
Efficiently Distributing Component-based Applications
Across Wide-Area Environments

Technical Report: TR2002-832

Deni Llambiri, Alexander Totok, and Vijay Karamcheti
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University, New York, NY, USA

{llambiri,totok,vijayk}@cs.nyu.edu

Abstract
Distribution and replication of network-accessible ap-

plications has been shown to be an effective approach for
delivering improved Quality of Service (QoS) to end users.
An orthogonal trend seen in current-day network services is
the use of component-based frameworks. Even though such
component-based applications are natural candidates for
distributed deployment, it is unclear if the design patterns
underlying component frameworks also enable efficient ser-
vice distribution in wide-area environments.

In this paper, we investigate application design rules and
their accompanying system-level support essential to a ben-
eficial and efficient service distribution process. Our study
targets the widely used Java 2 Enterprise Edition (J2EE)
component platform and two sample component-based ap-
plications: Java Pet Store and RUBiS.

Our results present strong experimental evidence that
component-based applications can be efficiently distributed
in wide-area environments, significantly improving QoS de-
livered to end users as compared to a centralized solu-
tion. Although current design patterns underlying compo-
nent frameworks are not always suitable, we identify a small
set of design rules for orchestrating interactions and man-
aging component state that together enable efficient distri-
bution. Futhermore, we show how enforcement of the iden-
tified design rules and automation of pattern implementa-
tion can be supported by container frameworks.

Keywords
Middleware, Component Frameworks, Internet Tech-

nologies, Wide Area Deployment, Application Design Pat-
terns, State Replication and Caching, E-commerce Applica-
tions

1 Introduction
The role of the Internet has undergone a transition from

simply being a data repository to one providing access to a

variety of sophisticated network-accessible services such as
e-mail, banking, on-line shopping, entertainment, and serv-
ing as a data exchange transport for applications utilizing
the emerging Web Services platform. With the rapid growth
of functional and implementation complexity of such ser-
vices, and driven by their increasing necessity to access dis-
tributed sources of data, network-accessible services are of-
ten realized as distributed applications.

Two major trends can be observed in common ways of
designing and deploying network-accessible services.

The first trend is the increasing popularity of
commercial-off-the-shelf (COTS) component middleware
as a platform for building distributed network-accessible
applications. Current-day industry standard component
frameworks, exemplified by OMG’s CORBA Component
Model [6], Sun Microsystems’ Java 2 Platform Enterprise
Edition (J2EE) [38] and Microsoft’s .NET [28] frameworks,
permit assembly of services from reusable components,
relying upon container environments to provide commonly
required support for naming, communication, security,
clustering, persistence, and distributed transactions. The
advantage of using component architectures is two-fold.
First, component frameworks provide an integrated envi-
ronment for component execution, as a result significantly
reducing the time it takes to design, implement, and
deploy systems. Second, a component model incorporates
“best practices” designs, providing developers withdesign
patterns, suggesting a standardized structure upon which
distributed component-based systems should be based.

The second trend in the design and utilization of
network-accessible services is, generally speaking, bringing
application data and data processingcloser to the clients.
This is being done in order to cope, on the network level,
with inherently bursty, unpredictable nature of Internet traf-
fic, especially in wide-area environments, and, on the appli-
cation level, with high-volume, widely varying, disparate
client workloads. Examples of this approach vary from

1

old-fashioned edgecaching of static content, to web con-
tent delivery using content-distribution networks [1], to sys-
tems such as Akamai’s EdgeSuite [13] and IBM’s Web-
Sphere [39], which offload part of the data processing from
web servers toedgeservers.

In this work, we try to combine these two natural trends
and explore the question of whether component-based ap-
plications can benefit from a distributed, edge deployment
in wide-area environments. Though nominally suitable for
deployment in distributed environments, component-based
applications are typically deployed only in a centralized
fashion in high-performance local area networks. In the rare
cases when these applications are distributed in wide-area
environments, the systems tend to be highly customized and
handcrafted.

The advantages of distributing and replicating compo-
nents across wide area environments are several. Cacheable
components can be positioned in edge nodes, effectively
bringing the service closer to clients, and thus improving
not only client perceived latency, but also overall service
availability since client requests can utilize several entry
points into the service. Furthermore, specific “hot” com-
ponents can be replicated and/or redeployed on-demand
in new physical nodes in response to higher client loads
or congested network links. Although component frame-
works offer mechanisms to enable distributed deployment
of components, significant challenges need to be addressed
before wide-area deployments of general applications be-
comes commonplace. The most basic challenge is: how
should component-based applications be engineered to en-
able efficient service distribution in heterogonous and high-
latency network settings?

In this paper, we answer this question by investigating
the application design rules and accompanying system-level
support required for a beneficial and efficient service distri-
bution process. This study targets the Java 2 Platform En-
terprise Edition (J2EE) component platform and two sample
applications that cover most aspects of the platform: Sun’s
Java Pet Store and Rice University’s RUBiS. We deploy
Java Pet Store and RUBiS in a fixed, simulated wide-area
environment, apply various design patterns and optimiza-
tions in an incremental fashion, and after each step measure
the performance of the application and draw conclusions
about the impact of the changes. Our approach focuses on
application-level design patternsandoptimizationsand is
orthogonal to other efforts that have looked at improving
container-level mechanisms such as RMI performance [20].

While the overall performance of a network-accessible
service usually depends on its component distribution and
combined client load, request response times observed by
clients also significantly depend onclient behavior, as dif-
ferent types of users tend to make different types of requests
and, as a consequence, different sets of service components
are involved in a request’s execution. In this paper, we intro-

duce the notion of aservice usage pattern, a frequently ex-
ecuted scenario of service invocation, which reflects typical
client behaviour. Considering different service usage pat-
terns, first, helps to identify, which groups of clients benefit
most from certain service distribution and replication, and
second, provides an application deployer with the knowl-
edge ofhowapplications should be distributed and/or repli-
cated, in order to beadaptedto the needs of certain client
groups.

Our results present strong experimental evidence that
component-based applications can be efficiently distributed
in wide-area environments using a small set of generally-
applicable design rules for orchestrating interactions and
managing component state. Moreover, we argue that the
burden of implementing some of the suggested functional-
ity could be shifted from application programmers to con-
tainer providers. Application deployers would need only
declaratively express the desired component behavior via
(extended) deployment descriptors; and the needed system
and application level components could be automatically
configured, instantiated and linked by container infrastruc-
tures.

Project Context The work presented in this paper is part
of a bigger research effort, theMutable Servicesproject,
that focuses on the construction of aflexible service dis-
tribution infrastructurefor component-based applications,
which permits different groups of clients to access the ser-
vice via differentaccess paths. Each of the access paths
represents a different deployment of the service’s compo-
nents to underlying physical nodes, enabling the associated
client group to receive differentiated service. Thus, the mu-
table services infrastructure permits a service to adapt to
a broad range of “unfriendly” system conditions, includ-
ing network congestion, bandwidth mismatches and high
latency between client and server locations, as well as node
and link failures.

The rest of the paper is organized as follows. Section 2
provides some background in component software technol-
ogy, Java 2 Enterprise Edition component platform, and the
Java Pet Store and RUBiS sample applications. Section 3
describes our testing methodology. Section 4 introduces
design patterns and optimizations one at a time and details
how they were applied to the test applications, and outlines
the impact of the changes by analyzing resulting perfor-
mance. Section 5 describes how the identified design rules
can be incorporated in component models and frameworks,
and discusses how some of the proposed functionality can
be automated by container environments. Related work is
discussed in Section 6 and we conclude in Section 7.

2

2 Background

2.1 Component Software and Component Frame-
works

Component software Traditional software development
can broadly be divided into two camps. At one extreme,
a project is developed entirely from scratch, with the help
of only programming tools and libraries. At the other ex-
treme, everything is “outsourced,” in other words, standard
software is bought and parameterized to provide a solution
that is “close enough” to what is needed.

The concept ofcomponent softwarerepresents the mid-
dle path, where an entire application isassembledfrom in-
dividual atomic components, developed by third parties. Al-
though each component is a standardized product, with all
the advantages that brings, the process of component as-
sembly allows the opportunity for significant customization,
thus avoiding the drawbacks of using standard monolitic
software applications. In addition, some individual com-
ponents can be custom-made to suit specific requirements
or to foster strategic advantages.

Component frameworks In its early days most of the em-
pasis in the development of component software was on
the construction of individual components and on the basic
“wiring” support of components, leading to specifications
such as Java RMI and COM/DCOM. It was highly unlikely
that components developed independently under such con-
ditions would be able to cooperate usefully.

Inception ofcomponent frameworkswas the most im-
portant step that lifted component software off the ground.
A component framework is a software system that sup-
ports components conforming to certain standards and al-
lows instances of these components to be “plugged” into
the component framework. The component framework es-
tablishes environmental conditions for the components and
regulates the interactions between them. This is usually
done throughcontainers, component holders, which often
also provide commonly required support for naming, secu-
rity, transactions, and persistence. Component frameworks
provide an integrated environment for component execu-
tion, as a result significantly reduce the effort it takes to
design, implement, deploy, and maintain applications. Cur-
rent day industry component framework standards are rep-
resented by Object Management Group’s CORBA Compo-
nent Model [6], Sun Microsystems’ Java 2 Platform Enter-
prise Edition (J2EE) [38] and Microsoft’s .NET [28], with
J2EE being currently the most popular and widely used
component framework in the enterprise arena.

The architecture of component-based systems is often
significantly more demanding than that of traditional mono-
litic integrated solutions. To make development of efficient
component-based applications a feasible task, a component
model incorporates “best practices” designs, and establishes
them as a “norm of life” through repeated reuse, by provid-
ing developers withdesign patterns, suggesting a standard-

ized structure upon which distributed component-based sys-
tems should be based.

2.2 J2EE, Java Pet Store, and RUBiS
Java Pet Store [34] is a best-practices sample application

from the Java Enterprise BluePrints program maintained by
Sun Microsystems. It represents a typical e-commerce ap-
plication. Customers can browse through a catalog of prod-
ucts, select items of interest and place them in a shopping
cart. Upon indicating readiness to buy what is in the shop-
ping cart, the application displays a bill detailing prices
and quantities. The customer can also create a permanent
account with the on-line shop, which includes billing and
shipping information. This paper refers to version 1.1.2 of
Java Pet Store.

RUBiS (Rice University Bidding System) [35] is an auc-
tion site prototype modeled after the popular e-commerce
web portal eBay.com [11]. RUBiS implements the core
functionality of an auction web site: selling, browsing and
bidding on items. Visitors can search through a catalog of
items devided into several categories and belonging to dif-
ferent geographical regions. They can bid on items of inter-
est, as well as put comments for other users. Users may also
choose to sell an item, registering it and specifying several
parameters, such as action duration, and initial, reserve and
buy-now prices. All non-browsing activities require cre-
ation of a permanent account with the web site and logging
in.

Java Pet Store aims at covering as much of the J2EE
component platform as possible in a relatively small appli-
cation. Its main focus is on design patterns and industry best
practices that promote code and design reuse, extensibil-
ity, modularity, ease of maintenance, isolation of develop-
ment tasks by skill sets, and decoupling of code-bases with
differing rates of change. RUBiS, on the contrary, uses a
small subset of J2EE technology, but it does so to efficiently
emulate the behavior of an existing e-commerce web site.
Therefore, together Java Pet Store and RUBiS represent a
big class of component-based applications already widely
employed in the industry. So we believe that conclusions
drawn in this paper are relevant not only to Pet Store and
RUBiS, but to a wide class of general purpose component-
based applications.

Java 2 Enterprise Edition Java Pet Store and RU-
BiS demonstrate the use of the most common types of
J2EE components, with a focus on Enterprise JavaBeans
(EJB) [15]. Generally speaking, J2EE components fall into
two main categories: stateless and stateful. Stateless com-
ponents are exemplified by (synchronous) stateless session
beans and (asynchronous) message-driven beans, and typi-
cally provide generic application-wide services. Since they
do not contain any state, the replication of stateless com-
ponents is rather straightforward. Stateful components can
be largely classified into two categories: those that hold
session state on a per-client basis, thus effectively acting

3

Table 1. EJBs in Java Pet Store.
EJB Name Description
Stateless Session Beans

Catalog Handles read-only queries to product database

Customer Serves as a façade to Order and Account

Stateful Session Beans

ShoppingCart Maintains list of items to be bought by customer

Sh.Cl.Contr. Manages model objects and processes events

Entity Beans

Inventory Records availability information for each item

SignOn Keeps userid/password information

Order Keeps order information

Account Keeps account information

as an extension of the client’s run-time environment on the
server-side, and components that represent shared state that
typically corresponds to the domain layer of the applica-
tion. In the J2EE realm, the first category is exemplified by
web components - servlets and JavaServer Pages (JSP) - that
hold HTTP session information, and stateful session beans
that offer improved scalability and transactional awareness,
whereas the second category consists of entity EJBs, or their
alternatives: direct Java Database Connectivity (JDBC) or
stored procedures, Java Data Objects (JDO) [23], and pro-
prietary Object/Relational mapping tools. Generally speak-
ing, session-oriented stateful components tend to be in-
memory objects, whereas shared stateful components are
transactional, persistent entities that are typically co-located
with database servers. Since stateful session components
are not shared they can be deployed in edge servers for bet-
ter locality. We discuss our approach for replicating shared
stateful components later in the paper.

Java Pet Store The fundamental design pattern used in
Java Pet Store is theModel-View-Controller(MVC) archi-
tecture [36], which decouples the application’s data struc-
ture, business logic, data presentation, and user interaction.

TheModelrepresents the structure of the data in the ap-
plication, as well as application-specific operations on those
data. Java Pet Store stores application state across three
tiers - Web, EJB, and Data. The Web tier uses servlet
HTTPSession and ServletContext objects as well
as JavaBeans accessed from JSP pages. In addition, the web
tier directly manages database connections. In the EJB tier,
state is maintained using stateful session beans and entity
beans, which implement business use cases, such as brows-
ing the catalog, manipulating the shopping cart, changing
the inventory, and others. The application also maintains
persistent product, inventory, account, and order data in a
relational database.

TheViewconsists of objects that deal with presentation
aspects of the application. The implementation of the View
in Java Pet Store is completely contained in the Web tier,
and is built on top of a reusable framework for web applica-
tions.

Web Tier EJB Tier Data Tier
EntitySession

Account
Order

Cart

Catalog

Inventory

Shopping Cart

Catalog

Account

Order

Inventory

account

 order
 orderstatus
 lineitem

 category
 product
 item

inventory

Customer

Figure 1. Pet Store component architecture.

The Controller translates user actions and inputs into
method calls on the Model, and selects the appropriate View
based on user preferences and Model state. In the Java Pet
Store application, the Controller is split between the Web
and EJB tiers.

The main relationships among the most accessed Java
Pet Store components are shown in Figure 1, and the most
relevant EJBs to our experiments are listed in Table 1. Other
middle tier components such asProfileMgr , Mailer ,
and AdminClientController were not used during
our tests. All entity beans in Pet Store 1.1.2 are imple-
mented using Bean Managed Persistence (BMP) since at
the time, Container-Managed Persistence (CMP) was not
standardized yet, and could have resulted in code that was
not portable across different application servers. Later ver-
sions of Pet Store (starting from 1.3) conform to the EJB
2.0 specification and take advantage of both CMP and local
interfaces.

RUBiS Originally RUBiS was developed at Rice Univer-
sity as part of a study investigating the combined effect
of application implementation methods, container design,
and efficiency of communication layers on the performance
scalability of J2EE applications in a LAN setting [7]. Sev-
eral implementations of the application were made, ranging
from a servlets-only implementation, to one utilizing ses-
sion and entity beans. Even in the most elaborate version
(a.k.a. Session Façadeconfiguration), which we took as a
baseline for our experiments, RUBiS is significantly lighter
weight than Java Pet Store.

The application design of this RUBiS version is rather
streamlined: for each type of web page there is a separate
servlet which, if necessary to generate the response HTML
page, invokes business method(s) on associated stateless
session bean(s), that in turn access related entity EJBs to
get application shared data, stored in the database. There-
fore the RUBiS component architecture is almost “linear”:
each servlet has reference(s) to dedicated stateless session
bean(s) only (almost always just one), which have refer-
ences to related entity beans only. The application does not
keep per-client session state, so it neither keeps any (HTTP
session) data in the Web tier, nor does it use stateful session
beans in the EJB tier. The application keeps shared persis-
tent data in the database and caches it in the entity beans.

4

Edge AS

Main AS

RDBMS

Remote
clients

Local
clients

WAN

LAN

LAN
Edge AS

LAN

Figure 2. Network configuration.

As a consequence of such a design, there is no notion of
“logged in” user-driven sessions in RUBiS, i.e., where the
client logs in and performs an arbitrary sequence of activi-
ties that do not require further authentication, and logs out
at the end of a session. In RUBiS, user authentication is
required before each essential non-browsing client activity
and covers only one such activity. Passing session and au-
thentication information between related HTTP requests is
implemented through hidden URL parameters.

Such a “minimal” design, however, turns RUBiS into a
high-performance application and allows it to achieve good
scalability, as seen in both the original RUBiS study [7] and
our tests (section 4).

3 Methodology
We deployed both test applications in a fixed, simulated

wide-area environment, and applied various design patterns
and optimizations in an incremental fashion. After each
step, we measured performance and drew conclusions on
the impact of the changes.

3.1 Network topology

Our network topology aims at capturing a simple scaled-
down wide-area distributed deployment of the test applica-
tions. Even though the testbed configuration may seem not
representative of actual WAN conditions, it is sufficient for
demonstrating the importance of using identified design pat-
terns and optimizations for efficient wide-area distribution
of component-based applications.

The system consists of three application servers
(JBoss 2.4.4 [22] bundled with Jetty 3.1.3 [24] web server
and JSP container, for the Java Pet Store tests; and
JBoss 3.0.3 with Jetty 4.1.0, for the RUBiS tests) and a sin-
gle database server (Oracle 8.1.7 Enterprise Edition), each
running on a dedicated 1GHz dual-processor Pentium III
workstation. For the RUBiS tests, we used a MySQL 4.0.12
database running on the same workstation as one of the ap-
plication servers. Preliminary tests showed that the database
never became a performance bottleneck. Putting database
on the same machine as the application server does not af-
fect performance of the latter, because database operation
rates produced by our tests were much lower than both

Table 2. Java Pet Store Browser session.
Page Functionality Requests

(%)

Main Serves as an entry point to the application 5%
Category Displays list of products associated with a

particular category
15%

Product Displays list of items associated with a par-
ticular product

30%

Item Displays details about an item, including
description, price, and the quantity in stock

45%

Search Displays list of products, whose names
match the specified search keyword(s)

5%

databases are designed to sustain. In all of the tests database
CPU consumption never exceeded 5%.

A wide-area network (WAN) separates the three applica-
tion servers. One of the application servers is located in the
same LAN as the database server (runs on the same work-
station, in the RUBiS tests), hence acting as themain server
of the system. Two other application servers act asedge
servers. In addition, 9 client machines were used to gen-
erate client load, three for each application server. Clients
machines are collocated with the corresponding server (sit-
ting on the same LAN), emulating client load coming from
users “close” to that server. The network topology was em-
ulated by connecting all of the above nodes using a soft-
ware router built with the Click modular router infrastruc-
ture; traffic shaping components were used to simulate 100
ms latency each way in the WAN links, with 100 Mbit/s
maximum combined network bandwidth (see Figure 2).

3.2 Service usage patterns
During preliminary testing of changes made to Java Pet

Store and RUBiS, we came to the conclusion, that while
overall performance of the application depended on its dis-
tribution and combined client load, response times observed
by clients also significantly depended onclient behavior, as
different types of users tend to access different web pages
and, as a consequence, different sets of service components
are involved in a request’s execution. In our subsequent
tests we divide all clients between two differentservice us-
age patterns: Browserand Buyer for Java Pet Store, and
Browserand Bidder for RUBiS. Intuitively, Browsercor-
responds toread-onlyactivities, whileBuyer/Bidderis in-
volved inread-writesessions.

Java Pet Store Browser This pattern represents a user that
merelybrowsesthe application web site in search of items
of interest or with no particular goal. This user neither logs
in, nor buys any products. A typical scenario for a browser
would consist of a (relatively long) sequence of accesses to
pages that present product-related information. During our
tests, we used Java Pet Store browser sessions consisting of
20 requests to the pages described in Table 2. Each session
is a logically organized sequence of requests starting with
theMain page. For example, a request of anItempage al-
ways goes after a request for aProductpage, such that the

5

Table 3. Java Pet Store Buyer session.
Page Functionality
Main Entry point to the application

Signin Prompts user to enter user ID and password

Verify Signin System authenticates submitted credentials

Shopping
Cart

Upon the user adding an item to the shopping cart,
the updated cart content is displayed

Checkout User initiates checkout process

Place Order User confirms the order

Billing and
Shipping

User confirms billing and shipping information

Commit
Order

User commits order; all necessary database updates
happen here

Signout User signs out

Table 4. RUBiS Browser session.
Page Functionality Requests

(%)

Main Static page; serves as an entry point to
the application

2.5%

Browse Static page; displays several browsing
options

2.5%

All Cate-
gories

Displays the list of available categories 2.5%

All Regions Displays the list of regions 2.5%
Region Displays the list of available categories

for a region
2.5%

Category Displays the list of available items in a
category

7.5%

Category &
Region

Displays the list of available items in a
category and a region

7.5%

Item Displays details about an item, such as
current price and number of bids

42.5%

Bids Displays the list of bids on an item 15%
User Info Displays public information about a

user, such as e-mail, current rating and
the list of user comments

15%

requested item belongs to the previously requested product.

Java Pet Store Buyer This pattern represents the behavior
of a client who already knows what to buy. A buyer logs in,
finds item(s) of interest, probably accessing a few product-
related pages, puts desired items into the shopping cart, and
checks them out. For the purpose of our tests, we organized
Java Pet Store buyer sessions as a sequence of pages em-
phasizing buyer’s essential activities: a buyer signs in, buys
an item, and signs out (see Table 3).

RUBiS Browser This pattern represents, as in Java Pet
Store, a user that merelybrowsesthe RUBiS web site and
never bids on items. Our tests use RUBiS browser sessions
of length 40, made up of individual page requests with the
weights shown in Table 4. Each session is a logically or-
ganized sequence of requests starting with theMain page.

RUBiS Bidder Unlike in Java Pet Store, where there is

Table 5. RUBiS Bidder session.
Page Functionality
Main Static page; serves as an entry point to the appli-

cation

Put Bid Auth Prompts bidder to enter User ID and password to
put bid on an item

Put Bid Form After verifying user credentials, system displays
the bidding form

Store Bid The bid is accepted and stored in the database

Put Comment
Auth

Prompts user to authenticate him/herself, to pro-
ceed with writing a comment

Put Comment
Form

After verifying user credentials, system displays
the form for writing a comment

Store Comment The comment is accepted and stored in the
database

only one type of“write” activity - buying an item, in RU-
BiS, a user canbid on an item andput a comment for an-
other user. For our tests, we organized RUBiS bidder ses-
sions as a sequence of pages emphasizing these activities:
bidder bids on an item and leaves a comment for the seller
of the item (see Table 5).

Considering differentservice usage patternsis essential
for accurate and meaningful performance measurement of
a distributed component-based application for several rea-
sons. First, it helps to identify, which groups of clients ben-
efit most from certain service distribution and replication.
Second, it provides application deployers with the knowl-
edge ofhowapplications should be distributed and/or repli-
cated, in order to beadaptedto the needs of certain client
groups.

3.3 Client simulation
Clients were divided betweenBrowsers and Buy-

ers/Bidders. Each client ran a session consisting of a se-
quence of web page requests with delays inserted after each
request to simulate user think time. We usedsoft delays
between successive page requests in a session, i.e. instead
of waiting a predefinedDELAYtime interval after receiv-
ing response from the previous request, the client waits for
only DELAY - response time . So effectivelyDELAY
becomes the time interval betweensendingrequests, which
allowed us to simulate steady client load independent of re-
sponse times.

Preliminary testing indicated that client response times
did not depend on the relative ratio of browsers and buy-
ers/bidders, but rather on the combined load coming from
all clients. In all of our tests, we use a combined client
load of 30 web page requests per second, coming from a
mixture of 80% browsers and 20% buyers/bidders, equally
divided between all client machines (10 HTTP requests per
second coming from each of the three client groups). Each
test lasted for approximately one hour, preceded by several
minutes of system “warm-up,” if needed.

Some of the application static content consists of 96 im-

6

ages totaling 318 KBytes in Java Pet Store, and 3 images (28
KBytes) in RUBiS. During our tests, we did not send HTTP
requests for these images, because in real-life environments
web browsers and proxies tend to successfully cache such
content.

3.4 Code modifications

Java Pet Store Java Pet Store was not designed as a per-
formance benchmark (ECPerf is the standard J2EE bench-
mark [12]) so we made several modifications that allowed
us to measure the performance of our browser and buyer
sessions. We increased the size of the database to allow
testing a greater number of concurrent users without con-
tention for the data. Specifically, we added five artificial
categories, 50 products and 300 items. We also removed
extra database requests and made changes to allow simul-
taneous database connections for users engaged in catalog
browsing. Most of these modifications have been applied
in another study [32]. Furthermore, we optimized all entity
beans so thatejbStore() does not go to the database
at the end of read-only transactions, and also removed an
excessive database call which was present inejbFind-
ByPrimaryKey() methods. These modifications were
aimed at providing a fair baseline for our experiments, and
were not intended to turn Java Pet Store into a high perfor-
mance application.

RUBiS As we already mentioned, RUBiS is a significantly
more lighter weight application than Java Pet Store, and
is already optimized to act as a performance benchmark.
Therefore we made minimal changes to this application,
mostly non-critical refactoring towards code unification and
simplification:

• Entity beans moved from CMP 1.1 to CMP 2.0.
• Database schema slightly changed to avoid less effi-

cient custom BMP queries. All queries were imple-
mented through CMP-rendered entity bean home find-
ers.

• Removed some unnecessary inter-component refer-
ences and invocations.

• Some code optimizations were made, e.g., introduced
static String fields instead of reading text from a
file each time HTML header and footer is generated
in servlets.

As in Java Pet Store, we increased the size of the database to
avoid data contention. We added 400 users from 20 regions,
selling 400 items belonging to 20 categories.

In this study, we are not interested on the impact that spe-
cific application servers, web servers, and database servers
(or combinations thereof) have on overall performance. Our
focus is on the impact that wide-area latencies have on client
response time. Hence, we keep a modest load throughout
all of our experiments, and do not overstress the servers.
Throughout the tests, the CPU utilization on the machines
running the JBoss/Jetty bundle never exceeded 40%.

4. Distributing Java Pet Store and RUBiS
Tables 6 and 7 show average response times per page

for the five Java Pet Store and RUBiS configurations de-
scribed below (for web page descriptions refer to Tables 2,
3, 4, and 5). Bothremote group of clients (connecting
to theedge servers) observed, as one would expect, prac-
tically equal response times, within a small error margin.
Bold numbers indicate significant changes in performance,
as compared to configurations appearing earlier in the table.

4.1 Centralized application
In the first experiment, we ran the centralized undis-

tributed version of Java Pet Store and RUBiS with the modi-
fications noted above. In this configuration, the main server
got all 30 HTTP requests per second, whereas the edge
servers were not used at all. This configuration represents
the low end of the distribution spectrum, where effectively
no distribution takes place. As seen in Tables 6 and 7, ac-
cessing the service from a WAN link incurs approximately
an extra 400 ms, which is due to two round trips: one for
TCP handshaking and another for the HTTP request (we did
not use keep-alive HTTP connections throughout our tests).

4.2 Remote façade
The centralized configuration suffers from two major

problems. First, the system does not utilize all its resources,
since the edge server is not being used at all. Second, HTTP
requests going to the main server from remote clients incur
significantly higher response times in comparison to local
client requests. Both of these problems can be addressed by
migrating part of the application components into the edge
server.

The second configuration in our experiments was ob-
tained by deploying all web components (JSPs and servlets)
and stateful session beans in all three servers. This con-
figuration addresses the problems of the previous central-
ized configuration by making better use of available re-
sources and also bringing some of the application compo-
nents closer to remote clients. However, wide-area HTTP
requests are now substituted by possibly multiple wide-area
inter-component RMI calls.

In addition to contributing to less maintainable, less
reusable, and tightly coupled code, repeated fine-grained in-
vocations of core components, such as entity EJBs, from
front-end components (web layer) add the overhead of mul-
tiple network calls, and reduce concurrency at the server-
side, since transactions are effectively taking longer to com-
plete. A superior alternative is to wrap the domain model,
typically implemented as a collection of possibly related en-
tity beans, with a new thin layer offaçade objects[27, 10].
Clients, that have access only to the façade, can delegate
the execution of use cases in just one network call to the re-
mote façade, which in turn can perform multiple local calls
needed to execute the use case against co-located domain
objects. Besides reducing the number of remote method

7

Table 6. Average response times (in ms) for five Pet Store configurations.
Client Browser Buyer

Configuration Page M
a

in

C
a

te
g

P
ro

d

It
e

m

S
e

a
rc

h

M
a

in

S
/in

V
e

ri
f

C
a

rt

C
h

/o
u

t

P
l.O

r.

B
ill

C
o

m
m

it

S
/o

u
t

Centralized Pet Store Local 87 95 94 88 106 98 78 89 120 76 70 70 158 90
(section 4.1) Remote 488 492 492 486 496 489 480 482 658 477 646 482 708 447

Remote façade Local 64 78 80 72 82 61 52 63 85 54 51 54 134 54
(section 4.2) Remote 72 387 389 373 384 60 54 630 407 61 57 61 500 63

Stateful component Local 55 82 84 55 77 60 51 65 77 53 50 55 584 54
caching (section 4.3) Remote 55 394 390 57 393 68 52 629 80 50 49 53 950 62

Query caching Local 56 50 51 54 87 58 51 61 70 50 50 54 614 52
(section 4.4) Remote 55 51 51 55 481 61 49 638 69 51 52 53 966 54

Asynchronous updates Local 61 54 53 57 92 61 53 64 75 53 53 56 195 56
(section 4.5) Remote 59 51 53 58 459 59 48 632 69 50 50 50 536 52

invocations, the façade provides a single entry point into
the domain model, enabling improved transactional and se-
curity control. The pattern does not suggest a singleton
façade responsible for the entire application; instead, multi-
ple façade objects should be created to serve collections of
related use cases.

We discuss in more detail below, the modifications that
were made to the test applications.

Java Pet Store Pet Store uses stateful session beans
(ShoppingCart and ShoppingClientControl-
ler). Together with web comonents they were deployed in
all three servers. In the original Pet Store,Category, Prod-
uct, Item andSearchpages present product information to
end users, retrieving information from the Product database
directly via JDBC. The lifecycle of opening, managing, and
properly recycling database connections, as well as travers-
ing query results demands verbose communication with the
database server, resulting in overwhelmingly degraded per-
formance when the web tier and database are separated by a
high-latency network. Generally, such scenarios can be eas-
ily avoided by directing client requests to a façade that is co-
located with the database server. In our case, we substituted
all direct database accesses from the web layer with calls
to theCatalog bean that served as a façade. Furthermore,
for all the pages used in our experiments, we rewrote the ap-
plication code so that every page included in the experiment
incurs no more than one RMI call to shared components.
The only exception is theVerify Signinpage, which makes
two RMI calls, one to create aCustomer session bean for
the customer that logged in, and another for retrieving the
customer’s profile for future use.

To further reduce the number of remote method invo-
cations, we used the façade pattern in conjunction with
caching of home and remote RMI stubs. Home stubs were
always cached to avoid unnecessary trips to the local JNDI
tree (EJBHomeFactorydesign pattern [27]). In the case of
stateless remote façades, remote stubs were pooled as well

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)
WAN

Edge Server Main Server

RDBMS

JD
BC

Figure 3. Remote Façade.

in the client side to avoid the penalty incurred by the RMI
call that initially creates the remote stub.

Figure 3 illustrates an example of the use of the façade
pattern for Pet Store (for brevity, in the rest of the paper, we
will show such examples only for the Java Pet Store appli-
cation).

RUBiS RUBiS does not use stateful session beans, so only
web components were deployed in the edge servers. RUBiS
required fewer code modifications because it already em-
ployedSession Façade design pattern, as manifested
in the name of the RUBiS version, that we took for our
experiments. Execution of use cases is delegated by web
components to the façade session beans, collocated with the
entity beans. We only made sure that there is only one RMI
call from the web layer to the EJB layer in every servlet web
page generation method. Most changes were done to im-
plement theEJBHomeFactorydesign pattern. Servlets now
cached remote stubs of stateless session beans, while the
latter cached home stubs of related entity beans, to reduce
unnecessary lookups in the JNDI tree of the main server.

Average client response times for this configuration for
the two applications are shown in Tables 6 and 7. Several
points stand out from the measurements of this configura-
tion:

• Many pages (HTTP requests) can be served com-

8

Table 7. Average response times (in ms) for five RUBiS configurations.

C
l. Browser Bidder

C
on

fig
ur

at
io

n

P
ag

e1

M
a

in

B
ro

w
se

A
ll

C
a

te
g

A
ll

R
e

g
io

n
s

R
e

g
io

n

C
a

te
g

o
ry

C
a

te
g

&
R

e
g

It
e

m

B
id

s

U
se

r
In

fo

M
a

in

P
u

t
B

id
A

u
th

P
u

t
B

id
F

o
rm

S
to

re
B

id

P
u

t
C

o
m

m
A

u
th

P
u

t
C

o
m

m
F

o
rm

S
to

re
C

o
m

m
e

n
t

Centr. L 14 12 33 26 35 43 21 27 40 43 12 13 32 36 13 25 35
RUBiS R 421 414 434 438 434 649 426 430 446 452 419 419 439 437 414 432 432

Remote L 10 11 27 30 34 35 19 24 35 34 10 13 30 30 14 26 30
façade R 4 3 424 407 399 499 265 275 300 379 4 3 408 284 3 284 282

St. comp. L 13 16 29 32 39 38 23 19 30 31 10 15 23 372 14 22 377
caching R 3 3 423 463 435 526 279 7 323 404 4 4 450 680 4 303 628

Query L 9 12 12 15 17 16 12 15 16 16 9 10 15 377 9 16 374
caching R 5 4 7 7 7 6 5 8 8 8 3 3 7 798 3 6 729

Async. L 12 12 9 9 11 13 13 14 15 15 10 15 15 32 9 10 34
updates R 4 5 9 7 6 6 4 7 10 10 5 4 9 421 4 12 419

pletely using only session information stored in the
edge server. This is particularly prominent in the case
of the Pet Store buyer, whereby six out of nine page
requests can be served locally.

• If serving a page request from a remote client re-
quires going to the main server, a wide-area HTTP re-
quest in this configuration is substituted by one inter-
component RMI call. In this case the façade design
pattern does not itself significantly improve request re-
sponse time, but it makes it minimal, keeping the num-
ber of wide-area RMI calls as small as possible.

• RMI can require more than one round trip for a sin-
gle method invocation. It has already been pointed out
that these shortcomings are mainly due to ping pack-
ets and distributed garbage collection [5]. Generally
speaking, the benefits of the façade pattern are slightly
diminished since RMI can incur more than one round
trip per method invocation.

• The response times of local clients went down due to
better load distribution.

4.3 Stateful component caching
In the previous configuration, all session-oriented state-

ful components were deployed in both servers, improving
locality and load distribution. However, pages that trig-
ger invocations on shared stateful components did not gain
much benefit from this approach. In the third configuration,
we turned our attention to these shared stateful components,
exemplified in J2EE by entity EJBs and relational database
sources.

Our experience suggests that entity beans are excellent
at handling heavy, concurrent transactional access, but they

1L – local client;R – remote client.

can be quite inefficient when used as data caches. As a mat-
ter of fact, this is clearly manifested in the lifecycle and
transactional management specifications of entity beans,
and it simply reflects design choices made by the EJB ar-
chitects. However, data locality is critical when it comes to
efficient wide-area service partitioning. Fortunately, entity
beans can be easily transformed into data caches by minor
modifications to their lifecycle definition. As a matter of
fact, most application server vendors already support some
form of read-only entity beans with a timeout invalidation
mechanism, and in some cases they also support a program-
matic invalidation interface. Also, according to the EJB 2.0.
specification [15], plans are under way to include some fla-
vor of read-only entity beans as part of the standard.

Common to all the current approaches for updating read-
only beans is that, upon invalidation, the read-only bean re-
freshes itself with the database using a pull protocol. This
approach works well in a local-area setting, where the read-
only bean communication overhead with the database is
negligible, but as stated earlier, it results in unacceptable
performance in the wide-area. To avoid opening and main-
taining remote database connections, read-only beans can
efficiently refresh their content by querying a remote façade
upon the first business method call after the invalidation.
Another approach would be topush the updated stateto
read-only beans as a parameter of the invalidation call. This
push-based scheme has the major advantage that clients
of read-only beans will always have local response times,
which is not the case with the pull-based approach. At first
sight, it might seem that since the push-based scheme is
not demand-driven, it can result in sending superfluous up-
dates. However, the number of RMI calls is the same in both
cases, because the invalidation call has to be made anyway.
In the push-based scheme, more data is being transferred,

9

but this is a small price to pay for significantly improving
the response time of remote clients. Furthermore, several
simple and effective optimizations can be applied, such as:
transferring only the changes instead of the entire bean’s
state (i.e., fields that were modified), and compressing large
fields for better bandwidth utilization. Moreover, in most
cases the bandwidth problem is immaterial, since more than
half of the data traffic incurred by RMI is due to distributed
garbage collection [5].

The above insights can be materialized in a version of
the so-calledRead-Mostly Pattern[25, 40] where transac-
tional operations are sent to the read-write version of the
bean, which is typically co-located with the data source;
non-transactional read operations are handled locally by the
read-only cache. In addition, upon write operations, the
read-write components push the updates across the wide-
area to the edge read-only beans. In this configuration we
strive for zero staleness: read-write entity beans block while
the update is pushed to the read-only beans, hence a read
operation that arrives after a previous write has committed,
will always read the correct value.

Java Pet Store The following changes were made to Java
Pet Store in addition to the last façade configuration:
• Three new read-write entity beans were introduced:

Category , Product , and Item . These beans
implement functionality that was previously handled
by the Catalog bean, which accessed the product
database directly via JDBC.

• Read-only versions ofCategory , Product , Item ,
andInventory beans were introduced.

• A blocking push-based update mechanism was imple-
mented between read-write beans and their read-only
counterparts. The updates make use of a remote façade
so that each update incurs only one RMI call.

• TheCatalog bean delegates to the newly introduced
entity beans.

• The read-only beans and theCatalog bean were also
deployed on the edge servers. The edgeCatalog
bean also has a reference to the centralCatalog
bean. If a request that comes to the edgeCatalog
bean cannot be served locally by delegating to the
read-only beans, it will be dispatched to the central
Catalog bean, which is co-located with the database.
For example, aggregate queries are always delegated to
the centralCatalog bean since they need to be exe-
cuted in the database server.

RUBiS The following modifications, analogous to those of
Java Pet Store, were made to RUBiS:
• Read-only BMP versions ofItem and User beans

were introduced.
• A blocking push-based update mechanism was imple-

mented for read-only beans. The updates make use of
a remote façade to ensure that each update makes only
one RMI call.

Edge Server

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)

WAN

Main Server

RDBMS

JD
B

C

Catalog
<<SessionEJB>>

(Facade)

ItemRO
<<EntityEJB>>

ItemRO
<<EntityEJB>>

Updater
<<SessionEJB>>

(Facade)

Updater
<<SessionEJB>>

(Facade)

ItemRW
<<EntityEJB>>

CM
P

WAN

Figure 4. Stateful Component Caching.

• The read-only beans andSB ViewBidHistory ,
SB ViewItem , and SB ViewUserInfo façade
stateless session beans were also deployed on the edge
servers.

Figure 4 shows a partial snapshot of the new component
graph for Java Pet Store. Due to space limitations, the fig-
ure illustrates the read-mostly pattern only forItem EJB.
Average response times for this configuration are shown in
Tables 6 and 7. Several conclusions can be drawn from the
measurements of this configuration:

• Zero staleness for browsers comes at a performance
price for buyers/bidders, since they have to block while
the updates are being pushed across the wide-area to
the edge servers. More specifically, in Java Pet Store,
the Commit page of the buyer session updates the
Inventory bean and hence the response time for this
page is significantly higher than in the previous config-
uration for both local and remote buyers. The same ef-
fect is seen for theStore BidandStore Commentpages
of the RUBiS bidder session.

• Even though the Pet Store buyer response time for the
Commitpage is higher, the overall average is not af-
fected so much since the buyer’sShopping Cartpage
can be served locally due to the newly introduced read-
only beans. In contrast, the RUBiS bidder average
response time increased, because the bidder does not
benefit from read-only beans, but needs to block on
theStore BidandStore Commentpages.

• The Item page of both Pet Store and RUBiS browser
sessions makes full use of read-only entity beans and
so has local response time, but the other pages still
need to go to the main server to execute aggregate SQL
queries.

• The response time for the Pet Store and RUBiSItem
page is slightly improved for the local browser due to
read-only bean caching versus database access.

10

4.4 Query caching

Entity bean instances typically correspond to rows in a
database table, implying that aggregate queries can only be
executed by a relational database system. The root of the
problem is the well-known incompatibility (impedance mis-
match) between object-oriented languages and SQL. In Java
Pet Store and RUBiS, as in most web-based e-commerce
applications, aggregate queries constitute a large part of ap-
plication data retrievals, and hencecaching of query results
in edge servers can further reduce the number of remote
method invocations to components that are co-located with
centralized database servers. The benefits of caching query
results in a local scale are less important because modern
database servers are typically equipped with sophisticated
query caching mechanisms, and possess all the information
needed to make optimal caching decisions.

A general problem with caching query results is deter-
mining which queries are affected by changes that occur to
the database. This is a well-researched problem [9, 37] and
we do not make any contribution to this field, nor try to in-
corporate any advanced query caching techniques in our ex-
periments. Our focus is on the benefits of caching aggregate
SQL query results at edge servers to avoid expensive trips to
remote data centers. The identification of invalidating oper-
ations can be left to application developers, and it should be
possibly specified via deployment descriptors. A straight-
forward implementation would be to use a demand-driven,
pull-based update mechanism, whereby upon receiving the
first read request after invalidation, the query cache manager
gets the latest updates by re-executing the query in the re-
mote database. Alternatively, a push-based protocol can be
used that eagerly sends updates to the query cache manager.
This scheme has the following benefits over the pull-based
approach: (1) query readers are not penalized, because they
never trigger requests to the remote database; (2) updates
are typically small (usually involving single rows), hence
making it easier to propagate only partial information [9]
instead of resending the entire query result, effectively re-
ducing bandwidth consumption.

Java Pet Store We cache the results of two queries in the
Java Pet Store application: the set of products for a given
category, and the set of items belonging to a given product.
These queries are heavily used by theCategoryandProd-
uct pages of the browser session, and hence caching them
in the edge server avoids remote method invocations to the
main server. The query result cache was incorporated in
theCatalog bean. This incorporation conforms with the
EJB specification, because query cache issoft state, which
is allowed to be kept in stateless session beans. For simplic-
ity, we implemented the pull-based update mechanism for
caching query results. However, the impact of invalidations
is not visible in our test results, because the catalog of Java
Pet Store is read-only.

RUBiS We implemented caching of all queries involved

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)

WAN

Edge Server Main Server

RDBMSJD
B

C

Catalog
<<SessionEJB>>

(Facade)
Query Cache

Manager

Updater
<<SessionEJB>>

(Facade)

Updater
<<SessionEJB>>

(Facade)

ItemRW
<<EntityEJB>> CM

P

WAN

Query Cache
Manager

Figure 5. Query Caching.

in the processing of all requests in our browser and bid-
ders sessions. The query result caches were naturally in-
corporated in those stateless session beans that make corre-
sponding finder method invocations (queries) on entity bean
home interfaces. A push-based query update mechanism
was implemented, and it makes use of theremote façadede-
sign pattern, namely updates to read-only beans and query
caches are made in one bulk RMI call from the main server.

Figure 5 shows relevant components deployed on the
main and edge servers, for the Java Pet Store application.
Average response times for this configuration are shown in
Tables 6 and 7. The following observations can be made
from the measurements of this configuration:

• As expected, query result caching lowers both Pet
Store and RUBiS remote browser response times. This
is especially seen in the triumphal performance of RU-
BiS remote browser, now indistinguishable from the
local browser. Also query caching has a local affect,
since it reduces required database accesses.

• The Java Pet StoreSearchpage performs a keyword
query, which is not cached, and hence it still incurs the
cost of the remote call to the database façade.

• Pet Store buyer’s and RUBiS bidder’s performance
does not improve because they still block on updates.

4.5 Asynchronous updates
Achieving zero staleness for browsers penalizes the

buyer/bidder, who blocks while the update is propagated
across the wide-area to the edge read-only beans. This ap-
proach also suffers from severe scalability issues, since the
response time for write operations is proportional to the
number of individual fine-grained updates triggered by a
single façade call. As a matter of fact, this is the case with
the Pet Store buyer’sCommit Orderpage, which causes
writes to theInventory EJB for each item in the user’s
shopping cart. This negative effect is not noticeable in our
test results, because we never put more than one item in the
shopping cart.

11

Edge Server

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

product.jsp
productdetails.jsp

CatalogWebImpl
<<JavaBean>>

Catalog
<<SessionEJB>>

(Facade)
WAN

Main Server

RDBMS

JDBC
Catalog

<<SessionEJB>>
(Facade)

ItemRO
<<EntityEJB>>

ItemRO
<<EntityEJB>>

UpdateSubscriber
<<MDB>>
(Facade)

UpdateSubscriber
<<MDB>>
(Facade)

ItemRW
<<EntityEJB>>

C
M

P

UpdatePublisher
Updates

Topic
publish()

JMS Provider

onMessage()onMessage()

Remote
JMS

Provider
WAN

Figure 6. Asynchronous Updates.

Pushing updates in anasynchronousfashion eliminates
this performance bottleneck. Upon transaction commit, up-
dates are asynchronously pushed across the wide-area to the
edge read-only components. But is the staleness of asyn-
chronous updates acceptable? Read-only beans and aggre-
gate SQL query results typically contain data that is con-
sumed by the web tier and displayed to the user in a tabular
format. Even if the web tier components obtained this data
from the transactional read-write version of the bean or the
database, the information will likely be stale due to the in-
curred communication overhead, user think time, and other
concurrent server activity. However, there could be a prob-
lem if a client initiates a server-side update based on data
that it has read in a previous transaction, since the update
may be based on stale data. In such cases where a use case
can span multiple transactions, it is the responsibility of the
application developer to ensure that the data used to update
the server is not stale (the “version number” design pattern
can be used to handle such scenarios [27]). In a sense, the
staleness of shared presentation data is unavoidable, and the
asynchronous updates design optimization takes advantage
of this fact to significantly improve response times.

The only change from the last configuration was to sub-
stitute the synchronous update façade with an asynchronous
message-driven bean (MDB) façade that propagates updates
to both read-only beans and query caches. The read-write
beans publish their updates in a local topic, where multiple
edge cache updaters are subscribed. This approach com-
pletely avoids the blocking problem and its scalability is
limited only by the messaging middleware.

Figure 6 shows a partial snapshot of the Java Pet Store
component graph. Average response times for this configu-
ration are shown in Tables 6 and 7. Some remarks about the
numbers follow:

• The most noticeable impact of asynchronous updates
as compared to the previous configuration is improved

0

100

200

300

400

500

600

Local Browser Local Buyer Remote Browser Remote Buyer

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 (

m
s
)

Centralized Pet Store

Remote Façade

Stateful Component Caching

Query Caching

Asynchronous Updates

Figure 7. Java Pet Store session average re-
sponse times.

Pet Store buyer and RUBiS bidder response times.
• The remote buyer/bidder still incurs wide-area laten-

cies in some of the pages since it requires read-write
access to shared components residing in the main
server.

4.6 Summary
Figures 7 and 8 summarize the results obtained from our

tests. The last configuration achieves the best overall perfor-
mance and scalability by accumulating all improvements.
Thefaçadepattern avoids unnecessary remote method invo-
cations and implicitly defines the optimal application parti-
tioning granularity. The use of this pattern is required if
communicating components are separated by a wide-area
network, regardless of the nature of user requests served by
these components.Read-only entity beansandquery caches
deployed in edge servers absorb the load generated by re-
mote clients and save expensive trips to centralized data
centers. Asynchronous propagation of updatesachieves
scalability and guarantees that updaters are not penalized
by blocking on write operations.

The overall effect of applied design patterns and opti-
mizations is two-fold. First and foremost, remote clients
are almost completely insulated from wide-area effects. In
the few cases when remote clients incur wide-area inter-
component RMI calls, the communication overhead is as
small as possible due to the façade pattern. Secondly, both
local and remote clients experience improved performance
due to aggressive caching of stateful components. Both
these effects validate the current trend towards distributed
deployment of network-accessible applications.

5 Design Rules Enforcement and Pattern Im-
plementation Automation

One of the major advantages of component-based devel-
opment is the incorporation of “best-practices” design pat-
terns as part of the component model, which“forces” the

12

0

50

100

150

200

250

300

350

400

450

500

Local Browser Local Bidder Remote Browser Remote Bidder

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)
Centralized RUBiS

Remote Façade

Stateful Component Caching

Query Caching

Asynchronous Updates

Figure 8. RUBiS session average response
times.

adaptation of proven and effective design techniques. In
this section we make several recommendations for incorpo-
rating the design rules and automating implementation of
the design patterns that we applied to Java Pet Store and
RUBiS.

Design Rules Enforcement An underlying theme of all
the design rules advocated by this paper is to reduce com-
munication overhead imposed by high-latency networks.
The most important pattern available to designers and de-
velopers of distributed systems is the façade pattern, which
minimizes superfluous remote calls between the edge and
core tiers. Current-day systems employ various flavors of
the façade pattern, such as:synchronous(implemented as
session beans),asynchronous(implemented as message-
driven beans). Based on careful analysis of the application
requirements, developers should choose the most appropri-
ate flavor of the façade pattern for the scenario at hand, as
long as use cases that span several domain objects or other
server-side resources are performed on behalf of the clients
in one bulk remote call. Generally, the collection of a façade
and its co-located, logically related domain entities consti-
tutes the optimal partitioning granularity effectively serving
as aunit of distribution.

An effective way to promote and enforce the use of the
façade pattern is to define façades as the only components
that can be invoked by remote clients. Furthermore, all
other components have only local interfaces (as in EJB 2.0)
so that they can never be invoked remotely. If the compo-
nent model enforces this recommendation, web (edge) tier
components can never access core shared stateful compo-
nents directly, which is a practice that leads to expensive
unnecessary remote calls.

Pattern Implementation Automation Whereas the cor-
rect implementation of the façade pattern largely remains
the responsibility of developers, container environments can
and should automate transparent caching of stateful shared
components. The system infrastructure for this purpose

should consist of (1)extended deployment descriptorsspec-
ification and (2)general and flexible container environ-
mentssupporting this specification and implementing its
functionality.

Let us revisit the example of read-only entity beans opti-
mization (read-mostly design pattern, section 4.3). The ex-
tended deployment descriptor of an entity bean should spec-
ify whether the bean is deployed inread-writeor read-only
mode. In the latter case, the deployment descriptor should
identify the updater read-write bean and the method of up-
date (synchronous vs. asynchronous). Any application-
specific relaxed consistency parameters [41] should also go
here. The container infrastructure in turn should transpar-
ently link the read-write entity bean containers with the
corresponding read-only containers to enable propagation
of updates. As a result of this automation, developers are
freed from implementing tricky update mechanisms that re-
quire the deployment of additional auxiliary components
such as message-driven beans and JMS topics (Section 4.5).
Another advantage of this approach is that it allows flex-
ible demand-driven (re)deployment of additional read-only
beans in response to changing environment conditions, such
as higher client loads.

The caching of query results can also be automated by
container infrastructures. Currently, EJB containers do not
support query caching, as that is typically left to database
servers. Even though it is natural to let the database
server transparently handle query caching, this approach
does not improve data locality across wide-area environ-
ments. The problem is exacerbated due to the so-called
“n+1 database calls problem” [27], which reflects the fact
that with BMP and certain CMP implementations, execut-
ing a single aggregate query that returnsn rows could re-
quire n+1 database calls. Due to the unacceptable in-
curred overhead caused by impedance mismatch issues, it
is desirable to have separate containers for handling read-
only aggregate queries. These containers should handle
query result caching and invalidation transparently using
application-specific information from extended deployment
descriptors. This information should identify the queries
to be cached and the invalidation mechanism. Moreover,
operations (of possibly other components) that cause query
result invalidations/updates should be specified as well.

Container support for query caching in J2EE is simpli-
fied with the introduction ofEJB Query Language(EJB
QL) in EJB Version 2.0. EJB QL is an SQL-like query
specification language for the finder methods of entity beans
with CMP. In the deployment descriptor, an application de-
veloper specifies the query structure in an abstract fashion
using EJB QL, and the actual SQL code is generated by
the EJB container. This opens us the immediate possibility
for CMP containers to perform smart query caching, as the
data structure of queries and corresponding entity beans is
explicitly exposed to the container.

13

Placing containers caching read-only queries in edge
servers can reduce the number of remote method invoca-
tions whose sole purpose is to reach centralized database
servers. Our experiments with Java Pet Store and RUBiS
show that even straightforward, non-optimized caching of a
few “hot” queries can make a noticeable impact on overall
application performance.

6 Discussion and Related Work
As seen from Tables 6 and 7, even in the last Pet Store

and RUBiS configurations, which achieve the best over-
all performance by accumulating all improvements, trans-
actional operations coming from remote clients still incur
wide-area latencies, because they have to access the main
database server. Highly customized aggregate queries (such
as keyword searches in Java Pet Store) also end up being
executed in the database server, since their caching is typi-
cally ineffective. Both of these problems can be alleviated
by orthogonal techniques that involve database partitioning
and replication [2]. However, the main focus of this paper
is onlightweighttechniques for application partitioning and
replication. In particular, unlike database replication, state-
ful component instantiation and (re)deployment can be done
on-demand at run-time.

In this paper we took Java Pet Store and RUBiS as exam-
ples of component-based applications and showed that they
can be efficiently distributed in wide-area environments.
Even though we focused only on two sample applications,
and our conclusions, at first glance, may seem somewhat
application specific, they are, actually, applicable to a wide
class of general purpose component-based applications. We
believe so, because Java Pet Store aims at covering as much
of the J2EE component platform as possible and focuses
on presenting design patterns and industry best practices
of building J2EE component applications, while RUBiS is
modelled after an existing popular e-commerce web site.
So the vast majority of current-day component-based ap-
plications share in some way, their architectural design and
functional organization with Java Pet Store or RUBiS.

Despite this study’s focus on commercial applications,
the identified application design rules are of equal impor-
tance for interactive scientific grid-based applications. Typ-
ical applications in the latter camp show several of the
same characteristics as commercial component-based ap-
plications, consisting of client-side remote instrumentation
and visualization components, server-side data processing
components, and back-end distributed repositories storing
structured data. Ongoing efforts to integrate grid service
frameworks with commercial web services standards, ex-
emplified by the open grid-services architecture (OGSA)
initiative [30], indicate strong support for this emerging
trend.

Although this paper has focused on the static deployment
of component-based distributed applications, our long-term
goal is to enabledynamic demand-drivendeployment of

application components in response to changing environ-
ment conditions (load shifts, congested links, client behav-
ior, and others). Existing component frameworks such as
J2EE [38] and Microsoft .NET [28], and grid-service ar-
chitectures such as Globus [17] and Legion [29] provide
support for seamless interaction among distributed compo-
nents, but as we have shown, do not offer much guidance on
how to construct adaptive applications. Our work addresses
this shortcoming by identifying common design rules yield-
ing good wide-area performance for such applications.

The identified design rules themselves are related to pre-
vious work in three categories: application-level overlay
networks, state replication in wide-area environments, and
distributed grid steering and remote visualization applica-
tions.

Application-level overlay networks Systems such as
Overcast [21] and RON [3] have demonstrated the util-
ity of application-level overlay networks for coping with
the unpredictable characteristics of wide-area networks in
the context of continuous media delivery and general traf-
fic routing respectively. Similar benefits have also been
achieved for web content delivery using content-distribution
networks [1]. Systems such as Akamai’s EdgeSuite [13]
and IBM’s WebSphere [39] extend the latter to offload part
of the processing from web servers toedgeservers, re-
lying upon emerging specifications such as ESI [16] and
OPES [31]. Our work uses a similar notion ofedgecontain-
ers to perform application processing closer to the clients
thereby potentially offering performance insulated from
the characteristics of wide-area environments. However,
in contrast to the application-specific solutions described
above, our approach is applicable to a large set of general
applications built using standard component frameworks.

State replication in wide-area environments Our identi-
fied design rules rely on efficient replication of application
components to improvedata localityandresponsivenessfor
end users. Such replication appears similar, at first look,
to the replication of stateful components already performed
in current-day enterprise systems such as J2EE application
servers (where stateful session EJBs are replicated). How-
ever, the latter is primarily done in a local scale forfailover
purposes, the application servers involved in the replication
are tightly clustered together, and low-level LAN-specific
mechanisms such as IP broadcast, are used to synchronize
among the replicas. Such tightly-coupled approaches do not
scale to wide-area environments, which requires scalable
and efficient mechanisms for inter-component synchroniza-
tion. In this regard, the design rules explored in our pa-
per are more related to (and can leverage) other work on
state replication in wide-area systems, examples of which
include Bayou [33], which proposes an anti-entropy pro-
tocol for flexible update propagation between weekly con-
sistent storage replicas, and TACT [41], which investigates
tradeoffs between consistency, performance and availability

14

of replicated services.

Distributed grid steering and remote visualization
applications Our work is also related to efforts support-
ing distributed grid steering and remote visualization appli-
cations, which allow remote clients to interact with grid ap-
plications across high-latency, low-bandwidth network con-
nections by introducing application-specific wrappers capa-
ble of caching and distilling data produced by the applica-
tion. In contrast to such systems, examples of which include
Active Frames [26], Active Streams [4], and MOSS [14],
our work represents a more general application and adapta-
tion model. Adaptation is achieved by partitioning existing
application functionality across multiple wide-area contain-
ers as opposed to introducing new bridging components.

This paper extends ongoing efforts in our research group
investigating application-neutral techniques for building
adaptable general-purpose component-based distributed ap-
plications. Three of our previous systems — Application
Tunability [8], CANS [18], and Partitionable Services [19]
— have looked at introducing adaptation functionality at
the intra-component level, at the level of data streams flow-
ing between static application components, and at the inter-
component level. The approach outlined in this paper falls
into the third category above, but differs in attempting to
realize adaptation without requiring modification of appli-
cation components by instead relying upon additional func-
tionality in container environments and general-purpose
auxillary system components.

7 Conclusion

Two major trends can be observed in common ways
of designing and deploying current day network-accessible
services. The first is an increasing popularity of
commercial-off-the-shelf (COTS) component middleware
as a platform for building distributed network-accessible ap-
plications. The second trend is in bringing application data
and data processing closer to the clients, in order to cope,
on the network level, with inherently bursty, unpredictable
nature of Internet traffic, especially in wide-area environ-
ments, and, on the application level, with high-volume,
widely varying, disparate client workloads.

In this paper, we have tried to combine these two nat-
ural approaches and addressed the question of whether
component-based applications can be efficiently distributed
and replicated in wide-area environments to improve the
quality of service delivered to end users. In particular,
we have investigated application design rules and their ac-
companying system-level support essential to a beneficial
and efficient service distribution process. We applied vari-
ous design patterns and optimizations to the Java Pet Store
and RUBiS sample applications in an incremental fashion,
showing performance improvements and drawing conclu-
sions after each step. Our test results present strong ex-
perimental evidence that component-based applications can

be efficiently distributed in wide-area environments. More
specifically, applications whose typical user sessions do not
require heavy transactional access to centralized data and
involve user think time can be engineered so that the cost
of remote service accesses is absorbed by edge deployment
of stateful session components and shared non-transactional
caches.

Finally, we argue that the burden of implementing some
of the suggested functionality could be shifted from appli-
cation programmers to container providers. With this sup-
port, application deployers need only declaratively express
desired component behavior via generalized (extended) de-
ployment descriptors, and needed system-level and applica-
tion level components could be automatically instantiated,
linked and configured by containers.

Acknowledgments
This research was sponsored by DARPA agreements

N66001-00-1-8920 and N66001-01-1-8929; by NSF grants
CAREER:CCR-9876128 and CCR-9988176; and Mi-
crosoft. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwith-
standing any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as representing the official policies
or endorsements, either expressed or implied, of DARPA,
Rome Labs, SPAWAR SYSCEN, or the U.S. Government.

References

[1] Akamai Technologies Inc.
http://www.akamai.com/ .

[2] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and
C. Tutu. Practical wide-area database replication. Techni-
cal Report CNDS 2002-1, Johns Hopkins University, Center
for Networking and Distributed Systems, 2002.

[3] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Morris.
Resilient overlay networks. In18th Symposium on Operat-
ing Systems Principles (SOSP), October 2001.

[4] F. Bustamante and K. Schwan. Active Streams: An ap-
proach to adaptive distributed systems. InProceedings of the
8th Workshop on Hot Topics in Operating Systems (HotOS-
VIII) , 2001.

[5] S. Campadello, O. Koskimies, K. Raatikainen, and H. He-
lin. Wireless Java RMI. InProceedings of the 4th Interna-
tional Enterprise Distributed Object Computing Conference
(EDOC 2000), September 2000.

[6] Object Management Group.CORBA Components Specifica-
tion. Version 3.0.2002.

[7] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance
and scalability of EJB applications. InProceedings of the
17th ACM Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), Novem-
ber 2002.

[8] F. Chang and V. Karamcheti. A framework for automatic
adaptation of tunable distributed applications.Cluster Com-
puting, 4:49–62, 2001.

15

[9] L. Degenaro, A. Iyengar, I. Lipkind, and I. Rouvellou. A
middleware system which intelligently caches query results.
In Proceedings of IFIP/ACM International Conference on
Distributed Systems Platforms, April 2000.

[10] E. Gamma et al.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, New York,
1994.

[11] eBay Inc.http://www.ebay.com .
[12] Sun Microsystems.ECperf Specification. Version 1.1.2001.
[13] Akamai Technologies Inc. Edgesuite services.

http://www.akamai.com/html/en/sv/
edgesuite over.html .

[14] G. Eisenhauer and K. Schwan. An object-based infrastruc-
ture for program monitoring and steering. InProceedings
of the 2nd SIGMETRICS Symposium on Parallel and Dis-
tributed Tools (SPDT’98), pages 10 – 20, August 1998.

[15] Sun Microsystems.Enterprise JavaBeans Specification. Ver-
sion 2.0.2001.

[16] Edge Side Includes (ESI).http://www.esi.org/ .
[17] I. Foster, C. Kesselman, J. Nick, and S. Tuecke.

The Physiology of the Grid: An Open Grid Ser-
vices Architecture for Distributed Systems Integration.
http://www.globus.org/research/
papers.html , 2002.

[18] X. Fu, W. Shi, A. Akkerman, and V. Karamcheti. CANS:
Composable, Adaptive Network Services infrastructure.3rd
USENIX Symp. on Internet Technologies and Systems, 2001.

[19] A.-A. Ivan, J. Harman, M. Allen, and V. Karamcheti. Par-
titionable Services: A framework for seamlessly adapting
distributed applications to heteregeneous environments. In
Proceedings of the 11th IEEE International Symposium on
High Performance Distributed Computing, July 2002.

[20] J. Maassen et al. Efficient Java RMI for parallel program-
ming. ACM Trans. Prog. Lang. Syst., 2001.

[21] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and
J. O’Toole. Overcast: Reliable multicasting with an overlay
network. InProceedings of the 4th Symposium on Operating
Systems Design and Implementation (OSDI), October 2000.

[22] Jboss Open-Source Java Application Server.
http://www.jboss.org .

[23] Sun Microsystems.Java Data Objects Specification. Version
1.0.2002.

[24] Jetty HTTP Server and Servlet Container.
http://jetty.mortbay.org .

[25] S. Kounev and A. Buchmann. Improving data access of
J2EE applications by exploiting asynchronous messaging
and caching services. InProceedings of the 28th Interna-
tional Conference on Very Large Databases, (VLDB), Au-
gust 2002.

[26] M. Aeschlimann et al. Preliminary report on the design of
a framework for distributed visualization. InProceedings
of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99), pages
1833 – 1839, June 1999.

[27] F. Marinescu.EJB Design Patterns. John Wiley and Sons,
New York, 2002.

[28] Microsoft Corporation. Microsoft .NET.
http://www.microsoft.com/net/ .

[29] A. Natrajan, M. A. Humphrey, and A. S. Grimshaw. Ca-
pacity and capability computing using Legion.Proceedings
of the 2001 International Conference on Computational Sci-
ence (ICCS), 2001.

[30] Open Grid Services Architecture.
http://www.globus.org/ogsa/ .

[31] Open Pluggable Edge Services (OPES).
http://www.ietf-opes.org/ .

[32] Oracle Corporation.Oracle9iAS J2EE Performance Study
Results.http://otn.oracle.com/tech/java/
oc4j/pdf/java performance results.pdf .

[33] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,
and A. J. Demers. Flexible update propagation for weakly
consistent replication. InProceedings of the 16th ACM Sym-
posium on Operating Systems Principles (SOSP-16), pages
288–301, October 1997.

[34] Sun Microsystems.Java Pet Store Sample Application.
http://java.sun.com/blueprints/ .

[35] ObjectWeb Consortium. RUBiS: Rice University Bidding
System.http://www.objectweb.org/rubis/ .

[36] I. Singh, B. Stearns, and M. Johnson.Designing Enterprise
Applications with the J2EE Platform. Addison-Wesley, New
York, 2001.

[37] IBM Research. Smart Query Project.
http://www.research.ibm.com/
smartnetwork/smartquery.html .

[38] Sun Microsystems. Java 2 Enterprise Edition.
http://java.sun.com/j2ee .

[39] IBM Corp. Websphere platform.
http://www.ibm.com/websphere .

[40] BEA Systems. WebLogic Server Documentation.
http://edocs.bea.com/wls/docs70/ .

[41] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. InProceedings
of the Fourth Symposium on Operating Systems Design and
Implementation (OSDI), October 2000.

16

