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ABSTRACT
The current standard correlation coefficient used

in the analysis of microarray data, including gene
expression arrays, was introduced in [1]. Its formu-
lation is rather arbitrary. We give a mathematically
rigorous derivation of the correlation coefficient of
two gene expression vectors based on James-Stein
Shrinkage estimators. We use the background as-
sumptions described in [1], also taking into account
the fact that the data can be treated as transformed
into normal distributions. While [1] uses zero as an
estimator for the expression vector mean µ, we start
with the assumption that for each gene, µ is itself
a zero-mean normal random variable (with a priori
distribution N (0, τ2)), and use Bayesian analysis to
update that belief, to obtain a posteriori distribu-
tion of µ in terms of the data. The estimator for µ,
obtained after shrinkage towards zero, differs from
the mean of the data vectors and ultimately leads to
a statistically robust estimator for correlation coef-
ficients.

To evaluate the effectiveness of shrinkage, we con-
ducted in silico experiments and also compared sim-
ilarity metrics on a biological example using the data
set from [1]. For the latter, we classified genes
involved in the regulation of yeast cell-cycle func-
tions by computing clusters based on various defini-
tions of correlation coefficients, including the one us-
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ing shrinkage, and contrasting them against clusters
based on the activators known in the literature. In
addition, we conducted an extensive computational
analysis of the data from [1], empirically testing the
performance of different values of the shrinkage fac-
tor γ and comparing them to the values of γ corre-
sponding to the three metrics adressed here, namely,
γ = 0 for the Eisen metric, γ = 1 for the Pearson cor-
relation coefficient, and γ computed from the data
for the Shrinkage metric.

The estimated “false-positives” and “false-
negatives” from this study indicate the relative
merits of clustering algorithms based on different
statistical correlation coefficients as well as the
sensitivity of the clustering algorithm to small
perturbations in the correlation coefficients. These
results indicate that using the shrinkage metric
improves the accuracy of the analysis.

All derivation steps are described in detail; all
mathematical assertions used in the derivation are
proven in the appendix.

[1] Eisen, M.B., Spellman, P.T., Brown, P.O., and
Botstein, D. (1998), PNAS USA 95, 14863–14868.

1 Background

Traditionally, biology has proceeded as an observational sci-
ence. Robert Hooke, whose work “Micrographia” of 1665
included the first identification of biological cells through his
microscopical investigations, had said, “The truth is, the sci-
ence of Nature has already been too long made only a work of

1



1 BACKGROUND 2

the brain and the fancy. It is now high time that it should
return to the plainness and soundness of observations on
material and obvious things.” Recently, we have seen an un-
precedented progress in our observational and experimental
abilities, allowing us to understand the structure of a largely
unobservable transparent cell. The most prominent step in
this direction has been through microarray-based gene ex-
pression analysis, providing us with the ability to quantify
the transcriptional states of cells.

The most interesting insight can be obtained from tran-
scriptome abundance data within a single cell under differ-
ent experimental conditions. In the absence of technology to
provide one with such a detailed picture, we have to make do
with mRNA collected from a small population of cells, even
when individual cells within the population may not be com-
pletely synchronized. Furthermore, these mRNAs will only
give a partial picture, supported only by those genes that we
are already familiar with and possibly missing many crucial
undiscovered genes. Of course, without the proteomic data,
transcriptomes tell less than half the story. Nonetheless, it
goes without saying that microarrays have already revolu-
tionized our understanding of biology even though they only
provide occasional, noisy, unreliable, partial, and occluded
snapshots of the transcriptional states of cells.

If one hypothesizes that the number of potential genes
involved in cellular processes is relatively large compared
to the regulatory elements and their effective combinations
responsible for controlling these genes, then the transcrip-
tional state-space should be rather low-dimensional com-
pared to its apparent dimension. As a result, understanding
this structure accurately from transcriptome data has many
non-trivial implications to functional understanding of the
cell. Partitioning genes into closely related groups has thus
become the key mathematical first step in practically all sta-
tistical analyses of microarray data.

Traditionally, algorithms for cluster analysis of genome-
wide expression data from DNA microarray hybridization
are based upon statistical properties of gene expressions and
result in organizing genes according to similarity in pattern
of gene expression. These algorithms display the output
graphically, often in a binary tree form, conveying the clus-
tering and the underlying expression data simultaneously. If
two genes belong to a cluster (or, equivalently, if they belong
to a subtree of small depth) then one may infer a common
regulatory mechanism for the two genes or interpret this in-
formation as an indication of the status of cellular processes.
Furthermore, coexpression of genes of known function with
novel genes may lead to a discovery process for characteriz-
ing unknown or poorly characterized genes. In general, since
false-negatives (where two coexpressed genes are assigned to

distinct clusters) may cause the discovery process to ignore
useful information for certain novel genes, and false-positives
(where two independent genes are assigned to the same clus-
ter) may result in noise in the information provided to the
subsequent algorithms used in analyzing regulatory patterns,
it is important that the statistical algorithms for clustering
be reasonably robust. Unfortunately, as the microarray ex-
periments that can be carried out in an academic laboratory
for a reasonable cost are small in number and suffer from
experimental noise, often a statistician must resort to un-
conventional algorithms to deal with small-sample data.

A popular and one of the earliest clustering algorithms
reported in the literature was introduced in [1]. In this pa-
per, the gene-expression data were collected on spotted DNA
microarrays [2] and were based upon gene expression in the
budding yeast Saccharomyces cerevisiae during the diauxic
shift [3], the mitotic cell division cycle [4], sporulation [5],
and temperature and reducing shocks. In all experiments,
RNA from experimental samples (taken at selected times
during the process) was labeled during reverse transcription
with the red-fluorescent dye Cy5 and was mixed with a ref-
erence sample labeled in parallel with the green-fluorescent
dye Cy3. After hybridization and appropriate washing steps,
separate images were acquired for each fluorophore, and flu-
orescence intensity ratios were obtained for all target ele-
ments. The experimental data were given in an M ×N ma-
trix structure, in which the M rows represented all genes for
which data had been collected, the N columns represented
individual array experiments (e.g., single time points or con-
ditions), and each entry represented the measured Cy5/Cy3
fluorescence ratio at the corresponding target element on the
appropriate array. All ratio values were log transformed to
treat inductions and repressions of identical magnitude as
numerically equal but opposite in sign. It was assumed that
the raw ratio values followed log-normal distributions and
hence, the log-transformed data followed normal distribu-
tions. While our mathematical derivations will rely on this
assumption for the sake of simplicity, we note that our ap-
proach can be generalized in a straightforward manner to
deal with other situations where this assumption is violated.

The gene similarity metric employed was a form of corre-
lation coefficient. Let Gi be the (log-transformed) primary
data for gene G in condition i. For any two genes X and Y
observed over a series of N conditions, the classical similarity
score based upon Pearson correlation coefficient is:

S(X, Y ) =
1
N

N∑

i=1

(
Xi −Xoffset

ΦX

)(
Yi − Yoffset

ΦY

)
,
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where

ΦG
2 =

N∑

i=1

(Gi −Goffset)
2

N

and Goffset is the estimated mean of the observations, i.e.,

Goffset = Ḡ =
1
N

N∑

i=1

Gi.

Note that ΦG is simply the (rescaled) estimated standard de-
viation of the observations. In the analysis presented in [1],
“values of Goffset which are not the average over observations
on G were used when there was an assumed unchanged or
reference state represented by the value of Goffset , against
which changes were to be analyzed; in all of the examples
presented there, Goffset was set to 0, corresponding to a flu-
orescence ratio of 1.0.” To distinguish this modified correla-
tion coefficient from the classical Pearson correlation coeffi-
cient, we shall refer to it as Eisen correlation coefficient. Our
main innovation is in suggesting a different value for Goffset ,
namely Goffset = γḠ, where γ is allowed to take a value
between 0.0 and 1.0. Note that when γ = 1.0, we have the
classical Pearson correlation coefficient and when γ = 0.0,
we have replaced it by Eisen correlation coefficient. For a
non-unit value of γ, the estimator for Goffset = γḠ can be
thought of as the unbiased estimator Ḡ being shrunk towards
the believed value for Goffset = 0.0. We address the follow-
ing questions: What is the optimal value for the shrinkage
parameter γ from a Bayesian point of view? How do the
gene expression data cluster as the correlation coefficient is
modified with this optimal shrinkage parameter?

In order to achieve a consistent comparison, we leave the
rest of the algorithms undisturbed. Namely, once the sim-
ilarity measure has been assumed, we cluster the genes us-
ing the same hierarchical clustering algorithm as the one
used by Eisen et al. Their hierarchical clustering algo-
rithm is based on the centroid-linkage method (referred to as
“average-linkage method” of Sokal and Michener [6] in [1])
and computes a binary tree (dendrogram) that assembles
all the genes at the leaves of the tree, with each internal
node representing possible clusters at different levels. For
any set of M genes, an upper-triangular similarity matrix is
computed by using a similarity metric of the type described
above, which contains similarity scores for all pairs of genes.
A node is created joining the most similar pair of genes, and
a gene expression profile is computed for the node by averag-
ing observations for the joined genes. The similarity matrix
is updated with this new node replacing the two joined ele-
ments, and the process is repeated (M−1) times until only a

single element remains. The modified algorithm has been im-
plemented by the authors within the “NYUMAD” microar-
ray database system and can be freely downloaded from:
http://bioinformatics.cat.nyu.edu/nyumad/clustering/. As
each internal node can be labeled by a value representing
the similarity between its two children nodes (i.e., the two
elements that were combined to create the internal node),
one can create a set of clusters by simply breaking the tree
into subtrees by eliminating all the internal nodes with labels
below a certain predetermined threshold value. The clusters
created in this manner were used to compare the effects of
choosing differing similarity measures.

2 Model

Recall that a family of correlation coefficients parametrized
by 0 ≤ γ ≤ 1 may be defined as follows:

S(X, Y ) =
1
N

N∑

i=1

(
Xi −Xoffset

ΦX

)(
Yi − Yoffset

ΦY

)
, (1)

where

ΦG =

√√√√ 1
N

N∑

i=1

(Gi −Goffset)
2 and (2)

Goffset = γḠ for G ∈ {X, Y }
• Pearson Correlation Coefficient uses

Goffset = Ḡ =
1
N

N∑

j=1

Gi for every gene G, or γ = 1.

• Eisen et al. (in [1]) use

Goffset = 0 for every gene G, or γ = 0.

• We propose using the general form of equation (1) to
derive a similarity metric which is dictated by the data
and reduces the occurrence of false-positives (relative
to the Eisen metric) and false-negatives (relative to the
Pearson correlation coefficient).

2.1 Motivation and Setup

As mentioned above, the metric used by Eisen et al. in [1]
had the form of equation (1) with Goffset set to 0 for every
gene G (as a reference state against which to measure the
data). Here, we rigorously examine the mathematical valid-
ity of setting Goffset to 0 arbitrarily. Even if it is initially
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assumed that each gene G has zero mean, that assumption
must be updated when data becomes available. To this end,
we derive a correlation coefficient formula which is dictated
by the data, and can be justified by a Bayesian argument.

The microarray data is given in the form of the levels of
M genes expressed under N experimental conditions. The
data can be viewed as

{{Xij}N
i=1}M

j=1

where M À N and {Xij}N
i=1 is the data vector for gene j.

2.2 Derivation

We begin by rewriting S in our notation:

S(Xj , Xk) (3)

=
1
N

N∑

i=1

(
Xij − (Xj)offset

Φj

)(
Xik − (Xk)offset

Φk

)
,

Φj
2 =

1
N

∑

i

(
Xij − (Xj)offset

)2

In the most general setting, we can make the following
assumptions on the data distribution: let all values Xij for
gene j have a Normal distribution with mean θj and stan-
dard deviation βj (variance βj

2); i.e.,

Xij ∼ N (θj , βj
2) for i = 1, . . . , N

with j fixed (1 ≤ j ≤ M), where θj is an unknown parameter
(taking different values for different j). To estimate θj , it
is convenient to assume that θj is itself a random variable
taking values close to zero:

θj ∼ N (0, τ2).

The assumed distribution aids us in obtaining the estimate
of θj given in (14).

For convenience, let us also assume that the data are
range-normalized, so that βj

2 = β2 for every j. If this as-
sumption does not hold on the given data set, it is easily
corrected by scaling each gene vector appropriately. Fol-
lowing common practice, we adjusted the range to scale to
an interval of unit length, i.e., its maximum and minimum
values differ by 1. Thus,

Xij ∼ N (θj , β
2) and θj ∼ N (0, τ2).

Replacing (Xj)offset in (3) by the exact value of the mean
θj yields a Clairvoyant correlation coefficient of Xj and Xk.

In reality, since θj is itself a random variable, it must be es-
timated from the data. Therefore, to get an explicit formula
for S(Xj , Xk), we must derive estimators θ̂j for all j.

In Pearson correlation coefficient, θj is estimated by the
vector mean X ·j ; Eisen correlation coefficient corresponds
to replacing θj by 0 for every j, which is equivalent to as-
suming θj ∼ N (0, 0) (i.e., τ2 = 0). We propose to find an
estimate of θj (call it θ̂j) that takes into account both the
prior assumption and the data.

2.3 Estimation of θj

First, let us obtain the posterior distribution of θj from the
prior N (0, τ2) and the data. This derivation can be done
either from the Bayesian considerations, or via the James-
Stein Shrinkage estimators (see [7], or [8] for a recent review).
Here, we discuss the former method.

2.3.1 N = 1

Assume initially that N = 1, i.e., we have one data point for
each gene, and denote the variance by σ2 for the moment:

Xj ∼ N (θj , σ
2) (4)

θj ∼ N (0, τ2) (5)

For clarity, we denote the probability density function (pdf)
of θj by π(·) and the pdf of Xj by f(·). It is immediate from
(4) and (5) that

π(θj) =
1√
2πτ

exp
(−θj

2/2τ2
)
,

f(Xj |θj) =
1√
2πσ

exp
(−(Xj − θj)2/2σ2

)
.

By Bayes’ Rule, the joint pdf of Xj and θj is given by

f(Xj , θj) = f(Xj |θj) π(θj) (6)

=
1

2πστ
exp

(
−

[
θj

2

2τ2
+

(Xj − θj)2

2σ2

])

Then f(Xj), the marginal pdf of Xj alone is

f(Xj) = Eθj f(Xj |θj) =
∫ ∞

θ=−∞
f(Xj |θ)π(θ)dθ

=
1√

2π(σ2 + τ2)
exp

(
− Xj

2

2(σ2 + τ2)

)
, (7)

where the equality in equation (7) is written out in Ap-
pendix A.2. It follows that the posterior distribution of θj ,



2 MODEL 5

again by Bayes’ Theorem, is given by

π(θj |Xj) =
f(Xj , θj)

f(Xj)

=
f(Xj |θj) π(θj)

f(Xj)
by (6)

=
1√

2π σ2τ2

σ2+τ2

exp


−

(
θj − τ2

σ2+τ2 Xj

)2

2
(

σ2τ2

σ2+τ2

)


. (8)

(See Appendix A.3 for derivation of (8).)
Since this has Normal form, we can read off the mean and

variance

E(θj |Xj) =
τ2

σ2 + τ2
Xj

=
(

1− σ2

σ2 + τ2

)
Xj , (9)

V ar(θj |Xj) =
σ2τ2

σ2 + τ2
.

We can estimate θj by its mean.

2.3.2 N arbitrary

Now, if N > 1 is arbitrary, Xj becomes a vector X·j . It can
be easily shown by using likelihood functions that the vector
of values {Xij}N

i=1, with Xij ∼ N (θj , β
2), can be treated

as a single data point Yj = X ·j =
∑N

i=1 Xij/N from the
distribution N (θj , β

2/N) (see Appendix A.4).
Thus, following the above derivation with σ2 = β2/N , we

have a Bayesian estimator for θj given by E(θj |X·j):

θ̂j =
(

1− β2/N

β2/N + τ2

)
Yj . (10)

Unfortunately, (10) cannot be used in (3) directly, because
τ2 and β2 are unknown, so must be estimated from the data.

2.3.3 Estimation of 1/
(
β2/N + τ2

)

Let

W =
M − 2∑M
j=1 Yj

2
. (11)

The form of W comes from James-Stein estimation ([7]), but
its derivation will not be discussed here; instead we treat it as
an educated guess and verify that it is indeed an appropriate

estimator for 1/
(
β2/N + τ2

)
.

Yj ∼ θj +
β2

N
N (0, 1)

∼ τ2N (0, 1) +
β2

N
N (0, 1)

∼
(

β2

N
+ τ2

)
N (0, 1) ∼ N

(
0,

β2

N
+ τ2

)
(12)

The transition in (12) is justified in Appendix A.5. Let
α2 = β2/N + τ2. Then from (12) it follows that

Yj√
α2

=
Yj

α
∼ N (0, 1),

and hence

M∑

j=1

Yj
2 = α2

M∑

j=1

(
Yj

α

)2

= α2χ2
M ,

where χ2
M is a Chi-square random variable with M degrees

of freedom. By properties of the Chi-square distribution and
the linearity of expectation,

E
(

α2

∑
Yj

2

)
=

1
M − 2

(see Appendix A.6)

E(W ) = E
(

M − 2∑
Yj

2

)
=

1
α2

=
1

β2

N + τ2

Thus, W is an unbiased estimator of 1/
(
β2/N + τ2

)
, and

can be used to replace 1/
(
β2/N + τ2

)
in (10).

2.3.4 Estimation of β2

It can be shown (see Appendix A.7) that

Sj
2 =

1
N − 1

N∑

i=1

(Xij − Yj)
2

is an unbiased estimator for β2 based solely on data from
gene j, and that N−1

β2 Sj
2 has Chi-square distribution with

(N − 1) degrees of freedom. Since this holds for every j,
we can get a more accurate estimate for β2 by pooling all
available data, i.e., by averaging the estimates for each j:

β̂2 =
1
M

M∑

j=1

Sj
2 =

1
M

M∑

j=1

(
1

N − 1

N∑

i=1

(Xij − Yj)2
)

=
1

M(N − 1)

M∑

j=1

N∑

i=1

(Xij − Yj)2. (13)
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β̂2 is an unbiased estimator for β2, since

E(β̂2) = E


 1

M

M∑

j=1

Sj
2




=
1
M

M∑

j=1

E(Sj
2) =

1
M

M∑

j=1

β2 = β2.

Substituting the estimates (11) and (13) into (10), we ob-
tain the explicit estimate for θj :

bθj

=

 
1−

\1
β2

N
+ τ2

cβ2

N

!
Yj

=

 
1−W ·

cβ2

N

!
Yj

=

 
1−

 
M − 2PM
k=1 Yk

2

!
· 1

N
· 1

M(N − 1)

MX
k=1

NX
i=1

(Xik − Yk)2

!
Yj

=

 
1− M − 2

MN(N − 1)
·
PM

k=1

PN
i=1 (Xik − Yk)2PM
k=1 Yk

2

!
| {z }

γ

Yj (14)

= γX·j

Finally, we can substitute θ̂j from equation (14) into the
correlation coefficient in (3) wherever (Xj)offset appears to
obtain an explicit formula for S(X·j , X·k).

3 Algorithm & Implementation

The implementation of hierarchical clustering proceeds in a
greedy manner, always choosing the most similar pair of el-
ements (starting with genes at the bottom-most level) and
combining them to create a new element. The “expression
vector” for the new element is simply the weighted average
of the expression vectors of the two most similar elements
that were combined. This structure of repeated pair-wise
combinations is conveniently represented in a binary tree,
whose leaves are the set of genes and internal nodes are the
elements constructed from the two children nodes. The al-
gorithm is described below in pseudocode.

3.1 Hierarchical clustering pseudocode

Given {{Xij}N
i=1}M

j=1:
Switch:
Pearson: γ = 1;

Eisen: γ = 0;
Shrinkage: {

Compute W = (M − 2)
/∑M

j=1 X ·j
2

Compute β̂2 =
∑M

j=1

∑N
i=1

(
Xij −X ·j

)2
/

(M(N − 1))

γ = 1−W · β̂2/N
}

While (# clusters > 1) do
¦ Compute similarity table:

S(Gj , Gk) =
P

i(Gij−(Gj)offset)(Gik−(Gk)offset)qP
i(Gij−(Gj)offset)

2·Pi(Gik−(Gk)offset)
2 ,

where (G`)offset = γG`.

¦ Find (j∗, k∗) :
S(Gj∗ , Gk∗) ≥ S(Gj , Gk) ∀ clusters j, k

¦ Create new cluster Nj∗k∗

= weighted average of Gj∗ and Gk∗.

¦ Take out clusters j∗ and k∗.

The implementation of generalized hierarchical clustering
with options to choose different similarity measures has been
incorporated into NYUMAD (NYU MicroArray Database),
an integrated system to maintain and analyze biological
abundance data along with associated experimental condi-
tions and protocols. While the initial goal was to provide
a system to manage microarray data, the system has been
designed to store any type of abundance data, including pro-
tein levels. This system uses a relational database man-
agement system for the storage of data and has a flexible
database schema that stores abundance data along with gen-
eral research data such as experimental conditions and pro-
tocols. The database schema is defined using standard SQL
(Structured Query Language) and is therefore portable to
any SQL database platform. To enable widespread utility,
NYUMAD supports the MAGE-ML standard ([9]) for the
exchange of gene expression data, defined by the Microar-
ray Gene Expression Data Group (MGED) — web site at
http://www.mged.org/.

There are several ways to access the system: us-
ing the NYUMAD Java application, through web
pages, or through custom applications (for details, see
http://bioinformatics.cat.nyu.edu/nyumad/). Data trans-
fer is affected using the world wide web (WWW) with the
HTTP protocol. The use of the WWW for communication
ensures accessibility from any location.

The graphical user interface (GUI) provided by the Java
application facilitates easy data submission, retrieval, and
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analysis. The Java application presents data in a logical
manner and allows easy navigation through the data. The
GUI also allows straightforward updating of existing data
and insertion of new data.

NYUMAD supports collaborative research efforts by al-
lowing groups to submit data from any location (via HTTP)
and to view, retrieve, or analyze each other’s data immedi-
ately. Groups can share protocols and divide a large project
covering a wide range of experimental conditions into sub-
projects performed by individual groups.

NYUMAD is a secure repository for both public and pri-
vate data. Users can control the visibility of their data so
that initially the data might be private but after the pub-
lication of the results, the data can be marked public and
made visible to the larger research community. Public users
can log in with a general login ID without the need for a
password and view and retrieve any of the public data.

The system provides a wide range of data analysis and
interpretation tools and algorithms that help in identifying
patterns and relationships. A general feature of NYUMAD
is the flexibility for users to build their own queries and uti-
lize their own parameters, data transformations, and filters
where appropriate. Users can retrieve queried data for input
to their own tools or use other tools within NYUMAD — for
example, perform a clustering of their microarray data or de-
termine the statistical significance of differential expression
values for a specific set of genes. Data analysis tools are
supplemented with visualization tools.

4 Results

4.1 Mathematical Simulation

To compare the performance of these algorithms, we started
with a relatively simple in silico experiment. In such an
experiment, one can create two genes X and Y and simulate
N (about 100) experiments as follows:

Xi = θX + σX(αi(X,Y ) +N (0, 1)), and
Yi = θY + σY (αi(X, Y ) +N (0, 1)),

where αi, chosen from a uniform distribution over a range
[L,H] (U(L,H)), is a “bias term” introducing a correlation
(or none if all α’s are zero) between X and Y . θX ∼ N (0, τ2)
and θY ∼ N (0, τ2) are the means of X and Y , respectively.
Similarly, σX and σY are the standard deviations for X and
Y , respectively.

Note that, with this model

S(X, Y ) =
1
N

N∑

i=1

(Xi − θX)
σX

(Yi − θY )
σY

∼ 1
N

N∑

i=1

(αi +N (0, 1))(αi +N (0, 1))

∼ 1
N

[(
N∑

i=1

α2
i

)
+ χ2

N + 2N (0, 1)
N∑

i=1

αi

]

if the exact values of the mean and variance are used.
We denote the distribution of S by F(µ, δ), where µ is the
mean and δ is the standard deviation.

The model was implemented in Mathematica [10]; the fol-
lowing parameters were used in the simulation: N = 100,
τ ∈ {0.1, 10.0} (representing very low or high variability
among the genes), σX = σY = 10.0, and α = 0 representing
no correlation between the genes or α ∼ U(0, 1) representing
some correlation between the genes. Once the parameters
were fixed for a particular in silico experiment, the gene-
expression vectors for X and Y were generated many thou-
sand times, and for each pair of vectors Sc(X,Y ), Sp(X,Y ),
Se(X,Y ), and Ss(X, Y ) were estimated by four different al-
gorithms and further examined to see how the estimators of
S varied over these trials. These four different algorithms es-
timated S according to equations (1), (2) as follows: Clair-
voyant estimated Sc using the true values of θX , θY , σX ,
and σY ; Pearson estimated Sp using the unbiased estima-
tors X̄ and Ȳ of θX and θY (for Xoffset and Yoffset), re-
spectively; Eisen estimated Se using the value 0.0 as the
estimator of both θX and θY ; and Shrinkage estimated Ss

using the shrunk biased estimators θ̂X and θ̂Y of θX and
θY , respectively. In the latter three, the standard deviation
was estimated as in (2). The histograms corresponding to
these in silico experiments can be found in Figure 1. Our
observations can be summarized as follows:

• When X and Y are not correlated and the noise in
the input is low (N = 100, τ = 0.1, and α =
0), Pearson does just as well as Eisen, Shrinkage,
or Clairvoyant (Sc ∼ F(−0.000297, 0.0996), Sp ∼
F(−0.000269, 0.0999), Se ∼ F(−0.000254, 0.0994), and
Ss ∼ F(−0.000254, 0.0994)).

• When X and Y are not correlated but the noise in
the input is high (N = 100, τ = 10.0, and α = 0),
Pearson does just as well as Shrinkage or Clairvoyant,
but Eisen introduces far too many false-positives (Sc ∼
F(−0.000971, 0.0994), Sp ∼ F(−0.000939, 0.100), Se ∼
F(−0.00119, 0.354), and Ss ∼ F(−0.000939, 0.100)).
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• When X and Y are correlated and the noise in the
input is low (N = 100, τ = 0.1, and α ∼ U(0, 1)),
Pearson does much more poorly compared to Eisen,
Shrinkage, or Clairvoyant — these three doing equally
well; Pearson introduces too many false-negatives
(Sc ∼ F(0.331, 0.132), Sp ∼ F(0.0755, 0.0992), Se ∼
F(0.248, 0.0915), and Ss ∼ F(0.245, 0.0915)).

• Finally, when X and Y are correlated and the noise in
the input is high, the signal-to-noise ratio becomes ex-
tremely poor and all the algorithms fail, i.e., introduce
errors (Sc ∼ F(0.333, 0.133), Sp ∼ F(0.0762, 0.100),
Se ∼ F(0.117, 0.368), and Ss ∼ F(0.0762, 0.0999)).
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Figure 1: Histograms.

In summary, one can conclude that for the same clus-
tering algorithm, Pearson tends to introduce more false-
negatives and Eisen tends to introduce more false-positives
than Shrinkage. Shrinkage, on the other hand, reduces these
errors by combining the good properties of both algorithms.

4.2 Biological Example

We then proceeded to test the algorithms on a biological
example. We chose a biologically well-characterized system,
and analyzed the clusters of genes involved in the yeast cell
cycle. These clusters were computed using the hierarchical
clustering algorithm with the underlying similarity measure
chosen from the following three: Pearson, Eisen, or Shrink-
age. As a reference, the computed clusters were compared
to the ones implied by the common cell-cycle functions and
regulatory systems inferred from the roles of various tran-
scriptional activators (see Figure 2).

Note that our experimental analysis is based on the as-
sumption that the groupings suggested by the ChIP (Chro-
matin ImmunoPrecipitation) analysis are, in fact, correct
and thus, provide a direct approach to compare various cor-
relation coefficients. It is quite likely that the ChIP-based
groupings themselves contain many false relations (both pos-
itive and negative) and corrupt our inference in some un-
known manner. Nonetheless, we observe that the trends of
reduced false positives and negatives in shrinkage analysis
with these biological data are consistent with the analysis
based on mathematical simulation and hence, reassuring.

Figure 2: Regulation of cell-cycle functions by the activators.
[Reproduced with permission from [11] (Copyright 2001, El-
sevier)].

In the work of Simon et al. ([11]), genome-wide location
analysis was used to determine how the yeast cell cycle
gene expression program is regulated by each of the nine
known cell cycle transcriptional activators: Ace2, Fkh1,
Fkh2, Mbp1, Mcm1, Ndd1, Swi4, Swi5, and Swi6. It was
also found that cell cycle transcriptional activators which
function during one stage of the cell cycle regulate tran-
scriptional activators that function during the next stage.
This serial regulation of transcriptional activators together
with various functional properties suggests a simple way of
partitioning some selected cell cycle genes into nine clusters,
each one characterized by a group of transcriptional activa-
tors working together and their functions (see Table 1): for
instance, Group 1 is characterized by the activators Swi4
and Swi6 and the function of budding; Group 2 is charac-
terized by the activators Swi6 and Mbp1 and the function
involving DNA replication and repair at the juncture of G1
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and S phases, etc.

Table 1: Genes in our data set, grouped by transcriptional
activators and cell-cycle functions.

Activators Genes Functions

1 Swi4, Swi6 Cln1, Cln2, Gic1, Gic2,
Msb2, Rsr1, Bud9,
Mnn1, Och1, Exg1,
Kre6, Cwp1

Budding

2 Swi6, Mbp1 Clb5, Clb6, Rnr1,
Rad27, Cdc21, Dun1,
Rad51, Cdc45, Mcm2

DNA replication
and repair

3 Swi4, Swi6 Htb1, Htb2, Hta1,
Hta2, Hta3, Hho1

Chromatin

4 Fkh1 Hhf1, Hht1, Tel2, Arp7 Chromatin

5 Fkh1 Tem1 Mitosis Control

6 Ndd1, Fkh2,
Mcm1

Clb2, Ace2, Swi5,
Cdc20

Mitosis Control

7 Ace2, Swi5 Cts1, Egt2 Cytokinesis

8 Mcm1 Mcm3, Mcm6, Cdc6,
Cdc46

Pre-replication
complex formation

9 Mcm1 Ste2, Far1 Mating

Our initial hypothesis can be summarized as follows:
Genes expressed during the same cell cycle stage, and
regulated by the same transcriptional activators should be in
the same cluster. Below we list some of the deviations from
the hypothesis observed in the raw data.

Possible False-Positives:

• Bud9 (Group 1: Budding) and {Cts1, Egt2} (Group 7:
Cytokinesis) are placed in the same cluster by all three
metrics: P49 = S82 ' E47; however, the Eisen metric
also places Exg1 (Group 1) and Cdc6 (Group 8: Pre-
replication complex formation) in the same cluster.

• Mcm2 (Group 2: DNA replication and repair) and
Mcm3 (Group 8) are placed in the same cluster by all
three metrics: P10 = S20 ' E73; however, the Eisen
metric places several more genes from different groups in
the same cluster: {Rnr1, Rad27, Cdc21, Dun1, Cdc45}
(Group 2), Hta3 (Group 3: Chromatin), and Mcm6
(Group 8) are also placed in cluster E73.

Possible False-Negatives:

• Group 1: Budding (Table 1) is split into four clusters
by the Eisen metric:
{Cln1, Cln2, Gic2, Rsr1, Mnn1} ∈ Cluster a (E39), Gic2
∈ Cluster b (E62), {Bud9, Exg1} ∈ Cluster c (E47), and

{Kre6, Cwp1} ∈ Cluster d (E66);
and into six clusters by both the Shrinkage and Pearson
metrics:
{Cln1, Cln2, Gic2, Rsr1, Mnn1} ∈ Cluster a (S3=P66),
{Gic1, Kre6} ∈ Cluster b (S39=P17), Msb2 ∈ Clus-
ter c (S24=P71), Bud9 ∈ Cluster d (S82=P49), Exg1 ∈
Cluster e (S48=P78), and Cwp1 ∈ Cluster f (S8=P4).

Table 1 contains those genes from Figure 2 that were
present in our data set. The following tables contain these
genes grouped into clusters by a hierarchical clustering algo-
rithm using the three metrics (Eisen in Table 2, Pearson in
Table 3, and Shrinkage in Table 4) thresholded at a corre-
lation coefficient value of 0.60. The choice of the threshold
parameter is discussed further in section 5. Genes that have
not been grouped with any others at a similarity of 0.60 or
higher are absent from the tables; in the subsequent analysis
they are treated as singleton clusters.

Table 2: Eisen Clusters

E39 Swi4/Swi6 Cln1, Cln2, Gic2, Rsr1, Mnn1

E62 Swi4/Swi6 Gic1

E47 Swi4/Swi6 Bud9, Exg1

Ace2/Swi5 Cts1, Egt2

Mcm1 Cdc6

E66 Swi4/Swi6 Kre6, Cwp1

E71 Swi6/Mbp1 Clb5, Clb6, Rad51

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

E73 Swi6/Mbp1 Rnr1, Rad27, Cdc21, Dun1,
Cdc45, Mcm2

Swi4/Swi6 Hta3

Mcm1 Mcm3, Mcm6

E63 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

E32 Fkh1 Arp7

E38 Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

E51 Mcm1 Ste2, Far1

The value γ ' 0.89 estimated from the raw yeast data was
surprisingly high, contrary to the suggestion in [1] that the
value γ = 0 performed better than γ = 1. It also did not
yield as great an improvement in the yeast data clusters as
the simulations indicated. This suggested that the true value
of γ is closer to 0. Upon closer examination of the data, we
observed that the data in its raw “pre-normalized” form is
inconsistent with the assumptions used in deriving γ:
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Table 3: Pearson Clusters

P66 Swi4/Swi6 Cln1, Cln2, Gic2, Rsr1, Mnn1

P17 Swi4/Swi6 Gic1, Kre6

P71 Swi4/Swi6 Msb2

P49 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

P78 Swi4/Swi6 Exg1

P4 Swi4/Swi6 Cwp1

P12 Swi6/Mbp1 Clb5, Clb6, Rnr1, Cdc21, Dun1,
Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

P10 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

P54 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

P37 Fkh1 Arp7

P16 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

P50 Mcm1 Ste2, Far1

Table 4: Shrinkage Clusters

S3 Swi4/Swi6 Cln1, Cln2, Gic2, Rsr1, Mnn1

S39 Swi4/Swi6 Gic1, Kre6

S24 Swi4/Swi6 Msb2

S82 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S48 Swi4/Swi6 Exg1

S8 Swi4/Swi6 Cwp1

S14 Swi6/Mbp1 Clb5, Clb6, Rnr1, Cdc21, Dun1,
Rad51, Cdc45

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S20 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S4 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S13 Swi4/Swi6 Hta3

S63 Fkh1 Arp7

S22 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S83 Mcm1 Ste2, Far1

1. The gene vectors are not range-normalized, so βj
2 6= β2

for every j, and

2. The N experiments are not necessarily independent.

4.3 Corrections

We attempted to remedy the first shortcoming by normaliz-
ing all gene vectors with respect to range (dividing each entry
in gene X by (Xmax −Xmin)), recomputing the estimated γ
value, and repeating the clustering process. As normalized
gene expression data yielded the estimate γ ' 0.91, still too
high a value, we conducted an extensive computational ex-
periment to determine the best empirical γ value by also
clustering with the shrinkage factors of 0.2, 0.4, 0.6, and 0.8.
The clusters taken at the correlation factor cut-off of 0.60,
as above, are presented in Tables 5–11.

Table 5: RN Data, γ = 0.0 (Eisen Clusters)

E8 Swi4/Swi6 Cln1, Msb2, Mnn1

E71 Swi4/Swi6 Cln2, Rsr1

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21,
Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

E14 Swi4/Swi6 Gic1

E17 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

Mcm1 Ste2, Far1

E16 Swi4/Swi6 Exg1

E59 Swi4/Swi6 Kre6

E18 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

E86 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

E10 Fkh1 Arp7

E19 Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

E11 Mcm1 Cdc6

To compare the resulting sets of clusters, we introduced
the following notation. Write each cluster set as follows:

{
x → {{y1, z1}, {y2, z2}, . . . , {ynx , znx}}

}# of groups

x=1

where x denotes the group number (as described in Table 1),
nx is the number of clusters group x appears in, and for
each cluster j ∈ {1, . . . , nx} there are yj genes from group



4 RESULTS 11

Table 6: Range-normalized data, γ = 0.2

S0.259 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

S0.226 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb6, Rnr1, Rad27, Cdc21, Dun1,
Rad51, Cdc45

S0.223 Swi4/Swi6 Gic1

S0.258 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S0.257 Swi4/Swi6 Exg1

Fkh1 Arp7

S0.261 Swi4/Swi6 Kre6

S0.218 Swi6/Mbp1 Clb5

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S0.228 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S0.225 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S0.229 Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S0.24 Mcm1 Ste2

S0.255 Mcm1 Far1

x and zj genes from other groups in Table 1. A value of
“∗” for zj denotes that cluster j contains additional genes,
although none of them are cell cycle genes; in subsequent
computations, this value is treated as 0.

This notation naturally lends itself to a scoring function
for measuring the number of false-positives, number of false-
negatives, and total error score, which aids in the comparison
of cluster sets.

FP(γ) =
1
2

∑
x

nx∑

j=1

yj · zj (15)

FN(γ) =
∑

x

∑

1≤j<k≤nx

yj · yk (16)

Error score(γ) = FP(γ) + FN(γ) (17)

In this notation, the cluster sets with their error scores

Table 7: Range-normalized data, γ = 0.4

S0.464 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

S0.413 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21,
Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S0.444 Swi4/Swi6 Gic1, Kre6

S0.427 Swi4/Swi6 Msb2

S0.446 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S0.473 Swi4/Swi6 Exg1

S0.42 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S0.448 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S0.426 Fkh1 Arp7

S0.425 Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S0.416 Mcm1 Cdc6

S0.447 Mcm1 Ste2

S0.458 Mcm1 Far1

can be listed as follows:

γ = 0.0(E) =⇒
{1 → {{3, ∗}, {2, 13}, {1, ∗}, {1, ∗},

{1, ∗}, {1, 4}, {1, 0}, {1, 0}, {1, 0}},
2 → {{8, 7}, {1, 1}},
3 → {{5, 2}, {1, 14}},
4 → {{2, 5}, {1, 14}, {1, ∗}},
5 → {{1, 3}},
6 → {{3, 1}, {1, 14}},
7 → {{2, 3}},
8 → {{2, 13}, {1, 1}, {1, 0}},
9 → {{2, 3}}
}
Error score(0.0) = 97 + 88 = 185
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Table 8: Range-normalized data, γ = 0.6

S0.634 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

S0.677 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21,
Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S0.635 Swi4/Swi6 Gic1, Kre6

S0.647 Swi4/Swi6 Msb2

S0.662 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S0.620 Swi4/Swi6 Exg1

S0.673 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S0.691 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S0.648 Fkh1 Arp7

S0.637 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S0.664 Mcm1 Ste2

S0.663 Mcm1 Far1

γ = 0.2 =⇒
{1 → {{4, ∗}, {1, 7}, {1, ∗}, {1, ∗},

{1, 1}, {1, 2}, {1, 0}, {1, 0}, {1, 0}},
2 → {{7, 1}, {1, 5}, {1, 1}},
3 → {{5, 2}, {1, 5}},
4 → {{2, 5}, {1, 5}, {1, 1}},
5 → {{1, 3}},
6 → {{3, 1}, {1, 5}},
7 → {{2, 1}},
8 → {{2, 4}, {1, 1}, {1, 0}},
9 → {{1, ∗}, {1, ∗}}
}
Error score(0.2) = 38 + 94 = 132

Table 9: Range-normalized data, γ = 0.8

S0.851 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

S0.87 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21,
Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S0.864 Swi4/Swi6 Gic1, Kre6

S0.890 Swi4/Swi6 Msb2

S0.831 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S0.843 Swi4/Swi6 Exg1

S0.865 Swi4/Swi6 Cwp1

S0.813 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S0.817 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S0.876 Fkh1 Arp7

S0.874 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S0.833 Mcm1 Ste2

S0.832 Mcm1 Far1

γ = 0.4 =⇒
{1 → {{4, ∗}, {1, 13}, {1, ∗}, {1, ∗},

{2, ∗}, {1, 2}, {1, 0}, {1, 0}},
2 → {{8, 6}, {1, 1}},
3 → {{5, 2}, {1, 13}},
4 → {{2, 5}, {1, 13}, {1, ∗}},
5 → {{1, 3}},
6 → {{3, 1}, {1, 13}},
7 → {{2, 1}},
8 → {{2, 12}, {1, ∗}, {1, 1}},
9 → {{1, ∗}, {1, ∗}}
}
Error score(0.4) = 78 + 86 = 164
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Table 10: RN Data, γ = 0.91 (Shrinkage Clusters)

S49 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

S73 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21,
Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

S45 Swi4/Swi6 Gic1, Kre6

S15 Swi4/Swi6 Msb2

S90 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

S56 Swi4/Swi6 Exg1

S46 Swi4/Swi6 Cwp1

S71 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S61 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S37 Fkh1 Arp7

S7 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S91 Mcm1 Ste2

S92 Mcm1 Far1

γ = 0.6 =⇒
{1 → {{4, ∗}, {1, 13}, {1, ∗}, {1, ∗},

{2, ∗}, {1, 2}, {1, 0}, {1, 0}},
2 → {{8, 6}, {1, 1}},
3 → {{5, 2}, {1, 13}},
4 → {{2, 5}, {1, 13}, {1, ∗}},
5 → {{1, 0}},
6 → {{3, ∗}, {1, 13}},
7 → {{2, 1}},
8 → {{2, 12}, {1, 1}, {1, 0}},
9 → {{1, ∗}, {1, ∗}}
}
Error score(0.6) = 75 + 86 = 161

Table 11: RN Data, γ = 1.0 (Pearson Clusters)

P10 Swi4/Swi6 Cln1, Gic2, Rsr1, Mnn1

P68 Swi4/Swi6 Cln2

Swi6/Mbp1 Clb5, Clb6, Rnr1, Rad27, Cdc21,
Dun1, Rad51, Cdc45

Swi4/Swi6 Hta3

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Mcm6, Cdc46

P1 Swi4/Swi6 Gic1, Kre6

P39 Swi4/Swi6 Msb2

P66 Swi4/Swi6 Bud9

Ace2/Swi5 Cts1, Egt2

P20 Swi4/Swi6 Exg1

P2 Swi4/Swi6 Cwp1

P72 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

P53 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

P12 Fkh1 Arp7

P46 Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

P64 Mcm1 Ste2

P65 Mcm1 Far1

γ = 0.8 =⇒
{1 → {{4, ∗}, {1, 13}, {1, ∗}, {1, ∗},

{1, ∗}, {2, ∗}, {1, 2}, {1, 0}},
2 → {{8, 6}, {1, 1}},
3 → {{5, 2}, {1, 13}},
4 → {{2, 5}, {1, 13}, {1, ∗}},
5 → {{1, 0}},
6 → {{3, ∗}, {1, 13}},
7 → {{2, 1}},
8 → {{2, 12}, {1, 1}, {1, 0}},
9 → {{1, ∗}, {1, ∗}}
}
Error score(0.8) = 75 + 86 = 161
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γ = 0.91(S) =⇒
{1 → {{4, ∗}, {1, 13}{1, ∗}, {1, ∗},

{1, ∗}, {2, ∗}, {1, 2}, {1, 0}},
2 → {{8, 6}, {1, 1}},
3 → {{5, 2}, {1, 13}},
4 → {{2, 5}, {1, 13}, {1, ∗}},
5 → {{1, 0}},
6 → {{3, ∗}, {1, 13}},
7 → {{2, 1}},
8 → {{2, 12}, {1, 1}, {1, 0}},
9 → {{1, ∗}, {1, ∗}}
}
Error score(0.91) = 75 + 86 = 161

γ = 1.0(P ) =⇒
{1 → {{4, ∗}, {1, 13}, {1, ∗}, {1, ∗},

{1, ∗}, {2, ∗}, {1, 2}, {1, 0}},
2 → {{8, 6}, {1, 1}},
3 → {{5, 2}, {1, 13}},
4 → {{2, 5}, {1, 13}, {1, ∗}},
5 → {{1, 0}},
6 → {{3, ∗}, {1, 13}},
7 → {{2, 1}},
8 → {{2, 12}, {1, 1}, {1, 0}},
9 → {{1, ∗}, {1, ∗}}
}
Error score(1.0) = 75 + 86 = 161

Clearly, in this notation, γ values of 0.8, 0.91, and 1.0
give identical cluster groupings, and the best error score is
attained at γ = 0.2.

To improve the estimated value of γ, we proceeded to cor-
rect the second shortcoming due to the statistical depen-
dence among the experiments. We sought to reduce the ef-
fective number of experiments by subsampling from the set
of all (possibly correlated) experiments — the candidates
were chosen via clustering all the experiments, i.e., columns
of the data matrix, and then selecting one representative
experiment from each cluster of experiments. We then clus-
tered the subsampled data, once again using the cut-off cor-
relation value of 0.60. The resulting cluster sets under the
Eisen, Shrinkage, and Pearson metrics are given in Tables 12,
13, and 14, respectively.

The subsampled data yielded the lower estimated value
γ ' 0.66. In our set notation, the resulting clusters with the

Table 12: RN Subsampled Data, γ = 0.0 (Eisen)

E58 Swi4/Swi6 Cln1, Och1

E68 Swi4/Swi6 Cln2, Msb2, Rsr1, Bud9, Mnn1,
Exg1

Swi6/Mbp1 Rnr1, Rad27, Cdc21, Dun1,
Rad51, Cdc45, Mcm2

Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1, Arp7

Fkh1 Tem1

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

Ace2/Swi5 Egt2

Mcm1 Mcm3, Mcm6, Cdc6

E29 Swi4/Swi6 Gic1

E64 Swi4/Swi6 Gic2

E33 Swi4/Swi6 Kre6, Cwp1

Swi6/Mbp1 Clb5, Clb6

Swi4/Swi6 Hta3

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

E73 Fkh1 Tel2

E23 Ace2/Swi5 Cts1

E43 Mcm1 Ste2

E66 Mcm1 Far1

corresponding error scores can be written as follows:

γ = 0.0(E) =⇒
{1 → {{6, 23}, {2, ∗}, {2, 5}, {1, ∗}, {1, ∗}},
2 → {{7, 22}, {2, 5}},
3 → {{5, 24}, {1, 6}},
4 → {{3, 26}, {1, ∗}},
5 → {{1, 28}},
6 → {{3, 26}, {1, 6}},
7 → {{1, ∗}, {1, 28}},
8 → {{3, 26}, {1, 6}},
9 → {{1, ∗}, {1, ∗}}
}
Error score(0.0) = 370 + 79 = 449



4 RESULTS 15

Table 13: RN Subsampled Data, γ = 0.66 (Shrinkage)

S49 Swi4/Swi6 Cln1, Bud9, Och1

Ace2/Swi5 Egt2

Mcm1 Cdc6

S6 Swi4/Swi6 Cln2, Gic2, Msb2, Rsr1, Mnn1,
Exg1

Swi6/Mbp1 Rnr1, Rad27, Cdc21, Dun1,
Rad51, Cdc45

S32 Swi4/Swi6 Gic1

S65 Swi4/Swi6 Kre6, Cwp1

Swi6/Mbp1 Clb5, Clb6

Fkh1 Tel2

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

S15 Swi6/Mbp1 Mcm2

Mcm1 Mcm3

S11 Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

S60 Swi4/Swi6 Hta3

S30 Fkh1 Arp7

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

S62 Fkh1 Tem1

S53 Ace2/Swi5 Cts1

S14 Mcm1 Mcm6

S35 Mcm1 Ste2

S36 Mcm1 Far1

γ = 0.66(S) =⇒
{1 → {{6, 6}, {3, 2}, {2, 5}, {1, ∗}},
2 → {{6, 6}, {2, 5}, {1, 1}},
3 → {{5, 2}, {1, ∗}},
4 → {{2, 5}, {1, 3}, {1, 6}},
5 → {{1, ∗}},
6 → {{3, 1}, {1, 6}},
7 → {{1, ∗}, {1, 4}},
8 → {{1, ∗}, {1, 1}, {1, 4}, {1, 6}},
9 → {{1, ∗}, {1, ∗}}
}
Error score(0.66) = 76 + 88 = 164

Table 14: RN Subsampled Data, γ = 1.0 (Pearson)

P1 Swi4/Swi6 Cln1, Och1

P15 Swi4/Swi6 Cln2, Rsr1, Mnn1

Swi6/Mbp1 Cdc21, Dun1, Rad51, Cdc45, Mcm2

Mcm1 Mcm3

P29 Swi4/Swi6 Gic1

P2 Swi4/Swi6 Gic2

P3 Swi4/Swi6 Msb2, Exg1

Swi6/Mbp1 Rnr1

P51 Swi4/Swi6 Bud9

Ndd1/Fkh2/Mcm1 Clb2, Ace2, Swi5

Ace2/Swi5 Egt2

Mcm1 Cdc6

P11 Swi4/Swi6 Kre6

P62 Swi4/Swi6 Cwp1

Swi6/Mbp1 Clb5, Clb6

Swi4/Swi6 Hta3

Ndd1/Fkh2/Mcm1 Cdc20

Mcm1 Cdc46

P49 Swi6/Mbp1 Rad27

Swi4/Swi6 Htb1, Htb2, Hta1, Hta2, Hho1

Fkh1 Hhf1, Hht1

P10 Fkh1 Tel2

Mcm1 Mcm6

P23 Fkh1 Arp7

P50 Fkh1 Tem1

P69 Ace2/Swi5 Cts1

P42 Mcm1 Ste2

P13 Mcm1 Far1

γ = 1.0(P ) =⇒
{1 → {{3, 6}, {2, ∗}, {2, 1}, {1, ∗},

{1, ∗}, {1, ∗}, {1, 5}, {1, 5}},
2 → {{5, 4}, {2, 4}, {1, 2}, {1, 7}},
3 → {{5, 3}, {1, 5}},
4 → {{2, 6}, {1, ∗}, {1, 1}},
5 → {{1, ∗}},
6 → {{3, 3}, {1, 5}},
7 → {{1, ∗}, {1, 5}},
8 → {{1, 1}, {1, 5}, {1, 5}, {1, 8}},
9 → {{1, ∗}, {1, ∗}}
}
Error score(1.0) = 69 + 107 = 176

From the tables for the range-normalized, subsampled
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yeast data, as well as by comparing the error scores, one
can conclude that for the same clustering algorithm and
threshold value, Pearson tends to introduce more false-
negatives and Eisen tends to introduce more false-positives
than Shrinkage, as Shrinkage reduces these errors by com-
bining the good properties of both algorithms. This obser-
vation is consistent with our mathematical analysis and the
simulation presented in section 4.1.

5 Discussion

Microarray-based genomic analysis and other similar high-
throughput methods have begun to occupy an increasingly
important role in biology, as they have helped to create a
visual image of the state-space trajectories at the core of the
cellular processes. This analysis will address directly to the
observational nature of the “new” biology. As a result, we
need to develop our ability to “see,” accurately and repro-
ducibly, the information in the massive amount of quantita-
tive measurements produced by these approaches — or be
able to ascertain when what we “see” is unreliable and forms
a poor basis for proposing novel hypotheses. Our investi-
gation demonstrates the fragility of many of these analysis
algorithms when used in the context of a small number of
experiments. In particular, we see that a small perturbation
of, or a small error in the estimation of, a parameter (the
shrinkage parameter) has a significant effect on the overall
conclusion. The errors in the estimators manifest themselves
by missing certain biological relations between two genes
(false-negatives) or by proposing phantom relations between
two otherwise unrelated genes (false-positives).

A global picture of these interactions can be seen in Fig-
ure 3, the Receiver Operator Characteristic (ROC) figure,
with each curve parametrized by the cut-off threshold in the
range of [−1, 1]. An ROC curve ([12]) for a given metric
plots sensitivity against (1−specificity), where

Sensitivity = fraction of positives detected by a metric

=
TP(γ)

TP(γ) + FN(γ)
,

Specificity = fraction of negatives detected by a metric

=
TN(γ)

TN(γ) + FP(γ)
,

and TP(γ), FN(γ), FP(γ), and TN(γ) denote the number
of True Positives, False Negatives, False Positives, and True
Negatives, respectively, arising from a metric associated with
a given γ. (Recall that γ is 0.0 for Eisen, 1.0 for Pearson, and

is computed according to (14) for Shrinkage, which yields
0.66 on this data set.) For each pair of genes, {j, k}, we
define these events using our hypothesis (see section 4.2) as
a measure of truth:

TP: {j, k} are in the same group (see Table 1) and {j, k}
are placed in the same cluster;

FP: {j, k} are in different groups, but {j, k} are placed in
the same cluster;

TN: {j, k} are in different groups and {j, k} are placed in
different clusters; and

FN: {j, k} are in the same group, but {j, k} are placed in
different clusters.

FP(γ) and FN(γ) were already defined in equations (15) and
(16), respectively, and we define

TP(γ) =
∑

x

nx∑

j=1

(
yj

2

)
(18)

and

TN(γ) = Total− (TP(γ) + FN(γ) + FP(γ)) (19)

where Total=
(
44
2

)
= 946 is the total # of gene pairs {j, k}

in Table 1.
The ROC figure suggests the best threshold to use for each

metric, and can also be used to select the best metric to use
for a particular sensitivity.

The dependence of the error scores on the threshold can
be more clearly seen from Figure 4. It shows that the conclu-
sions we draw in section 4.3 hold for a wide range of threshold
values, and hence a threshold value of 0.60 is a reasonable
representative value.

As a result, in order to study the clustering algorithms
and their effectiveness, one may ask the following questions.
If one must err, is it better to err on the side of more
false-positives or more false-negatives? What are the
relative costs of these two kinds of errors? In general, since
false-negatives may cause the inference process to ignore
useful information for certain novel genes, and since false-
positives may result in noise in the information provided
to the algorithms used in analyzing regulatory patterns,
intelligent answers to our questions depend crucially on how
the cluster information is used in the subsequent discovery
processes.
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Figure 3: Receiver operator characteristic curves. Each
curve is parametrized by the cut-off value θ ∈
{1.0, 0.95, . . . ,−1.0}
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Figure 4: FN and FP curves, plotted as functions of θ.
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A Appendix

A.1 Receiver Operator Characteristic
Curves (More Details)

A.1.1 Definitions
As a measure of truth, we take our working hypothesis, namely, the
transcriptional activator table (Table 1). Thus, if two genes are in
the same group, they “belong in the same cluster”, and if they are in
different groups, they “belong in different clusters”. We will generate
an ROC curve for each metric used (i.e., one for Eisen, one for Pearson,
and one for Shrinkage).

Event: grouping of (cell cycle) genes into clusters;

Threshold: cut-off similarity value at which the hierarchy tree is cut
into clusters.

Our cell-cycle gene table consists of 44 genes, which gives us
C(44, 2) = 946 gene pairs. For each (unordered) gene pair {j, k}, we
define the following events:

TP: {j, k} are in the same group and {j, k} are placed in the same
cluster;

FP: {j, k} are in different groups, but {j, k} are placed in the same
cluster;

TN: {j, k} are in different groups and {j, k} are placed in different
clusters; and

FN: {j, k} are in the same group, but {j, k} are placed in different
clusters.

Thus,

TP(γ) =
X
{j,k}

TP({j, k})

FP(γ) =
X
{j,k}

FP({j, k})

TN(γ) =
X
{j,k}

TN({j, k})

FN(γ) =
X
{j,k}

FN({j, k})

where the sums are taken over all 946 unordered pairs of genes.
Two other quantities involved in ROC curve generation are

Sensitivity = fraction of positives detected by a metric

=
TP(γ)

TP(γ) + FN(γ)
. (20)

Specificity = fraction of negatives detected by a metric

=
TN(γ)

TN(γ) + FP(γ)
. (21)

An ROC curve plots sensitivity, on the y-axis, as a function of
(1− specificity), on the x-axis, with each point on the plot correspond-
ing to a different cut-off value. We create a different curve for each of
the three metrics.

The following sections describe how the quantities TP(γ), FN(γ),
FP(γ), and TN(γ) can be computed using our set notation for clusters.
Recall from section 4.3:n

x → {{y1, z1}, {y2, z2}, . . . , {ynx , znx}}
o# of groups

x=1

A.1.2 Computation
TP

TP(γ) =
X
{j,k}

TP({j, k}) =

# gene pairs that were placed in the same

cluster and belong in the same group.

For each group x given in set notation as

x → {{y1, z1}, . . . , {ynx , znx}},
we count pairs from each yj , i.e.,

TP(x) =
�y1

2

�
+ · · ·+

�ynx

2

�
=

nxX
j=1

�yj

2

�
Totaling over all groups yields

TP(γ) =

# groupsX
x=1

TP(x) =
X

x

nxX
j=1

�yj

2

�
FN

FN(γ) =
X
{j,k}

FN({j, k}) =

# gene pairs that belong in the same group

but were placed into different clusters.

We must count every pair that got separated.

FN(x) =

8><>:
nxX
j=1

nxX
k=j+1

yj · yk if nx ≥ 2, or

0, if nx = 1.

However, when nx = 1, there is no pair {j, k} that satisfies the triple
inequality 1 ≤ j < k ≤ nx, and hence, we do not have to treat it as a
special case.

) FN(γ) =

# groupsX
x=1

FN(x) =
X

x

X
1≤j<k≤nx

yj · yk

FP

FP(γ) =
X
{j,k}

FP({j, k}) =

# gene pairs that belong in different groups

but got placed in the same cluster.

The expressionX
x

nxX
j=1

yj · zj

counts every false-positive pair {j, k} twice: first, when looking at j’s
group, and again, when looking at k’s group.

) FP(γ) =
1

2

X
x

nxX
j=1

yj · zj
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TN

TN(γ) =
X
{j,k}

TN({j, k}) =

# gene pairs that belong in different groups

and got placed in different clusters.

Instead of counting true-negatives from our notation, we use the fact
that we know the other three scores and the total they all add up to.

Complementarity Given a gene pair {j, k}, exactly one of
the events {TP({j, k}), FN({j, k}), FP({j, k}), TN({j, k})} is true, i.e.,
exactly one of them = 1, while the rest = 0. This impliesX

{j,k}
TP({j, k}) +

X
{j,k}

FN({j, k})+

+
X
{j,k}

FP({j, k}) +
X
{j,k}

TN({j, k}) =

= TP(γ) + FN(γ) + FP(γ) + TN(γ) =

=
�44

2

�
=

44 · 43

2
= 946 = Total

) TN(γ) = Total− (TP(γ) + FN(γ) + FP(γ))

A.1.3 Plotting ROC curves
For each cut-off value θ, we can compute TP(γ), FN(γ), FP(γ), and
TN(γ) as described in the previous section, with γ ∈ {0.0, 0.66, 1.0}
corresponding to Eisen, Shrinkage, and Pearson, respectively. Then,
the sensitivity and specificity are computed from equations (20) and
(21), and we can plot sensitivity vs (1− specificity), as shown in Fig-
ure 3.

We can also examine the effect of the cut-off threshold θ on the FN
and FP scores individually, as shown in Figure 4.

A 3-dimensional plot of (1− specificity) on the x−axis, sensitivity
on the y−axis, and threshold on the z−axis offers an interesting view,
as shown in Figure 5.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

1−specificity
sensitivity

cu
t−

of
f

Eisen    
Pearson  
Shrinkage

Figure 5: ROC curves, with threshold plotted on the z−axis.

A.2 Computing the marginal pdf for Xj

f(Xj) = Eθj
f(Xj |θj) =

Z ∞

−∞
f(Xj |θ)π(θ)dθ

=

Z ∞

−∞

1√
2πσ

e
− (Xj−θ)2

2σ2 · 1√
2πτ

e
− θ2

2τ2
dθ

=
1

2πστ

Z ∞

−∞
e

− 1
2

�
(Xj−θ)2

σ2 + θ2

τ2

�
dθ (22)

First, rewrite the exponent as a complete square:

(Xj − θ)2

σ2
+

θ2

τ2
=

1

σ2τ2

�
τ2(Xj − θ)2 + σ2θ2

�
=

1

σ2τ2

�
τ2Xj

2 − 2τ2Xjθ + τ2θ2 + σ2θ2
�

=
1

σ2τ2

�
(σ2 + τ2)θ2 − 2τ2Xjθ + τ2Xj

2
�

=
σ2 + τ2

σ2τ2

�
θ2 − 2

τ2

σ2 + τ2
Xjθ +

τ2

σ2 + τ2
Xj

2

�
=

σ2 + τ2

σ2τ2

"�
θ − τ2

σ2 + τ2
Xj

�2

−
�

τ2

σ2 + τ2
Xj

�2

+
τ2

σ2 + τ2
Xj

2| {z }
375 (23)

• τ2

σ2 + τ2
Xj

2 −
�

τ2

σ2 + τ2
Xj

�2

= Xj
2

�
τ2

σ2 + τ2

��
1− τ2

σ2 + τ2

�
= Xj

2

�
τ2

σ2 + τ2

��
σ2

σ2 + τ2

�
= Xj

2 σ2τ2

(σ2 + τ2)2
(24)

Substituting (24) into (23) yields

(Xj − θ)2

σ2
+

θ2

τ2
=

=
σ2 + τ2

σ2τ2

�
θ − τ2

σ2 + τ2
Xj

�2

+
σ2 + τ2

σ2τ2
Xj

2 σ2τ2

(σ2 + τ2)2

=
σ2 + τ2

σ2τ2

�
θ − τ2

σ2 + τ2
Xj

�2

+
Xj

2

σ2 + τ2
(25)

Now use the completed square in (25) to continue the computation in
(22).

f(Xj)

=
1

2πστ

Z ∞

−∞
e
− 1

2
σ2+τ2

σ2τ2

�
θ − τ2

σ2+τ2 Xj

�2

e
− 1

2

Xj
2

σ2+τ2
dθ

=
e

− Xj
2

2(σ2+τ2)

2πστ

Z ∞

−∞
exp

264−0B@ θ − τ2

σ2+τ2 Xjq
2σ2τ2

σ2+τ2

1CA2375 dθ
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Make the substitution

ϕ =

�
θ − τ2

σ2 + τ2
Xj

�,s
2σ2τ2

σ2 + τ2

Then

dϕ = dθ

,s
2σ2τ2

σ2 + τ2

dθ =

s
2σ2τ2

σ2 + τ2
dϕ

θ = ±∞ =⇒ ϕ = ±∞

and

f(Xj) =
e

− Xj
2

2(σ2+τ2)

2πστ

Z ∞

−∞
e
−ϕ2

s
2σ2τ2

σ2 + τ2
dϕ

=
e

− Xj
2

2(σ2+τ2)

π
p

2(σ2 + τ2)

Z ∞

−∞
e
−ϕ2

dϕ| {z }√
π

=
1p

2π(σ2 + τ2)
e

− Xj
2

2(σ2+τ2)

Therefore

f(Xj) =
1p

2π(σ2 + τ2)
e

− Xj
2

2(σ2+τ2)
(26)

A.3 Calculation of the posterior distri-
bution of θj

Since the subscript j remains constant throughout the calculation, it
will be dropped in this appendix. Herein, θj will be replaced by θ, and
Xj by X.

π (θ|X) =
f (X|θ) π(θ)

f(X)
=

f (X, θ)

f(X)

=
(1 /2πστ ) exp

h
−
�

θ2

2τ2 +
(X−θ)2

2σ2

�i�
1
.p

2π(σ2 + τ2)
�

exp
h
− X2

2(σ2+τ2)

i
=

1q
2π σ2τ2

σ2+τ2

exp

2664−1

2

 
θ2

τ2
+

(X − θ)2

σ2
− X2

σ2 + τ2

!
| {z }

3775

• θ2

τ2
+

(X − θ)2

σ2
− X2

σ2 + τ2
=

=
1

σ2τ2(σ2 + τ2)

�
σ2(σ2 + τ2)θ2

+ τ2(σ2 + τ2)

X2−2Xθ+θ2z }| {
(X − θ)2 −σ2τ2X2

�
=

1

σ2τ2(σ2 + τ2)

�
θ2
�
σ2(σ2 + τ2) + τ2(σ2 + τ2)

�
− 2τ2(σ2 + τ2)Xθ

+ X2
�
τ2(σ2 + τ2)− σ2τ2

� �
=

1

σ2τ2(σ2 + τ2)

�
θ2(σ2 + τ2)2

− 2(σ2 + τ2)θ · τ2X + τ4X2

�
=

1

σ2τ2(σ2 + τ2)

�
(σ2 + τ2)θ − τ2X

�2
=

1

σ2τ2(σ2 + τ2)
(σ2 + τ2)2

�
θ − τ2

σ2 + τ2
X

�2

=

�
θ − τ2

σ2 + τ2
X

�2�
σ2τ2

σ2 + τ2

Therefore,

π (θ|X) =
1q

2π σ2τ2

σ2+τ2

exp

264−�θ − τ2

σ2+τ2 X
�2

2
�

σ2τ2

σ2+τ2

� 375 (27)
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A.4 Proof of the fact that n indepen-
dent observations from the Normal
population N (θ, σ2) can be treated as
a single observation from N (θ, σ2/n)

Given the data y, f(y|θ) can be viewed as a function of θ. We then call
it the likelihood function of θ for given y, and write

l(θ|y) ∝ f(y|θ).
When y is a single data point from N (θ, σ2),

l(θ|y) ∝ exp

"
−1

2

�
θ − x

σ

�2
#

= exp

�
− 1

2σ2
(θ − x)2

�
, (28)

where x is some function of y.
Now, suppose that ~y = (y1, . . . , yn) represents a vector of n inde-

pendent observations from N (θ, σ2). We can denote the sample mean
by

ȳ =
1

n

nX
i=1

yi.

The likelihood function of θ given such n independent observations
from N (θ, σ2) is

l(θ|~y) ∝
Y

i

exp

�
− 1

2σ2
(yi − θ)2

�
= exp

"
− 1

2σ2

X
i

(yi − θ)2

#
.

Also, since

nX
i=1

(yi − θ)2 =
nX

i=1

(yi − ȳ)2 + n(ȳ − θ)2, (29)

it follows that

l(θ|~y) ∝ exp

"
− 1

2σ2

X
i

(yi − ȳ)2

#
| {z }

const w.r.t. θ

exp

�
− 1

2σ2
n(ȳ − θ)2

�

∝ exp

�
− 1

2(σ2/n)
(θ − ȳ)2

�
, (30)

which is a Normal function with mean ȳ and variance σ2/n. Comparing
with (28), we can recognize that this is equivalent to treating the data
~y as a single observation ȳ with mean θ and variance σ2/n, i.e.,

ȳ ∼ N (θ, σ2/n). (31)

Proof of (29):

nX
i=1

(yi − θ)2 =
X

i

(yi − ȳ + ȳ − θ)2

=
X

i

�
(yi − ȳ)2 + 2(yi − ȳ)(ȳ − θ) + (ȳ − θ)2

�
=

X
i

(yi − ȳ)2 + 2(ȳ − θ)
X

i

(yi − ȳ) +
X

i

(ȳ − θ)2

=
X

i

(yi − ȳ)2 + 2(ȳ − θ)

 X
i

yi −
X

i

ȳ

!
| {z }

nȳ − nȳ = 0

+n(ȳ − θ)2

=
X

i

(yi − ȳ)2 + n(ȳ − θ)2

A.5 Distribution of the Sum of two Inde-
pendent Normal Random Variables

Let

X ∼ N (0, α2)

Y ∼ N (0, β2)

be two independent random variables.

Claim: X + Y ∼ N (0, α2 + β2)
(We are only using this result for mean-0 Normal r.v.’s, although a
more general result can be proven.)

Proof: (use moment generating functions)

mX(t) = E

�
e
tX
�

=

Z ∞

−∞
e
tx · 1√

2πα
e
− 1

2α2 (x− 0)2

dx

=
1√
2πα

Z ∞

−∞
e

− 1
2α2 [x2 − 2α2tx]| {z }

dx (32)

Completing the square, we obtain

x2 − 2α2tx = x2 − 2(α2t)x + (α2t)2 − (α2t)2

= (x− α2t)2 − (α4t2)

1

α2
(x2 − 2α2tx) =

�
(x− α2t)/α

�2 − (α4t2)/α2

=

�
x− α2t

α

�2

− α2t2 (33)

Using the result of (33) in (32) yields

mX(t) =
e
− 1

2

�−α2t2
�

√
2πα

Z ∞

−∞
e
− 1

2

�
x−α2t

α

�2

dx

Let y =
x− α2t

α

dy =
dx

α
=⇒ dx = α dy

With this substitution, we obtain

mX(t) =
e

1
2

α2t2

√
2πα

· α
Z ∞

y=−∞
e
− 1

2
y2

dy| {z }√
2π

or

mX(t) = e

1
2

α2t2
(34)

Similarly

mY (t) = e

1
2

β2t2
(35)
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To obtain the distribution of X + Y , it suffices to compute the cor-
responding moment generating function:

mX+Y (t) = E

�
e
t(X + Y )

�
= E

�
e
tX

e
tY
�

= E

�
e
tX
�

E

�
e
tY
�

by independence of X and Y

= mX(t) ·mY (t)

= e

1
2

α2t2
· e

1
2

β2t2
by (34) and (35)

= e

1
2
(α2 + β2)t2

,

which is a moment generating function of a Normal random variable
with mean 0 and variance α2 + β2. Therefore,

X + Y ∼ N (0, α2 + β2). (36)

A.6 Properties of the Chi-square Distri-
bution

Let X1, X2, . . . , Xk be i.i.d.r.v.’s from standard Normal distribution,
i.e.,

Xj ∼ N (0, 1) ∀j.
Then

χ2
k = X2

1 + X2
2 + · · ·+ X2

k =
kX

j=1

Xj
2

is a random variable from Chi-square distribution with k degrees of
freedom, denoted

χ2
k ∼ χ2

(k).

It has the probability density function

f(x) =

(
1

2k/2Γ (k/2)
xk/2−1e−x/2 for x > 0

0 otherwise

where

Γ(k) =

Z ∞

0
tk−1e−t dt. (37)

The result we are using is

E

 
1

χ2
k

!
=

1

k − 2
for k > 2,

which can be obtained as follows:

E

 
1

χ2
k

!
=

Z
R

1

x
f(x) dx

=
1

2k/2Γ (k/2)

Z ∞

0

1

x
xk/2−1e−x/2 dx

=
1

2k/2Γ (k/2)

Z ∞

0
xk/2−2e−x/2 dx (38)

Let

t = x/2 =⇒ x = 2t
dx = 2dt

x = 0 =⇒ t = 0
x = ∞ =⇒ t = ∞Z ∞

0
xk/2−2e−x/2 dx

=

Z ∞

t=0
(2t)k/2−2 e−t 2 dt

= 2k/2−2 · 2
Z ∞

0
tk/2−2e−t dt. (39)

Let

u = e−t dv = tk/2−2 dt

du = −e−t dt v = tk/2−1

k/2−1
for k > 2

Integration by parts transforms (39) into

= 2k/2−1

0BB@ 1

k/2− 1
e−ttk/2−1

���∞
0| {z }

−→0

−
Z ∞

0

1

k/2− 1
tk/2−1

�−e−t
�

dt

1CCA
=

2k/2−1

k/2− 1

Z ∞

0
tk/2−1e−t dt| {z }

Γ(k/2), by (37)

=
2k/2−1

k/2− 1
Γ(k/2)
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Substituting this result in (38) yields

E

 
1

χ2
k

!
=

1

2k/2Γ(k/2)
· 2k/2−1Γ(k/2)

k/2− 1

=
1

2 (k/2− 1)

=
1

k − 2
for k > 2. (40)

A.7 Distribution of Sample Variance s2

Let Xj ∼ N (µ, σ2) for j = 1, . . . , n be independent r.v.’s. We’ll derive
the joint distribution of

√
n (X̄ − µ)

σ
and

(n− 1) s2

σ2
.

s2 =
1

n− 1

nX
j=1

�
Xj − X̄

�2
(n− 1) s2

σ2
=

n− 1

σ2
· 1

n− 1

nX
j=1

�
Xj − X̄

�2
=

nX
j=1

�
Xj − X̄

σ

�2

W.L.O.G. can reduce the problem to the case N (0, 1), i.e., µ = 0,
σ2 = 1: Let Zj = (Xj − µ) /σ . Then

Z̄ =
1

n

X
Zj =

1

n

X�
Xj − µ

σ

�
=

1

n

�P
Xj

σ
−
P

µ

σ

�
=

1

n

�P
Xj

σ
− nµ

σ

�
=

1

σ

�P
Xj

n
− µ

�
=

X̄ − µ

σ

and hence
√

n
�
X̄ − µ

�
σ

=
√

n Z̄. (41)

Also,

(n− 1) s2

σ2
=

1

σ2

X�
Xj − X̄

�2
=

1

σ2

X�
(Xj − µ) +

�
µ− X̄

��2
=

X�
Xj − µ

σ
− X̄ − µ

σ

�2
=
X�

Zj − Z̄
�2

(42)

By (41) and (42), it suffices to derive the joint distribution of
√

n Z̄

and
Pn

j=1

�
Zj − Z̄

�2
, where Z1, . . . , Zn are i.i.d. from N (0, 1).

Let

P =

0BBB@
p1

p2

.

..
pn

1CCCA
be an n× n orthogonal matrix where

p1 =

�
1√
n

, . . . ,
1√
n

�
and the remaining rows pj are obtained by, say, applying Gramm-
Schmidt to {p1, e2, e3, . . . , en}, where ej is a standard unit vector in
jth direction in Rn. Let

~Y = P ~Z

=

0BBBB@
1√
n

1√
n

· · · 1√
n

.

..

1CCCCA
0BBB@

Z1

Z2

.

..
Zn

1CCCA =

0BBB@
Y1

Y2

.

..
Yn

1CCCA
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Then

Y1 =
1√
n

0@ nX
j=1

Zj

1A =
1√
n

nZ̄ =
√

n Z̄. (43)

Since P is orthogonal, it preserves vector lengths:

‖~Y ‖2 = ‖~Z‖2
nX

j=1

Yj
2 =

nX
j=1

Zj
2

=⇒
0@ nX

j=1

Yj
2

1A− Y 2
1 =

nX
j=1

Zj
2 − �√n Z̄

�2
by (43)

Hence

nX
j=2

Yj
2 =

nX
j=1

Zj
2 − nZ̄2 =

nX
j=1

Zj
2 − 2nZ̄2 + nZ̄2

=
nX

j=1

Zj
2 − 2Z̄(nZ̄) + nZ̄2

=
nX

j=1

Zj
2 − 2Z̄

0@ nX
j=1

Zj

1A+
nX

j=1

Z̄2

=
nX

j=1

�
Zj − Z̄

�2
(44)

Since the Yj ’s are mutually independent (by orthogonality of P ), we
can conclude that

nX
j=2

Yj
2 =

nX
j=1

�
Zj − Z̄

�2
is independent of

Y1 =
√

n Z̄.

Also by orthogonality of P , Yj ∼ N (0, 1) for j = 1, . . . , n, so0@ nX
j=2

Yj
2

1A ∼ χ2
(n−1) (See Appendix A.6)

and hence, by (42) and (44),

(n− 1) s2

σ2
∼ χ2

(n−1) (45)

Since E
�
χ2

k

�
= k, for χ2

k ∼ χ2
(k)

, we can see that

E

�
(n− 1) s2

σ2

�
= n− 1.

Also, since

E

�
(n− 1) s2

σ2

�
=

n− 1

σ2
E
�
s2
�
,

we can conclude that

E
�
s2
�

=
σ2

n− 1
· n− 1

σ2
E
�
s2
�

=
σ2

n− 1
· (n− 1) = σ2, (46)

i.e., s2 is an unbiased estimator of the variance σ2.


