Comparing the Performance of Centralized and
Distributed Coordination on Systems with Improved
Combining Switches

NYU Computer Science Technical Report TR2003-849

Eric Freudenthal and Allan Gottlieb
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
{freudenthal, gottlieb@nyu.edu

Abstract—Memory system congestion due to serializa- the shared memory is physically distributed among
tion of hot spot accesses can adversely affect the perfor-the processors).
mance of interprocess coordination algorithms. Hardware An less common technique is to utilize special
and software techniques have been proposed to reducepurpose coordination hardware such as the barrier

this congestion and thereby provide superior system per-
formance. The combining networks of Gottlieb et al. auto- network of [2], the CM5 Control Network [3],

matically parallelize concurrent hot spot memory accesses, Of the “combining network” _Of [1] and have th_e
improving the performance of algorithms that poll a small processors reference centralized memory. The idea

number of shared variables. The widely used “MCS” behind combining is that when references to the
distributed-spin algorithms takeas_oftware approach:they same memory location meet at a network switch,
{gg;lf; hot spot congestion by polling only variables stored ey, are combined into one reference that proceeds
Our investigations detected performance problems in to memory. When the re§ponse to the_combmed_
existing designs for combining networks and we propose messages reaches the switch, data held in the “wait
mechanisms that alleviate them. Simulation studies de- buffer” is used to generate the needed second re-
scribed herein indicate that a centralized readers writers Sponse.
algorithms executed on the improved combining networks  The early work at NYU on combining networks
have performance at least competitive to the MCS algo- showed their great advantage for certain classes of
fithms. memory traffic, especially those with a significant
portion of hot-spot accesses (a disproportionately
large percentage of the references to one or a few
It is well known that the scalability of inter-locations). It is perhaps surprising that this work
process coordination can limit the performance did not simulate the traffic generated when all the
shared-memory computers. Since the latency mocessors engage in busy-wait polling, i.e., 100%
quired for coordination algorithms such as barrhot-spot accesses (but see the comments on [7]
ers or readers-writergicreaseswith the available in section 1llI). When completing studies begun a
parallelism, their impact is especially important fonumber of years ago of what we expected to be
large-scale systems. A common software techniquery fast centralized algorithms for barriers and
used to minimize this effect iglistributed local- readers-writers, we were particularly surprised to
spinningin which processors repeatedly access vafind that the combining network performed poorly
ables stored locally (in so-called NUMA systemsn this situation. While it did not exhibit the dis-
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astrous serialization characteristic of accesses to [pg; MM?7

single location without combining, the improvement [rrbL3" SW SW MM6
was much less than expected and our algorithir [pgs MMS
were not nearly competitive with those based o [ra-_" SW SW MM4
distributed local-spinning [MCS]. PE3 MM3
. . . .. SW SW SwW

In this paper we briefly review combining net- [p2 MM2
works and present the surprising data just mer [pEi o w s MM
tioned. We then present two fairly simple change: [pEo MMO

;(;/Sttr;?n ngeég:?nblmsgh Sk\)l\g':fer:‘eil’ltga;rs(?[n(?hbalﬁgt?gig' 1. Eight PE System with Hot-Spot Congestion to MM 3.
to increase the wait-buffer size.. The second chan eThe UItra_computer combining SWit.Ch design ut-
is more subtle: The network is output-buffered ar‘%es a variant of cut-through routing [13] that

a trade-off exists involving the size of the outpdfmooseS a_Iatency of one C.|°Ck cycle when there is
no contention for an outgoing network link. When

queues. Large queues are well known to improy : ;
ere is contention for an output port, messages are

performance for random traffic. However, we foun . /
that large queues cause poor polling performan éjffered on queues associated with each output port.

We therefore propose adapting the queue size to ngs;igation(sj b;{[hDias.ag'd ‘iu”,lﬁ [[4]t’h Dickey [5],
traffic encountered: as more combined messages te .[. I and others indicate hat these queues
present, the queue capacity is reduced. Togethségn'f'cantly increase network bandwidth for large

these two simple changes have a dramatic effé%t%ttgmz with uniformly distributed memory access

on polling and our centralized barrier and reader‘:l;-systemS with high degrees of parallelism can be

writers algorithms become competitive with the : . : )
g P constructed using these switches: Figure 1 illus-

commonly used local-spin algorithms of Mellor- s .
y b 9 tes an eight-processor system with= 3 stages

f which al figtes a . .
f?gl:nm{:w]gya\fggbﬁﬁstgf(i%m%irc1)ing\;A)l ch aiso beneof routing switches interconnected by a shuffle-

exchange [19] routing pattern. References\id/;
[l. BACKGROUND are communicated via components denoted using
rgg)ld outlines.

Large-scale, shared-memory computation . -
quires memory systems with bandwidth that scalesl.) An Qverview of CombininglVe assume that

with the number of processors. Multi-stage intef: single memory module (MM) can initiate at most
ne request per cycfeThus unbalanced memory

connection fabrics and interleaving of memory ad” cess patterns. such as hot spot polling of a coor-
dresses among multiple memory units can provié‘ >S patterns, pot poliing )
scalable memory bandwidth for memory referen nation variable, can generate network congestion.
: e 1 illustrates contention among references
rns wh r re uniformly distri gure
patterns whose addresses are uniformly distribut g M Ms;. When the rate of requests to one MM

Many variants of this architecture have been im- ceeds its bandwidth. the switch queues feedin
plemented in commercial and other research S)%( e . ' q 9
it will fill. Since a switch cannot accept mes-

tems [9], [10], [18]. However, the serialization .\ von'its outout buffers are full, a funnel-
of memory transactions at each memory unit ’%g P '

. .of-congestion will spread to the network stages
problematic for reference patterns whose mappi . 4
to memory units is unevenly distributed. An m{nat feed the overloaded MM and interfere with

portant cause of non-uniform memory access pé&gnsactlons destined for other MMs as vrell.

. ltracom r switch mbin irs of memor
temns is hot-spot memory accesses generated br%uuzgfsoacggtsesirsl tfeiniloe Ic?ca(tai(fr?l instg a sien I(()a)r/e
centralized busy-waiting coordination algorithms. 9 9 9
The Ultracomputer architecture includes networkithis restriction applies to each bank if the MM is itself composed
switches [16] with logic to reduce this congestiopf banks that can be accessed concurrently. The MM design simulated

by combininginto a single request multiple memoryn zour. experiments can accept one rgquest every four cycles.
Pfister and Norton [8] called this funneétee saturationand

transactions (e'g' loads, stores, fetCh'and'addS) t&ﬁgrved that access patterns containing only 5% hot spot traffic
reference the same memory address. substantially increase memory latency
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response arrives at the combining switch the latter
Fig. 2. Combining of Fetch-And-Adds at a single switch (aboveransmits.X to satisfy the requesFAA()Q e) and

and at multiple switches (below). transmits7' + e to satisfy the requesi’AA(z, f),
quest to reduce the congestion generated by hot sints achieving the same effect afif1 A(X, e) was
memory traffic. When the memory response subdetllowed immediately byF"AA(X, f). This process
quently arrives at this switch it ide-combinednto s illustrated in the upper portion of Figure 2. The
a pair of responses that are routed to the requestoagcaded combining of 4 requests at two network
PEs. To enable this de-combination, the switch usstages is illustrated in the lower portion of the same
an internalwait bufferto hold information found in figure.

the request until it is needed to generate the secondrigure 3 illustrates an Ultracomputer combining
response. Since combined messages can themsedvatch. Each switch contains

be combined, this technique has the potential to, Two Dual-input forward-path combining

reduce hot spot contention by a factor of two at  qgueues: Entries are inserted and deleted in

each network stage. a FIFO manner and matching entries are
2) Combining of Fetch-and-addOur fetch-and- combined, which necessitates an ALU to

add based centralized coordination algorithms poll  compute the sum + f.

a small number (typically one) of “hot spot” shared , Two Dual-input reverse path queueg&ntries
variables whose values are modified using fetch- gre inserted and deleted in a FIFO manner.
and-add Thus, as indicated above, it is crucial in a , Two Wait Buffers:Entries are inserted and as-

design supporting large numbers of processors not sociative searches are performed with matched

to serialize this activity. The solution employed is  entries removed. An included ALU computes
to include adders in the MMs (thus guaranteeing x 4 ..

atomicity) and to combine concurrent fetch-and-add

operations at the switches. A. When Combining Can Occur
When two fetch-and-add operations referencing ... |atency is proportional to switch cycle

the same shared variable, sayAA(X,e) and y 1S prop y

FAA(X, f), meet at switch the combined reque%imes and grows with queuing delays. VLSI simu-

. , : ations showed that the critical path in a proposed
AA + . .
FAA(X,e+f)is transmitted and the valueis stored Ultracomputer switch included the adder to form

in the wait buffer. Load and fetch-and-add opera—Jr £ and the output drivers. To reduce cycle time,

ions dir war h me h variabl o . ! .
tions directed towards the same hot spot va ab?the cost of restricting the circumstances in which

can be combined if loads are transmitted as fetc@émbinin could oceur. the chosen desian did not
and-adds whose addends are zero. 9 ' 9

Upon receivingF AA(X, e+ f), the MM updates combine requests that were at the head of the output

) gueue (and hence might be transmitted the same
X (to X+ e+ f) and responds witht When the cycle as combined). This modification reduced the

3Recall that FAA(X,e) is defined to return the old value of X em(f:rl_tlc‘r’lI path timing tc_) the max of the adder and
atomically increment X by the value e. driver rather than their sum.



512 - per direction) plus the simulated memory latency of
1 2 cycles.

On larger systems, memory latency is substan-
tially greater for the 100% hot spot load and can
exceed 10 times the minimum. Since the combining
switches simulated were expected to perform well
for this traffic, the results were surprising, especially
to the senior author who was heavily involved with

n
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Roundtrip Latency

8>:"‘ ETT |, Baseln, 100% hotspot —— | the Ultracomputer project throughout its duration.
B Baseline, 10% hotspel % It is clear that our current objective of exhibit-
s ing high-performance centralized coordination al-
log(# processors) gorithms cannot be achieved using these simulated
switches.

Fig. 4. Memory Latency for Ultraswitches with Wait Buffer . ]
Capacities of 8 and 100 messages for 10% and 100% Hotspot Traffic WWe have discovered that there were two design

1 Outstanding Request/PE. flaws in the combining switch design. The first is

We call the modified design “decoupled” becaudfat the wait buffer was too small, the second was
the adder and driver are in a sense decoupled, 4RAdt, in a sense to be explained below, the combining
call the original design “coupled”. Since the heaglueues were totarge.
entry cannot be combined, we note that a decoupled _ ) )
queue requires at least three requests for combinfiig Increasing the Wait Buffer Capacity
to occur. We shall see that this trivial sounding The fabricated switches had wait buffers capable
observation is important. of holding 8 entries. We see in 4 that increasing

To enable the dual input queues to accept itertiee capacity to 100 entries (feasible with today’s
on each input in one cycle, the queue is constructegthnology) reduces the latency for a 2048PE sys-
from two independentsingle-input queues whosetem from 306 to 168 cycles an improvement of
outputs are multiplexed. To achieve the maximud#b%. While this improvement certainly helps, the
combining rate, we therefore require at least thréstency of hot spot polling traffic is seven times the
requests in each of the single-input combinini@gtency of uniformly distributed reference patterns
queues, which implies at least six in each dual24 cycles).
input combining queues. A more complicated dual-
input decoupled combining queue, dubligde Ain B. Adaptive Combining Queues

Dickey [S] requires only three messages to achieve|n grder to supply high bandwidth for typical
the maximum combining rate rather than six in thgniformly distributed traffic (i.e., 0% hot spot), it

‘type B” design we are assuming. is important for the switch queues to be large.
However, as observed by [7], busy wait polling
l1l. | MPROVING THE PERFORMANCE OF (100% hot spot), however, is poorly served by these
BusY-WAIT POLLING large queues, as we now describe.

q For busy-wait polling, each processor always has

Figure 4 plots memory latency for simulate ; )
g P y Y ©ne outstanding request directed at the same loca-

systems of four to 2048 PEs with memory tra

=, : .
fic containing 10% and 100% hot spot referencé@g' hOure?xp;[ctatlon wa? thqt Vl\q"w pro_cessorsi q
(the latter typifies the traffic when processors afé! b.enc o9 Etages 0 swlltp €s, pairs wou
engaged in busy-wait polling and the local cach&QMPine at each stage resulting in just one (or
filter out instruction and private data referenced)€'aps more realistically a few) request reaching
The simulated multiprocessor approximates the lemory.
tracomputer design. Observe that for 10% hot spot_ . _ o

. . h This is not quite correct: When the response arrives it takes a
refere_n(_:es the latency 1S 0_”')/ S“ghtly greater t ALy cycles before the next request is generated. Our simulations
the minimum network transit time (1 cycle per stag&curately account for this delay.

4
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Fig. 5. Combining rate, by stage for simulated polling on systems%
of 2% to 2'* PEs. Wait buffers have capacity 100 and combining

gueues can hold 4 combined or uncombined messages. In the right
plot the combining queues are declared full if two combined requests 85
are present.

2 s 4 5 6 7 8 9 10 1
What happens instead is that the queues in log(# processors)
switches near memory fill to capacity and theg. 6. Memory latency for simulated hot spot polling traffic, 4-2048
gueues in the remainder of the switches are neaPhs.
empty. Since combining requires multiple entries esignadaptive since the queues are full size for
be present, it can only occur near memory. Howmniformly distributed traffic and adapt to busy wait
ever, asingleswitch cannot combine an unboundegolling by artificially reducing their size.
number of requests into one. Those fabricated forWe see in Figure 6 that the increased combining
the Ultracomputer could combine only pairs so, ifate achieved by the adaptive queues dramatically
for example, eight requests are queued for the saloers the latency experienced during busy wait
location, (at least) four requests will depart. polling. For a 2048 PE system the reduction is
Figure 5 illustrates this effect. Both plots arérom 168 cycles for a system with large (100 entry)
for hot spot polling. The left plot is for simulatedwait buffers and the original queues to 118 cycles
switches modeled after those fabricated for the Uffive times the latency of uniform traffic) with the
tracomputer, but with the wait buffer size increaseshme wait buffers but adaptive combining queues.
to 100. Each queue has four slots each of which c@his is a reduction of over 30% and gives a total
hold a request received by the switch or one formeeduction of 61% when compared with the 306
by combining two received requests. The plot orycles needed by the baseline switches. The bottom
the right is for the same switches with the queuwo plots are for more aggressive switch designs
capacity restricted so that if 2 combined requedisat are discussed below. In Section IV we shall see
are present the queue is declared full even if emptyat centralized coordination algorithms executed on
slots remain. We compare the graphs labeled $@stems with adaptive queues and large wait buffers
(representing a system with 1024 PEs) in each plate competitive with their distributed local-spinning
In the left plot with the original switches, we findalternatives.
that combines occur at the maximal rate for the four Figure 7 compares the latency for 1024 PE sys-
(out of 10) stages closest to memory, occur at neatgms with various switch designs and a range of
the maximal rate for the fifth stage, and do not occaccepted loads (i.e., processors can have multiple
for the remaining five stages. The restricted switcheatstanding requests unlike the situation above for
do better, combining at maximal rate for five stagd®isy wait polling). These results confirm our asser-
and at 1/4 of the maximum for the sixth stage. tion that adaptive queues have very little effect for
Note that for uniformly distributed traffic withoutlow hot spot rates and are a considerable improve-
hot spots, combining will very rarely occur and thenent for high rates.
artificial limit of 2 combined requests per queue will

not be invoked. We call this new combining queug' More Aggressive Combining Queues

Recall that we have been simulating decoupled
SAlternate designs could combine more than two requests into O%DG B switches in which Combining is disabled for

but, as observed by [7], when this “combining degree” increas « ”
congestion arises at the point where the single response is e head entry (tO deCOUple the ALU and output

combined into many. drivers) and the dual input combining queues are
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Fig. 7. Simulated Round-trip Latency over a Range of Offered Loads for 1% (left), 20% (middle) and 100% (right) Hot Spot Traffic.

composed of two independent single input com- ™% [ wuroommwaiao
bining queues with multiplexed outputs. We started | % AayecaveMMiaito
with a “baseline design”, used in the Ultracomputer,
and produced what we refer to as the “improved, "
design” having a larger wait buffer and adaptiveg g |
combining queues. We also applied the same twe
improvements to type A switches having coupleds
ALUs and refer to the result as the “aggressivé” |

design” or “aggressive switches” For example, the
lowest plot in Figure 6 is for aggressive switches.
Other experiments not presented here have shown 0,

that aggressive switches permit significant rates of log(# processors)
combining to occur in network stages near the

. ) . g. 8. Memory latency for hot spot polling on systems with MMs
processors. Also, as we will show in Section 1V, th@at can accept one message every 40 cycles.

centralized coordination algorithms perform eXCeRiemory. For example, having multiple sub-banks
tionally well on this architecture, Although aggres(ﬁg ’

. . : “per MM would increase memory bandwidth and
sive switches are the best performing, we cauti

_ ! mprove the performance on uniformly distributed
the reader that our measurements are given in URRSric and caches at the MM are well suited to the

of a switch cycle time and, without a more deta"e%mporal locality of hot spot accesses.
design study, we cannot estimate the degradation in

cycle time such aggressive switches might entalil. IV. PERFORMANCEEVALUATION OF
CENTRALIZED AND MCS READER-WRITER
D. Applicability of Results to Modern Systems COORDINATION

The research described above investigates sysMany algorithms for coordinating readers and
tems whose components have similar speeds, as waiters have appeared. Courtois and Heyman [17]
typical when this project began. During the intelintroduced the problem and presented a solution that
vening decade, however, logic and communicatigrializes the entry of readers as well as writers.
rates have increased by more than two orders Mbre importantly, these algorithms generate hot
magnitude while DRAM latency has improved bygpot polling traffic and therefore suffer slowdowns
less than a factor of two. due to memory system congestion on systems that

In order to better model the performance ol@o not combine hot spot references.
tainable with modern hardware, we increased theA centralized algorithm is presented in [1] that,
memory latency from two to thirty-eight cycles, an@dn systems capable of combining fetch-and-add
the interval between accepting requests from foaperations, eliminates the serialization of readers
to forty cycles. These results are plotted in Figutiea the absence of writers. However, no commercial
8 and indicate that the advantage achieved by thgstems with this capability have been constructed,
adaptive switch design is even greater than beforand in their absence, alternative “distributed local-

Various techniques can mitigate the effect of slogpin” MCS algorithms have been developed [11]
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that minimize hot spot traffic by having each proce§™"*""™" =
faaReaderLock (){

sor busy-wait on a shared variable stored in memory v ;) 1

co-located with this processor. This NUMA memory i ¢ 2 O Wriiers»
organization results in local busy waiting that does . - e, '3}, 11 cancel' reqeust

while (¢ >=K) { Il while a writer is active ...
c =C; Il read C

not contribute to or encounter network congesfion.
The most likely cause of unbounded waiting ’ '
in any reader-writer algorithm is that a continuahareaderuniock o faa(c, —1); }

stream of readers can starve all writers. The standasd raawriteriock o ¢

technique of giving writers priority eliminates this " ! d- acc. k: 1/ request

possibility? In this section we present a performance ' <9 ¢ 71 any readerss |
comparison of “best of breed” centralized and MCS e e T O ety (O readers
writer-priority reader-writer algorithms each exe- - faaC—K) — K; 1/ conflict: must decrement & retry
cuted on a simulated system with the architectural "™ °¢~" ¢ T e & vriter 1s active .
features it exploits. b

faaWriterUnlock () { faa(C,—K); }

Roughly similar results hold for barrier algo-

rithms. The interested reader is referred to [6]. Fig. 9. Fetch-and-add Readers-Writers Lock

A. Centralized Algorithms for Readers and Writers

Figure 9 presents a centralized reader-writer lock lated hard includ bini itch
using fetch-and-add. This algorithm issues only mulated hardware includes combining switches,

single shared-memory reference (a fetch-and-a 'C.h improves the p(_arformancg of MCS and is
rucial for the centralized algorithm, as well as

when the lock is uncontested. We know of nBIUMA hich is | for MCS and
other algorithm with this desirable property. A mor memory, which 1S |mport_ant or an
t used by the centralized algorithm. All the switch

complete description of the techniques employed ) ) .

this glgorithm agpears in [6] q POy esigns described above plus others were simulated
' in the junior author’s dissertation [6]. A summary

B. Hybrid Algorithm of Mellor-Crummey and Scotbf the results is presented below.

The writer-priority readers-writers algorithm of Neither algorithm dominates the other: The cen-
Mellor-Crummey and Scott [11] is commonly use#alized algorithms are superior except when only
on large SMP systems. This algorithm, commonbyriters are present. Recall that an ideal reader lock,
referred to as MCS, is a hybrid of centralized an@ the absence of contention, yields linear speedup;
distributed approaches. Central state variables, nighereas an ideal writer exhibits relowdownas
nipulated with various synchronization primitivesparallelism increases. When there are large numbers
are used to count the number and type of lo¢K readers present, the centralized algorithm, with
granted at any time and to head the lists of waits complete lack of reader serialization, thus gains
ing processors. NUMA memory is used for busgn advantage, which is greater for the aggressive
waiting, which eliminates network contention.  architecture.

C. Overview of Experimental Results

A series of micro-benchmark experiments WGB'
performed to evaluate the performance of central-The scalability of locking primitives is unim-

izc_ed fetch_—and-add based coordination with the higortant when they are executed infrequently with
brid algorithm of Mellor-Crummey and Scott. Th@ow contention. Our experiments consider the more
. _ interesting case of systems that frequently request
Some authors use the term NUMA to simply mean that the d d iter locks. F I . t h
memory access is non-uniform: certain locations are further awE?a er and writér locks. For all experiments eac

than others. We use it to signify that (at least a portion of) the sharpfOCESS repeatedly:

memory is distributed among the processors, with each processor . .
having direct access to the portion stored locally. « Stochastically chooses (at a fixed, but parame-

"But naturally permits writers starving readers. terized, probability) whether to obtain a reader

Experimental Framework



OI’ Wl’ltel' |0Ck.8 —+— Faa_Aggressive
- . 10000 ¢ - Faa_lmproved
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Each experiment measures the ratg that l.OCk%ig. 10. Experiment R, All Readers (left), All Writers (right)
are granted over a range of system sizes (higher

values are superior). In order to generate equivalent e e
contention from writers in each plot, the expecteg ™
number of writerstyy, is held constant for all systemg 1o

sizes. Thus, the probability of a process becomin;z;g 100,
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—+— Mcs_AggressiveNuma

Writers/KCycle

a writer is Ey / Parallelism. e "o Ef\rggmb:m
Each micro-benchmarks has four parameters: 28 456 7 8 910 s 45678 910

« PAR: the number of processors in the simu- e e
lated system. Fig. 11. Experiment I, All Readers (left), All Writers (right)

o F,: The expected number of writers.
« Work: The number of shared accesses €Xgants where all processes are writers, which must

cuted .Wh”e holding a lock. _serialize and therefore typically spend a substantial
» Delay: The number of cycles a process Wait§eriod of time busy-waiting. The MCS algorithm
after releasing a lock. has superior performance in these experiments.

Two classes of experiments were performed: Since writers enforce mutual exclusion no
Those classified “I” measure the costiofensesyn- speedup is possible as the system size increases.
chronization in which each processors request afileed one expects a slowdown due to the in-
release locks at the highest rate possibléyrk = creased average distance to memory. The anoma-
Delay = 0. Those classified “R" are somewhalous speedup observed for MCS between 4 and
morerealistic, Work = 10 and Delay = 100. 16 processors is due to the algorithm’s decoupling

1) All Reader Experimentdy, = 0: The left- of queue insertion and lock passing. This effect is
side charts in Figures 10 and 11 present resufigscribed in [11]. As explained in [6] the MCS
from experiments where all processes are readeffjorithm issues very little hot spot traffic when no
The centralized algorithm requires a single hot-spdaders are present and thus does not benefit from
memory reference to grant a reader lock in thé&dmbining in these experiments.
absence of writers. In contrast, the MCS algorithm 3) Mixed Reader-Writer ExperimentsEigures
generates accesses to centralized state variables 8n¢hrough 15 present results of experiments with
linked lists of requesting readers. Not surprisinglyoth readers and writers. In the first set, there is on
the centralized algorithms have significantly sup@verage 1 writer present (this lock will have sub-
rior performance in this experiment. For some coRstantial contention from writers) and in the second
figurations, an order of magnitude difference is seeget 0.1 (a somewhat less contended lock).

We also observe that MCS does benefit significantly
from combining. Even when only MCS uses the

aggressive switches, the centralized algorithm is = Fea sgesive

— Faa_lmproved

0000

0% x

superior. Naturally, the differences are greater in the
“intense” experiments. 2

2) All-Writer Experiments:The right-side charts
in Figures 10 and 11 present results from experi- 1]

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
log(# processors) log(# processors)

1000

Writers/KCycle
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100 %
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8The simulated random number generator executes in a single
cycle. Fig. 12. Experiment |Ey = 1



oo | o FoR o e by mixed traffic patterns that would perform better
X Mosocomiuma | ; with longer queues. We have neither witnessed nor
g, investigated this effect, which may be mitigated by
01| e raammesa. % more gradual adaptive designs that variably adjust

1000

Writers/KCycle

100

Readers/KCycle

o 1oy LD Nes-mocomuma queue capacity as a function of a continuously
L sy L7 s measured rate of combining.
Fig. 13. Experiment REw = 1 B. Generalization of Combining to Internet Traffic
100 The tree saturation problem due to hot spot access

—+— Faa_Aggressive
10000 | - Faa_lmproved

patterns is not unique to shared memory systems.
Congestion generated by flood attacks and flash

1000

Readers/KCycle
Writers/KCycle

of 5 o1 —rasdmsne. f crowds [12] presents similar challenges for Internet
3 -~ Faa_lmproved - - .
B "% meweomnes o Service Providers. In [15] Mahajan et al. propose a
cs_AggressiveNuma . . . . .
23 456 7 8 910 s 4 s s 7 8 5 0 technique to limit the disruption generated by hot
ool processors) ool processors) spot congestion on network traffic with overlapping
Fig. 14. Experiment |Ew = 0.1 communication routes. In their scheme, enhanced

servers and routers incorporate mechanisms to char-
. . . acterize hot spot reference patterns. As with adap-
The rate at.Wh'Ch the (.:entrallze.d algorithm gran{ﬁle combining, upstream routers are instructed to
reader locks Increases linearly with system size f rottle the hot spot traffic in order to reduce down-
all these experiments and, as a result, significan ¥eam congestion

exceeds the rate granted by MCS for all large Hot spot requests do not benefit from this ap-

sys}em experiments. Even without the aggressi ?oach, however combining may provide an alter-
switches, the difference normally exceeds and or Ative to throttling. For example, the detection of

ofénagnl[tkl:de.h i h iorit q hot spot congestion, could trigger deployment of
" ven Ougtl W][l ers a\{te prllor:(y overtreda e{Eroxies near to network entry points, potentially re-
ere are vastly Tewer writer 1ocks granted wi ucing downstream load and increasing the hot spot
these values of;,,. Here also the centralized algoy, . +ormance. This type of combining is service-
n_thm outperforms MCS’. often by an order of Magy pe specific and therefore service-specific strategies
nitude. For some experiments, writer lock granti ust be employed. Dynamic deployment of such
R‘;’l‘z:eé are so Iowtthat hone were observed for So@&ge servers requires protocols for communicating
experiments. the characteristics of hot spot aggregates to servers,
V. OPEN QUESTIONS and secure mechanisms to dynamically install and

A. Extending the Adaptive Technique activate upstream proxies.

Our adaptive technique sharply reduces que@e Combining and Cache-Coherency
cgpacity wher_1 a cr_ude det_ector of hot spot traffic iS c5che  coherence protocols typically manage
triggered. While this technique reduces network 1&nared (read-only) and exclusive (read-write) copies
tency for hot spot polling, it might also be triggereds shared variables. Despite the obvious correspon-
dence between cache coherence and the readers-
writers coordination problem, coherence protocols

—+— Faa_Aggressive 100 . . . . . .
o (00| - Falmpoed | typically serialize the transmission of line contents
& o | 5 Mes Aggrosivablr 9 to individual caches. The SCI cache coherence
K > 1 i . ..
2 w8 5 % protocol specifies a variant of combining fetch-
S = 5o T e peeeeretine X and-store to efficiently enqueue requests. However,
K o1 [t TRheEE data distribution and line invalidation on network
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 . . . ) g
loa(# processors) loa(# processors) connected systems is strictly serialized. Extensions
Fig. 15. Experiment REw = 0.1 of combining may be able to parallelize cache fill



operations. Challenges for such schemes would in-
clude the development of an appropriate scalable di
rectory structure that is amenable to (de)combinable
transactions.

VI. CONCLUSIONS (2]

Having been surprised at the comparatively poor
performance attained by the Ultracomputer’s coms
bining network when presented with 100% hot spo[t
traffic that typifies busy wait polling of coordi- [4]
nation variables, we identified two improvements
to the combining switch design that increase itgs)
performance significantly. The first improvement is
to simply increase the size of one of the buffers?!
present. The more surprising second improvement
is to artificially decreasehe capacity of combining
gueues during periods of heavy combining. Thesg
adaptive combining queues better distribute the
memory requests across the stages of the netwoi#],
thereby increasing the overall combining rates.

We then compared the performance of a centrajg;
ized algorithm for the readers writers problem with
that of the widely used MCS algorithm that reduces
hot spots by busy wait spinning only on variables
stored in the portion of shared memory that is c@to]
located with the processor in question.

Our simulation studies of these two algorithmgy;
have yielded several results: First, the performance
of the MCS algorithm is improved by the avail-12]
ability of combining. Second, when no readers a{‘e
present, the MCS algorithm outperforms the central-
ized algorithm. Finally, when readers are present,
the results are reversed. For many of these Ié\stl
experiments, an order of magnitude improvement
is seen. [14]

A switch capable of combining memory ref-
erences is more complex than non-combining
switches. An objective of the previous design effort$®!
was to permit a cycle time comparable to a similgfg
non-combining switch. In order to maximize switch
clock frequency, a (type B, uncoupled) design WZiléS7
selected that can combine messages only if th )}
arrive on the same input port and is unable to
combine a request at the head of an output quelél
We also simulated an aggressive (type A, coupled)
design without these two restrictions. As expecteo)
it performed very well, but we have not estimated
the cycle-time penalty that may occur.
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