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Abstract— Memory system congestion due to serializa-
tion of hot spot accesses can adversely affect the perfor-
mance of interprocess coordination algorithms. Hardware
and software techniques have been proposed to reduce
this congestion and thereby provide superior system per-
formance. The combining networks of Gottlieb et al. auto-
matically parallelize concurrent hot spot memory accesses,
improving the performance of algorithms that poll a small
number of shared variables. The widely used “MCS”
distributed-spin algorithms take a software approach: they
reduce hot spot congestion by polling only variables stored
locally.

Our investigations detected performance problems in
existing designs for combining networks and we propose
mechanisms that alleviate them. Simulation studies de-
scribed herein indicate that a centralized readers writers
algorithms executed on the improved combining networks
have performance at least competitive to the MCS algo-
rithms.

I. I NTRODUCTION

It is well known that the scalability of inter-
process coordination can limit the performance of
shared-memory computers. Since the latency re-
quired for coordination algorithms such as barri-
ers or readers-writersincreaseswith the available
parallelism, their impact is especially important for
large-scale systems. A common software technique
used to minimize this effect isdistributed local-
spinningin which processors repeatedly access vari-
ables stored locally (in so-called NUMA systems,

the shared memory is physically distributed among
the processors).

An less common technique is to utilize special
purpose coordination hardware such as the barrier
network of [2], the CM5 Control Network [3],
or the “combining network” of [1] and have the
processors reference centralized memory. The idea
behind combining is that when references to the
same memory location meet at a network switch,
they are combined into one reference that proceeds
to memory. When the response to the combined
messages reaches the switch, data held in the “wait
buffer” is used to generate the needed second re-
sponse.

The early work at NYU on combining networks
showed their great advantage for certain classes of
memory traffic, especially those with a significant
portion of hot-spot accesses (a disproportionately
large percentage of the references to one or a few
locations). It is perhaps surprising that this work
did not simulate the traffic generated when all the
processors engage in busy-wait polling, i.e., 100%
hot-spot accesses (but see the comments on [7]
in section III). When completing studies begun a
number of years ago of what we expected to be
very fast centralized algorithms for barriers and
readers-writers, we were particularly surprised to
find that the combining network performed poorly
in this situation. While it did not exhibit the dis-



astrous serialization characteristic of accesses to a
single location without combining, the improvement
was much less than expected and our algorithms
were not nearly competitive with those based on
distributed local-spinning [MCS].

In this paper we briefly review combining net-
works and present the surprising data just men-
tioned. We then present two fairly simple changes
to the NYU combining switches that enable the
system to perform much better. The first change is
to increase the wait-buffer size. The second change
is more subtle: The network is output-buffered and
a trade-off exists involving the size of the output
queues. Large queues are well known to improve
performance for random traffic. However, we found
that large queues cause poor polling performance.
We therefore propose adapting the queue size to the
traffic encountered: as more combined messages are
present, the queue capacity is reduced. Together,
these two simple changes have a dramatic effect
on polling and our centralized barrier and readers-
writers algorithms become competitive with the
commonly used local-spin algorithms of Mellor-
Crummey and Scott (some of which also benefit
from the availability of combining).

II. BACKGROUND

Large-scale, shared-memory computation re-
quires memory systems with bandwidth that scales
with the number of processors. Multi-stage inter-
connection fabrics and interleaving of memory ad-
dresses among multiple memory units can provide
scalable memory bandwidth for memory reference
patterns whose addresses are uniformly distributed.
Many variants of this architecture have been im-
plemented in commercial and other research sys-
tems [9], [10], [18]. However, the serialization
of memory transactions at each memory unit is
problematic for reference patterns whose mapping
to memory units is unevenly distributed. An im-
portant cause of non-uniform memory access pat-
terns is hot-spot memory accesses generated by
centralized busy-waiting coordination algorithms.
The Ultracomputer architecture includes network
switches [16] with logic to reduce this congestion
by combininginto a single request multiple memory
transactions (e.g. loads, stores, fetch-and-adds) that
reference the same memory address.
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Fig. 1. Eight PE System with Hot-Spot Congestion to MM 3.

The Ultracomputer combining switch design uti-
lizes a variant of cut-through routing [13] that
imposes a latency of one clock cycle when there is
no contention for an outgoing network link. When
there is contention for an output port, messages are
buffered on queues associated with each output port.
Investigations by Dias and Jump [4], Dickey [5],
Liu [14], and others indicate that these queues
significantly increase network bandwidth for large
systems with uniformly distributed memory access
patterns.

Systems with high degrees of parallelism can be
constructed using these switches: Figure 1 illus-
trates an eight-processor system withd = 3 stages
of routing switches interconnected by a shuffle-
exchange [19] routing pattern. References toMM3

are communicated via components denoted using
bold outlines.

1) An Overview of Combining:We assume that
a single memory module (MM) can initiate at most
one request per cycle.1 Thus unbalanced memory
access patterns, such as hot spot polling of a coor-
dination variable, can generate network congestion.
Figure 1 illustrates contention among references
to MM3. When the rate of requests to one MM
exceeds its bandwidth, the switch queues feeding
it will fill. Since a switch cannot accept mes-
sages when its output buffers are full, a funnel-
of-congestion will spread to the network stages
that feed the overloaded MM and interfere with
transactions destined for other MMs as well.2

Ultracomputer switches combine pairs of memory
requests accessing the same location into a single re-

1This restriction applies to each bank if the MM is itself composed
of banks that can be accessed concurrently. The MM design simulated
in our experiments can accept one request every four cycles.

2Pfister and Norton [8] called this funneltree saturationand
observed that access patterns containing only 5% hot spot traffic
substantially increase memory latency
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Fig. 2. Combining of Fetch-And-Adds at a single switch (above)
and at multiple switches (below).

quest to reduce the congestion generated by hot spot
memory traffic. When the memory response subse-
quently arrives at this switch it isde-combinedinto
a pair of responses that are routed to the requesting
PEs. To enable this de-combination, the switch uses
an internalwait buffer to hold information found in
the request until it is needed to generate the second
response. Since combined messages can themselves
be combined, this technique has the potential to
reduce hot spot contention by a factor of two at
each network stage.

2) Combining of Fetch-and-add:Our fetch-and-
add based centralized coordination algorithms poll
a small number (typically one) of “hot spot” shared
variables whose values are modified using fetch-
and-add.3 Thus, as indicated above, it is crucial in a
design supporting large numbers of processors not
to serialize this activity. The solution employed is
to include adders in the MMs (thus guaranteeing
atomicity) and to combine concurrent fetch-and-add
operations at the switches.

When two fetch-and-add operations referencing
the same shared variable, sayFAA(X, e) and
FAA(X, f), meet at switch the combined request
FAA(X,e+f) is transmitted and the valuee is stored
in the wait buffer. Load and fetch-and-add opera-
tions directed towards the same hot spot variable
can be combined if loads are transmitted as fetch-
and-adds whose addends are zero.

Upon receivingFAA(X, e+f), the MM updates
X (to X + e + f ) and responds withX When the

3Recall that FAA(X,e) is defined to return the old value of X and
atomically increment X by the value e.
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response arrives at the combining switch the latter
transmitsX to satisfy the requestFAA(X, e) and
transmitsT + e to satisfy the requestFAA(x, f),
thus achieving the same effect as ifFAA(X, e) was
followed immediately byFAA(X, f). This process
is illustrated in the upper portion of Figure 2. The
cascaded combining of 4 requests at two network
stages is illustrated in the lower portion of the same
figure.

Figure 3 illustrates an Ultracomputer combining
switch. Each switch contains

• Two Dual-input forward-path combining
queues: Entries are inserted and deleted in
a FIFO manner and matching entries are
combined, which necessitates an ALU to
compute the sume + f .

• Two Dual-input reverse path queues:Entries
are inserted and deleted in a FIFO manner.

• Two Wait Buffers:Entries are inserted and as-
sociative searches are performed with matched
entries removed. An included ALU computes
X + e.

A. When Combining Can Occur

Network latency is proportional to switch cycle
times and grows with queuing delays. VLSI simu-
lations showed that the critical path in a proposed
Ultracomputer switch included the adder to form
e + f and the output drivers. To reduce cycle time,
at the cost of restricting the circumstances in which
combining could occur, the chosen design did not
combine requests that were at the head of the output
queue (and hence might be transmitted the same
cycle as combined). This modification reduced the
critical path timing to the max of the adder and
driver rather than their sum.

3
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We call the modified design “decoupled” because
the adder and driver are in a sense decoupled, and
call the original design “coupled”. Since the head
entry cannot be combined, we note that a decoupled
queue requires at least three requests for combining
to occur. We shall see that this trivial sounding
observation is important.

To enable the dual input queues to accept items
on each input in one cycle, the queue is constructed
from two independentsingle-input queues whose
outputs are multiplexed. To achieve the maximum
combining rate, we therefore require at least three
requests in each of the single-input combining
queues, which implies at least six in each dual-
input combining queues. A more complicated dual-
input decoupled combining queue, dubbedtype Ain
Dickey [5] requires only three messages to achieve
the maximum combining rate rather than six in the
“type B” design we are assuming.

III. I MPROVING THE PERFORMANCE OF

BUSY-WAIT POLLING

Figure 4 plots memory latency for simulated
systems of four to 2048 PEs with memory traf-
fic containing 10% and 100% hot spot references
(the latter typifies the traffic when processors are
engaged in busy-wait polling and the local caches
filter out instruction and private data references).
The simulated multiprocessor approximates the Ul-
tracomputer design. Observe that for 10% hot spot
references the latency is only slightly greater than
the minimum network transit time (1 cycle per stage

per direction) plus the simulated memory latency of
2 cycles.

On larger systems, memory latency is substan-
tially greater for the 100% hot spot load and can
exceed 10 times the minimum. Since the combining
switches simulated were expected to perform well
for this traffic, the results were surprising, especially
to the senior author who was heavily involved with
the Ultracomputer project throughout its duration.
It is clear that our current objective of exhibit-
ing high-performance centralized coordination al-
gorithms cannot be achieved using these simulated
switches.

We have discovered that there were two design
flaws in the combining switch design. The first is
that the wait buffer was too small, the second was
that, in a sense to be explained below, the combining
queues were toolarge.

A. Increasing the Wait Buffer Capacity

The fabricated switches had wait buffers capable
of holding 8 entries. We see in 4 that increasing
the capacity to 100 entries (feasible with today’s
technology) reduces the latency for a 2048PE sys-
tem from 306 to 168 cycles an improvement of
45%. While this improvement certainly helps, the
latency of hot spot polling traffic is seven times the
latency of uniformly distributed reference patterns
(24 cycles).

B. Adaptive Combining Queues

In order to supply high bandwidth for typical
uniformly distributed traffic (i.e., 0% hot spot), it
is important for the switch queues to be large.
However, as observed by [7], busy wait polling
(100% hot spot), however, is poorly served by these
large queues, as we now describe.

For busy-wait polling, each processor always has
one outstanding request directed at the same loca-
tion.4 Our expectation was that withN processors
and hencelogN stages of switches, pairs would
combine at each stage resulting in just one (or
perhaps more realistically a few) request reaching
memory.

4This is not quite correct: When the response arrives it takes a
few cycles before the next request is generated. Our simulations
accurately account for this delay.

4
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Fig. 5. Combining rate, by stage for simulated polling on systems
of 22 to 211 PEs. Wait buffers have capacity 100 and combining
queues can hold 4 combined or uncombined messages. In the right
plot the combining queues are declared full if two combined requests
are present.

What happens instead is that the queues in
switches near memory fill to capacity and the
queues in the remainder of the switches are nearly
empty. Since combining requires multiple entries to
be present, it can only occur near memory. How-
ever, asingleswitch cannot combine an unbounded
number of requests into one. Those fabricated for
the Ultracomputer could combine only pairs so, if,
for example, eight requests are queued for the same
location, (at least) four requests will depart.5

Figure 5 illustrates this effect. Both plots are
for hot spot polling. The left plot is for simulated
switches modeled after those fabricated for the Ul-
tracomputer, but with the wait buffer size increased
to 100. Each queue has four slots each of which can
hold a request received by the switch or one formed
by combining two received requests. The plot on
the right is for the same switches with the queue
capacity restricted so that if 2 combined requests
are present the queue is declared full even if empty
slots remain. We compare the graphs labeled 10
(representing a system with 1024 PEs) in each plot.

In the left plot with the original switches, we find
that combines occur at the maximal rate for the four
(out of 10) stages closest to memory, occur at nearly
the maximal rate for the fifth stage, and do not occur
for the remaining five stages. The restricted switches
do better, combining at maximal rate for five stages
and at 1/4 of the maximum for the sixth stage.

Note that for uniformly distributed traffic without
hot spots, combining will very rarely occur and the
artificial limit of 2 combined requests per queue will
not be invoked. We call this new combining queue

5Alternate designs could combine more than two requests into one,
but, as observed by [7], when this “combining degree” increases,
congestion arises at the point where the single response is de-
combined into many.
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designadaptivesince the queues are full size for
uniformly distributed traffic and adapt to busy wait
polling by artificially reducing their size.

We see in Figure 6 that the increased combining
rate achieved by the adaptive queues dramatically
lowers the latency experienced during busy wait
polling. For a 2048 PE system the reduction is
from 168 cycles for a system with large (100 entry)
wait buffers and the original queues to 118 cycles
(five times the latency of uniform traffic) with the
same wait buffers but adaptive combining queues.
This is a reduction of over 30% and gives a total
reduction of 61% when compared with the 306
cycles needed by the baseline switches. The bottom
two plots are for more aggressive switch designs
that are discussed below. In Section IV we shall see
that centralized coordination algorithms executed on
systems with adaptive queues and large wait buffers
are competitive with their distributed local-spinning
alternatives.

Figure 7 compares the latency for 1024 PE sys-
tems with various switch designs and a range of
accepted loads (i.e., processors can have multiple
outstanding requests unlike the situation above for
busy wait polling). These results confirm our asser-
tion that adaptive queues have very little effect for
low hot spot rates and are a considerable improve-
ment for high rates.

C. More Aggressive Combining Queues

Recall that we have been simulating decoupled
type B switches in which combining is disabled for
the head entry (to “decouple” the ALU and output
drivers) and the dual input combining queues are
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Fig. 7. Simulated Round-trip Latency over a Range of Offered Loads for 1% (left), 20% (middle) and 100% (right) Hot Spot Traffic.

composed of two independent single input com-
bining queues with multiplexed outputs. We started
with a “baseline design”, used in the Ultracomputer,
and produced what we refer to as the “improved
design” having a larger wait buffer and adaptive
combining queues. We also applied the same two
improvements to type A switches having coupled
ALUs and refer to the result as the “aggressive
design” or “aggressive switches” For example, the
lowest plot in Figure 6 is for aggressive switches.
Other experiments not presented here have shown
that aggressive switches permit significant rates of
combining to occur in network stages near the
processors. Also, as we will show in Section IV, the
centralized coordination algorithms perform excep-
tionally well on this architecture, Although aggres-
sive switches are the best performing, we caution
the reader that our measurements are given in units
of a switch cycle time and, without a more detailed
design study, we cannot estimate the degradation in
cycle time such aggressive switches might entail.

D. Applicability of Results to Modern Systems

The research described above investigates sys-
tems whose components have similar speeds, as was
typical when this project began. During the inter-
vening decade, however, logic and communication
rates have increased by more than two orders of
magnitude while DRAM latency has improved by
less than a factor of two.

In order to better model the performance ob-
tainable with modern hardware, we increased the
memory latency from two to thirty-eight cycles, and
the interval between accepting requests from four
to forty cycles. These results are plotted in Figure
8 and indicate that the advantage achieved by the
adaptive switch design is even greater than before.

Various techniques can mitigate the effect of slow
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memory. For example, having multiple sub-banks
per MM would increase memory bandwidth and
improve the performance on uniformly distributed
traffic, and caches at the MM are well suited to the
temporal locality of hot spot accesses.

IV. PERFORMANCEEVALUATION OF

CENTRALIZED AND MCS READER-WRITER

COORDINATION

Many algorithms for coordinating readers and
writers have appeared. Courtois and Heyman [17]
introduced the problem and presented a solution that
serializes the entry of readers as well as writers.
More importantly, these algorithms generate hot
spot polling traffic and therefore suffer slowdowns
due to memory system congestion on systems that
do not combine hot spot references.

A centralized algorithm is presented in [1] that,
on systems capable of combining fetch-and-add
operations, eliminates the serialization of readers
in the absence of writers. However, no commercial
systems with this capability have been constructed,
and in their absence, alternative “distributed local-
spin” MCS algorithms have been developed [11]
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that minimize hot spot traffic by having each proces-
sor busy-wait on a shared variable stored in memory
co-located with this processor. This NUMA memory
organization results in local busy waiting that does
not contribute to or encounter network congestion.6

The most likely cause of unbounded waiting
in any reader-writer algorithm is that a continual
stream of readers can starve all writers. The standard
technique of giving writers priority eliminates this
possibility.7 In this section we present a performance
comparison of “best of breed” centralized and MCS
writer-priority reader-writer algorithms each exe-
cuted on a simulated system with the architectural
features it exploits.

Roughly similar results hold for barrier algo-
rithms. The interested reader is referred to [6].

A. Centralized Algorithms for Readers and Writers

Figure 9 presents a centralized reader-writer lock
using fetch-and-add. This algorithm issues only a
single shared-memory reference (a fetch-and-add)
when the lock is uncontested. We know of no
other algorithm with this desirable property. A more
complete description of the techniques employed by
this algorithm appears in [6].

B. Hybrid Algorithm of Mellor-Crummey and Scott

The writer-priority readers-writers algorithm of
Mellor-Crummey and Scott [11] is commonly used
on large SMP systems. This algorithm, commonly
referred to as MCS, is a hybrid of centralized and
distributed approaches. Central state variables, ma-
nipulated with various synchronization primitives,
are used to count the number and type of lock
granted at any time and to head the lists of wait-
ing processors. NUMA memory is used for busy
waiting, which eliminates network contention.

C. Overview of Experimental Results

A series of micro-benchmark experiments were
performed to evaluate the performance of central-
ized fetch-and-add based coordination with the hy-
brid algorithm of Mellor-Crummey and Scott. The

6Some authors use the term NUMA to simply mean that the
memory access is non-uniform: certain locations are further away
than others. We use it to signify that (at least a portion of) the shared
memory is distributed among the processors, with each processor
having direct access to the portion stored locally.

7But naturally permits writers starving readers.

s h a r e d i n t C = 0 ;

faaReaderLock ( ){
f o r ( ; ; ) {

i n t c = f a a (C , 1 ) ; / / r e q u e s t
i f ( c < K) / / no w r i t e r s ?

re turn t rue ; / / succeeded !
c = f a a (C, −1) ; / / c a n c e l r e q e u s t
whi le ( c >= K) { / / wh i l e a w r i t e r i s a c t i v e . . .

c = C; / / r ead C
} } }

faaReaderUn lock ( ){ f a a (C, −1) ; }

bool f aaWr i t e rLock ( ) {
f o r ( ; ; ) {

i n t c = f a a (C , K ) ; / / r e q u e s t
i f ( c < K) { / / am nex t w r i t e r ?

i f ( c ) / / any r e a d e r s ?
whi le ( ( C % K ) ! = 0 ) ; / / wa i t f o r r e a d e r s

t rue ; / / succeeded
}
c = f a a (C,−K) − K; / / c o n f l i c t : must decrement & r e t r y
whi le ( c >= K) { / / wh i l e a w r i t e r i s a c t i v e . . .

c = C; / / r ead C
} } }

f a a W r i t e r U n l o c k ( ) { f a a (C,−K) ; }

Fig. 9. Fetch-and-add Readers-Writers Lock

simulated hardware includes combining switches,
which improves the performance of MCS and is
crucial for the centralized algorithm, as well as
NUMA memory, which is important for MCS and
not used by the centralized algorithm. All the switch
designs described above plus others were simulated
in the junior author’s dissertation [6]. A summary
of the results is presented below.

Neither algorithm dominates the other: The cen-
tralized algorithms are superior except when only
writers are present. Recall that an ideal reader lock,
in the absence of contention, yields linear speedup;
whereas an ideal writer exhibits noslowdownas
parallelism increases. When there are large numbers
of readers present, the centralized algorithm, with
its complete lack of reader serialization, thus gains
an advantage, which is greater for the aggressive
architecture.

D. Experimental Framework

The scalability of locking primitives is unim-
portant when they are executed infrequently with
low contention. Our experiments consider the more
interesting case of systems that frequently request
reader and writer locks. For all experiments each
process repeatedly:

• Stochastically chooses (at a fixed, but parame-
terized, probability) whether to obtain a reader

7



or writer lock.8

• Issues a fixed sequence of non-combinable
shared memory references distributed among
multiple MMs—the “simulated work”.

• Releases the lock.
• Waits a fixed delay.
Each experiment measures the rate that locks

are granted over a range of system sizes (higher
values are superior). In order to generate equivalent
contention from writers in each plot, the expected
number of writersEW is held constant for all system
sizes. Thus, the probability of a process becoming
a writer isEW /Parallelism.

Each micro-benchmarks has four parameters:
• PAR: the number of processors in the simu-

lated system.
• Ew: The expected number of writers.
• Work: The number of shared accesses exe-

cuted while holding a lock.
• Delay: The number of cycles a process waits

after releasing a lock.
Two classes of experiments were performed:

Those classified “I” measure the cost ofintensesyn-
chronization in which each processors request and
release locks at the highest rate possible,Work =
Delay = 0. Those classified “R” are somewhat
more realistic, Work = 10 andDelay = 100.

1) All Reader Experiments,Ew = 0: The left-
side charts in Figures 10 and 11 present results
from experiments where all processes are readers.
The centralized algorithm requires a single hot-spot
memory reference to grant a reader lock in the
absence of writers. In contrast, the MCS algorithm
generates accesses to centralized state variables and
linked lists of requesting readers. Not surprisingly,
the centralized algorithms have significantly supe-
rior performance in this experiment. For some con-
figurations, an order of magnitude difference is seen.
We also observe that MCS does benefit significantly
from combining. Even when only MCS uses the
aggressive switches, the centralized algorithm is
superior. Naturally, the differences are greater in the
“intense” experiments.

2) All-Writer Experiments:The right-side charts
in Figures 10 and 11 present results from experi-

8The simulated random number generator executes in a single
cycle.
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Fig. 11. Experiment I, All Readers (left), All Writers (right)

ments where all processes are writers, which must
serialize and therefore typically spend a substantial
period of time busy-waiting. The MCS algorithm
has superior performance in these experiments.

Since writers enforce mutual exclusion no
speedup is possible as the system size increases.
Indeed one expects a slowdown due to the in-
creased average distance to memory. The anoma-
lous speedup observed for MCS between 4 and
16 processors is due to the algorithm’s decoupling
of queue insertion and lock passing. This effect is
described in [11]. As explained in [6] the MCS
algorithm issues very little hot spot traffic when no
readers are present and thus does not benefit from
combining in these experiments.

3) Mixed Reader-Writer Experiments:Figures
12 through 15 present results of experiments with
both readers and writers. In the first set, there is on
average 1 writer present (this lock will have sub-
stantial contention from writers) and in the second
set 0.1 (a somewhat less contended lock).
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Fig. 12. Experiment I,EW = 1
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Fig. 13. Experiment R,EW = 1
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Fig. 14. Experiment I,EW = 0.1

The rate at which the centralized algorithm grants
reader locks increases linearly with system size for
all these experiments and, as a result, significantly
exceeds the rate granted by MCS for all large
system experiments. Even without the aggressive
switches, the difference normally exceeds and order
of magnitude.

Even though writers have priority over readers,
there are vastly fewer writer locks granted with
these values ofEw. Here also the centralized algo-
rithm outperforms MCS, often by an order of mag-
nitude. For some experiments, writer lock granting
rates are so low that none were observed for some
MCS experiments.

V. OPEN QUESTIONS

A. Extending the Adaptive Technique

Our adaptive technique sharply reduces queue
capacity when a crude detector of hot spot traffic is
triggered. While this technique reduces network la-
tency for hot spot polling, it might also be triggered
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Fig. 15. Experiment R,EW = 0.1

by mixed traffic patterns that would perform better
with longer queues. We have neither witnessed nor
investigated this effect, which may be mitigated by
more gradual adaptive designs that variably adjust
queue capacity as a function of a continuously
measured rate of combining.

B. Generalization of Combining to Internet Traffic

The tree saturation problem due to hot spot access
patterns is not unique to shared memory systems.
Congestion generated by flood attacks and flash
crowds [12] presents similar challenges for Internet
Service Providers. In [15] Mahajan et al. propose a
technique to limit the disruption generated by hot
spot congestion on network traffic with overlapping
communication routes. In their scheme, enhanced
servers and routers incorporate mechanisms to char-
acterize hot spot reference patterns. As with adap-
tive combining, upstream routers are instructed to
throttle the hot spot traffic in order to reduce down-
stream congestion.

Hot spot requests do not benefit from this ap-
proach, however combining may provide an alter-
native to throttling. For example, the detection of
hot spot congestion, could trigger deployment of
proxies near to network entry points, potentially re-
ducing downstream load and increasing the hot spot
performance. This type of combining is service-
type specific and therefore service-specific strategies
must be employed. Dynamic deployment of such
edge servers requires protocols for communicating
the characteristics of hot spot aggregates to servers,
and secure mechanisms to dynamically install and
activate upstream proxies.

C. Combining and Cache-Coherency

Cache coherence protocols typically manage
shared (read-only) and exclusive (read-write) copies
of shared variables. Despite the obvious correspon-
dence between cache coherence and the readers-
writers coordination problem, coherence protocols
typically serialize the transmission of line contents
to individual caches. The SCI cache coherence
protocol specifies a variant of combining fetch-
and-store to efficiently enqueue requests. However,
data distribution and line invalidation on network
connected systems is strictly serialized. Extensions
of combining may be able to parallelize cache fill
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operations. Challenges for such schemes would in-
clude the development of an appropriate scalable di-
rectory structure that is amenable to (de)combinable
transactions.

VI. CONCLUSIONS

Having been surprised at the comparatively poor
performance attained by the Ultracomputer’s com-
bining network when presented with 100% hot spot
traffic that typifies busy wait polling of coordi-
nation variables, we identified two improvements
to the combining switch design that increase its
performance significantly. The first improvement is
to simply increase the size of one of the buffers
present. The more surprising second improvement
is to artificially decreasethe capacity of combining
queues during periods of heavy combining. These
adaptive combining queues better distribute the
memory requests across the stages of the network,
thereby increasing the overall combining rates.

We then compared the performance of a central-
ized algorithm for the readers writers problem with
that of the widely used MCS algorithm that reduces
hot spots by busy wait spinning only on variables
stored in the portion of shared memory that is co-
located with the processor in question.

Our simulation studies of these two algorithms
have yielded several results: First, the performance
of the MCS algorithm is improved by the avail-
ability of combining. Second, when no readers are
present, the MCS algorithm outperforms the central-
ized algorithm. Finally, when readers are present,
the results are reversed. For many of these last
experiments, an order of magnitude improvement
is seen.

A switch capable of combining memory ref-
erences is more complex than non-combining
switches. An objective of the previous design efforts
was to permit a cycle time comparable to a similar
non-combining switch. In order to maximize switch
clock frequency, a (type B, uncoupled) design was
selected that can combine messages only if they
arrive on the same input port and is unable to
combine a request at the head of an output queue.
We also simulated an aggressive (type A, coupled)
design without these two restrictions. As expected
it performed very well, but we have not estimated
the cycle-time penalty that may occur.
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