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Abstract

Balancing Neumann-Neumann methods are extended to the equations arising
from the mixed formulation of almost-incompressible linear elasticity prob-
lems discretized with discontinuous-pressure finite elements. This family of
domain decomposition algorithms has previously been shown to be effective
for large finite element approximations of positive definite elliptic problems.
Our methods are proved to be scalable and to depend weakly on the size of
the local problems. Our work is an extension of previous work by Pavarino
and Widlund on BNN methods for Stokes equation.

Our iterative substructuring methods are based on the partition of the un-
knowns into interior ones — including interior displacements and pressures
with zero average on every subdomain — and interface ones — displacements
on the geometric interface and constant-by-subdomain pressures. The restric-
tion of the problem to the interior degrees of freedom is then a collection of
decoupled local problems that are well-posed even in the incompressible limit.
The interior variables are eliminated and a hybrid preconditioner of BNN type
is designed for the Schur complement problem. The iterates are restricted to
a benign subspace, on which the preconditioned operator is positive definite,
allowing for the use of conjugate gradient methods.

A complete convergence analysis of the method is presented for the con-
stant coefficient case. The algorithm is extended to handle discontinuous coef-
ficients, but a full analysis is not provided. Extensions of the algorithm and of
the analysis are also presented for problems combining pure-displacement and
mixed finite elements in different subregions. An algorithm is also proposed
for problems with continuous discrete pressure spaces.

All the algorithms discussed have been implemented in parallel codes that
have been successfully tested on large sample problems on large parallel com-
puters; results are presented and discussed. Implementations issues are also
discussed, including a version of our main algorithm that does not require the
solution of any auxiliary saddle-point problem since all subproblems of the
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preconditioner can be reduced to solving symmetric positive definite linear
systems.

vi



Contents

Dedication ii

Acknowledgements iii

Abstract v

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Krylov Subspace Methods . . . . . . . . . . . . . . . . 2

1.1.2 Preconditioning . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Domain Decomposition Methods . . . . . . . . . . . . 3

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Model Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Stokes Equations . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Linear Elasticity . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 The Incompressible Limit . . . . . . . . . . . . . . . . 9

1.4 Some Solution Methods for Saddle-Point Problems . . . . . . 10

1.5 Structure of this Dissertation . . . . . . . . . . . . . . . . . . 11

2 Mixed Finite Element Discretization 12

2.1 Continuous Formulation of Saddle-Point Problems . . . . . . . 12

2.2 Mixed Finite Elements . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Some auxiliary results . . . . . . . . . . . . . . . . . . . . . . 15

vii



3 Substructuring 21
3.1 Substructuring in Variational Form . . . . . . . . . . . . . . . 22
3.2 Substructuring in Matrix Form . . . . . . . . . . . . . . . . . 26

4 Balancing Neumann–Neumann Preconditioners 30
4.1 The Coarse Problem . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Local Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Analysis of the Method 37
5.1 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 Upper bound . . . . . . . . . . . . . . . . . . . . . . . 42

6 Discontinuous Coefficients with Large Jumps 45
6.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Some Implementation Issues 48
7.1 Saddle-Point Version of the Algorithm . . . . . . . . . . . . . 48

7.1.1 Avoiding a special basis . . . . . . . . . . . . . . . . . 48
7.1.2 Solution of the Local Problems . . . . . . . . . . . . . 49

7.2 Positive Definite Implementation of the Algorithm . . . . . . . 51
7.2.1 A Positive Definite Theory? . . . . . . . . . . . . . . . 54

8 Combining Mixed and Pure-Displacement Formulations 55
8.1 Definition of the Problem and Substructuring . . . . . . . . . 55
8.2 The Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . 57
8.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9 Continuous Pressure Spaces 60

10 Numerical Experiments 64
10.1 Saddle-Point Implementation . . . . . . . . . . . . . . . . . . 65
10.2 Positive Definite Implementation . . . . . . . . . . . . . . . . 66

10.2.1 Validating the Positive Definite Implementation . . . . 67
10.2.2 Almost-Incompressible problems . . . . . . . . . . . . . 68
10.2.3 Heterogeneous Problems with Jumps in the Coefficients 71

10.3 Combined Mixed and Displacement-Only Formulations . . . . 73
10.4 Continuous Pressures . . . . . . . . . . . . . . . . . . . . . . . 75

viii



10.5 A Few Remarks on the Experiments . . . . . . . . . . . . . . 79

Bibliography 80

ix



List of Figures

3.1 Subdomains Ωi and interface Γ . . . . . . . . . . . . . . . . . 22

10.1 Saddle-point implementation applied to an almost-incompress-
ible problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

10.2 Positive definite implementation applied to an almost-incom-
pressible problem . . . . . . . . . . . . . . . . . . . . . . . . . 69

10.3 Positive definite implementation using a poor coarse space . . 71
10.4 Heterogeneous domain with large coefficient jumps . . . . . . 72
10.5 Positive definite implementation applied to a heterogeneous-

medium problem . . . . . . . . . . . . . . . . . . . . . . . . . 73
10.6 Combined mixed and pure-displacement implementation ap-

plied to a heterogeneous-medium problem . . . . . . . . . . . 74

x



List of Tables

10.1 Saddle-point implementation applied to an almost-incompress-
ible problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

10.2 Saddle-point vs. positive definite implementation . . . . . . . . 67
10.3 Positive definite implementation applied to an almost-incom-

pressible problem . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.4 Positive definite implementation applied to an almost-incom-

pressible problem using a poor coarse space . . . . . . . . . . 70
10.5 Positive definite implementation applied to a compressible prob-

lem using a poor coarse space . . . . . . . . . . . . . . . . . . 70
10.6 Positive definite implementation applied to a problem with het-

erogeneous coefficients . . . . . . . . . . . . . . . . . . . . . . 72
10.7 Combined mixed and pure-displacement implementation ap-

plied to a heterogeneous problem . . . . . . . . . . . . . . . . 74
10.8 Continuous pressure implementation applied to a compressible

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.9 Continuous pressure implementation applied to an almost-in-

compressible problem (ν = 0.485) . . . . . . . . . . . . . . . . 76
10.10Continuous pressure implementation applied to an almost-in-

compressible problem (ν = 0.499) . . . . . . . . . . . . . . . . 77

xi





Chapter 1

Introduction

1.1 Overview

The process of numerically solving partial differential equations (PDEs) typi-
cally involves a discretization step, in which the original infinite-dimensional,
continuous problem is approximated by a finite-dimensional one. This dis-
cretized problem usually requires the solution of a linear system of algebraic
equations (or a nonlinear system, the iterative solution of which often requires
a linear solve at each iteration). Therefore, the solution of linear systems of
equations is one of the most ubiquitous problems in scientific computing.

How well the discretized problem approximates the continuous one usu-
ally depends on the dimension of the solution space, expressed by a mesh
parameter h that measures how fine the mesh is. This is especially true when
complex geometries are involved. Typically, as the dimension of the discretiza-
tion space increases, the resulting problems are not only larger, but also worse
conditioned.

The problem of solving linear systems is central in numerical analysis. Sys-
tems arising from the discretization of PDEs have, of course, received special
attention, since they appear in many applications, such as fluid dynamics and
structural mechanics. These systems often have special structure that can
be exploited in the solution process. Unfortunately, the price to be paid for
this exploitation is the design of problem-specific algorithms, as the one we
present, as opposed to truly multi-purpose ones such as Gaussian elimination
and its variants. In particular, we will present and discuss an algorithm to
solve the system arising from the discretization of the mixed formulation of
linear elasticity.
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Nowadays, when the size of problems get into the hundreds of millions of
unknowns and the largest supercomputers have thousands of processors, the
issue of parallel scalability is paramount. A solution method is said to be
scalable if the time required to solve a problem of size nS using nN processors
is about the same as for a similar problem of size S using N processors. Our
methods are scalable and their performance depends only weakly (polyloga-
rithmically) on the size of the local problems (i.e., on S).

There are two classes of solvers for linear systems: direct methods and
iterative methods. The latter have proved more successful for the solution
of large problems in parallel computational environments. We now briefly
describe what is arguably the most important class of iterative methods: the
Krylov subspace methods. We also motivate the necessity of designing good
preconditioners.

1.1.1 Krylov Subspace Methods

Let K be an invertible matrix and consider the linear system

Ku = f.

At the n-th iteration, define the error en = u∗ − un and the residual rn =
Ken = f − Kun, where u∗ = K−1f . If u0 is an initial guess, we define the
Krylov affine subspaces by

Kn = u0 + span
{
r0, . . . , K

n−1r0
}
.

The iterates of a Krylov method are defined in terms of an optimization
problem constrained to the Krylov subspace. In the case when K is symmetric
and positive definite, we define the Conjugate Gradient method, in which the
n-th iterate un is the solution to

minimize eT
nKen

subject to un ∈ Kn.

It can be shown that

‖en‖K ≤ 2

(√
κ(K)− 1√
κ(K) + 1

)n

‖e0‖K , (1.1)

where κ(K), the condition number of K, is the ratio of the largest and smallest
eigenvalues of K (see, e.g., Golub [25] or Luenberger [37]). In each iteration of
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the conjugate gradient method, the matrixK is used only in one matrix-vector
product. The matrix K does not have to be explicitly available, i.e., we do
not need to know the values of its individual entries. We only need to be able
to compute the action of the matrix on vectors.

1.1.2 Preconditioning

The performance of Krylov and many other iterative methods depend strongly
on the condition number of the matrix being “inverted”, as indicated by the
error bound (1.1) for the conjugate gradient method. Therefore it often is
necessary to precondition the linear systems when using a iterative method:
instead of solving Ku = f , we solve QKu = Qf , where Q is an invertible
matrix that approximates K−1, in the sense that QK is better conditioned
than K. In fact, the use of an unpreconditioned conjugate gradient method
for a large linear system arising in elasticity can easily result in hundreds of
thousands of iterations without any visible progress towards the solution. Typ-
ically, a preconditioned Krylov method will require one application of K and
one application of Q per iteration. The need of a good approximation for the
inverse of K must be weighed against the requirement that multiplying a vec-
tor by Q should be computationally cheap, as compared with “multiplication
by K−1”. In the case of preconditioned conjugate gradients, Q is also required
to be symmetric positive definite and we have

‖en‖K ≤ 2

(√
κ(QK)− 1√
κ(QK) + 1

)n

‖e0‖K .

1.1.3 Domain Decomposition Methods

Domain decomposition methods are techniques to design efficient and scalable
preconditioners for certain classes of linear systems arising from the discretiza-
tion of PDEs. Their basic idea is to construct an approximate solution for the
original problem based on the solution of a collection of smaller instances of
the problem, posed on subsets of the domain called subdomains.

To fix ideas, let us consider a discretization of the Poisson equation with
homogeneous boundary condition: find u ∈ V such that

a(u, v) = 〈f, v〉 ∀v ∈ V,
where f ∈ H−1(Ω), V ⊂ H1

0 (Ω) is finite-dimensional and a(u, v) =
∫

Ω
∇u ·∇v.

We assume that there are subspaces V0, V1, . . . , VN ⊂ V , the sum of which
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spans V ,
V = V0 + V1 + · · ·+ VN ,

and inner products bi : Vi×Vi → R defined on them. We then define projection-
like operators Ti : V → Vi by:

bi(Tiu, vi) = a(u, vi) ∀vi ∈ Vi, ∀u ∈ V. (1.2)

We remark that the inclusion of the Vi’s in V is not absolutely necessary;
nonnested subspaces can also be handled with the use of restriction and inter-
polation operators.

If bi(·, ·) is chosen to be the restriction of a(·, ·) to Vi, then Ti is simply
the a-orthogonal projection onto Vi. The subspaces Vi are usually comprised
of functions supported in small subsets of Ω, denoted by Ωi, the subdomains.
Often V0 is reserved to be a subspace of a different nature: it represents a
lower-dimensional discretization of the entire domain Ω and is called the coarse
space. Such a space is typically necessary for the scalability of the method.

We define the operators (matrices) A : V → V ′ and Bi : Vi → V ′
i by:

〈Au, v〉 = a(u, v) ∀u, v ∈ V,
〈Biui, vi〉 = bi(ui, vi) ∀ui, vi ∈ Vi.

We note that the computation of the action of Ti on a vector just requires
the solution of a linear system involving Bi. We also note that we can easily
compute Tiu, the action of Ti on the unknown solution u, since in this case
the right hand side in (1.2) equals 〈f, vi〉.

Domain decomposition methods can usually be described as the iterative
solution of a problem of the form

Tu = g,

where T , the Schwarz operator, is a polynomial on the Ti’s. The additive
Schwarz method is then defined by

Tas = T0 + T1 + · · ·+ TN

and the multiplicative Schwarz method by

Tms = I − (I − T0)(I − T1) · · · (I − TN ).

Other alternatives, combining additive and multiplicative components, are also
possible and give rise to hybrid methods.
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The three most successful families of domain decomposition methods are
overlapping Schwarz, Balancing Neumann-Neumann (BNN), and FETI meth-
ods.

Overlapping Schwarz methods are based on local spaces Vi supported on
subdomains Ω′

i which overlap each other: Ω′
i ∩ Ω′

j 6= ∅ for neighboring subdo-
mains Ω′

i and Ω′
j . This is in contrast with the iterative substructuring class,

including BNN and FETI, in which the subdomains are disjoint.
BNN methods were first developed without a coarse space; see Bourgat,

Glowinski, Le Tallec and Vidrascu [5], De Roeck [13], and De Roeck and Le
Tallec [14]. They were later significantly improved by the addition of a coarse
level; see Dryja and Widlund [15], Le Tallec [33], and Mandel and Brezina [39].
The work in [15], as well as some recent work by Mandel and Dohrmann [40],
concerns additive methods, rather than the more typical hybrid type of BNN
methods, which we adopt in this work.

Unlike for the BNN family, the iterates of FETI methods are discontinuous
across the interface between subdomains; continuity is only achieved upon
convergence of the iteration. The iteration is written in terms of Lagrange
multipliers that enforce the continuity across the interface. FETI and BNN
share many algorithmic components, such as the static condensation of interior
variables and the use of local solvers for both Neumann and Dirichlet problems
on each subdomain. Connections between these two approaches are discussed
by Klawonn and Widlund [31]. Gosselet, Rey and Rixen [26] show that with a
proper initialization for FETI, FETI and BNN methods perform equally well
for a class of problems.

1.2 Notation

Before proceeding, we will introduce some of the notation and conventions
that we will use throughout this dissertation.

We will adopt the following convention for bilinear forms:

• inner products will be denoted by parentheses, as in (·, ·)Γ;

• associated with any square matrix S, we will define the bilinear form
〈·, ·〉S given by 〈u,v〉S = vTSu.

We will use the same notation for finite-element functions and their rep-
resentation in terms of a finite element basis. In the course of a proof, for
instance, u might alternately represent an element of a finite dimensional sub-
space of (H1

0 (Ω))
d

or a vector in R
ndof, with no further warning.
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1.3 Model Problems

The matrices arising from the discretization of elliptic equations or systems
form one of the most studied classes of matrices and one for which a great
number of preconditioners are available. In particular, Balancing Neumann-
Neumann preconditioners for these problems are described in Mandel [38] and
Mandel and Brezina [39].

In this dissertation, we consider instead a class of saddle-point or penal-
ized saddle-point problems. Our main focus will be on the equations of almost-
incompressible linear elasticity with a mixed formulation. In this section, how-
ever, we also introduce the related problems of Stokes equation, compressible
elasticity with pure-displacement formulation, as well as mixed finite element
methods for incompressible elasticity.

1.3.1 Stokes Equations

The steady Stokes equations, which model the steady-state of flows with very
low Reynolds numbers, is expressed in variational terms as follows: given

f ∈ (H−1(Ω))
d

and g ∈ (H1/2(∂Ω)
)d

satisfying∫
∂Ω

g · n̂ = 0, (1.3)

find u ∈ (H1(Ω))
d

and p ∈ L2
0(Ω) such that u = g on ∂Ω and{

νa(u,v) + b(v, p) = 〈f ,v〉 ∀v ∈ (H1
0 (Ω))

d

b(u, q) = 0 ∀q ∈ L2
0(Ω).

(1.4)

Here, Ω is a bounded and connected domain in R
d with a Lipschitz-continuous

boundary ∂Ω, the bilinear forms are defined as

a(u,v) =

∫
Ω

∇u : ∇v =

∫
Ω

d∑
i=1

d∑
j=1

∂ui

∂xj

∂vi

∂xj
,

b(u, p) = −
∫

Ω

p divu,

and the kinematic viscosity ν is a positive parameter.
The existence and uniqueness of the solution for problem (1.4) is well

known; see, e.g., Girault and Raviart [23, Theorem I.5.1]. This result is related
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to the inf-sup stability of the spaces (H1
0 (Ω))

d
and L2

0(Ω), i.e., the inequality

inf
q∈L2

0(Ω)
sup

v∈(H1
0 (Ω))

d

b(v, q)

‖v‖H1‖q‖L2

= β(Ω) > 0.

A discrete counterpart of this inequality plays an important role in the design
of mixed finite-element methods.

Remark 1.1 Even when the compatibility condition (1.3) is violated, problem
(1.4) is still well-posed; in this case the solution presents constant (but not
necessarily zero) divergence.

1.3.2 Linear Elasticity

Let ∂Ω = ∂ΩD + ∂ΩN (the + sign indicates disjoint union). We assume that
an elastic body Ω is subject to a body force f and to a surface force h acting
on ∂ΩN , and that a displacement g is prescribed on ∂ΩD.

We define the Sobolev space H1
∂ΩD

(Ω) = {v ∈ H1(Ω) | v|∂ΩD
= 0}. The

compressible or almost-incompressible linear elasticity problem, in its pure-
displacement formulation, is then of the form: given f ∈ (H−1(Ω))

d
, g ∈

(H1/2(∂ΩD))d and h ∈ (H−1/2(∂ΩN ))d, find u ∈ (H1(Ω))
d

such that u = g on
∂ΩD and

2µ

∫
Ω

ε(u) : ε(v) + λ

∫
Ω

divu divv = 〈F,v〉 ∀v ∈ (H1
∂ΩD

(Ω)
)d
, (1.5)

where

〈F,v〉 = 〈f ,v〉+ 〈h,v|∂ΩN
〉,

εij(u) =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
and

ε(u) : ε(v) =
d∑

i=1

d∑
j=1

εij(u)εij(v).

Here the positive parameters λ and µ are the Lamé constants and they are
related to the Poisson ratio ν and Young’s modulus E by the following formu-
las:

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.
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As the Poisson ratio approaches 0.5 (i.e., µ/λ approaches zero), corre-
sponding to almost-incompressible materials, finite element discretizations of
this pure displacement formulation suffer from locking (see, e.g., [6, 9]). As
a result, the stiffness matrices get increasingly ill-conditioned and the quality
of the discrete solution deteriorates. A well-known remedy is the mixed for-
mulation obtained by the introduction of the pressure p = −λdivu as a new,
additional variable (see, e.g., [10]): given f ∈ (H−1(Ω))

d
, g ∈ (H1/2(∂ΩD))d

and h ∈ (H−1/2(∂ΩN ))d, find u ∈ (H1(Ω))
d

and p ∈ L2(Ω) such that u = g
on ∂ΩD and{

µa(u,v) + b(v, p) = 〈F,v〉 ∀v ∈ H1
∂ΩD

(Ω)

b(u, q) − 1
λ
c(p, q) = 0 ∀q ∈ L2(Ω).

(1.6)

Here
a(u,v) = 2

∫
Ω
ε(u) : ε(v),

c(p, q) =
∫
Ω
pq,

(1.7)

and b(·, ·) and 〈F, ·〉 are defined as before.
When ∂ΩD has positive measure, the existence and uniqueness of the so-

lution to problems (1.5) and (1.6) is guaranteed by the ellipticity of the form
a(·, ·), expressed by Korn’s inequality (see, e.g., [9, Corollary 9.2.22]). We will
also need to consider problems with natural boundary conditions on the entire
border (i.e., ∂ΩN = ∂Ω). In this case, the bilinear form a(·, ·) has a nontrivial
nullspace, comprised by the rigid-body modes (rotations and translations; a
three-dimensional space in R

2 and six-dimensional space in R
3). A solution

exists only when the following compatibility condition is satisfied:

〈F,v〉 = 0 ∀v ∈ ker(a).

An ideally incompressible material has λ = ∞ and is modelled by replacing
1
λ
c(p, q) with 0 in (1.6). The existence and uniqueness results are the same as

above, except for the case ∂ΩD = ∂Ω, when the pressure is defined only up to
an additive constant and a solution exists only when∫

∂Ω

g · n̂ = 0.

Remark 1.2 Existence and uniqueness of the solution are guaranteed with no
compatibility condition, even in the incompressible case, if ∂ΩD has positive
measure and the pressure space is restricted to L2

0(Ω), rather than L2(Ω); cf.
Remark 1.1.
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The following useful result shows the equivalence between the Stokes and
mixed elasticity bilinear forms.

Lemma 1.3 There exists a constant c > 0 such that

c‖∇u‖L2(Ω) ≤ ‖ε(u)‖L2(Ω) ≤ ‖∇u‖L2(Ω), ∀u ∈ (H1(Ω))d, u ⊥ ker(a).

Here ‖ε(u)‖2
L2(Ω) =

∫
Ω
ε(u) : ε(u)dx.

The requirement u ⊥ ker(a) is not necessary for the upper bound.

Proof The lower bound is a version of Korn’s inequality (see Klawonn and
Widlund [32, Lemma 4]). The upper bound follows from elementary estimates:

d∑
i=1

d∑
j=1

1

4

(
∂ui

∂xj
+
∂uj

∂xi

)2

≤
d∑

i=1

d∑
j=1

1

2

((
∂ui

∂xj

)2

+

(
∂uj

∂xi

)2
)

=

d∑
i=1

d∑
j=1

(
∂ui

∂xj

)2

.

�

1.3.3 The Incompressible Limit

The focus of this dissertation is on problems of almost-incompressible elasticity.
We will often explicitly use the fact that λ is finite in proofs and algorithms.
We feel that this approach is justifiable and does not limit the application of
the methods described here, for a variety of reasons.

The algorithm we propose is built of components that are well defined in
the incompressible limit. Only minimal modifications are required to handle
λ = ∞ and the theory can accommodate the ideally incompressible problem,
as well; cf. Pavarino and Widlund [46] on the related incompressible Stokes
problem.

Real materials are somewhat compressible; perfectly incompressible mate-
rials are just a mathematical idealization.

Most important, the preconditioners developed for almost-incompressible
problems can be used to precondition the matrix of the perfectly incompress-
ible problem (and vice-versa), since the two problems are spectrally equivalent;
see Pavarino and Widlund [45, Section 4].
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1.4 Some Solution Methods for Saddle-Point

Problems

Before we proceed with the presentation of our method, we briefly discuss
some other approaches for the solution of saddle-point problems; we will not
provide an exhaustive discussion.

The matrices that concern us, arising from Stokes, penalized Stokes and
(almost-)incompressible elasticity, are of the form[

A BT

B −C
]
,

where the block C might be zero (for incompressible problems). In Uzawa’s
algorithms, the (1, 1)-block A is eliminated, creating a reduced system for the
pressure unknowns only, with a matrix C +BTA−1B. An iterative procedure
based on the gradient method or conjugate directions is then applied. The
multiplication by A−1 is avoided in inexact Uzawa’s methods, with a precon-
ditioner applied instead. Used in conjuction with penalty methods, Uzawa’s
algorithm gives rise to the Augmented Lagrangian method; see, e.g., Fortin
and Glowinski [21].

Bramble and Pasciak [8] introduced an inner-product that transforms the
indefinite problem into a positive definite one. Conjugate gradients can then
be applied.

Block preconditioners are considered by Klawonn in [27, 28]. It is shown
that the condition number of the preconditioned system is bounded indepen-
dently of discretization and penalty parameters, provided that the precondi-
tioners of A and C are of a sufficiently good quality. Other works on block
preconditioners include Elman and Silvester [16], Elman, Silvester and Wathen
[17], Pavarino [43, 44], Rusten and Winther [50], and Silvester and Wathen [51].

Klawonn and Pavarino [29] introduced an overlapping Schwarz method, in
which the local problems are restrictions of the original saddle point problem to
the overlapping subdomains and the coarse problem is a saddle point problem
associated with a coarse grid given by the subdomains. An analysis of this
method is still missing. See also [30]. Other overlapping Schwarz methods
have been considered by Fischer [18], Fischer, Miller and Tufo [19], Gervasio
[22], and Rønquist [49].

Bramble and Pasciak [7] introduced an iterative substructuring method for
the Stokes equation. The substructuring strategy they adopted is the same as
our algorithm (cf. Chapter 3), but they suggested the use of a simpler block-

10



diagonal preconditioner to precondition the resulting Schur complement prob-
lem. Pavarino and Widlund [46] presented a Balancing Neumann-Neumann
preconditioner for the incompressible Stokes equation, which can be viewed
as the starting point for our current work. Li [35, 36] designed and analyzed
a dual-primal FETI preconditioner for Stokes equation. His bounds for the
condition number of the preconditioned operator are similar to ours and de-
pend polylogarithmically on the size of the local problems. They also depend
on the inf-sup constants of the finite element discretization and of the coarse
space. Other iterative substructuring methods for Stokes have been studied
by Ainsworth and Sherwin [1], Casarin [12], Fischer and Rønquist [20], Le
Tallec and Patra [34], Marini and Quarteroni [41], Pasciak [42], Pavarino and
Widlund [45], Quarteroni [47], and Rønquist [48].

1.5 Structure of this Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we
discuss the discretization of saddle-point problems by mixed finite elements
and review some main results concerning inf-sup stability. In Chapter 3, we
discuss the partition of the mixed space into interior and interface subspaces
and define the Schur complement problem and a saddle-point extension oper-
ator necessary for the iterative substructuring processing. We then present in
detail our Balancing Neumann-Neumann algorithm for saddle-point problems
in Chapter 4, provide a full analysis of its spectral bounds in Chapter 5, and
extend the algorithm to the case of heterogeneous coefficients with jumps in
Chapter 6. Some implementation issues are discussed in Chapter 7, most im-
portantly an implementation of our algorithm that relies only on the solution
of positive definite subproblems. In Chapter 8, we extend our algorithm to
handle the combined use of mixed and displacement-only formulations in dif-
ferent subregions of the domain and in Chapter 9 we propose a preconditioner
for the continuous pressure case. Finally, in Chapter 10, we present a large set
of numerical experiments that supports our theoretical results and illustrates
the applicability of our methods.

11



Chapter 2

Mixed Finite Element
Discretization

2.1 Continuous Formulation of Saddle-Point

Problems

We now discuss the discretization of the problems introduced in Section 1.3
by mixed finite element methods and present some key results on existence,
uniqueness, and stability of the solution. We first discuss the incompressible
case and then examine the almost-incompressible case as a penalized problem.

Let V and U be Hilbert spaces, a(·, ·) a continuous bilinear form on the
space V ×V and b(·, ·) a continuous bilinear form on V × U . We define the
linear transformations A : V → V′, B : V → U ′ and BT : U → V′ by

〈Au,v〉 = a(u,v) ∀ u,v ∈ V,

〈Bu, p〉 = b(u, p) ∀ u ∈ V, p ∈ U,〈
u, BTp

〉
= b(u, p) ∀ u ∈ V, p ∈ U.

Then, given f ∈ V′ and g ∈ U ′, the problem{
a(u,v) + b(v, p) = 〈f ,v〉 ∀v ∈ V

b(u, q) = 〈g, q〉 ∀q ∈ U (2.1)

can be expressed as {
Au + BTp = f in V′

Bu = g in U ′.

12



When V and U are finite dimensional, we have the matrix representation[
A BT

B 0

] [
u
p

]
=

[
f
g

]
.

In the theory of mixed methods, a parameter of great importance is the
inf-sup condition defined by

β = inf
q∈U

sup
v∈V

b(v, q)

‖v‖V‖q‖U

> 0. (2.2)

This condition is also known as LBB condition, named after Ladyzhenskaya,
Babuška, and Brezzi. For the discretized problem, we will be interested in
pairs of spaces for which the inf-sup constant β is uniformly bounded away
from zero for any mesh size.

We have the following result (see, e.g., [6, Theorem III.4.3]).

Theorem 2.1 If the bilinear form a(·, ·) is elliptic on kerB, i.e.,

a(v,v) ≥ α‖v‖2
V ∀ v ∈ kerB

and the bilinear form b(·, ·) satisfies the inf-sup condition (2.2), then for any
f ∈ V′ and g ∈ U ′ the saddle point problem (2.1) has a unique solution, which
satisfies the following stability estimates:

‖u‖V ≤ 1

α
‖f‖V′ +

1

β

(
1 +

‖a‖
α

)
‖g‖U ′,

‖p‖U ≤ 1

β

(
1 +

‖a‖
α

)
‖f‖V′ +

‖a‖
β2

(
1 +

‖a‖
α

)
‖g‖U ′,

where ‖a‖ = sup
v∈V

a(v,v)

‖v‖2
V

.

Almost-incompressible problems can be viewed as penalized versions of
(2.1) and take the form{

a(u,v) + b(v, p) = 〈f ,v〉 ∀v ∈ V

b(u, q) − t2c(p, q) = 〈g, q〉 ∀q ∈ U,
(2.3)

where t is a small parameter and c(·, ·) is a continuous bilinear form on U ×U .
When considering almost-incompressible problems, we can use the following
result (see [6, Theorem III.4.11]).
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Theorem 2.2 Suppose that the hypotheses of Theorem 2.1 are satisfied. In
addition, assume c(·, ·) is coercive. Then, for any f ∈ V′ and g ∈ U ′, problem
(2.3) has a unique solution. Moreover, there is a constant C such that

‖u‖V + ‖p‖U ≤ C(‖f‖V′ + ‖g‖U ′) ∀ f ∈ V′, g ∈ U ′, 0 ≤ t ≤ 1.

What is essential in the theorem above is that the solution of the penal-
ized problem is bounded uniformly on t. In problems of mixed almost-incom-
pressible elasticity, the small parameter t will be replaced by the ratio µ/λ.

In Lemma 2.10, we will derive explicit bounds for the stability estimate
above, in the case of finite-dimensional U and V.

2.2 Mixed Finite Elements

Let h be the characteristic size of our finite element triangulation τh. Among
the many choices of mixed finite elements available for our class of saddle-point
problems, we consider the following:

• Q2 − P1

The displacement space is composed of continuous, piecewise bi-quadrat-
ic (or tri-quadratic) functions, while the pressure space is discontinuous
and consists of piecewise linear functions. This pair satisfies the inf-sup
condition uniformly in h; see [10, Example VI.3.9].

• Taylor-Hood and Broken Taylor-Hood

Taylor-Hood elements for quadrilaterals are the pair Q2 − Q1: the dis-
placement space is composed of continuous, piecewise bi-quadratic func-
tions, while the pressure space consists of continuous bilinear functions.
This pair also satisfies the inf-sup condition uniformly on h; see [23,
Corollary II.4.1].

As we show in Chapter 3, our main algorithm requires that the char-
acteristic function of each subdomain, which is obviously discontinuous,
be part of the pressure space. To that end, we drop the continuity re-
quirement only across the interface between subdomains. We will call
the resulting space the broken Taylor-Hood finite element space. It is
shown in [11] that this space is inf-sup stable as long as the pressure
space is restricted to the functions that have zero average on every sub-
domain. We will use this broken space in Chapter 9, when considering
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an extension of our preconditioner to problems with continuous pressure
discretizations.

We note that while finite element methods based on hexahedra and quadri-
laterals enjoy popularity, our theory applies equally well to stable mixed meth-
ods based on tetrahedra or triangles. Spectral elements Qn −Qn−2 could also
be used; the methods and the theory discussed in this dissertation can be
easily extended to that case; see [46], [24].

2.3 Some auxiliary results

The following result provides a useful characterization of the inf-sup constant
as the smallest eigenvalue of a generalized eigenvalue problem. We consider
the Stokes matrix [

A BT

B 0

]
and note that |u|2H1 = uTAu. Let C be the mass matrix for the pressures,
i.e., ‖p‖2

L2 = pTCp. If we redefine the inf-sup constant using the H1-seminorm
instead of the H1-norm for the displacements (due to Friedrichs inequality,
they are equivalent), i.e.,

β = inf
q∈U

sup
v∈V

b(v, q)

|v|H1‖q‖L2

,

we have the following result.

Lemma 2.3 β2 = λmin

(
C−1(BA−1BT )

)
.

Proof We have

sup
v∈V

b(v, q)2

|v|2H1

= sup
v∈V

(qTBv)2

vTAv

= sup
ṽ∈V

(
(A−1/2BT q)T ṽ

)2
ṽT ṽ

= ‖A−1/2BT q‖2
l2

= qTBA−1BT q

and therefore

β2 = inf
q∈U

qTBA−1BT q

qTCq
,
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which completes the proof. �

When dealing with saddle-point problems, we will often find it convenient
to restrict our attention to a subspace of the solution space on which the second
equation is satisfied. This motivates the definition of what we call the benign
subspace.

Definition 2.4 Associated with the problem{
µa(u,v) + b(v, p) = 〈f ,v〉 ∀v ∈ V

b(u, q) − 1
λ
c(p, q) = 0 ∀q ∈ U,

we define the benign subspace

(V × U)B =

{[
u
p

]
∈ V × U

∣∣∣∣ b(u, q) =
1

λ
c(p, q) ∀q ∈ U

}
.

When dealing with incompressible problems, the second equation does not in-
volve the pressures and we define

VB = {v ∈ V | b(u, q) = 0 ∀q ∈ U}.
We now prove a series of results that later will be necessary for the analysis

of our algorithm. We start with the observation that restricted to the space of
benign functions, the saddle-point bilinear form is actually positive definite.

Lemma 2.5 If K is a block matrix of the form K =

[
µA BT

B − 1
λ
C

]
, where C

is symmetric and

[
u
p

]
and

[
v
q

]
are benign, i.e., Bu = 1

λ
Cp and Bv = 1

λ
Cq,

then [
u
p

]T

K

[
v
q

]
= µuTAv +

1

λ
pTCq.

Proof Indeed,[
u
p

]T

K

[
v
q

]
= µuTAv + uTBT q + pTBv − 1

λ
pTCq

= µuTAv + (Bu)T q + pT (Bv)− 1

λ
pTCq

= µuTAv +
1

λ
pTCq
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The following result shows that the saddle-point problem can be reformu-
lated as a positive definite one.

Lemma 2.6 Let A, B and C be as in the previous lemma and assume also

that C is positive definite. Let (V × U)B =

{[
u
p

]
∈ V × U

∣∣∣∣ Bu =
1

λ
Cp

}
,

a(u,v) = vTAu, b(u, p) = pTBu, and c(p, q) = pTCq. Then, the following
two problems are equivalent:

• find

[
u
p

]
∈ V × U such that{

µa(u,v) + b(v, p) = f(v)

b(u, q) − 1
λ
c(p, q) = 0

∀
[

v
q

]
∈ V × U (2.4)

• find

[
u
p

]
∈ (V × U)B such that

µa(u,v) +
1

λ
c(p, q) = f(v) ∀

[
v
q

]
∈ (V × U)B. (2.5)

Proof By using Lemma 2.5, it is evident that any solution to (2.4) also
solves (2.5).

Now assume that

[
u
p

]
solves (2.5). For an arbitrary

[
v
q

]
∈ V × U , let

q̃ = λC−1Bv. Then

[
v
q̃

]
∈ (V × U)B and again by Lemma 2.5,{

µa(u,v) + b(v, p) = f(v)

b(u, q̃) − 1
λ
c(p, q̃) = 0.

We note that the second equation above is also satisfied if q̃ is replaced by q,

since

[
u
p

]
∈ (V × U)B, and that the first equation does not involve q̃. We

conclude that{
µa(u,v) + b(v, p) = f(v)

b(u, q) − 1
λ
c(p, q) = 0

∀
[

v
q

]
∈ V × U.

�
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Remark 2.7 A similar result can be proved with λ = ∞ if V × U is inf-sup
stable.

Remark 2.8 There are no assumptions on A. In particular, the result still
holds when A is singular. This will allow us to apply this result to local Neu-
mann problems as in equation (4.6).

We will need the following two results, which give an explicit formula for
the solution of a saddle point problem with a penalty term and a stability
result for its solution. We note that the result in Lemma 2.10 is of the same
form as the ones in Theorems 2.1 and 2.2, but it is sharper, in the sense that
it reveals the interplay of the inf-sup constant β and the ratio µ/λ.

Lemma 2.9 Let A and C be positive definite matrices and, if λ = ∞, let B
have full row rank. Then,[

µA BT

B − 1
λ
C

]−1

=

[
1
µ
(A−1 − A−1BTS−1BA−1) A−1BTS−1

S−1BA−1 −µS−1

]
, (2.6)

where S = BA−1BT +
µ

λ
C.

Proof The proof follows from a direct computation. �

Lemma 2.10 Consider the discrete saddle point problem[
µA BT

B − 1
λ
C

] [
u
p

]
=

[
f
g

]
,

where A and C are positive definite and, if λ = ∞, B has full row rank. Let the
positive scalar α and the positive-definite matrix ∆ satisfy vTAv ≤ αvT∆v ∀v
and let β ≥ 0 be the inf-sup constant such that

pTB∆−1BTp ≥ β2pTCp ∀p (2.7)

(cf. Lemma 2.3). Then,

‖u‖A ≤ 1

µ
‖f‖A−1 +

1√
β2

α
+ µ

λ

‖g‖C−1 and (2.8)

‖p‖C ≤ 1√
β2

α
+ µ

λ

‖f‖A−1 +
µ

β2

α
+ µ

λ

‖g‖C−1. (2.9)
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Remark 2.11 In our mixed elasticity problem, A will essentially be some
discretization of the bilinear form a(·, ·). Nevertheless, the inf-sup constant is

usually defined using the (H1(Ω))
d
-norm for the displacements. This is the

reason for introducing ∆, which can be a discretization of the (H1(Ω))
d
-inner-

product.

Proof [Lemma 2.10] First note that

pTBA−1BTp ≥ β2

α
pTCp ∀p. (2.10)

By the explicit formula (2.6) for the inverse of an invertible saddle point
problem, we have

u =
1

µ
(A−1 − A−1BTS−1BA−1)f + A−1BTS−1g, (2.11)

p = S−1BA−1f − µS−1g, (2.12)

and from (2.10), we have

S = BA−1BT +
µ

λ
C ≥

(
β2

α
+
µ

λ

)
C.

(Here and in the following an inequality between matrices means an inequal-
ity between the associated quadratic forms.) We note that ‖u‖A = ‖A1/2u‖l2

and that ‖p‖C = ‖C1/2p‖l2; moreover ‖f‖A−1 = ‖A−1/2f‖l2 and ‖g‖C−1 =
‖C−1/2g‖l2 are the matrix representations of the dual norms of f and g, re-
spectively. Indeed,

sup
v

(fTv)2

vTAv
= sup

w

(fTA−1/2w)2

wTw
=

(fTA−1/2A−1/2f)2

fTA−1f
= fTA−1f ,

and similarly for ‖g‖C−1.
By using (2.11), the A−norm of the displacement component is estimated

by

‖A1/2u‖l2 ≤ 1

µ
‖(I − A−1/2BTS−1BA−1/2)A−1/2f‖l2

+ ‖A−1/2BTS−1g‖l2.

(2.13)

The first term in (2.13) is bounded by 1
µ
‖A−1/2f‖l2 because, from S−1 ≤

(BA−1BT )−1, it follows that

0 ≤ A−1/2BTS−1BA−1/2 ≤ A−1/2BT (BA−1BT )−1BA−1/2 ≤ I,
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since the next to last expression is an orthogonal projection. The square of
the second term in (2.13) is estimated similarly by

‖A−1/2BTS−1g‖2
l2 = gTS−1BA−1BTS−1g ≤ gTS−1g

≤ 1
β2

α
+ µ

λ

gTC−1g =
1

β2

α
+ µ

λ

‖g‖2
C−1,

and (2.8) follows.
From (2.12), the C−norm of the pressure component is estimated by

‖C1/2p‖l2 ≤ ‖C1/2S−1BA−1f‖l2 + µ‖C1/2S−1g‖l2. (2.14)

The first term on the right in (2.14) is bounded by
1√

β2

α
+ µ

λ

‖A−1/2f‖l2 because

‖C1/2S−1BA−1f‖2
l2

= fTA−1BTS−1CS−1BA−1f

≤ 1
β2

α
+ µ

λ

fTA−1BTS−1BA−1f

≤ 1
β2

α
+ µ

λ

fTA−1BT (BA−1BT )−1BA−1f

≤ 1
β2

α
+ µ

λ

fTA−1f ;

we have again used that the matrix A−1/2BT (BA−1BT )−1BA−1/2 is an or-
thogonal projection. The square of the second term on the right in (2.14) is
estimated by

µ2 ‖C1/2S−1g‖2
l2 = µ2 gTS−1CS−1g

≤ µ2

β2

α
+ µ

λ

gTS−1g

≤
( µ

β2

α
+ µ

λ

)2

gTC−1g,

and (2.9) follows. �
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Chapter 3

Substructuring

In this chapter, we carry out the substructuring of the problems described in
Section 1.3, both on the continuous and discrete level. The basic idea is as
follows: associated with a nonoverlapping partition of the domain Ω into N
subdomains,

Ω =
N⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j,

we define a decomposition of the solution space W into a direct sum of N + 1
subspaces, WΓ and Wi, i = 1, . . . , N , where the elements of Wi have compact
support in Ωi. This decomposition is done so as to allow the solution of the
original problem to be divided into two parts: we first solve N decoupled local
problems, one on each subdomain, and then solve a global problem in the
space WΓ (which is usually much smaller than W).

For positive definite problems, such as Poisson’s equation or the pure dis-
placement formulation of elasticity, the definition of these subspaces is closely
related to the geometry of the decomposition. We define Γ as the interface be-

tween the subdomains, i.e., Γ =
(⋃N

i=1 ∂Ωi

)
\∂Ω (see Figure 3.1), and let WΓ

be the space of the traces on Γ of functions of W (or, more exactly, extensions
of these traces); the spaces Wi contain the functions which are supported in
Ωi.

For the saddle-point problems we are interested in, the decomposition is
more involved. Nevertheless, we can borrow much of the notation from the
positive definite case and we will refer to the subspace WI =

⊕N
i=1 Wi as the

interior subspace and to WΓ as the interface subspace (even though the latter
will include pressure functions that are not directly related to Γ.)

In the sequel, we will assume that the subdomains define a quadrilateral
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Γ 

Ω
i
 

Figure 3.1: Subdomains Ωi and interface Γ.

(or hexahedral) finite element mesh τH of characteristic size H , which is shape
regular but not necessarily quasi uniform, and that this coarse triangulation
is further refined into a fine quadrilateral (or hexahedral) finite element tri-
angulation τh of characteristic size h. We note that this requirement that
the subdomains be quadrilateral (or hexahedral) can be relaxed. The only
point where our algorithm actually relies on this fact is in the definition of
the enrichment of the coarse space, but alternative definitions could be de-
vised. In particular, an enrichment based on bubble functions for the edges
(or faces), similar to V1

H (see Section 4.1), could easily be defined for more
general subdomain geometries.

3.1 Substructuring in Variational Form

We partition our mixed finite element space W = V×U ⊂ (H1
0 (Ω))

d×L2(Ω)
into a direct sum of subspaces:

W = WI ⊕WΓ =

(
N⊕

i=1

Vi × U0,i

)
⊕ (VΓ × UΓ) . (3.1)

Here Vi = V ∩ (H1
0 (Ωi))

d
, U0,i = U ∩ L2

0(Ωi) and UΓ =
⊕N

i=1 UΓ,i, where
UΓ,i = span{χΩi

}. We also define Ui = U0,i ⊕ UΓ,i = U |Ωi
. We note that the

requirement that U be discontinuous across the interface is necessary for UΓ

to be a subspace of U . At times, we will regard the local spaces Vi, Ui and
UΓ,i as subspaces of V, U and UΓ, respectively, by extending the functions by
zero. The space VΓ of saddle-point harmonic extensions is defined below.
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We define the saddle-point harmonic extension operator

SH : V|Γ → V × UI

uΓ 7→ SHuΓ =

[ SHuuΓ

SHpuΓ

]
=

 [ SHuIuΓ

uΓ

]
SHpuΓ

 ,
where UI =

⊕N
i=1 U0,i and SHu, SHuI and SHp act on the following spaces:

SHu : V|Γ → V,

SHuI : V|Γ → VI and

SHp : V|Γ → UI .

SHuΓ is the solution of the problem: find SHuuΓ ∈ V and SHpuΓ ∈ UI such
that SHuuΓ|Γ = uΓ and, for i = 1, . . . , N ,{

µai(SHuuΓ,v) + bi(v,SHpuΓ) = 0 ∀v ∈ Vi

bi(SHuuΓ, q) − 1
λ
ci(SHpuΓ, q) = 0 ∀q ∈ U0,i.

(3.2)

Here ai : V|Ωi
×V|Ωi

→ R is defined by replacing Ω with Ωi in the definition
of a(·, ·) (see Section 1.3). At times, we will use ai(u,v), with u,v ∈ V, in
which case we actually mean ai(u|Ωi

,v|Ωi
). The same applies to bi(·, ·) and

ci(·, ·).
We point out that each problem (3.2) has a unique solution for an arbi-

trary uΓ, even in the incompressible case when λ = ∞ (cf. Remark 1.2). If
we would have used Ui instead of U0,i in the definition of problem (3.2), we
would have a well-defined extension operator only for finite λ and we should
expect ill-conditioning when approaching the incompressible limit. This is the
reason for our choice of decomposition (3.1), instead of treating all pressures
as interior variables. In fact, we will return later to this idea of eliminating
all the pressure variables. That will lead to a very practical positive definite
implementation of our algorithm; see Section 7.2. We regard this approach as
just an implementation artifact, though, and believe that the natural way to
understand and analyze our method is by using the decomposition (3.1).

We define the space VΓ of saddle-point harmonic extensions as VΓ =
SHu(V|Γ). We note that the functions of VΓ are defined in the entire do-
main and should not be confused with V|Γ, the functions of which are defined
only on Γ.
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We define an inner product on the space of interface displacements VΓ by

s(uΓ,vΓ) = µa(SHuuΓ,SHuvΓ) +
1

λ
c(SHpuΓ,SHpvΓ). (3.3)

Analogously, we define local interface inner products by

si(uΓ,i,vΓ,i) = µai(SHu
i uΓ,i,SHu

i vΓ,i) +
1

λ
ci(SHp

i uΓ,i,SHp
i vΓ,i),

where SHiuΓ,i =

[ SHu
i uΓ,i

SHp
i uΓ,i

]
is defined in the same way as in (3.2).

We also recall the definition of the discrete harmonic extension operator H:
given uΓ ∈ V|Γ, we define HuΓ ∈ V to satisfy HuΓ|Γ = uΓ and∫

Ωi

∇HuΓ · ∇v = 0 ∀v ∈ Vi, i = 1, . . . , N.

The following comparison of the energy of the discrete saddle-point harmonic
extension operator and the discrete harmonic extensions H is a generalization
of the analogous result in the Stokes case (see [7], [23]). In the proof below,
we make use of the compressibility of the material (i.e., we assume λ <∞).

Lemma 3.1 Given uΓ ∈ V|Γ, let HuΓ be its discrete harmonic extension.
For any uΓ ∈ V|Γ such that SHuuΓ ⊥ ker(ai), we have(

2(1 + σ)2
)−1

si(uΓ,uΓ) ≤ µ ‖∇HuΓ‖2
L2(Ωi)

≤ Csi(uΓ,uΓ)

where σ =
√

d
β2

2
+ µ

λ

, β is the inf-sup constant of the local mixed finite element

space Vi × U0,i and the constant C does not depend on uΓ.
The hypothesis that SHuΓ ⊥ ker(ai) is not necessary for the lower bound.

Proof The second inequality is an easy consequence of the minimal property
of the discrete harmonic extension and the lower bound of Lemma 1.3. Indeed,

µ ‖∇HuΓ‖2
L2(Ωi)

≤ µ ‖∇SHuΓ‖2
L2(Ωi)

≤ Cµai(SHuΓ,SHuΓ)

≤ Csi(uΓ,uΓ).

In order to prove the first inequality, we choose v = (SHuΓ −HuΓ)|Ωi
in

(3.2) and obtain

µai(SHuΓ,SHuΓ) + bi(SHuΓ,SHpuΓ)

= µai(SHuΓ,HuΓ) + bi(HuΓ,SHpuΓ).
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By applying Cauchy-Schwarz and using the facts that bi(SHuΓ,SHpuΓ) =
1
λ
ci(SHpuΓ,SHpuΓ) and that

(divu, divu)L2(Ωi) =
∫
Ωi

(∑d
i=1

∂ui

∂xi

)2

≤ d
∫
Ωi

∑d
i=1

(
∂ui

∂xi

)2

≤ d
∫
Ωi

∑d
i=1

∑d
j=1

(
1
2

(
∂ui

∂xj
+

∂uj

∂xi

))2

= d
2
ai(u,u),

(3.4)

we obtain

µai(SHuΓ,SHuΓ) + 1
λ
ci(SHpuΓ,SHpuΓ)

≤
(
µai(SHuΓ,SHuΓ)1/2 +

√
d
2
‖SHpuΓ‖L2(Ωi)

)
ai(HuΓ,HuΓ)1/2.

(3.5)

We estimate ‖SHpuΓ‖L2(Ωi) by applying Lemma 2.10 to the saddle-point prob-

lem with homogeneous boundary conditions satisfied by

[ SHuΓ −HuΓ

SHpuΓ

]
.

From (3.2), we find that on each Ωi{
µai(SHuΓ −HuΓ,v) + bi(v,SHpuΓ) = −µai(HuΓ,v) ∀v ∈ Vi

bi(SHu−HuΓ, q) − 1
λ
ci(SHpuΓ, q) = −bi(HuΓ, q) ∀q ∈ U0,i.

Taking into account that ai(u,u) ≤ 2‖∇u‖L2(Ωi) (cf. Lemma 1.3), Lemma 2.10
yields

‖SHpuΓ‖L2(Ωi) ≤ 1√
β2

2
+ µ

λ

sup
v∈Vi

µai(HuΓ,v)

ai(v,v)1/2
+

µ
β2

2
+ µ

λ

sup
q∈U0,i

bi(HuΓ, q)

‖q‖L2(Ωi)

,

and again by Cauchy-Schwarz and (3.4),

‖SHpuΓ‖L2(Ωi) ≤
( 1√

β2

2
+ µ

λ

+

√
d/2

β2

2
+ µ

λ

)
µai(HuΓ,HuΓ)1/2.

It follows from (3.5) that

µai(SHuΓ,SHuΓ) +
1

λ
ci(SHpuΓ,SHpuΓ)

≤ µai(SHuΓ,SHuΓ)1/2ai(HuΓ,HuΓ)1/2 +

(
σ√
2

+
σ2

2

)
µai(HuΓ,HuΓ)

≤ 1

2
µai(SHuΓ,SHuΓ) +

(
1

2
+

σ√
2

+
σ2

2

)
µai(HuΓ,HuΓ)
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and therefore

µai(SHuΓ,SHuΓ) + 1/λ ci(SHpuΓ,SHpuΓ)

≤ (1 + σ)2µai(HuΓ,HuΓ)

= 2(1 + σ)2µ ‖ε (HuΓ)‖2
L2(Ωi)

.

We complete the proof by using the upper bound of Lemma 1.3. �

3.2 Substructuring in Matrix Form

In order to eliminate the interior degrees of freedom, we reorder the vector of
unknowns as 

uI

pI

uΓ

pΓ


interior displacements,
interior pressures with zero average,
interface displacements, and
constant pressures in each Ωi.

(3.6)

Then, after using the same permutation, the discrete system matrix can be
written as

 KII KT
ΓI

KΓI KΓΓ

 =


µAII BT

II µAIΓ 0

BII − 1
λ
CII BIΓ 0

µAΓI BT
IΓ µAΓΓ BT

ΓΓ

0 0 BΓΓ − 1
λ
CΓΓ

 ,

where the zero blocks are due to the interior displacements having zero flux
across the subdomain boundaries and the interior pressures having a zero
average.

Eliminating the interior unknowns uI and pI by static condensation, we
obtain the saddle-point Schur complement system

S

[
uΓ

pΓ

]
=

[
b̃Γ

0

]
, (3.7)

26



where

S = KΓΓ −KΓIK
−1
II K

T
ΓI

=

[
µAΓΓ BT

ΓΓ

BΓΓ − 1
λ
CΓΓ

]

−
[
µAΓI BT

IΓ

0 0

][
µAII BT

II

BII − 1
λ
CII

]−1 [
µAIΓ 0

BIΓ 0

]

=

[
SΓ BT

ΓΓ

BΓΓ − 1
λ
CΓΓ

]
,

(3.8)

and

[
b̃Γ

0

]
=

[
bΓ

0

]
−
[
µAΓI BT

IΓ

0 0

][
µAII BT

II

BII − 1
λ
CII

]−1 [
bI

0

]
.

By using a second permutation that reorders the interior displacements and
pressures subdomain by subdomain, we find thatK−1

II represents the solution of
N decoupled saddle-point problems, one for each subdomain and all uniquely
solvable, with Dirichlet data given on ∂Ωi :

K−1
II =

 K
(1)
II

−1
0

. . .

0 K
(N)
II

−1

 .

The Schur complement S does not need to be explicitly assembled since
only its action Sw on a vector w is needed in a Krylov iteration. This operation
essentially only requires the action of K−1

II on a vector, i.e., the solution of N
decoupled saddle-point problems. In other words, the action of S is computed
by subassembling the actions of the subdomain Schur complements S(i) defined
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for Ωi by

S(i) = K
(i)
ΓΓ −K

(i)
ΓI (K

(i)
II )−1K

(i)
ΓI

T

=

 µA
(i)
ΓΓ B

(i)
ΓΓ

T

B
(i)
ΓΓ − 1

λ
C

(i)
ΓΓ


−
 µA

(i)
ΓI B

(i)
IΓ

T

0 0

 µA
(i)
II B

(i)
II

T

B
(i)
II − 1

λ
C

(i)
II

−1 [
µA

(i)
IΓ 0

B
(i)
IΓ 0

]

=

 S
(i)
Γ B

(i)
ΓΓ

T

B
(i)
ΓΓ − 1

λ
C

(i)
ΓΓ

 .

(3.9)

Once

[
uΓ

pΓ

]
is known,

[
uI

pI

]
can be found by back substitution:

[
uI

pI

]
=

[
µAII BT

II

BII − 1
λ
CII

]−1([
bI

0

]
−
[
µAIΓ 0
BIΓ 0

] [
uΓ

pΓ

])
.

The following lemma and its corollary provide the matricial counterpart of
the inner-product s(·, ·) defined in (3.3).

Lemma 3.2 For uΓ ∈ V|Γ, we have

si(uΓ,vΓ) = u
(i)
Γ

T
S

(i)
Γ v

(i)
Γ .

Proof The definition of SH in equation (3.2) can be translated to matrix
notation as follows:

 µA
(i)
II B

(i)
II

T
µA

(i)
IΓ

B
(i)
II − 1

λ
C

(i)
II B

(i)
IΓ



SHuI

i uΓ

SHp
i uΓ

u
(i)
Γ

 =

[
0
0

]
. (3.10)

Therefore we have

si(uΓ,vΓ) = µai(SHuuΓ,SHuvΓ) +
1

λ
ci(SHpuΓ,SHpvΓ)
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= SHu
i uΓ

T

[
µA

(i)
II µA

(i)
IΓ

µA
(i)
ΓI µA

(i)
ΓΓ

]
SHu

i vΓ +
1

λ
SHp

i uΓ
TC

(i)
II SHp

i vΓ

= SHu
i uΓ

T

[
µA

(i)
II µA

(i)
IΓ

µA
(i)
ΓI µA

(i)
ΓΓ

]
SHu

i vΓ − 1

λ
SHp

i uΓ
TC

(i)
II SHp

i vΓ

+ SHu
i uΓ

T

 B
(i)
II

T

B
(i)
IΓ

T

SHp
i vΓ + SHp

i uΓ
T
[
B

(i)
II B

(i)
IΓ

]
SHu

i vΓ

=

[
SHu

i uΓ

SHp
i uΓ

]T


µA

(i)
II µA

(i)
IΓ B

(i)
II

T

µA
(i)
ΓI µA

(i)
ΓΓ B

(i)
IΓ

T

B
(i)
II B

(i)
IΓ − 1

λ
C

(i)
II


[
SHu

i vΓ

SHp
i vΓ

]

=


SHuI

i uΓ

SHp
i uΓ

u
(i)
Γ


T 

µA
(i)
II B

(i)
II

T
µA

(i)
IΓ

B
(i)
II − 1

λ
C

(i)
II B

(i)
IΓ

µA
(i)
ΓI B

(i)
IΓ

T
µA

(i)
ΓΓ



SHuI

i vΓ

SHp
i vΓ

v
(i)
Γ

 ,
where we have used the following easy consequences of (3.10):

SHu
i uΓ

T

 B
(i)
II

T

B
(i)
IΓ

T

 = 1
λ
SHp

i uΓ
T
C

(i)
II and

[
B

(i)
II B

(i)
IΓ

]
SHu

i vΓ = 1
λ
C

(i)
II SHp

i vΓ.

(3.11)

The proof is now completed by using the identity
SHuI

i uΓ

SHp
i uΓ

u
(i)
Γ

 =


−
 µA

(i)
II B

(i)
II

T

B
(i)
II − 1

λ
C

(i)
II

−1 [
µA

(i)
IΓ

B
(i)
IΓ

]

I

u
(i)
Γ ,

which is easily derived from (3.10), and a similar expression for vΓ. �

Corollary 3.3 For uΓ ∈ V|Γ, we have

s(uΓ,vΓ) = uT
ΓSΓvΓ.
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Chapter 4

Balancing Neumann–Neumann
Preconditioners

We will solve the saddle-point Schur complement problem

S

[
uΓ

pΓ

]
=

[
SΓ BT

ΓΓ

BΓΓ − 1
λ
CΓΓ

] [
uΓ

pΓ

]
=

[
b̃Γ

0

]
(4.1)

by a preconditioned Krylov space method such as GMRES or PCG. The lat-
ter can be applied to this indefinite problem because we will start and keep
the iterates in the subspace of benign functions (see Definition 2.4), on which
the preconditioned operator T , defined below, is positive definite (see Theo-
rem 5.4).

The matrix form of the preconditioner is

Q = QH + (I −QHS)
N∑

i=1

Qi(I − SQH),

where the coarse operator QH and local operators Qi are defined below. The
preconditioned operator — usually referred to as the Schwarz operator — is
then

T = QS = TH + (I − TH)
N∑

i=1

Ti(I − TH),

where TH = QHS and Ti = QiS. We note that Q can also be written as
a three-step preconditioner as in [46]. For simplicity, we will use the same
symbol (for example vΓ) for both the interface vector and the function of VΓ

obtained by extension inside each subdomain using the discrete saddle-point
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harmonic extension operator SH. In addition, we will not write finite element
interpolants explicitly; therefore, when we write a product of functions, e.g.
δivΓ, we will mean the finite element function with nodal values equal to those
of the product of the two functions δi and vΓ.

This balancing Neumann-Neumann preconditioner T is associated with
further decomposing the interface space VΓ × UΓ into

VΓ × UΓ = VH × UH +
N∑

i=1

VΓ,i × UΓ,i.

This decomposition is not a direct sum. Here, the coarse pressure space UH is
chosen to be the same as the interface pressure space, i.e., UH = UΓ. The coarse
displacement space VH is defined below; it must include the scaled nullspace
of a(·, ·) in order to ensure solvability of the local problems, but other factors,
such as inf-sup stability, also play an important role in its design. The local
spaces VΓ,i are defined by:

VΓ,i = {v ∈ VΓ | v ≡ 0 on Γ \ ∂Ωi} .
We now describe the coarse and local problems in detail.

4.1 The Coarse Problem

Given a residual vector r, the coarse term QHr is the solution of a coarse,
global saddle-point problem with a few displacement degrees of freedom and
one constant pressure per subdomain Ωi:

QH = RT
HS

−1
H RH ,

where

RH =

[
LT

H 0
0 I

]
,

and

SH = RHSR
T
H =

[
LT

HSΓLH LT
HB

T
ΓΓ

BΓΓLH − 1
λ
CΓΓ

]
. (4.2)

The columns of the matrix LH span the coarse space VH and in order
to define them, we need to define the Neumann-Neumann counting functions
δi ∈ VΓ, associated with each subdomain Ωi, and their pseudoinverses δ†i . Let
Γh be the set of nodes lying on Γ and ∂Ωi,h be the set of nodes lying on ∂Ωi.

δi and δ†i are completely defined by their nodal values on Γh:
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• δi is zero at all nodes on Γh \∂Ωi,h while its value at any node x on ∂Ωi,h

equals the number of subdomains to which x belongs;

• the pseudoinverse δ†i is defined as

δ†i (x) =


1

δi(x)
if x ∈ Γh ∩ ∂Ωi,h,

0 if x ∈ Γh \ ∂Ωi,h.

The space VH is defined as the range of LH . We discuss a few alternative
choices:

L0
H : its columns contain the inverse counting functions δ†i multiplied by the

functions of ker(a) (i.e., the rigid body modes);

L1
H : it includes, in addition to the columns of L0

H , for d = 2 (d = 3), one
bubble function per edge (face) of the interface, representing a quadratic
function in the normal direction;

L2
H : it includes, in addition to the columns of L0

H , columns representing the
continuous piecewise d-linear functions on the coarse mesh τH ;

L3
H : it includes, in addition to the columns of L0

H , columns representing the
continuous piecewise d-quadratic functions on the coarse mesh τH .

The choice VH = V0
H corresponds to the standard choice for second order

scalar elliptic problems and it provides a quite minimal coarse displacement
space. It turns out not to be uniformly inf-sup stable (see numerical experi-
ments in [46]) and it therefore leads to a nonscalable algorithm in the incom-
pressible case. However, in the compressible case where λ/µ is bounded, it
still leads to a scalable algorithm (see Theorem 5.4). In Lemmas 5.2 and 5.3,
we show that V1

H and V3
H are inf-sup stable uniformly in the number of sub-

domains N and in µ/λ. Numerical experiments indicate that the choice V2
H

is also uniformly inf-sup stable.
In order to avoid linearly dependent δ†i functions, and hence a singular

coarse problem, we might have to drop all of the components of these functions
for one subdomain; this depends on the coarse triangulation.

In variational terms, the coarse problem is defined as follows. Given

[
uΓ

pΓ

]
in VΓ × UΓ, define

[
wΓ

rΓ

]
= TH

[
uΓ

pΓ

]
∈ VH × UH as the solution of the
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coarse saddle-point problem: ∀v ∈ VH and ∀q ∈ UH ,{
s(wΓ,v) + bΓ(v, rΓ) = s(uΓ,v) + bΓ(v, pΓ)

bΓ(wΓ, q) − 1
λ
cΓ(rΓ, q) = bΓ(uΓ, q) − 1

λ
cΓ(pΓ, q)

(4.3)

or equivalently,{
s(wΓ − uΓ,v) + bΓ(v, rΓ − pΓ) = 0

bΓ(wΓ − uΓ, q) − 1
λ
cΓ(rΓ − pΓ, q) = 0.

(4.4)

Lemma 4.2, below, lists some important properties of the operator TH .
Before proving this lemma, we will need the following auxiliary result:

Lemma 4.1 If 〈·, ·〉 is a symmetric bilinear form and T is an operator such
that 〈(I − T )u, Tz〉 = 0 ∀u, z, then T is symmetric with respect to 〈·, ·〉.

Proof

〈Tu, z〉 = 〈Tu, z〉+ 〈(I − T )u, Tz〉 = 〈Tu, z〉+ 〈u, Tz〉 − 〈Tu, Tz〉
= 〈u, Tz〉+ 〈Tu, (I − T )z〉 = 〈u, Tz〉 ,

which implies the symmetry of T with respect to 〈·, ·〉. �

Lemma 4.2 For TH as defined in (4.3) and (4.4), we have:

• TH is a projection, i.e. T 2
H = TH ;

• (I − TH)

[
uΓ

pΓ

]
does not depend on pΓ, i.e.,

(I − TH)

[
uΓ

pΓ

]
= (I − TH)

[
uΓ

qΓ

]
for all pΓ, qΓ ∈ UΓ;

• TH is symmetric with respect to the bilinear form 〈·, ·〉S;

• Range(I − TH) ⊂ (VΓ, UΓ)B (see Definition 2.4) and

• TH

[
uΓ

pΓ

]
∈ (VΓ, UΓ)B for all

[
uΓ

pΓ

]
∈ (VΓ, UΓ)B.
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Proof It is clear that if

[
uΓ

pΓ

]
∈ VH × UH , then

[
wΓ

rΓ

]
=

[
uΓ

pΓ

]
satis-

fies (4.3), which shows that T 2
H = TH . In particular, since UH = UΓ, we have

that for any pΓ ∈ UΓ,

[
0
pΓ

]
∈ VH × UH and therefore TH

[
0
pΓ

]
=

[
0
pΓ

]
and (I − TH)

[
0
pΓ

]
=

[
0
0

]
. This proves the second statement.

By choosing

[
v
q

]
= TH

[
zΓ

sΓ

]
in (4.4), we conclude that

〈
(I − TH)

[
uΓ

pΓ

]
, TH

[
zΓ

sΓ

]〉
S

= 0 ∀
[

uΓ

pΓ

]
,

[
zΓ

sΓ

]
in VΓ × UΓ.

Lemma 4.1 now implies the symmetry of TH with respect to S.

From the second equation of (4.4), we see that

[
wΓ − uΓ

rΓ − pΓ

]
is balanced,

i.e., Range(I−TH) ⊂ (VΓ, UΓ)B. Since TH = I− (I −TH), the last statement
follows. �

Remark 4.3 Since TH is a projection and is S-symmetric, it is tempting to
believe that TH is an S-orthogonal projection. This is not the case, since
S is not positive definite. However, when restricted to the benign subspace
(VΓ, UΓ)B, TH is indeed an S-orthogonal projection.

4.2 Local Problems

Each local operator Qi is based on the solution of a local saddle-point problem
on Ωi with a natural boundary condition on ∂Ωi\∂Ω. This local problem is sin-
gular for any floating subdomain, i.e., those subdomains whose boundaries do
not intersect the Dirichlet boundary ∂Ω. That is why we use a pseudoinverse
in the matrix description of Qi below:

Qi = RT
i

[
D−1

i 0
0 1

][
S

(i)
Γ B

(i)
ΓΓ

T

B
(i)
ΓΓ − 1

λ
C

(i)
ΓΓ

]† [
D−1

i 0
0 1

]
Ri. (4.5)

Here Ri are 0, 1 restriction matrices mapping VΓ×UΓ into VΓ,i×UΓ,i and Di

are diagonal matrices representing multiplication by the counting functions δi.
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For a floating subdomain Ωi, the nullspace of S(i) is spanned by the rigid-
body modes (rotations and translations). It is easy to check, though, that

range

([
D−1

i 0
0 ?

]
RiS(I − TH)

)
⊂ range

(
S(i)
)
,

as long as VH ⊃ V0
H, where ? can be any scalar. Also

(I − TH)RT
i

[
D−1

i 0
0 ?

] [
vΓ,i

0

]
= 0

for any rigid-body mode vector vΓ,i. Therefore, the particular choice of the
pseudoinverse will not affect the algorithm; this fact will allow for an easier
implementation of Qi. In the sequel, we will fix this choice by assuming that
range

(
S†
)

= range (S). We note that the 1’s in (4.5) could equally well be
replaced by zero.

In preparation for writing the local problems in variational form, we define
the operator T̃i : VΓ×UΓ → VΓ,i×UΓ,i as T̃i = RiTi, and note that RT

i T̃i = Ti.

The local problems are now defined in variational terms: for w =

[
uΓ

pΓ

]
,

T̃iw =

[
T̃ u

i w

T̃ p
i w

]
is the solution of the following local saddle-point problem

with natural boundary conditions: ∀v ∈ VΓ,i, ∀q ∈ UΓ,i,{
si(δiT̃

u
i uΓ, δiv) + bΓ,i(δiv, T̃

p
i uΓ) = s(uΓ,v) + bΓ(v, pΓ)

bΓ,i(δiT̃
u
i uΓ, q) − 1

λ
cΓ,i(T̃

p
i uΓ, q) = bΓ(uΓ, q) − 1

λ
cΓ(pΓ, q).

(4.6)

Analogously to Definition 2.4, we introduce the concept of local benign
spaces.

Definition 4.4 We define the local benign space (VΓ,i × UΓ,i)B by

(VΓ,i × UΓ,i)B

=

{[
u
p

]
∈ VΓ,i × UΓ,i

∣∣∣∣ bΓ,i(δiu, q) = 1
λ
cΓ,i(p, q) ∀q ∈ UΓ,i

}
.

(4.7)

We note that whenever w ∈ Range(I − T0) ⊂ (VΓ × UΓ)B, the right-hand
side of the second equation in (4.6) equals zero and in this case we can use
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Lemma 2.6 and restate the definition of T̃i as follows: T̃iw ∈ (VΓ,i × UΓ,i)B

and satisfies, ∀
[

v
q

]
∈ (VΓ,i × UΓ,i)B,

si(δiT̃
u
i w, δiv) +

1

λ
cΓ,i(T̃

p
i w, q) = s(uΓ,v) + bΓ(v, pΓ), (4.8)

or, ([
δiT̃

u
i w

T̃ p
i w

]
,

[
δiv
q

])
Γ,i

=

〈
w,

[
v
q

]〉
S

. (4.9)

Here the inner-product (·, ·)Γ,i is defined by([
u
p

]
,

[
v
q

])
Γ,i

= si(δiu, δiv) +
1

λ
cΓ,i(p, q)
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Chapter 5

Analysis of the Method

5.1 Auxiliary Results

We will work with the Γ-inner product([
uΓ

pΓ

]
,

[
vΓ

qΓ

])
Γ

= s(uΓ,vΓ) +
1

λ
cΓ(pΓ, qΓ).

On the benign subspace (VΓ × UΓ)B (see Definition 2.4), this inner product
coincides with the bilinear form 〈·, ·〉S; cf. Lemma 2.5.

In the proof of our main result, we need a bound on the norm of the coarse
correction operator. We note that this operator has norm 1 when restricted to
the space of benign functions but that it is applied to more general functions
in our algorithm.

Lemma 5.1 The coarse correction operator I − TH satisfies the stability esti-
mate

‖I − TH‖Γ ≤ 1 +

√√√√√2

2 +
d

β2
H

2(1+σ)2
+ µ

λ

,
where σ is as in Lemma 3.1 and βH is the inf-sup constant of the coarse space,
defined as

βH = inf
q∈UH

sup
v∈VH

b(v, q)

‖∇(Hv|Γ)‖L2‖q‖L2

. (5.1)

We note that the bound above is less than or equal to C
√

1 + λ/µ whatever
the value of βH . We will also establish such a bound by a direct argument in
the general case discussed in Chapter 6.

37



Proof We want to bound

∥∥∥∥(I − TH)

[
uΓ

pΓ

]∥∥∥∥
Γ

in terms of

∥∥∥∥[ uΓ

pΓ

]∥∥∥∥
Γ

. In

view of Lemma 4.2, we have∥∥∥∥(I − TH)

[
uΓ

pΓ

]∥∥∥∥
Γ

=

∥∥∥∥(I − TH)

[
uΓ

0

]∥∥∥∥
Γ

≤
∥∥∥∥[ uΓ

0

]∥∥∥∥
Γ

+

∥∥∥∥TH

[
uΓ

0

]∥∥∥∥
Γ

≤
∥∥∥∥[ uΓ

pΓ

]∥∥∥∥
Γ

+

∥∥∥∥TH

[
uΓ

0

]∥∥∥∥
Γ

(5.2)

We define

T̃H

[
uΓ

0

]
=

[
T̃ u

HuΓ

T̃ p
HuΓ

]
=

[
LT

HSΓLH LT
HB

T
ΓΓ

BΓΓLH − 1
λ
CΓΓ

]−1 [
LT

HSΓuΓ

BΓΓuΓ

]
,

so that

TH

[
uΓ

0

]
=

[
T u

HuΓ

T p
HuΓ

]
=

[
LH 0
0 I

]
T̃H

[
uΓ

0

]
.

In view of Lemma 3.1, we find that

1

µ
ṽTLT

HSΓLH ṽ ≤ 2(1 + σ)2ṽTLT
H∆ΓLH ṽ,

where ∆Γ is such that v|TΓ∆Γv|Γ = ‖∇(Hv|Γ)‖2
L2. Let ω =

β2
H

2(1+σ)2
+ µ

λ
. Then

Lemma 2.10 gives

‖T̃ u
HuΓ‖2

1
µ

LT
HSΓLH

≤ 2
µ2‖LT

HSΓuΓ‖2
( 1

µ
LT

HSΓLH)−1 + 2
ω
‖BΓΓuΓ‖2

C−1
ΓΓ

,

‖T̃ p
HuΓ‖2

CΓΓ
≤ 2

ω
‖LT

HSΓuΓ‖2
( 1

µ
LT

HSΓLH)−1 + 2µ2

ω2 ‖BΓΓuΓ‖2
C−1

ΓΓ

.

We proceed to estimate each of the terms above:

‖T̃ u
HuΓ‖2

1
µ

LT
HSΓLH

=
1

µ
uT

Γ T̃
u
H

T
LT

HSΓLH T̃
u
HuΓ =

1

µ
s(T u

HuΓ, T
u
HuΓ)

‖T̃ p
HuΓ‖2

CΓΓ
= cΓ(T p

HuΓ, T
p
HuΓ)

‖LT
HSΓuΓ‖2

( 1
µ

LT
HSΓLH)−1 = sup

ṽ

(ṽTLT
HSΓuΓ)2

1
µ
ṽTLT

HSΓL
T
H ṽ

≤ µs(uΓ,uΓ)

‖BΓΓuΓ‖2
C−1

ΓΓ
= sup

q

(qTBΓΓuΓ)2

qTCΓΓq
= sup

q

(divSHuΓ, q)
2
L2

‖q‖2
L2

≤ ‖divSHuΓ‖2
L2 ≤ 1

µ

d

2
s(uΓ,uΓ)
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In the last estimate above, we have used (3.4).
Using the previous results, we conclude that∥∥∥∥TH

[
uΓ

0

]∥∥∥∥2

Γ

=

∥∥∥∥[ T u
HuΓ

T p
HuΓ

]∥∥∥∥2

Γ

= s(T u
HuΓ, T

u
HuΓ) +

1

λ
cΓ(T p

HuΓ, T
p
HuΓ)

≤
(

1 +
µ/λ

ω

)(
2 +

d

ω

)
s(uΓ,uΓ)

≤ 2

(
2 +

d

ω

)
s(uΓ,uΓ)

≤ 2

(
2 +

d

ω

)∥∥∥∥[ uΓ

pΓ

]∥∥∥∥2

Γ

From (5.2), we finally conclude that∥∥∥∥(I − TH)

[
uΓ

pΓ

]∥∥∥∥
Γ

≤
(

1 +

√
2

(
2 +

d

ω

))∥∥∥∥[ uΓ

pΓ

]∥∥∥∥
Γ

.

Since

[
uΓ

pΓ

]
is arbitrary, the result follows. �

In the following two lemmas, we ensure that for appropriate choices of
coarse space for the displacement, we have good bounds for βH , defined in (5.1).
First we show that we can reduce the problem to the incompressible Stokes
case.

Lemma 5.2

inf
q∈UH

sup
v∈VH

b(v, q)

‖∇(Hv|Γ)‖L2‖q‖L2

≥ inf
q∈UH

sup
v∈VH

b(S̃Hv|Γ, q)
‖∇(S̃Hv|Γ)‖L2‖q‖L2

,

where S̃H represents the Stokes harmonic extension.

Proof Because S̃Hv|Γ and v coincide on Γ, the divergence theorem assures
that the numerators are the same in both sides of the inequality. As for the
denominator, the minimal property of the harmonic extension guarantees that
‖∇(Hv|Γ)‖L2 ≤ ‖∇(S̃Hv|Γ)‖L2 . �

Now we can use the following result, which is proved in [46, Lemma 5.2].
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Lemma 5.3 The coarse spaces V 1
H × UH and V 3

H × UH satisfy the inf-sup
condition

βH = inf
q∈UH

sup
v∈VH

b(S̃Hv|Γ, q)
‖∇(S̃Hv|Γ)‖L2‖q‖L2

> 0,

where βH is independent of the number of subdomains N . Moreover, for the
space V 3

H × UH , βH is also independent of the size of the local problems, mea-
sured by H/h, while for V 1

H × UH we have

βH ≥ C√
1 + log

H

h

.

Numerical results in [24] and [46] indicate that a uniform inf-sup condition
does not hold for the coarse space V0

H × UH . The results for the coarse space
V2

H×UH are quite satisfactory although we do not have a full theory. We note
that the Q1−Q0 elements by themselves are not inf-sup stable but that we are
using a richer velocity space which also includes the δ†i functions times basis
elements for the space of rigid body modes. We also work in the somewhat
different context of saddle-point harmonic extensions of traces on Γ.

5.2 Main Result

We are now ready to formulate our main theorem.

Theorem 5.4 On the benign subspace (VΓ × UΓ)B the balancing Neumann-
Neumann operator T is symmetric, positive definite with respect to the inner
product (·, ·)Γ, and its condition number κ(T ) is bounded by

κ(T ) ≤ C

(
1 + log

H

h

)2(
1 +

(
β2 +

µ

λ

)−1
)(

1 +

(
β2

H

1 + σ2
+
µ

λ

)−1
)
, (5.3)

where σ is as in Lemma 3.1 and βH and β are the inf-sup constants of the
coarse problem and the original discrete saddle-point problem, respectively.

Proof Let w =

[
uΓ

pΓ

]
be benign. Then, THw as well as (I − TH)w are

benign and we can use either (·, ·)Γ or 〈·, ·〉S in our formulas. Since TH is a
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(·, ·)Γ-orthogonal projection when restricted to the benign subspace (cf. Lemma
4.2), we find that

(Tw,w)Γ

= (THw,w)Γ + ((I − TH)
∑

i Ti(I − TH)w,w)Γ

= ‖THw‖2
Γ + 〈∑i Ti(I − TH)w, (I − TH)w〉S

= ‖w‖2
Γ − ‖(I − TH)w‖2

Γ + 〈∑i Ti(I − TH)w, (I − TH)w〉S .

(5.4)

Our goal is to find both lower and upper bounds for this expression in terms
of ‖w‖2

Γ.

5.2.1 Lower Bound

Define w̃ =

[
ũΓ

p̃Γ

]
= (I −TH)w. Since the pseudo inverses δ†i of the counting

functions define a partition of unity, we have ũΓ =
∑

i ũi with ũi = δ†i ũΓ ∈
VΓ,i. Let q̃i be such that

[
ũi

q̃i

]
∈ (VΓ,i × UΓ,i)B (see Definition 4.4). From

the definition of the local problems (4.8), we have

s(ũΓ, ũΓ) =
∑

i

s(ũΓ, ũi)

=
∑

i

si(δiT̃
u
i w̃, δiũi) +

∑
i

1

λ
cΓ,i(T̃

p
i w̃, q̃i)−

∑
i

bΓ(ũi, p̃Γ).

But
∑

i bΓ(ũi, p̃Γ) = bΓ(ũΓ, p̃Γ) = 1
λ
cΓ(p̃Γ, p̃Γ) because

[
ũΓ

p̃Γ

]
is benign. Then,

‖w̃‖2
Γ = s(ũΓ, ũΓ) + 1

λ
cΓ(p̃Γ, p̃Γ)

=
∑N

i=1 si(δiT̃
u
i w̃, δiũi) + 1

λ
cΓ,i(T̃

p
i w̃, q̃i)

=
∑N

i=1

([
δiT̃

u
i w̃

T̃ p
i w̃

]
,

[
δiũi

q̃i

])
Γ,i

≤
∑N

i=1

∥∥∥∥∥
[
δiT̃

u
i w̃

T̃ p
i w̃

]∥∥∥∥∥
2

Γ,i

 1
2 (∑N

i=1

∥∥∥∥[ δiũi

q̃i

]∥∥∥∥2

Γ,i

) 1
2

(5.5)

We note that δiũi = δiδ
†
i ũΓ = ũΓ|∂Ωi

. From the definition of (VΓ,i × UΓ,i)B,

we have that bΓ,i (δiũi, ri) = 1
λ
cΓ,i (q̃i, ri) for all ri ∈ UΓ,i. Summing over i and

41



recalling that

[
ũΓ

p̃Γ

]
is benign, we conclude that q̃i = p̃Γ|Ωi

. The square of

the second factor in (5.5) is therefore

N∑
i=1

∥∥∥∥[ δiũi

q̃i

]∥∥∥∥2

Γ,i

=

∥∥∥∥[ ũΓ

p̃Γ

]∥∥∥∥2

Γ

= ‖w̃‖2
Γ . (5.6)

The square of the first factor in (5.5) is estimated by using the definition
of the local problems (4.9):

∑
i

∥∥∥∥∥
[
δiT̃

u
i w̃

T̃ p
i w̃

]∥∥∥∥∥
2

Γ,i

=
∑

i

([
δiT̃

u
i w̃

T̃ p
i w̃

]
,

[
δiT̃

u
i w̃

T̃ p
i w̃

])
Γ,i

=
∑

i

〈
w̃,

[
T̃ u

i w̃

T̃ p
i w̃

]〉
S

= 〈(I − TH)w,
∑

i Ti(I − TH)w〉
S
.

(5.7)

Putting (5.5), (5.6), and (5.7) together, we obtain

‖(I − TH)w‖2
Γ ≤

〈∑
i

Ti(I − TH)w, (I − TH)w

〉
S

. (5.8)

Finally, from (5.4) and (5.8),

(Tw,w)Γ ≥ ‖w‖2
Γ.

5.2.2 Upper bound

We recall that TH restricted to the benign subspace is an orthogonal projection
with respect to (·, ·)Γ. Therefore, the only term we have to control in (5.4) is
〈∑i Ti(I − TH)w, (I − TH)w〉S. This expression will be bounded from above
in terms of the square of the norm of w. Since the norm of (I−TH)w is less than
or equal to that of w, we will assume, henceforth, that w ∈ Range(I − TH).

42



Then, by using Lemma 4.2,

〈∑
i

Ti(I − TH)w, (I − TH)w

〉
S

= 〈w, (I − TH)
∑

i Tiw〉S
=

〈
w, (I − TH)

∑
i

[
T u

i w
T p

i w

]〉
S

=

〈
w, (I − TH)

∑
i

[
T u

i w
0

]〉
S

=

(
w, (I − TH)

∑
i

[
T u

i w
0

])
Γ

≤ ‖I − TH‖Γ ‖w‖Γ

∥∥∥∥∑i

[
T u

i w
0

]∥∥∥∥
Γ

(5.9)

and we are left with bounding the third factor from above. We remark that
each T u

i w is supported in Ωi and the subdomains adjacent to it. By a stan-
dard coloring argument, it suffices to bound the Γ-norm of just one term,∥∥∥∥[ T u

i w
0

]∥∥∥∥
Γ

, of the sum.

By the comparison of the energy of the discrete saddle-point and harmonic
extensions in Lemma 3.1, we have

∥∥∥∥[ T u
i w
0

]∥∥∥∥2

Γ

= s(T u
i w, T u

i w) ≤ 2(1 + σ)2µ‖∇H(T u
i w)‖2

L2(Ω). (5.10)

We then apply to each scalar component of H(T u
i w) the decomposition lemma

for the scalar Neumann-Neumann algorithm (see Dryja and Widlund [15,
lemma 4]) and obtain

µ‖∇H(T u
i w)‖2

L2(Ω) ≤ Cαµ ‖∇H(δiT
u
i w)‖2

L2(Ωi)
,
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where α = (1+ log(H/h))2. By using Lemma 3.1 and equation (4.9), we have:

µ ‖∇H(δiT
u
i w)‖2

L2(Ωi)

≤ Csi(δiT
u
i w, δiT

u
i w)

≤ C

∥∥∥∥[ δiT u
i w

T p
i w

]∥∥∥∥2

Γ,i

= C 〈w, Tiw〉S
= C 〈w, (I − TH)Tiw〉S
= C

(
w, (I − TH)

[
T u

i w
0

])
Γ

≤ C ‖I − TH‖Γ ‖w‖Γ

∥∥∥∥[ T u
i w
0

]∥∥∥∥
Γ

(5.11)

From (5.9), (5.10) and (5.11), we obtain〈∑
i

Ti(I − TH)w, (I − TH)w

〉
S

≤ Cα(1 + σ)2 ‖I − TH‖2
Γ ‖w‖2

Γ (5.12)

From (5.4) and (5.12), after using Lemma 5.1, we obtain

(Tw,w)Γ ≤ Cα(1 + σ)2

1 + 2

2 +
d

β2
H

2(1+σ)2
+ µ

λ

 ‖w‖2
Γ .

Since the lower bound for (Tw,w)Γ
‖w‖2Γ

is 1, the upper bound above is also the upper

bound for κ(T ). The leading constant, as it appears in the statement of this
theorem, is then obtained by elementary inequalities. �
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Chapter 6

Discontinuous Coefficients with
Large Jumps

6.1 The algorithm

Our algorithm can be extended to handle problems with heterogeneous mate-
rials with different Lamé constants λi and µi in the different subdomains Ωi.
Such problems can be formulated as follows:

N∑
i=1

µiai(u,v) + b(v, p) = 〈F,v〉 ∀v ∈ V

b(u, q) −
N∑

i=1

1

λ i
ci(p, q) = 0 ∀q ∈ U ;

cf. equation (1.6). The global stiffness matrix K is constructed by subassem-
bling the local contributions from the individual substructures,

K(i) =

[
µiA

(i) B(i)T

B(i) − 1
λi
C(i)

]
.

A saddle-point Schur complement matrix can similarly be assembled from the
matrices

S(i) =

 S
(i)
Γ B

(i)
ΓΓ

T

B
(i)
ΓΓ − 1

λi
C

(i)
ΓΓ

 ,
which are obtained from the K(i)’s by static condensation.
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The balancing Neumann-Neumann preconditioner Q for S has the same
form as before, but uses modified local and coarse spaces and bilinear forms. As
in the scalar elliptic case, the jumps in the coefficients µi are accounted for by
appropriately scaling the special counting functions δi and their pseudoinverses
δ†i . As in [39], we now use the definition

δ†i (x) =
µγ

i (x)∑
j∈Nx

µγ
j (x)

, (6.1)

where γ ∈ [1/2,∞) and Nx is the set of indices of all the subdomains that
have the node x on their boundaries. The new δi is the pseudoinverse of
δ†i . As before, both δi and δ†i vanish at all interface nodes outside ∂Ωi and are
extended inside each subdomain by discrete saddle-point harmonic extensions.
The pseudoinverses δ†i still form a partition of unity. We have chosen γ = 1
in our numerical experiments. The local and coarse problems are then defined
as before, but using the modified functions δi and δ†i .

Our balancing Neumann-Neumann preconditioner is therefore well defined
also in the case of variable coefficients and our numerical experiments, reported
in Chapter 10, indicate that indeed our preconditioner retains its excellent
convergence rate also for heterogeneous materials.

6.2 Analysis

Unfortunately, we have not been able to completely extend our analysis to
the case of variable coefficients. While it is straightforward to check that all
other parts of the proof still works, we have not been able to extend Lemma
5.1 to the general case with variable coefficients. We note that we do not
know how to prove the uniform inf-sup stability for the underlying finite ele-
ment discretization or for the continuous problem for arbitrary heterogeneous
coefficients and that is at the heart of our difficulties.

However, if we assume that in each subdomain the Poisson ratio is bounded
away from 0.5, i.e., that λ/µ is uniformly bounded, then we can still prove an
upper bound for ‖I − TH‖Γ. Looking at the proof of Lemma 5.1, we see

that what we need is to bound

∥∥∥∥TH

[
uΓ

0

]∥∥∥∥
Γ

=

∥∥∥∥∥
[
T u

HuΓ

T p
HuΓ

]∥∥∥∥∥
Γ

in terms of∑
i si(uΓ,uΓ). By making pΓ = 0, v = T u

HuΓ and q = T p
HuΓ in (4.3), we have∑

i

si(T
u
HuΓ, T

u
HuΓ) +

∑
i

1

λi
cΓ,i(T

p
HuΓ, T

p
HuΓ)
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=
∑

i

si(uΓ, T
u
HuΓ)− bΓ(uΓ, T

p
HuΓ).

The first term on the right can be bounded by∑
i

si(uΓ, T
u
HuΓ) ≤ 1

2

∑
i

si(uΓ,uΓ) +
1

2

∑
i

si(T
u
HuΓ, T

u
HuΓ).

For the second term, we have

bΓ(uΓ, T
p
HuΓ)

=
∑

i

∫
Ωi

√
λidivSHuΓ

T p
HuΓ√
λi

≤ 1

2

∑
i

λi‖divSHuΓ‖2
L2(Ωi)

+
1

2

∑
i

1

λi
‖T p

HuΓ‖2
L2(Ωi)

≤ 1

2

d

2

∑
i

λi

µi
µiai(SHuΓ,SHuΓ) +

1

2

∑
i

1

λi
cΓ,i(T

p
HuΓ, T

p
HuΓ)

≤ 1

2

d

2
max

i

(
λi

µi

)∑
i

si(uΓ,uΓ) +
1

2

∑
i

1

λi

cΓ,i(T
p
HuΓ, T

p
HuΓ).

We conclude that∥∥∥∥∥
[
T u

HuΓ

T p
HuΓ

]∥∥∥∥∥
2

Γ

≤
(

1 +
d

2
max

i

(
λi

µi

))∑
i

si(uΓ,uΓ).

We stress once again that our numerical results in Chapter 10 do not indi-

cate an actual dependence of the convergence rate on the parameter maxi

(
λi

µi

)
,

which strongly indicates that the result above is not sharp.
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Chapter 7

Some Implementation Issues

7.1 Saddle-Point Version of the Algorithm

7.1.1 Avoiding a special basis

In our discussion, we have assumed that the basis functions for the pressure
degrees of freedom can be divided into two sets: functions with zero average
and functions that are constant in each subdomain Ωi; see (3.6). Although
our method requires a pressure space that admits such a partition, it still can
be implemented using a standard nodal basis for the pressure.

In our actual implementation, we generate a stiffness matrix K̃ using
a standard nodal basis, that does not separate zero-average pressures and
constant-by-subdomain pressures. Furthermore, we never assemble the entire
matrix K̃. Instead, we work with local stiffness matrices:

K̃(i) =

 µA(i) B̃(i)
T

0

B̃(i) − 1
λ
C̃(i) w(i)

0 w(i)T 0

 . (7.1)

We note that these local matrices include, besides the block

[
µA(i) B̃(i)

T

B̃(i) − 1
λ
C̃(i)

]
from which the matrix K̃ is subassembled, also blocks associated with a La-
grange multiplier. The multiplier is used to enforce zero average for the pres-
sures when solving the local Dirichlet problems. Here, the matrices B̃(i) and
C̃(i) differ from B(i) and C(i) of Section 3.2, since a standard basis for the
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pressure is being used. The entries of the vector w(i) are the integrals of the
pressure basis functions.

In each of the local matrices K̃(i), we eliminate the interior velocities, all the
pressures and the Lagrange multiplier. This corresponds to taking the Schur
complement with respect to the (2,2)-block in the following matrix, which is
a reordering of (7.1):

[
K̃

(i)
DD K̃

(i)
DΓ

K̃
(i)
ΓD K̃

(i)
ΓΓ

]
=


µA

(i)
II B̃

(i)
I

T
0 µA

(i)
IΓ

B̃
(i)
I − 1

λ
C̃(i) w(i) B̃

(i)
Γ

0 w(i)T 0 0

µA
(i)
ΓI B̃

(i)
Γ

T
0 µA

(i)
ΓΓ

 .

We can show that the result of this static condensation, K̃
(i)
ΓΓ−K̃(i)

ΓDK̃
(i)
DD

−1
K̃

(i)
DΓ,

is equal to S
(i)
Γ , the (1, 1)-block of S(i), as defined in (3.9). We note that while

the w(i)T in the third row is responsible for enforcing a zero-average pressure,
the w(i) in the second row allows for the divergence equation to be satisfied
only up to an additive constant, and therefore K̃

(i)
DD is invertible even in the

incompressible limit.
The remaining blocks of S(i), the vector B

(i)
ΓΓ and the scalar − 1

λ
C

(i)
ΓΓ, are

computed using the formula: µA
(i)
ΓΓ B

(i)
ΓΓ

T

B
(i)
ΓΓ − 1

λ
C

(i)
ΓΓ

 =

[
I

e(i)
T

] µA
(i)
ΓΓ B̃

(i)
Γ

T

B̃
(i)
Γ − 1

λ
C̃(i)

 [ I e(i)
]
.

Here the entries of the vector e(i) are the coefficients that express the constant
pressure on subdomain Ωi in terms of the standard basis functions, i.e.,

enp∑
k=1

e
(i)
k ψ̃k = χΩi

,

where
{
ψ̃k

}
k=1,...,ñp

is the regular pressure basis and χΩi
is the characteristic

function of the subdomain Ωi.

7.1.2 Solution of the Local Problems

We described our local problems in terms of the operators S(i)†, which, thanks
to the coarse corrrection (I − TH), are applied solely to vectors in range(S(i)).
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We adopt the following definition of pseudoinverse: S(i)† is any linear trans-
formation satisfying

S(i)S(i)†S(i)

[
v

(i)
Γ

q
(i)
Γ

]
= S(i)

[
v

(i)
Γ

q
(i)
Γ

]
∀
[

v
(i)
Γ

q
(i)
Γ

]
∈ VΓ,i × UΓ,i.

Then it is easy to show that ∀
[

v
(i)
Γ

q
(i)
Γ

]
∈ range(S(i)),

 −
[
µA

(i)
II B

(i)
II

T

B
(i)
II − 1

λ
C

(i)
II

]−1 [
µA

(i)
IΓ 0

B
(i)
IΓ 0

]
I

S(i)†
[

v
(i)
Γ

q
(i)
Γ

]

=


µA

(i)
II B

(i)
II

T
µA

(i)
IΓ 0

B
(i)
II − 1

λ
C

(i)
II B

(i)
IΓ 0

µA
(i)
ΓI B

(i)
IΓ

T
µA

(i)
ΓΓ B

(i)
ΓΓ

T

0 0 B
(i)
ΓΓ − 1

λ
C

(i)
ΓΓ



†

︸ ︷︷ ︸
K

(i)
NN

†


0
0

v
(i)
Γ

q
(i)
Γ

 ,

in the sense that once a choice of pseudo-inverse for S(i) is fixed, there exists

a choice for K
(i)
NN

†
that satisfies the identity above and vice-versa. Therefore

we will be able, once again, to compute the action of S(i)† on a vector without
explicitly assembling the matrix S(i).

The matrices K
(i)
NN are invertible except for floating subdomains Ωi. For

these subdomains, a naive attempt to factor K
(i)
NN will fail. Our approach,

which is very convenient in terms of implementation and which has proven to
be very robust in all our numerical experiments, is inspired in the following
observation.

Lemma 7.1 Let S be a real-symmetric matrix. Then (S + εI)−1 is a good
approximation for S†, in the sense that∥∥S(S + εI)−1S − S

∥∥ = O(ε).
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Proof Let UΛUT = S be the eigenvalue decomposition of S, where U is
orthogonal and

Λ =



λ1

. . .

λr

0
. . .

0


.

is diagonal. Then

S(S + εI)−1S − S = −εU



λ1

λ1 + ε
. . .

λr

λr + ε
0

. . .

0


UT

and the result follows from elementary estimates. �

Remark 7.2 The same result does not hold for nonsymmetric matrices. For

instance, if S =

[
0 1
0 0

]
, then it is trivial to verify that

∥∥S(S + εI)−1S − S
∥∥ = O(1).

In our implementation of our algorithm, we simply add a small multiple of
the identity to µA(i), when solving the Neumann problems involving K

(i)
NN .

7.2 Positive Definite Implementation of the

Algorithm

Recall the block structure of S,

S =

[
SΓ BT

ΓΓ

BΓΓ − 1
λ
CΓΓ

]
.
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For compressible materials, the pressure variables can be eliminated by static
condensation. We define

S̃ = SΓ + λBT
ΓΓC

−1
ΓΓBΓΓ (7.2)

and we note that S̃ is positive definite. The solution to (3.7) is then given by[
uΓ

pΓ

]
=

[
I

λC−1
ΓΓBΓΓ

]
ũΓ,

where ũΓ solves S̃ũΓ = b̃Γ.
We can formulate a positive definite implementation of our algorithm, in

which we construct a preconditioner Q̃ for S̃ and iteratively solve the sys-
tem Q̃S̃ũΓ = Q̃b̃Γ. We will show that this algorithm is fully equivalent to
the one already described. When the discrete pressure space is discontinuous
across elements, as it is the case for Q2 − P1 or Q2 − Q0, this positive def-
inite implementation is easier to program and is computationally less costly,
since the elimination of the pressures can be done on the element level. If the
element-level stiffness matrix is originally defined as

Kel =

[
µAel BT

el

Bel − 1
λ
Cel

]
,

we now define

K̃el = µAel + λBT
elC

−1
el Bel.

Then, by subassembly, we form matrices K̃(i) and K̃, which are related to
their original, saddle-point counterparts K(i) and K by

K̃(i) = µA(i) + λB(i)TC(i)−1
B(i) and K̃ = µA+ λBTC−1B.

After reordering, K̃ can be written as

K̃ =

[
K̃II K̃IΓ

K̃ΓI K̃ΓΓ

]

and the action of S̃, defined by (7.2), can be computed from

S̃ = K̃ΓΓ − K̃ΓIK̃
−1
II K̃IΓ.
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We define the preconditioner Q̃ as

Q̃ = Q̃H + (I − Q̃H S̃)

N∑
i=1

Q̃i(I − S̃Q̃H),

where

Q̃H = LH(LT
H S̃LH)−1LT

H

and

Q̃i = R̃T
i

[
0 D−1

i

] [ K̃
(i)
II K̃

(i)
IΓ

K̃
(i)
ΓI K̃

(i)
ΓΓ

]† [
0

D−1
i

]
R̃i.

Here, LH and Di are defined as in Sections 4.1 and 4.2 and the restriction
matrices R̃i map from the global interface displacement space V|Γ to the local
interface displacement space V|Γ∩∂Ωi

.

The equivalence of this positive definite version of the algorithm and the
original one can be summarized by the following relation, the proof of which
we omit: [

I
λC−1

ΓΓBΓΓ

]
T̃ = T

[
I

λC−1
ΓΓBΓΓ

]
. (7.3)

We point out that, despite of the fact that we iterate on the space of
displacements only, the underlying finite-element formulation is mixed and
our results will not present locking. Also, even though the matrix S̃ gets
increasingly ill-conditioned as λ/µ increases, the equivalence of the algorithms

allows us to prove a bound on κ(T̃ ) that is uniform in λ/µ.

The implementation of the method just described is very similar to the im-
plementation of the standard Balancing Neumann-Neumann method for the
pure-displacement formulation (1.5). The differences are in the stiffness ma-
trices — we note that the matrix λBTC−1B can be regarded as a special
discretization of the form λ

∫
div(·)div(·) — and in the use of a richer coarse

space (V1
H , V2

H or V3
H , instead of V0

H). This similarity also simplifies the
implementation of a code that combines mixed and pure-displacement formu-
lations in different subdomains (see Chapter 8).

The local matrices that need to be factored are now somewhat smaller
(since the pressure variables have been eliminated) and, most importantly,
positive definite, which allows for the use of off-the-shelf reordering algorithms
and of Cholesky solvers. Due to these factors, we can have a significant gain
in performance.
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7.2.1 A Positive Definite Theory?

The variational counterpart of solving S̃ũΓ = b̃Γ is the following problem: find
uΓ ∈ VΓ such that

s̃(uΓ,v) = 〈F,v〉 ∀v ∈ VΓ,

where

s̃(uΓ,vΓ) = µa(S̃Hu
uΓ, S̃H

u
vΓ) +

1

λ
c(S̃Hp

uΓ, S̃H
p
vΓ) = uT

Γ S̃vΓ.

Here, S̃H is defined by the problem: find S̃Hu
uΓ ∈ V and S̃Hp

uΓ ∈ U such

that S̃Hu
uΓ

∣∣∣
Γ

= uΓ and, for i = 1, . . . , N ,{
µai(S̃H

u
u,v) + bi(v, S̃H

p
uΓ) = 0 ∀v ∈ Vi

bi(S̃H
u
u, q) − 1

λ
ci(S̃H

p
uΓ, q) = 0 ∀q ∈ Ui.

(7.4)

The only difference between (3.2) and (7.4) is that in the latter we allow q to
vary in the entire space of local pressures Ui, which includes constant pressures.

Notice that the pair of spaces Vi × Ui is not inf-sup stable (as opposed
to the pair Vi × U0,i). We do not know how to prove, in this case, a result
in the spirit of Lemma 3.1. We have a positive definite algorithm, but so far
we do not have a positive definite proof. The way in which we can prove the
convergence of this algorithm is by estabilishing its equivalence to the saddle-
point one, via (7.3), and relying on our results for that case. In particular,
we stress that the use of an enriched coarse space, i.e., the use of L1

H , L2
H or

L3
H , and not of L0

H , is still a requirement when λ/µ is large. Clear numerical
evidence indicates that an underlying inf-sup stable coarse space in necessary
in order to assure a good convergence of the positive definite algorithm.
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Chapter 8

Combining Mixed and
Pure-Displacement
Formulations

Consider a domain Ω, portions of which are comprised of almost-incompressible
material and portions of which of fairly compressible material. This kind of
configuration is actually encountered in practice, for instance in a mechanical
structure that combines rubber and steel.

The pure-displacement formulation is not suitable for discretizing the prob-
lem on the entire domain, due to locking. One could, of course, use a mixed
formulation for the entire domain. In this chapter, we instead discuss how
to combine both formulations in one problem, using the pure-displacement
formulation in the compressible regions and mixed formulation in the (al-
most-)incompressible.

8.1 Definition of the Problem and Substruc-

turing

We partition the N subdomains into two groups, by defining the disjoint sets
D and M, such that D ∪ M = {1, . . . , N}, containing the indices of the
displacement-only and mixed formulation subdomains, respectively. In this
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context, we define the space W = V × U as

W = WI ⊕WΓ =
( N⊕

i=1

Vi︸ ︷︷ ︸
VI

×
N⊕

i=1

U0,i︸ ︷︷ ︸
UI

)
⊕
( N⊕

i=1

VΓ,i︸ ︷︷ ︸
VΓ

×
N⊕

i=1

UΓ,i︸ ︷︷ ︸
UΓ

)
.

Here, Vi is defined, for all i, in the same way as in Section 3.1. U0,i and UΓ,i

are the same as before for i ∈M, but for i ∈ D they are defined as the trivial
space containing only the zero function. The spaces VΓ,i are again defined as
the ranges of the operators SHu

i , the definition of which is given below.
The forms ai(·, ·), i = 1, . . . , N , are as before and the forms bi(·, ·) and

ci(·, ·) are only defined for i ∈ M, in which case they are as before. We need
to define, for i ∈ D, a new bilinear form,

gi(u,v) = 〈divu, divv〉L2(Ωi).

The variational formulation of our problem is now: find u ∈ V and p ∈ U
such that, for all v ∈ V and q ∈ U ,

N∑
i=1

µiai(u,v) +
∑
i∈D

λigi(u,v) +
∑
i∈M

bi(v, p) = 〈F,v〉
∑
i∈M

bi(u, q) −
∑
i∈M

1

λi
ci(p, q) = 0.

The local stiffness matrices K(i) are now of the form

K(i) =


[
µiA

(i) B(i)T

B(i) − 1
λi
C(i)

]
, i ∈M

µiA
(i) + λiG

(i), i ∈ D.

The global stiffness matrix is generated by subassembly, as usual.
Eliminating interior variables in each subdomain (i.e., interior displace-

ments for i ∈ D and interior displacements and zero-average pressures for
i ∈M), we define the matrices S(i). For i ∈ M,

S(i) =

 S
(i)
Γ B

(i)
ΓΓ

T

B
(i)
ΓΓ − 1

λ
C

(i)
ΓΓ

 , as before,
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and, for i ∈ D,

S(i) = S
(i)
Γ

=
(
µiA

(i)
ΓΓ + λiG

(i)
ΓΓ

)
−
(
µiA

(i)
ΓI + λiG

(i)
ΓI

)(
µiA

(i)
II + λiG

(i)
II

)−1 (
µiA

(i)
IΓ + λiG

(i)
IΓ

)
.

We have then (cf. Lemma 3.2)

si(uΓ,vΓ) = uT
ΓS

(i)
Γ vΓ

=

{
µiai(SHu

i uΓ,SHu
i vΓ) + 1

λi
ci(SHp

i uΓ,SHp
i vΓ) i ∈M

µiai(SHu
i uΓ,SHu

i vΓ) + λigi(SHu
i uΓ,SHu

i vΓ) i ∈ D,
where SHi is defined, for i ∈ M, by: find SHu

i uΓ ∈ V|Ωi
and SHp

i uΓ ∈ U0,i

such that SHu
i uΓ|Γ∩∂Ωi

= uΓ and{
µiai(SHuuΓ,v) + bi(v,SHpuΓ) = 0 ∀v ∈ Vi

bi(SHuuΓ, q) − 1
λi
ci(SHpuΓ, q) = 0 ∀q ∈ U0,i

(8.1)

and, for i ∈ D, by: find SHu
i uΓ ∈ V|Ωi

such that SHu
i uΓ|Γ∩∂Ωi

= uΓ and

µiai(SHuuΓ,v) + λigi(SHuuΓ,v) = 0 ∀v ∈ Vi. (8.2)

8.2 The Preconditioner

The definition of the preconditioner is very much as before. For i ∈ M, we
define

Qi = RT
i

[
D−1

i 0
0 1

]
S(i)†

[
D−1

i 0
0 1

]
Ri

and for i ∈ D,

Qi = RT
i D

−1
i S(i)†D−1

i Ri.

Here Ri maps VΓ × UΓ into VΓ,i × UΓ,i for i ∈M and into VΓ,i for i ∈ D.
The coarse component of the preconditioner is defined by

QH =

[
LH 0
0 I

]([
LT

H 0
0 I

]
S

[
LH 0
0 I

])−1 [
LT

H 0
0 I

]
.

We note that the identity blocks above are now (#M)-by-(#M), where #M
denotes the number of elements in the index set M. The matrix LH is defined
as before. We will see that it can be somewhat reduced in some cases; we will
discuss this point later.
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8.3 Analysis

The analysis of this algorithm is very similar to the one carried out in Chap-
ter 5. In this section, we highlight only the differences.

First, we need a result to replace Lemma 3.1 for the subdomains in D.

Lemma 8.1 Given uΓ ∈ V|Γ, let HuΓ be its componentwise discrete har-
monic extension. For any uΓ ∈ V|Γ such that SHuuΓ ⊥ ker(ai),

csi(uΓ,uΓ) ≤ µi ‖∇HuΓ‖2
L2(Ωi)

≤ Csi(SHuΓ,SHuΓ)

where c depends only on λi/µi. The hypothesis that SHuΓ ⊥ ker(ai) is not
necessary for the lower bound.

Proof The upper bound is obtained just as in Lemma 3.1.
We note that (SHuuΓ −HuΓ) |Ωi

∈ Vi and therefore, by (8.2) and (3.4),

si(uΓ,uΓ)

= µiai (SHuuΓ,SHuuΓ) + λi 〈div(SHuuΓ), div(SHuuΓ)〉L2(Ωi)

= µiai (SHuuΓ,HuΓ) + λi 〈div(SHuuΓ), div(HuΓ)〉L2(Ωi)

≤ µiai (SHuuΓ,SHuuΓ)1/2 ai (HuΓ,HuΓ)1/2

+λi 〈div(SHuuΓ), div(SHuuΓ)〉1/2

L2(Ωi)
〈div(HuΓ), div(HuΓ)〉1/2

L2(Ωi)

≤ µi

(
1 +

λi

µi

d

2

)
ai (SHuuΓ,SHuuΓ)1/2 ai (HuΓ,HuΓ)1/2

≤ µi

2
ai (SHuuΓ,SHuuΓ) +

µi

2

(
1 +

λi

µi

d

2

)2

ai (HuΓ,HuΓ) .

Therefore, using Lemma 1.3,

si(uΓ,uΓ)

≤ µi

(
1 +

λi

µi

d

2

)2

ai (HuΓ,HuΓ)

≤ 2

(
1 +

λi

µi

d

2

)2

µi ‖∇HuΓ‖2
L2(Ωi)

.

�

Remark 8.2 We can assume that λi/µi is bounded, since the displacement-
only formulation is used only on subdomains that are compressible enough.
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The other step that deserves to be reexamined, in this new context, is the
bound on the Γ-norm of I − TH , Lemma 5.1. Unfortunately, we don’t know
how to extend this result for the case with heterogeneous coefficients (cf. Chap-
ter 6). So we assume, for a moment, that we have constant coefficients: λi = λ
and µi = µ, i = 1, . . . , N . Of course this is an unreasonable assumption, since
the only motivation for combining the two formulations is to handle highly
heterogeneous coefficients. Once again, the actual performance of the method
in all our numerical experiments indicates that this limitation is probably an
artifact of our proof and not intrinsic to the algorithm.

Assuming constant coefficients, the proof of Lemma 5.1 requires no changes.
We only remark that if LH is reduced so as not to include any enrichment sup-
ported on

⋃
i∈D Ωi, then βH will not be affected. Depending on the geometry

of the problem, this observation may significantly reduce the dimension of the
coarse problem.
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Chapter 9

Continuous Pressure Spaces

Our main algorithm, in Chapter 4, requires the use of a discrete pressure
space that includes the discontinuous functions χΩi

, which are 1 on Ωi and
zero elsewhere. That, of course, precludes the use of Taylor-Hood or MINI
finite elements, or any other elements that use a continuous approximation for
the pressure (see, e.g., [10] or [23]). In this chapter, we present an extension
of our algorithm which is suitable for this kind of discretization. The numeri-
cal experiments, reported in Chapter 10, have shown fairly good convergence
away from the incompressible limit, but we have not been able to provide a
supporting theory.

When continuous pressures are used, there are pressure degrees of freedom
that are directly associated with the geometrical interface Γ. Trying to include
them in the group of interface variables associated with WΓ does not appear
to be a promising approach: imposing essential boundary conditions for the
pressure would result in non-physical problems, since, on the continuous level,
pressures are only in L2 and their traces are not defined.

Our approach, instead, is to construct a preconditioner for the continuous
model based on our preconditioner for the discontinuous model. The latter
is applied to a broken problem, defined by dropping the pressure continuity
requirement only across the interface Γ.

Let K
(i)
C be the local stiffness matrices associated with the continuous finite

element model. The global stiffness matrix KC is then given by

KC =

N∑
i=1

R
(i)
C

T
K

(i)
C R

(i)
C = RT

C

 K
(1)
C

. . .

K
(N)
C

RC ,
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where R
(i)
C is a 0,1 restriction matrix mapping local degrees of freedom into

their global representation and RT
C =

[
R

(1)
C

T · · · R
(N)
C

T
]
. We note that

each column of RC associated with a pressure degree of freedom has as many
1’s as the number of subdomains sharing that degree of freedom (two or more
on the interface, one in the interior of subdomains).

We can define a broken stiffness matrix by subassembling the same local
blocks K

(i)
C with different restriction and extension matrices,

KB =

N∑
i=1

R
(i)
B

T
K

(i)
C R

(i)
B = RT

B

 K
(1)
C

. . .

K
(N)
C

RB,

where RT
B =

[
R

(1)
B

T · · · R
(N)
B

T
]
. The matrix KB represents a model in

which the pressure is still continuous inside each subdomain, but is discon-
tinuous across the interface. The difference between R

(i)
C and R

(i)
B is that the

former uses a single global representation for a pressure degree of freedom
lying on the interface, therefore enforcing continuity, while the latter adopts
multiple representations of these degrees of freedom, allowing jumps. Each
column of RB associated with a pressure degree of freedom is a column of the
identity matrix, i.e., has only one 1.

Let RC
B be a 0,1 matrix that takes broken pressure residuals into continuous

pressure ones, by adding up multiple values for pressure degrees of freedom on
the interface Γ; the values of the remaining pressure and displacement degrees
of freedom are unchanged. The rows of RC

B associated with interface pressure
degrees of freedom contain as many 1’s as the number of subdomains sharing
that degree of freedom, while the other rows are rows of the identity. We note
that

KC = RC
BKBR

C
B

T
.

We also define DC = RC
BR

C
B

T
, which is a diagonal matrix with 1’s on

its diagonal except for the entries associated with interface pressure degrees
of freedom, which contain the number of subdomains sharing that degree of
freedom. This is analogous to the matrices Di in Section 4.2, which were
defined in terms of counting functions δi.

The preconditioner QC that we propose for KC is now

QC = D−1
C RC

BQBR
C
B

T
D−1

C ,

where QB is a preconditioner for KB. The application of QC is therefore
composed of three steps: each component of the continuous residual is evenly
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partitioned among all subdomains that contain it (corresponding to the term

RC
B

T
D−1

C ); the broken preconditioner is then applied and, finally, the broken
correction vector is averaged in order to obtain a continuous correction (cor-
responding to the term D−1

C RC
B).

Remark 9.1 We expect that a different choice for DC (something in the lines
of (6.1)) should be necessary when dealing with discontinuous coefficients with
large jumps. We have not performed experiments on such problems.

We know how to construct a preconditioner Q for the matrix S, the Schur
complement of KB (see Chapters 3 and 4). QB can be constructed from Q
using the following observation (see [52, page 141]). The LDLT factorization

of KB =

[
KII KIΓ

KΓI KΓΓ

]
is

KB =

[
I 0

KΓIK
−1
II I

] [
KII 0
0 S

] [
I K−1

II KIΓ

0 I

]
,

where S = KΓΓ −KΓIK
−1
II KIΓ. By defining

QB =

[
I −K−1

II KIΓ

0 I

] [
K−1

II 0
0 Q

] [
I 0

−KΓIK
−1
II I

]
, (9.1)

we have

QBKB =

[
I −K−1

II KIΓ

0 I

] [
I 0
0 QS

] [
I K−1

II KIΓ

0 I

]
.

σ(QBKB), the spectrum of QBKB, is therefore {1}∪σ(QS), which proves that
QB is a good preconditioner for KB, provided that Q is a good preconditioner
for S.

As mentioned in Subsection 7.1.1, in our actual implementation, we have
not used a special basis for the pressure. Instead, we have enforced the zero
average through Lagrange multipliers. Similarly, Q̃B should be defined as

Q̃B =
[
RD

B
T

RS
B

T
] [

I −K̃−1
DDK̃DΓR

Γ
S

0 I

] [
K̃−1

DD 0
0 Q

]
[

I 0

−RΓ
S

T
K̃ΓDK̃

−1
DD I

] [
RD

B

RS
B

] , (9.2)
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where

K̃DD =

 K̃
(1)
DD

. . .

K̃
(N)
DD

 ,
K̃ΓD =

[
K̃

(1)
ΓD · · · K̃

(N)
ΓD

]
,

K̃DΓ = K̃T
ΓD

and K̃
(i)
DD and K̃

(i)
ΓD are defined as in Subsection 7.1.1. Here, RD

B is the 0,1
restriction matrix that extracts from a residual vector in the broken space
those of its components which are relevant to the Dirichlet problem: all pres-
sures and the interior displacements. The entries associated with the Lagrange
multipliers are set to zero. RΓ

S extracts, from a vector containing interface
displacements and constant pressures, only the interface displacement entries.
Finally, RS

B
T

maps from the space of interface displacements and constant pres-
sures into the entire broken space: interface displacement are simply copied;
constant pressures are mapped into their representation in terms of the nodal
basis for the pressures.

It can be shown that if Q is replaced with S−1 in (9.2), then Q̃B = K̃−1
B .
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Chapter 10

Numerical Experiments

The algorithms described in this dissertation were implemented in C, using the
parallel numerical library PETSc (see [2, 3, 4]). PETSc provides fundamental
parallel objects and methods, handles all message passing, and also ensures
great code portability.

Our code is currently limited to two-dimensional rectangular domains, par-
titioned into rectangular subdomains. In all our experiments, the domain is the
unit square [0, 1]× [0, 1], decomposed into

√
N ×√N square subdomains. We

impose Dirichlet conditions on the entire boundary. The direct solver used for
the local problems is PETSc’s LU, with PETSc’s nested dissection for ordering.
Except where otherwise stated, in each experiment the domain is uniformly
triangulated into square Q2−P1 elements (or simply Q2, where only displace-
ments are involved). The right-hand side of the Schur-complement problem
is a random vector and the initial guess is chosen so that the initial error is
in the range of I − TH . The Krylov method we use is PCG and the stopping
criterion is ‖rn‖2/‖r0‖2 ≤ 10−6, where rn is the residual at the n−th iterate.
The coarse space is the one based on the matrix L2

H (see Section 4.1).

All the experiments reported here were run on Seaborg, an IBM SP RS/6000
of NERSC (the National Energy Research Scientific Computing Center of the
Department of Energy’s Office of Science). This is a distributed memory
machine with 6080 compute processors distributed among 380 compute nodes
with 16 processors each. Each node has at least 16 GBytes of memory, shared
among its processors.
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A. Fixed number of subdomains: N = 4× 4

mesh size local prob. dofs iter. λmax time (sec.)
160 × 160 40 × 40 282,882 17 7.21 11.6
240 × 240 60 × 60 635,522 19 8.30 30.6
320 × 320 80 × 80 1,128,962 20 9.12 64.1
400 × 400 100 × 100 1,763,202 20 9.78 110.5
480 × 480 120 × 120 2,538,242 20 10.34 174.6

B. Fixed local prob.: 80× 80 elements (71,042 degrees of freedom)

mesh size N dofs iter. λmax time (sec.)
320 × 320 4 × 4 1,128,962 20 9.12 64.1
640 × 640 8 × 8 4,510,722 21 9.36 67.7
960 × 960 12 × 12 10,145,282 23 9.44 72.8

1280 × 1280 16 × 16 18,032,642 23 9.48 75.9

Table 10.1: Numerical results for the saddle-point implementation applied to
an almost-incompressible problem (ν = 0.499).

10.1 Saddle-Point Implementation

Our first implementation of our algorithm (both in the order of this presenta-
tion and historically), which we refer to as the saddle-point implementation,
is one closely following the description in Chapter 4, with the modification
discussed in Subsection 7.1.1 in order to avoid the use of a special basis for the
pressure. The coarse and local problems require the solution of saddle-point
systems.

Table 10.1 and Figure 10.1 collect the results of a set of experiments on
an almost-incompressible problem: the Lamé parameters are chosen to be
µ = 1.0 and λ = 499.0, to yield a Poisson ratio of 0.499. In part A of the
table, we show a series of experiments in which the number of subdomains
is held constant, 4 × 4, and the size H/h of the local problems varies. The
column “mesh size” lists the total number of elements; “local prob.”, the size
of the local problems, i.e., the number of elements in each subdomain; “dofs”,
the total number of degrees of freedom; “iter.”, the number of PCG iterations;
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Figure 10.1: Condition number of the preconditioned operator, as a function
of H/h for fixed N = 4× 4 (left; cf. Table 10.1, part A) and as a function of
N for fixed H/h = 80 (right; cf. Table 10.1, part B).

“λmax”, an estimate of the maximum eigenvalue of the preconditioned operator
T and finally “time (sec.)”, the CPU time spent for the experiments. We note
that the estimate for the smallest eigenvalue of the preconditioned operator is
not reported, since in all our experiments we found it to be very close to 1.0,
the theoretical lower bound.

We can observe a weak growth in the condition number of T as the size of
the local problems increase (see also Figure 10.1, left). This is in accordance
with our main result, equation (5.3).

Part B of Table 10.1 is a parallel scalability experiment: the size of the
local problems is held constant (80× 80 elements, 71,042 degrees of freedom)
and the number of subdomains N varies. The condition number of the pre-
conditioned operator stays close to constant, as it can also be seen in the right
in Figure 10.1. This also agrees with the bound in (5.3).

Similar results are obtained when this code is applied to perfectly incom-
pressible problems, compressible problems or problems with discontinuous co-
efficients (see also results in [24]). We do not report these here since we prefer,
instead, the positive definite implementation of the algorithm.

10.2 Positive Definite Implementation

A second implementation of our algorithm, which involves only the solution
of positive definite local and coarse problems, was used in the experiments
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saddle-
point

positive-
definite

iter. 12 12
λmax 9.12 9.12

time (sec.) 91.7 87.1
error 1.03× 10−5 1.03× 10−5

diff. 1.35× 10−10

Table 10.2: Comparison of saddle-point and positive definite implementations.

reported in this section (cf. Section 7.2). We recall that, in this formulation,
we only have displacement degrees of freedom after the early elimination of
all the pressures. Nevertheless, the stiffness matrix depends on the choice of
finite element space for the pressures. The pair Q2 − P1 was used here.

10.2.1 Validating the Positive Definite Implementation

In Section 7.2, we mentioned that we can prove the equivalence of the saddle-
point implementation and the positive definite one. Here we also present some
numerical evidence of this fact.

We consider again an almost incompressible problem with µ = 1.0 and λ =
499.0. The right hand-side and boundary condition are now chosen to reflect

the discretization of a continuous problem with the solution

[
sin(x+ y)
cos(x− y)

]
.

We use a mesh of 320 × 320 elements divided into 4 × 4 subdomains. We
compare the solutions, after 12 PCG iterations, of both implementations (see
Table 10.2). The l∞-norm of the difference between the numerical solution and
the nodal interpolant of the continuous solution is given in the row “error”.
The row “diff.” shows the l∞-norm of the difference between the two numerical
solutions. The fact that the latter is much smaller than the former indicates
that both methods actually produce the same iterates (up to round-off and
related effects). We also observe that the CPU time for the positive definite
implementation is smaller. This is to be expected, since the local problems in
the positive definite implementation have fewer unknowns and, most impor-
tantly, are positive definite and therefore easier to solve by direct methods.
However, if one compares Tables 10.1 and 10.3, one finds both examples and
counterexamples of this trend. We believe that upon accurate time profiling
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A. Fixed number of subdomains: N = 4× 4

mesh size local prob. dofs iter. λmax time (sec.)
160 × 160 40 × 40 206,082 17 7.21 10.5
240 × 240 60 × 60 462,722 18 8.30 26.3
320 × 320 80 × 80 821,762 19 9.12 65.6
400 × 400 100 × 100 1,283,202 19 9.78 96.2
480 × 480 120 × 120 1,847,042 19 10.34 188.8

B. Fixed local prob.: 80× 80 elements (51,842 degrees of freedom)

mesh size N dofs iter. λmax time (sec.)
320 × 320 4 × 4 821,762 19 9.12 65.6
640 × 640 8 × 8 3,281,922 20 9.33 69.5
960 × 960 12 × 12 7,380,482 21 9.44 72.1

1280 × 1280 16 × 16 13,117,442 21 9.48 73.8
1600 × 1600 20 × 20 20,492,802 21 9.49 75.5

Table 10.3: Numerical results for the positive definite implementation applied
to an almost-incompressible problem (ν = 0.499).

and a careful tuning of the direct solvers, the positive definite implementation
will prove itself consistently and considerably faster. It is also much easier to
code.

10.2.2 Almost-Incompressible problems

We consider once again the same almost-incompressible problem, now solved
using the positive definite implementation of the algorithm. The results are
summarized in Table 10.3 and Figure 10.2, which, not surprisingly, closely
resemble Table 10.1 and Figure 10.1. The same observations about the scal-
ability of the method and its polylogarithmic dependence on the size of the
local problems apply to this series of experiments as well.

It is interesting to notice that, in our estimate (5.3), the inf-sup constant
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Figure 10.2: Condition number of the preconditioned operator, as a function
of H/h for fixed N = 4× 4 (left; cf. Table 10.3, part A) and as a function of
N for fixed H/h = 80 (right; cf. Table 10.3, part B).

of the coarse space, βH , appears in the form

β2
H

1 + σ2
+
µ

λ
.

Assuming that the local mixed finite element spaces are inf-sup stable (and
therefore σ is uniformly bounded), this expression indicates that the inf-sup
stability of the coarse problem will play an important role when (and only
when) λ/µ is large. That is what we verify in the next two experiments.

In table 10.4 we present again a scalability experiment for an almost-incom-
pressible problem. This time, though, we use a minimal coarse space, based on
L0

H , which we believe not to be inf-sup stable (see [46]). Unlike the previous
examples, the method is no longer scalable with this poor coarse space (see
also the left side of Figure 10.3).

The same poor coarse space, when used in a compressible problem, per-
forms quite satisfactorily. Table 10.5 summarizes the results for a scalability
test of the algorithm with a poor coarse space when solving a problem with
steel (ν = 0.275). See also the right side of Figure 10.3.
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Fixed local prob.: 80× 80 elements (51,842 degrees of freedom)

mesh size N dofs iter. λmax time (sec.)
320 × 320 4 × 4 821,762 20 13.13 65.4
640 × 640 8 × 8 3,281,922 27 35.01 77.3
960 × 960 12 × 12 7,380,482 34 57.24 86.4

Table 10.4: Numerical results for the positive definite implementation applied
to an almost-incompressible problem, ν = 0.499. A poor coarse space, based
on the matrix L0

H , is used and scalability is lost.

Fixed local prob.: 80× 80 elements (51,842 degrees of freedom)

mesh size N dofs iter. λmax time (sec.)
320 × 320 4 × 4 821,762 17 11.55 61.3
640 × 640 8 × 8 3,281,922 20 12.17 67.9
960 × 960 12 × 12 7,380,482 20 12.36 69.2

1280 × 1280 16 × 16 13,117,442 19 12.35 68.4

Table 10.5: Numerical results for the positive definite implementation applied
to a compressible problem, ν = 0.275. A poor coarse space, based on the
matrix L0

H , is used, but scalability is preserved.
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Figure 10.3: Condition number of the preconditioned operator, as a function
of N for fixed H/h = 80. In this set of experiments, a poor coarse space has
been used. At the left, the results for an almost-incompressible problem; cf.
Table 10.4. At the right, for a compressible one; cf. Table 10.5.

10.2.3 Heterogeneous Problems with Jumps in the Co-

efficients

In this subsection, we present the results of numerical experiments on a hetero-
geneous problem with discontinuous coefficients. Our model problem is a com-
posite material comprised of steel, aluminum and rubber in a checkerboard-like
arrangement, as depicted in Figure 10.4.

The results, collected in Table 10.6 and graphically represented in Fig-
ure 10.5, present the same features as the ones obtained for a homogeneous
domain. This is strong evidence that our inability to extend Theorem 5.4 to
the heterogeneous case is only an artifact of the structure of our proof and not
an intrinsic limitation of the method.

We also note that the last row of Table 10.6 reports an experiment involving
almost 100 million variables and 2,000 subdomains, showing that our method
is scalable when applied to really large problems.
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rubber−like

steel−like

aluminum−like

Figure 10.4: Heterogeneous domain with large coefficient jumps. The Lamé
parameters for the aluminum-like material, µ = 2.6 and λ = 5.6, and for the
steel-like material, µ = 8.2 and λ = 10, are typical; the values for the rubber-
like material, µ = 0.01 and λ = 0.99, were “invented” so as to produce a
Poisson ratio of 0.495. (The values for µ and λ are expressed in 105kg/cm2.)

A. Fixed number of subdomains: N = 8× 8

mesh size local prob. dofs iter. λmax time (sec.)
320 × 320 40 × 40 821,762 20 8.60 12.5
480 × 480 60 × 60 1,847,042 22 10.08 31.2
640 × 640 80 × 80 3,281,922 23 11.22 72.3
800 × 800 100 × 100 5,126,402 23 12.14 115.6

B. Fixed local prob.: 80× 80 elements (51,842 degrees of freedom)

mesh size N dofs iter. λmax time (sec.)
640 × 640 8 × 8 3,281,922 23 11.22 72.3
960 × 960 12 × 12 7,380,482 22 10.67 71.7

1280 × 1280 16 × 16 13,117,442 22 10.78 74.4
1600 × 1600 20 × 20 20,492,802 22 10.76 76.2
2560 × 2560 32 × 32 52,449,282 22 10.70 88.7
3520 × 3520 44 × 44 99,151,362 21 10.64 102.9

Table 10.6: Numerical results for the positive definite implementation applied
to a problem with heterogeneous coefficients with large jumps (see Figure 10.4).
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Figure 10.5: Condition number of the preconditioned operator, as a function
of H/h for fixed N = 8× 8 (left; cf. Table 10.6, part A) and as a function of
N for fixed H/h = 80 (right; cf. Table 10.6, part B).

10.3 Combined Mixed and Displacement-Only

Formulations

We now report another set of experiments on the same heterogeneous problem
described at the end of the previous section. This time, we use different
finite element formulations for the almost incompressible regions (rubber) and
the compressible ones (aluminum and steel): mixed and pure-displacement
formulations, respectively; see Chapter 8.

We note that the results in Table 10.7 and Figure 10.6 are almost identical
to those on Table 10.6 and Figure 10.5. This shows that combining different
formulations in one problem is a perfectly viable alternative for our method.

In our implementation of the combined approach, we used the positive-
definite implementation for the subdomains with mixed formulation, because
of its greater simplicity (see Section 7.2). Nevertheless, the use of the saddle-
point implementation would also be possible and is expected to produce iden-
tical results (cf. Subsection 10.2.1).
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A. Fixed number of subdomains: N = 8× 8

mesh size local prob. dofs iter. λmax time (sec.)
320 × 320 40 × 40 821,762 20 8.61 12.2
480 × 480 60 × 60 1,847,042 22 10.10 32.0
640 × 640 80 × 80 3,281,922 23 11.23 75.2
800 × 800 100 × 100 5,126,402 23 12.15 111.0

B. Fixed local prob.: 80× 80 elements (51,842 degrees of freedom)

mesh size N dofs iter. λmax time (sec.)
640 × 640 8 × 8 3,281,922 23 11.23 75.2
960 × 960 12 × 12 7,380,482 23 10.68 75.5

1280 × 1280 16 × 16 13,117,442 22 10.79 82.0
1600 × 1600 20 × 20 20,492,802 22 10.76 92.9

Table 10.7: Combined mixed and pure-displacement implementation applied
to a problem with heterogeneous coefficients with large jumps.
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Figure 10.6: Condition number of the preconditioned operator, as a function
of H/h for fixed N = 8× 8 (left; cf. Table 10.6, part A) and as a function of
N for fixed H/h = 80 (right; cf. Table 10.6, part B).
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A. Fixed number of subdomains: N = 4× 4

broken run continuous run√
l.p. iter. λmax tbroken iter. λmin λmax drop tcont ttotal
40 22 8.98 10.4 21 0.73 8.98 1.6e-5 11.1 29.8
60 23 10.36 28.2 22 0.73 10.36 1.6e-5 30.0 81.6
80 24 11.39 55.5 23 0.73 11.39 2.4e-5 59.2 170.0

100 25 12.24 96.8 23 0.73 12.24 3.0e-5 98.2 305.9

B. Fixed local prob.: 80× 80 elements

broken run continuous run√
N iter. λmax tbroken iter. λmin λmax drop tcont ttotal
4 24 11.39 55.5 23 0.73 11.39 2.4e-5 59.2 170.0
8 31 12.07 74.0 28 0.73 12.07 7.1e-5 74.5 206.1

12 31 12.29 75.4 29 0.73 12.29 9.6e-5 78.2 212.4

Table 10.8: Continuous pressure implementation applied to a compressible
problem (steel, ν = 0.275).

10.4 Continuous Pressures

In this section, we present the results of our numerical experiments for the
method described in Chapter 9, to which we will refer as the continuous pre-
conditioner. In this set of experiments, we used the Taylor-Hood pair of finite
elements; cf. Section 2.2.

Tables 10.8, 10.9, and 10.10 list the results for a compressible problem with
a Poisson ratio ν = 0.275 (typical of steel), and two almost-incompressible
problems: one with ν = 0.485 (typical of rubber) and the other with ν =
0.499. Part A of each table shows a series of experiments in which the number
of subdomains is fixed and the size of the local problem increases; the first
column, “

√
l.p.”, lists the square root of the number of elements in the local

problems for each experiment. Part B shows the results for experiments with
increasing number of subdomains N and a local problem of fixed size.

Each numerical experiment in this section (corresponding to one row in a
table) involves two solves. The first one is for the solution of a broken Taylor-
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A. Fixed number of subdomains: N = 4× 4

broken run continuous run√
l.p. iter. λmax tbroken iter. λmin λmax drop tcont ttotal
40 21 7.39 10.0 31 0.066 7.39 9.6e-6 16.3 34.4
60 22 8.48 26.9 33 0.066 8.48 1.4e-5 44.5 94.9
80 22 9.31 51.6 33 0.067 9.31 7.6e-5 85.2 191.1

100 23 9.98 88.6 34 0.067 9.98 8.9e-5 143.6 341.6

B. Fixed local prob.: 80× 80 elements

broken run continuous run√
N iter. λmax tbroken iter. λmin λmax drop tcont ttotal
4 22 9.31 51.6 33 0.067 9.31 7.6e-5 85.2 191.1
8 27 9.58 63.9 43 0.067 9.60 1.2e-4 113.3 233.9

12 28 9.68 67.1 44 0.066 9.69 8.9e-5 118.2 243.5

Table 10.9: Continuous pressure implementation applied to an almost-
incompressible problem (rubber, ν = 0.485).
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A. Fixed number of subdomains: N = 4× 4

broken run continuous run√
l.p. iter. λmax tbroken iter. λmin λmax drop tcont ttotal
40 22 7.39 10.4 31 0.0048 7.39 2.8e-2 16.3 35.0
60 23 8.48 27.6 33 0.0048 8.48 4.3e-2 44.0 95.2
80 24 9.30 55.1 32 0.0048 9.30 2.6e-1 81.2 190.1

100 24 9.97 58.9 29 0.0048 9.97 2.9e-1 62.9 324.5

B. Fixed local prob.: 80× 80 elements

broken run continuous run√
N iter. λmax tbroken iter. λmin λmax drop tcont ttotal
4 24 9.30 55.1 32 0.0048 9.30 2.6e-1 81.2 190.1
8 29 9.61 68.5 44 0.0048 9.61 4.0e-1 115.5 241.1

12 30 9.69 72.5 45 0.0048 9.69 6.6e-1 122.0 254.4

Table 10.10: Continuous pressure implementation applied to an almost-
incompressible problem (ν = 0.499).
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Hood problem using the saddle-point implementation of our main algorithm;
we remark that the positive definite implementation would not be of practical
use here, since the continuous pressure cannot be eliminated at the element
level. This broken solve is used as a benchmark for measuring the performance
of the continuous preconditioner. We note that its setup phase is also part
of the setup phase for the continuous preconditioner, since the latter requires
the application of our main algorithm to the broken problem; cf. Chapter 9.
The second solve is, of course, the one for the problem with fully continuous
pressure.

For the broken solve, we list the number of PCG iterations required for the
norm of the residual to drop to 10−8 of its original value (column “iter.”), an
estimate of the maximum eigenvalue of the preconditioned operator (“λmax”),
and the time, in seconds, spent in the iteration (“tbroken”). For the continuous
solve, the columns “iter.”, “λmax” and “tcont” are the quantities analogous
to those just described, except for the fact that the iteration count refers
to GMRES iterations. We include the estimated minimum eigenvalue of the
preconditioned operator (“λmin”); unlike in all experiments reported so far,
the value of the minimum eigenvalue is now not close to 1. The convergence of
GMRES is monitored in terms of the norm of the preconditioned residual (the
iteration count in “iter.” reflects the number of GMRES iterations required
for the norm of the preconditioned residual to drop to 10−8 of its original
value.) We now include, in the column “drop”, the ratio of final and initial
unpreconditioned residuals. Once again, similar information is not provided
in other tables because the drops of the preconditioned and unpreconditioned
residuals have always been of the same order of magnitude, elsewhere.

Finally, we also include in these tables the total time spent for the assembly
of the problem, the setup of the preconditioners and the two iterative solves.
This is listed under the header “ttotal”.

Table 10.8 shows our results for a compressible material such as steel. We
note that the minimum eigenvalue of the preconditioned operator is always
the same, 0.73, for all the continuous runs and that the maximum eigenvalue
for the continuous run is the same as the one for the broken run in every row
of the table. Unexpectedly, the number of iterations is slightly smaller for the
continuous runs, but we point out that the norm of the residuals dropped only
4 to 5 orders of magnitude for the continuous runs, while it dropped by 8 for
the broken one. The time required for a continuous run turns out to be just
slightly over the one required for the corresponding broken run.

Table 10.9, which lists results for an almost-incompressible material such
as rubber, shows similar features. The main difference is that the minimum
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eigenvalue for the continuous problem is now one order of magnitude smaller
and the number of iterations grows accordingly.

The experiments with ν = 0.499, reported in Table 10.10, show a mini-
mum eigenvalue still an order of magnitude smaller for the continuous runs.
Although the iteration counts are similar to those of Table 10.9, the unpre-
conditioned residual has dropped only one or two orders of magnitude in this
set of experiments.

We can conclude from these experiments that the proposed preconditioner
is efficient for compressible problems and even for rubber, but that, unlike
our methods for discontinuous pressures, its performance deteriorates as we
approach the incompressible limit. We also note that some of the patterns that
these tables exhibit — in each table, the values in the two columns named
“λmax” are almost identical, as well as all the entries in column “λmin” —
are worth our attention. We consider unlikely that such patterns emerge by
chance; the understanding of their theoretical justification might lead to an
improved algorithm.

10.5 A Few Remarks on the Experiments

The results presented in this chapter show that our method is suitable for the
solution of large elasticity problems. The method is scalable and produces
extremely well-conditioned operators, even in the presence of large jumps in
the coefficients. All the variants of the method perform satisfactorily for the
discountinuous pressure problems. The preconditioner for the continuous pres-
sure problem shows a narrower range of applicability, but it might still be
competitive away from the incompressible limit.

We notice that the computational effort required for the solution of a mixed
elasticity problem by this method is not much greater than one required to
solve a Poisson problem of similar dimension with the balancing Neumann-
Neumann preconditioner.

In the previous tables, we reported the CPU time required for each ex-
periment. These are not precise numbers: there are many issues involved in
accurate profiling, which we did not attempt to tackle; see, e.g., [3, Chap-
ter 12]. Also, these running times could certainly be improved by fine tuning
of the code and, in particular, by a careful selection of the direct solvers used
for the local problems. Despite all these limitations, and with this warning,
we have included this information in order to provide the reader a first order
approximation of the computational effort involved in each experiment.
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