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Abstract

BDDC methods are nonoverlapping iterative substructuring domain decomposi-
tion methods for the solutions of large sparse linear algebraic systems arising from
discretization of elliptic boundary value problems. They are similar to the balancing
Neumann-Neumann algorithm. However, in BDDC methods, a small number of con-
tinuity constraints are enforced across the interface, and these constraints form a new
coarse, global component. An important advantage of using such constraints is that
the Schur complements that arise in the computation will all be strictly positive defi-
nite. The coarse problem is generated and factored by a direct solver at the beginning
of the computation. However, this problem can ultimately become a bottleneck, if the
number of subdomains is very large. In this paper, two three-level BDDC methods
are introduced for solving the coarse problem approximately in two dimensional space,
while still maintaining a good convergence rate. Estimates of the condition numbers
are provided for the two three-level BDDC methods and numerical experiments are
also discussed.

Key words. BDDC, three-level, domain decomposition, coarse problem, condition
number, Chebyshev iteration
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1 Introduction

In this paper, we introduce two three-level BDDC (Balancing Domain Decomposition with
Constraints) methods. The BDDC algorithms, so far developed for two levels [2, 4, 5], are
similar to the balancing Neumann-Neumann algorithms. However, their coarse problems,
in BDDC, are given in terms of sets of primal constraints and they are generated and
factored by a direct solver at the beginning of the computation. The coarse components

of the preconditioners can ultimately become a bottleneck if the number of subdomains is
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very large. We will try to remove this problem by using one or several additional levels.
We introduce two three-level BDDC methods. Here, we only consider two dimensional
problems and vertex constraints. We also provide estimates of the condition numbers of
the system with these two new preconditioners. We are currently working on the extension
of our algorithms and results to the considerably much more complicated three dimensional
cases.

The rest of the paper is organized as follows. We first review the two-level BDDC
methods briefly in Section 2. We introduce our first three-level BDDC method and the
corresponding preconditioner M~ in Section 3. We give some auxiliary results in Section
4. In Section 5, we provide an estimate of the condition number for the system with the
preconditioner M~! which is of the form C (1 + log %)2 (1 + log %)2, where H, H, and
h are the diameters of the subregions, subdomains, and elements, respectively. In Section
6, we introduce a second three-level BDDC method which uses Chebyshev iterations. We
denote the corresponding preconditioner by M~'. We show that the condition number of
the system with the preconditioner M ! is of the form C'C(k) (1 + log %)2, where C(k)
is a constant depending on the eigenvalues of the preconditioned coarse problem, the two
parameters chosen for the Chebyshev iteration, and k, the number of Chebyshev iterations.
C'(k) goes to 1 as k goes to co. Finally, some computational results are presented in Section
7.

2 The two-level BDDC method

We consider a second order scalar elliptic problem in a two dimensional region €2: find
u € H3(Q), such that

/Qqu-Vv:/va Yo € HY(Q), (1)
where p(z) > 0 for all x € Q. We decompose €2 into N nonoverlapping subdomains €2;
with diameters H;, i = 1,---, N, and let H = max; H;. We then introduce a triangulation
of all the subdomains. Let I be the interface between subdomains. The set of the interface
nodes I'y, is defined as I'y, = (U;£;0Q; 5, N 082 ) \ 082y, where 0€; 5, is the set of nodes on
0€); and 0Ly, is the set of nodes on 0f).

Let W be the standard finite element space of continuous, piecewise linear functions
on €;. We assume that these functions vanish on 9Q. Each W& can be decomposed into
a subdomain interior part and a subdomain interface part, i.e.,

WO~ Wl W,
where the subdomain interface part Wl(f ) can be further decomposed into a primal subspace
Wg) and a dual subspace WX), ie.,

wi =wi pwl.



We denote the associated product spaces by W := Hf\il WO, Wp = H?Ll Wg), Wa =
vazl Wx), Wiy = Hfil WI(TZ), and Wy := Hf\il Wgz). Correspondingly, we have

W :WI@WFa

and
Wr = Wi Wa.

We will consider elements of a product space which are discontinuous across the interface.
However, the finite element approximation of the elliptic problem is continuous across I'.
Instead, we denote the corresponding subspace of W by W.

We further introduce an interface subspace Wr C Wr, for which certain primal con-
straints are enforced. Here, we only consider vertex constraints at the corners of each
subdomain. The continuous primal subspace denoted by V/\\/'n is spanned by the continu-
ous finite element basis functions of the vertex nodes. The space Wp can be decomposed
into

Wp = WH @ Wa.
The global problem: find (ur,ua,ur) € (WI,V/VA, VT’H), such that

A II AZ I Ag I ur f[
Aar Aan  ALA up | =| fa |- (2)
Anr Ana  Amm un fi1

This problem is assembled from subdomain problems

i )T )T i i
A Ay uE; fx
Ag} AX)A Ag?A uy | f%) . (3)
Aty Afa A )\ i £

We define an operator g{‘ : Wr — WF, which is of the form: given ur = uy ® ua €
WH P Wa= WF, find gpup € Wp by eliminating the interior nodes of the system with

the matrix:

1 nT T 1
AL AT e AR
1 1 1 1
AQ AD o AYTRD
‘i zT . ijl i
A=| AR A e AR ,

AG Al ARl

1T. 1 1T. 1 . iT. i iT. i i.T i i

R AL Ry AGL - RYAL RY AR o SN RYAQLRY



i.e.,

ugl) 0
u(Al) R(Al) RFAgqu
Al uf? | =] 0 i : (5)
u(AZ) R(AZ)RFASFUF
ugn RrnSrur

Here Rra : Wr — W, restricts the functions in the space Wp to Wa, and is of the
matrix form O
RFA @)
RFA
Rra = . ) (6)

Rpy
where each R(Fi)A represents the restriction from Wg) to WX). Furthermore, RX) :Wa —
WX), is the restriction matrix which extracts the subdomain part, in the space WX), of
a function in the space Wa, and Rry : Wr — Wn, restricts the functions in the space
WF to WH. Rg) is the restriction operator from the space WH to Wg).
Rr and Rpr are the restriction and scaled restriction operators from the space Wr

onto Wp, respectively. They are of the form

1 1
- 5
R R
RF = F ) and RDJ‘ = P’F ) (7)
Ry RE):

where Rg) is a restriction operator mapping a vector of the space \/7\\/} to a vector of
the subdomain subspace W{j). Fach column of Rg) with a nonzero entry corresponds
to an interface node, x € 9; ) N I'y, shared by the subdomain €2; and its neighboring
subdomains. Multiplying each such column of R(Fi) with 53 (z) gives us R%)’F. Here, we

define 5j(a:) as follows: for v € [1/2, 00),

Zje/\fx P]
i

51’ (.’E) =

R S aQi,hth,

where N, is the set of indices j of the subdomains such that z € 9Q; and p;(x) is the
coefficient of the scalar elliptic problem (1) at z in the subdomain €2;. The pseudoinverses
53 (x) are defined by

ol(x) = (di(x)) ", @€ 0QuNTy.
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The reduced interface problem can be written as: find ur € Wp such that
R%grR[‘uF = 81, (8)

where the operators Sr: Wr — Wp, and Rp : Wr — VVF, are defined in Equations (5)

and (7), and
N or £ AR )L
s () - (4 ) ).
i=1 i 17

The two-level BDDC method is of the form
MﬁlR%ﬂgrRFuF = Mﬁlgr,

where the preconditioner M~ = R%yrgf lRDI has the following form:
N T N A(i) A(i) 0
M~' = REDr (ST RYEL (0 RY I oA < ; ) Rra + ®S5'®" § DrRy.
2 0RO At ) L ag
(9)

Here @ is the matrix given by the coarse level basis functions with minimal energy, and is
defined by

r o momy (AR AD T (AT o
i=1 AT AA IIA

The coarse level problem matrix St is determined by

1
Arr Ara AL,
Sn = Amm— (Anr Ana < ) <
( ) Aar Aan AL A

N O ) 40) @ 00 [ AT AR o AL (i) _
= iz B A — (AHI AHA) A(i) A(i) @)7T Ry,
AT AA AHA

which is obtained by assembling subdomain matrices.

We know that, for any ur € Wr,
uf R{ SpRrur < uf Mur < C (1 + log(H/h))* u Rf Sy Rrur, (12)

see [6], provided that the coefficient p(z) of the scalar elliptic problem (1) varies moderately
in each subdomain. We also assume that each subdomain is a union of shape-regular
coarse triangles and that the number of such triangles forming an individual subdomain
is uniformly bounded. Moreover, we assume that the triangulation of each subdomain is

quasi uniform.



3 A three-level BDDC method

In the three-level cases, we will not factor the coarse problem matrix Sy defined in (11)
by a direct solver. Instead, we will try to solve the coarse problem approximately by using
a similar idea as for the two-level preconditioners.

We decompose €2 into N subregions Q9 with diameters H7, j = 1,---, N. Each subre-
gion (¥ has N; subdomains Q7 with diameters H?. Let H = max; A7 and H = max; ; H,

forj=1, ---, Nandi=1,---,N;. We introduce the notation
. . —1 T
5 Z ; ; A(Z) A(Z) A(Z) :
Sy - (oA (R ) () e o
ANt Aan Ama

and note that the Schur complement St can be assembled from the subregion matrices
s,

Let T be the interface between the subregions. We denote the set of interior crosspoints,
which contains the vertices of the subdomains in each subregion, by I, I, and the set of
interface nodes, which contains the vertices of the subdomains, on the boundary of the
subregions by T - We note that [ cT.

We denote the vector space corresponding to the nodes of the subregion ¢, which
are the vertices of the subdomains in Q¢, by W((;i). Each Wg) can be decomposed into a
subregion interior part and a subregion interface part, i.e.,

w — WU)AEB w

?
¢ c,I c,I’

where the subregion interface part W(i)f can be further decomposed into a primal subspace

C,

WL and a dual subspace W(i)37 ie.,

c,I1

(z @) (0)
WE=WSLDW;L

We denote the associated product spaces by W, := [[ IW(Z) =[N, W (1)
WC,E =TIy, WS)K’ chﬁ =TI, WS%, and Wc,? =TI, Wi)? Correspondmgly, we

)

have
W = Wc,f@ ch

and
W =W 3DW_ ;.

C7
We denote by WC the subspace of W, of functions that are continuous across r.
We introduce an interface subspace ch C W 5 for which the primal constraints

are enforced. Here, we only consider vertex constraints. The continuous primal subspace



is denoted by WC - The space ch can be decomposed into

ch = Wc,ﬁ @ WC,K'

We define our three-level preconditioner M~! by

— N DT a7 A(Z) (7') 0 _
M~ =REDp S RE (0 rY) | ( 0 ) Rra + ®S;@7 § DrRr,
i=1 AAI AAA RA

(14)
where gﬁ !is an approximation of Sh L and is defined as follows: given any ¥ € \/7\\/'0, let
_ ~ 5= 1 N T 1 N T
y = Snl\Il and y = SHI\II. Here ¥ = (\Il%),---,\Il% ),\Ilf) ,y = (y%),---,y% ),yf> ,
o _ (s o) < \T
and y = (y; Y ,yr) :
To solve Sty = ¥ by block factorization, we write

€] M pO 1) (1)
St S RY yO | =] @9 [, (15)
I rz T I I
Ry m sy a0 w0\ )\ e
I I T

where }A?,(fi) is the restriction operator mapping a vector of the space ch to a vector of
the subregion subspace W(i)f. Fach column of }A?Lri) with a nonzero entry corresponds to a
C7

subregion interface node, x € 90 N IV, shared by the subregion ¢ and its neighboring

subregions.
We have
() (i)~" Q) (@) pG)
yi' =S (‘I’ Oz i f) o)
and
N
R (g0 ISORFSORESSORRY IR IS SUE W - QRN ORFS O 10 17
(; T ( H,F\f‘\ H/I\‘? H/I'? H,I\‘?) T yr‘ T ; H/I‘\? HT}\ ( )
We introduce an operator T:W 5= ch by
N
TrEn 57 o)) od) o) o))"\ B
RETRe =3 BY (S — SELSHL SR (18)
and denote by
N
_ BT i) (D) i
he = U — ; v SiL S o) (19)

~J



Then,
AT ~ ~
RfTRfyf = hs. (20)
We denote by }A%f and }Afﬁf the restriction and scaled restriction operators from the

space ch onto ch7 respectively. They are of the form

20 ﬁ%)f

A RO

Do T Do Dl
== ; v and Ry = ' (21)

A A

r DT

(@)

Multiplying each such column of ﬁ.’%) with gj (x) gives us ﬁﬁf’ where z € 9Q% N Ty.

Here, we define Ej(x) as follows: for v € [1/2,00),

Y
= > ieN, Pj

(SZ(.’E) = pA’Y , S 8QZH ﬂfH,

where N, is the set of indices j of the subregions such that = € 89%1 and p; is the
coefficient of the scalar elliptic problem (1). In our theory, we assume p; is a constant in

the subregion ©°. The pseudoinverses gj (x) are defined by
ol(x) = (Bi(w)) ™", @ €0y NTh.

When using the three-level preconditioner M ~1, we do not solve (20) exactly. Instead,

we replace y by

< _ P _F-1p
yf = RﬁfT Rﬁfhf' (22)
We will maintain the same relation between ?%) and Sf(fi), ie.,
S _ o)t (&) _ o) pl)s
y; = SHTF (qlf SH?FR? yr> . (23)

4 Some auxiliary results

In this section, we will collect a number of results which are needed in our theory. In order
to avoid a proliferation of constants, we will use the notation A =~ B. This means that
there are two constants ¢ and C, independent of any parameters, such that cA < B < CA,
where C' < oo and ¢ > 0. For the definition of discrete harmonic function, see [7, Section
4.4].

Lemma 1 Let D be a square with vertices A = (0,0), B = (H,0), C = (H,H), and
D = (0,H), with a quasi-uniform triangulation of mesh size h. Then, there exists a
discrete harmonic function v defined on D such that |[v||pepy = v(A) = 1+ log(41),
v(B) =v(C) =v(D) =0 and |v %Il(D) ~ 1+ log(4).



Proof: This lemma follows from [1, Lemma 4.2]: let N be an integer and Gy be the
function defined on (0,1) by

N

Gn(x) = Z (4n1— 3 sin ((4n — 3)7r:c)) . (24)

n=1

Gy is symmetric with respect to the midpoint of (0, 1), where it attains its maximum

in absolute value. Moreover, we have:

|GN|§I&62(O D ~1+logN, (25)

and
IGN L1y = GN(1/2) =1 4 log N; (26)
see [1, Lemma 3.2] .
Let Pj be the nodal interpolation operator. Let [—H,0] and [0, H] have the mesh

inherited from the quasi-uniform mesh on DA and AB respectively and let gp(z) =
Py <GN(5”+H)>. Then we have

2H
H
2 ~ J—
|gh|H(%2(—H,H) ~ 1+ log B (27)
and .
lgnll Lo (0,1) & 1 + log T (28)

See [1, Corollary 3.6]. We point out that in [1, Corollary 3.6], a uniform mesh is used.
But in the proof of the bound for |- | /2 , we only need the interpolation error esti-
00

mate theorem and the fact that HééQ(—H , H) is the interpolation space halfway between

L*(—H,H) and H}(—H, H). Therefore the result is still valid for a quasi-uniform mesh.
We can define v as 0 on the line segments C'D and C'B and by

(_HvH)

v(z,0) = gp(z), for 0<z<H, (29)

and
v(0,y) = gn(y), for 0<y<H. (30)

Since v is discrete harmonic function in D, we have,

[0lFn oy = 191712 ) = |9h|§{352(7H,H) ~ 1+ log - (31)
0

Remark: In Lemma 1, we have constructed the function v for the square D. By using
similar ideas, we can easily construct a function v for other shape-regular polygons which

satisfies the same properties.



Lemma 2 Let VH and th, j = 1,---,N;, be the standard continuous piecewise linear
finite element function spaces in a subregion Q' with respect to the quasi-uniform coarse
mesh with mesh size H and in a subdomain Q; with respect to the quasi-uniform fine mesh
with mesh size h, respectively. Moreover, each subdomain is a union of coarse triangles
with vertices on the boundary of the subdomain. Given u € VH, let 0 € V' interpolate
u at each coarse node and let 4 be the discrete th—harmonic extension in each subdomain
Q; with the values given at the vertices of Q;, j=1,---,N;. Then, there exist two positive
constants Cy and Cs, which are independent of H, H and h, such that

Ch ( + log(— > (Z |U|H1 Qi ) < |u|§{1(9i) < Cy ( + log(— ) (Z |“|H1 Qi ) - (32)

Proof: Without loss of generality, we assume that the subdomains are quadrilaterals. De-
note the vertices of the subdomain Q; by aj, bj, ¢j, and dj;, and denote the nodal values
of u at these four crosspoints by u(a;), u(b;), u(c;j), and u(d;), respectively. Since u is a

piecewise linear function, we have,

N;
[l iy = z:l|u|fql(g;)’ (33)
]:

and
Ul sy = = @) 3~ C ( > (Cu(my) - u(aj>>2)) . (34)
m=b,c,d
According to Lemma 1, we can construct three discrete harmonic functions ¢, ¢., and
(g on Q; such that

6n(b) = (u(b) —u(a)) (1+ Tog(3)).  dnlay) = nles) = du(ds) = 0
Bele) = (uleg) — u(a)) (L+10g(2)),  belag) = delby) = beldy) =
¢a(dy) = (u(dj) — ulaz)) (1 + 10%(%)) ¢a(aj) = ¢a(bs) = dalcj) = 0,
and with "
bl iy (o) — () (1 1og("D), m = b.c.d (3)
Let v; = W(% + ¢c + ¢aq) + u(a;); we then have vj(m;) = u(m;), m = a,b,c,d, and
1
|Uj|12ql(931) = |1+Tg(%)(¢b + ¢c + ¢a) + u(aj)|%[1(g§)

2
— 1 2
- <1+log(%)) |¢b+¢c+¢d|H1(Q})

10



1 2
- (1 + log(%)> e 7C7d|¢m‘Hl(ﬂj)

b
1 2 H )
(cl/?( <%>>) (1+10a()) 3 (utms) —ute)

1+ log

m=b,c,d

sl (36)

u Qe

C1(1 + log(Z)) H(©5)

Here, we have used (34) and (35) for the last two inequalities.
By the definition of 4, we have,
1

(37)

~12 2 2
(W) < o = G Tiogemy e @)

Summing over all the subdomains in the subregion ¢, we have,

N;
¢ (1+108(;) (Z 2 o ) < 3 ) = lulfn oy (38)
j=1

This proves the first inequality.
We prove the second inequality as follows:
N;
|U\12111(Qi) - Z |U|%11(Q§_)
j—l

- Z|“ u(a; |H1(Q’)

IN

.
—
z

=

s

"

/

—~

I~
—

3
o

|

I~
—
k\@
SN—
o

N——
~

IA
S
/
<
2
o
=
|
=
]
<.
)
8
2
~

N;
< G (1 + log(%)) (Z a2, (Q;-_)) . (39)

Here, we have used a standard finite element Sobolev inequality, see [7, Lemma 4.15].

|

We next list several results for the two-level BDDC methods. To be fully rigorous, we
assume that each subregion is a union of shape-regular coarse triangles and the number
of such triangles forming an individual subregion is uniformly bounded. Thus, there is a
quasi-uniform coarse triangulation of each subregion. Similarly, each subdomain is a union

of shape-regular coarse triangles with the vertices on the boundary of the subdomain.
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Moreover the fine triangulation of each subdomain is quasi uniform. We can then get
uniform constants C'; and C in Lemma 2, which work for all the subregions.

We define the interface averages operator Eﬁ W 5 — V/\\/'c o by

(40)
which computes the averages across the subregion interface [ and then distributes the

averages to the boundary points of the subregion.

The interface average operator Eﬁ has the following property:

Lemma 3

|
NN
=)

Epwe
for any ws € W .

Proof: See [7, Section 6.2].

Moreover, we have the following estimate for Eﬁ :

Lemma 4 Consider the two-level BDDC, and let K® be the stiffness matrixz for the
subregion ' and S@ be the Schur complement of KO with respect to the interior nodes

in the subregion Q' and let

S
R 52
5o | | (41)
SAV)
Then,
N i\’ —
|E5uf% <C <1 + log(ﬁ)> |uf|%, Yu € Wf, (42)

where Wf, which corresponds to a mesh with size H, is analogous to Wp, which corresponds

to a mesh with size h.

Proof: We can use a result by Mandel and Tezaur for the FETI-DP algorithm in [6] to
estimate (Eﬁ — I)us. We find:

A\ 2
~ H
]3uf|2§: (E5 —I)uf+uf|2§§ C <1+log(ﬁ)> lus %; (43)
O

We also have a result for the condition number of the two-level BDDC, see [4].
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Lemma 5 The condition number for the operator with the two-level preconditioner M1

2
s bounded by C (1 + log %) .
In addition, we have:

Lemma 6

AN 2
~ H
\Eﬁwf\% <C <1 + log ﬁ) |Wf|2f’

for any Wx € WC 7, where C is a positive constant independent of H, H and h. Remind

that T is defined in (18).

Proof: Denote by H* the discrete harmonic extension in the subregion 0 with respect

to Sl(-f), given by the values on the boundary of €7, i.e., H' satisfies:

‘H'(w)| oy = _ min ol oo, we WL
S vewgl),v:w on ani Siy e,
Let H* satisfy:
|7:[i(w)|H1(Qi) = min [0l iy, w € Wi’)f

vewg),v:w on 9Nt ’

Denote by 7-l; the discrete harmonic extension in each subdomain Q;, with respect to the

fine mesh with mesh size h, given the crosspoint nodal values, where ¢ = 1,---, N, and
j = 17 e NZ
We have
o i 7
2 n) & 2
i=1
< LIR O Eswa)
1=
SIES (@)
~ ~ir (2
= 3| 2 (PR Bpwe)) iy
i=1 \j=1

Here we have used the definitions of H, H, H, and Sg).
By Lemma 2,

IN

N N; o NP
[Epwalz < 2 (Z 1 (W (RY Egwy)) I?ﬂm;.))

i=1 \j=1

1 a 13108 2
C1(1 +1log 1) ; <|H (B3 EﬁwaHl(Q"))
1

= ——— —|F5 %

C1(1+ log &) ovily

IN

13



Using Lemma 4, we obtain

~ 1 ~
Baws2 < ———|E~wal2
D T'T Cl(l—l—log%) D 'T's

¢ 1+1o 1 |w|
JE— 'W/\/\
C1(1 +log 2 SH r's

C

IN

Y (L i 70
_ el iAo 2
T (1 +logd) (HlogH) (Z'H (B3 Wr)|H1<m>>

C o\’ (&

i/ ) 2
< —— 1+ log— HY (RY we i |-
= 01(1+1og%)< * OgH> (Z (M (B wr) >>

Here we have used the definition of H and H again.

By Lemma 2 and the definition of H, we have

~ C
Eswpl2 < ——  [1+1log= HZ (Z) i
Eane < e (1) (e

IN

i=1j=1

CCy ZA(z
= (ng ) (ZIH i) Su)

A\ 2
CCy H

Lemma 7 Given any ur € WF, let ¥ = ®T DrRrur. We have,

AN 2
~ H
visple <wlsle! <C (1 + log(ﬁ)> vis v,

Proof: Using (16), (19), and (20), we have

visglw = S ul) YO gy

N
_ @O () @ (&) p) )7 o(d)

N ) o . e~ —1
= el s o + I (RITR:) e

14

C H 2 N Ni (
) z %) iy 2 )
i+ 1og 1) <1 + log ﬁ) Cs (1 + log —) <|’H (H WF)) 2 (QE))

(44)

(45)

Q(l)) =

(46)



Using (23), (19), and (22), we also have

To—-1
oSl = Z\I'A ym+\11 o

_ O (O g ) RS 50T o) O )
= Z\y; (snm (T — S By f))+<hf+z St St \1:<>> =

=1 II f s D f (47)
1 ~ N
We only need to compare h% (BTI%) h and hg (R% fT_lRﬁ ) h+ for any hs
ch.
We have,
T (PT =15
hZ (RMT RM) b
THT A-175 F—1/2
= hiRLT'Rppha =T /RAf 113,
_ (va. TRy phg)” (wp, Ry she)’
= max = max — . (48)
wew . vl wiew . vl
In Equation (48), we make the substitution in wg = RFVF, for any vo € W & and
we have
~ T H._h)2
hi (§2A~71§AA) h~ > max (RFVF’RD rhr) = max (v, xR phy)
pit TRNES s Bl wo vl
VPEWLR rrlr VEEWr LTy
We have, from Lemma 3, tha ﬁ’%]%ﬁfo = wg, for any ws € ch’ and therefore,
h-, v=)? h-, v~)?
h% <R£fT_lRﬁf> hs > max (AF’ F2 = max ( F’~F) (49)
’ ’ veeW o [BevalZ veeW o (v, (RZATRﬁf> va)

h%: (ET T ﬁf ) hf > h%: (é% ffﬁﬁ,f\) hf‘

Since, by Lemma, 6, |EBWf|2Tv < (1 + log H) |w |2 for any wp € W 7, we have,
from (48),

i\ 2 h~, RT ~wo)?
N L~ H ( I’ r
T (BT -1 DT
hf <R13,fT Rﬁf) h- < C (1 + log —) max ———————



R ST 2
o\’ (hs, By 2wr)
= C 1—{—logﬁ max  —— ATLA ~
weeW o (RE wws. (RLT Ry ) RS wy)
N
H h+, va)?
= C|1+log ﬁ) max (AFT~FA)
V/I:EWC,«I: (Vi:, (R/fTRf) Vf)
L\ 2
H T (prsn |t
- C (1 +log E) hf (RITR:) g (50)
O

5 Condition number estimate for the new preconditioner

In order to estimate the condition number for the system with the new preconditioner

M ~1, we compare it to the system with the preconditioner M 1.

Lemma 8 Given any ur € Wp,

A\ 2
— H
wl M tup < vl M~ tup < (1 + log (ﬁ)) ul M tur. (51)
Proof: We have, for any ur € Wp,

u%MfluF

T pT ad T OM ASZI) AX)I 1 0 14T
i=1 AT AA A

N @) 40 \ "
T pT Z T @" A Axr 0
i=1 AT AA A

+uf RL Dr®S5'®” DrRrur, (52)
and

u%jMiluF

T pT S T ()" A?f) A(Al)l 1 0 o-1gT
= uF RF DF Z RFA <0 RA ) A(Z) A(Z) < R(Z) ) RI‘A + q)SH (I> DFRFUF
i=1 AT AA A

. . -1
N AT A(Z) A(Z) 0
- oS o) (4 4] () s o
i=1 AT AA
+u17:R17:Dp<I>§1§1<I>TDFRruF. (53)

We get our result by using Lemma 7.
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O

Theorem 1 The condition number for the system with the three-level preconditioner M1is
bounded by C (1 + log(£))?(1 + log(4))2.

Proof: Combining the condition number bound, given in Lemma 5, for the two-level BDDC
method and Lemma 8, we find that the condition number for the three-level method is
bounded by C(1 + log(£))2(1 + log(£))2.

6 Using Chebyshev iterations

Another approach to the three-level BDDC methods is to use an iterative method with a
preconditioner to solve (20). Here, we consider a Chebyshev method with a fixed number
of iterations and use }A?%’ff_lﬁﬁf as a preconditioner.

Thus, we do not solve (20) directly. Instead, we replace yx by Y4 where YTk is the
approximation of yg given by a k-step Chebyshev iteration.
© © asin (16), i.e.,

We will maintain the same relation between y’ and y

Tk Tk
(1) _ o@&)! @) _ o pO
v = s (m? s R nk) . (54)
Let yr. = (y%l])c, e ,yg\]?,yf k) , and denote the corresponding new coarse problem
matrix by St Then,
Snyr =V, (55)

and the new preconditioner M1 is defined by:

77—1 T d T OM Ag‘? AX)I 1 0 a-14T
i=1 AT AAA A
(56)
6.1 Algorithm

We need two input parameters [ and u for the Chebyshev iteration, where | and u are

estimates for the smallest and largest eigenvalues of (ngf_lﬁﬁ,f) (}AB%T}AEF» respec-
tively. From our analysis above, we know that <]?£Z AflﬁAA) (ﬁlffp) has a smallest
DT D,r T r

eigenvalue 1 and a largest eigenvalue bounded by C(1 + log(%))Q(l + log(£)). We can
use the conjugate gradient method to get an estimate for the largest eigenvalue at the

beginning of the computation and to choose a proper u.
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Let a = Hlu and p = Z—J_r% Let ¢, be the value of the k** Chebyshev polynomial
evaluated at p, i.e.,
Chy1 = 2ucg —cp_y, k=1,2,---, (57)
with
co =1, and ¢1 = p. (58)

We set the initial guess:
To= 0. (59)

The Chebyshev acceleration is defined by, see [3],

T1 = Y1, T 0Zo, (60)
Ve = Yijpor T Whi(0ze £ y5, —yp, ) E=12, (61)
where
ri = ha — (RLTRz) vz, (62)
Zp = <f{% ffflﬁﬁf ry, (63)
and
C
Wil = 2p——. (64)
Ck+1
6.2 Error analysis
Let e = yp — yg - Using (59), (60), and (61), we obtain
epr1 = wi+1Qeg + (1 — wiy1)ex—1, (65)
with
€ =Y and e; = Qey, (66)
where
- RL T-1R--) (RLTR-
Q=1-a(RE:T'Ryz) (RETR;). (67)

1

1 1
. /\T ~_1 /\AA 2 /\T~/\A /\T ~_1/\AA 2 ~
The symmetrized operator (RﬁfT R D,F> (R?T RF> (Rﬁ fT R ) has the follow

1
. . . . ' /\T ~_1 AAA 2 ATNAA AZA _1/\
where A is a diagonal matrix and the eigenvalues {\;} of (RﬁfT R D,F> (RA TR ) (RD’FT R

are its diagonal entries. P is an orthogonal matrix, and PT is its transpose.
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Let

P = (ﬁgffflﬁﬁf)% P. (69)
We note that
(ngf—lfzﬁf) (RETR;) = PAP . (70)
Then, we have,
Q=PxYP (71)

where ¥ is a diagonal matrix with the eigenvalues {o;} of @ on the diagonal and
oj =1—al;. (72)
Let
£, = e Py ey (73)
If we substitute (73) into (65) and (66), we then obtain a diagonal system of difference
equations by using (57), (58), (64), and (71):
foos = 2056, — foy, k=1,2,---, (74)
with
fi = uXfy, and fy = P, 'y (75)

Solving this system, see [3], we obtain
fr =OP 'ys, k=12, (76)

where © is a diagonal matrix with cosh (k coshfl(;wj)) on its diagonal.
Using (73), we obtain:

e = (PO ) T p=1,2,-... (77)
Ck
Using the definition of e, our approximate solution after k Chebyshev iterations is given

by

i = PPy, (78)

cosh(k cosh ™! (uo; ))
Ck

where J is a diagonal matrix with 1 — on its diagonal.

Using (57) and (58), we obtain
¢k = cosh (k cosh_l(u)> .

cosh(k cosh™! (;wj))
cosh(k cosh™! (M))
From (77), we know that the Chebyshev iteration converges if and only if |o;| < 1,

ie, 0 <A <Il+u. Since (fi%ff“_lﬁﬁf) (ﬁ%f]/%f) has a smallest eigenvalue 1, we can

Therefore, we have 1 — as the diagonal entries of the matrix .J.
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guarantee that 0 < A; and choose [ = 1. From our analysis above, we get an upper bound

for A; and can choose u to guarantee that A\; <1+ w.
cosh(k cosh ™" (po; ))

Since we choose u such that A\; < [+ u, we find that 1 — cosh (k oosh 1 (1)

>0, i.e., J

has positive diagonal elements.
6.3 Condition number estimate for the second new preconditioner
We begin with a lemma.

Lemma 9 Given any ur € \TVF, let ¥ = & DrRrur. If we choose u such that Aj < utl,
then there exist two constants C1(k) and Cy(k) that

CL(k) BT S o < TS 1T < Cy(k)wT S e, (79)
where )
Co(K) = min (1 cosh(k cosh™ (o)) (0)
J cosh(kcosh™(p)) )
and

sh(k cosh™ (uo;

Co (k) = max [ 1 sk eos _S‘“’J)) . (81)
J cosh(k cosh™ (u))

Proof: Using (54), (19), and (20), we have,

a DT (4

N
_ O () g o T (BTFP) v
= Yl sy el —l—yf( fTRF) Vi g

Comparing (82) with (46), we only need to compare y% (}A?%ffff) yp and y% (E%ff%) Yk
Using (78) and (69), we obtain

vt (FETHRg) vz,
~ yE(RLTR;) PP yp
=y (RITRy) (Rz,AT_lRﬁf)% PP~} (RzﬁAT_lRﬁf)_% yr (83)
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Let Yy = P* <§%ff_1§ﬁf) yz. Using (68), we have,

[N

vt (RfTR) vz
— YIPT(RL T Rye)" (RITR) (RS
= Y{P'PAPTPY;
= YIAY:,

and, using (83), we have

vt (RETRg) vz,
~ ~ ~ r N _ =R 1
= YIPT (RET'Ry5)" (RETR:) (RE T 'Rp5)” PIY;
= YIPTPAPTPIY;
= YIAJY:

Under our assumption, J is a diagonal matrix with positive diagonal entries

cosh(k cosh™! (uo;))
(1 - CoSh(kcoshfl(pj) ) . Thus, we have,

Cl(k)y% (ﬁ%fﬁf) yp < y% (ﬁ%fﬁ ) Yo < Cg(k)y% (ﬁ%ff){f) N

Lemma 10 Given any ur € Wp,
C’l(k:)u%M_lur < u:IC]\/j_lur < Cg(k)u%M_lur,
where C1(k) and Cy(k) are defined in (80) and (81), respectively.

Proof: We have, for any ur € \/7\\7p7

ul M~ tur

(85)

(86)

(87)

. . 1
N AT A(Z) A(Z) 0 R
= ufREDr{Y RiA (0 RY ) ( 11 SA1 < © )Rm +®87'@" } DrRrup

. . 1
A(l) A(l) 0
T pT 11 AT
= urp RF DF R 0 RA i i i RFA ur
2w ) (4 ) (a
+uf REDro S " Dr Rrur.

Comparing this expression with (52), we obtain the result by using Lemma 9.
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Table 1: Eigenvalue bounds and iteration counts for the preconditioner M with a change

of the number of subregions, % =4 and % =4

Num. of Subregions | Iterations | Condition number
4 x4 12 3.04
8 x 8 15 3.45
12 x 12 17 3.53
16 x 16 17 3.56
20 x 20 17 3.57

Table 2: Eigenvalue bounds and iteration counts for the preconditioner M with a change

of the number of subdomains, 4 x 4 subregions and % =4

% Iterations | Condition number
4 12 3.04
8 13 4.17
12 13 4.96
16 14 5.57
20 15 6.08

|

Theorem 2 The condition number using the three-level preconditioner M~1tis bounded by

C’gfg:;(l —|—log(%))2, where Cy(k) and Cao(k) are defined in (80) and (81), respectively.

Proof: Combining the condition number bound, given in Lemma 5, for the two-level

BDDC method and Lemma, 10, we find that the condition number for the system with the

three-level preconditioner M~ is bounded by C gig’,zg (1+log(2))2.

7 Numerical experiments

We have applied our two three-level BDDC algorithms to the model problem (1), where
Q = [0,1]2. We decompose the unit square into N x N subregions with the sidelength
H = 1/N and each subregion into N x N subdomains with the sidelength H = H/N.
Equation (1) is discretized, in each subdomain, by conforming piecewise linear elements
with a finite element diameter h. The preconditioned conjugate gradient iteration is

stopped when the norm of the residual has been reduced by a factor of 1078,
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Table 3: Eigenvalue bounds and iteration counts for the preconditioner M with a change

of the size of subdomain problems, 4 x 4 subregions and 4 x 4 subdomains

% Iterations | Condition number
4 12 3.04
8 15 4.08
12 16 4.80
16 17 5.36
20 19 5.83

Table 4: Eigenvalue bounds and iteration counts for the preconditioner M with a change

of the number of subregions, % =4 and % =4

Num. of Subregions | Iterations | Condition number
4x4 11 1.81
8 x 8 11 1.82
12 x 12 12 1.82
16 x 16 12 1.82
20 x 20 12 1.82

Table 5: Eigenvalue bounds and iteration counts for the preconditioner M with a change

of the number of subdomains, 4 x 4 subregions and % =1

% Iterations | Condition number
4 11 1.81
8 12 1.85
12 12 1.88
16 12 1.89
20 12 1.91
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Table 6: Eigenvalue bounds and iteration counts for the preconditioner M with a change

of the size of subdomain problems, 4 x 4 subregions and 4 X 4 subdomains

% Iterations | Condition number
4 11 1.81
8 14 2.50
12 16 3.00
16 17 3.35
20 18 3.65

Table 7: Kigenvalue bounds and iteration counts for the preconditioner M ,u=3.2,4x4

subregions, % = 16 and % =4

k | Tterations | C1(k) | Amin Amaz | Condition number
1 20 0.4762 | 0.4829 | 2.7110 5.6141
2 13 0.8410 | 0.8540 | 1.8820 2.2038
3 11 0.9548 | 0.9981 | 1.9061 1.9098
4 11 0.9872 | 1.0019 | 1.8663 1.8629
5 11 0.9964 | 1.0006 | 1.8551 1.8541

Table 8: Eigenvalue bounds and iteration counts for the preconditioner M ,u=4,4x4

subregions, % = 16 and % =4

k | Iterations | C1(k) | Amin Amaz | Condition number
1 22 0.4000 | 0.4053 | 2.3027 5.6821
2 14 0.7805 | 0.7909 | 1.9687 2.4892
3 12 0.9260 | 0.9781 | 1.9382 1.9816
4 11 0.9753 | 1.0028 | 1.8891 1.8837
5 11 0.9918 | 1.0026 | 1.8787 1.8739
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Table 9: Eigenvalue bounds and iteration counts for the preconditioner M ,u=206,4x4

subregions, % = 16 and % =4

k | Iterations | C1(k) | Amin Amaz | Condition number
1 24 0.2857 | 0.2899 | 1.8287 6.3086
3 16 0.6575 | 0.6670 | 2.3435 3.5134
3 12 0.8524 | 0.9286 | 1.9628 3.1136
4 12 0.9377 | 0.9795 | 1.9850 2.0266
5 12 0.9738 | 0.9983 | 1.9403 1.9437

We have carried out three different sets of experiments to obtain iteration counts and
condition number estimates. All the experimental results are fully consistent with our
theory.

In the first set of the experiments, we use the first preconditioner M~ and take the
coefficient p = 1. Table 1 gives the iteration counts and condition number estimates with a
change of the number of subregions. We find that the condition numbers are independent
of the number of subregions. Table 2 gives the results with a change of the number of
subdomains. Table 3 gives the results with a change of the size of the subdomain problems.

In the second set of the experiments, we use the first preconditioner M~! and take the
coefficient p = 1 in one subregion and p = 101 in the neighboring subregions, i.e., in a
checkerboard pattern. Table 4 gives the iteration counts and condition number estimates
with a change of the number of subregions. We find that the condition numbers are
independent of the number of subregions. Table 5 gives the results with a change of
number of subdomains. Table 6 gives the results with a change of the size of the subdomain
problems.

In the third set of the experiments, we use the second preconditioner M~ and take the

coefficient p = 1. We use the PCG to estimate the largest eigenvalue of <§% ff_lf%ﬁ f) (f%g Téf)

which is approximately 3.2867. And if we have 64 subdomains and % = 4 for the two-level
BDDC, we have a condition number estimate of 1.8380. We select different values of u
and k to see how the condition number changes. We take u = 3.2 in Table 7. We also
give an estimate for Ci(k) for k = 1,2,3,4,5. From Table 7, we find that the smallest
eigenvalue is bounded from below by C1(k) and the condition number estimate becomes
closer to 1.8380, the value in the two-level case, as k increases.

We take u = 4 in Table 8 and u = 6 in Table 9. From these two tables, we see that if we
T (ﬁ%fﬁfﬁ), we

need fewer Chebyshev iterations to get a condition number, similar to that of the two-level

can get more precise estimate for the largest eigenvalue of (}A?% fT_l}Aiﬁ

)

case. However, the iteration count is not very sensitive to the choice of w.
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