A Distributed Adaptive Cache Update Algorithm
for the Dynamic Source Routing Protocol *

Xin Yuand Zvi M. Kedem
Department of Computer Science
Courant Institute of Mathematical Sciences
New York University, New York, NY 10012

Abstract

On-demand routing protocols use route caches to make rout-
ing decisions. Due to frequent topology changes, cached
routes easily become stale. To address the cache staleness
issue in DSR (the Dynamic Source Routing protocol), prior
work mainly used heuristics with ad hoc parameters to pre-
dict the lifetime of a link or a route. However, heuristics can-
not accurately predict timeouts because topology changes are
unpredictable. In this paper, we present a novel distributed
cache update algorithm to make route caches adapt quickly to
topology changes without using ad hoc parameters. We de-
fine a new cache structure called a cache table to maintain
the information necessary for cache updates. When a node
detects a link failure, our algorithm proactively notifies all
reachable nodes that have cached the broken link in a dis-
tributed manner. We compare our algorithm with DSR with
path caches and with Link-MaxLife through detailed simula-
tions. We show that our algorithm significantly outperforms
DSR with path caches and with Link-MaxLife.

1 Introduction

In mobile ad hoc networks, nodes move arbitrarily, cooper-
ating to forward packets to enable communication between
nodes not within wireless transmission range. Frequent topol-
ogy changes present the fundamental challenge to routing pro-
tocols. Routing protocols for ad hoc networks can be classi-
fied into two main types: proactive and reactive (on-demand).
Proactive protocols attempt to maintain up-to-date routing in-
formation to all nodes by periodically disseminating topol-
ogy updates throughout the network. On-demand protocols
attempt to discover a route to a destination only when a node
originates a packet. Several routing protocols use on-demand
mechanisms, including AODV [14], DSR [7, 8], LAR [9],
TORA [13], ZRP [3]. In this paper, we focus on DSR, which
operates fully on-demand.

On-demand routing protocols use route caches to avoid the
overhead and the latency of initiating a route discovery for
each data packet. However, due to mobility, cached routes
easily become stale. Using stale routes causes packet losses,

*NY U Computer Science Department Technical Report TR2003-
842, July 2003. Last revised: December 20, 2004.

increases packet delivery latency due to expensive link failure
detections, and increases routing overhead. When respond-
ing to route requests from caches is used, stale routes will be
quickly propagated to other nodes, aggravating the situation.
Stale routes also seriously degrade TCP performance [4].

To address the cache staleness issue, prior work [5, 10, 12]
proposed to use adaptive timeout mechanisms. Such mech-
anisms use heuristics with ad hoc parameters to predict the
timeout of a link or a route. However, predetermined choice
of ad hoc parameters for certain scenarios may not work well
for others. The effectiveness of heuristics is limited by unpre-
dictable topology changes. If timeout is set too short, valid
links or routes will be removed; subsequent route discover-
ies introduce significant overhead. If timeout is set too long,
stale routes will stay in caches. In addition, DSR uses a small
cache size. Small caches with FIFO help evict stale routes but
also remove valid ones. No single cache size provides the best
performance for all mobility scenarios [5].

In this paper, we investigate how to make route caches
adapt quickly to topology changes without using ad hoc mech-
anisms. When a node detects a link failure, our goal is to no-
tify all reachable nodes whose caches contain the broken link
to update their caches. To achieve this goal, we define a new
cache structure called a cache table and present a distributed
cache update algorithm. In a cache table, a node not only
stores routes but also maintains the information necessary for
cache updates. Each node maintains two types of information
for each route: (1) how well the routing information is syn-
chronized among nodes on the route, and (2) which neighbor
node has learned which links through a ROUTE REPLY. Thus,
for each cached link, a node knows which neighbor nodes
have cached that link. When a link failure is detected, the
algorithm notifies the neighborhood nodes that have that link
in their caches. When a node receives a notification, the algo-
rithm notifies selected neighbors. Therefore, the broken link
information will be quickly propagated to all the reachable
nodes that have the broken link in their caches.

We compare our algorithm with DSR with path caches and
with Link-MaxLife [5], an adaptive timeout mechanism for
link caches. We do not use promiscuous mode, which is an
optimization for DSR [8]. Through detailed simulations, we
show that our algorithm significantly outperforms DSR with
path caches, improving packet delivery ratio by up to 13% for

50 node and 34% for 100 node scenarios, reducing packet de-
livery latency by up to 30% for 50 node and 25% for 100 node
scenarios, and achieving 50% reduction in normalized rout-
ing overhead for 100 node scenarios. Compared with Link-
MaxLife, our algorithm improves packet delivery ratio by up
to 35%.

The rest of this paper is organized as follows. In Section 2
we give an overview of the DSR. In Section 3 we present the
definition of a cache table and the distributed cache update
algorithm. We present an evaluation of the algorithm in Sec-
tion 4 and discuss related work in Section 5. Finally, in Sec-
tion 6 we present our conclusions.

2 DSR: Dynamic Source Routing

DSR consists of two on-demand mechanisms: Route Discov-
ery and Route Maintenance. When a source wants to send
packets to a destination to which it does not have a route,
it initiates a Route Discovery by broadcasting a ROUTE RE-
QUEST. A node receivinga ROUTE REQUEST checks whether
it has a route to the destination in its cache. If it has, it sends
a RouTE REPLY to the source including a source route, the
concatenation of the source route in the ROUTE REQUEST and
the cached route. Otherwise, it adds its address to the source
route in the packet and rebroadcasts the ROUTE REQUEST.
When the ROUTE REQUEST reaches the destination, the des-
tination sends a ROUTE REPLY containing the source route to
the source. When forwarding a ROUTE REPLY, a node stores
the route starting from itself to the destination. Upon receiv-
ing the ROUTE REPLY, the source caches the source route.

In Route Maintenance, a node forwarding a packet is re-
sponsible for confirming that the packet has been received by
the next hop. If no acknowledgement is received after the
maximum number of retransmissions, this node will send a
RouTE ERROR to the source, indicating the broken link. Each
node receiving a ROUTE ERROR removes from its cache the
routes containing the broken link.

Besides Route Maintenance, DSR uses two mechanisms
to remove stale routes. First, a source node piggybacks the
last known broken link information on the next ROUTE RE-
QUEST (called GRATUITOUS ROUTE ERROR) to clean more
nodes. Second, it relies on heuristics: a small cache size with
FIFO replacement policy for path caches, and adaptive time-
out mechanisms for link caches [5], where the timeout of a
link is predicted based on observed link usages and breakages.

Among the optimizations proposed in [11], we will not use
GRATUITOUS ROUTE REPLIES and tapping. Both of them
rely on promiscuous mode, which disables the network inter-
face’s address filtering function and thus causes the routing
protocol to receive all packets overheard by the interface.

3 TheDistributed Cache Update Algorithm

In this section, we first discuss the adverse effects of stale
routes. We then present an overview of our caching strategy.
After describing the definition of a cache table, we use ex-
amples to explain two algorithms used for maintaining the in-

formation for cache updates. Finally, we present the cache
update algorithm with examples and a concise description.

3.1 The Impact of Stale Routes
The adverse effects of stale routes can be summarized as:

e Causing packet losses, increasing packet delivery latency
and routing overhead. These effects will become more
significant as mobility, traffic load, or network size in-
creases, because more routes will become stale and/or
stale routes will affect more traffic sources.

e Degrading TCP performance. Since TCP cannot dis-
tinguish between packet losses caused by route failures
from those caused by congestion, it will falsely invoke
congestion control mechanisms, resulting in the reduc-
tion in throughput.

e Wasting the energy of source nodes and intermediate
nodes. If stale routes are not removed quickly, TCP will
retransmit lost packets still using stale routes.

We refer to a route in a node’s cache as pre-active, if it
has not been used; active, if it is being used; post-active, if it
was used before, but now is not. It is not necessary to detect
whether a route is active or post-active, but these terms help
understand the cache staleness issue. It is easy to detect a stale
route if it is active, but stale pre-active and post-active routes
will not be detected until they are used. Therefore, they are
the major sources of cache staleness.

3.2 Overview

Fast cache updating is important for reducing the adverse ef-
fects of stale routes. It is also necessary to constrain cache
update notifications to the nodes that have cached a broken
link in order to avoid the overhead of notifying other nodes.
Thus, our goal is this: when a node detects a link failure, all
reachable nodes whose caches contain the broken link will be
notified about the link failure.

To achieve this goal, we make use of the information ob-
tained from route discoveries and data transmission. We de-
fine a cache table to gather and maintain the information nec-
essary for cache updates. Each node maintains two types of
information for each route in its cache table: how well the
routing information is synchronized among nodes on a route,
and which neighbor node outside a route has learned which
link of the route. By keeping such local information, a node
knows which neighbor node needs to be notified about a bro-
ken link. A node receiving a cache update notification uses
the local information kept in its cache table to determine and
notify the neighbor nodes that have cached the broken link.
Thus, a broken link information will be quickly propagated to
all reachable nodes whose caches contain that link.

3.3 The Definition of a Cache Table

A cache table has no capacity limit and thus its size changes
as needed. Each entry of a cache table contains four fields:

Figure 1: An Example of a Network with Four Flows

e Route: It is a route a node learns. A node first stores the
links from itself to a destination from a ROUTE REPLY
and later completes the sub-route stored before by adding
upstream links from the first data packet. If no route in
the table is a sub-route of the source route, it stores the
complete source route from the data packet.

e SourceDestination: It is the source and destination pair.

e DataPackets: It records whether a node has forwarded
0, 1, or 2 data packets using the route. This field in-
dicates to what extent the routing information is syn-
chronized among nodes on the route. It is 0 when the
node stores downstream links from a ROUTE REPLY; it
is incremented to 1 when the node forwards the first data
packet; and it is incremented to 2 when the node forwards
the second data packet.

e ReplyRecord: When the node informs a neighbor of a
sub-route through a ROUTE REPLY, it records the neigh-
bor and the links used as an entry. If some entry contains
a broken link, a node knows which neighbor it needs to
notify about the link failure. This field has no capacity
limit and thus its size changes as needed.

3.4 Information Collection and Maintenance for Cache
Updates

During route discoveries and data transmission, we use two
algorithms to collect and maintain the information necessary
for cache updates: addRoute and findRoute.

We use a network shown in Fig. 1 in our examples. We
will use S-D for SourceDestination, dP for DataPackets, and
replyRec for ReplyRecord in the headers of tables describ-
ing the content of caches. Initially, there are no flows and all
nodes’ caches are empty.

Node A initiates a route discovery to E and a ROUTE REPLY
is sent from E to A. Upon receiving a ROUTE REPLY, each
intermediate node creates a new entry in its cache (addRoute:
6-11 in the Appendix). For instance, node C creates an entry
consisting of four fields: (1) a route containing downstream
links: CDE; (2) the source and destination pair: AE; (3) the
number of data packets it received from the source node A: 0;

(4) which neighbor will learn which route: B will learn CDE.
This is described as:

Route | SD | dP
C: | CDE AE 0

replyRec
B+« CDE

When A receives the ROUTE REPLY, it adds to its cache
(addRoute: 1-5):

Route SD | dP
A: ABCDE AE 0

When node A uses this route to send the first data packet,
its entry is updated as (findRoute: 9-10):

Route SD | dP
A: ABCDE AE 1

Each node receiving the data packet updates its cache entry.
For instance, node C increments DataPackets to 1, replaces
CDE by ABCDE (addRoute: 20-24), and removes the entry
in the ReplyRecord field (addRoute: 25-27) because the com-
plete route indicates A and B have cached all links of the route.
Thus, C’s cache is:

Route SD | dP
C: ABCDE AE 1

When E receives the first data packet, it creates a new entry
(addRoute: 19) and its cache is the same as that of C.

When C receives the second data packet, it increments dP
to 2 (addRoute: 14-17).

Now, assume that C receives a ROUTE REQUEST from G
with source F and destination D. Before sending a ROUTE
REPLY to G, C will extend its cacheEntry to (findRoute: 1-8):

Route SD | dP
C: ABCDE AE 2

replyRec
G — CDE

Node G creates a cacheEntry(addRoute: 6-11) before send-
ing a ROUTE REPLY to F:

Route SD [dP
G: GCDE FE 0

replyRec
F — GCDE

When F gets the ROUTE REPLY, it inserts into its cache:

Route SD [dP
F: FGCDE FE 0

Now, assume C receives a ROUTE REQUEST from | with
source H and destination A. C extends its cache entry to (find-
Route: 1-8):

Route SD | dP
C: ABCDE AE 2

replyRec
G — CDE

replyRec
I — CBA

If a node does not cache a source route and no sub-route
can be completed, it creates a new entry and add the source
route to its cache (addRoute: 28), since the node knows that
all the upstream nodes have stored the downstream links. For
example, assume flow 2 starts. When it reaches D, D inserts
the second entry into its cache:

Route SD [dP
D: | FGCDE FE| 1

Whenever a route is completed or a new source route is
added, a node always checks the ReplyRecord to see whether
the concatenation of two fields in an entry is a sub-route of the
source route (addRoute: 25-27). If so, it removes that entry.

Later, assume that after transmitting at least two packets, F
receives a ROUTE REQUEST from K with source J and desti-
nation D. Before transmitting ROUTE REPLY to K, F extends
its cache entry:

Route SD | dP
F: FGCDE FE 2

replyRec
K — FGCD

Each of J and K will save in its cache the route from itself
to D.

3.5 The Distributed Adaptive Cache Update Algorithm

In this section, we first show several examples for the cache
update algorithm. We then present a concise description of
the algorithm. We show the pseudo code of the algorithm in
the appendix.

Figure 2: Scenario 1

3.5.1 Examples

Scenario 1l Here we focus on DataPackets and ReplyRecord
in a simple case, as shown in Fig. 2. Assume that A has initi-
ated a route discovery to E. Before any data packet from flow
1 with route ry = ABCDE reaches C, C discovers that the link
CD is broken. In its cache it finds:

Route | SD | dP
C: CDE AE 0

replyRec
B «— CDE

Since DataPackets is 0, C knows that CDE is a pre-active
route, and therefore no downstream nodes need to be notified,
since they did not cache the broken link when forwarding a
RouTE REPLY. Node C needs to check whether some neigh-
bor nodes have cached the broken link (cacheUpdate: 44-48).
It notifies its neighbor B and removes the entry from its cache.
B notifies A and cleans its cache.

For another case, assume that A started transmissions for
flow 1. While attempting to transmit a data packet, C detects
that CD is broken. C’s cache is:

Route SD [dP
C: | ABCDE AE d

Since this packet is a data packet, d is 1 or 2. Thus, up-
stream nodes need to be notified about the broken link. C
adds its upstream neighbor B to a list consisting of nodes to
be notified (cacheUpdate: 7-10). If d = 1 and the route be-
ing examined is the same as the source route in the packet,
which means that the packet is the first data packet, then no
downstream node needs to be notified.

If d = 2, then the packet is at least the second data packet
arriving at C. (If d = 1 and the route being examined is differ-
ent from the source route in the packet, then the route being
examined has been synchronized by its first data packet. We
handle this case the same as the case where d = 2.) There-
fore, at least one data packet has reached D and E and thus
they have cached the route ABCDE. C searches in its cache
for a shortest route to reach one of the downstream nodes
(cacheUpdate:11-18). Assume that it finds a route to E. So
C notifies E. As the table entry does not contain any Re-
plyRecord, no neighbor has learned a sub-route from C. C
then removes the table entry. E in turn notifies D (cacheUp-
date: 39-40). If no route to either D or E is found, they will
not be notified at this time.

Figure 3: Scenario 2

Scenario 2 Here we focus on how ReplyRecord are handled
in a slightly complex case, as shown in Fig. 3. As before, first
A discovers r; = ABCDE, then F discovers ro = FGCDE for
flow 2 after receiving the ROUTE REPLY sent by C. Finally,
J discovers r3 = JFKD for flow 3 after receiving the ROUTE
REPLY sent by F. rq is an active route and both ro and r3 are
pre-active routes. When transmitting packets for flow 1, C
discovers that CD is broken.

Route SD [dP replyRec
C: ABCDE AE 2 | G— CDE
G: | GCDE FE 0 | F— GCDE
F: FGCDE FE 0 | K« FGCD
K: KFGCD JD 0 | J— KFGCD
J: JKFGCD JD 0

C handles the upstream and the downstream nodes of ry
the same as the second case in scenario 1. It also finds that
it has notified a neighbor G of a route containing CD. So C
notifies G that CD is broken and deletes r1 from its cache
(cacheUpdate: 44-48). After G examines its cache, it notifies
F and cleans its cache. F notifies K and cleans its cache. K
notifies J and cleans its cache. Finally, J cleans its cache.

Figure 4: Scenario 3

Scenario 3 Here we focus on how to handle a broken link
through which two (or more) flows in opposite directions are
flowing, as shown in Fig. 4. Assume that only flows 1 and
4 have started. Here r; = ABCDE and r4 = HICBA. While
transmitting a packet for flow 4, C detects that CB is broken.
The cache of C is:

Route SD [dP
C: | ABCDE AE 2
C: | HICBA HA 2

Nodes that need to be notified about the broken link are: H,
I (upstream in rg); A, B (upstream in rq and downstream in
r4); and D, E (downstream in r1). Node C attempts to find a
shortest path to reach A or B; it also notifies D and | about the
broken link (cacheUpdate:19-28).

A node receiving a notification determines a list of neigh-
bor nodes it is responsible for notifying. For example,
node | knows that it needs to notify its upstream node H
(cacheUpdate:31-32), and D knows that it needs to notify its
downstream node, here E (cacheUpdate:33-34).

3.5.2 Concise Description

A node learns a broken link either by detecting it itself or
through a cache update notification from another node. In ei-
ther case, the cache update algorithm is started reactively to
examine each entry of the cache table. For each route con-
taining a broken link, the algorithm determines a set of neigh-
borhood nodes it needs to notify about the broken link, its up-
stream and/or downstream neighbors as well as other neigh-
bors outside the route. Finally, the algorithm produces a no-
tification list, which includes nodes to be notified about the
broken link and routes to reach those nodes. A node sends
cache update notifications through ROUTE ERRORS.

In each route containing a broken link, the link is in the for-
ward direction if the flow using that route crosses the link in
the same direction as the flow that has detected the breakage;
otherwise it is in the backward direction. For these two types
of links, the operation of the algorithm is symmetric.

When a node detects a link failure, it examines each entry
of its cache. If a route contains the broken link in the forward
direction (cacheUpdate: 8-18), then the algorithm does the
following steps:

o If DataPackets is 2 or 1, then upstream nodes (if any)
need to be notified, but only the upstream neighbor is
added to the notification list.

o If DataPackets is 2, or 1 and the route being examined is
different from the source route in the packet, then down-
stream nodes need to be notified. The algorithm tries
to find a shortest path to reach one of the downstream
nodes. For both cases, the first data packet has traversed
that route and thus all downstream nodes have cached the
broken link.

o If DataPackets is 0, there is no upstream node and no
downstream nodes need to be notified.

If a route contains the broken link in the backward direction
(cacheUpdate: 19-28), which implies that the current node is
the first downstream node, then its downstream neighbor is
added to the list. Also, the algorithm tries to find a shortest
path to reach one of the upstream nodes.

If a node learns a broken link through a notification from
another node, it knows which node it needs to notify about
the link failure based on its position in a route containing the
broken link (cacheUpdate: 29-43).

If any entry in the ReplyRecord field contains a broken link,
then the node adds the neighbor that got the sub-route contain-
ing the link to the list. This field needs to be checked whether
dataPacket is 0, 1, or 2 and whether the link is in the forward
or backward direction.

In this way, all reachable nodes that have cached the bro-
ken link will learn the link failure and update their caches.
If a node cannot find a route to reach any downstream node,
these nodes will learn the broken link when the first data flow
detects the broken link in a reverse direction. Then nodes that
got routes containing the broken link from these downstream
nodes will also know the link failure and update their caches.
Thus, proactive cache updating is triggered fully on-demand.

3.6 Some Implementation Decisions

In order to reduce the duplicate error notifications to a node,
we attach a reference list to each ROUTE ERROR. The node
detecting a link failure becomes the root node. It initializes the
reference list to be its notification list; each child only sends
cache update notifications to nodes not on this list and updates
this list by adding nodes on its own natification list.

When using the cache update algorithm, we also use a small
list of broken links like a negative cache to prevent a node
from being re-polluted by the in-flight stale routes. Its size is
set to 5 and timeout is set to 2 s for all scenarios used in sim-
ulations. This component is not part of the algorithm, which
does not use any ad hoc parameter. This list can be replaced
by a non-ad-hoc technique proposed by Hu and Johnson [6].

4 Performance Evaluation

4.1 Evaluation Methodology

We used detailed simulations to evaluate the performance of
our algorithm. We compared DSR with our algorithm (called
DSR-Adaptive) with DSR with path caches and with Link-
Maxlife [5], which was shown to outperform other adaptive
timeout algorithms. We evaluated the three caching strategies
under non-promiscuous mode. We did not use GRATUITOUS
RouUTE REPLIES and tapping since they rely on promiscu-
ous mode. For DSR-Adaptive, we did not use GRATUITOUS
ROUTE ERROR, since we wanted to evaluate this algorithm as
the only mechanism to remove stale routes.

We used ns-2 [2] network simulator together with Monarch
Project’s wireless and mobile extensions [1, 16]. The mobil-
ity model is random waypoint model [1] in a rectangular field.
In this model, a node starts in a random position, picks a ran-
dom destination, moves to it at a randomly chosen speed, and

1
08 |
o =] o
kol ol kol
o4 o o4
g g g 0
2 2 O — 2
g 2 o g
© 04r © 04r w O4ra
g 5 g
a a a
02 DSR A 4 02t DSR e 4 02 DSR &
DSR-Adaptive —8— DSR-Adaptive —8— DSR-Adaptive —8—
DSR-LinkMaxlife --&- DSR-LinkMaxlife --&-- DSR-LinkMaxlife --&--
0 30 60 120 300 600 900 0 30 60 120 300 600 900 0 30 60 120 300 500
(@) 50 nodes, 30 flows (b) 50 nodes, 40 flows (c) 100 nodes, 30 flows
0.7 — T T 0.7 — T T T 12 — T T T T T
DSR & A A DSR & DSR &
06 | DSR-Adaptive —8— | 06 N DSR-Adaptive —=— | DSR-Adaptive —#—
z O |° DSR-LinkMaxlife ~-o- z DSR-LinkMaxlife —o— & lfa DSR-LinkMaxlife —o— |
z I} z
5} 53 15}
® ® ®
- - -
T T T
a [a} a
ko] B o]
B 8 B
0 L L L L L L o 0 L L L L L L 0 L L L L L -
0 30 60 120 300 600 900 0 30 60 120 300 600 900 0 30 60 120 300 500

(d) 50 nodes, 30 flows

(€) 50 nodes, 40 flows

(f) 100 nodes, 30 flows

Figure 5: Packet Delivery Ratio and Packet Delivery Latency vs. Mobility (Pause Time (5s))

pauses for a specified pause time. The speed was randomly
chosen from 10+ 1 m/s. Three field configurations were used:

e 1500m x 1000m field with 50 nodes
e 1500m x 500m field with 50 nodes
e 2200m x 600m field with 100 nodes

We used the first two configurations to evaluate how our al-
gorithm performs under different node densities, and used the
third one to see how it scales with network size. The pause
times for the first two configurations are: 0, 30, 60, 120, 300,
600, and 900 s; and 0, 30, 60, 120, 300, 500 s for the third one.
The simulation ran for 900 s for the first two and 500s for the
third one as done in [12]. The communication model is con-
stant bit rate (CBR) traffic with four packets per second and
packet size of 64 bytes in order to factor out the effect of con-
gestion. The traffic loads for the three field configurations are
30 flows, 40 flows, and 30 flows. Each data point represents
an average of 10 runs different randomly generated scenarios.
We use 50n-30f for 50 node and 30 flows scenarios, etc.
We used four metrics:

e Packet Delivery Ratio: the fraction of data packets sent
by the source that are received by the destination.

e Packet Delivery Latency: the average time taken by a
data packet to travel from the source to the destination.

e Normalized Routing Overhead: the ratio of the total
number of routing packets transmitted to the total num-
ber of data packets received. For the cache update algo-
rithm, routing packets include ROuTE ERRORS used for
cache updates.

e Good Cache Replies Received: the percentage of
RouTE REPLIES without broken links received by the
source that originated from caches.

4.2 Simulation Results
4.2.1 Packet Delivery Ratio

Packet delivery ratio is an important measure of the perfor-
mance of a routing protocol. Figs. 5 (a)—(c) show the results
for this metric.

DSR-Adaptive outperforms DSR for all mobility scenarios,
obtaining improvement of 13% for 50n-30f, 11% for 50n-40f,
and 34% for 100n-30f at pause time 0 s. Such significant im-
provement demonstrates that our algorithm quickly removes
stale routes. Since DSR with path caches has delayed aware-
ness of mobility, more packets are dropped at intermediate
nodes due to stale routes. As we can see, the improvement
increases as mobility increases, showing the efficient adapta-
tion of our algorithm to topology changes. The improvement
is much higher for 100 node scenarios than for 50 node ones.
Fast cache updating is important for large networks, because
more nodes will cache stale routes as network size increases.
These results show that proactive cache updating is more effi-
cient than FIFO in invalidating stale information.

DSR-Adaptive also outperforms Link-Maxlife, obtaining
the maximum improvement of 16% for 50n-30f, 35% for 50n-
40f, and 20% for 100n-30f. For 50n-40f, the highest traffic
load and higher node density scenarios, DSR-Adaptive signif-
icantly outperforms Link-Maxlife, achieving the highest im-
provement. This is because as traffic load or node density
increases, the adverse effects of stale routes become more sig-
nificant: as traffic load increases, more traffic sources will use
stale routes, resulting in more packet losses; as node density

DSR &
DSR-Adaptive —8—
DSR-LinkMaxlife —-@-- |

Normalized Routing Overhead
Normalized Routing Overhead
w

14 —

DSR & DSR &
DSR-Adaptive —m— 120, DSR-Adaptive —— |
DSR-LinkMaxlife o | g DSR-LinkMaxlife —&—
T 10l
é &
2 st
§ A
6l
B
N
3 L
B 4
o
z 2l

0 30 60 120 300 600 900 0 30 60
(@) 50 nodes, 30 flows

(b) 50 nodes, 40 flows

120 300 600 900 0 30 60 120 300 500
(c) 100 nodes, 30 flows

20 ——
DSR-Adaptive ——
DSR-LinkMaxlife ---&-—

Good Cache Reply Received (%)
>0
Good Cache Reply Received (%)

DSR & 4
DSR-Adaptive —=—
DSR-LinkMaxlife ---&--

201 DSR &
DSR-Adaptive ——
DSR-LinkMaxlife ---&--

Good Cache Reply Received (%)

0 30 60 120 300 600 900 0 30 60
(d) 50 nodes, 30 flows

(€) 50 nodes, 40 flows

120 300 600 900 0 30 60 120 300 500
(f) 100 nodes, 30 flows

Figure 6: Normalized Routing Overhead and Good Cache Replies Received vs. Mobility (Pause Time (s))

increases, more nodes will cache stale routes. These results
show that Link-Maxlife cannot accurately predict timeouts.

Link-Maxlife performs better than DSR for high mobility
scenarios, since it is able to aggressively expire links when
links break more frequently under high mobility. This is con-
sistent with the statistics of good cache replies received, as
shown in Fig. 6 (d) and (f), where the cache performance of
the former is better than that of the latter under high mobil-
ity. However, Link-Maxlife performs worse for other mobility
scenarios, especially under high traffic load. This is because
when mobility is not high, path caches with FIFO remove
stale routes faster than predicting timeouts, since high traffic
load speeds up cache turnover.

For DSR and Link-Maxlife, there is an inconsistency be-
tween good cache replies received and packet delivery ratio at
pause time 0 s for 50n-40f and when mobility is not high for
other scenarios. We attribute the following reason to this ob-
servation. Although more cache replies received are good in
Link-Maxlife, FIFO replacement policy has evicted more stale
routes when cached routes are picked up to be used.

4.2.2 Packet Delivery Latency

Figs. 6 (d)—(f) show the results for packet delivery latency.
Compared with DSR, DSR-Adaptive achieves the reduction
in latency by up to 15% at pause time 0 s for 50n-30f, up
to 30% at pause time 30 s for 50n-40f, and up to 25% at
pause time 30 s for 100n-30f. Such significant reduction in la-
tency results from DSR-Adaptive’s fast cache updating. Since
detecting link failures through several retransmissions is the
dominant factor of the delay experienced by a packet, remov-
ing stale routes earlier from the caches of reachable nodes re-
duces link failure detections by multiple data flows, and thus

reduces the overall packet delivery latency. In addition, when
a data packet is salvaged and routed differently, the new route
is generally longer than the original one [5], causing signifi-
cant increase in latency.

As we expected, the reduction in latency compared with
DSR increases as mobility, network size, or traffic load in-
creases, a desirable adaptive property of our algorithm. As
network characteristics become more challenging, the advan-
tages of proactive cache updating become more significant.

DSR-Adaptive performs worse than Link-Maxlife in this
metric. Since Link-Maxlife store more routing information in
the topology graph, it performs much fewer route discoveries
than DSR-Adaptive, resulting in lower latency.

4.2.3 Normalized Routing Overhead

Figs. 6 (a)—(c) show the results for the normalized rout-
ing overhead. DSR-Adaptive has almost the same overhead
as DSR for 50n-30f and 50n-40f. Although proactive cache
updating introduces overhead for cache updates, it reduces
ROUTE ERRORS due to stale routes. DSR-Adaptive has a
slightly higher packet overhead than DSR, but has almost
the same the normalized routing overhead as DSR due to in-
creased packet delivery ratio. DSR-Adaptive provides such
benefit through efficient adaptation to mobility, whereas over-
aggressive caching strategies introduce overhead for route re-
discoveries and over-conservative caching strategies increase
overhead caused by the use of stale routes.

As network size increases, DSR-Adaptive achieves a large
reduction in overhead by about 50% of DSR. We observe from
simulation data that DSR initiates more route discoveries than
DSR-Adaptive, resulting in higher overhead. The higher num-
ber of route discoveries is due to the small cache size used in

DSR, which is not large enough to hold all useful routes as
network size increases.

Link-Maxlife has an unstable curve for this metric for both
50 and 100 node networks. For example, for 50n-30f, as
shown in Fig. 6 (a), Link-Maxlife has significantly lower over-
head than the other two under high mobility due to fewer
route discoveries, but has much higher overhead under static
scenarios. It is because this mechanism sometimes over-
aggressively expires links that are still valid. Simulation data
shows that Link-Maxlife initiates a large number of route dis-
coveries for one scenario at pause time 900 s. This is also the
reason for other high overhead cases in 50n-40f and 100n-30f.

4.2.4 Good Cache Replies Received

The percentage of good cache replies received is an impor-
tant metric for evaluating cache performance, which has been
used in previous studies [11, 12]. As shown in Fig. 6 (d)—
(f), DSR-Adaptive achieves very significant improvement in
cache correctness compared with both DSR and Link-Maxlife.
For example, compared with DSR, it obtains the improvement
of 51% for 50n-30f at pause time 0 s, 75% for 50n-40f, and
51% for 100n-30f at pause time 60 s. Compared with Link-
Maxlife, it provides the maximum improvement of 48% for
50n-30f at pause time 120's, 67% for 50n-40f at pause time 60
s, and 25% for 100n-30f at pause time 60 s. To the best of our
knowledge, these are the most significant results with respect
to improving cache correctness of DSR. The worse cache per-
formance of Link-Maxlife further shows that heuristics with
ad hoc parameters cannot accurately predict timeouts.

5 Reated Work

DSR’s cache performance was first analyzed by Maltz et
al. [11]. Hollan and Vaidya observed [4] that stale routes seri-
ously affect TCP performance. Perkins et al. [15] pointed out
the impact of stale routes on DSR’s performance.

Hu and Johnson [5] studied design choices for cache struc-
ture, cache capacity, and cache timeout. They proposed the
link cache structure and several adaptive link timeout algo-
rithms. Marina and Das [12] proposed wider error notification
and timer-based route expiry. Under wider error notification,
a node receivinga ROUTE ERROR will rebroadcast it, but only
if there is a cached route containing the broken link and that
route was used before to transmit data packets by that node.
Thus broken links which are frequently propagated in ROUTE
RePLIES and cached by nodes for future use will not be re-
moved. Moreover, some nodes that have cached broken links
may not receive notifications, since broadcast is unreliable.
Under timer-based expiry, the average timeout is assigned to
all the routes based on some broken routes. While this works
well when routes break uniformly, mobility may not be uni-
form in time or space. Lou and Fang [10] proposed an adap-
tive link timeout mechanism in which the lifetime of a link
is adjusted based on the real link lifetime statistics. Hu and
Johnson [6] proposed to use epoch numbers for preventing a
node from re-learning a stale route that it previously found out
was broken.

6 Conclusions

We have presented a novel solution to the cache staleness is-
sue of DSR. We define a cache table to collect and maintain
the information necessary for cache updates. When a node
detects a link failure, our distributed cache update algorithm
proactively notifies all the reachable nodes whose caches con-
tain the broken link to update their caches, using local infor-
mation kept by each node and relying on cooperative update
propagation. The algorithm does not use ad hoc parameters,
thus making route caches fully adaptive to topology changes.

Through detailed simulations, we show that the algo-
rithm significantly improves packet delivery ratio and reduces
packet delivery latency compared with DSR with path caches.
It also considerably outperforms Link-Maxlife in packet deliv-
ery ratio. Our results lead to the following conclusions:

e Due to unpredictable topology changes, heuristics can-
not accurately predict timeouts. Proactive cache updat-
ing is more efficient than adaptive timeout mechanisms
in invalidating stale routing information.

e The effectiveness of predetermined choices of ad hoc pa-
rameters in caching strategies depends on scenarios. It
is important to make route caches dynamically adapt to
changing network characteristics.

Acknowledgements

We thank the developers of ns-2, David Johnson and his
Monarch group for making available their wireless extensions
to ns-2, and Yih-Chun Hu and David Johnson for making their
link cache code available. This work was supported in part by
DARPA under grant N66001-01-1-8929.

References

[1] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and
J. Jetcheva. A performance comparison of multi-hop
wireless ad hoc network routing protocols. In Proc. 4th
ACM MobiCom, pp. 85-97, 1998.

[2] K. Fall and K. Varadhan, Eds. ns notes and documenta-
tion. The VINT Project, UC Berkeley, LBL, USC/ISI,
and Xerox PARC, 1997.

[3] Z. Haas, M. Pearlman, and P. Samar. The Zone Rout-
ing Protocol (ZRP) for ad hoc networks, IETF Inter-
net Draft. http://www.ietf.org/internet-drafts/draft-ietf-
manet-zone-zrp-04.txt, July 2002.

[4] G. Holland and N. Vaidya. Analysis of TCP perfor-
mance over mobile ad hoc networks. In Proc. 5th ACM
MobiCom, pp. 219-230, 1999.

[5] Y.-C. Hu and D. Johnson. Caching strategies in on-
demand routing protocols for wireless ad hoc networks.
In Proc. 6th ACM MobiCom, pp. 231-242, 2000.

An extended version of this paper appears in Proceedings of
IEEE INFOCOM 2005.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Y.-C. Hu and D. Johnson. Ensuring cache freshness in
on-demand ad hoc network routing protocols. In Proc.
2nd POMC, pp. 25-30, 2002.

D. Johnson and D. Maltz. Dynamic Source Routing in ad
hoc wireless networks, Chapter 5, pp. 153-181. Kluwer
Academic Publishers, 1996.

D. Johnson, D. Maltz, Y.-C. Hu, and J. Jetcheva. The
Dynamic Source Routing for mobile ad hoc networks,
IETF Internet Draft. http://www.ietf.org/internet-
drafts/draft-ietf-manet-dsr-07.txt, February 2002.

Y.-B. Ko and N. Vaidya. Location-Aided Routing
(LAR) in mobile ad hoc networks. Wireless Networks,
6(4):307-321, 2000.

W. Lou and Y. Fang. Predictive caching strategy for on-
demand routing protocols in wireless ad hoc networks.
Wireless Networks, 8(6):671-679, 2002.

D. Maltz, J. Brooch, J. Jetcheva, and D. Johnson. The
effects of on-demand behavior in routing protocols for
multi-hop wireless ad hoc networks. IEEE J. on Selected
Areas in Communication, 17(8):1439-1453, 1999.

M. Marina and S. Das. Performance of routing caching
strategies in Dynamic Source Routing. In Proc. 2nd
WNMC (in conjunction with ICDCS), pp. 425-432,
2001.

V. Park and M. Corson. A highly adaptive distributed
routing algorithm for mobile wireless networks. In Proc.
16th IEEE INFOCOM, pp. 1405-1413, 1997.

C. Perkins and E. Royer. Ad hoc on-demand distance
vector routing. In Proc. 2nd WMCSA, pp. 90-100, 1999.

C. Perkins, E. Royer, S. Das, and M. Marina. Perfor-
mance comparison of two on-demand routing protocols
for ad hoc networks. IEEE Personal Communications,
8(1):16-28, 2001.

The Monarch Project. Rice monarch project:
Mobile networking architectures. Project page:
http://www.monarch.cs.rice.edu/ .

7 Appendix: Pseudo Code

Procedures:

int

I ndex(PATH route, 1D id):

conpute the index of node id in route route;
PATH subPat h(PATH route, | D startiD, | D endID) :

conpute from route a subpath starting with i ndex being startiD and ending with index endID;

bool ean repl yPai r Exi st (vect or <Repl yPai r*>, replyRecord, Repl yPair reply_pair):
i f reply_pair exi sts in replyRecord return true , else return fal se;

cacheEntry get FrontCacheTabl e(PATH route) :
If some entry e in cacheTable sati sfies eroute=route return e, else return null;

bool ean i sFi rst Node(PATH route, | D id):
if id=route[0] (first node) then return true, else return false;

bool ean i sLast Node(PATH route, |D id):
i f id=route[route.length—1] (Il ast node) then return true, else return false;

Algorithm: findRoute
Input: 1D dest, PACKET p, bool ean respond_to_.RREQ, bool ean used_for_salvaging
Qut put: PATH route

OCO~NOOUITAWNPE

10
11
12

eo:=0;
for each entry e e cacheTable do
i f destee.route t hen
temp := subPath(e.route, Index(e.route, netID), Index(e.route, dest))
if route=0 or |temp| < |route| then route: :=temp; ep:=e
if eg=0 then exit;
i f respond_to_.RREQ t hen reply_pair := (p.srcRoute[p.srcRoute.length — 1], route)
i f not replyPairExist(eq.replyRecord, reply_pair) t hen eg.replyRecord := eg.replyRecord U {reply_pair}
el sei f not used_for_salvaging t hen
i f route =ep.route and eg.DP #2 then eyg.DP:=¢p.DP+1
el se
cacheTable := cacheTable U {(route, (netID, dest),1,0) }

Algorithm: addRoute
I nput: PACKET p

1

OCONOUTPA_WN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

if pis a RREP packet then
i f netID=p.dest then
e .= getFromCacheTable(p.srcRoute);
if e=null then
cacheTable := cacheTable U { (p.srcRoute, (p.srcRoute[Q], p.srcRoute[p.srcRoute.length — 1]),0,0)}
el se

newRoute := subPath(p.srcRoute, Index(p.srcRoute, netID), Index(p.srcRoute, p.srcRoute[p.srcRoute.length — 1]));

reply_pair := (p.srcRoute[Index(p.srcRoute, netID) — 1], newRoute);
e .= getFromCacheTable(newRoute);
if e=null then
cacheTable := cacheTable U { (newRoute, (p.srcRoute[0], p.srcRoute[p.srcRoute.length — 1]), 0, reply_pair) }
el se
i f not replyPairExist(e.replyRecord, reply_pair) t hen e.replyRecord := e.replyRecord U {reply_pair}
elseif p is a DATA packet then
e := getFromCacheTable(p.srcRoute);
if e#null then
if eDP=1 then eDP:=2
el se
i f netlD=p.dest t hen cacheTable := cacheTable U {(p.srcRoute, (p.src, p.dest),1,0)}
el se
for each entry e e cacheTable do
i f e.srcDest.src = p.src and e.srcDest.dest = p.dest and p.src = p.route[0] t hen

temp := subPath(p.srcRoute, Index(p.srcRoute, netID), Index(p.srcRoute, p.srcRoute[p.srcRoute.length — 1]));

i f temp=e.route and e.DP =0 t hen e.route := p.srcRoute; e.DP :=1; is_.completed := TRUE
for each entry ree.replyRecord do

temp := subPath(p.srcRoute, Index(p.srcRoute, netID) — 1, Index(p.srcRoute, p.srcRoute[p.srcRoute.length — 1]));

i f (r.nodeNotified||r.subrouteSent) =temp t hen e.replyRecord := e.replyRecord \ {r};

i f not is_completed and p.src = p.route[0] t hen cacheTable := cacheTable U {(p.srcRoute, (p.src, p.dest),1,0)}

10

Algorithm: cacheUpdate
Input: |D from, ID to, PACKET p, bool ean detect_by_-me, bool ean continue_to_notify
/+ If pis a RoOUTEERROR and p.src=from and netID =telllD, then continue_to_notify i s set TRUE. =*/
Qutput: vector <NotifyEntry*> notifyList

1 for each entry eecacheTable do

2 if link (from,to) € e.route t hen has_broken_link := TRUE; direction := forward

3 elseif link (to,from)ce.route t hen has_broken_link := TRUE; direction := backward

4 el se has_broken_link := FALSE;

5 if has_broken_link t hen

6 position := Index(e.route, from);

7 i f detect_by_me t hen

8 i f direction =forward t hen

9 if (eDP=1 or eDP=2) and (not isFirstNode(e.route,netlD)) then

10 notifyList := notifyList U { (e.route[position — 1], (netID||e.route[position — 1))}
11 if eDP=2 or (e.DP=1 and (not (p is a DATA packet and (p.srcRoute =e.route))))then
12 routeToUse = 0;
13 for each node n e {e.route[position+1],...,e.routefe.route.length — 1]} do
14 Try to find a shortest route in cacheTable fromnetIDto n
15 if such route is found then
16 foundRoute : = the found route;
17 i f routeToUse =0 or [foundRoute| < |routeToUse| t hen routeToUse := foundRoute; telllD :=n
18 i f routeToUse # 0 t hen notifyList := notifyListU {(tellID, routeToUse) }
19 el sei f direction = backward t hen
20 i f not isLastNode(e.route,netlD) t hen
21 notifyList := notifyList U { (e.route[position + 1], (netID||e.route[position + 1))}
22 routeToUse = 0;
23 for each node ne {e.route[position—1],...,e.route[0]} do
24 Try to find a shortest route in cacheTable fromnetIDto n
25 if such route is found then
26 foundRoute : = the found route,;
27 i f routeToUse =0 or [foundRoute| < |routeToUse| t henrouteToUse := foundRoute; telllD :=n
28 i f routeToUse # 0 t hen notifyList := notifyListU {(telllD, routeToUse) }
29 else /* The current node receives a notification fromanother node. */
30 index := Index(e.route, netID);
31 i f direction =forward and index < position and (not isFirstNode(e.route,netID)) then
32 notifyList := notifyList U {(e.route[index — 1], (netID||e.route[index — 1]))}
33 i f direction = backward and index > position and (not isLastNode(e.route,netiD)) then
34 notifyList := notifyList U { (e.route[index + 1], (netID||e.route[index + 1]))}
35 if (eDP=1 or eDP=2) and ((direction=Tforward and index > position) or
(direction = backward and index < position)) t hen
36 i f continue_to_notify t hen
37 i f (direction=forward and netID=to and (not isLastNode(e.route,netiD))) or
(direction = backward and isFirstNode(e.route,netlID) and (not netID=to)) then
38 notifyList := notifyList U { (e.route[index + 1], (netID||e.route[index + 1]))}
39 i f (direction=forward and isLastNode(e.route,netlD) and (not netID=to)) or
(direction = backward and netID =to and (not isFirstNode(e.route,netlD))) then
40 notifyList := notifyList U { (e.route[index — 1], (netID||e.route[index — 1))}
41 i f not (netID=to or (direction=forward and isLastNode(e.route,netlD)) or
(direction = backward and isFirstNode(e.route,netID))) then
42 notifyList := notifyList U { (e.route[index + 1], (netID||e.route[index + 1])) };
43 notifyList := notifyListU { (e.route[index — 1], (netID||e.route[index — 1])) }
44 for each entry ree.replyRecord do
45 i f I'ink (from,to) € e.replyRecord.subrouteSent or |i nk (to,from) € e.replyRecord.subrouteSent t hen
46 telllD := e.replyRecord.nodeNotified;
47 notifyList := notifyListU {(tellID, (netID||tellID))};
48 e.replyRecord := e.replyRecord \ {r};

49 cacheTable := cacheTable \ {e};
50 else /+* The route in the table entry does not contain a broken link.x*/
51 for each entry ree.replyRecord do
52 i f r.nodeNotified =to and netID =from then /* A broken link is detected by a ROUTE REPLY. */
53 e.replyRecord := e.replyRecord \ {r};
54 for each entry nenotifyList do
55 if (pis a RouTEERROR and n.telllD = p.src) or

(n.routeToUse i s a sub-route of another entry’s routeToUse) or

(entry menotifyList and n.telllD=m.telliD and |n.routeToUse| > |m.routeToUse|) t hen
56 notifyList := notifyList\ {n};
57 return notifyList;

11

