
tainment. Typical interaction of users with such services is organized intosessions, a sequence of related requests,
which together achieve a higher level user goal. An example of such interaction is an on-line shopping scenario for an
e-Commerce web site, which involves multiple requests that (1) search for particular products, (2) retrieve information
about a specific item (e.g., quantity and price), (3) add it to the shopping cart, (4) initiate the check-out process, and
(5) finally commit the order.

In scenarios of this kind, session requests can bothreadandwrite application datasharedamong several users of
the service. Thus, execution of concurrent client sessions may affect each other by changing the shared application
state. In our example, the client’s decision to commit the order (buying an item in step 5) is based on the information
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presented in step 2. Thus, if the quantity or price of the item has changed (as a result of concurrent client activities),
it might be undesirable to allow the client to commit the order (step 5) based on incorrect information. At this point
the service provider needs to make a decision of whether to proceed with the execution of the request: allowing the
session with invalid data to progress can lead to potential financial penalties incurred by the service (e.g., selling an
item which has become out of stock, or selling it at a lower price), while blocking the session’s execution might result
in user dissatisfaction and can lead to a drop in user loyalty. In the latter case the session execution isdeferred, and
handling of the case is relayed to the customer service or awaits the intervention of system administrators, based on
the nature of the business represented by the service.

A compromise would be to tolerate somebounded degreeof shared data inconsistency[20, 29], denote itq
(measured in some units, e.g., price or item quantity difference), which would allow more sessions to progress, while
limiting the potential financial loss by the service. The current dominating approach in web-based shopping systems
is to satisfy the client at all costs and never defer its session (which correponds to toleratingq = ∞), but one could
envision scenarios where imposing some limits on the tolerable session data inconsistency (and so – limiting the
possible financial loss) at the expense of a small number of deferred sessions might be a more preferable alternative.
Besides on-line shopping, examples of the systems where such tradeoffs might prove beneficial, are on-line trading
systems and auctions.

To enforce that the chosen degree of data consistency is preserved, the service can rely on differentconcurrency
control algorithms. Several such algorithms (e.g., two-phase locking, optimistic validation at commit) have been de-
veloped in the context of classical database transaction theory [10] and for advanced transaction models [7]. However,
these algorithms need to be modified to be able to enforce session data consistency constraints, because of substantial
differences between classical transactions and web sessions. Web sessions are long-running user-driven activities of
interactive nature, with inter-request times much higher than request execution times. Therefore, requests waiting for
shared resources can not be blocked forever, as clients, expecially human ones, are typically willing to tolerate only
small response delays. Web sessions also do not have well defined boundaries and it is quite problematic torollback a
web session, by “undoing” or “compensating” its effects – one can not “undisplay” a web page in the user’s browser.
In some of these properties, web sessions resemble advanced transaction models such as Sagas [9], conversational
transactions [28], and cooperative transactions [14].

In this paper we consider three concurrency control algorithms for web sessions –Optimistic Validation, Locking,
andPessimistic Admission Control. The algorithms work byrejectingthe requests of the sessions for which they can
not provide data consistency guarantees (so these sessions becomedeferred). However, they utilize different strategies
in doing so, which leads to different number of deferred sessions, not known to the service provider in advance. In
order to meaningfully trade off having to defer some sessions for guaranteed bounded session data inconsistency, the
service provider can benefit from models that predict metrics such as the percentage of successfully completed sessions
(as opposed to the percentage of deferred sessions), for certain degree of tolerable data inconsistency (the value ofq),
based on service particulars and information about how clients use the service.

To this end, we propose analytical models that characterize execution of concurrent web sessions with bounded
shared data inconsistency, for each of the three discussed concurrency control algorithms. We present our models in
the context of the samplebuyerscenario for the well-known TPC-W e-Commerce benchmark application [26]. We
compare the results of our analytical models with the results of concurrent web session execution in a simulated, and
in a real web application server environment. The three sets of results closely match each other, validating the models.

Besides allowing one to quantitatively reason about tradeoffs between the benefits of limiting tolerable session data
inconsistency and the drawbacks of necessarily deferring some sessions to enforce this data consistency, the models
also permit comparison between concurrency control algorithms, with regards to the chosen metric of interest. In
particular, since the proposed models use as input service usage parameters that are easily obtained through profiling
of incoming client requests, one can build anautomateddecision making process as a part of the service or its server
environment (e.g., middleware platform), that would choose an appropriate concurrency control algorithm in real time,
in response to changing service usage patterns.

To test this claim we implement such an infrastructure as a part of the J2EE application server JBoss [13] and
deploy the TPC-W application. Session data consistency is enforced by our infrastructure, which is capable ofinter-
cepting(and so – rejecting, if need be) the service requests, and deciding which concurrency control method is the best
to use, based on the analytical models and the parameters of service usage, obtained by a request profiling module.
Our experiments show that the infrastructure is always able to pick-up the best algorithm, so during a test run with
the dynamic adaptation in place, the infrastructure achieves a higher value of the metric of interest as compared to a
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Table 1: Main TPC-W service requests.

Page Functionality Page Functionality
Home Entry point to the application Search Performs search for specific items and presents

them
New
products

Presents items recently appeared in the store, for
a specific category

Best
Seller

Presents the list of items frequently purchased
lately, for a specific category

Item
Details

Presents the item details, includingavailable
quantityandprice

Add
To Cart

Adds item to the shopping cart, and displays its
contents

Cart Presents contents of the shopping cart Register Prompts user to authenticate or register itself
Buy
Request

Authenticates or registers user, presents theup-
datedview of the shopping cart, prompts user to
submit address and credit cart information

Buy
Confirm

Commits the order: records the order info in the
database, decrements the available quantities for
the items purchased, presents confirmation page

scenario where the concurrency control algorithm is fixed.
The rest of the paper is organized as follows. Section 2 provides the required background and presents assumptions

used throughout the paper. Section 3 describes the analytical models. Section 4 compares our models’ results with
the results of concurrent web session execution in a simulated, and in a real web server environment, showing close
correspondence, and thereby validating the analytical models. Section 5 presents our middleware infrastructure for
session data consistency enforcement. In Section 6 we discuss related work, and we conclude in Section 7.

2 Background

In this section we discuss session representation and modeling, present the concurrency control algorithms, and state
assumptions made in this study.

2.1 TPC-W Application

We present our analytical models in the context of the TPC-W transactional web e-Commerce benchmark applica-
tion [26]. TPC-W specifies the application data structure and the functionality of an on-line store that sells books,
however it neither provides implementation, nor limits implementation to any specific technology. The TPC-W speci-
fication describes in detail14 different web invocations that constitute the web site functionality, and how they change
the application data stored in a database. Table 1 describes the most important service requests that make up the
TPC-W buyer scenario.

2.2 Session Model

A user session consists of service requests, executed in a specific order and frequency and usually corresponds to a
service usage pattern, which reflects typical client behaviour. In this study we adopt theCustomer Behavior Model
Graph (CBMG) [18] approach to specify the behavior of an average user session. CBMG is a state transition graph,
where states denote results of service requests (web pages), and transitions denote possible service invocations. Tran-
sitions in CBMG are governed by probabilitiespi,j of moving from statei to statej (

∑
j pi,j = 1). In our model

we also allow a finite number of finite-domain attributes for each state of the CBMG. These attributes can be used
to represent session state, e.g., events like signing-in and signing-out of an e-Commerce web site, or the number of
items put into the shopping cart. The set of state transitions and probabilities can in turn depend on the values of these
attributes. Since the set of attributes and their values is finite, each extended CBMG may be reduced to an equivalent
classical CBMG, by duplicating states for each possible combination of attribute values.

In this paper, we consider a sample TPC-Wbuyersession, whose structure is described by the CBMG in Fig.1
(left figure). Each session starts with theHome request, and may end either after severalSearch andItem Details
(Item in short) requests (we refer to such sessions asbrowsersessions), or after putting a (number of) item(s) in the
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Figure 1: CBMG of the TPC-W buyer session (left) and an example used in the validation experiments (right).

shopping cart and completing the purchase (buyersession). Note that, for simplicity, we do not differentiate between
the Search, New Products, andBest Sellers web requests and they are represented as one state. We have one
(boolean-valued) CBMG state attribute for theSearch and Item states, which denotes the presence of items in the
shopping cart. To stress essential buyer activities in this sample scenario, we assume that once a user puts an item
into the shopping cart, he never abandons the session and eventually commits the order. EachItem request carries an
additional parameter – theitemId of the item to be displayed. We assume that there areN items in the store, and
that thei-th item is picked with probabilitypi. TheAdd To Cart request chooses the same item that was picked in the
precedingItem request, and it puts it in the shopping cart with quantity1.

2.3 Session Data Consistency Constraints

Information about the business-critical shared data that the service provider wants to cover by data consistency con-
straints can not be automatically extracted from the application structure or code – it needs to be identified by the
service provider. To this end, we propose a flexible model for specifying web session data consistency constraints –
theOP-COP-VALPmodel. The model is illustrated by the specification of the following data consistency constraint
for the TPC-W application:

For each session, the quantity of an item (with id i) seen in the Buy Requeststate which presents
an updated view of the shopping cart, can differ by no more than qi units from the value seen by
the Add To Cartrequest which inserted the item into the shopping cart. qi may be different for
different items in the store.

OP-COP-VALP model. Potential shared data conflicts are identified by specifying pairs ofconflictingservice
requests (operations): OPERATION (OP in short) and CONFLICTING OPERATION (COPin short). The relation
is not symmetric apriori and means thatCOPinvalidatesOP, that is, theCOPrequest changes some data, that was
accessed or updated during the execution of anOPrequest by another session. One may also associatecorrelation
Id (s) (corr.Id in short) with both theOPand theCOPrequests.corr.Id (s) is a (set of) value(s) that can be
extracted from the parameters or the return value of the request. TheOPandCOPrequests are consideredconflictingif
they come from different sessions (COPafterOP) and theircorr.Id (s) match (have non-empty intersection as sets).
For our TPC-W application,OPis theAdd To Cart request, withcorr.Id being itsitemId parameter;COPis the
Buy Confirm request, withcorr.Id s being the set ofitemId s of the items in the shopping cart.

There are two ways to specify the data inconsistency that can be tolerated:

1. Invalidation Distance: one specifies the number ofCOPrequests from other sessions that have to happen after
theOPrequest, for thisOPto become invalid. The intuition is that eachCOPchanges the data to a certain (fixed)
degree, so data inconsistency can be measured in terms of the number ofCOPrequests.
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2. Numerical Distance: one associates a numerical value (NUMVAL) with the OP request, as a function of the
request parameters and the return value; and defines how the (correlated) conflictingCOPrequest changes this
value. This makes possible specifyingabsoluteor relative tolerable discrepancy forNUMVAL. For the TPC-W
application,NUMVAL of the OP(Add To Cart) request is the available quantity of the item. TheCOP(Buy
Confirm) request changes the correlatedNUMVAL value by decrementing it by the quantity of the item in the
purchase (itemId s and quantities of the items in the purchase are all parameters of theBuy Confirm request).
Thus, for our example constraints,q is the relative inconsistency ofNUMVAL, that the service wishes to tolerate.

Web sessions are user-driven and open-ended. There is no globalcommitfor a web session, at which point the
service logic could make sure thatOPs of the session have not been invalidated, and consider the session ended.
Sometimes data consistency constraints for the session need only be satisfied if the session reaches a certain point, for
example, in the buyer scenario one would want an item’s price and quantity not to change substantially only if the user
finally buys the item. Such events, when the service logic shouldvalidatea session’sOPs, should be specified: in our
model this is done by VALIDATION POINTs (VALP in short).VALP is a service request with a reference to a set of
previously definedOPs (if necessary, correlated throughcorr.Id s), that itcovers. The logic is that identifiedOPs
need to be keptvalid only for the time duration between theOPandVALPrequests. For the TPC-W application,Buy
Request corresponds to aVALPwhich covers allOPs of the session.

Abstracting application-specific data conflicts into theOP-COP-VALPmodel allows the application to delegate
the responsibility for enforcing desired data consistency constraints to the underlying server environment (e.g., mid-
dleware). Generic middleware mechanisms could enforce data consistency constraints working only at the level of the
abstractOP-COP-VALPmodel, with mapping of requests toOPs,COPs andVALPs, and other information specified
by the service provider. This separation is consistent with the middleware paradigm of offloading functionality from
the application code to the underlying server environment, and additionally permitsdynamic adaptationof concur-
rency control policies to changes in parameters of service usage, in order to maximize the specified metric.

2.4 Concurrency Control Algorithms

Concurrency control techniques in transaction processing theory can be classified into two camps:lockingtechniques
andvalidation techniques. The spirit of the first is tolock shared resources, preventing concurrent processes from
accessing a locked entity until a certain safe point of execution is reached (e.g., transactioncommit). The approach in
the second camp is to let concurrent processes execute in parallel, accessing shared resources, and tovalidateexecution
in the end, hoping that conflicts either did not happen or cancelled each other out. Although these mechanisms are not
directly applicable to web sessions, one can come up with similar concurrency control algorithms for web sessions
with data consistency constraints. The algorithms determine whether to allow execution of a request (with all possible
effects on shared application state) or to reject it. Once a request from the session has been rejected, the whole session
is deemeddeferred, with no additional requests coming from that session. This paper works with the following three
natural algorithms, which are based on theOP-COP-VALPmodel for specification of data consistency constraints:

• Optimistic Validation : admit allOPandCOPrequests; when aVALP request arrives, validate theOPs that it
covers– and admit or reject theVALP request accordingly. This technique resemblesbackward validationof
classical transactions.

• No-Waiting Locking (Locking): this technique is applicable if everyCOPrequest in a session is preceded by a
correlatedOPrequest (think ofOPandCOPasREADandWRITEof the same data item). Assign alogical lock
to each value of thecorr.Id , and make theOPrequest obtain this lock when admitted and release the lock
after the completion of theCOPrequest. IfOPcan not obtain the lock it is immediately rejected (hence the name
of the algorithm). Note that this technique has somewhat different semantics from the classical “no-waiting”
locking – if the request is rejected the session is not restarted.

• Pessimistic Admission Control: admit OPs andVALPs; when aCOParrives, admit it only if it would not
potentially invalidateOPs of other concurrent sessions. This technique resemblesforward validationof classical
transactions.

Note that these web session concurrency control algorithms build on top of serialization support of the underlying
database and do not substitute conventional transactions – if the service logic requires it, the ACID properties of
individualOP, COP, andVALPrequests are guaranteed by the underlying middleware transaction service.
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Figure 2: Analytical model.

2.5 Metrics of Interest

As client interaction with the service is organized in sessions and a client is satisfied only if its session successfully
completes (i.e., it is not deferred), the measure of success of a particular concurrency control algorithm should be
viewed in light ofhow many sessions have completed successfully. Therefore, we considerpercentage of successful
sessionsas the main service performance metric throughout the study.

Another metric that we consider is thepercentage of requests belonging to successful sessions, or simplyper-
centage of successful requests, as a measure of what portion of system resources did good for clients, and what
portion was wasted serving requests of deferred sessions. As we will see, the two metrics are not the same. While the
first metric can be viewed as abusinessor client satisfactionmetric, the second one is clearly asystemmetric.

Different concurrency control algorithms defer unsuccessful sessions at different stages of session execution, so
the actual load on the service (e.g., request rate), produced by different algorithms is different. Therefore, another
system metric we look at is theeffective request rateseen by the service, measured in number of requests served per
unit time (we count rejected requests too, because they also consume system resources).

3 Analytical Models

In this section we present three analytical models, one for each concurrency control algorithm (section 2.4). The
models compute the three chosen metrics of interest (Section 2.5), based on parameters of service usage. The basic
assumptions of the models are the following.

1. User sessions adhere to a CBMG, which is assumed known.

2. New sessions arrive as aPoisson process[15] with arrival rateλ.

3. Session inter-request times are independent with mean1/µ, that is, requests from a session form a random
process with the event arrival rateµ. When we state this explicitly, we assume a specific distribution of session
inter-request times. We also discuss the affect of specific distributions of session inter-request times in Section 4.

4. A request is served immediately and is either admitted and processed by the service, or rejected, which in turn
terminates that session. Request processing time, including serialization delays in the underlying database,
is assumed to be negligible compared to the average session inter-request time. In Section 4 we discuss the
motivation behind this assumption.

The models, although somewhat different, rely on the following three key modeling techniques, used in other
modeling studies as well [22, 1, 23, 24]:

1. Approximating independence assumptions.Execution of multiple concurrent web sessions is a compound
random process, comprised of multiple inter-dependent finite-living random processes representing each ses-
sion, which are in turn spawned by the Poisson process of new session arrivals. The inter-dependence is com-
plicated further by the presence of session data consistency constraints. To simplify analysis, we assume that
certain events areindependentand approximatable as a Poisson process. The main such assumption is thatCOP
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Figure 3: Example of a TPC-W buyer session.

requests form a Poisson process (with arrival rateη) which is independent of the Poisson process of incoming
new sessions (see Fig. 2). Some of these assumptions are justified by the memorylessness property of Pois-
son process, in other cases they are not precisely correct, because requests originate from slightly correlated
processes. However, as our validation results in Section 4 show, these assumptions prove a good approximation.

2. Session enumeration technique.In order to compute some probabilistic parameters, when it is difficult to do
so purely analytically, we use the computational approach ofsession enumeration. We compute the value of the
desired parameter for a session that has a particular known structure (sequence of requests). The final value of
the parameter is the summation (over all possible sessions) of values obtained for individual sessions, weighted
by the probability of the session having a specific structure. The number of possible session structures is, of
course, infinite, but in the adopted CBMG session model, the probability of a session having length greater
thanL decreases exponentially. For reasonably structured sessions with probabilities of transitions reflecting
real-life service usage (see Section 4 for a discussion of this topic), it is sufficient to count all sessions of length
less than 2 to 3 times the average session length (i.e., involving on the order of30 – 40 requests), to cover, say,
96-97% of all sessions, probability-wise. This makes it computationally feasible to implement the technique,
which runs over the “majority” of session structures, and expect the running time of the modeling algorithm to
be in the order of minutes, not hours. The enumeration algorithm also computes the probability space covered
and specificallyadjuststhe computed value toaccount forsessions not enumerated.

3. Fixed point iteration over an unknown value. Due to the complex inter-dependent nature of concurrent ses-
sion execution, it often happens that in order to compute a certain parameterP through the session enumeration
technique, we have to know the value of some other parameter, sayR, which in turn depends onP . To break
this loop, we assume some value forP , use the computation technique to findR (and soP as well), and iterate
the procedure until convergence to a fixed point.

Although we illustrate our models using the CBMG and associated data consistency constraints of our sample TPC-W
buyer scenario (Fig. 1), we note that the approach itself is general enough to be tailored to other CBMGs and associated
session data consistency constraints.

Recall that our TPC-W sessions are divided betweenbrowserandbuyersessions. A browser session becomes a
buyer session when it moves from theItem [empty cart] state to theAdd To Cart state (Fig. 1). The probability that
a session eventually makes this transition (Pbuy) is easily computable from the state transition probabilitiespi,j (this
apparatus was developed in the CBMG model [18]). This gives us the rate of incoming buyer sessionsλbuy = λPbuy.
The rest of the section will concentrate on the buyer sessions. To clarify the presentation, we use small letters to denote
probability values that are given by the model, e.g.,pi,j , and capital letters to denote values that we introduce and that
need to be computed, e.g.,Pbuy.

In our TPC-W buyer session,OPs areAdd To Cart requests, each adding one item to the shopping cart with
quantity1. Recall that we haveN items in the store, and probability of picking thei-th item ispi. Thecorr.Id
associated with eachOPrequest is theitemId of the item put into the shopping cart. If a session hasK OPrequests
(i.e.,K items are put into the shopping cart, counting their quantities), we denote theircorr.Id s (i.e.,itemId s) as
i1, i2, . . . , iK . EachOPrequest has an associatedNUMVAL value – the available quantity of the item at the moment
of the request. Each individualCOPwith the samecorr.Id i decreases this value by 1. The session is successful,
if NUMVAL decreases by no more thanqi, between theOP(Add To Cart) and theVALP(Buy Request) requests. A
Buy Confirm request, if admitted, decrements the available quantities of items that were purchased. We view theBuy
Confirm request asthe set of unit decrements, as many of them for eachitemId as was the quantity of the item in
the purchase. With this notation, an admittedBuy Confirm request produces the set of individualCOPs (K of them
in total) with corr.Id s matching those of theOPrequests in the session –i1, i2, . . . , iK . Throughout the rest of the
section we will refer to the session in Fig. 3, as an example of a specific session structure. Note, that this session has
two OPs withcorr.Id s i1 andi2.
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In all three analytical models, the first two percentage metrics – probability of session success (P ) and percentage
of requests belonging to successful sessions (REQ) – are computed by the session enumeration method, in which we
actually enumerate not only session structures, but also all possible assignments ofcorr.Id s toOPs:

P =
∑

all sessions and
corr.Id assignments

Psess · Psucc (1)

REQ=

∑
all sessions and

corr.Id assignments

Psess · Psucc · Lsucc

Lav
(2)

Psess, the probability of a session having a particular sequence of requestsk1, k2, . . . , kL andcorr.Id si1, i2, . . . , iK
assigned to itsOPs is given by the formula:

Psess =
L−1∏
j=1

pkj ,kj+1 ·
K∏

j=1

pij
(3)

Psucc is the probability of a particular session completing successfully.Lsucc is the number of requests in a particular
session, when it is successful.Lav is the average number of requests in a session. The third metric – request rate
(RATE) – is given by the formula:

RATE= λ · Lav (4)

3.1 Optimistic Validation

The Optimistic Validation algorithm works by validatingVALP requests (a singleBuy Request in our case). The
analytical model is built by assuming that we know the value ofη – the arrival rate ofCOPs. Using the value of
η we compute the probability of theBuy Request validation for a particular session structure. Using the session
enumeration technique we compute the two percentage metrics (formulae (1) and (2)), along withη. Fixed point
iteration over unknownη completes the process. In developing this model for Optimistic Validation we assume that
session inter-request times are exponentially distributed (with parameterµ).

If a session is validated, itsBuy Confirm request produces a set ofK COPs. So the expression forη, used by the
session enumeration technique, is:

η = λbuy

∑
all sessions and

corr.Id assignments

Psess · Psucc ·K (5)

where the value ofPsess is given by (3). To computePsucc – the probability of validating a session with a specific
structure and a set ofcorr.Id s – we look at how manydistinctcorr.Id s are in the session (i.e., distinct items are
in the cart), based on the known values ofi1, i2, . . . , iK . For each distinctcorr.Id i, all OPs with thiscorr.Id
are validated, if the correspondingNUMVAL value (i.e., available quantity of the item) decreases by no more thanqi

between the firstOP(i.e.,Add To Cart) and theVALP (i.e.,Buy Request) requests. We assume, that validations of
OPs with distinctcorr.Id s are independent, so

Psucc =
∏

distinct i∈{i1,i2,...,iK}

Pvalid:corr.Id=i,

wherePvalid:corr.Id=i – the probability of validatingOPwith corr.Id i, and with a specific distance betweenOPand
VALP, which is inferred from the session structure. For example, in the session shown in Fig. 3 if the first item put into
the cart hasitemId 1 and the second hasitemId 4, then the probability of session validation is the product of two
validation probabilities: the first one – forOPwith corr.Id 1 and a distance betweenOPandVALPof 5 requests,
and the second – forOPwith corr.Id 4 and a distance betweenOPandVALPof 2 requests.

We assume, that the portion ofCOPs with a particularcorr.Id is proportional to the number ofOPs with the same
corr.Id , because if the session is validated, everyOPis eventually followed by theCOPwith the samecorr.Id .
OPhascorr.Id i with probabilitypi. This means that the flow ofCOPs with a particularcorr.Id i, if viewed as
a Poisson process, has arrival rateηi = η · pi. Thus, computation ofPvalid:corr.Id=i reduces to the following problem.
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Given two Poisson processes, the first with arrival rate µ (session requests between OP and
VALP), the other with arrival rate ηi (the flow of COPs with specific corr.Id i), find the probability
that M requests from the first flow (M being the distance between OPand VALP, known from
the session structure) come earlier than Q requests from the second flow (Q being actually
qi + 1, where qi is the tolerable inconsistency, because the qi + 1-st COPwill invalidate OP). This
probability (let’s denote it Psucc(µ,M, ηi, Q)) is exactly Pvalid:corr.Id=i.

The probability that exactlyk requests arrive in a Poisson process with arrival rateµ in the interval(0, t):
P (µ, k, t) = (µt)k

k! e−µt. The PDF of the random variable representing the time of theM -th request arrival is

pdfµ,M (t) = lim
∆t→0

P{M th req. arr. in (t, t + ∆t)}
∆t

= lim
∆t→0

P (µ,M − 1, t) · P (µ, 1,∆t)
∆t

=
(µt)M−1 · µ · e−µt

(M − 1)!

Psucc(µ, M, ηi, Q) is obtained as the convolution of the PDFpdfµ,M (t) of the time ofM -th request arrival in the first
process and the probability that by that time there will be less thanQ requests that would have arrived in the second

Poisson process,P (ηi, < Q, t). The latter is equal to
∑Q−1

k=0 P (ηi, k, t) =
∑Q−1

k=0
(ηit)

k

k! e−ηit, and thus (we omit some
details for brevity):

Psucc(µ,M, ηi, Q) =
∫ ∞

0

P (ηi, < Q, t) · pdfµ,M (t)dt =
∫ ∞

0

(
Q−1∑
k=0

(ηit)k

k!
e−ηit

)
(µt)M−1 · µ · e−µt

(M − 1)!
dt = . . .

=
Q−1∑
k=0

ηk
i · µM

k! · (M − 1)! · (µ + ηi)k+M

∫ ∞

0

tk+M−1 · e−tdt =

=
µM

(M − 1)! · (µ + ηi)M

Q−1∑
k=0

ηk
i

k! · (µ + ηi)k
Γ(k + M) (6)

whereΓ(z) =
∫∞
0

tz−1 · e−tdt is the Gamma function [2], defined for complex valuesz, and known for positive
integerk: Γ(k) = (k − 1)!. Substituting this into equation (6) gives the final expression forPsucc(µ,M, ηi, Q):

µM

(M − 1)! · (µ + ηi)M

Q−1∑
k=0

(k + M − 1)! · ηk
i

k! · (µ + ηi)k

FindingP andREQ is completed by the fixed point iteration process over unknownη. The value given by r.h.s.
of (5), if viewed as a function ofη is a strictly decreasing function, because the greater the argument (the assumed
value ofη), the fewer the number of validated sessions, and, in turn, the less the value of the r.h.s. of (5). Finding the
intersection of a strictly decreasing positive function with the functiony = x is straightforward.

To compute effective request rate (RATE) by formula (4), we need to knowLav. If sessions are allowed to progress
till the end, then the average session length (Lideal

av ) can be easily computed from the CBMG state transition probabil-
ities pi,j . The presence of the concurrency control algorithm makes some sessions shorter, because they are rejected.
Identifying the points in a session’s structure when the session can be rejected and comparing its length with the length
of the same session running in the absence of any concurrency control algorithms, shows howLav relates toLideal

av . In
the case of Optimistic Validation method and the particular CBMG of the TPC-W session we consider, we conclude
that every unsuccessful session is one request shorter than when it is successful, because theBuy Request is rejected
and there is no finalBuy Confirm request. Therefore,Lav = Lideal

av + P − 1.
The complexity of the algorithm is linear inqi, polynomial inN and the number of states in the CBMG, and

exponential inL (the maximum length of sessions counted in the session enumeration technique). The latter parameter
contributes the most to the complexity of the computation, but as we pointed out earlier, being on the order of several
dozens for reasonably structured real-life sessions, it makes it feasible to use the algorithm.
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3.2 Locking

Recall, that the Locking algorithm works by assigningqi + 1 logical locksto eachcorr.Id valuei, whereqi is the
tolerableNUMVAL inconsistency. EachOPtries to obtain a lock associated with theOP’s corr.Id . If it does not
succeed, the request is rejected, the session is considered aborted, and the locks held by the session are released. All
locks are released after theCOPrequest.

In the model for the Locking algorithm we assume that we know the values ofPlock – the probability thatOP
(regardless of itscorr.Id ) succeeds in obtaining a lock andT – the average time the lock is held for.Plock is then
used to computeλOP – the arrival rate ofOPs. All three values are used to compute the probability of a particular
session’s success (Psucc), which is used by the session enumeration technique to compute all three metrics of interest
(formulae (1), (2) and (4)), along with the values ofPlock andT . Fixed point iteration over unknownPlock andT
completes the model.

A session is successful if it acquires the lock on everyOPrequest, so

Psucc =
K∏

j=1

Plock:ij (7)

wherePlock:i is the probability of obtaining the lock forcorr.Id i (we assume that the probabilities of obtaining
locks for differentcorr.Id s are independent).

FindingPlock:i is the cornerstone of the model. To achieve this, we needλOP – the arrival rate ofOPrequests.
Using the probabilities of state transitionspi,j it is easy to computePret – the probability that after visiting theAdd
To Cart state a session will return to it again (see [18]). In the Locking algorithm, the progress of abuyersession is
conditional on it being admitted in everyAdd To Cart request, so the probability of returning to theAdd To Cart state
is equal toPlockPret. In addition to the firstOPrequest in each buyer session, which contributes an arrival rate portion
of λbuy towardsλOP, there is the flow of secondOPs with arrival rateλbuyPlockPret, the flow of thirdOPs with arrival
rateλbuy(PlockPret)2, and so on. Therefore,

λOP = λbuy

∞∑
k=0

(PlockPret)k =
λbuy

1− PlockPret
(8)

The overall flow ofOPs divides intoN subflows of requests with a particularcorr.Id i, with arrival ratesλOP·pi.
For eachcorr.Id i, we considerOPrequests as “customers”,qi+1 locks asqi+1 “servers” and the time between an
OPrequest and the correspondingCOPrequest (during which the lock is held) in a session as “customer service time”.
Then theqi + 1-lock algorithm of the Locking method introduces the virtual queueing systemM/G/q i+1/qi+1 [11],
with the arrival rate of “customers” beingλOP · pi. The number of “customers” in such a system in the steady state
– random variableξ – depends only on the expected value of the distributionG (which represents “customer service
time”), i.e., only on the average time of holding a lock –T . It is possible to obtain the lock only if the corresponding
queueing system is not full, i.e., there are fewer thanqi + 1 “customers” in the system, therefore,

Plock:i = pr(ξ < qi + 1) = 1−
(λOP·pi·T )qi+1

(qi+1)!∑qi+1
k=0

(λOP·pi·T )k

k!

(9)

Imagine that we know the values ofPlock andT . Equation (8) gives us the value ofλOP. Then, in the session
enumeration phase we compute the metrics of interest, using (7) and (9). The value ofPlock is computed by observing
thatPlock =

∑N
i=1 pi · Plock:i. T is also computed by the session enumeration technique:

T =
∑

all sessions and
corr.Id assignments

Psess · Tsess,

whereTsess is the average time a lock is held in a particular session. The value ofPsess, the probability of a session
having a particular structure and a particularcorr.Id assignments to itsOPs, is given by (3). In theM/G/c/c
system, customer service time is counted only for the customersadmittedto the system. The zero time of a customer
discarded without serving due to the limited server capacity does not count towards average customer service time.
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Therefore, in the computation ofTsess, we count only non-zero locking time periods, and among allK + 1 possible
lock acquisition outcomes we consider only theK outcomesthat start with the firstOPhaving obtained its lock. For
each outcome, we know the position of itsOP– COPperiods (when the locks are acquired and released) and their
average duration. For example, if bothOPs obtain locks in the example in Fig. 3, then we have two locking periods,
the first lasting for6/µ, on average, the second for3/µ, with the average of4.5/µ for this outcome (1/µ is the average
session inter-request time). If the secondOPfails in obtaining the lock, we end up having only one locking period
(between the first and the secondOPs) lasting for3/µ, on average. So for the session example in Fig. 3 we have:
Tsess = Plock:i2(4.5/µ) + (1− Plock:i2)(3/µ).

The average number of requests in a session (Lav), used to computeREQin (2) andRATEin (4), is also computed
using the session enumeration technique in a manner analogous to computingTsess – for each possible lock acquisition
outcome we know the number of requests in the session. The Locking algorithm model is completed by fixed point
iteration over the pair of unknown{Plock,T}. Specifically, we start by assigningPlock any value, say0.5, andT – its
lower bound, the average value of just one inter-request time period (1/µ), and compute new values ofPlock andT by
session enumeration. These new values serve as input for the next iteration, and the process repeats. Our experiments
show that this process converges very quickly to the fixed point. The complexity of the whole algorithm is analogous
to that of the Optimistic Validation algorithm.

3.3 Pessimistic Admission Control

This algorithm gives the worst performance with regards to the metrics of interest (we defer discussion of the reasons
to Section 4), so models for it are irrelevant if one’s goal is to maximize the metrics. We present it in the paper only
for completeness, restricting our attention to only the strict consistency case –q = 0. Recall, that the Pessimistic
Admission Control algorithm works by admitting theCOPrequests that are not going to potentially invalidate other
sessions.

Unlike the first two models, the model for the Pessimistic Admission Control algorithm does not require a fixed
point iteration. First, we computeT – the average time between anOPand aVALP requests in a session. This value
is used in the session enumeration to computePsucc for a particular session, to get the first two metrics –P andREQ
(formulae (1) and (2)). In the TPC-W buyer session, the number of requests does not depend on its success, because
possible request rejection only happens in the last request of the session – theBuy Confirm request. Therefore, the
average session length (Lav) is the same as in the absence of any concurrency control algorithms –Lideal

av , which is
computed frompi,j (see [18]). This observation completes the model by computing theRATEmetric (equation (4)).
The complexity of the whole algorithm is analogous to that of the Optimistic Validation algorithm.

We computeT , the average time between anOPand theVALPrequests in a session, in a separate session enumer-
ation pass. The value ofT for a particular session is immediately seen from the session’s structure. For the session
in Fig. 3, it is equal to3.5/µ, because there are twoOP– VALPperiods, of5 and2 inter-request times, respectively.
Note thatT depends solely on the structure of ECBMG and its state transition probabilitiespi,j .

In the TPC-W buyer session, theCOP(i.e.,Buy Confirm) request is admitted, if all individualCOPs, comprising
it, are admitted. In the strict consistency case (q = 0), if an individualCOPperforming a unit decrement ofNUMVAL
for a particularcorr.Id is admitted from a session, this implies that no concurrently active sessions involve that
corr.Id . Therefore, an arbitrary number of additionalCOPs for the samecorr.Id from the same session can also
be admitted at the same time. Therefore,

Psucc =
∏

distinct j∈{i1,i2,...,iK}

Padmit:j

wherePadmit:j is the probability thatCOPwith corr.Id j is admitted (we assume independence for different
corr.Id s).

To computePadmit:j , we need to knowλOP – the arrival rate ofOPrequests. Each session produces, on average,
Vadd number ofOPrequests, whereVadd is the average number of visits to theAdd To Cart state (easily computable
from pi,j [18]). Therefore,λOP = λbuyVadd. The arrival rate ofOPs withcorr.Id i is λOP ·pi. For eachcorr.Id
i, we consider the following virtual queueing system:OPrequests are “customers”, the “customers” are “served” while
the session is between theOPand theVALPrequests. There are an infinite number of “servers” in the system, because
all sessions are allowed to progress between anOPand theVALP. The queueing system described isM/G/∞ [11] with
the arrival rate of customers beingλOP · pi. The number of customers in the system in the steady state is a random
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Figure 4: Web server test environment.

Table 2: Analyses of request logs of real shopping sites compared to our model parameters.
Study Arlitt et al. [3] Cherkasova et al. [8] Menasće at al. [18, 19] Our model
Distr. of session
length (req)

exponential,
mean 8

exponential, mean
36.5

exponential for human users, 7 types
of sessions: mean 6.9 – 14.77

asymptotically expo-
nential, mean 14.45

Distr. of sessi-
on inter-request
times (s)

mean 40,
charts resemble
log-normal

don’t say, in simula-
tion use exponential,
mean 5

N/A exponential (and log-
normal), mean 10

variable (denoted byξi for corr.Id i). An individualCOPwith corr.Id i is admitted if there are no concurrently
active sessions that involve the samecorr.Id i, i.e.,ξi = 0. Therefore,

Padmit:i = pr(ξi = 0) =
(λOP · pi · T )k

k!
e−λOP·pi·T

whereT is the expected value of distributionG (representing customer service time), i.e., the average time between
anOPand aVALPrequests in a session, which was computed earlier.

4 Model Validation

To validate our models we conducted the following two sets of experiments:

1. Execute concurrent TPC-W sessions with bounded data inconsistency in a simulation environment, implemented
in Java and consisting of a virtual server with a logical rendering of TPC-W (with no actual database accesses)
and a driver to simulate client load. This simulation represents an ideal rendering of the process, with resource
contention limited only to Java synchronization, and request response times being effectively zero.

2. Run concurrent sessions against a real application deployed in a real web server environment. To accomplish
this, we implemented the TPC-W benchmark as a J2EE component-based application [25] and deployed it on
the open-source J2EE application server JBoss [13] (bundled with the Jetty HTTP/Web server) and MySQL
database, each running on a dedicated 1GHz dual-processor Pentium III workstation (Fig. 4). We implemented
the three concurrency control mechanisms as embedded middleware modules in the JBoss/Jetty application
server, so that the TPC-W application code contained no logic enforcing session data consistency constraints.
A separate workstation was used to produce client load – web sessions adhering to the TPC-W buyer CBMG
(Fig. 1) and to the client load parameters –λ andµ. The maximum sustainable request rate of the web application
server was approximately40 req/s, with the bottleneck being the JBoss server, not the database server (unlike in
typical TPC-W usage, the purpose of the tests was not to stress the database, but rather to exercise data conflicts
among different web sessions).

Each test run generated4000 sessions, with statistics gathered from the middle75% portion of the run time to cut off
warm-up and cool-down regions. For each experiment, we measured the three metrics of interest and compared them
with the results produced by the analytical models.

The parameter space of the sample TPC-W buyer CBMG with the specified data consistency constraints is very
large – it consists ofpi,j (state transition probabilities),N (number of items in the on-line store),pi (probability of
picking thei-th item),λ, µ (client load parameters), andqi (tolerable consistency). We conducted the experiments for
several sets of values, varying parameters in all dimensions of this space. All of them showed that the analytical models
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Figure 5: Percentage of successful sessions forq = 0 (left), q = 6 (middle), andq = 30 (right).
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Figure 6: Percentage of requests belonging to successful sessions forq = 0 (left), q = 6 (middle), andq = 30 (right).

produce results closely corresponding to those of the simulation and the real web server environment experiments. Due
to limited space here, we discuss the results of experiments for a “typical” on-line store workload, in which we fix
all parameters exceptλ, which varies to present different client load, andqi, for which we report on three sets of
experiments: the strict consistency case (qi = 0, for all items) and two relaxed consistency ones (qi = 6 andqi = 30).

To choose workload parameters representative of real-life usage, we studied several publicly available analyses of
request logs of real shopping sites [3, 8, 18, 19]. Conclusions of these studies (shown in Table 2) differ (apparently
because they were conducted at different times and for different web sites), for example in how session inter-request
times are distributed. In both of our experiments (simulation and JBoss/Jetty/MySQL) we choose to use an exponen-
tial distribution, and later in the section we study how our results would differ if session inter-request times instead
followed a log-normal distribution. The chosen values of CBMG state transition probabilitiespi,j are shown in Fig. 1
(right figure) – note that the given CBMG has only buyer sessions. The other parameters are:N = 5;1 pi = 0.2 for
i = 1 . . . 5; µ = 0.1, (it corresponds to an average session inter-request time of10s). We have assumed for our models
that requestprocessingtimes are negligible compared to sessioninter-requesttimes. This assumption is based on the
fact that userthink time is generally much higher (in order of tens of seconds) than users are willing to wait for request
response (several seconds). In our JBoss/Jetty/MySQL tests, request response times were generally in the20-100ms
span, reaching350ms under the maximum load (compare it to 10s of average session inter-request time).

Figures 5 and 6 compare the results of the two main metrics – the percentage of successful sessions and the percent-
age of requests belonging to successful sessions – for the three algorithms – Optimistic Validation (OP), Locking (LO),
and Pessimistic Admission Control (PE), obtained in the simulation experiments (simul ), in the JBoss/Jetty/MySQL
web server tests (jboss ), and by the analytical models (model ). We do not include in the charts the analytical model
results for Pessimistic Admission Control, because it is always outperformed by the other two algorithms. The charts
are also missing the JBoss test results forλ greater than 2.56, which we were unable to run due to limited server
capacity.

The first observation is that the results of the models closely match both the simulation and the real web server
environment results, which validates our proposed models. The models do sometimes have a little discrepancy with

1HavingN = 5 does not mean that the store has only 5 items. A model’s items may correspond to only those specifichot-spotitems, for which
the service provider wants to guarantee bounded data inconsistency.
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Figure 7: Algorithm performance comparison for the percentage of successful sessions (left) and the percentage of
requests belonging to successful sessions (right).
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Figure 8: Request rate forq = 0 (left), q = 6 (middle), andq = 30 (right).

the experimental resuts, which tends to grow towards the ends of theλ/µ spectrum (note thatλ/µ determines the
“conflict rate” – the greater the value, the greater the number of concurrent sessions running, the more data conflicts
they see, the less the values of the two percentage metrics of interest). However, it often happens that at the ends
of the spectrum we have a clear algorithm winner, so discrepancy between the model and measurements does not
hamper choosing the best concurrency control method. For example, with a large conflict rate (at the right end of the
spectrum), Optimistic Validation always performs better than the other two algorithms.

Pessimistic Admission Control.This algorithm always performs worse than the other two, with respect to both
percentage metrics. This happens, to our understanding, because of the “altruistic” nature of the method – sessions
are rejected onCOPs to give way to concurrent ones which otherwise would have been invalidated, but some of those
sessions will also end up getting rejected, so some sessions are sacrificed in vain.

Optimistic validation vs. Locking. These two methods compete to achieve the best value for the metrics. Op-
timistic Validation’s “selfish” approach seems to work better for higher rates of conflicts. The Locking algorithm is
more “thoughtful” in that it works by rejecting sessions earlier (onOPrequests), when it just sees the possibility of
later conflicts. It may reject some sessions prematurely, but it lets other sessions run in a less competitive environment.
And it seems to work, especially for higher values ofqi, where for lower rates of conflicts the Locking method outper-
forms its rival in both percentage metrics. The algorithm also works better for the percentage of successful requests
metric, than it does for the percentage of successful sessions. The reason for this lies in the nature of the algorithm –
it rejects unsuccessful sessions earlier in their lifetime, which makes them considerably shorter than successful ones.
This, in turn, increases the portion of requests that belong to successful sessions.

To summarize the differences in performance of the Optimistic Validation and the Locking algorithms, we identify
the regions where one algorithm works better than the other, according to the analytical models. Note that in the ideal
setting, the “rate of conflicts” (and so – both of the metrics) depend only on the ratio ofλ andµ. As in the previous
experiments, we fixed the values of all the parameters exceptλ, µ andqi. Gray areas in Fig. 7 show the regions where
the Locking algorithm outperforms the Optimistic Validation, for the percentage of successful sessions (left chart),
and the percentage of requests belonging to successful sessions (right chart). In both charts, the X axis plots the value
of tolerable inconsistencyqi (equal for all items), from0 to 30, and the Y axis plots the ratioλ/µ. We only considered
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Figure 9: CDF of the exponential and log-normal distributions (left). Comparison of the two main metrics for the four
log-normal and one exponential distribution of session inter-request times, forqi = 6 (middle and right).

the cases where at least one of the metrics lies in the interval of2% – 98%. The dark gray area in the left chart shows
the region where the metrics for both algorithms are greater than98%.

Effective request rate. Figure 8 shows the results for the third metric of interest – effective request rate. Note
that for greater values ofλ, request rates of the web server experiments are a little bit lower than the predicted and the
simulation ones. This happens because under normal load, request response times are in the order of20–100ms span,
which is indeed negligible compared to the session inter-request times (10s on average). However, under higher load,
response times become higher (and reach300–350ms for λ = 2.56). These increased response times start making
a slightly noticeable contribution to the interval betweensendingthe requests, which become higher, so the effective
request rate decreases.

Server capacity considerations.Operating under higher user loads also reveals another major difference between
the Optimistic Validation and the Locking algorithms – the Locking method produces lower request rates on the
service. This happens because of the shorter sessions in the Locking algorithm, which stems from the algorithm’s main
policy – abort potential unsuccessful sessions earlier. This difference may become important if the service operates
under server capacity limitations – the algorithm may become preferrable over the Optimistic Validation technique,
as one producing lesser load on the service, or with request rates better matching prescribed quotas. For example,
we generally were unable to conduct experiments withλ being3.84 and higher, because the projected request rates
surpassed the capability of our web application server environment (∼ 40 req/s).

Log-normal distribution of session inter-request times. For our experiments we used exponentially distributed
session inter-request times, but the analysis in [3] shows that they actually might resemble more a log-normal distribu-
tion. To find out how the metrics of interest depend on the session inter-request times, we conducted additional simu-
lations with four different log-normal distributions used as the session inter-request times: Ln(2.12;0.6), Ln(2.12;0.6),
Ln(1.8;1), and Ln(1.58;1.2), chosen so that their mean values were 10s, matching that of the exponential dstribution
Exp(0.1) used in the previous simulations (E[Ln(µ;σ)] = eµ+σ2/2). Figure 9 shows Cumulative Distribution Func-
tions (CDF) of the five distributions of interest (left chart), and the two main percentage metrics (middle and right
charts), for the case ofqi = 6. As we can see, the metrics are quite insensitive to the actual distribution of session
inter-request times (but rather depend on its mean value), as was also suggested by our analytical models; only the
model for Optimistic Validation used a specific distribution of session inter-request times.

5 Middleware Infrastructure for Data Consistency Enforcement

The proposed models of concurrent web sessions use as input parameters specified by the service provider (the CBMG
structure,N , qi) and service usage parameters (λ, µ, pi, and the CBMG state transition probabilities). The latter could
be obtained throughprofiling of incoming client requests, which makes possible the implementation of anautomated
decision making module as a part of the middleware platform hosting the service. This module would choose an
appropriate concurrency control algorithmin real time, in response to changing service usage patterns. Note that the
application code of the service then does not need to contain any logic to enforce session data consistency constraints
– this task is performed completely by the underlying middleware.
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Table 3: The client load of the dynamic adaptation experiments.

Phase Phase 1 Phase 2 Phase 3 Phase 4 Phase 5
Model
parame-
ters

Buyer-1,N = 5,
pi = 0.2, λ = 3,
qi = 10

Buyer-1,N = 5,
pi = 0.2, λ =
1, qi = 10

Buyer-2, N = 5,
pi = 0.2, λ =
0.5, qi = 10

Buyer-2,N = 5,
pi = 0.2, λ =
0.5, qi = 3

Buyer-2, N = 5, pi =
{0.8, 0.1, 0.04, 0.03, 0.03},
λ = 0.5, qi = 3
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Figure 10: The buyer CBMGs and the results of the dynamic adaptation experiments.

We implemented one such decision making module as a set of pluggable services in the J2EE application server
JBoss [13]. The infastructure consists of the following submodules:

• Profiling Service – profiles incoming web requests, keeping track of each session in progress; produces esti-
mates on the service usage parameters (with confidence intervals) based on observed history of client requests.

• Concurrency Control Service– based on the predefined mapping of web requests toOPs, COPs andVALPs,
performs actual concurrency control for web sessions according to the employed algorithm, by rejecting appro-
priate client requests, utilizing the ability of the middleware tointerceptrequest execution at different levels
(web, inter-component, database); the algorithms are tailored to be able to switch concurrency control methods
on the fly and still enforce data consistency for older sessions that started before the switch.

• Analytics Service– computes the analytical models, based on the predefined structure of the CBMG and the
set of given model parameters; this service is run on a separate machine because of its CPU intensive nature.

• Decision Making Service– main control module that orchestrates actions of the other infrastructure services. It
periodically extracts the model parameters from the profiling service, computes the models using the analytics
service and decides to switch to the better concurrency control algorithm if that shows metric benefits greater
than a predefined threshold. Care is taken to avoid switching the algorithm due to abrupt fluctuation in service
usage.

We conducted three experiments with our infrastructure. The first two fixed the concurrency control algorithm
(Optimistic Validation and Locking), and the third tested automatic adaptation, with the objective of maximizing the
percentage of successful sessions. All three experiments used the same client load and service-specific parameters,
which consisted of the 5 phases shown in Table 3 (the two CBMGs used for the client load – “Buyer-1” and “Buyer-2”
– are shown in Fig. 10). The value ofµ is always0.1, as in all our experiments. Each phase generates 2700 sessions,
and differs from the previous one in one or two parameters (highlighted in the table). Each phase is divided into 9
epochs with 300 sessions each, for which the results are shown on the right chart of Fig. 10.

Our experiments show that the infrastructure is always able to pick-up the best algorithm, so during the test run
with the dynamic adaptation in place, the infrastructure achieves a higher percentage of successful sessions (75.6%)
compared to the Locking (67.1%) and the Optimistic Validation (70.2%) tests, where the algorithms are fixed.
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6 Discussion and Related Work

The notion of a web session, as a structural organization of client commmunication with Internet services, was first
investigated in [8] and [16]. Since then several other studies have explored session characterization of Web work-
loads [18, 19, 3, 21] and proposed models for session-based workload simulation [16, 6, 18]. The work in [5, 17]
acknowledged thatservice usage patternsaffect the performance of Internet services. Our study follows this trend,
relating session-oriented characterization of service usage to service performance and other metrics, and thereby guid-
ing selection of server-side resource management mechanisms. To this end, we (1) propose models of concurrent
execution of web sessions with bounded inconsistency in shared data, (2) show that the models reflect actual behavior
of concurrent sessions, and (3) demonstrate that the models allowdynamic adaptationof the server-side concurrency
control mechanisms to increase the chosen metric.

Some of the context of this study is influenced by previous research. Allowing a bounded discrepancy ofqi is anal-
ogous to relaxation in epsilon-serializability [20]. The ideas of specifying conflicting operations and validation points
in theOP-COP-VALPmodel relate to semantics-based concurrency control [4], while defining tolerable inconsistency
through the invalidation and numerical distances is analogous to the Order and Numerical Errors in TACT [30].

Web sessions with bounded inconsistency in shared data can be viewed as long-running open-ended “transactions”
with specific data consistency constraints, and resemble advanced transaction models such as Sagas [9], conversational
transactions [28], and cooperative transactions [14]. However, unlike Sagas, web sessions don’t have well defined
boundaries and are not divided into sub-transactions. Conversational transactions are “chopped” into a chain of smaller
transactions, each of which corresponds to recieving a message and sending a reply. Previous work on conversational
transactions has primarily focused on providing mechanisms to durably store and efficiently recover the conversation
context, rather than dealing with data conflicts; in the web sessions context, the former problem admits simple solution
such as cookies (although it is not 100% failure resilient [28]), while the latter issue has not received as much attention.
Like web sessions, cooperative transactions are also viewed as long-running, open-ended activities with a user-defined
notion of correctness of execution. However, cooperative transactions retain much of the control with the clients, who
explicitly manage shared resources and transaction isolation. In web sessions, clients are oblivious to the specification
of correctness, which is provided by the server provider in theOP-COP-VALPmodel. The main difference of web
sessions from all transaction models is the inability torollback a web session, by “undoing” or “compensating” its
effects.

Analytical modeling of concurrency control mechanisms is a well studied classical problem [22, 1, 23, 24]. How-
ever, while conducting this study, we were unable to find a model for concurrency control that would specifically
cover the case of web sessions modeled with CBMGs. As rightfully pointed out in [1], “nearly every study is based on
its own unique set of assumptions regarding database system resources, transaction behavior, and other such issues.”
Most previous models focused on modeling classical database transactions which enforce strict consistency. The most
notable peculiarities of our model are that (1) our No-Waiting Locking algorithm substantially differs from the classi-
cal “no-waiting” locking algorithm, by having no restarts; (2) we don’t model resource contention, assuming request
processing times are negligible compared to session inter-request times; and (3) we allow flexible relaxed consistency
on a per-item basis. In conventional database transactions, it is acknowledged thatpessimistic(locking) concurrency
control approaches are more suitable for higher rates of conflicts, whileoptimisticones work well for lower conflict
rates [1]. As we have seen, in the web sessions case, the situation is opposite. This performance difference observed
in simulations, also steered us to creation of our own models. We believe that the difference in locking mechanisms is
the main reason why optimistic and locking approaches have the opposite behavior in classical transactions and in the
case of web sessions. Interestingly, there are some similiarities between our results and the results of previous studies
in the area ofreal-timedatabase transactions [12, 27]. Such transactions have associatedcompletion deadlines, that
they have to meet in order to be successful. Real-time database transactions share the commonality that optimistic
approaches often outperform the locking ones.

7 Summary

This paper proposes analytical models to characterize concurrent execution of web sessions with bounded inconsis-
tency in shared data. The models predict the performance of concurrency control algorithms by computing the chosen
metrics of interest, based on parameters of service usage. We have illustrated our models using the sample buyer
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scenario from the TPC-W e-Commerce benchmark, and have validated them by showing their close correspondence
to measured results of concurrent session execution in both a simulated and a real web application server environ-
ment. We have also implemented a profiling and automated decision making middleware infrastructure which has
been shown to successfully choose, for the specified performance metric, the best concurrency control algorithm in
real time in response to changing service usage patterns.
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