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Abstract

Requests for dynamic and personalized content increasingly dominate current-day Internet traffic; however,
traditional caching architectures are not well-suited to cache such content. Several recently proposed techniques,
which exploit reuse at the sub-document level, promise to address this shortcoming, but require a better under-
standing of the workloads seen on web sites that serve such content.

In this paper, we study the characteristics of a medium-sized personalized web site,NYUHome, which is a
customizable portal used by approximately 44,000 users from the New York University community. Our study
leverages detailed server-side traces of client activity over a two-week period in February 2002, obtained by
instrumenting the NYUHome server. The paper presents statistics on document composition, personalization
behavior, server-side overheads, and client-perceived request latencies. We then use these statistics to derive
general implications for efficient caching and edge generation of dynamic content in the context of our ongoing
CONCA project. Our study verifies both the need for and likely benefit from caching content at sub-document
granularity, and points to additional opportunities for reducing client-perceived latency using prefetching, access
prediction, and content transcoding.

1 Introduction

The growing popularity of personalized Internet services, ranging from news portals to other “utility” services,
has resulted in requests for dynamic and personalized content increasingly dominating current-day Internet traffic.
Unfortunately, traditional solutions such as web caches and content distribution networks (CDNs) developed to
improve delivery of static content do not yield the same benefits for dynamic content [18, 26].

More promising are recently proposedobject compositionapproaches [3, 11, 12, 17, 20, 29, 35, 36, 39], which
observe that despite multiple requests for the same site resulting in different content at document granularity, there
exists substantial opportunity for reuse at the sub-document level (at the granularity of individual objects making up
the overall document). For example, even on personalized views of the My Yahoo! portal, different users end up
sharing the same news headlines and TV program guides. Two recent studies have shown that approximately 60%
of the bytes in dynamic responses from a set of popular web sites could in fact be reused from a previous retrieval
of the page [34, 39].

Although encouraging, the above proposals and studies need to be supplemented with characterizations of the
actual workload encountered on sites that serve dynamic and personalized content. These characterizations serve
two roles: first, they provide evidence for whether or not object composition techniques are in fact required and
if they are likely to be beneficial (given the specific client and content characteristics), and second, they can lend
new insights into further improving delivery of dynamic and personalized content. Two recent studies [5, 30] have



characterized the workloads seen by dynamic web sites; however, we have not seen any public literature on the
characterization of personalized web sites. The latter, which allow users to customize their web pages by choosing
amongst differentchannels(also calledmodules), offer additional challenges for content delivery because of the
need to serve different content across the client population.

In this paper, we address the above omission by studying the characteristics of a medium-sized personalized web
site,NYUHome. NYUHome is a customizable portal to many web-based services and tools for the students, faculty,
and staff of New York University, and is being widely used by the NYU community. At the time of this writing,
there are more than 44,000 registered users who access NYUHome: most of the requests originate from the New
York city region but users also access the site while traveling and from overseas (NYU has campuses in London
and Florence in addition to the main Washington Square location). Although NYUHome is smaller and exhibits less
diversity in its client population than some commercial personalized web sites (e.g., MyYahoo!), we believe that
its personalization and workload characteristics are likely to demonstrate similar trends and should therefore be of
interest to our research community.

Our study leverages an instrumented version of the NYUHome server, working with detailed server-side traces
of client activity over a two-week period from February 13 to February 28, 2002.1Access to the server code enables
us to collect information at a finer granularity than normally present in web server logs. In particular, the instru-
mented logs allow us to characterize, from both a server-side and client-side perspective, document composition
(number, type, and TTL of channels), personalization behaviors, server-side overheads for document generation,
and client-perceived request latencies. Our results show that: (1) a considerable fraction of NYUHome users do
personalize their view of the site, although a sizeable fraction of this personalization tends to be of layout than for
selected content; (2) a significant fraction of document bytes are for content that is “sharable”; (3) non-sharable
or personalized content is important enough for users to generate a considerably larger number of requests than
would otherwise be indicated by the TTLs of channels; and (4) clients perceive request latencies over a wide range,
determined primarily by their network connectivity.

We then use the above observations to derive general implications for efficient caching and edge generation of
dynamic and personalized content. These implications are drawn in the specific context of our proposed CONCA
architecture [35], which exploits knowledge of document structure and user access behavior to improve content
delivery, but apply to other object composition techniques as well. We find that:

• There is a need for and substantial likely benefits from applying object composition techniques for personal-
ized content, i.e., reusing content of “sharable” channels to serve subsequent requests.

• Both server load and client-perceived latencies can be further reduced by prefetching the content of a small
number of personalized (non-shared) channels and pushing these eagerly towards the clients.

• The above can be achieved in a practical fashion by identifying only a small group of clients because of the
Zipf-like distribution of client popularity and personalization behaviors.

• Client-perceived request latencies can be made more uniform by specializing the document layout and content,
using transcoding, to the network connection employed by the client.

The rest of this paper is organized as follows. In Section 2, we describe the structure of NYUHome and overview
the CONCA architecture to provide a concrete setting for the use of object composition. Section 3 discusses the
method of trace gathering, including the information gathered, the method used and the format of the logs. A
detailed analysis of these logs, in terms of request distribution, user behavior, and server performance, is described
in Section 4. The implications for CONCA-like architectures are presented in Section 5. Section 6 discusses related
work and we summarize in Section 7.

1We are in the process of analyzing a longer-duration trace, results from which will be included in the final paper.
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2 Background

2.1 NYUHome

NYUHome (home.nyu.edu ) is a web portal for the students, faculty and staff of New York University (NYU)
to obtain news and stock information, access their e-mail, register for courses, participate in web forums, access
class pages, research tools, and more. The NYUHome screen is customizable at the granularity ofchannels, and
can be personalized by different users in terms of both which channels are selected for display and their layout
on the screen. The current version of NYUHome (Version 2.0) categorizes 20 channels into five tabs:HOME,
ACADEMICS, RESEARCH, NEWS, andFILES . Figure 1 shows a screen snapshot of a dynamically generated
and personalized NYUHome page and Figure 2 displays the default two-column layout of channels in each tab.

Figure 1: A screen snapshot of a personalized NYUHome page (NEWStab).

HOME ACADEMICS RESEARCH NEWS FILES
Email Contact Home Albert Bookstore Directory Library Events Finance Web Page Files
Directory Forums Classes Search Horoscope
Links Movies

News
Sports
Weather

Figure 2: Default channels and their layout in NYUHome.

Channels 8 of NYUHome’s 20 channels are for objects that are sharable by everyone that has selected a particular
channel. These include event listings for the NYU campus (Events ), news headlines (News), links to the NYU
library (Library ) and the bookstore (Bookstore ), movie listings (Movies ), sports headlines (Sports ), web
search interface (Search ), and a form-based interface to the NYU directory (Directory ). Note that users can
still choose to place these channels in different positions within their page.

TheFinance channel is made up of a common sharable part which shows headlines from financial newspapers
and a personalized part that provides information about user-selected stocks.

Two other channels,ContactHome and Albert can be thought of as being sharable when they are first
presented on the user’s screen, but exhibit more diversity in their object content thereafter (because of history). The
Horoscope andWeather channels exhibit diversity in their content but can be thought of as sharable among the
subset of the user pool that share the same zodiac sign or the same zip code.

The remaining 7 channels refer to truly personalized objects, such as a user’s e-mail (Email ), enrolled classes
(Albert ), personal files (Files ), personal web page(s) (Web Page), interesting links (Links ) and forums
(Forums ), and a personalMyHTMLchannel (not selected by default).

Implementation NYUHome is implemented using 150,000 lines of object-oriented perl and currently runs in a
mod perl environment within an Apache 1.3 server on a 12 processor domain of a 399 MHz Sun E10000 with 12
GB RAM. The system is running Solaris 2.6 in a clustered, failover environment.
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Figure 3(a) shows the basic flow sequence of how NYUHome serves a client request. Authentication happens
only at the beginning of each session, with subsequent requests relying on a session key. After authentication,
the personal preferences are fetched to construct the layout with the appropriate channels. NYUHome relies on two
object-level caches: ashared cachefor sharable channels, and anon-shared cache, which stores user preferences and
individual personal content. Depending on the channel TTL, content is obtained either from the caches or generated
in a channel-specific fashion. For content that can be gathered periodically (e.g.,News, Events ), a program runs
at regular intervals to populate the cache.

2.2 CONCA Architecture

CONCA (COnsistentNomadicContentAccess) [35] is a proposed edge architecture for the efficient caching and
delivery of dynamic and personalized content to users who access the content using diverse devices and connection
technologies. CONCA attempts to exploit reuse at the granularity of individual objects making up a document,
improving user experience by combining caching, prefetching, and transcoding operations as appropriate.

To achieve its goals, CONCA relies on additional information from both servers and users. All content supplied
by servers in CONCA architecture is assumed to be associated with a “document template” which defines both
the structure and form of the content. Ideally, the document template can be expressed by formatting languages
such as XSL-FO [41] or edge-side include (ESI) [36]. For existing HTML web documents, we assume that the
document template is a nested table. To support prefetching and efficient transcoding from cached objects, the
CONCA architecture requires access information from users, which is captured in a “personal assistant” object.
Currently, a CONCA prototype is being developed, and we are cooperating with the NYUHome team to build an
infrastructure to efficiently deliver their content.

3 Trace Gathering

Accept Request

Is cache
valid?

Authentication
(ISng.pl)

Parse Personal
Configuration

Generator(s)

Composition

Send Out

No

Yes

Client

Server
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Figure 3: (a) The general flow chart to serve a request at NYUHome, and (b) time sequence of a request-response
between client and server.

This study leverages detailed server logs over a two-week period spanning February 13 to February 28, 2002.
To ensure that our instrumentation did not produce unintended side effects, fewer than 10 lines of code were added
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at two locations: when a request was admitted into the system (Accept Request ) and after the server was done
processing a request (Send Out ). At these points, we logged the following pieces of information:

• (at entry) The arrival time of a request, the document being requested; the source IP address; and the user ID
or any session keys;

• (at end) The departure time of the response; the size of the document; for each channel present in the response,
the channel ID, size, and the SHA-1 hash [1] of its contents; and for each column, the SHA-1 hash of the string
obtained by concatenating the hash values of channels making up the column.

Only requests for the NYUHome main page (served by ISng.pl) were logged, which is responsible for all five
of the tags, content for most of the channels, and response assembly. Requests for embedded images are served
by another machine, as is the content for two hot channels:Email andAlbert . The file operations required for
logging contribute negligible overhead when compared to the total request processing time.

The SHA-1 hash values permit efficient computation of the change frequency of each channel and each tab:
with extremely high probability, different content in the channel results in different hash values. The overhead of
computing the hash itself is three orders of magnitude less than the user-perceived request latency (several seconds);
on a 399 MHz Sun E10000 system, the overhead of calculating a SHA-1 hash of a 10KB page is 0.30 milliseconds.

To estimate client-perceived request latency, we augmented each response to add a link to a blank pixel at the
beginning of each document. When the client receives this reply, its browser will send out another request for this
pixel. Recording the arrival time of this follow-on request and distinguishing it from the first request (using the
name of the document being requested) gives us three timestamps:T2, the time the first request arrives at the server;
T3, the time the response leaves the server; andT5, the time the follow-on request arrives. Figure 3 shows these
timestamps in the context of the overall request-response timeline between the client and server. Assuming that the
TCP connection establishment overheads are similar for both requests,2the collected timestamps allow us to estimate
client-perceived latency,T4 − T1, as the time intervalT5 − T2. Additionally, this interval can be divided into two
components:server processing time(Tp = T3 − T2) andnetwork transfer time(Tn = T5 − T3). Assuming that the
response time dominates network costs, this decomposition allows us to correlate document content characteristics
with observed costs.

The combination of user ID information (instead of inferring it from client IP address), detailed information
about document composition, and the above estimation of client-perceived latency distinguish our log format from
traditional web server logs. Additionally, timestamps are at microsecond resolution, which is more accurate than
any publicly available server log formats, such as CLF or ECLF [24].

4 Trace Analysis

We start by presenting the overall characteristics of the trace and then analyze it from three perspectives: document
composition, personalization and user behavior, and request processing overhead and latency.

4.1 Overall Characteristics

Table 1 lists the aggregate statistics from the data we collected during the two-week period — the number of requests,
the number of users who generated these requests, the number of IP addresses used, the number of sessions that
requests fell into, and the total number of bytes transmitted as responses. The number in the parenthesis refers to
the data bytes, the rest can be viewed as carrying layout and formatting information. The total number of users who
accessed NYUHome during the two-week period (27,576) represent 62% of the registered users.

2This assumption is true for NYUHome, which disables HTTP 1.1 persistent connections for reasons explained later in the paper.
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Total # of requests Total # of users Total # of IP addresses Total # of sessions Total # of bytes (Mbytes)
643,853 27,576 73,119 520,408 6,533 (2,434)

Table 1: Aggregate statistics of the NYUHome log from 02/13/2002 to 02/28/2002.

Figure 4(a) shows that, on average, NYUHome is accessed each day by 13,000 users during weekdays and 9,000
users during the weekend. On average, NYUHome received1706 requests an hour: Figure 4(b) shows the minimum
and maximum requests received during the same hour over the two-week period. Figure 4(c) shows the cumulative
distribution of the inter-request arrival interval. Using theχ2 method as the goodness-of-fit [15] measure,3 we found
that this distribution is captured very well by anExponentialdistribution withλ = 0.526, suggesting a Poisson
arrival process. This observation seemingly conflicts with that from previous studies of web servers [6] and telnet
sessions [33], where it was found that the aggregate reference stream is not Poisson. Note however, that in terms of
busy documentsdefined in [6] (a document referenced at least 50 times in a one-hour interval), the arrival process
was indeed found to be Poisson. We ascribe our observation to the fact that given the small number of documents
accessible from the NYUHome site, and the large number of users, each document logged in the trace corresponds
to abusydocument.
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Figure 4: (a) The number of users who access NYUHome each day; (b) the number of requests arriving each hour;
and (c) the inter-request arrival interval distribution.

The total number of unique IP addresses (73,119) indicates that on average, each user ID is associated with 2.65
different IP addresses. To understand where these requests come from, we classified the source IP addresses into
five categories based on their point of origin: the NYU main campus, NYU Dialup (for phone modem connections),
NYU-Resnet installed in student dormitories, NYU overseas campuses (at London and Florence), and other third-
party ISPs. Figure 5 shows the distribution of IP addresses, and the corresponding number of requests that originate
from each category. Although NYU machines contribute to only 17% of the IP addresses, they are responsible for
69% of all requests. The 60,688 IP addresses (83%) that fall outside NYU control represent varied connection op-

3The Anderson-Darling (A2) test was also used in our analysis, however, the results of theA2 test showed no significance in terms of
goodness of fit for large amounts of data, which is a common problem ofA2 [9, 32]. Theχ2 method is used for goodness-of-fit test in the
rest of the paper.
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tions and correspond to administrative systems worldwide. Using the network-aware clustering technique proposed
in [25], these IP addresses can be grouped into 4183 network clusters, where 109 clusters have more than 50 IP ad-
dresses and 60 clusters have more than 100 IP addresses. In Section 4.4, we correlate the measured client-perceived
latency with the IP address category a request corresponds to.

Distribution of IP addresses

NYU 
Resnet
8.10%

Other
82.90%

Campus
6.93%

Oversea 
Campus
0.22%

NYU Dialup
1.86%

Distribution of requests

Campus
28.14%

NYU Dialup
8.35%

NYU 
Resnet
32.01%

Oversea 
Campus
0.51%

Other
30.99%

Figure 5: Distribution of IP addresses across five categories and the corresponding breakdown of request traffic.

4.2 Document Composition

To understand the characteristics of documents that were generated in response to client requests, we analyzed the
properties of component tabs and individual channels.

Tabs Table 2 lists the number of requests to each tab, the number of users who accessed the tab, and the average
number of requests per user (the ratio of the first two values). 90.1% of requests are for the defaultHOMEtab. Of
the requests to the other four tabs, 50% of requests from 7,148 users are for theACADEMICStab, which includes
the course systemAlbert . On a per-user basis, after theHOMEtab, theNEWStab is the next popular. Table 2 also
shows the average size of the document generated in response to a tab request, and the fraction of the response bytes
taken up by layout (between 30% to 66%).

Tab HOME ACADEMICS RESEARCH NEWS FILES
Number of requests 598,585 (90.1%) 32,229 9,873 15,595 7,927
Number of users 27,576 7,148 3,584 2,988 2,200
Requests per user 21.70 4.50 2.75 5.22 3.60
Average tab size 10024.65 7048.05 13374.59 26810.22 7052.34
Average template size 6611.18 3938.73 4169.09 9080.06 2506.19

Table 2: The number of requests to different tabs and corresponding number of users who are interested in these
tabs.

Channels Figure 6 shows, for each channel, the number of requests that involve the channel. Since the number of
requests to channels in theHOMEtab are an order of magnitude more than those to channels in other tabs, we show
the two sets in separate figures. The figures also show the percentage of total document bytes contributed to by the
channel. Variations in the number of requests for channels that belong to the same tab, particularly prominent in the
NEWStab, are a direct result of personalization.
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Figure 6: Distribution of the number of requests to different channels in the (a) HOME tab; (b) other tabs.

Figure 7(a) shows the cumulative distribution function (CDF) of the distribution of channel size, where the X-
axis is in log scale. From the figure, we see that the sizes of 70% of channels are less than 1000 bytes, and 99%
are less than 3000 bytes. We found the channel sizes are best modeled using aWeibull distribution (with CDF
F (X) = 1− e−(0.0012x)1.6

). This observation is in agreement with a previous study where we looked at object sizes
in dynamic documents downloaded from six news and e-commerce web sites [34]. It is interesting to compare this
distribution with the overall document-size distribution in Figure 7(b). The latter shows that 70% of the documents
lie in a very small range between 9,725 and 10,688 bytes. The popularity of theHOMEtab and the fact that the layout
accounts for a sizeable fraction of the overall document size explains this phenomenon.
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Figure 7: The cumulative distribution function of: (a) channel sizes, and estimated Weibull distribution, and (b)
document sizes.

Table 3 lists average, minimum, and maximum sizes of all the channels, by decreasing order of average size.
Also shown is the number of distinct hash values generated for the channel content, both during the whole period
and during the busiest day (February 25). The number of distinct hash values for a channel indicate how sharable
a channel is, dependent both upon its time-to-live (TTL) and the nature of its content. For instance, channels such
asLibrary , Search , andBookstore are essentially unchanging over the entire duration of the trace; channels
such asEvents , Movies , Sports , andNews are sharable and change only infrequently (at most a few times a
day); channels such asHoroscope , Weather , and evenClasses , are not sharable, but given reasonable-sized
client populations are in fact shared. Finally, channels such asEmail , ContactHome , Albert , andDirectory
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are truly personalized (the last three because of per-user history) as reflected by their large number of distinct values.
It is interesting to compare the unique hash values of the latter personalized channels with the total number of

requests seen for the corresponding channels and the number of requests seen for the corresponding tab (Figure 6 and
Table 2). The close correspondence (e.g., 396,892 values for theEmail channel compared to its 595,585 requests)
indicate that a large fraction of the requests for the tab may in fact be related to a desire to track changes in the
contents of the channel in consideration.

Channel Average size Minimum size Maximum size # of distinct # of distinct
(byte) (byte) (byte) hash hash (02/25)

Library 6860.3054 2672 6887 3 2
Events 4254.8327 217 6391 19 1
Files 4074.6542 63 26064 7309 508
Finance 4061.5146 68 4267 59 7
News 3648.8510 849 3965 406 28
Sports 2777.3233 68 2940 256 20
Movies 2432.0277 68 2524 41 5
Search 1572.9772 1565 1573 7 4
Albert 1482.0000 1482 1482 30020 1879
Weather 1251.1674 41 3814 467 32
ContactHome 1158.8461 1102 2010 163808 20527
Forums 934.4364 140 36778 10038 5631
Classes 845.0027 214 11204 2135 641
Directory 835.5847 833 838 27273 14055
Bookstore 829.6047 800 845 4 1
Horoscope 663.6914 366 884 221 19
WebPage 522.9972 497 540 2240 275
Email 398.2748 303 840 396892 32343
Links 206.4090 79 3860 1999 1078
MyHTML 128.8586 80 2393 346 174

Table 3: The size information of channels, including average, minimum, and maximum sizes, and the number of
distinct values of channels during the whole period and the busiest day (02/25/2002).

4.3 User Behavior and Personalization

To understand the behavior of a particular user (associated with a particular user ID), we examined session statistics,
client popularity, and personalization characteristics.

Sessions Figure 8(a) shows the cumulative distribution function of the number of requests per session (defined as
the requests accompanied by the same session key). 82.85% of sessions contain one request only, for theHOME
tab. For sessions with multiple requests, Figure 8(b) shows the inter-request arrival interval. The x-axis in the figure
uses a log scale in order to show the full range of values. The mean inter-request time is 492.7 seconds, the median
is 92.9 seconds, and 14% of the request intervals are larger than 15 minutes (900 seconds). Such relatively long
inter-request intervals are the reason NYUHome has disabled HTTP 1.1 persistent connections.

The concept of inter-request interval within a session is very similar to that of the “Inactive OFF” time between
successive requests; however, our observation differs from previous studies that have characterized OFF times using
a heavy-tailed Pareto-like distribution [9, 13]. In contrast, we find that the session inter-request intervals are captured
best by aLognormaldistribution withµ = 4.5, σ = 2.2, without a heavy tail. We ascribe this difference to the typical
behavior of users in regards to a single personalized portal site, where a user may spend time on pop-up windows
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Figure 8: The cumulative distribution function of (a) the number of requests per session, and (b) the inter-request
interval within a session.

(such as checking e-mail), before going back to click other tabs.

Client Popularity Figure 9 shows the cumulative distribution function of the number of requests per user: 57% of
the users send less than 15 requests during the two-week period (one request/day on average), however, 5% of users
send more than 90 requests (six requests/day on average). As in [5], we studied the relationship between the rank
of users (based on the number of requests he or she issues) and the corresponding number of requests. Users who
issue the most number of requests are assigned rank 1. If client popularity follows a Zipf-like distribution, the log
scale plot should appear linear with a slope near−β [8]. Figure 9(b) shows that the popularity of clients does follow
a Zipf-like distribution for the top 2000 users withβ = 0.35, but does not fit as well for users who issue fewer than
50 requests over the two-week period.
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Figure 9: Concentration of the number of requests from client perspective: (a) cumulative distribution function of
the number of requests per user; (b) client popularity (request count vs. rank).

Personalization To understand how many users personalize their NYUHome pages and how, we calculated the dis-
tinct channel combinations (including both channel selection and layout options) for each tab, and then counted the
distinct number of users who used a particular channel combinations. The relative statistics are shown in Figure 10.
The pie graphs in Figure 10(a) show the comparison between the percentage of users who use the default channel
selection and layout and those who personalize one and/or the other. With the exception of theACADEMICStag,
there was significant customization. The numbers are also likely to have been biased towards the lower end by the
fact that a significant number of users likely use theHOMEtab only to check their e-mail.
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Figure 10: Effect of personalization: (a) the percentage of users who use personalization functionality; (b) the
distribution of the number of requests to different channel combinations of each tab.

Figure 10(b) shows that the number of requests that are targeted to these different channel combinations are
compatible with the user fractions. More interesting is the observation that in the four tabs where personalization
occurs, a significant percentage of the requests are for a channel combination that differs from the default only in
its layout, not in the set of channels. To take an example, for theNEWStab, 26% of requests are for the channel
combination which exchanges the position of theSports and Weather channel with respect to the default.4

Another statistic that does not come across in the graphs is users are interested in other forms of personalization:
19% of the requests for theNEWStab involve 40 channel combinations different from either the default or the simple
layout exchange.

An additional observation pertains to how frequently users change their personalization preferences. In our
two-week trace, this number was relatively small: 1090 of the 27,576 users changed their preferences at least once.
While we expect these numbers to be somewhat higher were the trace to cover a different period (e.g., the start
of the academic year when there is an influx of new students), overall we believe there is a tendency for “sticky”
preferences, similar to the observation made in the context of MyYahoo! [27].

4.4 Request Processing Cost and Latency

Table 4 shows, for the overall trace as well as for individual tabs, the average, minimum, and maximum values of
the per-request processing time,Tp, and network transfer time,Tn, computed as described in Section 3. The lower
half of Table 4 lists the network tranfer times for the five categories of IP addresses identified in Section 4.1.

Processing Overhead The average server processing overhead across all of the requests is 1.41 seconds; 28% of
requests incur overheads larger than this value, and 14% of the requests incur overheads larger than 2 seconds. To
understand whether there is a relationship between server load and request processing overhead, we looked at the
average processing time seen by requests on the least busy (02/16) and the busiest day (02/25) in our trace. Figure 11
shows the processing overhead and number of requests received by the server on an hourly basis on these two days.
We conclude that the average processing time is independent of load,5and reason that that NYUHome server is
operating far below it’s planning capacity most of the time. Consequently, the high server processing overheads
represent inherent overheads associated with dynamic generation of personalized content.

4This can possibly be explained by the fact that by default, the user would have needed to scroll down to see the weather information.
5The bursts at 3:00am on 02/16, 12:00pm on 02/25, and 1:00pm on 02/25 occur because of backup operations and a restart of the session

manager respectively.
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Tab AverageTp Min Tp Max Tp AverageTn Min Tn Max Tn
a Throughput (KB/sec)

Total 1.41 0.05 487.75 2.45 0.002 19.74 30.24
HOME 1.44 0.05 487.75 2.51 0.01 20.29 29.93
ACADEMICS 0.66 0.06 45.39 1.61 0.01 12.43 19.30
RESEARCH 0.48 0.06 23.31 2.07 0.04 12.21 31.76
NEWS 1.92 0.06 224.01 1.73 0.03 14.16 67.62
FILES 2.07 0.05 46.19 1.73 0.04 12.32 19.17

Campus — — — 1.35 0.004 9.35 38.54
NYU Dialup — — — 7.43 0.9 42.19 2.26
NYU-Resnet — — — 1.02 0.002 8.15 43.02
Overseas — — — 2.24 0.34 9.50 8.35
Others — — — 3.92 0.01 28.51 17.38

aMax Tn refers to the 99th percentile value: a small fraction of requests involve file and web page upload/download and can incur transfer
times of several minutes.

Table 4: The average, minimum, and maximum values of server processing overhead and network transfer time, and
the average throughput.

To understand the primary contributors for this processing overhead, we computed the correlation coefficient
between the overhead and the number of channels in and the overall document size of the response. We found a
strong correlation, 0.98, between the number of channels and the processing overhead, which explains the lower
averageTp values for theACADEMICSandRESEARCHtabs. On the other hand, the correlation coefficient for the
relationship between document size and processing overhead achieved a value of 0.044, indicating the lack of any
significant correlation between the two.

Based on a simple model for processing overhead involving the number of channels and three types of per-
channel cost —tc for obtaining content from a cache,tg for generating the content synchronously, andta for
assembling the content into a document — we end up with the following relationships:tg + ta = 0.523s and
tc + ta = 0.329s. Thus, generating a channel synchronously incurs an additional average overhead of about 0.2
seconds.

Transfer Time and Throughput The average network transfer time was observed to be 2.45 seconds, with 27% of
the requests resulting in larger times and 15% of the requests spending more than 5 seconds in the network. Looking
at throughput, defined as the ratio of document size and the network transfer time, we find a mean value of 30 KB/s
and a median value of 13 KB/s. Both network transfer time and throughput are captured well by theLognormal
distribution withµ = 0.005, σ = 1.55 (transfer time) andµ = 9.35, σ = 1.6 (throughput) respectively. Our finding
of throughput coincides with earlier observations made by Balakrishnan et al. using traces from the 1996 Atlanta
Summer Olympic Games web server [7].

To identify the primary contributor to network transfer time, we again computed the correlation coefficient be-
tween transfer times and document sizes. The result, -0.0031, reveals that in general there is no clear correlation
between the two. A stronger correlation was observed when we separated out the network transfer time based
upon the category of IP address a particular request belongs to. The five categories from Section 4.1 correspond to
two (Campus and NYU-Resnet) with good LAN-like connectivity, one (Overseas) with WAN-like connectivity, one
(NYU Dialup) with phone modem connectivity, and the remaining (Other ISPs) that correspond to varied connec-
tivity options ranging from ADSL, cable modems, to phone modems. As one might expect, the faster connectivity
options result in lower transfer times and better throughput, while the slower connectivity options see degraded per-
formance. On average, users who access NYUHome using phone modems (NYU-Dialup) encounter five times the
network transfer time and 1/20th the throughput of those accessing NYUHome from campus.
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Figure 11: Processing overhead comparison between the least busy (02/16) and busiest (02/25) day.

5 Implications for Dynamic Content Caching and Delivery

The analysis of the NYUHome traces points to both the need to improve delivery of personalized content, and the
opportunity for leveraging various solutions at the server-side and on surrogates and proxy caches to address this
need. We discuss these implications below:

1. Need for efficient delivery of personalized content
Our study has shown that six years after the introduction of the concept of personalization, a substantial fraction
of users are using the concept — 30% in our case, and larger if one accounts for the fact that a large fraction
of NYUHome users use it as their e-mail server. However, this situation comes at the cost of increased server
overheads that are several times larger than that seen for static content or even non-personalized dynamic content,
and larger network transfer latencies. Together, these contribute to client-perceived latencies of several seconds.

2. Effectiveness of server-side fragment caches
Although NYUHome relies on simple fragment-based caches, our observations show that these by themselves are
not sufficient to reduce per-request processing overheads. Accessing the cache and assembling the content incurs
per-channel overheads of about 0.33 seconds (see Section 4.4). Generating channel content incurs an additional
per-channel overhead of 0.2 seconds.

More efficient server-side caching schemes such as DUP [11, 12] are likely to yield better performance, as
are schemes which cache partial responses in addition to per-channel content and can use these to incrementally
construct the full response. The latter are particularly well-suited for requests that refer to one or more default
selection and layout of channels. As we found in Section 4.3, a significant fraction of all personalization takes the
relatively simple form of only layout modification.

3. Potential for and likely benefits from using the object composition technique
Object composition techniques advocate caching of channel content at surrogates and proxy caches; requests from
clients are forwarded to servers only to download missing channels, which are then assembled into a response sent
back to the client.

We observe that among the eleven NYUHome channels with average length larger than 1 KB (see Table 3), six
of them —Library , Events , News, Sports , Movies , andWeather — are completely sharable; one —
Finance — has a large portion that is sharable; and one more —Weather — although not completely sharable
can be effectively shared amongst users that share the same zip code. Combined with the fact that over 60% of
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requests refer to the default layout of a tab (see Figure 10), and that the tab layout template, which can be cached
as well, contributes to anywhere from 30% to 66% of the transmitted bytes (see Table 2), the object composition
technique can yield significant bandwidth savings and reduction in server processor overheads.

Taking theHOMEtab as an example, let’s examine the potential bandwidth savings by downstream proxy caches.
The average size of this page is 10,000 bytes, and it includes 5 channels:Email (398),Contact Home (1158),
Directory (835), Forums (934), andLinks (206). The number in the parenthesis refers to the average size
of each channel in bytes and is taken from Table 3. The size of the layout template is 6,469 bytes (calculated by
subtracting the sum of channel sizes from the total page size). Assuming a request is received and authenticated at a
proxy cache, which has already cached the template and four channels except theEmail channel, what the proxy
cache needs to do is send a request for the latter to the server. As such, the number of bytes that must be transmitted
between the NYUHome server and the proxy cache reduces from 10,000 to 398 (96% are saved).

Additional savings are possible by redesigning tab layouts so as to separate out sharable channels from those that
are truly personalized. As observed in Section 4.2, the large number ofHOMEtab requests and its correspondence
with the number of distinct hash values seen for theEmail andContactHome channels seems to suggest that
users may be loading the tab primarily to track changes in the contents of the personalized channels. Modifying the
tab layouts can help avoid the need to transmit unnecessary channels.

4. Benefits from proxy prefetching and/or server pushing
Although several NYUHome channels are sharable, a sizeable fraction do refer to truly personalized content, and
therefore do not benefit from caching of channel content at surrogates or proxy caches. More suitable solutions for
channels such asEmail , ContactHome , Links , andForums , involve either the proxy cache prefetching the
content from the server or the server pushing the content upon detecting an update.

Such eager propagation of content can avoid unnecessary downloads — a large fraction of the difference between
the total number of requests involving theHometab and the number of distinct hash values for theEmail channel
likely fall into this category. Additionally, as seen in Figure 8, the interval between successive requests in a session
is large enough (on the order of several minutes) to permit use of sophisticated prefetching policies.

5. Benefits from predicting access patterns
To allow prefetching schemes such as the ones described above to be practically employed in personalized web sites,
the conflicting demands of personalization and prediction need to be reconciled. In other words, for prefetching to
be successful, we need to predict access patterns of individual users, which is likely to result in prohibitive space
and time overhead. Fortunately, the Zipf-like distribution of client popularity (see Figure 9(b)), which indicates that
a small number of users are responsible for most of the requests, suggests a solution to this problem. By focusing on
predicting the access patterns of only the users who make the most requests, overheads of collecting and exploiting
access pattern information can be made manageable.

6. Need for migrating channel generation functionality to edge servers
Server overheads for request processing, observed to be strongly correlated to the number of channels in the docu-
ment, can be reduced by offloading channel content caching and content assembly to proxy caches. However, as we
find in Section 4.4, generating channel content incurs an additional per-channel overhead of 0.2 seconds, implying
that additional improvements are possible by shifting channel generation functionality downstream as well. Clearly,
this choice needs to be traded off against the cost of maintaining consistency between the state at the server and that
at edge servers. For channels such asClasses andForums , generated from read-mostly data, migration of the
channel generation code may be an attractive option.

7. Need for customizing content based on network connection characteristics
The network transfer times reported in Table 4 show that there are wide variations in the latencies seen by different
groups of IP addresses based on their connectivity characteristics. To provide a uniform user experience across
multiple device types and network connections, one might imagine defining different default layouts and channel
content for each class of device or network. Taking the example of theNEWStab andNYU-Dialup users, the
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latency perceived by clients can be lowered by reducing the number of channels in the tab, by reducing the amount
of content in each channel (e.g., theNewschannel can incorporate fewer headlines), and by changing the formatting
to reduce the fraction of document bytes devoted to defining the tab layout template.

6 Related Work

Web workload characterization has been extensively studied in the past five years from the perspective of proxies[10,
16, 38, 40], client browsers[2, 8, 13, 14, 22], and servers[5, 6, 27, 28]. However, many of these studies focus on the
characteristics of web resources at the granularity of the whole document and leverage existing server and/or proxy
logs. Many of these previous research results accurately capture the characteristics of static web content. However,
for dynamic and personalized web content which introduces the notion of channels, many of these characteristics
need to be revisited. Moreover, personalized content necessitates understanding of new characteristics, such as the
change frequency of user preferences, the number and sizes of channels making up a document, the freshness times
of these channels. To the best of our knowledge, the work described in this paper is one of the first efforts trying to
model these latter characteristics for a personalized web site.

The first user experience analysis of a personalized web site was done by Manber et al. on Yahoo! [27]. In
that paper only general information and some high level implications for the design of personalized web sites were
presented. However, in our study, the detailed characteristics of personalized web site a presented, and several
implications for dynamic content caching are proposed too.

The studies of MSNBC news site [30] and a large shopping site [5] are closely related to our effort. In [30],
Padmanabhan and Qiu analyzed the dynamics of both the server content and client accesses made to the server by
analyzing the standard HTTP logs from the web site. Most recent work by Arlitt et al. [5] focus on characterizing
the scalability of a large web-based shopping system. Although our study share the similar motivation as these two
previous work, however, workload characterization of a personalized web site is the focus of this paper. Further-
more, different from their scenario, we have access to the source code of the server, which allows us to get more
information, such as client request distribution for each channel, processing overhead, network transfer time, and
channel size distribution, which are not available in regular server logs that use CLF or ECLF. Therefore, we think
our study complements to these previous efforts.

By proposing two specific splitting techniques, Shi et al. in [34] modeled the object characteristics, such as the
distribution of freshness time and the distribution of object size, by analyzing the content from several dynamic news
Web sites and e-commerce sites, which is complementary to this work. In this paper, we analyze the characteristics
of channels which is an ideal candidate for object composition techniques.

Though there are several previous research paper on the performance of the web server [4, 19, 21, 23, 31, 37],
our work differs from them in that the overhead of dynamic web content generation and related network transfer
time are studied.

7 Summary and Future Work

In this paper, we have presented the analysis of a medium-sized personalized web site NYUHOme using the instru-
menting logs on February 2002. In addition to a detailed study of characteristics of NYUHome, we also present
several implications derived from these observations. The main implications include: (1) Personalization function-
ality is increasingly being accepted, and traditional caching and prefetching schemes need to be revisited due to the
specific characteristics of personalized content; (2) There is a need for and substantial likely benefits from applying
object composition techniques for personalized content; (3) Both server load and client-perceived latencies can be
further reduced by prefetching the content of a small number of personalized (non-shared) channels, which can be
achieved in a practical fashion by identifying only a small group of clients because of the Zipf-like distribution of
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client popularity and personalization behaviors; (4) Client-perceived request latencies can be made more uniform by
specializing the document layout and content, using transcoding, to the network connection employed by the client.

Our next step and future work includes integrating these implications into CONCA prototype, and cooperating
with NYUHome team to accelerate the delivery of their content.
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