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Abstract

Because of heterogeneous and dynamic changing network environments, content delivery across the network re-
quires system support for coping with different network conditions in order to provide satisfactory user experiences.
Despite the existence of many adaptation frameworks, the question that which adaptation approach performs the
best under what network configurations still remains unanswered. The performance implication of different adap-
tation approaches (end-point, proxy-based and path-based approaches) has not been studied yet. This paper aims
to address this shortcoming by conducting a series simulation-based experiments to compare performance among
these adaptation approaches under different network configurations. In order to make a fair comparison, in this pa-
per approach-neutral strategies are proposed for constructing communication paths and managing network resources.
The experiment results show that there are well-defined network environments under which each of these approaches
delivers its best performance; and among them, the path-based approach, which uses the whole communication path
to do adaptation, provides the best and the most robust performance under different network configurations, and for
different types of servers and clients.

1 Introduction

Recent advances in network technology have made it possible to deliver real-time rich media content across the Inter-
net. However, despite increasing bandwidth, the Internet still remains a best effort platform, and exhibits considerable
heterogeneity and highly dynamic resource availability for individual network paths. This is especially the case when
we consider ubiquitously used mobile devices and a variety of wireless networking options ranging from Bluetooth [5]
to Wireless 3G [11]. For example, a typical network path between a mobile user and the visited Internet server may
include several different types of links with very different bandwidth, delay, and error characteristics, ranging from
high-bandwidth WAN links to wireless connections. Similar heterogeneity can also be observed on end devices, which
may possess very different computation/storage capabilities. These differences, combined with the fact that the load on
each of these network resources can change constantly, is a major cause for the unsatisfactory performance perceived
by end users.

To cope with the above problems, a widely used approach in current-day network services is to provide differen-
tiated service for different kinds of (last-hop) network links and end-devices. For example, most media sites usually
supply severalversionsof content for different client groups that use different connection options to access the In-
ternet. These versions usually have different requirements on bandwidth and client computation capacity. Although
this approach can improve user experience to some extent, the view that clients can be placed into a few fixed classes
with constant characteristics is incompatible with the fact that availability of network resources can change over small
timescales. For example, the bandwidth to a mobile device can change continually and dramatically due to the mobility
of users or the dynamic load of the shared network environment.
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More promising approaches to address this problem rely on a general framework that provides system support en-
abling applications toadaptto different network conditions. Examples of such systems include Rover [6], Odyssey [9],
ActiveProxy [2], Conductor [12], Active Names [10], Ninja [4], CANS [3] and Scout [8], to name a few. A common
property of these systems is that the data in transmission can be processed on the fly with various operators (in some
cases, routed via) to match different network conditions. Some of the systems, such as CANS [3], also provide built-in
support for dynamic modification of these operations. Compared with the static nature of the differentiated services
solution, these systems because of their flexibility can deliver better user experience. Additionally, because of their
general structure, such solutions can be applied to a wide range of applications.

Despite these common benefits, the general frameworks described above are quite different from each other. An
important difference has to do with the location in the network where adaptation functionality is introduced. With
regards to this issue, the systems above can be grouped into three categories:end-pointapproaches (e.g., Rover [6],
Odyssey [9]) where only client and server nodes are involved in adaptation;proxy-basedapproaches (e.g., Ninja [4],
Active Service [1]) where a proxy node, usually close to the client side, is used to process data, possibly with the
cooperation of client nodes; andpath-basedapproaches (e.g., Active Names [10], Conductor [12], CANS [3], and
Scout [8]), where adaptation can happen at arbitrary intermediate locations in the network in addition to the server,
client, and proxy sites as above.

A natural question to ask is whether these three categories of approaches bring any special advantages or disadvan-
tages. Unfortunately, although previous work has shown that the use of such adaptation systems does result in better
performance and user experience as compared to situations when no adaptation is provided, the performance implica-
tion of these different approaches has not really been studied in any detail. In particular, the answers to the following
questions are not readily available: How is the performance that is achievable constrained by the location of adapta-
tion? Under which network conditions is one kind of approach preferred over another? Is the additional complexity
of path-based approaches, which requires control over several locations in the network, really necessary? Answering
these questions is important, not only for understanding the performance of existing adaptation frameworks, but also
for building appropriate solutions as new devices and networks are deployed.

The study presented in this paper aims to answer these questions. We extensively simulate the behavior of different
adaptation approaches in the context of a large scale network topology, characterizing in detail the performance and
resulting client behaviors. The study looks at how different approaches fare for different assumptions about server
computation capacity, client capacity and connectivity options, and request distribution between clients and servers.
A key aspect of our methodology is the use of approach-neutral mechanisms for constructing network paths and man-
aging network resources, which attempt to make a fair comparison by maximizing the performance of each approach
given its individual constraints of where network adaptation can happen.

The principal results from the study are summarized below. The key finding is that there are well-defined network
environments under which each of the approaches delivers its best performance. More importantly, each approach,
with one exception – the path-based approach, also exhibits performance shortcoming in certain environments. Specif-
ically,

• The end-point approach works well in network environments where the server sites have plenty of computation
capacity, but performs poorly in situations where server sites have limited resources. From the client perspective,
the end-point approach provides considerably better performance for clients using high bandwidth network
connections.

• Compared with the end point approach, the proxy-only approach exhibits little bias towards different types
of servers or clients. However, restricting the adaptation to take place just before the last hop can result in a
significant waste of network resources, bringing down the performance of the entire network under high loads.

• Path-based approaches combine the benefits of both end-point and proxy based approaches, providing the most
robust and best performance under different network configurations. This behavior mainly stems from the
fact that path-based approaches can take advantage of surplus resources wherever they may be available in the
network, something that the other approaches are incapable of doing.

The rest of this paper is organized as follows. In Section 2, we briefly review general adaptation frameworks
for content delivery across heterogeneous networks. In Section 3, we describe the simulation scenario used in this
study. Section 4 presents path creation and resource management strategies that can be uniformly applied to all three
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adaptation approaches to optimize their performance, enabling fair comparison. The results from the simulation study
are presented and analyzed in Section 5. We conclude in Section 6.

2 Background: Adaptation Mechanisms for Content Delivery

For content delivery applications, user experience is directly related to the underlying network conditions. While an
ideal network for such applications should provide guaranteed QoS, today’s Internet still remains a best-effort platform
for delivering data packets. Consequently, to provide satisfactory user experience, applications themselves have to
cope with various problems caused by heterogeneous and continually changing resource availability. Adaptation is
one way to achieve this objective.

In contrast to application-specific mechanisms, general adaptation frameworks provide application independent
solutions to cope with different network conditions, typically by transcoding the data using various operators prior to its
delivery. Such approaches are attractive because of their applicability to a diverse range of applications. Furthermore,
such approaches can also simplify the construction of solutions targeted towards one specific application domain.
Despite a great deal of commonality among the proposed approaches, they exhibit significant variation along one
dimension: thenetwork location where adaptation can take place. It is this dimension that our study focuses on. With
respect to adaptation location, general adaptation frameworks can be placed into three groups: end-point approaches,
proxy-based approaches and path-based approaches.

End-point approaches(e.g. Odyssey [9], Rover [6], and InfoPyramid [7]), use only client and server nodes in
adaptation. For example, Odyssey [9] allows client applications to register their expectations of resource availability to
the underlying framework. The framework notifies the application whenever the resource expectation can no longer be
met. The client application can then respond to such notifications, say by changing the fidelity of data in transmission.
The cooperation protocol to change the data fidelity level is handled by the server and a component on the client side
called a Warden.

For proxy-based approaches(e.g. Ninja [4], Active Proxies [2], and Active Services [1]), instead of server nodes,
shared proxy nodes are used to cope with different network connections and end devices. For example, Active Prox-
ies [2] proposed the use of cluster-based proxies, usually placed close to the client nodes, to perform aggressive
computation such as content distillation and transcoding on-the-fly to cope with client-side variation (including net-
work, hardware, and software used by the client). The Active Proxy work also comments that proxy-based approaches
offer an advantage over end-point approaches in that using a large central server for performing content transcoding
operations is more efficient than a collection of small ones. Our results partly agree with this comment, however, as we
shall discuss later, the truth of this statement is closely dependent on assumptions about expected resource utilization
in other parts of the network.

Compared with the first two approaches,path-basedapproaches (e.g. Conductor [12], Active Names [10] CANS [3],
and Scout [8]) are more general in the sense that any node along a network path can participate in adaptation. An ex-
ample is our CANS infrastructure, which provides mechanisms for automatic construction and reconfiguration of
network aware paths according to high level application performance requirements. CANS paths consist of operators
(calleddrivers) that can do various operations such as filtering/transcoding, reconnection, and rerouting. CANS al-
gorithms dynamically control the deployment of drivers to network resources so as to match application performance
requirements with underlying network conditions.

Previous studies on these systems have already shown that using these adaptation frameworks does result in better
performance, compared with the situation where no adaptation is performed. However, to the best of our knowledge,
a comparison of the suitability of these approaches under different network configurations, especially from a perfor-
mance perspective, has not yet been studied. The work presented in this paper attempts to address this shortcoming to
better understand both how constraints on adaptation location affect overall performance and conversely, to determine
how best to allocate network resources so as achieve the best performance from a given approach.

Although the focus of this study is on the performance impact of where adaptation happens in the network, we
note that the ultimate choice of one adaptation strategy over another is also affected by additional factors such as
security and/or management overheads. With regard to these latter considerations, some approaches, such as end-
point approaches appear to offer clear advantages over others. However, given that the objective of adaptation in
content delivery is to satisfy performance-related quality requirements, one needs to always balance the performance
implications of the decision against the other factors. The motivation behind this study is to provide input to allow this
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tradeoff to be made in an informed fashion.

3 Methodology and Simulation Scenario

In order to study the performance of different adaptation approaches under different network conditions, we adopt
a simulation-based methodology. Using a detailed simulator modeling a typical large-scale network where multiple
concurrently-active clients download media content from server sites, we characterize the performance of the three
approaches — end-point, proxy-based, and path-based. We provide an overview of our simulation scenario and per-
formance metrics of interest below, deferring a detailed description of the specific parameters to Section 5.

Simulated Network. The network modeled in our simulator is depicted in Figure 1. The network contains multiple
ISP regions, each of which is modeled as a centralized gateway/proxy node providing a connection to the Internet
backbone. The server and client nodes in the network are attached to one of these ISP nodes using various connectivity
options. Available options for client nodes include: wired links with sufficient bandwidth (e.g. T1, T3, or ADSL),
wired links with limited bandwidth (e.g. dialup connections), and shared wireless links (e.g. IEEE 802.11b). Server
connectivity options include two types of higher bandwidth connections (corresponding to OC-3 and OC-12 links).
Server and ISP nodes are allocated portions from a fixed computation budget, which is divided up as discussed in
Section 4.2 to individually optimize the performance of each approach.

ISP1

ISPi

T1/AdslModem
Server1 Server20

Access Point 100

Backbone
ISP10

Access Point 1

Figure 1: Experiment Network Topology

Application Behavior. The simulation models users connecting to server nodes from client nodes to download and
display streaming media content. The connection is released once the download session is completed (which can
happen either after the content is completely downloaded, or if the download task is cancelled by the user). To display
the received content appropriately, the throughput of a download path is required to be in some specific range (i.e. a
certain number of frames per second). When the available bandwidth is not sufficient to meet the requirement, several
operators can be used to reduce bandwidth consumption (e.g. by filtering the content).

Performance Metrics. In our experiments, we extensively examined the behaviors of different adaptation approaches
by varying different parameters affecting the above scenario: load level in the network, load distribution among server
sites, and client connection options. The primary metric used to characterize the performance in each case is the
aggregate time (across all sessions) when the throughput of the path is in the required range. A secondary performance
metric is the total number of connection failures as a result of an admission control policy that actively rejects new
connections when the available resources are insufficient for sustaining additional connections.
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4 Approach-Neutral Strategies for Path Creation and
Resource Management

Since the focus of this study is on the performance achievable by different adaptation approaches, a key challenge
is to ensure that the comparison between approaches is as fair as possible. This entails ruling out factors that are
not inherent to the adaptation approach being evaluated, but which can nevertheless impact performance. For the
simulation setting outlined in the previous section, there are three such factors:

1. Given an allocation of network resources for a particular connection, how should one select the operators to
make up the adapted path?

2. How should shared network resources be allocated among the multiple connections that need to use them?

3. What is the relative computation capacity of server and proxy sites?

Decisions on the first two factors directly affect the performance achievable by an approach (and for reasons that
have very little to do with the study’s central issue of adaptation location), while the third factor has an indirect affect
by influencing where adaptation operators can be placed.1 What is required in each case are strategies that permit
each adaptation approach to achieve its best possible performance.

In the rest of this section, we present strategies that meet the above objective. These strategies have been developed
and tested in the context of the CANS system [3], but are equally applicable to the other general adaptation frameworks
mentioned earlier. We start by introducing a common model for operators, resources, and data paths, and then describe
in turn, algorithms for path creation, resource allocation, and resource distribution.

A Model for Operators and Adapted Connections

An operator is an entity that processes data in transmission, sometimes transforming it from one type to another.
Each operator is modeled in terms of itscomputation load factor(load(o)), the average per-input byte cost of invoking
the operator, and itsbandwidth impact factor(bwf(o)), the average ratio between input and output data volume. For
example, a compression operator that reduces the size of input data by a factor of two has abwf = 2.0.

Eachnodeni in the network is modeled in terms of its computation capacity, while alink between two adjacent
nodes is modeled in terms of its bandwidth capacity. For nodes or links that are shared by multiple paths, each
individual path is assigned a share of the total capacity. Aroute is a sequence of nodes and links between the client
and server nodes.

A data path is a sequence of type-compatible operators. Type compatibility is defined in atype graph Gt, whose
vertices (t ∈ V (Gt)) represent types, and edgese = (t1, t2) ∈ E(Gt) represent an operator that can transform data
from typet1 to typet2. Only operators that have compatible types can be connected together. Such a typed view has
been used in several systems such as CANS [3], Ninja [4] and Conductor [12].

A mapping, M : D → R, associates operators on a data pathD with nodes in the routeR. The three adaptation
approaches place restrictions on this mapping, by defining which nodes along the path can receive operators.

4.1 Automatic Path Creation Strategy

The path creation strategy answers the first of the questions posed at the start of this section, namely given an allocation
of network resources for a particular connection, how should one select the operators to make up the adapted path.
The strategy, which can be uniformly applied to end-point, proxy-based, and path-based approaches, simultaneously
selects and maps operators to the route so that the performance of the resulting data path is optimized. In the remainder
of the paper, we will use the termsplanningandplan to refer to the application of this strategy and the produced output
respectively.

1This issue is more important for path-based approaches as opposed to end-point or proxy-based ones. For the latter, the resource distribution
question is simply resolved in favor of biasing the sites where adaptation takes place.
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The input to planning includes a routeR, a source data typets, a destination data typetd, and the type graphGt

representingm types andn operators. The plan defines both the data pathD that transformsts to td and its mapping
to R while yielding the best performance (e.g. maximal value of throughput or minimal value of latency etc.).

Obtaining an optimal solution to the planning problem is NP-hard. To make the problem tractable, we simplify it in
two ways. First, we restrict our attention to mappings that satisfy the restriction thatM(oi) = nu,M(oi+1) = nq ⇒
u ≤ q, i.e., components are mapped to nodes in path sequence order. The intuition behind this is sending data back
and forth between nodes in a route usually results in poor performance and is wasteful of resources. Second, we view
computation capacity as being partitioned into a fixed number ofdiscreteload intervals; i.e., capacity is allocated to
components only at interval granularity. This practical assumption allows us to define, for a routeR with p hosts, the
notion of anavailable computation resource vector, ~A(R) = (r1, r2, . . . , rp), whereri reflects the available capacity
intervals on nodeni (normalized to the interval [0,1]).

Base Dynamic Programming Strategy The above simplifications make the planning problem amenable to a dy-
namic programming solution. Each step of the algorithm constructs for different amounts of route resources, optimal
solutions withi + 1 (or fewer) operators, using as input optimal partial solutions involvingi (or fewer) operators.
The stepi solution is representable ass[ts, t, ~A, i], and denotes the data path that yields the best performance for
transforming the source typets to typet, usingi operators or fewer and requiring no more resources than~A.

The algorithm is described in detail in Appendix A. The main observation is that each step involves enumeration
of a fixed number of candidate solutions because of the fixed number of operators, types, and resource vectors. Addi-
tionally, because of the mapping restriction above, only resource vectors of the form(1, ..., 1, rj ∈ [0, 1], 0, ..., 0) need
to be considered. As described in Appendix A, the optimal solution can be identified simply by expressing the overall
performance of the partial data path in terms of the characteristics of individual operators and their mappings.

The complexity of this algorithm is0(n3 × p3) as opposed toO(pn) for an exhaustive enumeration strategy. In
most scenarios,p is expected to be a small constant, with overall complexity determined by the number of components.

Planning for Range Metrics
The base algorithm can easily be extended from planning for maximal/minimal values of performance metrics to

ensuring that the value of the metric is within a certainacceptable range. Only after this range has been met does the
application worry about other preferences. For example, most media streaming applications (include the application
used in our experiments) require that the data transmission rate fall in some suitable range so that media data can be
rendered appropriately at display devices; once this is true, other factors such as data quality become the concern for
the application. We use the termsrange metricsandperformance metricsto refer to the two types of preferences.

The basic idea behind planning for range metrics is simply stated. Given that the algorithm constructs data paths
by incrementally filling in a solution table ofs[ts, t, ~A, i], it is natural to extend this to check that retained solutions
satisfy two conditions: (1) values of range metrics achieved on the current partial solution lie within the desired range,
and (2) the value of any performance metrics is in fact optimized. Heuristic functions help choose among candidate
paths that can all meet the required range.

Additional work is required for some range metrics, such as path latency, where although the current value of the
metric may not fall within the desired range, there exists the possibility (through insertion of additional operators)
that such partial paths may become a part of the final solution. These candidate solutions are identified by running
the planning algorithm in reverse in a process calledcomplementary planning. The latter provides information about
whether or not there exist operator mappings that would allow the range metrics to reach the desired range using
residual resources along a data path. Note that complementary planning needs to be run just once for the whole
planning process.

Note that although the algorithm described above strives for optimality, this fact is less crucial for the conclusions
drawn from this study. More important is that this approach can be applied to all three adaptation approaches without
introducing any bias into the comparisons.

4.2 Resource Sharing among Multiple Paths

We now describe a strategy that answers the second of the questions posed at the start of this section, namely how
should shared network resources be allocated among the multiple connections that need to use them. The goal is to
ensure that optimized performance is delivered to as many paths as possible.

To achieve this, we first need to understand how an individual network-aware path behaves under a shared network
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Figure 2: (a) General state transitions for an individual Path (b) In our scheme.

environment. Figure 2(a) shows the state transitions an individual path goes through during its lifetime (the start and
finish states are omitted to simplify the presentation). If the resources allocated to the path is sufficient for meeting
its performance requirements, a path is deemed to be inInRangestate, i.e., its performance is in the desired range.
When some of its resource shares change, either it continues to meet its performance requirements or not. In the latter
case, there are two possibilities depending on whether or not the path can manage to reconfigure itself to go back into
the InRange state. If it can, it enters a state calledAdaptationuntil reconfiguration is complete. If not, it enters the
OutRangestate, from which it can transition to the other states only when the path’s allocated resource shares have
been raised. We call these three statesstableto distinguish them from transition periods between these states.

By examining the state transition in Figure 2(a), one can also observe that there are three different types of resource
shares that can be associated with a network-aware path during its lifetime. The first one is the share value used in
planning for a new configuration. In general, the greater the value, the better the generated plan will be. The second is
the upper bound that the path is allowed to use, i.e. the allocated share. The last one is the actually used by the path at
current timet.

Taking these three types of resource shares into consideration, to improve both individual path performance and
throughput of the whole network, an ideal scheme for allocating resource shares among multiple paths should be
able to 1) maximize the value of the share value for planning purpose to produce good quality paths; 2) minimize
the difference between the allocated and the actual used share to avoid resource waste. This is the basic idea of our
scheme, which employs the following strategies: 1) when a planning is needed, a path is allowed to ask for an increase
in its allocated shares; 2) whenever a path enter a stable state, it is required to release unused resources. The state
diagram of an individual path using this scheme is shown in Figure 2(b). TheTransitionstate is for a path to send
allocationrequests to all resources involved.

In addition to producing better plans, another benefit of using theallocationrequest is that such a simple approach
can effectively balance load across the network. For example, if pathA uses nodesn1 andn2 of which n1 is heavily
loaded butn2 has relatively light load. After sendingallocationrequests to both of them, pathA will receive a larger
partition atn2. Consequently, most computation required byA will be moved to noden2. Though a tight cooperation
betweenn1 and n2 may also achieve the similar effect, such cooperation usually requires expensive information
exchange about dynamic resource availability. In contrast with this, Our approach is much simpler and can scale well
for large networks.

To realize this scheme, we need to specify how to (1) calculate the share that a network resource allocates in
response to a path’s request for resources; and (2) adjust shares for existing paths, triggered either by a need to satisfy
allocation requests from other paths or by the release of some resources.

Allocation. The allocation step maximizes the likelihood that an appropriate plan for a path can in fact be constructed.
For this reason, the strategy allocates either a maximum share of the resource (when the resource is undercommitted)
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or returns the largest share it can by repartitioning the resource among available paths. In the latter case, the strategy
described in detail in Appendix B attempts to minimize frequent reconfiguration and cascading adjustments.

The above allocation, referred to as theplanning share, is made with the understanding that a path will release the
unused portion of resources for use by other paths.

Adjustment. The adjustment step is required in two situations: (1) when there are insufficient resources available to
satisfy requests for a new share or increases to already allocated shares, and (2) when an allocated share is released.

For the first situation, a set of existing paths need to be selected and their shares will be reduced in order to
accumulate a large-enough share for the requester. The allocation step above is responsible for determining how large
this share needs to be; the adjustment step decides which paths to take away resources from. Several different heuristic
schemes can be employed to guide the latter process. Our scheme picks victims in decreasing order of the allocated
shares, affecting paths that have a larger share of the resource. This basic scheme can be extended to restrict attention
only to paths in the InRange state. The intuition here is twofold. First, such paths are more amenable to reconfiguration
for staying in the desired range, as opposed to the paths in the Transition or OutRange states. Second, if resources
are overcommitted, it is usually more acceptable to reject new connections than push existing paths into the OutRange
state. Note that, as described in Appendix B, employing this extension may end up reducing the overall share that can
be allocated to the requester.

The adjustment in the second situation is simpler: when a share of the resource is released, it is used to increase
the allocation of paths in the OutRange state up to the preconfigured maximum. The intuition here is the same as in
the allocation step: providing paths with the maximal opportunity of reentering the InRange state.

4.3 Resource Distribution Between Server and ISP Nodes

The third question raised at the start of this section focused on the relative computation capacity of server and ISP-level
proxy sites. This question is of interest primarily for path-based approaches, where different distributions of a same
amount of total computation capacity among the network nodes can result in very different performance. Given the
study’s objective, we need to distribute the computation resource in a way that path-based approaches can perform
their best. In the rest of this section, we describe our approach for achieving this.

Our strategy is motivated by the observation that although path-based approaches can in general deploy operators
on any node along a network path, usable nodes in practice are most likely a small set of strategic nodes such as ISP
and gateway nodes. These kinds of nodes are also typically subject to administrative agreements between a higher-
level network domain (e.g., the ISP) and a lower-level one (e.g., the server). Therefore, one can view the computation
distribution problem as one of rearranging computation resources in a hierarchical network graph. Specifically, given
a fixedcomputation budget, initially assumed allocated to nodes of a lower-level domain (servers in our case), the
problem becomes one of moving a portion of the budget to nodes in a higher-level domain (ISP nodes in our case) to
provide better overall performance by providing resource sharing across the network: overloaded servers see improved
performance by taking advantage of spare resources at underloaded servers aggregated into a shared resource pool at
a higher-level node in the network graph. Our strategy achieves thiswithout compromisingthe performance of the
domain from which computation resources are moved out.

The reassignment problem is illustrated in Figure 3. Each serversi has a computation budgetCi (in operations per
second), and is connected to the ISP node (I) via a link with bandwidthBWi. The ISP node in turn is connected to the
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Internet backbone with a link of bandwidthBWI . We use the termsserver linkandISP link to distinguish between
the two types of links above. The problem is one of determining what portion ofCi ought to be moved fromsi to I.

We only present the main intuition behind our algorithm here, directing the reader to Appendix C for the details.
Given a load distribution for the various servers and a model of the computation and bandwidth resource utilization of
client connections, the algorithm compares the aggregate number of connections that can be sustained on the servers
assuming the server link becomes the bottleneck with that sustainable when the ISP link becomes the bottleneck. Note
that because typically

∑
i BWi ≥ BWI (as otherwise the bandwidth in the higher-level network domain would remain

underutilized), there must exist some servers for which the ISP link becomes a bottleneck prior to the corresponding
server link. For these servers, it is possible to move the unused portion of the computation budget to the ISP node. Our
algorithm is used to identify these servers and calculate how many resources can be moved out without compromising
their performance.

Our description above considered a two level hierarchy (i.e., between servers and ISPs). However, this strategy
can be easily extended to a hierarchically organized network domain with multiple levels. The basic idea is as follows:
when moving resources to anth level node, consider the(n− 1)th level node as aggregating the resources of all lower
levels for purposes of the bottleneck comparison above. Note that only resources from the(n− 1)th level node would
actually get transferred.

A practical note: the algorithm sketched above assumes prior knowledge of the load distribution among low
level network domains. Since the load distribution varies over time, the redistribution process can be made more
conservative by capping the maximal amount of resources that can be moved.

5 Performance Implications of Adaptation Approaches

To study the performance implications of end-point, proxy-based, and path-based adaptation approaches, we simulate
their behaviors on a large scale network in the context of a representative workload, which models clients downloading
streaming real-time media content from server sites. Our simulation study investigates how these approaches perform
under different loads, for different types of servers or clients, and for different client connectivity options. We start by
describing the simulation settings, and then present the detailed results of these investigations.

5.1 Simulation Settings

Application Performance Requirements In our simulation, every client downloads continuous JPEG image frames
(with an average size of 4K bytes) from a server site. In order to display the received content appropriately, the
throughput of a download path is required to be in the range of 10 to 16 frames per seconds,2 and within this range
higher data quality is preferred.

Possible operators that can be used with these paths include animage-filterand animage-resizer, which reduce
bandwidth consumption by degrading image quality or reducing image size respectively. Both operators support ten
different configurations; in each case thenth configuration reducing image quality or size by a factor ofn/10. Details
about theload andbwf values for each operator configuration are omitted here for brevity.

Network Characteristics The topology of our simulated network was shown earlier in Figure 1. For the results
reported here, the network is assumed to comprise ten ISPs. Each ISP is connected to the Internet backbone via an
OC48 (2.488Gbps) link and includes 20 media servers, 100 public IEEE802.11b (6.0Mbps3) access points, and a
number of client sites.

Connectivity options for clients include T3 (44.73Mbps), T1 (1.544Mbps), ADSL (1.5Mbps), Dialup (56Kbps),
and IEEE802.11b connections (via the public access points). The T3, T1 and ADSL links are assumed to have suffi-
cient bandwidth for the media application, while Dialup connections are incapable of meeting throughput requirements
without the use of compression operators. For wireless connections, available bandwidth is dependent on the load of
the access point and may sometimes necessitate compression operators along the path.

At each ISP, we model the arrival of clients as a Poisson process; the arrival rate of clients is a parameter that can be

2This means the media player must display at least 10 frames per second for a satisfactory user experience, but can not handle more than 16
frames in one second.

3We assume a 60% bandwidth utilization of an IEEE802.11b network.
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adjusted to achieve different load levels. Once initiated, the duration of a download session is assumed exponentially
distributed with an average of 1 minute.

Media servers within each ISP fall into one of two configurations. One fourth of the servers are categorized aslarge
sites, with high-bandwidth connections to the ISP node (via an OC12 link operating at 622Mbps) and a computation
budget uniformly distributed between 100 to 200 units.4 The remainder three fourth of the servers are categorized
assmall sites, with lower-bandwidth connections to the ISP node (an OC3 link operating at 155Mbps) and a smaller
computation budget uniformly distributed between 10 and 100 units.

Adaptation Approaches Our studies considered five different adaptation approaches: the end-point approach, the
proxy approach, an approach that use servers in addition to proxies (labeled asserver+proxy), the path-based approach,
and a path-based approach without reconfiguration support (labeled aspath-reconfig). The last approach clarifies the
benefits of dynamic adaptation; communication paths in this approach can adapt to different network conditions only at
path-creation time. As mentioned earlier, the first four approaches represent different constraints on where adaptation
is allowed. For theend-pointapproach, only the server node and the client node of a communication path can be
involved in adaptation. Theproxyapproach is allowed to use client nodes and client-side ISP nodes. Theserver+proxy
approach represents an intermediate point, which, in addition to nodes used by the proxy approach, can also use server
nodes for adaptation. Finally,pathapproach can use all four nodes along a communication path: the server node, the
server-side ISP node, the client-side ISP node, and the client node.

To make a fair comparison between these approaches, our studies used the same total computation resource budget
in each case.5 In the end-point approach, all resources reside on server sites. For the proxy approach, all resources
on server sites are aggregated on the ISP nodes they attach to. For the server+proxy approach and the path approach,
a portion of the computation budget of every server site is moved to its ISP node using the strategy described in
Section 4.3. The redistribution assumes that requests from clients are uniformly distributed among all server sites.
Our study also examines situations where this assumption does not hold, providing insights into how performance is
affected by inaccuracies in client traffic models.

Performance Metrics. Our simulations characterize two major performance metrics. The first measures the aggre-
gate time of all paths when the throughput of a path is in the desired range. We refer to this as theInRange time,
i.e., the time where paths stay in theInRangestate of the state diagram shown in Figure 2. Another reasonable metric
is the aggregate InRange time that is further weighted by data quality of the communication paths. Since we observed
similar trends between the weighted and unweighted metrics in our study, we report only on results for the unweighted
metric below.

The second performance metric is the total number of connection failures due to insufficient resources. Connection
failures result from admission control, which actively rejects any incoming connection request if the initial planning
cannot produce a communication path that meets the performance requirements.

In addition to aggregate data for the whole network, we also collected data for different types of servers and clients
to further examine how different adaptation approaches perform from the perspective of individual servers or clients.
In particular, we report on data for server sites that have the maximum or minimal computation budget, and for clients
that use different connectivity options.

Reconfiguration Overheads Path reconfiguration in our study is modeled after a general protocol proposed in the
context of the CANS infrastructure [3]. This protocol, which can be uniformly applied to end-point, proxy, and
path-based approaches, preserves the semantic continuity of data transmission by employing the following six steps:

• Detection of changes in resource availability. As described in Section 4.2, our resource allocation strategy relies
on network resources (nodes and links) being responsible for allocating partitions for individual paths. There-
fore, the delay of detecting a change of resource availability is basically the time for delivering notifications.
Since a notification is a small message that can be embedded in the regular data stream,6 we model the delivery
time as the total network link latency between the resource and the receiver.

• Planning. In general, the time for calculating a new path is highly dependent on the planning algorithm, but
can be significantly reduced by employing a path cache of previously generated solutions. Given that attributes
of most paths in our study (content type, client connectivity, resource availability) are likely to be clustered

4One unit is normalized as a computer with a Pentium III 1GHZ processor and 256MByte 800MHz RDRAM.
5The computation budget refers only to resources available for path transcoding and compression operations. Sufficient resources are assumed

available on the server and proxy nodes for data retrieval from disk and forwarding through the protocol stacks.
6For example, the outbound data mechanism in TCP can be used for delivering such notifications.
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in a small range, we expect a good hit rate from such a cache. Consequently, we assume that planning incurs
negligible overhead, modeling the situation where new plans are almost always obtained directly from the cache.

• Distribution of the new plan. New plan partitions need to be distributed to every node, which needs to be
reconfigured, along the communication path. This is done by sending, in parallel to all these nodes, a data
packet containing the plan partition of the receiving node. The packet itself has a size that is plan-dependent,
and incurs latency dictated by the available bandwidth on the network resources being utilized.

• Flushing data in transmission. The protocol ensures semantic continuity of data transmission by flushing any
incomplete data segments in transmission or internal state built up in operators. Additional details about this
process can be found in [3]. We model the overhead of this step in the simulation as the time required for
transmitting the required segments.

• Deployment of new operators. Because operators are reusable and contain only soft state, the time for replac-
ing old components with new operators on a node is usually a constant. In our study we use a value of 100
milliseconds, which is consistent with that observed in experimentation with the CANS infrastructure.

• Resumption of data transmission. The final step resumes data transmission through the new path. In the simu-
lation, this step is assumed to incur negligible overhead.

In the rest of this section, we first report on the performance achieved by different adaptation approaches with
client traffic uniformly distributed among the various server sites for a particular client connectivity profile. We then
separately examine how performance is affected by non-uniform traffic distribution (where “hotspot” servers receive
a larger share of the connection requests), and when the client connectivity profile is changed (with different fractions
of clients using high-bandwidth and low-bandwidth links). In each case, we simulate the network for 4 minutes,
recording data only for sessions that are started within the last 2 minutes, i.e. after the network reaches a stable state
(recall the average length of a session is 1 minute). The measurement ends at the 4 minute mark.

5.2 Performance under Uniform Load Distribution

This configuration uniformly distributes client requests among all server sites, varying client arrival rates at each
ISP from 10 to 200 clients per second. These rates correspond to 6000 to 120,000 active paths simultaneously ex-
isting in the network. The client connectivity profile is fixed as follows: 25% use links with sufficient bandwidth
(T1/T3/ADSL), 25% use Dialup, and the remaining 50% use wireless connections. We examine the impact of changes
from this profile later in Section 5.4.

The performance achieved by different adaptation approaches for this configuration is shown in Figure 4. Plots (a)
and (b) respectively show values for the InRange time and number of rejected connections, aggregated over all servers.
Plots (c),(d) and (e),(f) show the corresponding plots for the server with the maximum computation budget (199 units),
and for that with the minimum budget (10 units). Figures 4(g) and (h) show the InRange time (normalized with
respect to the total session time) seen by clients who use T1/T3/ADSL links and those that use weaker dialup/wireless
connections.

5.2.1 Analysis of Aggregate Performance

From Figures 4(a) and (b), it can be observed that all four adaptation approaches that include reconfiguration support
perform very well when the network is lightly loaded. However, after the load increases to some level (client rate=80
in Figure 4(a)), the performance of the proxy approach is the first to reach saturation. This is explainable by the
following: since adaptation can only occur on the node before the last hop, all paths end up consuming considerable
bandwidth in the network core, consequently saturating this portion of the network much faster than other approaches.
Once the network gets saturated, further increases in InRange time are still possible, albeit at a much smaller rate,
because of local loops (a client downloads contents from a server that is attached to the same ISP).

Compared with the proxy approach, the end-point approach performs better (with higher InRange Time and fewer
connection failures), especially after the “saturation” point of the proxy approach. This is expected because the end-
point approach uses server sites to do image filtering or resizing, and does not waste bandwidth on the network links.
However, it can also be observed from the Figure 4(b) that the end-point approach starts to reject connections early,
even when the network is lightly loaded. These rejections mainly come from clients that use weaker links such as
Dialup to access small sites with limited computation capacity.
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Figure 4: Performance under Uniform Load Distribution.
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Figures 4(a) and (b) also show that the path-based approach provides the best performance at all load levels. The
InRange time of the path-based approach is up to 12% and 97% higher than that of the end-point approach and the
proxy approach respectively. The number of connection failures of the path-based approach is also much lower. For
example, for a client rate of 200 connections/second, the end-point approach rejects 59% more connections and the
proxy approach rejects about 343% more connections than the path approach. The reason for this behavior is because
the path-based approach combines the advantages of both proxy and end-point approaches. On one hand, similar to
the end-point approach, the path-based approach can utilize upstream nodes along a communication path to ensure that
network bandwidth is not wasted; and on the other, similar to the proxy approach, the path-based approach can set up
shared resource pools across the network, permitting overloaded servers to benefit from spare computation resources
elsewhere.

The performance of the server+proxy approach falls between the path-based approach and the end-point approach,
which verifies that allowing adaptation to happen on even one more node in the middle of the communication path can
improve overall performance.

5.2.2 Performance of Different Server Sites

Comparing between Figures 4(c)–(f) allows us to draw conclusions about how the different adaptation approaches
perform from the perspective of connections targeting servers with higher or lower computation budgets. The results
indicate that the end-point approach shows a distinct bias, performing much better with the largest server than with the
smallest one. The proxy approach performs uniformly with both servers, primarily because all computation resources
are aggregated at proxy sites. The path-based approach performs as well as the end-point approach for the largest
server, and performs the best for the smallest server. This can again be explained by the flexibility brought by resource
sharing and being able to use upstream nodes to do adaptation.

Another point deserving mention is the performance decrease of the server+proxy approach in Figure 4(e) for
client arrival rates higher than 90 connections/second. This can be explained as follows: after load increases to the
point where the smallest server runs out of computation resources, other server nodes continue to support filtering or
resizing operators because they have additional computation capacity. Since compressed connections (with operators)
consume less bandwidth than uncompressed ones, accepting more compressed connections for these servers can in
turn decrease the number of uncompressed connections to the smallest server because the size of resource shares
in the core network links shrinks as more compressed connections join in. Consequently, for the smallest server,
the InRange time drops and the number of connection failures increases as load increases. Note that the path-based
approach avoids this situation by exploiting resource pooling at server-side proxies.

5.2.3 Performance of Different Clients

Figures 4(g) and (h) show the performance of the adaptation approaches from the perspective of different client classes,
i.e., clients connected to the network with sufficient bandwidth versus those that use weaker connections. We can
observe that while the proxy approach exhibits more or less uniform behavior, the end-point approach demonstrates
considerable preference for clients with better connectivities over others. The path approach, in addition to providing
the best performance, uniformly supports different classes of clients until one runs out of computation resources
beyond a certain load level. At this point, all approaches end up rejecting more clients with weak connectivity because
they require image filtering or resizing operations along the paths.

5.2.4 Performance Impact of Dynamic Reconfiguration

The plots in Figure 4 also show that there is a considerable performance penalty incurred for disallowing reconfigura-
tion after the path has been created. This validates the need for areactivemechanism to cope with dynamic changes.
In general, different types of paths may have different requirements on network resources (e.g. some of them may re-
quire more bandwidth while others may need more computation). As load changes, it is necessary to adjust allocated
shares of existing paths in order to accept more connections.7 Without reconfiguration, adjustments for one path may
end up pushing other paths out of the required range, and thereby negatively impact overall performance.

7One can argue that using reservations may eliminate the need for dynamic adjustments, but such approaches usually have poor throughput as
load dynamically changes
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Another detail that should be mentioned about the path-reconfig approach is the ramp-up at the end of Figure 4(g).
This can be explained as follows: as the number of client connections increase, the number of partitions of network
resources grows while decreasing the size of each partition. Eventually, it becomes difficult for clients who use weak
connections to successfully connect to servers because the partition of computation resources is too small to perform
the required image filtering or resizing operations. As a result, a large number of such connections end up getting
rejected. On the other hand, connection requests from clients with higher bandwidth links continue getting accepted.
Moreover, because more compressed paths are rejected, the likelihood that an uncompressed path will get pushed out
of the required range decreases. This results in increased normalized InRange time for clients who use T3/T1/ADSL
links.

5.3 Performance under Non-Uniform Load Distribution

This configuration examines how different adaptation approaches perform when connection requests from clients are
directly non-uniformly towards servers. Similar to load patterns observed on the Internet, we assume a “hot-spot”
model, where a small number of servers (the hot-spots) receive most of the requests from clients. Specifically, 20% of
the servers receive 80% of the total requests. We further ensure that the average load of large sites (i.e., sites with an
OC12 link with computation budget uniformly distributed in the range [100,200)) is about 4 times the average load of
small sites (i.e., sites with an OC3 link with computation budget uniformly distributed in the range of [10,100)).

Figures 5(a)–(h) show the performance achieved by the different approaches. The organization of the plots is
similar to that seen earlier in Figure 4. There are several observations that one can make here. First, focusing on
aggregate performance, we see that the overall ranking of performance among these adaptation approaches remains
the same as in the uniform distribution case. However, the total InRange time is noticeably lower than the values
we saw in Section 5.2. This is expected because the overloaded hot-spot servers cause increased connection failures.
Second, the relative performance of the path-reconfig approach is worse than seen earlier. This verifies our intuition
that such an approach performs poorly when some portions of the network get overloaded; due to the absence of
reconfiguration, existing paths cannot be adjusted so they take advantage of surplus resources in lightly loaded regions
of the network.

Looking at the performance from the perspective of servers with the maximum and minimum computation budgets
(Figure 5(c)–(f)), it can be observed that the path-based approach outperforms all other approaches. This again verifies
the benefit of resource sharing in the network: overloaded sites can always take advantage of spare computation
resources elsewhere. This is true even for sites that have plenty of computation resources, because there will be a
load level that causes these sites to become overloaded. The end-point approach performs poorly on sites with smaller
computation budgets. The proxy approach exhibits the same behavior, independent of computation budget, as in the
uniform distribution case. However, as before, the problem of bandwidth waste results in the network core becoming
an early bottleneck as load increases.

Looking at performance seen by clients with different connectivity options, the overall trends mirror those seen
for uniform traffic. Figure 5(g) is a little different from the corresponding plot in Figure 4 in that the end-point
approach gets the highest normalized in-range time for clients using T3/T1/ADSL connections. This value comes at
the cost of more connection failures for clients with weak connections (recall that 75% of all clients use dialup/wireless
connections). The aggregated InRange time of the path-based approach is still the best among the five approaches.

A more interesting point with this set of results is that they correspond to the same resource distribution between
server and ISP nodes as in Section 5.2, namely one thatassumes a uniform load distribution. This is relevant because
load distributions at run-time are likely to be different from that considered when deciding about how to provision
resources in the network. Our results show that the path-based approach still performs very well even with an inaccu-
rate knowledge of load distribution. This robustness mainly comes from the shared resource pools across the whole
network that act like “buffers”, absorbing any negative impact because of the unexpected load.

5.4 Performance under Different Client Connectivity Profiles

In this configuration, we examined how the different adaptation approaches perform when different fractions of clients
use different connectivity options. The simulations run with the same settings as in Section 5.3 with only two dif-
ferences: the client arrival rate was fixed at 100 users per second, and we varied the percentage of clients that use
weak connections (dialup or wireless) from 0 to 100 percent (the ratio between numbers of clients that use dialup and
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Figure 5: Performance under Non-Uniform Load Distribution.
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Figure 6: Performance under Different Client Connectivity Profiles.

wireless connections was maintained at 1:2).

Figure 6(a)–(d) shows the performance results. One can observe that among the four approaches with reconfigu-
ration support, the end-point approach is the only one that exhibits decreasing performance as more clients use weak
connections while the other three approaches achieve relatively stable performance across different configurations.
Because the end-point approach does not support resource sharing, smaller sites or overloaded sites end up rejecting
many connection requests once they run out of computation resources.

It can also be seen that the path-reconfig approach performs better when the client connectivity profile is more
uniform. This can be explained as follows: as more paths exhibit similar behavior (i.e., have similar resource re-
quirements), there is lower likelihood that an existing path will get pushed out of its required performance range by
the arrival of a new connection. Stated differently, the more heterogeneous the environment, the larger the need for
dynamic reconfiguration.

Some clarification is needed for the increasing InRange time achieved in Figure 6(a) by the server+proxy approach
as more clients use weak connections. While this may appear counter-intuitive, the following explains this behavior.
Consider what happens when clients use connections that have sufficient bandwidth. As load increases, initially
modest compression (filtering/resizing) will be introduced into the paths and executed on the server sites. As the
number of connections further increases, the size of partition on the server sites will eventually become too small to
do the required compression. Consequently, after this point, the network core starts become a bottleneck and once it
does, new connections end up getting rejected. Note however that when this happens, the proxy sites close to clients
remain underutilized because they are ineffective for reducing bandwidth requirements in the network core.

On the other hand, the situation is different when most of the clients are using weak connections. Due to the
limited bandwidth of weak connections, strong compression will be required at the server sites from the beginning.
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The strong compression results in considerable saving in bandwidth in the network core. Therefore, as load increases,
some of the new connections can take advantage of the saved bandwidth in the network core and do compression at
the client side proxy sites. As a result, the utilization of the proxy sites is high and more connections are accepted.

The above behavior also provides further evidence for the benefits from using additional nodes in the data path to
perform adaptation operations.

5.5 Summary of Simulation Results

The main results from our study are summarized below:

1. Support for dynamic reconfiguration is important for the performance of both individual paths and the whole
network.

2. The end-point approach usually works well with server sites that have a large amount of computation resources
and for clients that connect to the network with relatively high bandwidth links. However, servers that have
limited computation capacity or clients that use weak connections may suffer from poor performance using
such an approach.

3. The proxy approach usually does not exhibit bias towards different types of servers or clients. The shared
resource pool at proxy sites can bring better performance for small server sites or clients that have weak connec-
tivity. However, constraining the adaptation to only occur before the last hop can cause considerable resource
wastage in the network, in turn leading to early saturation as load increases.

4. The path-based approach has all the benefits of both end-point and proxy approaches. Adaptation can be con-
ducted on upstream nodes without being limited to the node before the last hop. More importantly, the approach
sets up shared resource pools across the whole network, providing the most flexibility for overloaded servers to
benefit from spare computation resources elsewhere. In summary, with effective resource management strate-
gies, this approach provides the best and the most robust performance under different network configurations.

6 Conclusions

In this paper, we have investigated the performance implication of different adaptation approaches that have differ-
ent constraints on adaptation location: the end-point approach, the proxy approach and the path-based approach. By
conducting a series of simulation-based experiments using different network configurations we have shown that there
are well-defined network environments under which each of the adaptation approaches delivers its best performance.
More importantly, each approach, with one exception – the path-based approach, also exhibits performance short-
comings in certain environments. The path-based approach ends up delivering the best and most robust performance
under different network configurations, and for different types of servers and clients because of its ability to carry out
adaptation along the entire path and pool resources across the while network. Thus, despite their somewhat increased
complexity, path-based approaches appear the most promising for delivering high performance in environments com-
prising diverse network resources and where additionally the characteristics of these resources are subject to constant
change.
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A Path Creation Algorithm

The algorithm corresponding to the base dynamic programming strategy described in Section 4.1 is shown in Figure 7.
The global metric being optimized is throughput, the number of data units produced per unit time at the destination.

The algorithm fills up a table of partial optimal solutions,s[ts, t, ~A, i], in the orderi = 0, 1, 2, . . .. Each solution
corresponds to the data path that yields the best performance for transforming the source typets to type t using i
operators or fewer requiring no more resources that~A. As mentioned in Section 4.1, only resource vectors of the form
(1, ..., 1, rj ∈ [0, 1], 0, ..., 0) need to be considered. This set of resource vectors is designatedRA.

Algorithm Plan
Input: ts,td, Gt, R
Output: The data path that yields maximal throughput from typets to td on routeR
1. (∗ Step 1: Initialization for partial plans with zero components∗)
2. for all t, ~A ∈ RA
3. do calculates[ts, t, ~A, 0]
4. (∗ Step 2: Incrementally building partial solutions∗)
5. for i←1 to p× n
6. do for all t ∈ V (Gt), ~A ∈ RA
7. do s[ts, t, ~A, i]←s[ts, t, ~A, i− 1]
8. for all d = (t′, t) ∈ E(Gt)
9. do for all nj that ~A[nj ] > 0
10. do M(d)←nj

11. ~A′ ←( ~A[0], . . . , ~A[nj − 1], ~A[nj ]− load(d), 0, . . .)
12. if throughput(append(s[ts, t′, ~A′, i− 1], d, ~A)) > s[ts, t, ~A, i]
13. then s[ts, t, ~A, i]←throughput(append(s[ts, t′, ~A′, i− 1], d, ~A))
14. return s[ts, td, ~A = [1, 1, ..., 1], p× n]

Figure 7: Path Creation Algorithm

Line 3 of the algorithm handles the base case: only the caset = ts achieves non-zero throughput. Lines 8–
13 represent the induction step, examining different drivers to extend the current partial solution for each specific
intermediate typet and resource vector~A. Lines 12 and 13 ensure that the driver achieving the maximum throughput
defines the next-level partial solution.

The throughput for a particular mapping can be computed given the node throughput and link bandwidth properties.
Nodeni’s throughput itself is decided by the incoming throughput, its computation capacitycomp(ni), and theload
andbwf properties of components mapped to the node. Link bandwidth has the effect of saturating throughput, in case
the bandwidth requirements exceed what can be sent over the link. Only lines 12 and 13 of the algorithm need change
if a different metric is being optimized (such as latency).
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The algorithm terminates at Stepp × n with the final solution ins[ts, td, (1, ..., 1), p × n]. This follows from the
observation that there is no performance benefit from mapping multiple copies of the same component to a node. The
complexity of this algorithm isO(n2 ×m× p3) = O(n3 × p3)8 as opposed toO(pn) for an exhaustive enumeration
strategy. As stated earlier, in most scenarios,p is expected to be a small constant, with overall complexity determined
by the number of components.

B Calculation of Resource Share for Allocation Requests

In Section 4.2, we described how network resources are shared amongst multiple paths that use them. Here, we
present the details of the algorithm used to determine the share that is granted upon receipt of an allocation request. As
mentioned earlier, the goals of the algorithm are to provide the largest allocation (up to a maximum value,MAX) to
ensure success during planning, while at the same time avoiding frequent reconfiguration and cascading adjustment.
The algorithm listed in Figure 8 reflects these ideas.

Algorithm Allocation
Input: Path
Output: Allocated Share for the path
1. if available > MAX
2. then return MAX
3. (∗ p: number of paths,n: increase inp within the last time unit∗)
4. r←max(1, n)
5. (∗ pr = max(dp/re × r, p + c ∗)
6. if (Path is a New Path)
7. then return 1/pr

8. else returnmax(current share,min(available, 1/pr))

Figure 8: Calculation of the Allocated Share for an Individual Path

When the resource is underutilized, allocation requests result in a predefinedMAX amount of resources being
allocated. Information about this amount can either be provided by the path or specified by the resource. Note that
since paths return unused resources, allocating a large share for planning purposes does not negatively impact resource
availability for future paths.

The case where the resource is oversubscribed (i.e., fewer thanMAX resources are available) is more interesting.
Intuitively, the algorithm implements a fair policy: the resource is equally partitioned among all active paths. However,
this base policy needs to be refined to meet our original goals, namely to avoid frequent reconfiguration and cascading
adjustment.

A situation where frequent reconfiguration happens with the base policy is when new paths are continually entering
the system, making allocation requests. If paths were allocated a share of1/p (wherep is the number of paths) the
arrival of each new path would force an adjustment of the shares granted to all existing paths, resulting in an undesirable
user experience. Consequently, the algorithm “damps” the effect of path arrivals by instead allocating a smaller share
1/pr, where the quantitypr is computed in terms of two parametersn andc as shown in Figure 8. As computed in
lines 5–7,pr takes on a new value only once for each time period (usingn, a prediction for the expected increase of
active connections over the period). This has the benefit that each existing path would need to be adjusted at most once
over a time period.

Line 7 also shows how the parameterc is used to bound the minimum value ofpr. By observing that each
adjustment of a path returns a share equal to(1/p − 1/pr), it follows that the fraction of paths that will need to be
adjusted to grant an allocation request is1/(pr − p). The value of this fraction is at most1/c, thereby limiting the
amount of work that will need to be done in the worst case.c would typically be a different predefined constant for
each individual resource. In our experiments, we choosec to be 5% of the maximum number of paths that can be
supported on the resource.

The other refinement over the base scheme is shown in lines 8–10 of the algorithm, where different shares are
returned depending on whether the allocation request is made by an existing path or a new one. For existing paths,

8It is safe to assume thatm, the number of types is smaller thann, the number of components.
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Figure 9: Performance impact of incrementally transferring computation resources from a single server node to the
ISP node for a fixed load level. The three cases correspond to different saturation situations for the server and
ISP links. COther denotes the maximum resource level that can be utilized for improving the performance
of other servers.CSL denotes the resource level at which the server link gets saturated.

the algorithm ensures that any increases in share allocation are constrained from above by the amount of available
resources (i.e., those resources that can be granted without adjusting share allocations for other paths). To understand
this policy, consider what would happen in its absence for a pathA, which shares the resourcer1 with pathB. If
A requests an increase in its allocated share, the share of pathB may need to be reduced. To maintain required
performance, pathB may in turn need to issue allocation requests to increase its shares on other resources along the
path. These requests fromB may affect pathC in a similar fashion ifB andC happen to use a resourcer2. The same
thing can happen for pathD if C andD share another resourcer3, and so on. The situation would be even worse ifD is
actuallyA andr3 is actuallyr1, in whichA initially tries to increase its shares onr1 but end up with a decreased share
on that resource. In short, such propagation may cause the whole network to oscillate with overwhelming allocation
requests and adjustments. The constraint in line 10 avoids this problem.

The algorithm in Figure 8 treats all paths uniformly for resource allocation purposes. Note that it is straightforward
to extend this scheme to handle cases where some paths have higher priority than others by associating weights with
paths.

C Distribution of Computation Budget for Path Based Approaches

As described in Section 4.3, our scheme moves unused resources from lower-level network domains to higher-level
ones, where these resources can be used by other servers and thereby improve overall system performance. We limit
our discussion below to the case of two domains involving multiple server nodes in the lower level, and a single ISP
node at the higher level (see Figure 3). In this context, the question that our strategy answers is what fraction of the
computational resources from which servers can be transferred to the ISP nodewithout compromisingthe performance
of the contributing servers, namely leaving unchanged the number of connections that they can serve.

To describe the strategy, we need to introduce a model for client connection requests. We assume that client
communication paths require a throughput ofTH data units per second, and that these paths are of two kinds:uncom-
pressedandcompressed. The latter involve transcoding and/or compression operators to reduce bandwidth require-
ment of the path. Each compressed path requires an average computation ofc operations per data unit,9 and reduces
bandwidth requirements by the fractionD. We further assume that the fractionpi(0 ≤ pi ≤ 1) of all requests via
ISP I are for accessing contents on serversi, which has a computation budget ofCi. As in Figure 3, we refer to
the bandwidth on the link connecting serversi to I (the server link) asBWi and that on the link connectingI to the
Internet (the ISP link) asBWI . Our strategy computesC ′

i, the computation resource left at each serversi. Note that
C ′

i ≤ Ci.

Assuming the above client traffic distribution, the strategy identifies servers for whom the corresponding server

9Here we only consider the computation capacity required for manipulating data; the overhead of reading content from disk and passing it
through a protocol stack are not counted since these overheads are always present.
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nI = BWI/TH + (1−D)×
∑

i
Ci

TH×c nI = nc(compressed) + nuc(uncompressed)
nc =

∑
i

Ci

TH×c

nuc × TH + nc ×D × TH = BWI

 Maximum number of connections sustainable over
the ISP link

nsl,i = BWi/TH + (1−D)× C′
i

TH×c

Maximum number of connections can be sustained at
the server link ofsi after moving some of its compu-
tation resources to the ISP node.

Table 1: Expressions for the number of connections that can be sustained on ISP and server links.

link has unused capacity for load levels where the ISP link is operating at capacity. The rationale for this choice can be
seen by examining Figure 9, which depicts, for a given load level, the impact on overall performance as resources are
incrementally transferred from a particular server,si, to the ISP node. Depending on whether the ISP link is saturated
or not, and whether a particular server link is saturated or not, one can distinguish three classes of server behavior: (A)
when the server link is saturated; (B) when the server link is unsaturated while the ISP link is saturated; and (C) when
neither the server link or the ISP link are saturated. For each class, Figure 9 shows the impact on aggregate system
performance (solid line) and individual server performance (dashed line) as resources are incrementally moved out of
the server.

When the server link gets saturated (case (A)), any movement of computation resources out ofsi will decrease
the number of connections sustainable at the server. This decrease is offset at the aggregate system level untilCOther

resources have been transferred, by other servers benefiting from the pooled resources.

When the ISP link gets saturated before the server link (case (B)), there are two situations. Both situations start off
by seeing an increase in aggregate performance because of additional compressed connections being served on other
servers. Meanwhile, moving computation resources out ofsi increases the bandwidth consumption at its server link
but does not affect its performance. This situation continues until we reach a point where either there is no further
benefit from additional ISP resources (the left figure), or the server link gets saturated (the right figure). In the first
situation, aggregate performance levels off until theCSL level is reached at which point both server and aggregate
performance start decreasing. In the situation where the server link gets saturated first, server performance starts
decreasing immediately but its impact on aggregate performance is offset as in case (A) above until theCOther level
is reached. The points marked by black circles in the case (B) figures represent the maximal amount of computation
resources that can be moved out ofsi without degrading its performance.

In Figure 9(C), neither the ISP link nor the server link is saturated, so moving computation resources fromsi does
not increase the aggregate performance unlike in case (B). This is understandable because at this time the number of
connections that can be sustained at a server is unaffected by the amount of computation resources at the ISP node.
Only after the server link gets saturated does both the aggregate and server performance decrease. In principle it
is possible to move resources out of servers that fall into category (C) above without degrading their performance;
however, this requires knowledge not only of the traffic distribution but the actual load seen by each server. In most
cases, the latter information is not readily available. Changes in load levels can convert a case (C) server into either
case (A) or (B) depending on whether the server link or the ISP link gets saturated first.

In light of the above analysis, our strategy restricts itself to identifying servers that would fall into category (B)
above. For such servers, it is safe to move resources up to the point marked by the black circles in Figure 9(B)
irrespective of the encountered load levels.

Servers whose server links remain unsaturated when the ISP link is saturated can be identified by comparing
pi × nI , the maximum number of server connections that can be sustained assuming that the ISP link becomes the
bottleneck (pi is the fraction of connections directed towardssi) with nsl,i, the maximum number of server connections
that can be sustained assuming the server link becomes the bottleneck. Table 1 shows how these parameters are
computed by considering the number of compressed and uncompressed connections that can be supported by a given
amount of computation and bandwidth resources. Thensl,i expression assumes thatC ′

i resources are left behind at the
server. Servers in case (B) must havensl,i ≥ pi × nI , i.e. satisfy the following equation:{

0 ≤ C ′
i ≤ Ci

BWi/TH + (1−D)× C′
i

TH×c ≥ pi × nI
(1)
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Algorithm Distribute
Input: Server SetS, BWI

Output: Distribution of computation between servers and the ISP node
1. S′ ←S
2. BW′

I ←BWI

3. for all si ∈ S′

4. do if for si equation (1) has a solution
5. then setC ′

i

6. else C ′
i ←Ci

7. BW′
I ←BW′

I −BWi

8. S′ ←S′ − si

9. if S′ 6= S
10. then Adjust load distribution for alls ∈ S′

11. Call Distribute(S′,BW′
I);

12.

Figure 10: Distribution of Computation Resources between ISP and Server Nodes

I

c1=60

c2=50

c3=30

c4=20

c5=10

50/80
40/65

30/45

20/30

10/15

120/205 I

c1=60

c2=50

c3=30

50/80
40/65

30/45

90/160 I

c'1=16

c'2=36

50/58
60/115

40/58

(1) (2) (3)

58

TH=1 D=0.5  X/Y: bandwidth = X, Number of connections can be sustained=Y

Figure 11: Example showing recursive calculation of the computation budget transferred to the ISP node.

It is easy to prove, by contradiction, that there must be at least one category (B) server. Let us assume that no
server has a valid solution for Equation 1. This implies that (summing up over all servers)∑

i

BWi

TH
+ (1−D)×

∑
i

Ci

TH× c
<

∑
pi × nI

The right hand side of the above inequality is justnI , which in turn can be substituted by the corresponding expression
from Table 1. Thus, our assumption leads us to the inequality∑

i

BWi

TH
+ (1−D)×

∑
i

Ci

TH× c
<

BWI

TH
+ (1−D)×

∑
i

Ci

TH× c

This requires
∑

i BWi < BWI , which is in contradiction with our previous assumption of
∑

i BWi ≥ BWI . There-
fore, there must be at least one category (B) server.

The recursive algorithm employed by our strategy is shown in Figure 10. Lines 3–8 check, for a given load
distribution, whether a server has a valid solution for Equation (1). If not, it is excluded from further consideration,
with the available ISP link bandwidth adjusted as shown in Line 7. To understand this, note that the bandwidth
contribution of such servers on the ISP link cannot exceedBWi, because no additional connections (compressed or
uncompressed) for this server can be supported once the server link is saturated. The recursive call uses this reduced
value of available ISP link bandwidth and adjusted load distribution values (based on the relative contributions from
remaining servers). Note those two invariants about load distribution (after adjustment, i.e.

∑
i pi = 1) and bandwidth

(i.e.
∑

i BWi ≥ BWI ) hold for each call upon a reduced graph. The algorithm terminates when all servers inS′ have
valid solutions for Equation (1). It is only these servers that can contribute a portion of their computation budget to
the ISP node. The amount that can be transferred is easily determined by picking the minimum valueC ′

i for each such
server that still results in Equation (1) being satisfied.

Figure 11 illustrates this algorithm using an example system consisting of 5 servers with computation budgets 10,
20, 30, 50, and 60 units; with client connection paths requiringTH = 1, c = 1, andD = 0.5. Client requests are
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uniformly distributed amongst these servers. The first call to theDistribute routine results in servers 4 and 5 being
removed fromS′ because their server links cannot sustain205

5 connections. The second call removes server 3 because
it cannot sustain1603 connections. The algorithm terminates on the third call when both servers 1 and 2 can sustain
115/2 connections, while contribute the computation resource amounts shown to the ISP node.
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