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ABSTRACT

The growing popularity of XML Web Services is resulting
in a significant increase in the proportion of Internet traf-
fic that involves requests to and responses from Web Ser-
vices. Unfortunately, web service responses, because they
are generated dynamically, are considered “uncacheable” by
traditional caching infrastructures. One way of remedying
this situation is by developing alternative caching infrastruc-
tures, which improve performance using on-demand service
replication, data offloading, and request redirection. These
infrastructures benefit from two characteristics of web ser-
vice traffic — (1) the open nature of the underlying proto-
cols, SOAP, WSDL, UDDI, which results in service requests
and responses adhering to a well-formatted, widely known
structure; and (2) the observation that for a large number
of currently deployed data-centric services, requests can be
interpreted as structured accesses against a physical or vir-
tual database — but require that there be sufficient locality
in service usage to offset replication and redirection costs.

This paper investigates whether such locality does in fact
exist in current web service workloads. We examine access
logs from two large data-centric web service sites, SkyServer
and TerraServer, to characterize workload locality across
several dimensions: data space, network regions, and dif-
ferent time epochs. Our results show that both workloads
exhibit a high degree of spatial and network locality: 10%
of the client IP addresses in the SkyServer trace contribute
to about 99.95% of the requests, and 99.94% of the requests
in the TerraServer trace are directed towards regions that
represent less than 10% of the overall data space accessible
through the service. Our results point to the substantial
opportunity for improving Web Services scalability by on-
demand service replication.
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1. INTRODUCTION

The World Wide Web has gradually undergone a trans-
formation from its primarily read-only, information-centric
roots into an infrastructure that provides programmatic ac-
cess to a variety of sophisticated services. This last trend is
likely to become widespread because of the growing popu-
larity of the XML Web Services architecture, which specifies
a standard set of protocols (SOAP, UDDI, and WSDL) to
enable dynamic discovery and interaction. Several of the
largest services on the Internet today offer a web services
portal, with representative examples including Microsoft’s
MapPoint Web Services, Amazon’s Web Services, Google’s
Web APIs, and the TerraServer and SkyServer imagery servers.

Consequently, a significant fraction of Internet traffic in
the not so distant future is likely to involve requests to and
responses from web services. Unfortunately, because re-
sponses from Web Services are dynamically generated, such
traffic will be considered “uncacheable” by traditional web
caching infrastructures and hence see higher latencies and
lower scalability. However, there are two characteristics of
web service traffic that can, in principle, be exploited to
remedy this situation. First, the open protocols underly-
ing the web services architecture imply that service requests
are “inspectable” being well-formatted (e.g., SOAP-based)
and following a widely-known interface (e.g., published in
WSDL). Second, for a large number of currently deployed
data-centric services, it is possible to interpret requests as
structured accesses against a (physical or virtual) service
database; the request parameters point to the region of the
database that is used to satisfy the request. As an exam-
ple, one might think of the maps service provided on the
MapPoint site[12], which takes as input the latitude and
longitude of a location and a desired map scale, and returns
a map which is dynamically composed from pre-computed
image data around that location in the back-end database.
Together, the two characteristics point to the potential of
improving service performance using alternative caching in-
frastructures, which perform on-demand service replication,
data offloading, and request redirection by inspecting re-
quests to infer service usage patterns.



However, given the relatively high costs of service repli-
cation and/or request redirection, such infrastructures can
achieve performance improvements only if there exists suf-
ficient locality in service usage. For practicality, one would
ideally like to see only a small subset of the overall service
data or functionality being replicated, at a small number
of locations in the network, and in a fashion that benefits
requests over a long time duration. Thus, before one can
proceed with building and deploying such infrastructures,
one needs a better understanding of the workloads seen by
such services to answer questions about whether sufficient
locality exists and if so of what kind.

In this paper, we investigate the characteristics of work-
loads on two large-sized web service sites, SkyServer [16]
and TerraServer[2], whose usage logs we could obtain access
to. The SkyServer site presents data from the Sloan Digital
Sky Survey, and its usage logs are publicly accessible. The
TerraServer site provides a front-end to one of the world’s
largest online databases comprising map and relief data from
the US Geological Survey (USGS)[3]. We were only able to
obtain a 1-day trace for this site, albeit one involving 24 M
requests. Although the results of our study are obtained on
these specific traces, it is our belief that similar character-
istics apply to other data-centric services as well including
those from MapPoint, Amazon, and Google.

We examine the web service requests to quantitatively
characterize how much temporal, spatial, and network lo-
cality they exhibit. Temporal locality refers to the prop-
erty that within a short time period, a subset of objects of
the database are more frequently accessed than others; spa-
tial locality to the property that a subset of objects of the
database are more frequently accessed than the others; and
network locality to the property that such requests originate
from a small group of users that are colocated in network
space. Understanding these characteristics helps drive the
design of the service replication infrastructures.

Our study had to address several challenges: unifying
the multiple representations of service requests, grouping
the large population of users, and modelling accesses to a
large-sized multi-attribute database. For the first two of
these issues we adopted solutions that are natural: using
the WSDL specification of the service interfaces and a data-
cleaning procedure to aggregate related requests, and using
client IP addresses to loosely group users into 8-bit or 16-bit
sub-networks. The third issue above is harder to deal with
both because the relational schema of the database under-
lying a production service is difficult to obtain in practice,
and even when disclosed, would require a complicated data
model to efficiently represent and analyze accesses, at differ-
ent granularities, against a huge volume of data in a multi-
dimensional data space. In this paper, we discuss the design
of a logical view of the service database, which relies on in-
formation from the service interfaces to present a simpler,
analysis-friendly view of accesses to the original database.

Our results verify that there exist ample opportunities for
improving web service scalability using on-demand service
replication. Specifically, we find that:

e Both workloads exhibit a high degree of spatial and
network locality. As examples, 10% of the client IP
addresses in the SkyServer trace contribute to about
99.95% of all requests over a 4-month period, and
99.94% of the requests in the TerraServer trace are
directed towards regions that represent less than 10%

of the overall data space accessible through the service.

e Such locality is present across multiple data region
granularities, network levels, and time scales, affording
considerable flexibility for the service replication in-
frastructures to choose an appropriate operating point.
For example, in the SkyServer trace, when client ad-
dresses are aggregated into groups identified by the
first two octets of the address, 10% of the groups still
contribute to nearly 80% of all requests. Moreover,
this behavior is present even at the timescale of a week.

The rest of the paper is organized as follows. Section 2
briefly introduces the SkyServer and TerraServer web sites
and provides details about the access traces. Section 3
presents a taxonomy for the kinds of request locality that
our study characterizes, and introduces a logical view of web
service databases to simplify workload analysis. The analy-
sis methodology and our findings are presented in Sections 4
and 5 respectively. Finally, we discuss related efforts and
possible extensions to our work (Section 6) and conclude.

2. BACKGROUND

To assess whether usage of real-world data-centric web
services does in fact exhibit the kinds of locality required for
service replication techniques to be beneficial, we analyzed
request logs from two such sites, SkyServer and TerraServer.
Our choice of these sites was driven by the fact that we
were able to obtain access to their request logs, often the
major impediment to performing a study similar to ours.
SkyServer’s web logs are publicly available.

The SkyServer web site provides Internet access to the
public Sloan Digital Sky Survey (SDSS) data for both as-
tronomers and for science education. The SDSS is a 5-year
survey of the Northern sky (10,000 square degrees) to about
1/2 arcsecond resolution using a modern ground-based tele-
scope. Its goal is to characterize about 200 M objects in
5 optical bands, and measure the spectra of a million ob-
jects[4]. The web site has been operating since June 5, 2001
and receives approximately 3M requests every month.

The TerraServer web site is one of the world’s largest on-
line databases, providing free public access to a vast data
store obtained from the US Geological Survey (USGS). The
web site contains 3.3 TB of high resolution USGS aerial im-
agery and USGS topographic maps. The TerraServer web
site has been operating since June 1998 and is heavily used:
a typical day sees 25M - 30M requests.

The underlying architecture of both sites is similar and
built on top of Microsoft’s IIS and .NET framework offer-
ings: a front-end IIS web server accepts HTTP requests
and passes them to corresponding HTTP handlers (e.g., an
ASP, ASPX, or ASHX handlers) for processing. The HTTP
handlers, which implement the service functionality, query
against a back-end database server to generate responses by
formatting the returned records into HTML pages/SOAP
messages. The access logs we work with are recorded by
the IIS server, and include requests for static content; we
filter out such requests from our analysis as described be-
low. Because of its heavier load, the TerraServer site uses
a web server farm, with each server logging its own trace.
Our analysis is on an aggregate trace obtained by merging
these individual traces in timestamp order.

2.1 Trace Structure



Table 1: Entry structure in the two web traces.

l Index [ Field ‘ l Index [ Field ‘

1-3 | yy, mm, dd 1 date

4-6 hh, mi, ss 2 time
7 seq 3 s-computername
8 logID 4 cs-method
9 clientIP 5 cs-uri-stem
10 op 6 cs-uri-query
11 command 7 cs-username
12 error 8 c-ip

(a) SkyServer Weblog (b) TerraServer Weblog

Our analysis of the SkyServer site is based on a four month
trace from January 1, 2004 to April 30, 2004, containing
11.4 M requests. For the TerraServer site, we could only
obtain access to a single day’s trace, April 5, 2004, which
contained 24 M requests. Table 1 shows the entry struc-
ture of request logs at the two web sites. Each entry in
the request log contains the following information: a times-
tamp, an IP address of the client that made the request,
the name of the requested page/service, and the supplied
parameters for the request. For the SkyServer request log,
the first 6 fields (“yy”, “mm”, “dd”, “hh”, “mi” and “ss”)
together provide the timestamp information; field “clientIP”
provides the client IP address information; field “command”
provides both the name of the requested page/service and
the supplied parameters for the request. For the TerraServer
request log, the “date” and “time” fields together provide
the timestamp information; field “c-ip” provides the client
IP address information; field “cs-uri-stem” provides infor-
mation on the name of the requested page/service; and field
“cs-uri-query” provides information about parameters sup-
plied with the request.

The logs consist of requests for both static and dynamic
content. Our analysis focuses on the latter requests, which
involve accesses to a back-end database. We apply a broad
interpretation for such requests, including both services that
are invoked using SOAP, as well as ASP .NET web appli-
cations that are invoked using HTTP GET/POST. Table 2
summarizes the fraction of each category of request.

For each dynamic requests, we parse the logs to identify
the request command (“service”) and parameters, discard-
ing requests that were either ill-formatted in syntax or in-
compatible in semantics (this constituted a very small frac-
tion of all requests, fewer than 0.34%). While we looked at
a broader set of requests, here we restrict our attention to
the most frequently invoked services (out of thousands) that
dominate the dynamic traffic at each site. Table 3 summa-
rizes the statistics of each kind of request. The client IP ad-
dress columns correspond to the number of unique addresses
requesting that service, and unique groups of addresses that
share either their first three octets (corresponding to a 8-bit
subnet) or their first two octets (loosely corresponding to a
16-bit subnet).

Services for the SkyServer site include:

e x_rect.asp: which takes as input a rectangle in the sky
(specified by the rectangle center, width, and height

expressed in terms of the sky coordinates of right as-
cension and declination) and five optional optical bands,
and returns a list of objects found in that rectangle.

e x_radial.asp: which takes as input a circle in the sky
(specified by a center point and a radius expressed in
terms of the sky coordinates of right ascension and dec-
lination) and five optional optical bands, and returns
a list of objects found in that circle.

e getjpeg.aspx: which takes as input a rectangle in the
sky, a desired map scale and a set of drawing options,
and returns a JPEG image.

e shownearest.asp: which takes as input a circle in the
sky, a desired map scale and a set of drawing options,
and returns a thumbnail JPEG image.

e x_sql.asp: which takes as input an arbitrary SQL
query against the back-end database, and returns the
results in required format (HTML, XML or CSV).

For the TerraServer site, one request type dominates:

o tile.ashx: which returns a 200 pixels x 200 pixels
imagery of the “Photo”, “Topo”, or “Relief” type cor-
responding to a point on the Earth’s surface specified
using the UTM coordinate system [1], on a desired
map scale. Requests for the “Photo” type contribute
to ~ 85% of the whole, so we limit our attention to
that type.

We characterize locality properties for each of these ser-
vices, except x_sql.asp, whose requests make arbitrary queries
again the underlying database. As reported in [4], the rela-
tional schema of the SkyServer database is very complicated,
thereby making it difficult to analyze data region accesses by
requests without additional information about the database
internals.

3. LOCALITY IN SERVICE REQUESTS

Service replication infrastructures of the kind described
in Section 1 need to make decisions about what to repli-
cate/offload, where to locate service replicas, and when to
perform such actions. To help answer these questions, our
analysis focuses on quantitatively characterizing the pres-
ence of temporal, spatial, and network locality in the request
logs.

Temporal locality refers to the property that within
a certain time period, a subset of objects of the service
database are more frequently accessed than others. Such
locality arises from the presence of “hot” objects in the
database whose popularity changes with time; for example,
in the SkyServer site, such locality may be correlated with
unusual astronomical phenomena such as a meteor shower.
Detection of such locality can help alleviate hotspots and
flash crowd-like effects at the service.

Spatial locality refers to the property that certain re-
gions of the database are more frequently accessed than
others. For example, certain book categories at an online
bookstore like Amazon.com might receive a dominant frac-
tion of all requests. Capturing spatial locality can help de-
fine appropriate “materialized views” to drive the database
partitioning and replication process.

Network Locality refers to the property that a certain
group of users, colocated in network space, are responsible
for a dominant fraction of all requests to the service. Such



Table 2: Fraction of static and dynamic content.

[ Content [ hits (M) [ % | Content [ hits (M) [ %

SkyServer TerraServer
all 11.402 100 all 24.220 100
static 6.181 54.21 static 5.809 23.99
dynamic 5.221 45.79 | dynamic | 18.411 76.01

Table 3: Types of services showing request and
client IP statistics.

Service Requests Client IPs
o™ T % uniq. [ 8-bit [ 16-bit
SkyServer
all 5.221 100 - - -
x_rect.asp 2.490 | 47.69 219 188 168

0.417 7.99 735 548 432
0.476 9.12 7410 | 5223 | 2860
0.339 6.49 9003 | 7153 | 3648

x_radial.asp
getjpeg.aspx
shownearest.asp

x_sql.asp 0.506 9.69 - - -
TerraServer
all 18.411 100 - - -
tile.ashx 16.516 | 89.71 || 29029 | 25699 | 5466

locality typically arises because of shared interests among
a group of users, e.g., one expects map services such Map-
Point.com to exhibit significant geographical locality. Cap-
turing network locality can help identify appropriate loca-
tions in the network to place service replicas.

To enable characterization of these three kinds of locality,
we correlate the parameters of each service request with the
region of the underlying database used to respond to the re-
quest. Ideally, we would like this correlation to be in terms
of the physical back-end database. However, for most pro-
duction services like SkyServer or TerraServer, obtaining the
relational schema of the back-end database not only raises
difficulties in practice, but even when available may prove
overly cumbersome for detailed analysis. As an alternative,
for data-centric web services that are our primary interest,
we use the information provided in the documentation of
the service interface to construct a simpler logical view of
the database.

3.1 Logical view of the back-end database

The logical view of a service’s database is constructed by
examining the supplied parameters in the service’s WSDL
interface, and defining a virtual dataspace accessed by these
parameters, assuming that they are numeric or alphabetic
rangeable. Note that the logical view only approximates
usage of the underlying physical database, not its structure.

We are often interested in only a subset of this over-
all dataspace corresponding to parameters that exhibit the
most variation across requests. Thus, a view defines a mul-
tidimensional data space based on one or more parameter
value ranges. Following the concept of semantic regions in
database caching [10], we can partition such a data space
into multiple disjointed regions at some granularity, and
model service accesses at the level of these regions.

Table 4: Logical views of services.

[ Service [ Input [ View
x_rect.asp rectangle(in sky) 2D: rectangle center-
5 optical bands point
x_radial.asp circle 2D: circle center-
5 optical bands point

rectangle, scale
drawing options
circle, scale
drawing options
scale, point (in UTM)
photo type

3D: rectangle center-
point, scale
3D: circle center-
point, scale
4D: scale, 3D point

getjpeg.aspx
shownearest.asp

tile.ashx

Our analysis makes use of the logical service views as fol-
lows. An individual service request can now be interpreted
as an edge originating from a particular client IP address and
directed to a point in such a multidimensional data space.
The reason it is a point (instead of more generally being
a region) is because to ensure efficiency, most services usu-
ally enforce a range limit on an individual request. As an
example, on the SkyServer site, the z_rect.asp service only
allows a request to search objects within a rectangle which
has a maximum size of 0.2 degrees by 0.2 degrees in sky
coordinates. By examining clustering of request edges in
both the IP address space and the logical view data space,
we can quantify the extent to which a request trace exhibits
different kinds of locality.

Views for SkyServer and TerraServer services We
take service z_rect.asp as an example to show how to con-
struct a logical “view” for a service. As introduced in Sec-
tion 2, the input for the service consists of 9 parameters, and
hence its logical view might consist of 9 attributes: the coor-
dinates of the center-point, width and height of a rectangle
in the sky, and the optional 5 optical bands. An alternative
view could consist of the center-point and the rectangle di-
mensions by clustering together the dimensions correspond-
ing to the optional 5 optical bands; service requests in our
traces exhibit relatively little variation for these values. Fur-
ther simplification is possible by observing that each request
can refer to a maximum rectangle of a known size, hence it
suffices to define the view in terms of the coordinates of the
rectangle’s center-point.

Table 4 lists the logical views that we constructed for each
of the five services. Notice that while the first 4 services
have a rather simple view which consists of 2 or 3 dimen-
sions, the last service’s consists of 4 dimensions. In the rest
of the paper, we use the following abbreviations to refer
to these dimensions: for the SkyServer services, the map
scale dimension is denoted as “S”, the right ascension co-
ordinate dimension is denoted as “X”, and the declination
coordinate dimension is denoted as “Y”; for the TerraServer
service, the map scale is denoted as “S”, the scene dimen-
sion (the “zone” coordinate in UTM) is denoted as “T”, and
the “easting” and the “northing” dimensions are denoted as
“X” and “Y”, respectively. TerraServer uses these four pa-
rameters to identify a point on the earth’s surface using the
UTM system.

The parameters of each dynamic request in the traces de-
scribed in Section 2 are translated to a point in the data
space of the logical view for that service. In cases where
two services share the same logical view (this happens in
the case of z_rect.asp and z_radial.asp in our case), we pool



the requests into a combined group ordering them using the
associated timestamp information.

4. METHODOLOGY

As stated earlier, our analysis goals are to characterize
to what extent the request logs exhibit temporal, spatial,
and network locality. Note however, that the locality struc-
ture depends on various parameters: the granularity of data
space regions, how addresses are grouped, and the timescales
of interest. To systematically examine the effect of these
factors, we parameterize the request workload: a particular
assignment of parameter values divides up the logical data
space into partitions of a certain size, the trace into differ-
ent time epochs, and the client IP addresses into different
address groups.

We then examine locality patterns over a range of val-
ues for these parameters, as shown in Table 5. The role of
the “IP address groups” and “timescale” parameters should
be clear: we consider two groupings of client IP addresses,
based on whether they share their first 2 or first 3 octets,’
and different time epoch sizes ranging from an hour to the
entire duration of the trace. The “partitioning policy” pa-
rameter controls along which dimension(s) and at what gran-
ularity the logical data space of the service is partitioned.
For example, in the SkyServer getjpeg. aspx service, we exam-
ine 21 partitioning policies corresponding to seven choices of
partition-by-dimension (S, X, Y, SX, SY, XY, SXY), and
three granularities for each of these choices (a granularity
value of x implies that regions are defined by dividing each
dimension of the partition into 2% equal intervals). To ex-
plain the notation, a partitioning policy value of XY10 cor-
responds to 22° data space regions; each region spans 1/2'°
of the range of the X and Y dimensions. For the TerraServer
service tile.ashx, the granularity of each dimension to be
partitioned is set to a fixed value: 11 regions for the “S”
dimension, 10 for “T”, and 40 for both “X” and “Y”.

The Cell structure To efficiently analyze the request
traces for a particular partitioning policy, we use a dynamic
data structure, called Cell. A Cell basically defines a re-
gion in the data space (correspondingly, a partition of the
database) and is responsible for collecting the requests that
hit in this region. A Cell can recursively split itself along one
or more dimensions of the data space to form a Cell tree, as-
suming each dimension is alphabetic or numeric rangeable.
By specifying the ways to split the Cell structure and the
depth of Cell tree, we can control how and at what granu-
larity a data space is partitioned: the leaf nodes in a Cell
tree represent a database partition at a certain granularity
(Figure 1).

4.1 Characterizing locality

To reason about the three kinds of locality in a unified
fashion, we compute a “load fraction” graph. Each point
in this graph corresponds to the mazimum request load (as
a fraction of all requests) that is observed between a set of
address groups and a set of data space partitions, under the

'The intention here was to group network addresses to as-
certain if locality exists at higher levels of the network, say
at the granularity of 8-bit and 16-bit subnets. We realize
that the 2-octet grouping is only an approximation for the
16-bit subnet evaluation; a more precise analysis would re-
quire inferring the IP address-AS associations.

Table 5: Range of parameter values over which lo-
cality characteristics were investigated.

| Parameter [ Values investigated ‘

z_rect.asp
2TV ¢ x {4,7,10}
share first {2 | 3} octets
{hour, day, weekday,
weekend, week, month, all}

partitioning policy
IP address group
timescale

getipeg.aspx, shownearest.asp
partitioning policy 2{S’X’Y}\¢ x {4,7,10}
IP address group share first {2 | 3} octets
timescale {hour, day, weekday,
weekend, week, month, all}

tile.ashx
2{T,S,X,Y}\¢

share first {2 | 3} octets

partitioning policy
IP address group

timescale {hour, day (all)}
Data Cell
Space Tree

Figure 1: Data space partitioning vs. Cell splitting.

constraint that the cardinality of these two sets is bounded
to certain values. Informally, the graph shows the potential
benefits of caching a subset of data space view regions at a
subset of the network locations from where requests origi-
nate. For example, in figure 3, a point at location (30, 10,
0.84) can be interpreted as meaning that “10% of 8-bit IP
address groups contribute at most 84% of requests on 30%
of the regions”.

The computation of the maximum request load is NP-
hard, so we use a greedy heuristic (Figure 2) to approximate
the maximum request load. The heuristic takes as input two
budgets (the thresholds on the fraction of IP address groups
and of regions), a set of client IP address groups, a set of
regions (represented as leaf nodes in the Cell tree) and a set
of edges between the two sets where an edge represents one
of the addresses in the address group making a request to the
stated region; the edge weight denotes the number of such
requests. The algorithm then “greedily” selects the maximal
weight edges until the two budgets are exhausted. Clearly,
the heuristic provides a lower bound on the achievable load
fraction.

5. ANALYSIS



Inputs:
C': a set of client IP addresses
L: a set of leafs in Cell-tree
E: a set of edges between C' and L where:
€;,; € E & client ¢; has requests hit on leaf Cell I;;
the weight of e; ; is the number of requests

Be, B;: two budgets

Variables:
C': a set containing the selected elements from C;
IC'] < Be
L’: a set containing the selected elements from L;
IL'| < By

Output:
the total weight of edges between C’ and L’

Algorithm:

— sort the edges in decreasing weight order

— select the heaviest edges until one of the budgets
is exhausted (edge e; ; is selected = C' = C' U {¢;} and
L'=Lu{l})

— once a budget is exhausted, select the heaviest
edges that originate from the nodes in that selected set
until the other budget is also exhausted

— select all remaining edges whose head and tail are
already in C’ and L’

Figure 2: Greedy computation of “load fraction”.

Our results show that there exists high spatial and net-
work locality in both workloads on the SkyServer and Ter-
raServer sites. In this section, our discussion focuses on
z_rect.asp and tile.ashx, the two most representative services
at each site.

Each graph presented in this section is indexed with a
string of the form “IP_n_PP_dims[l]-TS_epoch
[-val]”, referring to a specific assignment of parameters (IP
address grouping, partitioning policy and timescale) as dis-
cussed in Table 5; “val” indicates that the value is com-
puted as an avg/max/min of request loads from multiple
time epochs.

Overall locality characteristics

For SkyServer’s z_rect.asp service, corresponding to finest
granularity regions (where the data space is divided into
220 regions), addresses grouped into 8-bit subnets, and the
largest timescale (4 months spanning the entire trace), Fig-
ure 3 shows that: (1) 10% of client IP addresses contribute
about 99.95% of requests; (2) 84.04% of the requests hit on
30% of regions in the data space; and (3) because of (1),
for any specific certain fraction of regions, increasing the
fraction of IP addresses from 10% to 100% does not affect
the computed load fraction too much (the maximum load
fraction that can be added is only 0.05%).

Similarly, for TerraServer’s tile.ashx service, correspond-
ing to finest granularity regions (where the data space is
divided into 176,000 regions), addresses grouped into 8-bit
subnets, and the largest timescale (1 day, spanning the en-
tire trace), Figure 4(a) shows that: (1) 10% of client IP
addresses contribute about 83.94% of requests; (2) 99.94%
of requests hit on 10% of regions in the data space; and (3)

0.95

Load Fraction

1 4
09 4
0.8 o
0.7 1
0.6 1
05 o
0.4 o

16
Address
Groups(%)

) 60 75
Regions(%) 80

90 100 10

Figure 3: IP_3_PP_XY10_TS_All: Spatial locality
for requests accessing the z_rect.asp service in the
SkyServer trace.

because of (2), for any specific certain fraction of IP ad-
dresses, increasing the fraction of regions from 10% to 100%
does not affect the computed load fraction too much.

The results imply that for both workloads, caching a small
fraction of regions at a small fraction of subnets could po-
tentially reduce a large fraction of service traffic in the net-
work. The results in Figure 4(a) indicate that if we could
only cache up to 10% of the regions at up to 10% of the
subnets, we could still cover (i.e., potentially improve the
performance of) as much as 83% of the overall request traf-
fic. Zooming in on this figure (Figure 4(b)) reveals that even
if we could only cache at most 1% of the database view re-
gions at no more than 1% of the subnets, we could still cover
as much as 63% of the overall request load.

Figures 5 and 6 present the detailed characteristics of
workload locality for the z_rect.asp and tile.ashx services,
over a range of representative values for data space region
granularity, addresses grouping and time epoch size. We
discuss the salient points of these graphs below.

Impact of IP address grouping

To understand if the locality structure is different for higher
levels of the network (since any practical replication strategy
would need to share a replica among multiple clients), we
examined how the load fraction graph changes when all IP
addresses that share either their first two octets (loosely
corresponding to a 16-bit subnet) or their first three octets
(corresponding to a 8-bit subnet) were pooled together into
an address group. In the z_rect.asp trace, we found that
for both grouping scenarios, 10% of the groups contribute
to about 99.95% of the requests, suggesting that a large
number of requests continue to benefit even if replicas can
only be created at higher network levels (Figures 5(c) and
(f)). A similar trend was observed for the tile.ashx trace.
The locality structure stayed the same for the finer grouping,
and only reduced slightly for the coarser one where 10% of
the groups ended up contributing to 79.2% of the overall
requests (Figures 6(a) and (b)).

The observations imply that a service replication infras-
tructure has considerable flexibility in choosing how to im-
prove service performance, and can strike an appropriate
tradeoff between prioritizing client-perceived latency and
data offloading costs (which would be lower with fewer repli-
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cas at higher levels of the network).

Impact of region granularity

To understand how much of the locality structure is still
present for coarser granularity regions in the data space
(again, for practical reasons, one would like to replicate large
contiguous blocks of the data space as opposed to individ-
ual scattered relations), we examined the nature of the load
fraction graphs for different granularity values. We find that
significant amounts of locality continues to be present even
at coarser granularities.

In the z_rect.asp trace, when client IP adddresses are
grouped into 8-bit subnets, one still sees a large fraction of
client requests targeting a small number of coarser-grained
regions. Compared to 93.66% of requests hitting 30% of the
regions, when region size is 1/2'°-th of the data space size
along each dimension, 88.42% requests hit on 30% of the
regions when the region size grows by a factor of 8 along
each dimension, and 86.22% of requests continue to hit on
the same fraction of regions even when this factor goes up
to 64 (Figures 5(f), (g) and (h)).

The figures also show that at the finest region granularity,
the network locality measured is lower than at coarser gran-
ularity when the fraction of address groups is low (10%):
60.67% of requests hitting on 30% of regions, as opposed to
88.38% and 86.19% in the other two figures. This behav-
ior is an artifact of our greedy algorithm, which because it
does not prioritize one budget over another, may occasion-
ally mis-select an edge whose weight may be maximal, but
whose client [P address group contributes fewer hits than
another (e.g., because the second address might be involved
in multiple edges).

More interestingly, our analysis reveals different locality
behaviors for different region shapes suggesting that, for a
given region size, locality can be optimized with additional
service-specific knowledge. For example, Figures 5(a) and
(b) indicate that compared to 54.73% of requests hitting
30% of the regions, when the logical data view is partitioned
along the right ascension coordinate (X), 77.84% of requests
hit on 30% of the regions when the view is partitioned along
the declination coordinate (Y). A similar observation also

holds for the tile.ashz trace (Figures 6(c) and (d)).

Impact of time epoch size

To understand whether the locality structures develop over
long timescales or are even present over short timescales, we
examined how the load fraction graph varies with different
time epoch sizes. The z_rect.asp trace, which contains few
requests for shorter time epochs, shows larger variations in
locality patterns for smaller time epochs than the tile.ashx
trace. For the former, Figures 5(d), (e) and (f) show that
10% of the address groups contribute only 8.42% of requests
for a daily timescale while this fraction goes up to 99.63%
for a weekly timescale and 99.95% for a monthly timescale.
For TerraServer’s tile.ashz service, 10% of the address groups
continue to contribute to at least 80% of the overall requests
even for hour-long epochs (Figures 6(b) and (g)).

The observations imply that locality is in fact affected by
the size of the time epoch, with additional service-specific
information possibly being required to guide a service repli-
cation infrastructure in its choice of an appropriate epoch
size at which to detect and optimize locality.

Deviation of measured locality

To understand the variations in locality over different time
epochs, we examined three kinds of statistics for the load
fraction, the minimum, average and maximum values, over
the entire trace duration. Contributing to these statistics
were the load fractions measured at each time epoch. The
results indicate that the z_rect.asp trace exhibits larger de-
viations of load fraction compared with the tile.ashx trace.
This observation likely results from the smaller number of re-
quests seen over smaller time epochs in the SkyServer trace.

6. RELATED WORK AND DISCUSSION

The work presented in this paper has focused on charac-
terizing web service requests in terms of how much locality
they exhibit with respect to the data regions of the backend
database involved in generating their responses. Our work is
therefore related to previous efforts that have characterized
different aspects of web traffic.

Pitkow [14] has presented a survey of web characterization
studies and there are a number of other detailed studies that
have examined web workloads [13, 5, 6, 11, 7, 17]. However,
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most of these works have focused on characteristics of static
web content, and their results do not directly apply to the
case of dynamic web content. Relatively few studies [18,
8, 9, 15] have examined the characteristics of dynamic con-
tent: interestingly these studies have verified both the need
for and likely benefit from caching content at sub-document
granularity and moving content generation to the network
edge; both these ideas can be thought of as a special case of
service replication infrastructures that provide the motiva-
tion for this work.

Our work extends the above studies to the context of data-
centric web services. Given this context, our definitions of
temporal, spatial, and network locality differ somewhat from
those used in previous studies [5, 11, 7, 17], but retain a sim-
ilar spirit. From the methodology viewpoint, most notable
about our approach is its use of logical views to model ac-
cesses against the back-end database and the employment
of load fraction graphs as a means to quantitatively describe
different kinds of locality. Logical views were influenced by
the notion of semantic regions [10] from the database caching
literature, where they refer to a range of relation values ac-
cessed by a group of queries (requests). The difference in
our work is that such regions may only be virtual, serving
to specify the internal service data required for servicing a
group of requests.

The positive findings of locality across multiple dimen-
sions points to the benefits for web service access that are
likely from an alternative caching infrastructure that in-
spects service requests to perform on-demand service repli-
cation and request redirection. We are currently developing
such an infrastructure. While this study serves as a start-
ing point, additional work is required to further direct the
choices in such infrastructures:

e Our conclusions in this study need to be validated by
examining traces from other services and that span
longer durations than we were able to obtain access to.
It would also be interesting to examine if our method-
ology can be applied to other data-intensive services
(e.g., Amazon’s online book store services) or even to
computation-intensive services. The critical issue here
is of course obtaining access to traces for conducting
the analysis.

e A shortcoming of our work is its inability to charac-
terize the cost of offloading request handling for a par-
ticular data region to a service replica. Our method-
ology only characterizes the relative sizes of regions as
opposed to the absolute costs. The latter information
can be inferred by correlating the backend data schema
and other proprietary service-specific information with
our findings. The latter does need to be done in prac-
tice: the number of services provided by a large-sized
web site like SkyServer or TerraServer could be very
large. Our methodology associates a different data
space with each service. However, not surprisingly,
some of the service logical views might share com-
mon attributes in the underlying database. Knowing
this association can also help one reason about cross-
service locality in addition to the intra-service locality
we have focused on in this study.

7. CONCLUSION

In this paper, we have investigated the workload char-
acterization of data-centric Web Services in terms of three

kinds of locality: temporal, spatial, and network. Our anal-
ysis is based on the web traces from the SkyServer and the
TerraServer sites and indicates that both workloads exhibit
high spatial and network locality. Possible benefits from
such locality include the possibility of designing alternate
caching infrastructure for web services that relies on on-
demand database view customization and replication at ap-
propriate locations in the network.
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