Abstract

Two major techniques have been proposed for using the structure of links
in the World Wide Web to determine the relative significance of Web Pages.
The PageRank algorithm [Brin 98|, which is a critical part of the Google search
engine, gives a single measure of importance of each page in the Web. The HITS
algorithm [Kleinberg 98] applies to a set of pages believed relevant to a given
query, and assigns two values to each page: the degree to which the page is a
hub and the degree to which it is an authority. Both algorithms have a natural
interpretation in terms of a random walk over the set of pages involved, and in
both cases the computation involved amounts to computing an eigenvector over
the transition matrix for this random walk.

This paper surveys the literature discussing these two techniques and their
variants, and their connection to random walks and eigenvector computation. It
also discusses the stability of these techniques under small changes in the Web
link structure.
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Chapter 1

Search Engine circa 1998:
Eigenvector

Search engine, more specifically search engine methods and algorithms around
1998, is the focus of this survey. This survey gives you the intuitions of how and
why the search algorithms work, their variants and applications. Mathematical
proofs are reduced to its minimum form and are presented in non-theorem style.

1.1 The Birth of Search Engine

Since the debut of World Wide Web (abbrev. the Web or WWW), webpages and
websites have grown steadily. It becomes difficult to find a pages related to one’s
need. There are two approaches to solve this problem. One is to categorize the
webpages, and the other is to resort to a search engine.

The first method is to build a directory, such as Yahoo. Yahoo has tried
to systematically categorize the webpages manually but the size of the work
is overwhelmingly large. It is not possible to efficiently categorize all contents
manually.

The second method is to resort to a search engine. A search engine usually
comes with a fleet of crawlers that traverse the network and collect the pages
for local storage. Search engine server will pre-processes the cached content to
extract useful information for search queries. When a user enter a query, the
search engine will respond by returning the pre-processed and prepared data.

1.2 Before 1998: Indexing, Terms Frequency,
and Click Through

We can trace back the origin of search engine to the database community but
they do not call it a search engine. Search engine is therefore a terminology used
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for the Web. The search engine differs from traditional query engine in that it
is equipped crawlers that will collect data from ‘outside’ its host. The full set
of data and content a search engine handles are distributed over the network.
Traditional query engine usually has its data in the same host. There is no
distributed database with the same scale of the Web.

As described in [Brin 98], the implementations of search engines are usually
kept as secrets within the commercial site and seldom be revealed to the public.
But we can guess that most of the conventional search engine, if not all of them,
use schemes such as indexing webpages, computing terms frequency, and tracking
click through.

Indexing is a basic task for databases. Servers find out what terms appear
in the documents and build a inverse index for the terms. In other words, we
can find out which documents contain a given term. Terms frequency is used in
estimating the relative relevance of the document. Salton [Salton 75][Salton 89]
has pioneered many of the work in indexing and term frequency. His method is
widely used in information retrieval. The Web environment provides a few new
data sources that can track the users’ activities. One of the data source is click
through. When user traverse the web by following a hyperlink, the action will be
recorded by the server. Search engine servers can record the activities of users on
their choice of click through. Some search engines incorporate the click through
as the indicator of importance. The higher the click through of a link, the higher
it should be listed on the returned result.

Indexing for the Web is a daunting task. From the wealth and the growth of
the Web, a returned list from a query term can be too long to be throughly examed
by the users. A document can be represented by a term vector whose entry is
the frequency of the term in the document. Term frequency has it limitation
as we can not afford to use the complete set of lexicons from the web as the
term base vector for a document. Most search engines combine the indexing and
term frequency with other heuristics. One of them is click through. But as we
know people tend to pick the top listing and this will generate a phenomena that
a ‘reliable’ site will be more ‘reliable’ and the newer websites will never get a
chance to move to the top rank even if they have good content. So none of the
above methods or a combination of them have given a satisfactory search result.

Indexing and term frequency are interesting topics themselves. However, we
will not diverge into techniques used before 1998. Readers who are interested in
these areas can find more information in [Salton 89].

1.3 1998: Linkage Analysis

1998 is the turning point in the history of search engine. Researchers start to
take notice at the hyperlinks as they have ignored in the past search engine
algorithms. Using hyperlinks as a source for search result is not new; it was
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proposed in a closed hyperspace environment before[Botafogo 91]. The linkage
analysis proposed in 1998 emphasizes the relationship between the links and
the involvement of human intelligence. Webpages are produced by people, even
those that are automatically generated through software templates are designed
by people; therefore, a link most likely contains some level of human intelligence.
It turns out that a link and its anchor text have a wealth of source of information
that can be explored and used by a search engine. Individual hyperlink is a
fragment of human intelligence and when we collect all these hyperlinks, we have
a good estimate on the statistical evaluation of all webpage authors.

Linkage analysis revolves around modeling the Web as a large graph with
directional edges (hyperlinks). It is natural to use a matrix to describe a graph
algebraically. And it is natural to compute eigenvalues and eigenvectors for a ma-
trix. We will see in the next few chapters that when we give the hyperlinks values
and meanings, we will have an interesting interpretation on matrix’s eigenvectors.

In fact, search engine methods in 1998 can be summarized by one word:
eigenvector. Within the eigenvector frame work, we can classify algorithms into
two categories. One is following Kelinberg’s Hubs and Authorities [Kleinberg 98];
the other is Brin and Page’s PageRank [Page 98|which is the main ingredient
behind the search engine Google [Google].

We will describe each category in separated chapters. And a chapter summa-
rizing on the stability of both algorithms is presented.



Chapter 2

Hubs and Authorities

Hubs and authorities are two properties proposed in Kleinberg’s seminar paper[Kleinberg 98].
It is states that there are two types of pages. Pages contain many links that point

to related material; we call these pages hubs. Authorities pages are content pages.

These pages have contents. Under this assumption and the graph model where

each page is represented as a node in a graph, we can separate the Web into a

bipartite graph: a hub side and a authority side. But it is clear that many pages

may have dual properties. They can be both hubs and authorities.

2.1 Basics

2.1.1 HITS: from Author’s View

The algorithm described in this section is called HITS ( Hypertext Induced Topics
Search).

The greatest headache of a search engine is that for most queries, the returned
result list is too long. In order to present the result in a ‘quality’ priority, we have
to design a scheme to measure the ‘quality’. Kleinberg'’s idea is simple: a good
hub will point to many good authority, and a good authority will be pointed by
many good hubs. Suppose we give the authority values and hub values to each
page, then we expect the authority value of a page will be affected by the values
of hubs pointing to it and the hub value of a page will be affected by the values
of authorities to which it points. Let webpage 7 has authority value a; and a hub
value h;, we can construct the following formula:

CLi:Zhj hi:.z.aj

Jj—1 i—j

In terms of the graph model, we have the following matrix computation. Let
a be the authority vector and h be the hub vector. a; and h; will be the value
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of the authority and the hub for page i respectively. Let E be the graph matrix
where E;; = 1 if there is a hyperlink from page 7 to page j. With these notations,
we now have:

a=FE!'%xh h=FE Xa

Notice that each authority and hub value is with respect to a specific query
term. There are too many webpages containing a given term. Therefore we need
to start from a limited set of pages. A quick candidate for such a set would
be a returned result from a traditional search engine. However, in many search
engines, they already limit the returned result size and it may not always be an
ideal candidate set. To compensate the possible limitation, we can start from the
returned set and grow it into a larger set. We call the returned result set from a
traditional search engine a ‘root set’ and the final candidate a ‘base set’. The idea
is to collects all the urls that are pointed by root set and urls that are pointing
to the root set. There are search engine services provide ‘reversed’ links'. Given
a url, these services will return a list of pages with links pointing to this url. We
have the following pseudo-code:
function get_base_set (query, k)

root_set = { }
returned_result = send_query_to_Alta_Vista(query)
root_set = returned_result

foreach this_url in returned_result

url_pointing_set = url_pointing_to(this_url)
root_set = base_set U url_pointing_set
url_pointed_set = url_pointed_by (this_url)
root_set = base_set

U select_top_k_url_from (url_pointed_set, k)
end

return root_set
end

Kleinberg regards the intra-links (links point to another page on the same
site) to be navigational and therefore HITS does not collect these links. All the
links between two different sites (domain names) are collected. From previous
page’s equation, after one iteration, we have a = E* x E x a. Let M = E* x E,
we can have the following loops to produce the hubs and authorities vectors:

z is a normalized vector without 0 in its entry.

!For instance, Alta Vista
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a=z
a =z
loop
a=adad
a=Mxa
Normalize o
6 =|la’ — al|2
until (§ < e)

Now, we are ready to show that this computation always converges and it
almost always converges to the largest eigenvector.

2.1.2 Convergence to the Largest Eigenvector

For simplicity, let us assume that the symmetric matrix E has different eigenval-
ues A\; > Ay > ... > \,. Because E is symmetric with no negative entry value,
we will have A\; > 0 [Gloub 89]. Since these eigenvectors are linearly indepen-
dent, we can use corresponding eigenvectors as a basis for the vector space. Let
eigenvectors be vy, vs,...,v,. For any v in the space, we have

n
v = Z C;U;
=1

By applying A on both sides repeatedly for k£ times, we get

n
Ak’U = Z Ci/\ik’l),'
=1

But the A\ will be significantly larger than all other eigenvalues and its
amplification to its own eigenvector will cause the A¥v to swing to the v, direction.
Therefore we will get v; eventually.

After obtaining the authority vector, HITS algorithm will sort the vector’s
entries in decreasing order and then picks the pages whose corresponding entry
values are on the top of the sorted list. These pages are presented as the recom-
mended page with respect to the search query. We can also compute hubs vector
in one matrix computation. Note that HITS only computes the given query on
an induced graph that is smaller than that of the entire Web.
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2.1.3 Relevance to Markov Process: Random Walk

The presentation here follows the notations used in Borodin et. al. [Bordoin 01]
Recall the matrix M = E' x E whose entry represent the number of path from a
random walk doing a forward F' (pointing) move and backward B (pointed by)
move. We construct a undirected graph G gr whose nodes are pages in the base
set. Gpr will have an edge from 7 to j if there is a BF' path between them, i.e.
M;; = 1. Let M(i) = >°; M;; be all the moves possible from 7. If we take a unit
vector as the initial authority vector a, then under one iteration, we have
_ M)

a; = ————

[1M]]

Let the probability of transition from % to j is P ; = |”M"’.j ||||11. We now show

M{(3)
the transition matrix P is a irreducible and aperiodic MarLov chain:

e Row is a distribution: >, P ; = >; |||‘]AV/[I?Z?)||||11 = H%gg”i =1

e Irreducible: Irreducible means any page ¢ can reach any other page j
through some directed path on the Web. (Gpgpr has one connected com-
ponent.

e Aperiodic: A state is periodic if a random walk only come back to this state
at periodic steps. A random walk can traverse the same edge to go back to
its origin. So there is a length of 2 closed walk. Since it is from the Web, we
can assume that the graph is non-bipartite (it would be strangely surprising
if it turns out to be bipartite. In general, this case rarely happens.) and
we can have a odd cycle closed walk. But ged(2,3) = 1, which tells us that
P is aperiodic.

From the classical result of random walk [Motwani 95], the stationary distri-
bution at 7 is exactly a; shown above. We briefly describes the definitions and
theorem.

Definition 1 A Markov chain is said to be irreducible whenever its underlying
graph consists of a single strong component.

Definition 2 The periodicity of a state i is the maximum integer T for which
there ezists an initial distribution ¢© and positive integer a such that, for all
t, if at time t we have qft) > 0, then t belongs to the arithmetic progression
{a + Tili > 0}. A state is said to be periodic if it has periodicity greater than
1, and is said to be aperiodic otherwise. A Markov chain in which every state is
aperiodic is known as an aperiodic Markov chain.

Theorem 1 Any irreducible, finite and aperiodic Markov chain will have a unique
stationary distribution m such that, for 1 <i <n,m; > 0.
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2.2 Variants

2.2.1 Simple Weighted Scheme: Avoiding Clique Attack

From the HITS algorithm, if a set of webpages are densely connected to each
other, then their hub and authority values will be propagated quickly. It is
conceivable that there can be a malicious attack on this algorithm. Malicious
sites owner can use two sites she own, construct two sets of webpages, one for
each site, and connect these pages together under the same anchor text. This
is known as ‘clique attack’ (a.k.a Tightly Knit Community in [Lempel 00]). To
avoid ‘clique attack’ Bharat & Henzinger [Bharat 98] modified the HITS. They
put weights on links so if a page points to k£ other pages on another site, then
this page contributes only 1/k of its hub value on each link. If a page is pointed
by k pages from another site, then each pointing page only contributes 1/k of its
authority value.

2.2.2 SALSA: Stochastic Approach to Link Structure Anal-
ysis

One can think of traversing the Web as a random walk. A person follows one of
the links on a page and visit another linked page. Lempel & Moran [Lempel 00]
design a special kind of random walk: one step forward and one step backward.
In one random move, the user visit back and forth on pages following the links.
Note that she may not be following the previously traversed forward link as its
backward link. She is wiggling her way on the Web.

Their algorithm follows the outline of the HITS and they consider the hub
and authority values for each page. First, they build the base set under a specific
query. Then they transform the graph formed by the base set into a new graph
where each node in the original graph is associated with two nodes: one for the
hub and one for the authority. Let G(V, E) be the base set graph which is a
directed graph. Let G'(V', E') be the transformed non-directed graph, where

V=V UV

Vil = {wp|v € V and out — degree(v) > 0} (hub vertices)

V! ={v,Jv € V and in — degree(v) > 0} (authority vertices)
E' = {{up,va}|(u,v) € Eie. u— v}

There are two random walks. An authority walk starts from the authority
side, and a hub walk starts from the hub side. They define two Markov chains
for these two walks. Let M, and M, be the two Markov chains for the walk
respectively. Entry (p,q) of a matrix represents the probability of visiting page
g when the current location is page p.
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H,, = 3 _
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Let M be the adjacent matrix of the original directed graph. M, is the matrix
whose entry is M’s divided by the sum of the entries on the same row. M, is the
matrix whose entry is divided by the sum of the same column. We can formulate
H = M,M! and A = M!M,. H and A will play the same role as M described
earlier in HITS. Lempel & Moran proves that both matrices have stationary
distribution and can be computed easily from a page’s degrees. Let

W= 2;1 din (i) = ];{dout(k)

we will have

din. . douk
m = V[E'Z) forallie A T = Vté) forall ke H

Contrary to the HITS looping, SALSA just needs to find out the indegrees,
outdegree of each page and the sum of all indegrees. The hub and authority of
each page can be calculated directly using the above formula.

2.2.3 Breadth-First-Search: Path Accumulation Weight-
ing

Kleinberg’s algorithm is looking at global information; every loop computation
will re-inforce itself. SALSA is looking at local information; the computation has
to do with only indegree and sum of indegrees. Borodin et. al. [Bordoin 01]
describes a in-between version: BFS. Kleinberg’s iteration can be regarded as
computing the number of paths leaving page i. BFS consider the number of
neighbors of page i. Let (BF)"(i) denotes the set of pages that can be reached
from page i by following (BF')™ path. They use exponentially decreasing weight-
ing scheme to compute the authority:

a; = 2" Y B(i) + 2" % BF(i)| + 2" ?|BFB(i)| + ...+ |(BF)"(i)|

The algorithm starts from page ¢ and do a bread-first search. A page is
collected only the first time it is visited. At each step, BFS will either do a
forward or backward move depending on if it is odd or even iteration. The
decreasing contribution has intuitive meaning on the distance. The further a
neighbor is, the lesser contribution it should have.
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Other pages
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Figure 2.1: Refined Web Graph, encoding cost

2.2.4 Refined HITS: Incorporating DOM Structure

HITS is looking at the page level effect of hub and authority. We certainly can
look at microscopic level. Chakrabarti[Chakrabarti 01.1] incorporates the DOM
(Document Object Model) level view and looks at microscopic construct of the
web. Each HTML page can be parsed into a DOM tree. With this modification,
only leaves with hyperlinks leading to other pages are kept; other leaves are
thrown away. We can apply HITS on this refined graph ( graph includes DOMs).
But it is shown that a tree node pointing to both a child within the same DOM
tree and to an outside page will cause the unequal diffusion for hub and authority
values. So HITS will not work well. Therefore, the paper proposes finding a cut
across the DOM tree and a subtree under the cut will be collapsed as one node
on the cut. This will prevent the unequal diffusion of hub and authority value.
The question is how does one decide where to make the cut.

In this refined graph, we have hub scores at the leaves of a DOM tree and
only the root of a DOM tree has authority value. As the choice of hyperlinks
differs from ones author to another, the hubs score is affected. Imagine now
that there is an universal hub score, a distribution that ‘correctly’ describe the
consensus with respect to a fixed query at the time of request. And there is a
super root connecting to all the DOMs. The distribution of nodes walking down
from the root is determined by each author. Still, we have to decide how to make
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the cut across the DOM. If the cut is too low and close to the leaves, it will
produce a lot of smaller subtrees, if it is too close to the root, it will contains a
diverse scores. To choose the right boundary, we use MDL(Minimum Description
Length) principle [Rissanen|. MDL says ‘learning’ is equivalent to minimizes the
sum total of model and data encoding costs. We now describe each cost. Let 6,
be the global consensus distribution.

e Data encoding cost: Consider an internal node w. Let 6, be the associated
distribution, L,, be the set of HREF leaf nodes in the subtree rooted at w,
and the set of hub scores at these leaves is H,,. From Shannon’s theorem,
there is a efficient codes achieving lower bound of

— > log Pry,(h) Dbits

h€H,,

where Pry, (h) is the probability of A with respect to the distribution 6,,.

e Model encoding cost: We have 6, as the global distribution and we also
have #, as a local distribution. The change of cost can be specified by
Kullback-Leibler distance [Cover 91]

Pry, ()
Pry,(x)

KL(04;0,) =>_ Pry,(z)log

Suppose we have cost changes K L(6,;6,) and KL(6,;6,) then the cost of
the path u — v — w is KL(0,;60,;0,) = KL(0,;6,) + KL(0,;0,) As we
walk from root down to the node v, we will have K L(f,...,60,).

Given the parent node 6, and the observed data H,, we will choose 6, to
minimize the combined cost:

KL(0,;0,) — >_ log Prg,(h)

heH,

Let the cut set be F', we are looking to minimize the value of

> (KL(HO; .30,) = > log Pry, (h))

veEF heH,

The actual optimization is not practical. We opt for an approximation by
moving the cut from the root gradually down to the leaves. The decision of
whether the cut will expand on a node to its children depending on comparing
the following two values:



2.2 Variants 13

e The cost of encoding all data in H, with respect to the model 6,,.

— Y log Pry,(h)

h€eH,,

e The cost of expanding v to its children and cost of encoding the subtree
with respect to its local distribution.

3 (KL(eu;ev) -3 logPrev(/l)\

VEL,, heH,

We take the action on whichever is smaller. When the former is less then
u becomes part of the cut. The final problem is how to simulate the global
distribution 6, and other local distribution? We can choose the exponential
distribution. which is said to observe the hub score more closely. The other
convenience is that the average of hub value for a subtree leaves can be used as
the parameter for the distribution for the root of the subtree. Now we are ready
to present the full algorithm:

h=FE Xa

foreach document DOM root u
F= find _cut(u)

(L, : set of leaves rooted at v)

foreach veF
h(v) = Suer, h(w)
foreach we L,

h(w) = h(v)

end
h(v) =0

end

end

a=E'"xh
Normalize a (X,a(u)=1)



Chapter 3

PageRank: Linearly Order All
Webpages

At the same time when Kleinberg proposed his hubs and authorities approach,
Brin & Page presented another method: PageRank[Page 98|. Their idea is simple.
A page is linked because it has been judged by a webpage author that it has
related content and substance of certain degree and she would like her reader to
know. The construction of a link can be seen as a fragment of human intelligence.
A page’s rank (quality), thus PageRank, is the accumulation of contributing
fragments. While HITS also has similar implication, PageRank puts in a division
operation rather than just pure addition for accumulation. Note the PageRank
has nothing to do with the context, it has to do with the quality of a page, more
precisely, the statistical quality of a page. Since each page has its rank value, you
can sort any set of pages according to their PageRank. You can linearly order
every single page on the Web.

3.1 Basics

3.1.1 From Author’s and Reader’s View

PageRank method makes the assumption that each page has a quality indicator
and this quality is contributed by other pages pointing to it. The amount of
contribution from a page is its own PageRank divided equally among all the
out-going links.

PageRank(j)
OutDegree(j)

PageRank(i) =)

Jj—t

The contribution of other pages is from an author’s point of view. An author
links whatever she think is relevant. But we have another important actor in the
web: the reader. Imagine a reader who traverses the Web from links to links. She



3.1 Basics 15

can get tired of it and decide to just ‘jump’ to another page without following

any link on currently visiting page. This makes sense. In another scenario when

she is trapped in a community which only points to its own members without

any out-going link to the rest of the Web. The formula now becomes:
PageRank(j) 1

PageRank(i) = (1 —d) ) OutDegree(j) +d- N

Jj—

where d, 0 < d < 1, is the probability a read does a ‘jump’, N is the total
number of pages on the Web. We assume a reader jumps uniformly randomly to
any of the page on the Web.

3.1.2 Convergence to the Largest Eigenvector

In fact, PageRank introduces a probabilistic distribution among the pages. To
simplify notation, we use R(i) as PageRank(i) and OD(j) as OutDegree(j). Let
us sum up all the PageRank over the Web:

YR = X1 - )Y gk + Xd-

i j—i

Because in-degree links come from out-degrees of other pages, we therefore
have the sum of all the in-degrees of all webpages equal the sum of all out-degrees
of all webpages. We also have }°; 1/N = 1. The equation becomes

YR =(1-)YY

i ik

R(3)
op@ T4

But ¥, ,, R(i)/OD(i) = R(i). So,

Y R(i)=(1 —d)ZR(i)+d

1

which gives us
Y R(E) =1 (&[] = 1)
i
As the sum of the parts is no less than its part. We have

1> R(5) >0

Indeed the PageRank produces a distribution among the pages. Now, let us
write PageRank down in a matrix format, we have

R=(1-d)-MxR+d-E
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where R is the PageRank vector, and E is a jump choice vector (in the previous
assumption its entry is uniformly equal). Matrix M is constructed such that M; ;
is 1/OutDegree(j) if there is a link from page j to page ¢ (notice the order);
otherwise, it is 0.

R=M xR+ FE [absorbing the constants]
= R=(M+FEx1)xR [|R1i=1=FE x1"xR=F]
= R=M"xR

The last formula shows that R is the eigenvector of eigenvalue 1, and we will
show that 1 is the largest eigenvalue. For any vector z, let M; be M’s column
vector (or we can choose M"), we have

Mx:inMi
= Mally < lallMll [+ vl < el + gl lleall = [ell2].]
:
= [IMal <3 1M1 = 1 s0 s [|MY]|y = 1]
= [|Ma]y < |2l

But for any eigenvector x and its eigenvalue A we have |\|||z|[ = ||Mz|: < ||z||;-

Thus |A| < 1 for all \. So 1 is its largest eigenvalue and R is the correspor?ding
largest eigenvector. The computation for R is a looping process which performs
self-correction:

R=MxR+d-F
= R-—-MxR=d-FE

From the formula, we can approximate the R gradually:

R =141
Rnew = [%]t

loop
R= Rnew
Ryew =M X R

d = [|R[|1 — || Rnewll:

Rnew = Rnew +d-FE

0= ||R - Rnew”l
until (6 <e)

Because ||R|| — || Rnewl| < [|R — Rnewl| so the computation will not blow up
and will converge. In implementation, Google takes out pages with only incoming
links or with only outgoing links and computes the PageRank.
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3.1.3 Relevance to Markov Process: Random Walk

Another view of the PageRank algorithm is to see how users behave on the Web.
They look at the user’s browsing behavior as a kind of random walk. From Markov
chains convergence theorem [Motwani 95|, if a transition matrix is irreducible,
aperiodic, and has a stationary distribution, then the Markov computation will
converge to the stationary distribution (here, it would be our PageRank vector).
We will show that the matrix is irreducible and aperiodic. Let’s take a look at the
matrix M" on page 15. Under PageRank’s model, the matrix M" is constructed
such that its (4, j) entl;y is ﬁg‘f‘lem + £ if and only if page j points to i.

Otherwise, its value is .

e Column is a distribution:

" o_ 1-d i_ _ _
;Mi’j =2 OutDegree(5j) +ZN =(1-d+d=1

j— %

e Irreducible: Irreducible means any page ¢ can reach any other page j
through a directed path on the Web. Since we have for each entry with
value at least %, we have made a ‘virtual’ link from page j to page . This
link is produced from the random jump. So the virtual graph represented
by the M" is one strong component. It is irreducible.

e Aperiodic: A state is periodic if a random walk only comes back to its
starting state at periodic stpes. Let us pick any page ¢ and start a random
walk, it is obvious we can traverse through page j (any j) and back to i.
Or we can traverse through page j, and k where j # k, and back to page
1. The traversability is enabled because every two pages are linked by our
design. Therefore, we have paths of length 2 and 3. But ged(2,3) = 1. So
the M" is aperiodic.

Therefore the Markov computation will converge to the stationary distribu-
tion.

3.2 Applications

3.2.1 Rank the Search

PageRank only gives you the quality listing of the page through statistical con-
sensus but it tells you nothing regarding to what the pages are about. We recall
that the problem of the returned result of a conventional search engine is its
abundance. There are too many pages. PageRank can assist in sorting the list
out according to each page’s ranking. The intuition is simple: a page will have
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high reputation on things it talks about. Its content. There is possibility that a
link is produced randomly and we have already counted this probability in the
‘jump’ part. The ‘jump’ parameter plays a multiple characters. You can think
of it as users jump to another page or you can think of it as a ‘virtual’ link.

Google|Google] uses PageRank. It is vaguely described in the [Brin 98] how
Google uses the PageRank in its merged rank which determine a page’s final
ranking. We can guess if a query string appears in an anchor text pointing to
some high PageRank webpage, then this page will be listed higher on the top.
The paper also mentioned the relative font size, font color, the proximity of
words will play a role. For certain, anchor text and proximity of words play a
more important role in the final ranking.

PageRank also defeats the popularity attack. Regardless how many users or
agents(program) have traversed a link, PageRank of the destined page is not
affected. The defects of counting the ‘click-through’ as an importance indicator
is that the traffic can be easily generated by robot program equipped with IP
spoofing technique. PageRank does not suffer from this attack as it does not
depend on traffic.

3.2.2 Page Topic Generation

Search engine function can be viewed as from a query to a list of webpages. Rafiei
& Mendelzon [Rafiei] asks the reversed question: what about giving a webpage
and ask what ‘query’ should be produced? In other words, what is the topic of
the webpage? Imitating the PageRank formula, they reformulate the equation:

_ R (j,t) : - :
R, 1) = { (1= d) X si GuiDegreeiy T ¢ if Page i contains term ¢

R"— 1(],) .
( ) Z]—” OutDegree(j) otherwise

where R"(i,t) is the term rank on n-th step of page i with the term ¢. Ny is
the number of pages where the term ¢ occurs. The equation is in the same spirit
of PageRank and the matrix is constructed similar to that of PageRank replacing
N by N,;. They also imitate the HITS algorithm and mixs it with PageRank’s
flavor to come up with the following:

n 1 . . .
AP, t) = (I—=d) X Oﬁngj@’e)@) +d- A if page ¢ contains term ¢
)( otherwise

(1~ d) %t Gurpeges

J—i QutDegree(j)

1—-d)Y; L(Jt)) +d- < if page i contains term ¢

J—i InDegree(j

HTL .’t = n—1
(4,1) { 1-d)Y; _AMT(Git) otherwise

J—t InDegree(j)

where H"(i,t) and A™(i,t) are term hub value and term authority value of
page 7 on term t. The proofs of convergences follow closely to what we have



3.2 Applications 19

done in PageRank and we will not repeat them here. For each term ¢ appears
in the input page, the above algorithms compute the corresponding values. The
problem is it is computationally exhausting if you want to compute for every term
for every page on the Web. Their experiment was limited to a smaller induced
graph but not the entire Web graph. There is another example in the next
chapter to show the advantage of ‘jump’ method in PageRank. It is a method to
break away from the ‘clique phenomena’ where a user is ‘trapped’ in a densely
connected small community.



Chapter 4

Stability of Algorithms

A natural question to ask about the search engine algorithms is how stable are
they. In other words, in the fast changing world of the Web, how stable are the
hubs and authorities value? How about PageRank? Ng et. al. [Ng 01.1] asks the
question and provides some answers to the stability of both types of algorithms.
We start with the HITS type.

4.1 Stability of Eigenvector under Perturbation

The question Ng et. al. asked for HITS is if we change the links by adding or
deleting them from one page (only one), what is its effect on the overall authority
vector value? They come up with the following result:

a* : principal eigenvector
a* : perturbed principal eigenvector
d : maximum out-degree in the graph
0 = A1 — Ao : eigengap
— €d 2
For any ¢, let a = v’ and k < (Vd+ a — Vd)

k: number of links changed on one page

= |la* —a'|; <e

Given a graph, the freedom will reside on the eigengap §. This gives us little
room to leverage the e. As a matter of fact, they prove that there exists a O(9)
perturbation to the symmetric matrix M that causes a large (1) change in the
principal eigenvector.

4.2 Stability of Pagerank with Page Links Changes

The stability result for the HITS is limited but the sensitivity of PageRank gives
a better hope. Recall that R=(1—d)-M xR+ d-FE
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M: original transition matrix

R: PageRank for M

UREC TR A changed pages in any way = ||R — R < %Z;j R;;
M : transition matrix after changes

R: PageRank for M

As long as the sum of PageRank of the changed pages is not large, the bound
is controlled.

4.3 From Properties to Applications

From previous sections, we learn that PageRank seems to be more stable and
flexible under perturbation. We can use this property. Note that one difference
between HITS and PageRank is PageRank can ‘jump’. This gives the PageRank
power to escape the ‘clique attack’. It prevents users to be trapped in the smaller
and yet closely connected community. Adopting the ‘jump’ concept, we can have

o™ =d- T+ (1—-d)AL,n"D K =d. T+ (1 - d)ALATY

TOoWw col

This is called randomized HITS. And it enjoys the same perturbation stability
as PageRank.

We notice that while the eigenvectors may change; the subspace spanned by
the eigenvectors can be stable. Let us consider the first k£ eigenvectors x4, ..., zx
with eigenvalues of Aj,..., Ay of E = ATA. Let e; be the j—th basis vector.
Authority scores is defined as

zf

which is the sum of the square of the length of projection of e; onto the
subspace spanned by z1,...,zr where z; is weighted by f()\;). This is called
subspace HITS algorithm. There is a variety of choices for f(\).

e f(A)= { (1) :;::n A 2 Amaa We have HITS in this case.

e f(A)=A It is citation counting.
o fN =1 a;=Xita}
It is proved in their paper that:

f: for all z,y we have [f(z) — f(y)| < L|z — y|
M=M+E, |E||r=¢ (F issymmetric)

It is shown that both randomized HITS and subspace HITS (with f(\) = A\?)
behave more stable than HITS.

la —all < Le



Chapter 5

Comparisons and Prospects

While both HITS and PageRank use linkage analysis and get the largest eigenvec-
tor for their result. There are operational difference. To summarize the difference
between HITS and PageRank:

e Views: HITS algorithm is looking from webpage author’s view and PageR-
ank includes both the author’s and reader’s view.

e Preprocessing: PageRank will preprocess the Web graph to obtain the page
ranking while HITS only processes in real time.

e Locality: PageRank will look at the complete graph while HITS only work
on a reduced graph.

e Filtering: PageRank will filter out the query related pages and consult the
rank to order them while HITS will filter the scaled down result first and
then compute the authority and hub to order them.

e Precision: PageRank single outs pages with query terms while HITS tend
to have generalization effect and tend to drift to broader topic.

While in practice there is no known search engine implementing the HITS
method, its contribution on the notion of hub and authority is important. PageR-
ank, on the other hand, is very practical and has pleasantly good precision in
locating users’ queries. It is author’s belief that in future contextual computing
will play an essential role in search engine. And we can expect that search engine
will be more ‘understanding’ to our queries.
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