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ABSTRACT

Domain decomposition methods are powerful iterative methods for solving sys-
tems of algebraic equations arising from the discretization of partial differential
equations by, e.g., finite elements. The computational domain is decomposed into
overlapping or nonoverlapping subdomains. The problem is divided into, or as-
sembled from, smaller subproblems corresponding to these subdomains.

In this dissertation, we focus on domain decomposition methods for mortar
finite elements, which are nonconforming finite element methods that allow for
a geometrically nonconforming decomposition of the computational domain into
subregions and for the optimal coupling of different variational approximations in
different subregions.

We introduce a FETI method for mortar finite elements, and provide numer-
ical comparisons of FETI algorithms for mortar finite elements when different
preconditioners, given in the FETTI literature, are considered. We also analyze
the complexity of the preconditioners for the three dimensional versions of the
algorithms.

We formulate a variant of the balancing method for mortar finite elements,
which uses extended local regions to account for the nonmortar sides of the subre-
gions. We prove a polylogarithmic condition number estimate for our algorithm in
the geometrically nonconforming case. Our estimate is similar to those for other
Neumann—Neumann and substructuring methods for mortar finite elements.

In addition, we establish several fundamental properties of mortar finite ele-
ments: the existence of the nonmortar partition of any interface, the L? stability
of the mortar projection for arbitrary meshes on the nonmortar side, and prove
Friedrichs and Poincaré inequalities for geometrically nonconforming mortar ele-

ments.
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Chapter 1

Introduction

1.1 An Overview

Domain decomposition methods are powerful iterative methods for solving systems
of algebraic equations arising from the discretization of partial differential equa-
tions (PDEs) by, e.g., finite elements. The computational domain, i.e., the domain
where the PDE is defined and must be solved, is decomposed into overlapping
or nonoverlapping subdomains. The problem is divided into, or assembled from,
smaller subproblems corresponding to these subdomains. More generally, we can
consider the decomposition of the finite element space into a sum of subspaces,
which are often related to the subdomains or to other sets. The subproblems are
solved directly or iteratively, and the exchange of information between subspaces
is handled by an iterative method. These algorithms can be regarded as methods
for building Krylov space preconditioners for the linear systems.

The best of the domain decomposition methods converge in relatively few iter-
ation steps. The iteration count is independent of the number of subregions and
depends only weakly on the dimension of the finite element spaces used in the
discretization. These scalability properties are due in part to the use of a coarse
space, which has few degrees of freedom compared with the original finite element
problem. At each iteration step, the corresponding coarse solver smoothes out the
low frequency components of the iteration error, while the local solvers smooth out

the high frequency ones.



The first domain decomposition algorithm is believed to be the alternating
Schwarz method, which was developed in the 19th century by Schwarz [115]. It is
an iterative method and was used by Schwarz for proving the existence of solutions
for elliptic PDEs on domains which are the union of subregions with non-void inter-
section, if the PDE can be solved in each subregion. The interest in this algorithm
was revived in the 1980’s by P. L. Lions [87, 88|, who analyzed a variational for-
mulation of the Schwarz method. Numerous domain decomposition methods have
been designed, studied, and implemented in the last decade; see Section 3.3 for a
brief overview. Two monographs by Smith, Bjgrstad, and Gropp [122] and Quar-
teroni and Valli [108] have appeared recently, and yearly international conferences
are being held; see [67, 37, 38, 68, 73, 107, 74, 69, 16, 92, 82].

In this thesis, we concentrate on mortar finite elements, which are nonconform-
ing finite element methods that allow for a geometrically nonconforming decompo-
sition of the computational domain into subregions and, at the same time, for the
optimal coupling of different variational approximations in different subregions.
Here, optimality means that the global error is bounded by the sum of the local
approximation errors on each subregion.

The mortar finite element methods were first introduced by Bernardi, Maday,
and Patera in [13, 14], for low-order and spectral finite elements, and were extended
to three dimensional elements in [8, 9].

Mortar finite elements have several advantages over the conforming finite ele-
ments. For example, the mesh generation is more flexible and can be made quite
simple on individual subregions. This also makes it possible to move different parts
of the mesh relative to each other, e.g., in a study of time dependent problems.
The same feature is most valuable in optimal design studies, where the relative
position of parts of, e.g., an automobile or an electrical machine, is not fixed a pri-
ori. The mortar methods also allow for local refinement of finite element models
in only certain subregions of the computational domain, and are well suited for
parallel computing; cf. [71].

Let us briefly describe the mortar finite element space V" for the two dimen-
sional case. The computational domain €2 is decomposed into a nonoverlapping

polygonal partition {€;};—1.n, possibly made of curvilinear polygons. The parti-



tion is called geometrically conforming if the intersection between the closure of
any two subregions is either empty, a vertex, or an entire edge, and it is called
nonconforming otherwise. The restriction of V" to any subregion €2; is a conform-
ing finite element or spectral element space. These spaces can be independent of
each other, and can differ in degree and type.

Across the interface T, i.e., the set of points that belong to the boundaries of
at least two subregions, pointwise continuity is not required. We partition I" into
a union of nonoverlapping subregion edges called nonmortars. The edges across
I', not chosen to be nonmortars, are called mortars. We note that the partition
and the choice of nonmortars are not unique; however, any choice can be treated
similarly. On the two sides of a nonmortar edge 7, there are two distinct traces
of the mortar functions and we only require that their difference is L?—orthogonal
to a space of test functions defined on . This space is generally a subspace of
codimension two of the restriction of V" to 7; this allows the values of the mortar
function at the end points of any nonmortar to be genuine degrees of freedom.

As we have just seen, when introducing a mortar finite element space on €2, the
first step is to decompose €2 into nonoverlapping subregions. Since the domain de-
composition methods are also based on such a decomposition of the computational
domain, there exists a natural connection between mortars and domain decompo-
sition. In the recent past, this connection has been the basis for extensive studies
of domain decomposition methods for mortars; see [3, 44, 45, 46, 84, 85, 81, 126,
2, 1, 36, 134], and also Chapter 2 for more details.

This thesis is also focused on domain decomposition methods for mortar finite
elements. Our main goal has been to obtain numerical and theoretical performance
estimates for these methods of the same form as in the conforming finite element
case.

In Chapter 5, we analyze the Finite Element Tearing and Interconnecting
(FETI) method of Farhat and Roux [61] applied to mortar finite elements. The
FETI method is an iterative substructuring method where Lagrange multipliers
are used to enforce continuity conditions across the subdomain interface. There-
fore, we can apply this method to mortar finite elements without changing the

algorithm. The main difference is that the Lagrange multipliers matrix is used to



enforce mortar conditions across the interface, instead of pointwise continuity.

Our numerical experiments, which were performed both in two and three di-
mensions, show that the original preconditioner for the FETI method with con-
forming elements used in [61] does not perform well in the mortar case. However,
a new preconditioner recently suggested by Klawonn and Widlund [78] performs
satisfactory. The number of iterations required to achieve convergence depends
only weakly on the number of nodes in each subregion and is independent of the
number of subregions. Thus, by these experiments with the mortar case, we were
led to believe that the new preconditioner might always have a better performance
than the original preconditioner, even for the conforming case. Our numerical tests
confirm this hypothesis. The number of iterations for the conforming finite ele-
ments FETI method with the new preconditioner is roughly half of that required
with the original preconditioner. We also analyze the extra computational effort,
due to the complexity of the mortar conditions, required for the implementation
of the FETT algorithm with new preconditioner, in the three dimensional case. We
conclude that the improvement of the iteration count offsets this extra cost.

In Chapter 6, we formulate a variant of the balancing method of Mandel and
Brezina [89] for mortar finite elements. The balancing method is a hybrid nonover-
lapping Schwarz method of Neumann-Neumann type. An important role is played
by the counting functions associated with the boundary nodes of each subregion.
They indicate to how many local spaces a node on the interface belongs, and are
used to construct the local approximate solvers and a coarse space of minimal
dimension. In the mortar case, the values of a mortar function on a nonmortar
side depend on its values on the mortar sides opposite the nonmortar. In our
algorithm, we choose to extend the local spaces to capture this feature. We also
change the counting functions, which are now associated to the number of local
spaces to which a boundary node belongs. We prove an upper bound for the con-
dition number of our balancing algorithm for geometrically nonconforming mortar
case, which is of the same form as the condition number estimates for other domain
decomposition methods for mortars; see, e.g., Achdou, Maday, and Widlund [3]
and Dryja [46].

Another part of our work is concerned with establishing several fundamental



properties of mortar finite elements. We present these results in Chapter 4.

By using a combinatorial argument, we prove the existence of the nonmortar
partition of any interface, in two and three dimensions, for general geometrically
nonconforming partitions.

The mortar projection is the operator which gives the values of the mortar
finite element function at the interior nodes of a nonmortar as obtained from the
mortar conditions. We show that the mortar projection is stable in L? for arbitrary
meshes on the nonmortar. The constant in the stability inequality depends only
on the polynomial degree of the finite element space on the nonmortar, and does
not depend on the properties of the nonmortar mesh.

Another important issue in the study of mortar methods is to compare the
condition numbers of the stiffness matrices of the discretized system, obtained when
using mortar and continuous elements. For a geometrically conforming partition,
it has been shown by Bernardi and Maday [10, 11] that the condition number
behaves as in the continuous case. We show that the same result holds for the
geometrically nonconforming case, by proving a Friedrichs-type inequality for the
mortar functions. The same type of arguments also lead to a proof of a Poincaré-
type inequality for mortar finite element methods.

The L? stability result of Section 4.2 has appeared as a technical report [123].
The Friedrichs and Poincaré inequalities for mortars have also appeared as a tech-
nical report [124] which has been submitted for publication. The numerical results
for two dimensional problems of Chapter 5 appear in papers written jointly with
Axel Klawonn [125, 126], the first of which has been accepted for publication in [82].

In the remainder of this chapter, we give a brief presentation of certain Sobolev
spaces and some of their properties. In Section 1.3, we present the variational for-
mulation of our elliptic boundary values problem, and, in Section 1.4, we describe
the finite element spaces we considered in this thesis. We conclude the chapter
by presenting, in Section 1.5, some technical results on Sobolev norms for finite
element functions which are often used in the analysis of domain decomposition
methods.



1.2 Sobolev Spaces

Sobolev spaces are essential tools in solving elliptic partial differential equations.
Using the variational formulation of the PDE, the existence of a generalized so-
lution in the appropriate Sobolev space can be established by using variational
methods, in particular the Lax-Milgram lemma. Regularity results are also ex-
pressed by bounding the Sobolev norm of the solution of the PDE in terms of the
Sobolev norm of the boundary data and the right hand side; cf. [29, 86].

In this section, we present some basic results on Sobolev spaces, which are used
in the study of domain decomposition methods, and are relevant for this thesis.
We restrict our presentation to the spaces we need in our work. For a description
of the general spaces and their properties, see [4, 86, 95].

Let Q C RY, d € {1,2,3}, be a bounded domain with smooth boundary. The

space L?(Q) is defined as the space of square integrable functions,

Q) = {u : [Jullpz = (/ﬂ|u|2dx)1/2<oo}.

Let k be a positive integer. The Sobolev space H*(Q) is the Hilbert space of
functions with weak derivatives of all orders less than and equal to k in the space
L?(2). In particular, the inner product on H'(€) is

(u, V) g1(0) :/uv dx + /VU-VU dx.
Q Q

The H'-seminorm and norm of u € H'(Q) are, respectively,
iy = [ 1V do
||U||§11(Q) = |U|§11(Q) + ||U||%2(Q)-

Of particular interest for domain decomposition methods, see, e.g., [52], is the

scaled norm obtained by dilation of a domain of unit diameter,
2 2 1 2
ullf) = lulp@ + WHUHLQ(Q)a (1.1)

where diam(2) is the diameter of €.



The Sobolev spaces can also be defined as the closure of C*°(2) in the cor-
responding norm, e.g., H'(Q) is the closure of C*°(Q) with respect to || - || #1(q)-
Let C§°(2) C C*°(Q) be the set of smooth functions with compact support. The
subspace Hj(Q2) C H'(Q2) is the closure of C§°(Q2) with respect to || - |[g1(q), and
consists of all the functions from H'(£2) which vanish on 92 in the L? sense.

The following lemma gives necessary and sufficient conditions for a piecewise
H' function to be H! on the entire domain. The proof is elementary, and is based

on Green’s formula; cf. [41].

Lemma 1.1. Let {Q;}i—1.x be a nonoverlapping partition of the domain 2, and
let u be a function defined on Q such that w € H'(;), i =1: N. Thenu € H'(Q)
if and only if the jump of u across the interface between the subregions {Q;}iz1.n

vanishes in the L? sense.

On the entire space RY, another way to introduce the Sobolev spaces is by
using the Fourier transforms; see [63] for more details. In this setting, let Fu be

the Fourier transform of u, and let

(Fu)(€) = 1+ [CP"*a(C).

Then u € H*(R?) if and only if Fu € L?(R?), and

HUHHS(Rd) = ||7:UHL2(Rd)-

We note that this definition holds for every real number s € R. For negative
numbers, the space H~*(R%) is isomorphic to the dual space of H*(R?) with respect
to the inner product

<u,v> = (Fu, Fv)ema). (1.2)

The fractional Sobolev spaces on bounded domains are introduced in a slightly
different way. If k is a positive integer, then H*(Q) is the dual space of H}(Q)in
the L? inner product; see (1.2). Let s € R such that s is not an integer. Then,
H*(Q) can be obtained from H'*)(Q) and H'*1(Q) by using the K-method of inter-
polation; cf., e.g., Lions and Magenes [86] and Triebel [131]. Alternatively, for s

positive, it follows from an extension theorem that any u € H*(2) can be obtained



as the restriction of & € H*(RY). It also follows from a density result that C5°(R?)
is dense in H*(Q2) .

For the purpose of this thesis, we restrict our attention to the spaces H*({2),
—1 < s < 1. For these spaces, the smoothness conditions imposed on the boundary
of €2 can be relaxed to €2 being a bounded Lipschitz domain, which is satisfied, e.g.,

by polygonal and polyhedral domains.

1.2.1 Trace Theorems

The trace theorems are results concerning the restriction of elements of Sobolev
spaces on a domain to the boundary of the domain. Their duals are the extension
theorems. The following trace theorem will be useful later on; see [4] for the general

theory.

Theorem 1.1. [f Q) is a Lipschitz domain and v € H*(R2), 1/2 < s < 1, then,
You = u |ga€ H12(0Q).

Moreover, the restriction operator from H*(QY) to H*~Y/2(0Q) is onto and contin-

UoUS,

n-1200) < C(s,Q)|[ul

|[voul Hs()5

where C(s,Q) is a constant that depends only on s and §).

The next theorem is a variant of Theorem 1.1, for functions in H*(£2). We
consider the norms given by (1.1), such that the dependence of the constants on

the domain €2 can be specified.

Theorem 1.2. If 2 is a Lipschitz domain, then

|“|12Hl/2(aﬂ) < C|“|?{1(Q)>

and
1

lolfison < € (dian(@luling + g osllvllim )



Let A C 09 be a subset of the boundary of €0 of positive measure. Then
H*'Y2(A) is the trace space of H'(Q2) on A. As we mentioned before, the fractional
Sobolev spaces can also be obtained by using the K-method of interpolation. Thus,
HY2(A) = [L*(A),H'(A)]1/o. The scaled norm on H'/?(A) given by K-method
interpolation is equivalent to

1
lullFaey = lTuliz) + muu“%%/\)-

Let Hy)”(A) = [L2(A), H(A)]1/2 be a space obtained by the K-method of in-
terpolation. This space plays an important role in the analysis of the domain
decomposition methods. It can also be characterized as the maximal subspace of
H*'Y2(A) of the functions which will belong to H'/2(92) when extended by zero to
the rest of Q. We note that the embedding Hl*(A) C HY2(A) is strict. The
appropriate norm for this space is

u?(x)

2 _ 2

The last term comes from the part of the H'/?-seminorm of u corresponding to
O\ A, where u vanishes by definition. From the intrinsic formula for the H'/2

seminorm, it follows that

u(a)

2 2 u(z) — u(y)? /
_ . 2 = I do,d ——— = do,. (1.
||u||H352(A) a2y + /A/A z — y[d w0y + A d(x, 0N) % (13)

1.2.2 Poincaré and Friedrichs Inequalities

The Poincaré and Friedrichs inequalities provide simple equivalent norms for spaces
like H} and H', and are used to derive convergence and condition number estimates
for finite element methods. They can be proven using the Rellich compactness
theorem and the completeness of Sobolev spaces; see [41, 96].

We are interested in formulations of the inequalities specifying the dependence
of the constants on the domain Q; see [96] for elementary proofs. We introduce
the following notations: Let Qc R?, d € {2,3}, be a reference Lipschitz domain of
unit diameter, and let §2 be a domain of diameter diam(€2) obtained by a uniform
dilation of €.



Theorem 1.3. (Poincaré’s Inequality) There exists a constant C' that depends

only on ﬁ, such that

: 1 2
||u||%2(9) < C’(dzam(Q)2|u|12gl(Q) + W‘/ﬂudw‘ ), Yu € H'Y(Q).
Theorem 1.4. (Friedrichs’ Inequality) Let ¢ > 0 and let A C 9 such that
cu(09) < p(A),

where p is the Lebesque measure. Then,

1

2 : 20,12
ullF20) < C<dwm(9) ulfre) + 2 diam(Q)1?

2
/uda’ ). Vue H'(9),
A
where C'is a constant that does not depend on u, ), A, or c.

Let A C 02 and let
Hyn(Q) = {ue HY(Q) |y, =0} (1.4)
The next corollary follows directly from Theorem 1.4.

Corollary 1.1. If u(A) > 0, then the H'-seminorm is an equivalent norm on
H&A(Q), i.e.,
lullze) < Clulm),  Yu € Hy(Q).

1.3 Variational Formulation of Elliptic Problems

The variational methods are used extensively in solving self-adjoint elliptic PDEs,
see, e.g., [29, 63, 96], and they are fundamental for the finite element methods;
see [27, 41]. To simplify our presentation, we only discuss the Poisson problem on
a domain €2, with mixed Neumann-Dirichlet boundary conditions.

Let 02 = 0Qn U 0Qp, where 002y and 0Qp are the parts of the boundary
where Neumann and Dirichlet boundary conditions are imposed, respectively. For

unique solvability, we require that 0{2p has positive Lebesgue measure.

10



Let f € L*(Q), and let H{ 5, () be defined as in 1.4. We look for a solution
u € Hj 5o, (Q) of the mixed boundary value problem

—Au = f on

u = 0 on 09p (1.5)
% = 0 on 00y.

A simple application of Green’s theorem will result in
a(u,v) = f(v), Vve HolyagD(Q), (1.6)
where
a(v,w) = / Vu-Vwdr and f(v) = / fv dx.
Q Q

A solution u of (1.6) is called a weak solution of the mixed problem (1.5). The
main ingredient in the proof of the existence and uniqueness of a weak solution is

the Lax-Milgram Lemma.

Lemma 1.2. (Lax—Milgram [83]) Let X be a Hilbert space and let ax : X x X — R
be a bilinear form. If ax(-,-) is continuous and coercive, i.e.,
dlz||% < ax(x,z), VzelX,
ax(r,y) < Cax(x,2)"ax(y,y)'? Va,yeX,

where ¢,C' > 0, then for every continuous functional T : X — R there exists a

unique solution xp € X such that
ax(zr,z) = T(x), VrelX.

The continuity of ax(-,-) follows from the Schwarz inequality. Using Corol-
lary 1.1, we obtain that a(-,-) is coercive. The existence of the weak solution u of
(1.6) can therefore be established by using Lemma 1.2. From a classical regularity
result, see [86], we obtain that, if © is bounded and regular enough, e.g., a C*
domain, then u € H*(Q) and

l[ullg2) < Cllfllez @),

where C' depends only on (). Using once again Green’s theorem we obtain that

any weak solution u € H?(f2) is a solution of the mixed problem (1.5).

11



1.4 Finite Element Methods

The main difficulty in any study of mortar finite elements comes from the fact
mortar elements are discontinuous across subdomain interface. To concentrate on
this problem, and simplify our presentation, we consider only low order mortar
elements. The underlying conforming finite elements are )1 or P; elements on
rectangular domains. In this section, we give a brief presentation of these elements.

Let K C R%. A rectangular grid on K provides a triangulation of K, which
is required to be shape regular, i.e., the ratio of the largest and smallest side of
each rectangle is uniformly bounded from above. The restriction of Q;(K) to each
rectangle is a bilinear function, with four degrees of freedom. Enforcing pointwise
continuity at the nodes of the rectangular grid results in uniquely determined
continuous functions.

The three dimensional elements are defined in a similar fashion, using paral-
lelipipeds, and can be extended to affine deformations of parallelipipeds.

The P; elements can be defined, in two dimensions, on arbitrary polygonal
domains K partitioned into triangles. The restriction of P;(K) to each triangle is
a linear function with three degrees of freedom, i.e., the values of the finite element
function at the vertices of the triangle. As for )y functions, enforcing pointwise
continuity at the nodes of the partition of I results into uniquely determined
continuous functions. In three dimensions, the P; elements are defined similarly,
using tetrahedra for the partition of /.

We note that, in two dimensions, both P; or (); elements results into identical
projections across the interface, since the restriction of either P;(K) or Q1 (K) to

OK is a piecewise linear function of the mesh partition of OK.

1.5 Cutoff Estimates

A result which is often needed in the analysis of domain decomposition methods,
e.g., of substructuring methods, is a bound for the energy of a finite element
function which has been cut down to zero at all nodes except for one vertex, or for

the nodes on one side of the domain, in terms of the energy of the original function;
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see, e.g. [23, 48, 89]. In the next lemma we present a classical polylogarithmic

bound of this type, which will be used in Chapter 5 and in Chapter 6.

Theorem 1.5. Let D be a rectangle of diameter H, and let V" be a low order
finite element space over D, with mesh size h. Let w € V" and w € V(D) such

that w is equal to w |pp at all the interior nodes of one side of D and vanishes at
all the other nodes. Then,

~ 9 1
181 nopy < CCO+log(H/M)? (10l aopy + 21wl Baon) )

~ 1
#1200y < CU+log(H/MY (W) + 5l ).

If w vanishes at all the nodes of D, except at one vertex, where it is equal to w,
then

~ 1
||w||§{1/2(ap) < C(1+log(H/h)) <|w|§{1/2(ap) + EHMH%Q(E)D))?

~ 1
@10y < CO+log(H/R) (Jwliw, + w5llwltm) )

We note that, in each case, the second inequality follows form the first one, by

using the trace Theorem 1.2.
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Chapter 2

Mortar Finite Elements

2.1 Introduction

Mortar finite elements are nonconforming finite element methods that allow for
nonconforming decomposition of the computational domain into subregions and for
the optimal coupling of different variational approximations in different subregions.
Because of these features, the mortar elements can be used effectively in solving
large classes of problems.

The mortar finite element methods were first introduced by Bernardi, Maday,
and Patera in [13, 14], for low-order and spectral finite elements. A three dimen-
sional version was developed by Ben Belgacem and Maday in [9], and was further
analyzed for three dimensional spectral elements in [8]. See also Seshaiyer and
Suri [117, 118] for mortar hp finite elements, Hoppe [72], Ben Belgacem, Buffa,
and Maday [5], and Buffa, Maday, and Rapetti [30] for mortar H (curl) elements.
Cai, Dryja, and Sarkis [33] have extended the mortar methods to overlapping de-
compositions, and another family of mortar elements has recently been introduced
by Wohlmuth [138].

Several domain decomposition methods for mortar finite elements have been
shown to perform similarly to the case of conforming finite elements; cf. Achdou,
Maday, and Widlund [3] and Dryja [44, 45] for iterative substructuring methods,
Widlund [134] for additive Schwarz algorithms, Dryja [46], Le Tallec [84], and Le

Tallec, Sassi, and Vidrascu [85] for Neumann-Neumann algorithms, and Lacour

14



and Maday [81] and Klawonn and Stefanica [126] for the FETI method. For other
studies of preconditioners for the mortar method, see Casarin and Widlund [36]
for a hierarchical basis preconditioner, Achdou, Kuznetsov, and Pironneau [2], and
Achdou, and Kuznetsov [1] for iterative substructuring preconditioners. Multigrid
methods have also been used to solve mortar problems; cf. Braess, Dahmen, and
Wieners [18], Braess, Dryja, and Hackbusch [19], Wieners and Wohlmuth [136,
135], and Wohlmuth [139].

2.2 2-D Low Order Mortar Finite Elements

To introduce a mortar finite element space, the computational domain €2 is decom-

posed using a nonoverlapping partition {€2;},—1.n, consisting of polygons,
Q={J% Q4 %=0 if 1<j#k<N

As in Section 1.3, let 0Q2p be the part of 02 where Dirichlet conditions are
imposed. If an edge of a polygon intersects 0§2p, we require that the entire edge
belongs to d€1p. The partition is said to be geometrically conforming if the inter-
section between the closure of any two subregions is either empty, a vertex, or an
entire edge, and it is nonconforming otherwise.

The interface between the subregions {2;},—1.5, denoted by I', is defined as the

closure of the union of the parts of {0€2;},_1v that are interior to §2:

[ =UN, (09, \ 09).

Alternatively, I' can be defined as the set of points that belong to the boundaries
of at least two subregions.

We denote by V" be the space of low order mortar finite elements, and by
Vh(S) the restriction of V" to a set S. For every subregion Q;, V"(£2;) is a con-
forming element space. The mortar elements are nonconforming finite elements,
since pointwise continuity is not required across I'. Instead, we choose a set of

open edges (7;),_1z of the subregions {2;};—1.n, called nonmortars, which form a
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Figure 2.1: Partition of I' into nonmortars (dotted)

,,,,,,,,,,,,,,,

disjoint partition of the interface,

L
FIUWla Vmﬂ’}/n:@ if 1§m7én§L;
=1

see Figure 2.1. We impose weak continuity conditions for the mortar finite element
functions, in the sense that the jump of a mortar function across each nonmortar
is required to be orthogonal to a space of test functions.

In Section 4.1, we prove that a nonmortar partition of the interface is always
possible. The partition is not unique, but any choice can be treated the same from
a theoretical point of view.

The edges of {Q; };—1.n that are part of I and were not chosen to be nonmortars

M

are called mortars and are denoted by {(y}m_;- We note that the mortars also
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cover the interface:

CnNG =0 if 1<m#n<M.

Il
1Cs
o~

Each nonmortar 7; belongs to exactly one subregion, denoted by €2;;). Let I}

be the union of the parts of the mortars that coincides geometrically with 7,.

q(m)
I = U (le N%). (2.1)
i=1
For each 7y, we will choose a space of test functions W”(vy;) which is a subspace
of V"(v,), the restriction of V"(€;)) to v, and which is of codimension two. Thus,
when the space V() is piecewise linear, i.e., Pi(Qq) or Qi(Quiqy), U"(v) is
given by the restriction of V"(£;;)) to 7, subject to the constralnts that these con-
tinuous, piecewise linear functions are constant in the first and last mesh intervals
of 7.
The mortar projection on 7; is defined on all of L?(T;) and takes values in
Vh(’yl). For two arbitrary values ¢; and g9, and for u; € L2(Fl), the function
To.00(1) € VP(7;) equals ¢; and go at the two end points of 7;, and satisfies

/(ul — g0 (W))ds =0, Vip € \I/h(%). (2.2)

"

We are now able to define the mortar finite element space V" fully. Any mortar
function v € V", vanishes at all the nodes on 9Qp. The restriction of v to any
Q; is a P, or a () finite element function. Across the interface, we require v to
satisfy the mortar conditions for each nonmortar 7, i.e., v}, 18 equal to the mortar
projection of v|. . The values of v at the end points of 7, (denoted by 4; and B)

are genuine degrees of freedom:

Y5, = ﬂ-vl(Al)yUl(Bl)(/U‘Fl)‘

Since V(€;) € H'(€;), we obtain, from Theorem 1.1, that the restriction of a
mortar function v to any nonmortar ; belongs to the space H'/?(v;). Then, the
test functions space ¥"(v;) may be embedded in the dual space of H'/2(v;) with
respect to the L? inner product, and therefore W"(y,) C H=/2(y;).
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Figure 2.2: Test functions; classical mortars—left; new mortars—right

Based on this observation, a space of discontinuous piecewise linear test func-
tions W”_ (7;) for low order mortars has been developed by Wohlmuth [138].

There, the test function associated to the first interior node on ~; is constant
1 on the first mesh interval, decreases linearly from 2 to —1 on the second mesh
interval, and vanishes everywhere else. A similar test function is considered for the
last interior node on ~;. For any other node on -, the test function corresponding
to such a node has the support on the two mesh intervals having the node as an
end point; it increases linearly from —1 to 2 on the first interval and decreases
from 2 to —1 on the second interval; cf. Figure 2.2.

The new mortar space has similar approximation properties as the classical
mortar space; cf. [138]. In a recent paper [140], multigrid methods for the new
mortar methods are introduced and analyzed.

A major advantage of the new mortar finite element space is that the mortar
projection can be represented by a banded matrix, as opposed to the classical
mortar finite element method, where the mortar projection matrix is, in general,

a full matrix; see Section 2.2.1 for more details.
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2.2.1 Matrix Formulation of the Mortar Conditions

From the mortar conditions (2.2), it follows that the interior nodes of the nonmor-
tar sides are not associated with genuine degrees of freedom in the finite element
space V". To emphasize this aspect, we present here the matrix formulation of the
mortar conditions.

Let v be an arbitrary nonmortar side, and let u be a mortar function. Let u,
be the vector of the interior nodal values of v on ~. For simplicity, we assume that
the mesh is uniform on +, of mesh size h. Let ur(,) be the vector of the values of u
at the end points of v and at all the nodes on the edges opposite v, such that the
intersection of 7 and the support of the corresponding nodal basis functions is not
empty. Then u, is uniquely determined by ur(,), and the mortar conditions (2.2)

can be written in matrix form as
Mvuy — N,Yur(,y) = O, (2.3)

solving for u.,
Uy = Pyurg), (2.4)

with P, = M;lNW.
We note that N, is a banded matrix with a band of similar size for both the
classical and the new mortars. For the classical mortar method, M, is a tridiagonal

matrix,

1
1 4 1

and the mortar projection matrix P, is a full matrix. The projection of a nodal
basis function from the mortar side, i.e. u;r has all entries equal to 0, except for
one, which is equal to 1, results in a function with support equal to v, the nodal
values of which decay exponentially to 0 at the end points of ~.

For the new mortar method, M, is a diagonal matrix,



and P, = N,/h is banded. Therefore, the mortar projection of a nodal basis
function on the mortar side vanishes outside the mesh intervals on the nonmortar

which intersect its support.

2.3 The 3-Dimensional Case

In this case, the mortars and nonmortars are open faces of subregions, and the
mortar projections are defined differently than in the two dimensional case.

To introduce the mortar finite element space, we follow the outline from the
previous section. Let {€2;};,—1.5 be a nonoverlapping polyhedral partition of Q2. If a
face or an edge of a polyhedron intersects 0€1p at an interior point, then the entire
face or edge is assumed to belong to 9€2p. The partition is said to be geometrically
conforming if the intersection between the closures of any two subregions is either
empty, a vertex, an entire edge, or an entire face, and it is nonconforming otherwise.

The nonmortars {F;}%, are faces of the subregions {{2;},—;.n, such that

L
P=JF, FunFu=0if 1<m#n<L;
=1
see Section 4.1 for a proof of the existence of such partition. The mortars are the
faces which have not been chosen to be nonmortars, and their closures also cover
the interface.

Across each nonmortar face F;, we impose mortar conditions as follows. Op-
posite F; we find a union of parts of mortar faces which we denote by G;. We note
that G, coincides geometrically with ;. Let W"(F;) C V*(F)) be the test function
space. The value of a test function at a node on 0F; is a convex combination of its
values at the neighboring interior nodes of F;. Thus, the weights are positive and
their sum equals one, but they are otherwise arbitrary. The dimension of ¥"(F))
is equal to the number of interior nodes of F;.

The mortar projection on F; is defined on all of L*(G;) and takes values in
VR(F). Let u; € L*(G;), and let w; be a piecewise linear function defined on 0.F.
Then 7, (w) € V*(F) is the mortar projection of wu; if

T, (W) loF, = wy, and (2.5)
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/f(ul — T, (W) Yds = 0, Ve \Ilh(%). (2.6)

The mortar finite element space V" consists of functions v which vanish at all
the points of 0€2p Its restriction to any €2; is a P; or a ()1 finite element function.

We also require v to satisfy the mortar conditions for each nonmortar F, i.e.,

Uz = Tolos, (U\fl)'

From the definition of the mortar projection, cf. (2.5), (2.6), it follows that the
values of v at all the boundary nodes of the nonmortars are genuine degrees of
freedom.

We conclude this section by noting that a version of the new mortars for the
3-D case has been developed by Wohlmuth and Krause [140].

2.4 Stability Properties of Mortar Projections

The discontinuity of the mortar functions across the interface is the main difference
between mortar and conforming finite elements. To show that mortars perform
similarly to the conforming finite elements, we need estimates for the jump of the
mortar function across an arbitrary nonmortar side. Since the jump is given in
terms of the mortar projection, it is important to establish stability properties of
the mortar projections in several norms, for different mortar finite elements.

In this section, we present some classical stability results for low order mortars,
which are valid in both two and three dimensions. In Section 4.2, we show that
the mortar projection with zero values at the end points of the nonmortar side is
stable in the L? norm for arbitrary nonuniform meshes on the nonmortar.

Let v be a nonmortar side, and let V"(vy) be the continuous piecewise linear
space which is the restriction of V" to v. Let m, : L?(y) — V"(y) N H(7) be
the mortar projection operator which vanishes at the end points; cf. (2.2) with
@1 = ¢ = 0 and ™y, = myp. The following stability properties of m, were first
proven for uniform meshes in [13, 14}, and by Ben Belgacem [6, 7] for quasiuniform

meshes.
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Theorem 2.1. The mortar projection m., which assumes values 0 at the end points

of v is stable in the L*-norm and the H}-seminorm,

I (Oll2ey < Clixllzey,  Yx € LP(9);
|7T’Y(X)‘Hé(w) S C’X‘H&(w)a VXEH(%(")/),

where C' is a constant independent of h. By interpolation, a similar bound can be

obtained for the H&éQ norm, i.e.,

1/2
17y 0Ol grray S ClIXl e, ¥x € Hob (7).

Similar results have been proven for mesh-dependent norms in Braess, Dahmen,
Wieners [18], and for the case when the ratio of any two neighboring mesh intervals
over v is uniformly bounded in Seshaiyer and Suri [117]. In the three dimensional
case, the L? stability of the mortar projection which vanishes on the boundary of
the nonmortar side was established by Ben Belgacem and Maday [9].

We note that proofs similar to those for the results of Theorem 2.1 provide
stability inequalities for the more general case when A € H'(7), and 7.,()\) vanishes

at the end points of 7.

2.5 Variational Formulation of Mortar Problems

In this section, we modify the variational formulation of the elliptic problems
discretized with conforming finite elements, see Section 1.3, and apply it to the
mortar finite element case. The main difference comes from the fact that mortar
elements are only piecewise H' functions.

As before, we discuss the Poisson problem

—Au = f on Q

u = 0 on 0Qp (2.7)
% = 0 on 00y.

with f € L*(Q) and u € Hy 5, (€).
We discretize (2.7) using a low order mortar finite element space V" corre-

sponding to the nonoverlapping partition {€2;};,—1.5 of €. Using the fact that
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V() € HY (%), k= 1: K, we obtain
a'(u,v) = f(v), Vve Hy(Q), (2.8)

where the bilinear form a(,-) is defined as the sum of contributions from the
individual subregions

K
at(v,w) = Z Vo - Vuw dz,

k=1 "%
and

flv) = /va dz.

The discrete problem is then:
Find uj, € V" such that a' (up,vs) = f(vn), ¥ v, € V" (2.9)

We note that, for w;, = v;,, we obtain the square of what is often called a broken

norm,
K
(v, v) = Y onlinay-
k=1

Here the norm has been broken along I' and it is finite for any mortar function uy,
even if wuy, is discontinuous across I'.

The existence and uniqueness of the solution of problem (2.9) follows from the
Lax-Milgram Lemma 1.2 as soon as we have proven the coercivity of the broken

norm with respect to the L? norm,
clvallizq) < a"(vn,vn), Vv, eV,

where ¢ is a positive constant. This inequality can be regarded as a Friedrichs
inequality for mortar finite elements, and was first established in [13, 14]; see also
Section 4.3.

2.6 FError Estimates

An important feature of mortar finite elements is that the mortar solution wuy

approximates the exact solution u with the same accuracy as a corresponding

23



conforming finite element solution. The proof we present here follows the same
steps as the proofs in [9, 13], which are given for both the two and three dimensional
elements.

We assume that the exact solution satisfies u € H*(Q2). From the second Strang
lemma, see [127],

K

S [a” (u, wn) — f (wn)
> =il < C( jnf, 3=l + sup )
k=1

REVE wpEVh >k HwhHHl(Qk)

. an Y lwy| do

w wnl |5,

= <1Hf2||u—vh||H1(Qk + sup )), (2.10)
wh

where [wy] is the jump of wy, across the interface. We note that the first term of
(2.10) is the best approximation error, while the second term is the consistency
€error.

The best approximation error can be estimated by using interpolation inequal-
ities for conforming finite elements, see [41], and stability properties of the mortar

projections, see Section 2.4. Thus,

K
3l = vl < Chlullee

To estimate the consistency error, we use the fact that the jump of a mortar

function is orthogonal to the space of test functions. We find

ou

| Gplwnl do < Chllulli) Z||wh||H1(Qk

The following upper bound is therefore established,
K
D lu—unllmy < Chllullaz),
k=1

and it has the same form as for the conforming finite element case.

2.7 Saddle Point Formulation

We use the same notations as in Section 2.2, and concentrate our attention on

the mortar conditions (2.2). Let [v;] be the jump of v, € V" across ;. The test
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functions from the mortar conditions can also be regarded as Lagrange multipliers.

In other words, a function w is in the mortar space V" if and only if

/ [v]ds = 0, (2.11)

for all nonmortar sides v; and for all Lagrange multipliers p; which form a basis
for W"(~;). From the trace theorem 1.2, [v;] € H'/2(7;). Therefore the dual space
H~'/2(v;) is a natural embedding space for ;.

Let M" = [, ¥"(v) C I, H Y2(v), and pj, € M", with pj, = (11)i=1... The

bilinear form b(-, ) is given by

b(vn, ) = Z/['Uh]mds.

Then vy, is a mortar function if and only if b(vs, pp) = 0, Y, € M". The discrete
problem (2.9) can be written in a saddle point (mixed) formulation as follows:
Find (up, Ap) € VP x M" such that

ar(uh, Uh) + b(’l)h, )\h) = fF(Uh), Yoy, € Vh
b(uh,uh) = 0, W W € M.

The saddle point formulation for mortars has been introduced by Ben Bel-
gacem [7], where the Babuska-Brezi condition is also established. Similar results
for mesh dependent norms [137] have been proven by Braess and Dahmen [17],
Braess, Dahmen, and Wieners [18] and Wohlmuth [138].

The saddle point formulation is useful in the practical implementation of mortar
finite elements, since it decouples the nodes on opposite sides across the interface,
and provides a straightforward way to enforce the mortar conditions. The stiff-
ness matrix is then block diagonal, with each block corresponding to a Neumann
problem on one subregion. A mixed formulation along the same lines is possible
for conforming finite elements, when continuity at the matching nodes is required.
One of the domain decomposition methods we present in this thesis, FETI, uses
this saddle point formulation. The primal variables are eliminated and a pre-
conditioned problem is solved for the Lagrange multipliers. Therefore, a FETI

method for mortars can be developed just by replacing the pointwise matching
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conditions across I' of the standard finite element case by the mortar conditions;

see Chapter 5.
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Chapter 3

Domain Decomposition Methods

3.1 Direct vs. Iterative Methods

When solving a strongly elliptic, self-adjoint PDE, the stiffness matrix of the result-
ing linear system is sparse, banded, symmetric, and positive definite. This system
may be solved by using direct or iterative methods. For two dimensional problems,
the work and storage required for direct methods grows moderately with the num-
ber of degrees of freedom. To be more precise, assume we want to solve a Poisson
problem on a rectangular domain using a () finite element with /N nodes on each
side. Let n = N? be the number of the degrees of freedom. Nested dissection
provides an asymptotically optimal ordering of the nodes, and it is therefore an
efficient direct method. The work and storage required are O(n3/2) and O(n logn),
respectively; cf. [66]. Therefore, this and other direct methods are well-suited for
solving two dimensional problems.

For three dimensional problems, the work and storage required by the direct
methods grow much faster, which makes them less attractive. For nested dissection,
the work and storage are O(n?) and O(n*/?), respectively; see [114]. Therefore, in
the three dimensional case, iterative methods, where the solution is obtained as
the limit of a sequence of approximate solutions which are computed recursively,
are more practical.

A class of such iterative methods are the domain decomposition methods, which

provide Krylov space preconditioners for the linear system. The computational
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domain is decomposed into overlapping or nonoverlapping subdomains, and local
spaces are introduced by restricting the finite element space used to discretize the
PDE on each subdomain. In each iteration, a problem similar to the original one
is solved on each subdomain, either exactly or approximately.

Many domain decomposition methods have good parallelization properties since
the local problems can be solved in parallel. If a coarse space with a few degrees of
freedom in each subdomain is used in the design of the algorithms, together with
the local spaces, then convergence can be achieved in relatively few iterations. For a
good method the number of iterations is independent of the number of subdomains

and depends only polylogarithmically on the number of nodes in each subdomain.

3.1.1 Preconditioned Conjugate Gradient Methods

The conjugate gradient (CG) method is an efficient iterative method for solving
linear systems of equations. It requires little storage and, for well-conditioned
problems, converges in relatively few iterations.
When an elliptic self-adjoint PDE is discretized using a finite element space,
the resulting linear system,
Az =0, (3.1)

has a symmetric positive definite stiffness matrix A. A domain decomposition
method will provide a symmetric, positive definite preconditioner M of A. The

preconditioned version of (3.1),
MAz = Mb, (3.2)

is then solved by a conjugate gradient method.
Following [130], we now present the preconditioned CG algorithm for solving
(3.2). We note that the (unpreconditioned) conjugate gradient algorithm can be

obtained from the preconditioned version if we let M = I.
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Preconditioned Conjugate Gradient Iteration

xo=0,179="0,p9o = Mrg,n=1
while (Mr,_1,7r,_1) > tol
Zno1 = Mr,_4
Bn = (#n-1,7Tn-1)/(2n—-2,Tn-2) (B1=0)
Pn = Zn-1+ Bupn (P1 = 20)
= (2n-1,7n-1)/(APn; Pn)
Ty = Tp—1 + Py
Ty = Tho1 — apnAp,
n=n+1

end

Here, (-,-) is the I, inner product. Let ||e||} = (Ae,e), and let k(M A) be the I,

condition number of the preconditioned matrix M A, i.e.,

Amaz (M A)

K(MA) = Ao (MA)°

Then, by a standard error estimate,

2n
MA) -1
oo 2l < 2(%) o = ol

Many domain decomposition methods result in good and robust precondition-
ers, with small condition number x(M A), and require a small number of iterations
until satisfactory convergence is achieved. Also, the preconditioner M is never
formed explicitly, since it is needed only in a matrix vector multiplication. In
domain decomposition, this is done by solving problems similar to the original
problem on small subdomains of the computational domain. In the CG algorithm,
the local problems can be solved in parallel

Modified versions of the CG algorithm are used to solve symmetric indefinite
problems or some special positive definite nonsymmetric problems; see, e.g., Szyld
and Widlund [128]. Nonsymmetric problems can also be solved, e.g., by the GM-
RES method of Saad and Schultz [113] which we will not discuss here.
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3.2 Abstract Schwarz Theory

The general concepts of the Schwarz theory were first introduced by Dryja and
Widlund in [49, 50]. Since then, many domain decomposition methods have been
formulated and analyzed in this framework. We will use this elegant framework
throughout this thesis. In this section, we present the abstract theory, as devel-
oped in Smith, Bjerstad, and Gropp [122]; see also [70, 141, 142] for different
presentations.

Let V be a finite dimensional space, with inner product a : V x V — R, and
let f:V — R, be a continuous operator. We want to find a solution v € V for the

model problem
a(u,v) = f(v), VveV. (3.3)

The space V' is written as a sum of subspaces V; CV,1=0: N,

We note that this sum is not necessarily direct.

Let a; : V; x V; — R, be bilinear forms which are symmetric, continuous, and
coercive. Let T} : V — V; be the corresponding projection-like operators, defined
by

@ (T, v;) = alv,v), Yu; €V, (3.4)

where v € V. Let I; : V; — V', be the embedding operator. Using the operators
T,:V =V, T, = IZTZ-, several methods for solving (3.3) can be introduced, which
result in a preconditioned equation with the same solution u as (3.3).

The additive Schwarz method requires solving
Tasu = Jas) (35)
where
N
TQSZTO—I—Tl—f-...—f—TN and gas:ZIigia
=0
with g; = Tyu. From (3.3) and (3.4) it follows that
ai(givi) = a(Tu,v) = alu,v) = flu), Yuv eV
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Therefore, g, is obtained by solving a set of local problems,
ai(gi,vi) = f(vi), VuweV,
which do not require any knowledge of u.
The equation (3.5) is the preconditioned version of (3.3). Therefore (3.5) is
solved directly by a CG iteration, without any further preconditioning; cf. Sec-

tion 3.1.1 with M = I.

The multiplicative Schwarz method consists of solving
Tmsu = Gms, (36)

where
Tps=1—(I=Ty)...(I =T){I —Tp),
and g,,s is computed without knowing u, by solving N problems of the same form
as (3.4). Since T, is a nonsymmetric operator, the equation (3.6) is generally
solved by a GMRES iteration. Symmetric version of the multiplicative method
have also been suggested, corresponding to the operators
Toms = Tins + Tne = TonoTons}

Tsms - Tms +TT

ms)

where the transpose operator is computed with respect to a(-, -). Because of sym-
metry, the CG iteration can be used with these methods.

We note that, in this abstract setting, the alternating Schwarz method [115]
can be regarded as a multiplicative method.

In practice, the multiplicative algorithms converge faster than the additive
ones, which, in turn, have more potential for parallelization. The hybrid meth-
ods combine good features of the additive and multiplicative methods to obtain
good convergence and parallelization properties. Cai [31] advocates the use of the
operator

YIo+1—(I—-Ty)...(I =TI —Tp),
with 4 > 0 a balancing parameter, and Mandel [89] suggests the operator
To+ (I —=To)(Ty + ...+ Ty),

which is used in the balancing method; see Mandel and Brezina [91].
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3.2.1 Abstract Convergence Estimates

The convergence analysis of the Schwarz methods relies on three assumptions which
must be satisfied, and the parameters therein.

The first assumption requires a stable splitting of V' in terms of the subspaces
(Vi)i=o:n-
Assumption 1: There exists a minimum constant Cy with the property that, for
all u € V, there exist u; € V; such that

N
U= Z Usg,
0=1
and
N
Zdi(ui,uz) < Cia(u,u)
=0
The next assumption quantifies the orthogonality of the subspaces Vi, ..., Vy.

We note that the space Vj is not included in this assumption.

Assumption 2: There exist minimal constants 0 < ¢;; < 1 such that
|a(]ﬂ}i, IjUj)|2 S EZ‘jCL(IZ‘UZ‘,IZ'UZ‘)CL(I]‘Uj, Ijvj), A v; € ‘/Z‘, (% c ‘/ja Z,j =1: N,

and let p(e) be the spectral radius of the matrix e = {e;;};_;.
The final assumption requires the existence of a lower bound for the norm given
by @;(-,) in terms of the norm induced by the inner product a(-, -).

Assumption 3: There exists a minimal parameter w € [1,2) such that
a(Liv;, Liv;) < wa;(vi,v;), Vv €Range(T;), Vi=0:N. (3.7)

The form of the Assumption 3 presented here has been introduced by Widlund
in [133]. The classical form assumption, see [122], required the bound (3.7) to hold
for all v; € V;. The importance of the modified assumption is emphasized in the
analysis of the balancing method, for both conforming and mortar finite elements;
see Section 6.2.2 and Section 6.5 of Chapter 6.

The classical estimate for k(7,s), the condition number of the additive Schwarz

method, follows from Assumptions 1-3; see [122] for a proof.
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Theorem 3.1. If Assumptions 1-3 are satisfied, then
Ci%a(v,v) < a(Tyv,v) < w(l+ple))a(v,v) VoveV, (3.8)

and therefore
K(Tw) < CRw(l+ p(e).

We note that w and C§ balance each other, in the following sense: If the
approximate bilinear forms a;(-,-) are all multipied by a constant factor fi, then
Assumptions 1-3 hold if the parameters w and CZ are replaced with w/fi and iC,
respectively. Thus, the effect of scaling does not change the value of the product
C2w, which is important given the estimate for x(7T,,) from Theorem 3.1.

The relative scalability of these parameters offers flexibility in choosing the
local approximate bilinear forms @;(-, -) and local solvers T;.

For the multiplicative method, the convergence estimate from the next theorem
has been obtained by Bramble et al. [24]; see also Griebel and Oswald [70] for a

more detailed analysis.

Theorem 3.2. If Assumptions 1-3 are satisfied, then

14 222()C3
2 —w '

R(Tsms) < (3.9)

It is easy to see that if the product C3w is constant, then the right hand side of
(3.9) is minimal for the smallest possible w. We note that this optimality condition

has already been enforced in Assumption 3.

3.3 Several Domain Decomposition Methods

In this section, we present several examples of how the abstract Schwarz theory
can be used to give convergence estimates for various domain decomposition meth-
ods. We restrict the discussion to results obtained for the Poisson problem (2.7)
discretized by conforming finite elements or spectral elements. The changes which
have to be made for the mortar case, and some results we have obtained for those

algorithms are presented in Chapters 5 and 6.
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We begin by specifying the spaces and bilinear forms for some general methods.
The space V' is the finite element space or the spectral element method used to
discretize the PDE, and af(-,-) is the bilinear form obtained from the variational
formulation (2.8) of the original problem.

The spaces V;, ¢« = 1 : N, are local spaces. To construct them, the com-
putational domain 2 is decomposed into subdomains {D;};—1.n, not necessarily

disjoint,
N
Q= J.
i=1

For many domain decomposition methods, V; is a subspace of V' consisting of
functions which vanish at all the degrees of freedom outside D;, Then, [I; is the
embedding operator and @;(-,-) may equal the restriction of a(-,-) to V; x V;, in
which case Assumption 3 is satisfied with w = 1.

The operators T; are given by (3.4). We note that computing T for v eV is
equivalent to solving a problem similar to the original one on the smaller subspace
V;. For all the methods of Section 3.2, in each step of the CG iteration N local
problems must be solved each time the preconditioned operator, e.g., Tys or T},
is applied to a vector.

The space Vj is a coarse space which has a small number of degrees of freedom
in each subdomain. It plays a crucial role in domain decomposition methods,
since algorithms without a coarse space have a condition number, and therefore
a rate of convergence, which depends on the number of subdomains; see [122]
for a detailed explanation. A good coarse space solver provides the mechanism
for global communication of information between subdomains in each iteration.
It is therefore possible for the condition number of the resulting algorithm to be
independent of the number of subregions.

Choosing the appropriate coarse space Vj and a coarse solver aq(-,-) for each
method is critical for obtaining a successful method. In the some cases, the coarse
space is embedded in V', Vj C V, and aq(-,-) = a(-,); see [35, 52|, while in other
cases, Vp might be unrelated to the decomposition {D;},—1.n; see [32, 39, 40].
Then, an operator Qg : V — Vy with good approximation properties is needed in

establishing that the constant Cjy of Assumption 1 is independent of the properties
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of the discretization and of the number of subdomains N.

3.3.1 Overlapping Methods

Assume that the decomposition {D;};—1.x of € is assembled from subdomains
which intersect their neighbors, and let 6 be the minimal overlap of any two sub-
regions with nonempty intersection. The methods using such a decomposition are
called overlapping, and have been proven to have very good convergence properties.
In [52], Dryja and Widlund construct the overlapping subdomains by extending
the subregions of a coarse triangulation partition of 2. Then, the coarse space can
be chosen to be a low order finite element space on the coarse mesh defined by the
nonoverlapping partition of 2. The condition number of the two-level additive and
multiplicative Schwarz methods is bounded from above by C(1 + H/J), where H
is the diameter of the coarse mesh, and C'is a constant independent of the number
of subdomains and the number of nodes in each subdomain. This result is sharp;
cf. Brenner [26].

For non—embedded meshes with a coarse space independent of the overlapping
partition, a similar bound exists; c¢f. Chan, Smith, and Zou [39]. The same bound
holds for the p-version finite element method spectral elements; cf. Pavarino [101,
102], Casarin [34, 35], and Pahl [98].

3.3.2 Nonoverlapping Methods

If {D;}i=1.n is a nonoverlapping partition of 2, there are several nonoverlapping
domain decomposition methods with good convergence properties. The variables
corresponding to the interior nodes of the subdomains are eliminated, which results
in a Schur complement problem for the unknowns corresponding to the interface
nodes.

The substructuring methods, which have been studied extensively by Bramble,
Pasciak, and Schatz [20, 21, 22, 23], involve using a preconditioner where some of
the couplings between nodes are dropped.

Several iterative substructuring method have also been analyzed by Smith [119,

120]. For the vertex-based algorithms, a preconditioner is obtained by dropping the
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coupling between the faces, edges, and vertices of the subdomains {D;};—1.y, while
keeping the coupling between vertices. For the wire basket algorithms, we group
the vertices and edges into a wire basket, and drop the coupling between the faces
and the wire basket, and between pairs of faces. For both algorithms the condition
number is bounded by C(1 + log(H/h))?; cf. Dryja, Smith, and Widlund [48]. For
spectral elements, a polylogarithmic bound, C(1 + logp)?, has been established by
Pavarino and Widlund [103, 104]; see also Bica [15] for a similar result for p-version
finite elements.

The Neumann-Neumann methods are nonoverlapping additive Schwarz meth-
ods where the local problems are Neumann problems on each floating subdomain,
i.e. subdomain the boundary of which does not intersect d€1p. The local solvers
can be defined by weighted H' inner products on each subdomain. In [53], Dryja
and Widlund proved that the condition number for optimal Neumann-Neumann
methods is bounded by C(1 + log(H/h))?, and in [28], Brenner and Sung have
proved that this bound is sharp. The balancing method of Mandel and Brez-
ina [89, 91] is a hybrid method of Neumann-Neumann type using a special space of
so-called balanced functions; see Chapter 6. The same condition number estimate,
C(1 + log(H/R))?, also holds for the balancing method.

The FETT method of Farhat and Roux [61, 62] is a Lagrange multiplier based
iterative substructuring method. We will present it in great detail in Chapter 5.
The condition number of this method is of order (1 + log(H/h))® for a general
partition, and (14-log(H/h))? for a partition without crosspoints, i.e., points which
belong to the boundary of more than two subdomains; cf. Mandel and Tezaur [93].
Another FETT method which has a condition number of order (14 log(H/h))* for
arbitrary partitions has been recently suggested by Klawonn and Widlund [78].

Other nonoverlapping methods exist, but they will not be discussed in any
detail in this thesis; see, e.g., the multilevel Schwarz methods [51, 47, 143, 144].

Many decomposition methods have been extended to other elliptic problems,
like linear elasticity and plate and shell problems; see, e.g., [25, 55, 94, 75, 76, 77,
105, 106, 121].
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Chapter 4

Some Properties of Mortar Finite
Elements

4.1 The Existence of the Mortar Partition

In the geometrically conforming case, when each edge or face has exactly one edge
or face opposite, the interface can be partitioned into nonmortars by choosing
either one of those two sides as a nonmortar.

In this section, we prove the existence of the nonmortar partition in the ge-
ometrically nonconforming case. We first discuss the two dimensional case, and
then indicate how our proof can be extended to three dimensions. We use the
same notations as in Section 2.2. Let I' be the interface between the subregions
{Q}iz1.v, and let af, 1 < j < ny be the open sides of the subregion €, which do
not intersect 0. Let & be the set of all the sides, and let

K N

S = UUJ?.

k=1 j=1

Since I' = S, it is enough to find a nonmortar partition of S.

Let 0 € G be an arbitrary side. We assume, for clarity reasons, that o is
parallel to the x-axis. Let A, and B, be the left and right end points of o; cf.
Figure 4.1. The support of o, supp(o), is defined as follows: let d, be the line
passing through o, and let C, be the leftmost point on d, such that A,C, is a
union of sides from &. Similarly, let D, be the rightmost point on d, such that
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Figure 4.1: Support of side o

B, D, is a union of sides from S. The points C, and D, exist since {2 is bounded
and there is a finite number of sides in &. The open segment C, D, is called the
support of . We note that it is possible for several sides to have the same support,

but the support of any side is unique.

Theorem 4.1. For any partition {;}i—1.n of , there exists a decomposition of

the interface I' into nonmortars.

Proof. Let o1 be an arbitrary side, and supp(oy) its support. Let S; = S\supp(oy).
Using an inductive process, we may choose an arbitrary side 0,41 from S,, p > 1,
and define

Spr1 = Sp\SUpp(Up+1)-

Then,
p+1

Sp1 = S\ U supp(o;).

j=1
Since the number of sides from & is finite, after a finite number of steps, P, the

set Sp will be empty, Sp = (). Therefore,
P

S = U supp(op). (4.1)
p=1
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We now show that the union in (4.1) is disjoint. We prove, by contradiction,
that
supp(o,) Nsupp(o,) = 0, V1<qg<r<P. (4.2)

If (4.2) does not hold, then there exist ¢ and r such that

¢ = supp(o,) Nsupp(ay) # 0,

where 1 < ¢ < r < P. Since all the support segments are open, ¢ is an open
segment. Note that & C S. Then there exists 0 € & such that o N # (), and

therefore
o Nsupp(o,) #0; o Nsupp(o,) # 0.

From the definition of supp(c), it follows that

supp(c) = supp(o,) = supp(oy). (4.3)

Since q < r,
supp(o,) C S,—1 €S, C S\ supp(oy). (4.4)

From (4.3) and (4.4),
supp(oy) C S\ supp(ay),

which is a contradiction. Our claim (4.2) is therefore proven.

Since I' = S, from (4.1) and (4.2), it is enough if we prove that a consistent
choice of nonmortars can be made for every supp(c,), p = 1 : P. This can be
done, e.g., by choosing as nonmortars all the sides from supp(o,) which belong to

subregions which are on the same side of supp(o,). O

In the three dimensional case, the support of a face ¢ is the union of all the
faces which are coplanar with o, such that supp(o) is connected. Then supp(o)
is a polygon, not necessarily convex, and the supports of two different faces are
either disjoint, or they coincide. The rest of the proof and the choice of nonmortars

follow as in the two dimensional case.
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4.2 L? Stability of the 1-D Mortar Projection

In Section 2.4, we have presented some stability properties for the low order mortar
projections. In this section, we address the issue of the L? stability of the mortar
projection for a more general class of mortar finite elements.

Following the notations of Section 2.2, let V" be the a mortar finite element
space whose restriction to any subregion €2 is a conforming P, or @), finite
element space. The mortar conditions (2.2) across the nonmortars of the interface
correspond to a different mortar projection. More formally, if 7 is a nonmortar side,
let V"(+) be the continuous piecewise polynomial space which is the restriction of
V" to~. We then define the mortar projection operator 7., : L2(y) — V"(v)NH{ (7)
by the following L?-orthogonality condition:

/ (x = (0)ds =0, Vi € ().

Here, x € L?(v) and the test function space W"(v) is the subspace of V"(«y), whose
restriction to the first and last mesh intervals are polynomials of degree 1 less than
the corresponding degree from V" ().

As we mentioned in Section 2.4, the stability of the mortar projection has been
established for various meshes; see Bernardi, Maday, and Patera [13, 14] for uniform
meshes, Ben Belgacem [7] and Braess, Dahmen, Wieners [18] for quasiuniform
meshes. In a more general case, Seshaiyer and Suri [116, 117] give a proof of the
L? stability of the mortar projection, if the ratio of any two neighboring mesh
intervals over v is uniformly bounded. The constant in their bound depends on
the maximum value of that ratio and on m, the polynomial degree.

In this section, we prove that the mortar projection is uniformly stable in L? for
arbitrary meshes, with the constant in the bound depending only on m. Our result
is obtained by refining a method used in Ben Belgacem and Maday [9] for mortar
projections with uniform meshes for three dimensional mortar finite elements.

Before we begin our analysis of the L? stability of the mortar projection, let us
comment on the issue of the H} stability. In [117], Seshaiyer and Suri prove that
the mortar projection is stable in the H} norm, if the ratio of any two neighboring

mesh intervals is uniformly bounded. In [43], Crouzeix and Thomée prove a similar

40



result for the Ly-projection from L?(y) onto V"*(v) N Hi(y). They also show that
the projection is not stable in the H} norm for arbitrary meshes. Therefore, it is
reasonable to believe that some condition on the mesh of 7 is necessary in order

to obtain the H| stability of the mortar projection ..

4.2.1 Technical Tools

The most important result of this section gives a good L? approximation (see
Lemma 4.3 for the precise result) of a polynomial from V"(y) which vanishes
at the end points of v by another polynomial from W”(y). To do so, we need
some results about minimizing the L? norm of polynomials satisfying certain con-
straints. The main idea of the proofs is to use Legendre polynomial expansions
and Lagrange multipliers methods; see, e.g., [12] for elementary properties of the
Legendre polynomials.

For simplicity, we only work with odd degree polynomials. Similar estimates

and results can also be derived for even degree polynomials.

Lemma 4.1. Let P be a polynomial of degree 2n+1 on [—1, 1], with P(—1) = ¢,
and P(1) = c¢o. Then

2(c2 4+ 3)(n+1) + 2¢1c9
(n+1)2n+1)(2n+3)

il}l,f ||P||%2(71,1) =

Proof. We write P in the basis of Legendre polynomials,

2n+1

P(z) = Y aLg(x). (4.5)

k=0

Since Li(1) = 1 and Ly(—1) = (—=1)*, the conditions P(—1) = ¢; and P(1) = ¢,
can be expressed as

2n+1 2n+1

Z ar = ¢y, and Z(—l)kak =y,
k=0 k=0

or, equivalently:

> = A5 (4.6
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- Coy — C
Dama = T (4.7)
k=0

The Legendre polynomials are orthogonal in the L? inner product, and
1
2 _
HLkHL2(—1,1) - m

Therefore
2n+1

2
1Pl = 3 555 L (43)

Therefore, we can split our minimization problem into two subproblems, corre-

sponding to the even and odd degree coefficients, respectively, which will be solved
in a similar fashion.

For the subproblem corresponding to {as }r—0.n, We want to minimize

£ 2k +1/2

subject to the constraint (4.6). From Schwarz’s inequality, we find

Gowtip) (o) = (Safip) e

n

> (Za%)z = 7(01262)2.

k=0

We note that, in Schwarz’s inequality there exist coefficients as, £ = 0 : n, such
that equality is realized. Therefore,

n

: ajy, (c1+¢ca)
min = . 4.9
Za2k=(cl+@)/2§ 2k+1/2 2(n+1)(2n+1) (4.9)

Similarly, for the problem corresponding to {ask+1 }r=0.n, We obtain:

& a’%k‘+1 _ (02 - 01)2 (4 10)

min = .
Za2k+1 (CQ Cl /222k+3/2 2(7’L+1)(2n+3)

Adding (4.9) and (4.10), we obtain:

2(c2 4+ c3)(n+1) + 2¢1¢o
(n+1)2n+1)(2n+3)

i%f HPH%?(—M) =
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Lemma 4.2. Let P be a polynomial of degree 2n+1 on [—1, 1], with P(—1) = 0
and P(1) = ¢y. Expand P in the Legendre polynomials basis and assume that as, 1,

the coefficient of the highest degree term in the expansions, is given. Then

' 2(2n+3)(n+ 1) 2C209p41 ‘3
Fl1P|12, S - " —— (411
1y P22 a2"+1n(2n +1)(4n + 3) n(2n + 1) * 2n(2n + 1) (4.11)

If the value of P at —1 is no longer required to be 0, then

8(77/ + 1)2 4620,2 1 2C2
2 n-+ 2

— + . (412
@2n+1 (4n+ 3)(2n + 1)? (2n + 1)2 (2n + 1)2 ( )

igf ||P||%2(71,1) =

Proof. Writing P in the Legendre basis as in (4.5), and imposing P(—1) = 0 and
P(1) = ¢y, we obtain

2n

2n
A2pn+1 + Z ap = Cg, and — A2n+1 + Z(_l)kak = 0.
k=0 k=0

Since ag,.1 is fixed, we can solve for Y ag, and > agyyq:

n

n—1
Ca d Co — 202,41
Qo = 57 an A2k+1 = f
k=0 k=0

2n+1  al
k=0 k+1/2°

the sums of the odd and even terms, respectively, are kept constant. Using that

In Lemma 4.1, we have solved the problem of minimizing > when

result and (4.8), we obtain

inf ||PH2 a2 1 N 2 N (¢o — 2a0p41)>
P L2(—1,1) 2 on +1) +1/2 2(n+1)2n+1) 2n(2n + 1)
2 2(” + 1)(2n + 3) 262a2n+1 C%

Yt On+ 1)(An+3)  n@n+l) | 2n(n+l)
If the value of P at —1 is no longer fixed, then the only condition that the
coefficients {ay }r—0.2, must satisfy is

2n

E A = Co — Q2p+1-

k=0
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Using once again Schwarz’s inequality, and without splitting the problem into two

cases, we obtain:

2n 2 2TL+ 1>2 2n )
k1 2) - ( ) > ,
(Zk+1/2) <kz; +1/ Zk—l—l/Q 2 = (kz%a’“)
which can be written as:
27’L 2 27’l 2
az; 2 9 2(co — agny1)
> — A7 Pondl)
Zk+1/2 = (2n+1)2 (2 a) (2n +1)2
k=0 k=0
Therefore:
2n+1
||P| |22 _ Z 2a%n+1 2(62 - a2n+1)2
=11 k:+ 1/2 ~ 4n+3 (2n +1)2

Since in Schwarz’s inequality there exist coefficients ax, k = 0 : 2n such that

the equality is realized, we conclude that there exists a polynomial P such that

2a3 2(c2 — agpi1)?
. 2 - 2n+1 2 2n+1
1r}1)f ||P||L2(71,1) = in+3 (2n 4 1)2
_ 2 8(n+1)? At 2c2
T Un £ 3) 20+ 12 2n+1)2 0 (2n+ 1)

O

The next lemma is the main result of this section. We introduce the following
notations. Let v = [a,b] be a segment partitioned into intervals {I;};—1.(v+1),
I; = (xj1,2), with a = 29 < 21 < ... < xyqy1 = b, and let h; = x; — x4,
for j =1: N+ 1. Let {m;};=1.(v4+1) be a set of positive integers. We define the

piecewise polynomial spaces V" () and ¥"(v) as follows:

Vh(7> = {U S C<Oa 1); Ulfj € ij(jj)a Vj=1:N+ 1}7 (4'13)
Ut(y) ={v e C(0,1); | € Pn,(I;), Vj=2:N;
oy, € Poya(l)), JE{LN+1}} (414)
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Lemma 4.3. Let mx € V(y) N HY (7). Then there exists a function x5 € W ()
and a constant 0 < C(m) < 1, depending only on my and my1, and not on the

partition of v, such that

[[mx = xnllz2ey < Clm)||7x]|L2e)- (4.15)

More precisely,

1\ V2 1\ 12
C(m) = maz{(l—ﬁ%) : (1_m?\7+1) }

Proof. We will choose y; to be equal to my on all of the partition intervals except

for the first two and the last two intervals. If we look for x; equal to mx on all the
intervals except the first and last ones, it can be proven that the best constant M
in (4.15) would depend on hy and h;, which we want to avoid. Since x; will be
defined in a similar way at both ends of v, we only present the construction of y,
on Iy = (xg, 1) and Iy = (x1, z3).

We may assume, without any loss of generality, that m; and msy are odd, i.e.,
my = 2n; + 1 and my = 2ns + 1; similar results can be obtained for all the other
cases. Let f; = mx(z1) and By = mx(z2). Note that mx(zg) = 0, since wx vanishes
at the end points of . We require that yj(z2) = (2, and denote the value of x,
at x1 by aq, which will be different than 51: xp(z1) = a1 # B1. We will look for
Xn € U"(v) such that [|[mx — xn||r2(,) 18 minimal, and then choose a; such that
relation (4.15) will hold on the two intervals I; and Is.

On Iy, mx — xn is a polynomial of degree 2ny + 1 which takes the values 3; —ay
and 0, respectively, at the left and right end points. After a suitable change of
variables, which maps I, into (—1, 1), and using Lemma 4.1, we can find x, on Iy

such that )
é||7TX_X ||22 = 2(61 — ax)
hs MILAL) = 0n, +1)(2ns + 3)

On Iy, mx — xn is a polynomial of degree 2n; + 1 which takes the value 3; — ay

(4.16)

at x1, the left end point of I;. Let a be the coefficient of Lo, +; in the Legendre
expansion of my over I;. Since Yy, is a polynomial of degree 2n, over I3, a is also

the coefficient of Ly, 1 in the Legendre expansion of my — x;. After a suitable
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change of variables, which maps [; into (—1, 1), and using (4.12) from Lemma 4.2,
there exists xj, satisfying all the above mentioned properties, such that

8 2 9 8(711 + ].)2 4a(ﬁ1 — O[l) 2(51 — a1)2
_HWX_XhHB(Il) = a 2 2 2"

We now find lower bounds for ||mx||r2(r,) and |[7x|[r2). On Iy, mx takes

(4.17)

the values ; and (3, at the end points. After a change of variables and using
Lemma 4.1, we obtain

AT 2(8 + ) (n2 +1) + 2610
ha (2) = (ny 4+ 1)(2ng + 1)(2n2 + 3)
The minimal value of the right hand side of (4.18) is obtained for fy = —f3;/2(ngs +
1), and therefore:

(4.18)

. ; 1 207
&t > (1= L) |
i 2 (- o) G e s

On I, myx takes the values 0 and 3; at the end points, and in its Legendre

(4.19)

expansion the coefficient of Ly, 41 is a. After a change of variables, and using

(4.11) from Lemma 4.2, we obtain

8 ) 5 2(2n1 4+ 3)(n1 + 1) 2010 En
LN > 4 _ + . (4.20
Iy [lmx]7 (h) = n1(2ny + 1)(4ny + 3) ni(2n; + 1) 2ny(2ny + 1) ( )

We choose a; = f31/2, and compare the L? norms of 7wy — x;, and 7y separately
on I; and I,.
On I, we obtain by using (4.16) and (4.19), that
2

||7TX_Xh||%2(12) < 3 ||7TX||%2(12)' (4.21)
On I, we obtain by using (4.17) and (4.20), that
X = xallZogy < (1= 1/2n0+1)%) [lmx][Z2,). (4.22)

We make a similar construction for x;, on Iy_; and I. Since mx — x5, vanishes
outside the first and last two mesh intervals of 7, we can conclude, by using (4.21)
and (4.22), that

lmx = xall2gy < Cm)llmxlleae),
where C'(m) depends only on m; and my1, and not on the particular properties

of the partition of ~. O
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4.2.2 Stability property of the mortar projection

We are now able to prove the uniform stability of the mortar projection onto
Vh(y) N Hi(7), i.e., that the bound is independent of the mesh. In Theorem 4.2,
the spaces V"(v) and ¥"(y) are those defined in Section 4.2.

Theorem 4.2. Let v be a nonmortar side, and let m be the degree of the piecewise
polynomial restriction of the mortar function to . Let m., be the mortar projection
of L*(vy) into V"(v) N H (), which satisfies

/_ (v = ())eds =0, Vi € Wh(y).

Then there exists a constant C(m) depending only on m such that

17,0022y < Cm)lIxllzay,  Vx € LA(9).

More precisely,
C(m) = maz {m%,m?\,+1 }

Proof. Let py, : L?(7) — W"() be the L? projection into the space WU"(v):
[ miaywas =0, v wa)
where py,(x) € ¥"(v). Then
Lm0 = mbopds =0, i e vy,
and therefore py(x) is the projection of 7, (x) into W" (7). Then:

00 = pOllzey = it (100 = xalleey < ClmlIm(0llzzer:

xn €Y (v)
with M < 1, according to Lemma 4.3, applied for the case when all the degrees
m; are equal to m.

A simple computation will lead us to the desired conclusion:

Ny O Z2¢yy = / (my(x) = pr(X)) 7y (X)ds + / pr(X) 7 (X)ds
- / (s () — pu())%ds + / Pr(0)my (x)ds

.
< Cm)P’llm ()l + 11w 0Oz Pr (0 220 -
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Since C'(m) < 1, and since pp,(x) is an L? projection of y:

1 1
7 022y < TWHM(X)HBW) < TWHXHL%)'

O

4.3 Poincaré and Friedrichs Inequalities for Mor-
tars

As we have mentioned in Section 2.2, a mortar finite elements function is only
piecewise H', but not in H'(2). Therefore, the Friedrichs and Poincaré inequali-
ties, as presented in Section 1.2.2, cannot be applied to mortar functions. In this
section, we show that these inequalities also hold for mortars, if the H'! seminorm

in replaced by the broken seminorm

N
at (v, vp) = Z |Uh|%{1(gi)~
i=1

It is important to note that the constants in the inequalities we derive depend only
on the diameter of 2, and neither on the properties of the partition {€;};—1.n, nor
on those of the mortar finite element. Using the Friedrichs inequality, we prove,
in Section 4.3.4, that the condition number of the unpreconditioned mortar finite
element method has the same upper bound as in the continuous finite element
case, and does not depend on the number of the subregions in the partition of €.
This is a refinement of a result of Bernardi, Maday, and Patera [13, 14], where
a Friedrichs inequality is proven using the Rellich compactness theorem. This
leads to an estimate of the condition number which depends on the number of the
subregions in the partition {€2;};,—1.y and their diameters.

In the geometrically conforming case, a variant of the Friedrichs inequality for
mortars was proven by Bernardi and Maday [10, 11].

To keep the presentation simple, our model problem will be Poisson’s equa-
tion with Dirichlet boundary conditions on €2, a bounded open polygon in R2.

Our results can also be obtained, using the same methods, for any second order
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self-adjoint elliptic problems with mixed boundary conditions, and for the three
dimensional case.

Following the construction from Section 2.2, let {€;},—1.y be a geometrically
nonconforming polygonal partition of Q, and V" a mortar finite element defined
on this partition. Let H; be the diameter of €2;, h; the smallest diameter of any
of the elements of 2;, and h = minh;, ¢ = 1 : N. We do not require that all
the Hy are of the same order of magnitude, but only require that the diameters
of any two adjacent subregions Q, and Q, (99, N 9, # () are comparable, i.e.,
¢ < H,/Hy; < C, where ¢ and C are positive constants independent of the
subregions considered. We assume that all the subregions are generated from a

finite number of reference domains Qj, j = 1 : J, by mappings Fj, such that

Qi = E(QJ), and
I0F|| < CH;, Vi=1:N; ||0F"|| < CH;', YVi=1:N.

As a consequence, we note that the length of every side of €2; is bounded from

below by a uniform fraction of H;.

4.3.1 Technical Results

We begin with a version of the Friedrichs inequality on a reference subregion Q.

Lemma 4.4. Let Q C R? be a fized, open, bounded domain with Lipschitz bound-
ary. Let co > 0 and let AcC o bea part of the boundary ofﬁ such that

cou(0Q) < pu(h),
where p 1s the Lebesque measure. Then,

1 ~
lollaey < CChufipg, + ool [ wdof). ¥ we #'@)

where C' is a constant that depends only on ﬁ, and not on w, K, or ¢y.

We also need a generalized version of the Friedrichs inequality. We note that

Lemma 4.4 follows from Lemma 4.5.
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Lemma 4.5. Let Q) C R? be a fixed, open, bounded domain with a Lipschitz bound-
ary, let co € (0,1) be a constant, and let A C 8Q such that

-~

cop(0Q) < p(h). (4.23)
Let QZ be a bounded positive function defined on A with the following properties:

0<¢<2 and %M(K) < p({z el : ¥x)>1}). (4.24)

/7\ wz//;da

where C' is a constant independent of ¢y, w, K, and 15

Then, the following inequality holds,

2

1 .
+ 5 ), Ywe H'(Q), (4.25)

lwllfa@ < C ((diam(@)*wl3, g 2

)

Proof. We may assume that diam(ﬁ) = 1. The general inequality is obtained
easily by a scaling argument.

Suppose that Lemma 4.5 is not true. Then there exists a sequence {wy, }n=1.00
of functions in Hl(ﬁ), a sequence of boundary parts (Kn)nzlm satisfying (4.23),
and a sequence of functions (@n)nzlm defined on (]\\n)nzhOO and satisfying property
(4.24), such that

Hwn||L2(§) = 1, Vn=1:00; (4.26)

1 . 2
/ wolndo
0 |JAn

W%y ey + o < —, Vn=1:o0. (4.27)

~

For n — oo, w, converges to 0 in the H'({))-seminorm. Therefore, the sequence

~

{w,} is bounded in H'(2), and we obtain, from the Rellich theorem, the existence
of a subsequence of {w,} that converges in the LQ(Q) norm. For simplicity, we also

denote this subsequence by {w,}. Since |w,|?, @ 0, we also have convergence

)
of {w,} in the H'(2) norm. The limit function is a constant function, ¢.

From (4.27), we know that | [3 wpthndo| — 0. Since w, — ¢ in H(Q), and
the functions {Z)\n are uniformly bounded by assumption, we obtain, using a trace

theorem, that
/A Undo | |8 — 0. (4.28)
An
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From (4.23) and (4.24):

~

> Cu®) > Do), (4.29)

/A Undo

Finally, from (4.28) and (4.29), we obtain that ¢ = 0, which implies w,, — 0 in
LQ(Q). This contradicts assumption (4.26), and the proof is completed. O

The next lemma is purely geometrical, and a version of it has first appeared in
Bernardi and Maday [10].

Lemma 4.6. Let 2 be a bounded domain in the plane and let {€;};—1.n be a shape
reqular partition of Q. where Q. is a polygon of diameter Hy. The ratio of the
diameters of neighboring subregions is uniformly bounded.
Let € be a line passing through Q and let (€2 4)i—1m() be the subregions with

interiors intersecting €. Then,

n(f)

ZHM < Cdiam(S),

i=1
where C' is a constant which depends only on the minimal angle of the polygonal

subregions {8 }i=1.n, and not on their diameters (Hy)p=1.x -

Proof. The proof is a straightforward generalization of that of Lemma 2.2 from [10].
It is based on the assumptions that neighboring subregions have comparable di-
ameters and that the minimal angle for the polygonal subregions is uniformly
bounded. Each subregion can be decomposed into triangles with a common vertex
in the centroid of the subregion, and having one of the sides of the polygon. Then,
the same proof given in [10] by Bernardi and Maday for the case of a triangular

partition of 2 will work for our problem. O

4.3.2 An Estimate of the L? Norm of Jumps Across Non-
mortars

An important step in the proofs of the Friedrichs and Poincaré inequalities for

mortar finite elements is an estimate of the L? norm of the jump of the mortar
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finite element function v over the nonmortars. We restrict the technical discussion
of this section to the case when all subregions are rectangles. In the last section,
we explain how our results can be extended for a general polygonal partition.

Let v be a nonmortar side of the subregion €2;, and let v; be the restriction of
the mortar function v to €. Let (;;, ¢ = 1 : ¢(y) be the mortars opposite 7 across

the interface I'. Let €2;; be the subregion which has (;; as a side, and let
5i,i+1 = 39171- M GQMH, v ’l = 1 . (q(’y) — 1)

Since every subregion (2;; has a diameter on the order of H;, ¢(y) is uniformly
bounded by a constant C' which depends only on the lower and upper bounds of
the ratios of the diameters of adjacent subregions.

Let © be the function that is equal to v;; (the restriction of v to ;) on (;;. We
note that v can have two values at the vertices on the interface I' that are interior

to 7.
Lemma 4.7. Let [v] = v; — 0 be the jump of v across the nonmortar . Then,

q()

/ WPde < Cut)( by + 3 i ) (4.30)

v =1

where C' 1s a constant that does not depend on vy, and p is the Lebesgue measure.

/ﬁ]%m = L lv — 9|*do. (4.31)

Since any space of test functions W”(y) contains the constant functions, and

Proof. By definition,

since the functions v; and ¢ satisfy the mortar conditions (2.2), we find that the

averages of v; and v over 7 are equal, i.e.,

/'Ulda = /176[0 =T (7).
v v

Opposite §;, we construct a rectangle €2,,.,, with one side equal to v and with
sides of length min{z(d; 1)}, i =1 : (¢(y) — 1), perpendicular to 7.

Let v,¢, be an extension of v from 7 to §2,., with the following properties:

Unew € H'(Qnew), (4.32)
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Figure 4.2: Local nonconforming situation

/7 Unewdo = / odo = Tou(y). (4.33)

v
Note that v, need not be a finite element function, and its trace on v need not

be equal to . We just require that the average of v,.,, over 7 is equal to that of v.

We now provide the details of the construction of v,.,. Without loss of gener-
ality, we consider the case of only three rectangles €21, 42, (4 3. Let vy 1, v;2, and
vy,3 be the restrictions of v to €1, 9, ) 3, respectively. These functions may be
discontinuous across 012 and dy 3; cf. Figure 4.2, where €,,0,, = ABQP, 6,2 = CE
and 623 = DF.

For every segment 0; ;+1, we construct in one of the rectangles §2;; or ;.1 (say
on ;) a function x; € H*(€;) such that x; is equal to v ;11 — v;; on d; ;41 and
vanishes on the side opposite 0; ;11

The choice of whether to construct the function y; on €2;; or ;4 is made
according to which of 0€};; Ny and 0€;,41 N is the largest. If p(0,; Nvy) >
(0 i41 N 7y), we choose subregion €2 ;; otherwise §2;,11. As a consequence, since
the subregions ) ; and 2,1, have diameters on the order of H;, we find that the
length of the intersection of v with the boundary of the chosen domain is on the
order of H;.

This choice avoids potential difficulties that occur in the study of the geomet-

rically nonconforming case, due to small intersections of boundaries of two subre-
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gions. Such a configuration can appear naturally, e.g., from a small perturbation
of a geometrically conforming partition.

In our case, we construct the functions y, and 3 as follows:

Xe iz =R Xoloens, = (000 = 02)l0 00,
X2lopewnsss 0;
/ xz2 do = 0;
CD
X3 - Ql,2 — R; X3|Qnewm52’3 = (Ul73 - ,Ul72)‘ﬂn8wm62,3;
X3lonewnsy o  — 0;

/ x3 do = 0.
CD

For this purpose, we use extension and trace theorems on the unit square ﬁ;
see, e.g., Necas [97] and Section 1.2.1.
Let S, §1, $9, and 83 be the sides of Q, in consecutive order. If Q& € H%(é), we

can, using several reflections, extend it to a function E(¢)) € Hz(09Q) such that

Let ¢; and ¢o be positive C* (8@) functions with the following properties: ¢,
is 1 on § and 0 on $, (the side opposite to § in the rectangle ﬁ) and is bounded

from above by 1 on 8@; ¢ is supported in 51, and f=§1 ¢odr = 1. The function
Eo(0) = 0B~ 6 | 6B

is an extension of Qﬂ satisfying

~

EyW), =v;  Ey(d),, =0
1B any < ClllL )
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Since Ey(¢)) € Hz (8@), there exists a harmonic extension of Ey()) to the unit
square ﬁ, u e H 1(@), which does not have to be a finite element function, such
that

@y < By ) < O3y

There exists a diffeomorphism F' : Q — ()2 that induces a natural mapping
from the functions defined on ;5 into the functions defined on 2. We construct

X2 in the following steps:

1. let 772;2 = (1 — V2) o F;

|Qnew051,2
2. let iy be the extension of Ey(th) from 98 to Q described above:
3. let yg := Uy 0 F71L.

From the properties of F' and the extensions on Q, we obtain

el < Clizlpg < ClEW)| g1 55 < Cllvallysg,
= CHvll_leHHg Qﬁ(512)’
ellsen < CHOD sl agn < CHOliallagn < CHOial i s,

CNEBo(b2)ll 400y < CrOIll 3,
Cp)||or1 — 2l 1

Therefore, xs has the following properties:

H2 Qﬂ51 2)

X2|Qnewm51,2 = (Ul71 - Ul72)‘ﬂnewm51,2;
X2|Qnewﬂ5273 = O;
/ X2do = 0 (4.34)
CcD
el < Cllo =2l 3 g6, (4.35)
hellzzen < Cutnllin = iuall gy g, (4.36)
The function yj3 is constructed similarly.
Finally, v,,c, is defined as follows:
Vi1 on ﬁl,l N ﬁnew;
Vnew = (%) + X2 + X3 on Ql,Z N Qnew; (437>
U3 on (3N Qpew.
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We note that v, is continuous by construction.

We now show that v, satisfies (4.32) and (4.33). Since vy, is piecewise H*
and continuous, it follows from Lemma 1.1 that v, € H'(Qpew). From (4.34),
it results that

/vnewda = / Unewdo = / vdo —i—/ X2 —i—/ Xsdx
y AB AB cD cD
= / vdo = v, pu(y).
AB

Using the construction of v,e,, and €,,c,,, we begin the proof of (4.30):

/[v]2da = /|vl—f)|2da < 2/|vl—ﬁw|2da+2/|ﬁ—ﬁy|2da
gl v gl o
< 2/|vl—EW|2dU—|—4/|vnew—@7|2d0—|—4/|ﬁ—vnew|2da(4.38)
y ol gl

We now estimate the three terms of (4.38). For the first two, we use Lemma 4.4
and Lemma 4.5, both for the unit square 2, which is the reference subregion. We
will apply the Friedrichs inequality, trace theorems, and inverse inequalities only on

the reference unit square Q, since we look for results independent of the partition
{Qi}i=1:N Of Q

Estimate of [ |v —v,[*do:

[ e = 5 [ 1o < g, < CHON Ty
where the last inequality follows from the trace Theorem 1.2. Since,
f(@l —Ty)do =0,
we obtain, from the Friedrichs inequality, see Theorem 1.4,
o =03l @) < C‘ﬁlﬁp(@),
and therefore,
/7 lu — v, Pdo < CM(’Y)’@lﬁp(Q) < CM(’Y)’Ulﬁ{l(Ql)- (4.39)
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Estimate of fw |Vnew — Uy|*do:
From (4.33) we obtain that fw('unew — 7,)do = 0. Applying the same method as

for the first term, we get

/‘Unew_vfy‘Qdo' < C,U('Y)’Unewﬁil(gnew)- (440)
oy

The last inequality holds since, by assumption, the diameters of adjacent subre-

gions are uniformly comparable. From the construction of v,,,,, we find:

3
onewliriney < 3( 2 Wil ) + eln@y + eln@, (44D)
=1

The estimates of |X2|?{1(Ql,2) and |X3|?{1(Ql,2) are similar, so we derive only one
of them. One of the sides of the subregions €2;; and €2 5 that intersect 2,c,, M 12
is a nonmortar side. For our proof it does not make any difference which it is, and
we can assume that it is a side of §2; ;. To this nonmortar will correspond a space
of test functions Wy ,. Denote by 12 € Wy 5 the test function that is equal to 1
at all the nodes on the nonmortar side that are also in €2,,¢,, N 01,2 except for the
last one, and is equal to 0 at all the other nodes. We replace €2,,¢,, N 1,2 with CE.

From the mortar condition (2.2), we obtain:

/ Uz,1w1,2d0 = / ’01,21/11,2030-
CE CE

Let a denote the following congruent terms:

a = fCEUl,1w1,2dU o fCEULQwLQdO'
fCEw172dU fCEi/Jl,sz '

Then it is easy to see that:

/ (Ul,l - a)¢172d0 = / (’Ul72 - O[)@Z)Lgda' = 0. (442)
CE

CE

Since the rectangles (€2;;);=1.3 are neighbors of €2, their diameters are of the
same order as H;, the diameter of §2;. Moreover, C'E has a length on the order of

H; since it is a side of the rectangle €2, 5, and the following estimate holds,
COM(an,l) S EoHl S ,M(CE)
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Here, ¢y is a constant that does not depend on the subregion §2; ;. It is easy to see,
from the definition of 1), 9, that

1

§M(CE) < p{z € CF : ¢ip(x) 2 1}).
Therefore, conditions (4.23) and (4.24) of Lemma 4.5 are satisfied. Let F' :

Q- ()2 be the diffeomorphism between (2; 5 and the reference unit square Q. The

induced mapping takes a function u defined on ;5 into the function & = uwo F'

defined on €. Tt is easy to see that conditions (4.23) and (4.24) are also satisfied

on Q. From Lemma 4.5, we obtain:

N 2
/(@1,1 —d)%,QdU’ ) = C‘ﬁl,1|12r{1(§)7 (4-43>

S1

R R R 1
o1 =1l < C (Il +

since, by (4.42), the integral over §; vanishes. Using a trace theorem, inequalities

of Sobolev norms on affine equivalent domains, and (4.43), we obtain:

011 — @l Cllon = Ay ey S Clloa =@l < Cloul;

2
< ~ ~
HEOnbr2) — %) HY(Q) HY(Q)

= C|Ul’1|§{1(91,1)'

Once again, C'is a constant that does not depend on the subregion €2;;. A similar

estimate holds for v; 3 — . Therefore,

< S A2
< 2|91 Oé||H%(§m3L2) 3(@nbr.2)

< Cllvalin,) + vialing, ,)- (4.44)

|11 —?71,2||21

S a2
?(6051,2) + 2||vl’2 a”H

From (4.35) and (4.44), we obtain,

|X2|§{1(Ql,2) < C(’vl,l‘%ﬂ(Ql,l) + |’Ul,2|§{1(91,2))-

Since the estimate of x3 is similar, we obtain, using (4.41), an estimate of vy,

3
|’Unew\§11(gnew) < CZ \Ul,z'|12r{1(gl,i)- (4.45)

i=1

From (4.40) and (4.45),
3
/ |Unew - @'y|2d0' < C,U(”}/) Z ‘Ul7i|?71(gl,i)' (446)
v i=1

o8



Estimate of fw |0 — Vpew |2do:

From the definitions of ¥ and v,,.,,, we find

[15=tnads = [ patralde < 2lalfaen + 2blco.
¥ CD
From (4.36) and (4.44), we obtain,

IxellZzepy < Culn —di2ll] 4 < Clloalin o, + lvieling, )

(Qnewmél,Q)

and therefore,
3
/ |6 = Unew|*do < Cu(y) D |vialhino,)- (4.47)
v i=1

We now complete the proof of our lemma. Substituting the estimates (4.39),
(4.46), and (4.47) into (4.38), it results that

/[U]Qda < 3/‘1)1—57‘2030 + 3/‘1)%1”_67‘2010 + 3/‘6_Un€w|2d0
v gl v K

3 3
< CM(7)|U1|12L11(Ql) + CM(V)ZWM%{I(QM) + CM(V)ZWM%NQM)

i=1 =1

3
< CM(7> ( |Ul|%{1(91) + Z |Ul=i|%{1(gl,i) )’

i=1

where C' is a constant not depending on the length of ~. O

4.3.3 Proofs of the main results

We are now ready to state and prove the Poincaré and Friedrichs inequalities for

mortar finite elements.

Theorem 4.3. (Friedrichs inequality) For every v € V",

K
||U||%2(Q) < C(diam<Q))QZ|vk|§{1(Qk)>
k=1

where C is a constant independent of (Hy)r=1.x, (hx)r=1.x, and K.
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Proof. We may assume that no edge of the subregions is parallel to the x- or y-
axis. Otherwise, since the number of support lines for the edges is finite for any
partition of €2, we can rotate {2 to obtain the desired property.
Let ¢y be a parallel to the x-axis passing through 2. The intersection of ¢y and
the interface I' consists of a finite number, n(yg) — 1, of points, denoted by Py, P,
.. Pygye)—1 in increasing order of their a-coordinates. Let {Fy, Py} = € N 09,
such that Py is the leftmost of the two points, and let (a; (o), yo) be the coordinates
of P, for i = 0: n(yo). Then,

{(a0(%0), ¥0); (an@o)(90),90)} = €N O,
(i(v0),90) €T NLy, ¥V i=1:n(yy) — 1,
ai(yo) < ai1(yo), V i=0:n(yy) — 1.
Let v, for @ = 1 : n(yy) — 1, be the nonmortar to which P, belongs; if P,
is vertex of a subregion, and there are several nonmortars ending at P;, we can
choose ~y,; arbitrarily among them.

Let (z,yo) € {p be an arbitrary point on ¢;. Denote by n(zx,yy) the well-defined
index with the property:

On(zgo) (Y0) < T < Qngago)+1(Yo)-
By integrating dv/0x along ¢y from (v (vo), yo) to (z,yo), we obtain:

a;i+1(yo)

n(z,y0) n(z,y0)
(
o) = vlaas)wn)]l < 3 | [ Grttamd] + > [l )l
1=0 i=1
@i(yo)

Since v € V" and (ao(v0),y0) € 99, we find that v(ag(yo),y0) = 0. Using the

Schwarz inequality and the previous formula, we obtain:

n(z,y0) i+1(y0) ol L
1 (% 2
vz, y0)| < Z(C‘éi+1(y0)_06i(y0>>2< / o dt) (4.48)
= )
n(@.y0) L) .
2 2\ 2
= (X2 n00) (X spy el wf)”
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Squaring both sides of (4.48) and apply Schwarz inequality, the inequality becomes:

aiy1(yo)

n(z,y0) n Z,0)
lo(z,90)]* < ( > (@isa(yo) — cilwo)) Z / ’ (t, vo) dt)
=0 a;i(yo)
n(z,y0) n(z,y0)

+ 2 ( > () ) < v](@i(yo), yo)l2>~

i=1 i=1
Since

n(z,y0)

> (@i (%) — @i(%0)) = ngegor+1(v0) — aolye) < diam(Q),

i=0
and, since, from Lemma 4.6,

n(z,y0) n(yo)

we obtain,

lu(z,y0))? < 2 diam(Q) Z dt (4.49)

v](ai(yo), 3/0)‘2-

m
tvj@ I

+ C diam(Q

i—1 71 i
Integrate (4.49) over 2. The first term is then bounded from above by

2(diam(© Z vkl 1 0,

Let v be a nonmortar with endpoints of coordinates (zy,y;) and (z9,y2), and
slope A. Since no edge of the subregions {2;};,—1.y is parallel to the z- or y-axis,
then A # 0 and A # oo and we can write the equation for v as x = ¥ +b. When
the second term of (4.49) is integrated, the jump of v across 7 is integrated over

p<y<yandz><% Y +b. Its contribution is equal to

] [ e

y1x>”+b

2

dy

. v Yy
dxdy < mdlam(Q) /y1 ’[U](X—l—b,y)
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/ 2
= —dlam 1+)\2/ do

< diam(92) m/[ v]?do.

As a consequence, after integrating (4.49) over 2, we find
||’UH%2(Q) < 2 (diam(f2 Z ‘Uk‘Hl(Qk)

+ O (dam(@)? Y ﬁ / w]’do. (4.50)

v nonmortar
If 7 is a side of the subregion €2, then, from Lemma 4.7 and using the notations
therein, we have

1 q(l)

ﬂ/[UPdO’ < C(|?}l|§{1(91) + Z|Ulvi|%{1(ﬂl,i))’ (451)
HAY) Sy i1

Recall that €2, ; are the subregions with a side opposite v. When we add (4.51)
over all nonmortar sides v, every term |vl,z~|§{1(gl ,) abpears a finite number of times,

which is bounded from above independently of (Hy)x=1.x, and (hg)r=1.x. Then,

K
1
> —/[v]2da < Y orlhna,) (4.52)
v k=1

s nonmortar M(/Y)
Substituting (4.52) into (4.50), we obtain

||U||%2(Q) < C (diam($2 Z|Uk|H1(Qk
O

The next theorem is a variant of the Poincaré inequality. The proof is similar
to that of Theorem 4.3 and it is based on Lemma 4.7.

Theorem 4.4. (Poincaré inequality) For every v € V!,

K

ol < Cdiam(@))* D oefinga, + C—or / v,

k=1
where C is a constant independent of (Hy)g=1.k, (hk)k:LK, and K, and o(Q) is
the area of €.



Proof. The proof follows the steps of the proof of the Friedrichs inequality. We
can again assume that no edge of the subregions is parallel to the z- or y-axis.
Let (z1,y1) and (z2,y2) be arbitrary points in . We evaluate v(zq,y;) —
v(z2,y2) by adding the integral of g—Z from (z1,y1) to (z1,y2) and the integral of 2
from (x1,y9) to (z2,ys), taking the jumps of v across the interface I' into account.
We square both sides of the resulting inequality and integrate them twice over
Q, once with respect to (z1,y1) and once with respect to (z3,ys).
The left hand side becomes

// o1, 31) —0(2, y2) [Pdardyy daadys = QU(Q)H’UH%?(Q) - 2’/"16137‘27 (4.53)
aJo Q

with o(£2) on the order of (diam(2))?.

The right hand side is bounded from above by the sum of the H'-seminorms
of the restrictions of the finite element function v to the subregions {€2;};—1.x and
the result of the integration of the squares of all the jumps of v over nonmortar
sides. Reasoning as in the previous proof, we obtain a bound for the right hand
side,

1

4(diam(2))°0(2) Y~ |vklfio,) + C (diam(Q))* o) / [v]2do. (4.54)

k=1 v nonmortar

We use Lemma 4.7 to estimate the second term of (4.54). As in the previous

proof, the number of appearances for any term |U'I€|§{1(Qk) does not depend on
(Hi)r=1:5> (hi)k=1.1, and K,

K
1
> —/[U]2d0' < Y orlhna,) (4.55)
v k=1

vy nonmortar ’LL(,Y)

From (4.53), (4.54), and (4.55), we obtain,
K
20(Q)|[v][720) — 2| /defﬂlz < 4(diam(2))*0(Q) Y |olina,)
k=1

K
+ Cdiam(@)* Y ol oy
k=1
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Dividing both sides by ¢(Q) = (diam(£2))?, we find,

K
1
2 o0 < C(diam(Q))? 2, C—/d2.
[0[|72 < C(diam(£2)) ;;:1 Ukl 71 (0 + J(Q)\ Qv |

4.3.4 Condition Number Estimate

A consequence of the Friedrichs inequality is that the condition number of the
Poisson problem solved using mortar finite elements has the same form as in the
conforming case.

For simplicity, we assume that, for all the subregions in the partition of the

computational domain, Hj, is of order H, and hy is of order h.

Theorem 4.5. For any u € V",

K K
2 1 2
e lullfg, < d(uu) < OﬁZHuHL?(Qk)’ (4.56)
k=1 k=1

where ¢ and C' are constants that do not depend on the partition of €. The condition
number of the stiffness matriz K,,ortar corresponding to the discrete mortar problem

satisfies

C

/{(Kmorta’/‘) S ﬁ)

where C' 1s independent of the partition of 2.

- K

Proof. From the definition of the broken norm, a'(u,u) = > ,_, |uk|§{1(9k). The
right inequality of (4.56) follows from the inverse inequality. The left inequality
follows from Theorem 4.3, since ||uH%2(Q) = ||u||ig(gk). The estimate of the

condition number is a direct consequence of (4.56). O

4.3.5 Extensions to more general geometries

In this section, we extend the construction from Section 4.3.2 to a general partition.

The assumption that all subregions are rectangles was only used in Lemma 4.7, to
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Figure 4.3: Triangular subregions case

estimate of the L?-norm of the jumps of a mortar function across nonmortars. In
particular, we used the assumption in the construction of v,,e,.

We use the same notations, and make a similar construction, as in Section 4.3.2.
Once again, we require that the partition of {2 has all the properties required in
Section 4.3. Thus, the length of every side of €2, is bounded from below by a
uniform fraction of Hy, each subregion is obtained from a finite number of reference
domains by a uniformly bounded mapping, and the ratio of the diameters of any
two adjacent subregions is uniformly bounded. For each partition, a (finite) number
of different reference domains might be required.

Opposite the nonmortar v, we construct a polygon by cutting off part of the
union of the subregions, the boundaries of which intersect ~, by a line parallel to
v; see Figure 4.3. Because of the properties just reviewed, we can choose that line
such that the length of the side parallel to v of €2;; N2,y is bounded from below
by a uniform fraction of H;,;. As before, we extend the jump of v from d; ;11 N Qyew
to Q; or ;41 (say to €;), according to which of 9€;; N~y and 9 ;41 N is the
largest. We can do this uniformly, using the corresponding reference domain. We

obtain a function x; vanishing on the sides opposite 0;,+1, the average of which
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over v N €Y, is 0, and which satisfies properties similar to (4.35) and (4.36); cf.
Section 4.3.2. After this step, the proof can be completed as before.

The construction presented above must be changed slightly, if there are triangles
among the subregions {€;},—1.y. For a triangle with only one vertex on =, we
cannot uniformly extend a function defined on one side so that it vanishes on an
opposite side; cf. Figure 2, for 2,9 M $2,,¢,,. Instead, we can construct an extension

X2 of vy 0 — vy from 619 N Qyeyy 0 2 N ey satisfying

| |X2| |H% (02,3Nnew) S | |X2| |H% (61,2Mnew) ’

Then, we extend v;3 — v;2 + X2 from do3 N Qe to Q13 N Qyeyy, resulting in a
function, 3, which vanishes on d3 4, by using the usual construction. We can do
this since €2, 3M€Y,¢,, is a quadrilateral, and the length of the side parallel to yN€; 3
is, by construction, uniformly bounded from below by H;3. A similar extension,
X4, is made for the jump of v across d45 on €4 N ey Thereafter, v 4 — vy 3+ x4
is extended from d34 N Qyeyy t0 Q13 N Qyey, resulting in a function which vanishes

on 0y 3. Finally, the function v, is obtained by adding all the auxiliary functions

Xi to v ‘Qnew'
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Chapter 5

The FETI Method for Mortar
Finite Elements

5.1 Introduction

The FETI method is an iterative substructuring method using Lagrange multipliers
which is actively used in industrial-size parallel codes for solving difficult computa-
tional mechanics problems. This method was introduced by Farhat and Roux [61];
a detailed presentation is given in [62], a monograph by the same authors. Orig-
inally used to solve second order, self-adjoint elliptic equations, it has later been
extended to many other problems, e.g., time-dependent problems, cf. Farhat, Chen,
and Mandel [54], plate bending problems, cf. Farhat et al. [55, 59, 94], heteroge-
neous elasticity problems with composite materials, cf. Farhat and Rixen [109, 110],
acoustic scattering and Helmholtz problems, cf. Farhat et al. [57, 58] and Franca
et al. [64, 65], and linear elasticity with inexact solvers, cf. Klawonn and Wid-
lund [77]. We note that an algebraic version of the FETI method, the A-FETI
method, has also been studied; cf. Park et al. [99, 100]. Recent results have shown
that this method is mathematically equivalent to one instance of the FETI method,;
see Rixen, Farhat, Tezaur, and Mandel [112].

The FETT method has been designed for conforming finite elements, and is
based on the decomposition of the computational domain €2 into non-overlapping
subdomains. Pointwise continuity across the interface is enforced by using La-

grange multipliers. After eliminating the subdomain variables, the dual problem,
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given in terms of Lagrange multipliers, is solved by a projected conjugate gradient
(PCG) method. Once an accurate approximation for the Lagrange multipliers has
been obtained, the values of the primal variables are obtained by solving a local
problem for each subdomain; see Section 5.2 for more details.

It was shown experimentally by Farhat, Mandel, and Roux [60] that applying a
certain projection operator in the PCG solver plays a role similar to that of a coarse
problem for other domain decomposition algorithms, and that certain variants of
the FETT algorithm are numerically scalable with respect to both the problem size
and the number of subdomains. Mandel and Tezaur later showed that for a FETI
method which employs a Dirichlet preconditioner the condition number grows at
most in proportion to (1 + log(H/h))?, if the decomposition of £ does not have
crosspoints, i.e. the points that belong to the closure of more than two subdomains,
and as (1 +log(H/h))? in the general case; cf [93, 129]. Here, H is the subdomain
diameter and h is the mesh size. Using a different preconditioner, Klawonn and
Widlund obtained a FETI method which converges in fewer iterations than the
classical FETI method, and proved an upper bound for the condition number of
their method which is on the order of (1 + log(H/h))?; cf.[78].

In Section 5.3, we discuss how the FETI method can be applied for solving
self-adjoint elliptic equations discretized by low order mortar finite elements. We
introduce three algorithms, corresponding to three different preconditioners for
the dual problem suggested in the FETTI literature: The Dirichlet preconditioner,
which has been used successfully for conforming finite elements, see, e.g., Farhat,
Mandel, and Roux [55], a block—diagonal preconditioner used by Lacour [79, 80],
and the new preconditioner introduced by Klawonn and Widlund in [78]. We use
geometrically nonconforming mortar finite elements of the second generation, for
which no continuity conditions are imposed at the vertices of the subdomains.

In Section 5.5, we present numerical comparisons of the performances of the
three algorithms, which were implemented in both two and three dimensions. We
use geometrically nonconforming mortar finite elements of the second generation,
for which no continuity conditions are imposed at the vertices of the subdomains.
We conclude that the new preconditioner of Klawonn and Widlund performs best

in terms of both iteration and flop counts, and has scalability properties similar to
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those of the algorithm with the Dirichlet preconditioner in a conforming case.
For other work on FETI and Lagrange multiplier based substructuring methods
for problems with non—matching grids, see Farhat and Géradin [56], and Rixen,

Farhat, and Géradin [111] and the references therein.

5.2 The Classical FETI Algorithm

In this section, we review the original FETT method of Farhat and Roux for elliptic
problems discretized by conforming finite elements. Our presentation is similar to
that of Farhat, Mandel, and Tezaur [94].

For simplicity, we only discuss the Poisson equation with mixed boundary con-

ditions,
—Au = f on Q
u = 0 on 0Qp (5.1)
% = 0 on 00Ny.

On €2, we consider P; or ()1 finite elements with mesh size h. The finite element
mesh is partitioned along mesh lines into N non—overlapping subdomains €2; C
Q,2=1: N. Since the finite element mesh is conforming, the boundary nodes of
the subdomains match across the interface. A subdomain 2; is said to be floating
if 9Q; N9Qp = (), and non—floating otherwise.

For each €);, let K; and fl be the local stiffness matrix and right hand side,
respectively. As in other substructuring methods, the first step of the FETT method
consists in eliminating the interior subdomain variables. If K, is written using

blocks obtained by ordering the interior nodes first, and the boundary nodes last,

then e e
K, = < Il IB,i ) ’
Kpri Kpp,

where Kpr,; is the transpose matrix of K;p,. Similarly,

oo (D),
[Bi
The Schur complement matrix S® and the corresponding right hand side f; are

given by
SO = Kpp, — KpriKi Kipy;
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fi = fB,z‘_KBI,iK[_[{Z‘fI,i'

Let S = diag?,S® be a block-diagonal matrix, and let f be the vector [f1, ..., fx].
Similarly, we denote by u; the vector of nodal values on 02; and by u the vector
(w1, .., un].

If Q; is a floating subdomain, then S is a singular matrix and its kernel is
generated by a vector Z; which is equal to 1 at the nodes of 02; and vanishes at

all the other interface nodes. Let Z consisting of all the column vectors Z;. Then
KerS = RangeZ. (5.2)

Let B be the matrix of constraints which measures the jump of a given vector
u across the interface; B will also be referred to as the Lagrange multiplier matrix.
Each row of the matrix B is associated to two matching nodes across the interface,
and has values 1 and —1, respectively at the two nodes, and zero entries everywhere
else. A finite element function with corresponding vector values u is continuous if
and only if Bu = 0.

For a method without redundant constraints and multipliers, the number of
pointwise continuity conditions required at crosspoints, i.e., the points that be-
long to the closure of more than two subdomains, and therefore the number of
corresponding rows in the matrix B, is one less then the number of the subdo-
mains meeting at the crosspoint. There exist several different ways of choosing
which conditions to enforce at a crosspoint, all of them resulting in algorithms
with similar properties.

An alternative suggested in [109, 110] is to connect all the degrees of freedom
at the crosspoints by Lagrange multipliers and use a special scaling, resulting in a
method with redundant multipliers.

Let W; be the space of the degrees of freedom associated with 0€); \ 9€2p, and
let W be the direct sum of all spaces W;. If U = RangeB is the space of the

Lagrange multipliers, then
S:W-—-WwW, B:W-—U.
By introducing Lagrange multipliers A for the constraint Bu = 0, we obtain a
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saddle point Schur formulation of (5.1),

Su + B\ =
Bu = 0,

S~

(5.3)

where B’ denotes the transpose of B.

5.2.1 Algebraic Formulation

In the FETI method, the primal variable w is eliminated from (5.3) and the re-
sulting equation for the dual variable X is solved by a projected conjugate gradient
method.

We note that S is singular if there exist at least one floating subdomains among

the subdomains €;, i = 1: N. Let ST : W — W be the pseudoinverse of S, such
that STb € RangeS, for any b 1 KerS. A solution for the first equation in (5.3)

exists if and only if
f—B'X L KerS. (5.4)

If (5.4) is satisfied, then
u = SY(f— B\ + Za, (5.5)

where Za is an element of KerS = RangeZ; cf. (5.2) to be determined.
Let G = BZ. Substituting (5.5) into the second equation in (5.3), it follows
that
BS'B'A = BS'f + Ga. (5.6)

An important role in the FETI algorithm is played by V' C U defined by
V = KerG’'. In other words,

V = KerG' L RangeG = BRangeZ = BKerS. (5.7)

Let P = [ —G(G'G)"'G’ be the projection onto V. Since P(Ga) = 0, if P is
applied to (5.6), then
PBS'B'\ = PBS'f. (5.8)

It is easy to see that G'G is non-singular, by using the fact that

KerB NRangeZ = KerBNKerS = 0.
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We now return to the necessary condition (5.4). From (5.2), we obtain that
(5.4) is equivalent to f — B’A L RangeZ, which leads to

Z'(f —B'X\) =0
and therefore to
G'\N = 7'f. (5.9)

Let F = BS'B', d = BS'f, and e = Z'f. We concluded that we have to
solve the dual problem (5.8) for A, subject to the constraint (5.9); with the new

notations,

PFA = Pd; (5.10)
G'A = e (5.11)

After that an approximate solution for A is found, the primal variable u can be

obtained as follows: Solving for a in (5.6),
a = (G'G)'G'(FA—d).

Then u can be obtained from (5.5) after solving a Neumann or a mixed boundary
problem on each floating and nonfloating subdomain, respectively, corresponding
to a vector multiplication by ST.

The main part of the FETT algorithm consists of solving (5.10) for the dual
variable A, which is done by a projected conjugate gradient (PCG) method. Since
A must also satisfy the constraint (5.11) let

M =G(G'G) e (5.12)

be the initial approximation. Then G'\g = e and A — A\g € KerG’ = V. If all
the increments A\ — \;_1, i.e., the search directions, are in V| then (5.11) will be
satisfied.

One possible preconditioner for (5.10) is of the form PM, where

M = BSB' (5.13)
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When a vector multiplication by M is performed, N independent Dirichlet prob-
lems have to be solved in each iteration step. Therefore, M is known as the
Dirichlet preconditioner. We note that the Schur complement matrix S is never
computed explicitly, since only the action of S on a vector is needed.

Mandel and Tezaur [93] have shown that the condition number of this FETI
method has a condition number which grows polylogarithmically with the number

of nodes in each subdomain,

7\3
k(PMPF)<C (1+logﬁ) ,

where C' is a positive constant independent of h, H. If there are no crosspoints in
the partition of €, then the bound improves to (1 + log(H/h))%.
We conclude this section by presenting the PCG algorithm:

Projected Preconditioned Conjugate Gradient Iteration (PCG)

X =G(G'G) e, rg=Pd— PF)y,n=1
while (Mr,_1,7,-1) > tol
Wp—1 = P?“n,1

Zn—1 = Mw, 4

Yn—1 = Pzn—l
Bn = (ynfla rn71>/<yn727 Tn72> (ﬁl = O)
Pr = Yn-1 + Bubn-1 (P1 = %0)

W = (Yn—1,"n-1)/(APn, Pn)
An = A1 + anpp

T = Tno1 — QpAp,
n=n+1

end

In contrast to the CG algorithm of Section 3.1.1, in each iteration step of the
PCG algorithm, the residual and the search directions are projected onto the space
V,ie w, 1= Pr,_,and y, 1 = Pz, 1. This projection step plays the role of a
coarse problem which is solved in each iteration, and is the reason why the FETI

method is numerically scalable.
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5.3 The FETI Algorithm for Mortars

As we have seen in Section 5.2, in the classical FETI algorithm the computa-
tional domain ) is partitioned into nonoverlapping subregions, multiple degrees
of freedom are introduced for the matching nodes across the interface, and point-
wise continuity across the interface is enforced by a Lagrange multiplier matrix B.
This methodology is very similar to that used in Section 2.7, where a saddle point
formulation for the mortar finite element method has been introduced.

Therefore, the FETI method can be applied without any algorithmic changes
for a mortar finite element discretization of €2, using the nonoverlapping partition
{Q;}i=1.v introduced for the mortar element in Section 2.2. To keep the pre-
sentation clear, we assume each subregion €2; has diam(€2;) of order H and has
diameter of the mesh size of order h. The matrix S is again a block-diagonal
matrix diagl,S®, where the local Schur complement matrices S are obtained
from the finite element discretizations on individual subregions. As in the case of
conforming finite elements, we have to solve the problem

Su + B\ = f,

Bu = 0.
We note that, in contrast to the conforming finite element case, the matrices S
can now be built from different discretizations on different subregions €2;. Also,
the matrix B should enforce mortar conditions across the interface, instead of
pointwise continuity.

The dual problem is obtained as in Section 5.2.1. It results in solving
PFXN = Pd, (5.14)

with a PCG method, with the initial approximation A given by (5.12) and with
all the search direction in V. The price we pay for the inherent flexibility of the
mortar finite elements is related to the fact that the matrix B is more complicated
in the mortar case, compared to that of the classical FETI method with conforming
finite elements.

The matrix B has one block, B, for each nonmortar side 7. Using the matrix
formulation of the mortar conditions (2.3) and (2.4), we let M, and N, be the

74



matrices which multiply the nonmortar and mortar nodal values in the mortar
conditions across 7, respectively. Then B, consists of the columns of M, and —N,
for the nodes of v and those on the mortars opposite v, and has zero columns
corresponding to all the other nodes.

We note that all the mortar conditions are associated with the interior nodes on
the nonmortar sides. Therefore, the problem of choosing the crosspoints constraints
which existed for conforming elements does not exist in the mortar case.

In our numerical experiments, we have implemented three different precon-
ditioners suggested in the FETT literature for the dual problem (5.14). In Sec-
tions 5.3.1-5.3.3. we present each of them briefly.

5.3.1 The Dirichlet Preconditioner

A possible preconditioner for the dual problem (5.14) is the Dirichlet preconditioner

(5.13) which performs very well for conforming finite elements,

PM = PBSB'

5.3.2 A Block-diagonal Preconditioner

In [79, 80], Lacour suggested another preconditioner designed specifically for a
mortar version of the FETT algorithm, and which does not have counterpart in the
conforming case.

Let diagB, B! be the block-diagonal matrix which has a block B, B! of size
equal the number of interior nodes on v for each nonmortar v. We note that
diagB, B, is the block-diagonal part of the matrix BB’. The non-zero entries
of B,B! which do not belong to the diagonal blocks are of two types. Some
correspond to Lagrange multipliers associated to the first and last interior points
of the nonmortars. Others occur because there are nodal basis functions associated
to points on the mortar sides, the support of which intersects more than one
nonmortar. However, there are relatively few such non-zero entries.

The preconditioner PM is defined as follows:

PM = P(diagB,B,)"'BSB'(diagB,B,)™". (5.15)
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5.3.3 A New Preconditioner

Recently, Klawonn and Widlund [78] have discussed a FETI method for elliptic
problems with heterogeneous coefficients, discretized by conforming finite elements.
In the case of no coefficient jump, which reduces to our Poisson problem, the new

preconditioner suggested in [78] has the form
PM = P(BB')"'BSB/(BB')"". (5.16)

They also established the following upper bound for the condition number of their
FETI method, which is valid for all cases, including when the partition contains

crosspoints:

— H\?
kK(PMPF) < C’(l—i—logE) .

The new preconditioner PM also provides new insight about the connection be-
tween the FETI method and the Neumann-Neumann methods, in particular the
balancing method.

In the same paper, it is proven that the preconditioner M with a minimal
number of pointwise continuity conditions at the crosspoints, and therefore of
Lagrange multipliers, results in a similar algorithm as the FETI method with
redundant Lagrange multipliers of Farhat and Rixen [109, 110]. Since the Lagrange
multipliers in the mortar case are not associated with the vertices of the subregions,
the method with redundant multipliers cannot be implemented for mortars.

The new preconditioner of Klawonn and Widlund, which depends only on the
Lagrange multiplier matrix B, can be used for the mortar FETI algorithm. We
note that the matrix BB’ is non-singular in the mortar case, since the rank of B is
equal to the number of Lagrange multipliers. To see this, it is enough to take the
minor of B consisting of the columns corresponding to the interior nodes of the
nonmortars. This results in a block-diagonal matrix diagM. which is non-singular,

since each block M., is a diagonally dominant matrix.
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5.4 Convergence Analysis of the New Precondi-
tioner for Conforming Finite Elements

In [78], Klawonn and Widlund give a convergence analysis for a FETT method with
a new preconditioner, for solving elliptic problems with heterogeneous coefficients.
In this section, we present a slightly changed version of their theory for the much
simpler case of the Poisson equation. Since the proofs presented here require only
algebra, this theory can also be applied for the FETI method with mortars, if the
matrix B is changed accordingly; see Section 5.3.

The first step is an elementary functional analysis result. Let < -,- > be the
euclidean inner product on the Lagrange multiplier space U. From (5.7), we find
that an equivalent definition for V is V C U is V' L BKerS, i.e.,

V={velU| <v,B0 >=0, V0cKerS} (5.17)

Let (-, )y be an inner product on V', and let || - ||y be the corresponding norm on
V. We denote by V' be dual space of V' with respect to (-, -)y.

Lemma 5.1. Let P: U — V be the orthogonal projection onto V with respect to
< -, ->, and let F, M:U —V be linear symmetric operators on V. Assume there

exists positive constants C;, 1 = 1 : 4, such that

CilM[} < <FAMA> < Gol|A|f, VA e Vs (5.18)

Csllol2 < <Muv,o> < Cyljo|2, VveV. (5.19)
Then 00
PMPF) < 2%
A( ) < 66

Proof. This is Lemma 3.1 of Mandel and Tezaur [93], and a proof of it can be
found therein. O

Choosing the appropriate norm on V' is crucial. Following [78], let

I|lv||? =< Mv,v >=< SB'(BB') v, B'(BB') ‘v >= |B'(BB) " W|%.  (5.20)
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The matrix BB’ is invertible since B has full rank, and has more columns, i.e.,
the total number of nodes on the interface, than rows, i.e., the number of interior
nodes on the nonmortar sides.

To prove that ||-||v is a norm, let v € V such that ||v||y = 0. Then, from (5.20),
it follows that B'(BB')"'v = ¢ € KerS. From (5.17) we obtain < v, B( >= 0.
Since B{ = v we obtain that < v,v >= 0, and therefore v = 0, which proves that
|| - || is indeed a norm.

The next step is to show that the left inequality of (5.18) holds for C; =1, i.e.,

A2, < <FAMA> YAaeV.

The proof which we present here is somewhat different than that from [78], and
highlights the relationship between [|A||?, and < FA, A >. We begin by deriving

an equivalent formula for < FA, A >.

Lemma 5.2. Let F = BS'B’. Then,

<\ v >?

EFX )\ = 5.21
P = o g | B(BB) o + ul? (5:21)
Proof. In [93], the following elementary result has been proven:
A\, B 2
<FA\A> = sup %; (5.22)
wlKerS ‘w|S

see also [78]. For completeness, we include a short proof of (5.22), as appears
in [78].

We note that St = S~1/26-1/2 on RangeS. Since A € V' means that B'\ €
RangeS, we obtain that S~%/2B’\ € RangeS. Then, from the definition of F, we
find that

<FAMA> = <SBABXN> = ||[STV2B)\|)?
< B')\, S7V2p >2 <\, Bw >?
= sup — = sup - 2
wWE RangeS <w,w > wERangeS |w‘5
< \, Bw >2
= Ssup ————5—
wlKerS |w|5’
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From (5.22), it follows easily that

<\, Bw >?
<F\A> = Sup#

, 5.23
weWw |w‘% ( )

since W is an orthogonal sum of subspaces KerS and (KerS),, and A € V L
BKerS.

We now use (5.23) to prove (5.21). Let A € V and w € W. In another step
originally used in [93], we prove the existence of z € KerS such that Bw € V,
where w = w + z. In other words, Bw = Bw + Bz 1 BKerS, which leads to

< Bz,B > = — < Bw,Bf> V0ecKerS. (5.24)

Applying the Riesz representation theorem to the quotient space KerS/(KerS N
KerB) with inner product < B -, B - >, we obtain that a solution z € KerS for
(5.24) exists, and satisfies ||Bz|| < ||Bwl]|.

Let v = Bw € V. Since < \, Bz >= 0, we obtain

<ANBw> = <ABuw>—-—<MANBz> = <\ANBuw> = <\v>.
Since z € KerS, it follows that < Sw,w >=< Sw,w >, and therefore

< \, Bw >2 < \, B >2

|w]$ N [
From (5.23) we obtain that

<\, Bw >?
<FANA> = sup :72
WEW,BWEV |w|s

<\ v >2
= SUp— =5
vev I0f =y |w|S
<\ v >2
= sup -

vev infpy—o |B'(BB')~'v 4+ u|%’

For the last step, we used the fact that B(B'(BB’)"'v) = v, and that therefore
w— B (BB) v = u € KerB,
for all w € W such that Bw = v. O
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Using the result of the previous lemma, it is easy to see that three of the four
inequalities from (5.18) and (5.19) are satisfied.

Lemma 5.3. The following bound holds,

N < <FAA> VeV (5.25)
Proof. By definition, ,
A = sup |B,<(BA;)_>1U|%. (5.26)
The inequality (5.25) follows from (5.21) and (5.26) if we note that
Biilzfo|B’(BB’)’1v+u|§ < |B'(BB) '3
U

In the next theorem, we present the only estimate needed to obtain an upper
bound for the condition number of the FETI method.

Theorem 5.1. The bound
|B'(BB')"W|} < C(1+ zog(H/h))ZBiEZfo |B'(BB')'v 4 ul?%, (5.27)
18 equivalent to
|B'(BB')'Bwl|} < C(14log(H/h))*|w|%, Y w e W such that Bw € V. (5.28)
If these bounds hold, then the condition number of the FETI method satisfies
K(PMPF) < C(1+log(H/h))*. (5.29)

Proof. To show that (5.27) and (5.28) are equivalent, we first assume that (5.27)
is satisfied. Let w € W such that Bw =v € V. Then w = B'(BB’)"'v + u,, with
u, € W and Bu, = 0. It is easy to see that (5.28) follows from
B(BB)'Bul} = |B(BE)
C inf |B'(BB") v + ul%
C|B'(BB') v + uy[%
C(1 + log(H/h))* wl%.

IN

IN
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Reciprocally, assume that (5.28) holds. Let v € V arbitrary. Let w, € W
satisfy Bu, = 0 and

inf [B'(BB) vt ufy = [B(BB) vt ul.

Then (5.27) follows from (5.28) for w = B'(BB') ™ v + u,.

To prove (5.29), we use Lemma 5.1. From (5.20), it follows that the inequality
(5.19) holds for C5 = Cy = 1, and, from Lemma 5.3, we find that the left inequality
of (5.18) holds for C; = 1.

From (5.27), and using (5.18) and (5.26), we conclude that

<FAMA> < C(1+log(H/R)) [N [,

Thus, the right inequality of (5.18) holds for Cy = C'(1 + log(H/h))*.

Therefore, from Lemma 5.1, we obtain
k(PMPF) < C(1+ log(H/h))*.
O

A bound of the form (5.28) was proven, for conforming finite elements, by
Klawonn and Widlund [78]. The key for their proof was that the operator I —
B'(BB’)"!'B takes any function w € W, not necessarily continuous, into a contin-
uous function, w — B'(BB’)~! Bw, the nodal values of which are the average of the
nodal values of v at the matching nodes. The same operator appears in the study
of the balancing method; see [78]. This led to new connections between the FETI
and the balancing methods.

For mortar finite elements, we note that w— B’(BB’)~! Bw is a mortar function,
for any w € W, not necessarily a mortar function. However, we do not have a
similar interpretation of the nodal values of w — B’(BB’)"'Bw in terms of those
of w, as in the conforming finite element case. In addition, the operator I —
B'(BB')"'B is no longer local, since, for the mortar case, the matrix (BB')~! may

be a full matrix.
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5.5 Numerical Comparisons

In this section, we present numerical results for the FETI method for mortar finite
elements. We have tested each of the three preconditioners of Sections 5.3.1-5.3.3.
Our experiments were done in MATLAB, and for two and three dimensions.

Our interests were two—fold:

e to compare the convergence performances of the different preconditioners for

the FETTI algorithms with mortars, based on the iteration counts;

e to study the differences between the FETI methods for conforming finite el-
ements using pointwise continuity conditions and mortar conditions across
the interface, being interested in the iteration counts, as well as the compu-

tational costs;

5.5.1 Experiments in 2—-D

As the model problem in 2-D, we chose the Poisson equation on the unit square
Q = [0, 1]* with zero Dirichlet boundary conditions. The right hand was chosen
such that an exact solution of the problem was known.

The computational domain {2 was partitioned into 16, 32, 64, and 128 geo-
metrically nonconforming rectangular subregions, respectively; see Figure 5.1. On
each subregion, we considered (); elements of mesh size h, and, to make the com-
parisons easier, all the subregions considered had diameters of the same order, H.
For each partition, the number of nodes on each edge, H/h, has been taken to be,
on average, 4, 8, 16, and 32. Across the partition interface I' the meshes do not
necessarily match. A saddle point formulation of the problem has been used, and
mortar conditions have been enforced across I'.

For our tests with conforming finite elements, €2 was partitioned into 4 x4, 6 x6,
8 x 8, and 11 x 11 congruent squares, and (); elements were used in each square.
The meshes match across I', and, non-redundant pointwise continuity conditions,
or mortar conditions, are used across I' for comparison purposes.

We report the iteration count and the flop count of the algorithms. The PCG

iteration was stopped when the residual norm had decreased by a factor of 1077.
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Figure 5.1: Geometrically nonconforming partitions of {2
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We begin by discussing the differences between the new preconditioner M , cf.
(5.16), the preconditioner M, cf. (5.15), and the Dirichlet preconditioner M, cf.
(5.13), and by presenting some implementation details.

In general, the preconditioners M and M require some extra work in comparison
to M. In each iteration step, when we multiply a vector by the preconditioner, we
have to solve two systems with the matrix BB’, and diagB, B!, respectively. The
non-zero entries outside the diagonal blocks are relatively few; see Section 5.3.2 for
details on the nature of their occurrences.

It is easy to see that diag B, B! has a band of order H/h, the number of interior
nodes on an arbitrary nonmortar. The matrix BB’ is also banded, but in this case
the band depends on the ordering of the nodes on the interface, and it is possible
to have order 1/h. Therefore, multiplying a vector by (BB’)~! is potentially an

expensive operation.

83



Table 5.1: Geometrically nonconforming partition, non-matching grids across the
interface : (I) = New Preconditioner, (II) = Block-diagonal Preconditioner, (III)
= Dirichlet Preconditioner, Ns = Number of Subdomains

0 ) (I
Ns ‘ H/h | Iter MFLOPS | Iter MFLOPS | Iter MFLOPS
16 4 11 9.0e-1 20 1.5e+0 108 7.4e+0
16 8 13 1.2e+1 22 1.9e+1 290 2.3e+2
16 16 14 2.2e+2 23 3.4e+2 406 5.6e+3
16 32 15 4.4e+3 24 6.8e+3 486 1.3e+5

32 4 12 2.4e+40 24 4.3e+0 223 3.7e+0
32 8 14 2.7e+1 25 4.6e+1 438 7.4e+2
32 16 15 4.9e+-2 27 8.5e+2 620 1.8e+4
32 | 32 16 1.1e+4 27 1.9e+4 692 4.4e+5
64 4 15 7.2e+0 32 1.3e+1 487 1.9e+2
64 8 16 7.4e+1 33 1.4e+2 | 1071  4.3e+3
64 | 16 18 1.3e+3 35 24e4+3 | 1725  1l.le+H
64 | 32 20 3.0e+4 39 5.7e+4 | 2130  2.9e+46

128 | 4 16 1.6e+1 33 2.9e+1 | 1107  9.0e+2
128 | 8 18 1.7e+2 36 3.2e4+2 | 1413 2.0e+4
128 | 16 20 3.1e+3 41 6.0e4+3 | 1761  2.5e+H
128 | 32 22 7.1le+4 42 1.3e+5 - -

However, the sparsity pattern of BB’ plays a very important role. Our re-
sults show that the costs for applying (BB')~" and (diagB,B!)~" are comparable
and relatively small compared to the costs for other operations performed during
one iteration, e.g., multipling a vector by the Schur complement, or by its pseu-
doinverse. These costs further decrease if the Cholesky factorizations of BB’ and
diagB, B! are computed only once, and the Cholesky factors are stored. Then,
solving systems with BB’ or diagB, B/, only amounts to one back and one forward
solve. Moreover, the improvement of the iteration count offsets this extra cost
easily.

We note that we do not compute the Schur complements explicitly, nor their

pseudoinverses, but only the stiffness matrices for each subdomain.
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Figure 5.2: Geometrically nonconforming partition, non-matching grids across
the interface : (I) = New Preconditioner, (II) = Block-diagonal Preconditioner.
Upper left : H/h = 4, Upper right : H/h =8, Lower left : H/h = 16, Lower right
: H/h = 32.
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To multiply a vector by a Schur complement matrix, we solve, in each subregion,
a Poisson problem with Dirichlet boundary conditions.

To multiply a vector by ST, we solve one Poisson problem with mixed boundary
conditions in each non—floating subregion, and with Neumann boundary conditions
in each floating subregion; see, e.g., [48]. We note that we only need to store the
interior—boundary and boundary—boundary blocks of the local stiffness matrix and

the Cholesky factor of the interior—interior block, which is symmetric and positive
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Figure 5.3: Geometrically nonconforming partition, non-matching grids across
the interface : (I) = New Preconditioner, (II) = Block-diagonal Preconditioner.
Upper left : Ns = 16, Upper right : Ns = 32, Lower left : Ns = 64, Lower right :
Ns =128, Ns = Number of subdomains.
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definite.

To have a uniquely solvable problem on the floating subregions, we require
the solution of the local Neumann problem to be orthogonal to KerS, i.e. to the
constant functions on the subregion. In two dimensions, a simple way of enforcing
this orthogonality condition is by adding a Lagrange multiplier, and storing the
LU components of the extended stiffness matrix.

In Table 5.1, we report the iteration and flop counts for the new preconditioner
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Table 5.2: Geometrically conforming partition, Matching grids and continuity con-
straints across the interface: (I) = New Preconditioner, (III) = Dirichlet Precon-
ditioner, Ns = Number of Subdomains

0 oy
Ns ‘ H/h | Iter MFLOPS | Iter MFLOPS
16 4 7 5.9¢e—1 18 1.3e+0
16 8 9 7.7e+0 19 1.5e+1
16 16 10 1.6e+2 20 3.0e+2
16 32 11 3.7e+3 21 6.6e+3
36 4 9 2.3e+0 23 5.2e+0
36 8 10 2.3e+1 24 5.0e+1
36 16 11 4.2e+2 26 9.1e+2
36 32 13 1.1e+4 28 2.2e+4

64 4 9 4.6e+0 25 1.2e+1
64 8 10 4.Te+1 25 1.1e+42
64 | 16 11 1.0e+3 27 2.2e+3
64 | 32 13 2.1e+4 28 4.6e+4

121 4 9 9.7e+0 25 2.5e+1
121 8 10 8.1le+1 25 1.8e+-2
121 16 11 1.4e+3 27 3.1e+3
121 | 32 13 o.le+4 28 1.0e+5

M, cf. (5.16), the preconditioner M, cf. (5.15), and the Dirichlet preconditioner
M, cf. (5.13). The Dirichlet preconditioner M does not yield a numerically scal-
able method and converges only in hundreds of iterations. The iteration count
appears to be linear in H/h, and the computational costs are one to two orders
of magnitude greater than for the other preconditioners. The new preconditioner
M has scalability properties similar to those of M in the conforming case. When
the number of nodes on each subdomain edge (i.e. H/h) is fixed and the number
of subdomains, NV, is increased, the iteration count shows only a slight growth, cf.
also Figure 5.2. When H/h is increased while the partition is kept unchanged, the
increase in the number of iterations is quite satisfactory and very similar to that of

the conforming case, cf. also Figure 5.3. Note that the number of iterations and the
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computational cost for M are about half of that for 3. This suggests that drop-
ping the non-zero diagonal terms of BB’ relaxes the weak continuity conditions
for mortar finite elements more than is optimal.

As a comparison, we also present iteration counts for a geometrically conform-
ing case. The computational domain €2 is partitioned in a geometrically conforming
fashion into 16, 36, 64, and 121 squares.

Table 5.3: Geometrically conforming partition, matching grids and mortar con-
ditions across the interface : (I) = New Preconditioner, (II) = Block-diagonal
Preconditioner, (III) = Dirichlet Preconditioner, Ns = Number of Subdomains

0 ) oy
Ns ‘ H/h | Iter MFLOPS | Iter MFLOPS | Iter MFLOPS
16 4 6 5.4e—1 6 5.4e—1 6 1.0e+0
16 8 6 5.6e+0 7 6.4e+0 18 2.0e+1
16 16 6 1.1e+2 8 1.4e+2 38 6.8e+2
16 32 7 2.6e+3 8 2.9e+3 47 1.7e+4
36 4 8 2.1e+0 9 2.3e+0 14 5.6e+0
36 8 8 1.9e+1 10 2.3e+1 33 9.1e+1
36 16 9 3.6e+2 10 3.9e+2 49 2.0e+3
36 32 11 9.5e+3 12 1.0e+4 56 5.3e+4
64 4 8 4.4e+40 10 5.2e+0 20 1.5e+1
64 8 9 4.4e+1 11 5.2e+1 25 1.1e+2
64 16 11 1.0e+3 11 1.0e+3 52 5.2e+3
64 32 12 1.9e+4 13 2.1e+4 61 1.1e+5
121 4 10 1.1e+1 13 1.4e+1 48 5.9e+1
121 8 11 8.9e+1 13 1.0e+2 78 6.5e+2
121 16 12 1.5e+3 15 1.8e+3 116 1.4e+4
121 32 14 5.4e+4 17 6.4e+4 121 4.2e+5

Across the interface I', we can use pointwise continuity conditions, as in the
classical FETI method, and the preconditioners M and M , Or we can use mortar
conditions and the preconditioners M and M.

When pointwise continuity is enforced, the new preconditioner M converges in

less than half the number of iterations required for the Dirichlet preconditioner.

88



In this case, BB’ is very close to twice the identity matrix, and therefore almost
no extra work is required when a system with the matrix BB’ is solved. This
observation is supported by a comparison of the flop counts; cf. Table 5.2. Also,
the vector matrix multiplication by B'(BB’)"'B is very easy to compute, since it
is close to an operator from the balancing algorithm; see Section 5.4. The PCG
algorithm with the new preconditioner can be written such that only the product
of a vector by B'(BB’)"'B and not by (BB’)~! needs to be computed.

When mortar conditions are used, computing the matrix B is simple for match-
ing nodes, in particular no computations of integrals resulting from the mortar
conditions are necessary. From Table 5.3, it is easy to see that M and M behave
similarly in terms of computational costs per iteration and iteration counts, which
are just slightly higher for the block diagonal preconditioner M. However, the
Dirichlet preconditioner M performs, once again, poorly, when mortar conditions
are used across the interface, and does not seem to yield a scalable method.

We finally note that there is little difference in terms of iteration count and
computational costs between the use of the new preconditioner M when continuity

constraints or mortar conditions are used; cf. Table 5.2 and Table 5.3.

5.5.2 Experiments in 3—D

As the model problem in 3-D, we choose the Poisson equation on the unit cube
Q = [0, 1] with zero Dirichlet boundary conditions. The right hand side is chosen
such that the exact solution is known.

The computational domain 2 has been partitioned into 8, 16, and 32 noncon-
forming parallelipipeds, respectively; see Figure 5.5 and Figure 5.6, at the end of
this section, for the 8 subdomains partition of {2, and the corresponding choice of
the nonmortar faces. We chose these partitions such that in each case there exist
floating subdomains, i.e., interior subdomains.

The subdomains have diameter of order H, and (), elements of mesh size h
are used in each subdomain. The number of nodes on each edge is, on average,
4, 8, and 16. Across the partition interface I' the meshes do not match, and

mortar conditions for three dimensional elements are enforced by using a Lagrange
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multipliers matrix; see Section 2.3.
We report the iteration count and the flop count of the algorithms. The PCG

iteration was stopped when the residual norm had decreased by a factor of 10~7.

Table 5.4: Geometrically nonconforming partition, non-matching grids across the
interface, 3-D: (I) = New Preconditioner, (IT) = Block-diagonal Preconditioner,
(III) = Dirichlet Preconditioner, Ns = Number of Subdomains

0 (i (I
Ns ‘ H/h | Iter MFLOPS | Iter MFLOPS | Iter MFLOPS
8 4 12 1.7e+0 | 37 4.6e+0 797 9.8e+1
8 8 15 4.0e+1 40 9.1e+1 | 11104 2.4e+4

8 | 16 18 1.2e+3 | 45 3.0e+3 - -
16 | 4 14 5.5e+0 | 42 1.2e+1 | 2978  8.0e+2
16 | 8 17 1.le+2 | 45 2.2e+2 - -
16 | 16 20 3.0e+3 56 7.4e+3 - -
32| 4 17 2.1e+1 52 3.2e+7 | 4751  2.8e+3
32| 8 19 4.0e+2 64  6.5e+2 - -

We tested the performance of the three preconditioners for mortars, the new
preconditioner M , cf. (5.16), the preconditioner M, cf. (5.15), and the Dirichlet
preconditioner M, cf. (5.13); cf. Table 5.4.

We do not compute the Schur complements explicitly, but only store those
components of the stiffness matrices which are relevant for the multiplication of
a vector by the Schur complement matrix and by the pseudoinverse of the Schur
complement. In the mortar case, the stiffness matrices for each subdomain may
be different, unless there are repeated subdomains. Therefore, in the three dimen-
sional case, the memory requirements when implementing mortar finite element
methods are significant. However, a similar situation also occurs for the conforming
finite element case, if the partition of the computational domain into subdomains
is unstructured and if there are few repeated subdomains.

As in the 2-D case, the Dirichlet preconditioner M does not yield a numerically

scalable method, requiring hundreds or thousands of iterations to converge.
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Figure 5.4: Non—zero entries of BB’. Left: 3—D partition, 16 subdomains, 8 nodes
on subdomain edge. Right: 2-D partition, 16 subdomains, 8 nodes on subdomain
edge.

The new preconditioner M seems to be numerically scalable. The number
of iterations grows slowly when the number of nodes on each subdomain edge is
increased, for a fixed number of subdomains. A similar behavior is noticed when
the number of nodes in each subdomain if fixed, and the number of subdomains is
increased.

Using the preconditioner M results into a method which converges in about
three times as many iterations than when M is used. We recall that, in the 2-D
case, the number of iterations for the method with M was only about twice as large
as that for M. This result is due to the fact that, in the three dimensional case,
there are many nodes, e.g., the nodes on the wire baskets of the subdomains, which
influence several nonmortar conditions. Therefore, the block diagonal structure of
BB’ is no longer as dominant, and many non-zero entries of BB’ need to be
dropped; cf. Figure 5.4.

However, the flop count for the algorithm with M is not three times larger
than the flop count for the algorithm with M. This suggests that the costs of
applying (BB’)~! are significant in the three dimensional case. In Table 5.5, we

present the costs of applying (BB’)™! twice during an iteration step, relative to
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Table 5.5: Relative complexity study of one iteration step for the new precondi-
tioner

MFLOPS MFLOPS per
Ns | H/h || due to BB’ iteration Ratio
(A) (B) (A)/(B)
8 4 3.2e—2 1.5e-1 .22
8 8 5.9e-1 2.7e+0 .22
8 16 6.8e+0 6.9e+1 .10
16 4 1.3e-1 3.9¢e-1 .34
16 8 2.1e+0 6.6e+0 .32
16 16 2.2e+1 1.5e+2 15
32 4 6.9¢e-1 1.3e+0 .55
32 8 1.1e+1 2.1e+1 .55

the total flop count for one iteration step. As expected, this cost is significant, but
it decreases when the number of nodes on the edges of the subdomains increases,
since, in that case, the costs of multiplying a vector by the Schur complement and

the pseudoinverse of the Schur complement grow faster than the cost of applying
(BB')™.
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Figure 5.5: Partition of the unit cube, 8 subdomains
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Chapter 6

A Balancing Algorithm for
Mortar Finite Elements

6.1 Introduction

The balancing method is a hybrid nonoverlapping Schwarz domain decomposition
method from the Neumann-Neumann family; see Section 3.3.2. It is easy to im-
plement, and uses a natural coarse space of minimal dimension which allows for
an unstructured partition of the computational domain. The condition numbers
of the resulting algorithms depends only polylogarithmically on the number of
degrees of freedom in each subregion.

The balancing method was introduced by Mandel and Brezina [89, 90, 91] for
elliptic problems, and was extended to mixed finite elements by Cowsar, Mandel,
and Wheeler [42].

The Neumann-Neumann algorithms have been analyzed by Dryja and Widlund
[50, 132]; see also [53] for a general study which includes the three dimensional case.
Several Neumann-Neumann algorithms for mortars have also been suggested; see,
e.g. Dryja [46], Le Tallec [84], and Le Tallec, Sassi, and Vidrascu [85].

In this chapter, we propose an algorithm which can be regarded as the extension
of the balancing method for the case when mortar finite elements are used to
discretize H'(). As in the classical case, every local space is associated with
a subregion from the partition of the computational domain. The values of the

mortar function on a nonmortar side depend on, but are not equal to, its values on
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the mortar sides opposite the nonmortar. To account for this dependence, we chose
to work with local spaces defined on extended subregions, instead of using local
spaces and local solvers defined on each subregion. In this regard, our algorithm
is different from the classical Neumann-Neumann methods.

For each subregion €2;, the extended region @Z is the union of €; and all the
neighboring subregions of {2; which have a mortar side opposite 9€2;. We note that,
in our local solvers, we consider only the nodes on the mortars opposite 0¢2;, in
addition to the nodes on 0¢2;. Therefore, the dimensions of our local problem solved
on an extended subregion is at most a fixed multiple (depending on the relative
mesh size of the neighboring subregions) of the dimension of the corresponding
local problem solved on the individual subregion.

A basis for the coarse space is given by counting functions associated with each
local space. The same construction exists in the classical balancing algorithm.

Our algorithm is based on a a similar philosophy to the method suggested by
Dryja [46], since for both algorithms the Schwarz framework is used to study their
convergence properties. There are major differences between the two algorithms,
since our goal was to obtain an algorithm for mortar finite elements which is close
to the classical balancing algorithm for conforming finite elements. In the method
of Dryja, the local spaces are associated with pairs of opposite nonmortar and
mortar sides. Also, a basis for the coarse space is given by the mortar functions
which are equal to one at all the genuine degrees of freedom associated with a
subregion.

For our algorithm, we obtain an upper bound for the condition number of the
form C(1 4 log(H/h))", which is valid for both the geometrically conforming and
nonconforming cases. The same bound is valid, in the geometrically nonconforming
case, for Dryja’s algorithm, as well as for other algorithms, e.g., the iterative
substructuring method of Achdou, Maday, and Widlund [3], in the geometrically
nonconforming case. We note that, in the geometrically conforming case, which,
in some sense, is closer to the conforming finite element case, an upper bound
of the form C(1 + log(H/h))” for the condition number has been established for
both algorithms mentioned before. Our algorithm has been designed to be applied

in the nonconforming case, and therefore we are satisfied with the quasi—optimal
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bound obtained for that case.

The rest of the chapter is structured as follows. In the next section, we present
the balancing algorithm for conforming finite elements, and, in Section 6.3, we
modify it to obtain an algorithm for mortar finite elements. After we prove several
technical results in Section 6.4, we use the abstract Schwarz theory in Section 6.5
to obtain a condition number estimate for our algorithm in the geometrically con-
forming case. InSection 6.6, we conclude the chapter, and our thesis, by extending

the result to the geometrically nonconforming case.

6.2 The Classical Balancing Method

Following Widlund [133], we present the original balancing method of Mandel and
Brezina [89], and use abstract Schwarz theory of Section 3.2 to derive a condition
number estimate for it. To keep the presentation simple, our model problem will
be Poisson’s equation with mixed boundary conditions on the boundary of 2, a
bounded polygonal domain in R?; cf. (5.1).

On €2, we consider P; or () finite elements with mesh size h. The finite element
mesh is partitioned along mesh lines into N non—overlapping subregions §2;, i =
1: N. A subdomain §; is floating if 9Q; N 9Qp = @, and non—floating otherwise.
The variational formulation of the problem is given by (1.6); see Section 1.3. As
in the FETI method, see Section 5.2, the unknowns interior to the subregions are
eliminated, and a Schur complement formulation of the problem is obtained. The
reduced system is a Schur complement system, and will be solved in the space 1%
of piecewise harmonic functions on the subregions 2;.

Let wr be a piecewise linear function on I', the interface of the partition of €2,
and let H(wp) € V be the discrete harmonic extension of wr. Let a: V x V — R

be the inner product on V, given by

a(wp,wr) = a(H(wr), H(wr)), = [H(wr)Fn ).
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6.2.1 The coarse space and the local spaces

An important role in the balancing algorithm is played by the counting functions
associated with the boundary nodes of each subregion. In the classical algorithm,
they indicate to how many boundaries of subregions a node on the interface be-
longs. Let v; : I' — R, be the counting function corresponding to €2; defined as

follows: v; is a piecewise linear function with nodal values given by

number of sets J€2; with x € 9Q); if x € 08y
vi(x) = 0, if x & 0Qy;
1, if =€ 0Q;NoNp.

Let VZ-T be the pseudo inverse of v;, i.e., I/;r is a piecewise linear function on I', with

nodal values

(2

1/v(x), if y;(x) # 0;
o= i B0
We note that VZ-T form a partition of unity, i.e., their sum equals one at each node
of I"'U 09).

The coarse space Vj has minimal dimension, i.e., has only one degree of freedom
in each subregion. For each floating subregion €2;, the harmonic extension of I/Z-T ,
H(v}), is a basis function for V. For a non-floating subregion Q;, we set the
values of V]T at the nodal points of 9€2; N 9€2p to zero. Then, the basis function
corresponding to €); is the harmonic extension of I/jT.

The bilinear form aq is exact, i.e., ag(-,-) = a(-,-), and therefore the coarse

space solver Tj is a projection. To emphasize this, we write Py = Tj, and note that
a(Pou,vg) = alu,vg), Y vy € V.
In particular, a(Pyu,v]) = a(u,v)), and therefore,

a((I —P)u,v)) =0, YueV. (6.1)

Each local space V;, @ 1 : N, is associated with a subregion €2;, and is

vl

embedded in V, ie., V; ¢ V. Thus V; consists of piecewise harmonic functions

which vanish at all the interface nodes on T\ 9€;. Let fh be the interpolation
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operator onto the piecewise linear finite element space V, which preserves the

nodal values. The bilinear form a;(-,-) is given by

a;(vi,w;) = aq,(H(In(viv;)), H(IL(viw;))). (6.2)
The projection-like operator 7T; is defined by
a;(Tiu,v;) = a(u,v;), Y v €V (6.3)
Since ’I—i(uiz/l-T ) is equal to 1 on any floating subregion €2;, it follows that
a;(Ty(u),v)) = /Q VH(I,(vTy(w))) - VH(vv]) dz = 0.
Therefore, (6.3) is solvable if u satisfies

a(u,v)) =0, (6.4)

for every VZT corresponding to a floating subregion. Such functions are called bal-

anced functions. Then, from (6.1), we can conclude that any function in Range(/ —
Py) is balanced.

Moreover, if €2; is a floating subregion, the local problem (6.3) corresponds to
a pure Neumann problem, which is not uniquely solvable. We make the solution

unique by requiring T;u to be orthogonal to the null space of a;, i.e.,

/Q HEWT W) de = 0. (6.5)

6.2.2 Condition number estimate

The balancing method is a hybrid method, combining features of the additive and
multiplicative Schwarz methods. It can be regarded as an additive Schwarz method
on the local spaces, after the coarse space component has been projected out. The

preconditioned operator is
Tha = Po+ (I —Po)(Th+ ... +Tn)I — Fo), (6.6)

and the error propagation operator is

N

(I —Po)(I — ZTi)([_PO)'

i=1
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Since the balancing method is a hybrid method, we expect its condition number
to be smaller than that of the pure additive Schwarz algorithm, corresponding to

the Neumann-Neumann operator
Tn.n = Bo+Ti+ ...+ Ty, (6.7)

and larger than that of the multiplicative algorithm. We note that a Neumann-
Neumann algorithm with the spaces and the approximate solvers considered here
does not converge.

An important observation is that the convergence analysis for the balancing
operator Ty, can be obtained from the analysis of the additive operator Tx_,
which can be done in the additive Schwarz framework; cf. Section 3.2. This result
appears in Mandel and Brezina [89], and will be presented here for the sake of

completeness.

Lemma 6.1. If the coarse space operator Py is a projection, then the condition
number of the balancing operator Ty, is bounded from above by the condition num-
ber of the additive Schwarz operator Ty_n restricted to the space Range(I — Pp).
Proof. Since Py is a projection, a(w,w) = a(Pyw, Pow) + a((I — Py)w, (I — Py)w),
and, from (6.6), it follows that
a(Thqw,w) = a(Pw,w) + a((I —FP)(Th+ ...+ Ty)I — Py)w,w)
= a(Pw,w) + a((Th +...+Ty)(I — Py)w, (I — Fy)w)
= G(Pow,Pow) + a,((P0+T1++TN)(I—P0)U},(I—P0)’(U)
= G(Pow, P(ﬂU) + CI,(TN,N([ — Po)w, (I — Po)’w)
I Npin(Tv-n) <1 < AMpae(Tv_n) are the smallest and the largest eigenvalues of
Ty_n restricted to Range(I — Py), then
a(Tygw,w) < a(Pow, Pow) + Apax(Ty—n)a((I — Py)w, (I — Py)w)

< )\max (TN,N)CI,(’IU, UJ)

A similar inequality holds for A, (Ty—_n), and we conclude that

K(Tha) < K(Tn-n).
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We now return to the analysis of Ty_n. Let u € f/, and let u; € V; be the local

space components of u, given by
u; = H(Ih(l/;ru)). (6.8)

Since V;r form a partition of unity, we obtain

> = H(Ih(<zyj)u)) = H(I(w) = u, (6.9)

since u is a piecewise harmonic function.
From the definition of the approximate bilinear forms, (6.2), we find
ai(ui, u) = |HIW (i w) gy = |ullin,),
and therefore N
D ai(unw) = |ulig)- (6.10)
i=1
Then, from (6.9) and (6.10), we find that Assumption 1 of the abstract Schwarz
theory is satisfied for Cy = 1. We note that, a coarse space component does not
exist in the decomposition of w. This will change in the mortar case; see (6.55).

A routine proof using a coloring argument shows that p(e), the spectral radius
of Assumption 2, is uniformly bounded by a constant independent of the number
of subregions, i.e., p(e) < C.

In Section 3.2.1, we have noted, following Widlund [133], that it is enough
to prove the inequality from Assumption 3 only for the functions from Range(T;),
instead of for every local function in v;. This observation is crucial for the balancing
method, as well as for our mortar balancing algorithm. We conclude this section

with the proof of the existence of a constant C' such that
a(us, u;) < C(1+log(H/h))a(ui, us), ¥ u; € Range(T}), Vi=1:N. (6.11)

This proofs follows the same steps as in Widlund [133].
Once (6.11) is proven, then Assumption 3 is established, with a parameter w
of order C'(1 + log(H/h))?. From Theorem 3.1, it results that

K(Ty_n) < C(1+1log(H/R))?,
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S |

Figure 6.1: Neighboring subregions, conforming finite element case

and, from Lemma 6.1, we obtain that
F(Tht) < C(1+ log(H/R)).

We return to proving (6.11). Let u; € Range(T;). From (6.2), it follows that
(6.11) is equivalent to

a(ui,u;) < C(1+log(H/R))*IH(In(vivi)) 3 q)- (6.12)

We note that the support of u; consists of the union of €2; and its neighbors. We
only discuss the case when €); and its neighbor have one side in common. The
case when €2; and one of its neighbors have one vertex in common can be treated
similarly.

For clarity, we introduce notations similar to those we will use in the mortar
case; see Figure 6.1. Let Q) be a neighboring subregion of €;, and let v;; be a
side of Q] opposite to the side (;; of €;. Let A and D be the end points of ¢; ;.

102



Then v;(A) = v;(D) = 4, and v; is equal to 2 at all the interior nodes on ¢; ;. Let
I n(viu;) 4 be the function which is equal to v;u; at A and vanishes at all the other
nodes. The function l:h(z/l-ui) p is defined similarly.

It is easy to see that

In(vyus) |Z¢,1 In(viug) a + Iy (vui) p

U; ‘71',1 - 92 4

We note that u; vanishes at all the nodes of 99} outside 7, ; and is harmonic on
Q!. From Theorem 1.5 it follows that

|Ui|§{1(ﬂg) = |Uz‘|§{1/2(aﬂg)
< (1) Iz, Breony + 1)l agoo,

T () b s o)

. IH (I (viwn))l 1320,
< O+ log(H/M)Y (IH(T(vius)) s oy + ).
Similar estimates can be derived on all the neighboring subregions of €2;, as well
as on €);. Summing all these estimates, we find

H(Iy(viw; %2 )
aluu;) < o<1+zOg<H/h>>2(|H<fh<uiuz~>>|zl<gi>+” ( (HQ)” ©). (613)

Since u; € Range(T;), we find, from (6.5), that
/ H(In(viu;)) = 0, V u; € Range(T;).
Then, from the Poincaré inequality (see Theorem 1.3), it follows that
IH(In(viu)| 72, < CHH(In(viws)) i ). (6.14)

and the estimate (6.12) results from (6.13) and (6.14).

6.3 The Balancing Algorithm for Mortars

In this section, we modify the classical balancing method for conforming finite ele-

ments, discussed in Section 6.2, to obtain an algorithm for mortar finite elements.
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To make our presentation clear, we first discuss the geometrically conforming case;
we will extend our results to the geometrically nonconforming case in Section 6.6.
Our results can also be extended, using the same methods, to any second order
self-adjoint elliptic problems with mixed boundary conditions, and to the three
dimensional case.

Following Section 2.2, we introduce a mortar finite element V" on Q corre-
sponding to the nonoverlapping partition {;};—1.n. The variational formulation

of our Poisson problem is
a" (up,vp) = fH(v), Yo, €V

which has to be solved for u, € V"; see Section 2.5 for the definitions of a'(-, ")
and fU(-). For simplicity, we assume that all subregions ; are rectangular.

After that we have eliminated the unknowns in the interior of the subregions, a
Schur complement problem results. The variational formulation of this Schur prob-
lem was not discussed in Section 2.5, and is different than that of the conforming
case; see Section 6.2. Therefore, we give further details.

Let S® be the Schur complement matrix corresponding to €;, and let S be the
block diagonal Schur complement matrix; see Section 5.2. The reduced system is

a Schur complement system,

s (up,vr) = fU(vp), Voup € Vi (6.15)

We want to solve (6.15) for ur € Vi, the restriction of u; to the interface. Here,
s"(ur,vr) = vl Sup, and fT(vp) is obtained from fT(v,), after eliminating the
interior unknowns.

Let V' be the space of piecewise discrete harmonic functions, associated with
the partition of Q. If wr € Vi, then H(wr) € V is constructed as follows. In each
subregion €;, let H;(w) be the harmonic extension of wr |aq,, with respect to the
H'-seminorm. The restriction of H(wr) to €; is denoted by H;(w). It is easy to
see that

s"(wr,wr) = a" (H(wr), H(wr)), Y wr € V¥, ¥V H(wr) €V, (6.16)
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and that the discrete harmonic extension minimizes the energy of a function for
given values on the interface,

a"'(H(wr), H(wr)) = min  a' (w,w).
weVh w|r=vr

The major difference between the classical balancing method and our algorithm
for mortars is related to the extended subregions, which replace the individual
subregions in the definition of the local bilinear forms a@;(-,-). In Section 6.5, we
will show that defining a;(+, -) only on ©; does not lead to a proof of the convergence
of the algorithm.

We are looking for a solution in Vi of the Schur complement system (6.15).
From the norm equivalence (6.16), it follows that we can study the convergence
properties of the balancing algorithm for piecewise discrete harmonic functions
from V', instead of mortar functions restricted to the interface. Therefore, from
now on we work in the space V, with inner product a(-,-) = a"(-, ).

The counting functions are different than in the conforming finite element case,
due to the use of the extended subregions.

For each subregion €2;, let (; j, j = 1: q(i), be the mortar sides of €2;, and ¢ ,
j =1:4¢(i), be the mortars opposite 9€2;. Note that, since we are in the geo-
metrically conforming case, opposite a nonmortar there exists exactly one mortar.
Let N; be the set of the corner nodes of €2;, the interior nodes of U;(; j, and all the
nodes of sz;’j.

Let €; be the extended subregion corresponding to €2;, defined as follows: Let
Q;] be the neighboring subregion of €2; such that C;j is the side of Q;J Then, Qi
is the union of €2; and all the subregions Q;’j, with j = 1: ¢ (7).

Let v; : I' — R be the counting function corresponding to €2;. By definition, v;
is a mortar function, piecewise linear on all the mortars, and takes the following
values at the genuine degrees of freedom:

number of N;-s such that x € N;, if z € N;;
vi(z) = 0, if = ¢N;
1, if xe€0Q;NINp.
In the geometrically conforming case, the value of v; at every interior node of the

mortar sides where v; does not vanish is equal to 2, and Range(v;) C {1, 2, 3,4}.

105



Let V;r be the pseudo inverse of v, i.e., VZ-T is a mortar function, piecewise linear
on mortars, with nodal values

v (z) = { 1/vi(x), if y(x) # 0;

0, else.

As in the conforming case, v, as well as H(v]), form a partition of unity:

ZVJ = 1 ZH(VJ) = L (6.17)

The coarse space Vj is defined as in the conforming case, using the new counting
functions. Let I, be the nodal basis interpolation onto V. A basis function for V;
corresponding to a floating subregion €; is H(VZ-T ). For a nonfloating subregion €2;,
we set V]T equal to zero at all the nodes of 92p and H(V]T) is a basis function for
Vo.

The bilinear form aq is exact, i.e., ag(+,+) = a(-,-), which means that Ty = P
is a projection.

Each local space V;, « = 1 : N, is associated with one subregion €2; from
the partitioning of €2, is embedded in V, i.e., V; C V, and consists of piecewise
harmonic functions which vanish at all the genuine degrees of freedom of I" \ N;.

On V;, we define approximate bilinear forms a;(-, -) using the extended subregion

ﬁi as follows:

ai(vi,wi) = ag,(H(I(vivi)), H(In(vaw;))) (6.18)
- Z /Q VH(In(viv:)) - VH(In(viw)) de.

The projection-like operator 7T; is defined by
a;(Tiu,v) = alu,v;), Yuv; €V (6.19)

If the extended subregion QZ contains more than one subregion, then any function
in V; vanishes at 99; \ 0€2;. Thus, (6.19) is well-posed since it becomes a Poisson

problem on QZ with intrinsic Dirichlet boundary conditions on 8@ \ 0.
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Figure 6.2: Local spaces

If (Zl = ();, then all the sides of §2; are mortars; cf. Figure 6.2, upper left picture.
In this case, as in the conforming case, we have to work with balanced functions;
cf. (6.4). Once again, every function from Range(/ — Fp) is a balanced function,

and we require T;u to be orthogonal to the null space of aj,
/ H(In(viTi(u))) de = 0, (6.20)
Q;

in order for the solution of (6.19) to be unique.
The balancing algorithm for mortars corresponds to the same preconditioned
operator,
Toa = Po+ (I —-P)(T1+...+Tn)(I — R).

We note that Lemma 6.1 also holds for the mortar balancing algorithm. There-
fore, the analysis of our algorithm will follow the same steps as that of the classical

algorithm, and requires an upper bound for x(7Ty_ ). This bound will be obtained
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Figure 6.3: Extended subregion ﬁl =, UQ

using the abstract Schwarz theory, by establishing the validity of Assumptions 1
and 3 from Section 3.2.1, for Ty_x restricted to Range(/ — F); see Section 6.5.

6.4 Technical tools

In this section, we prove two results which will be used in Section 6.5 for the analysis
of the case when the extended subregion Q); contains more than one subregion, i.e.,
(); has at least one nonmortar side.

Our proofs do not depend on the number of nonmortar sides of €2;. To keep
the presentation simple, we assume that €2; has exactly one nonmortar side, 7; ;11;
cf. Figure 6.3. Then, Q= QU Q;11. Since we are in the geometrically conforming
case, v; is equal to 2 at all the interior nodes on the mortar sides (; 1, ¢; 2, (i3, and
Giit1- Also, v;(A) = vi(D) = 3, 1(B) = v(C) = 2, and v;(E), vi(F) € {2,3},

depending on whether or not a mortar and a nonmortar meet at £ an F. In
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order to present both cases, we assume that 7,14, the side of Q1 opposite Qf,

5

2, is a nonmortar. Then,

is a mortar, and that ;1 5, the side of €2, opposite (2
vi(E) =3 and v;(F) = 2. From (6.18), it results that

Let u € V be a piecewise harmonic mortar function, and let u; = u |S~L Let
v; = Iy(viw;) € Vi, and let [vi]y, .., = v |¢.pr =i |4, De the jump of v; across
Vii+1. From (6.21), we find

ai(us, w) = |oiltnay + |vilto, ) (6.22)

In the next lemma, we eliminate the jump of v; by extending v; into €21, in
such a way that the energy of the extension is only increased by a constant factor.
We use the same construction as in Section 4.3.2, where we have also eliminated
the jump of a mortar function in order to estimate the L? norm of its jump across

a nonmortar side.

Lemma 6.2. Let x; € HY(Q, 1) satisfy

Xi [¢iiv1— _[Ui]%,wrﬂ Xi 1Giiv1— 0; ’Xiﬁfl(ﬁiﬂ) < Cdl(“l?“l) (623>

Let uer € HY(SY;) be the extension of v; given by

V; on €
u =
ert vi+xXi on Q.

Then,

IN

|uext‘fq1(§i) C a;(us, u4); (6.24)
||Ue:thiQ(§i) < CH? a;(u;,u;), (6.25)

where C' is a constant that does not depend on ;.

Proof. To obtain a uniform C, the constant in (6.23) must have the same property.
The extension of the jump of v; on €2, is done on the reference unit square, and
(6.23) is obtained by classical extension and trace theorems for Sobolev spaces; cf.

[96]. The details of the construction have been provided in the proof of Lemma 4.7.
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An extension x; of [v;] can be obtained such that

Vi, i4+1

|XZ |H1(Qi+1) S C| | [U'i]'Yi,i+1 | |H1/2(Ci,i+1) N (626>

Since v; is a mortar function, its average on ;41 and (;;+1 is the same. Let

_ 1 / 1 /
Ui = T vihidr = ———— vd. (6.27)
f%’,i-H vidx Viit1 fgi,iﬂ vidzx Giyit1

From (6.26) and (6.27), and using the trace Theorem 1.2 and the Friedrichs’ in-

equality, see Theorem 1.4, we obtain

Xilm@i) < Cllvi=0llgveg,,y + i =0illmee )

IN

Cllvi = villmr ) + i — 0l a1 @iy

IN

C|UZ|H1(QZ) + U’i|H1(Qi+1)

By construction, ., is continuous across ;1. Since U, is also piecewise
H*, it follows from Lemma 1.1 that ue, € H'(€). Then, (6.24) follows from
(6.22) and (6.23). To obtain (6.25), we apply Friedrichs’ inequality to ..+ on the

extended subregion fli, and use (6.24) and the fact that u.,; vanishes on (;1,

1 2
/ ueaztdx )
Git1

|uewt|12(§i) S CH2 <|uezt|§{1(ﬁi) + ﬁ
= CH2|uezt|§{1(ﬁi) S CH2C~LZ(UZ,UZ)
0

The next lemma will be used in Section 6.5 to establish Assumption 1 for T_y.

Lemma 6.3. Let u € V and denote the Lebesque measure by p. Let o; be the

average of u over €);, i.e.,

a5
o = u dzx. 6.28
W) Jo, (629
Then
||u_ai||i2(§i) < CH2|U|?_11(§Z,)a (629>
and therefore
|(u - ai) |Ci,i+1 |12f{1/2(9i+1) < C(l + log(H/h))2|u|i]1(§Z) (63())
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Proof. From Friedrichs’ inequality, see Theorem 1.4, it follows that
1 2
/ (u— ) do )
Ciyit1

1
=i,y < € (e + 5
2
/ (4 — o) da) ).(6.31)

04541

1

The last equality results from the mortar conditions, since u has the same aver-
age over (; ;1 and ¢;,11, which are opposite mortar and nonmortar sides. From

Schwarz’s inequality,

2 _ C 2 C 2
(u— ) da‘ < i (u—a;)*do < ﬁ||u—ai||L2(aQi). (6.32)

iit1 0i,it1

1
ﬁ)
5
Using a trace inequality, we obtain

1 1
—llu—aillapny < C(lufingy + ml—ailliag,).  (633)

and therefore, from (6.32) and (6.33),

1
H?

2 1
/(u—ai) da) <C (\u\ipmi) + llu— i}, ) (6.34)

04541
From (6.28) it follows that u — «; has a zero average over §2;. Then, from the

Poincaré inequality (see Theorem 1.3), we obtain
|Ju — sz‘||%2(gi) < 0H2|u|12'{1(9i)a (6.35)

From (6.34) and (6.35) it follows that

1
H?

2
/u—ozi do| < Clufipia, (6.36)

04541
Then, we use (6.36) and (6.31) to conclude that

1
mHU_O‘iH%Q(QHl) < C (|U|§11(Qi+1) + |U|12r11(gi)> = C|u|?{l(ﬁi)’ (6.37)

From (6.37) and (6.35), it is easy to see that (6.29) holds:

2

||U—az‘||iQ(§i) = ||U—04z‘||%2(9i)+||U—ai||%2(gi+1) < 0H2|U|H1(§i)-
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From Theorem 1.5, we obtain

|Ju — Oéi||%2(gi+1)>

(=) L os Brsqaey < COU+log(H/B) (Jufina,,) + ——3

(6.38)
Thus, (6.30) follows immediately from (6.29) and (6.38). O

6.5 Condition number estimate for the balancing
algorithm

In this section, we prove an upper bound for x(7},), the condition number of our
mortar balancing algorithm, by using the result of Lemma 6.1.

We begin by establishing Assumption 3 for Tv_y restricted to Range(l — Fp).

Lemma 6.4. There exists a constant C' not depending on the local spaces, such
that

a(us, ;) < C(14log(H/R))a;(us,u), ¥ u; € Range(T;), Vi=1:N. (6.39)

Proof. The support of a function in V; can be the union of €); and all its neighboring
subregions. Thus, the main difficulty in proving (6.39) comes from the fact that
a(u;, u;) is computed on a larger domain than a;(u;, w;), which is only computed
over the extended subregion ﬁi; cf. Figure 6.2.

In the proof of (6.39), we discuss separately two cases, which require different

tools in their analysis.

Case 1. If the extended subregion ﬁl consists only of €2;, i.e., if all the sides of €2;

are mortars, then, from (6.18), it follows that

In this case, the proof of (6.39) is similar to that of the conforming case, see
Section 6.2.2. The extra complications due to the mortar spaces are dealt with by
using the stability properties of the mortar projection from Theorem 2.1.

Let 2! be one of the neighboring subregions of £2;, and let 7; ; be the nonmortar

side of Q] opposite the mortar side (;; of Q;. Since u; € V;, it is easy to see that
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u; vanishes at all the nodes of Q! except at the interior nodes of ; ;. Therefore,

using the fact that u; is harmonic on €}, we obtain

Let 7., be the mortar projection corresponding to v;; with values 0 at the end

points of ;1. Then,
Uiy, = my(ui fg, ) (6.42)
Let u; 4 be the function which is equal to u; at A and vanishes at all the other
nodes, and let w;;,; be the function which is equal to u; at the interior nodes of
;1 and vanishes at all the other nodes. We define w; p, I (viu;) a, In(Vitt;)int, and
I (viu;) p in a similar way. We note that v;(A) = v;(D) = 3 and v; is equal to 2 at
all the interior nodes of (; ;. Thus,

In(viui)a In(viwi)p (V)i
5 Uip = —F 3 Uiint = ——~— -
3 ' 3 ’ 2

Ui A

It is easy to see that

U; \zi .= UiA Tt Uiint + Ui D,
and, from (6.42),
Uj |%‘,1 = 71-’Y(ui,z‘l) + 71-'y(ui,int) + 7Tw(uz‘,D)
_ T (In(viwi)a) 7y (In(Vitts)ine) Ty (Ln(viwi) D)
3 2 3

Then, from Theorem 2.1 and Theorem 1.5, it follows that

[wilip 200y < C<||7Tw(fh(ViUi)A)||12Héé2(%1)+||7Tw(fh(Vz‘Uz‘)mt)||§{352(%1)

+| |777(Ih(7/z‘uz‘)D)||§{éé2(%,1)>

IA

C(HIh(Viui)AH]zr_[l/Q(aQi) + H[h(l/z'ui)z'ntH?{l/g(aQi)

) bl B o) )

||H(Ih(’/iui))||%2(gi)>

< C(1+ lOg(H/h))2(|H(Ih(’/iui))|§{1(ﬂi) + 2
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Using (6.41) and the last inequality, we obtain an estimate for the energy of u;

on a neighboring subregion of €; in terms of the energy of H(I,(v;u;)) on €, i.e.,

R (I (viwi) |72,
il 1) SC(l—|—log(H/h))2<\H(Ih(wu@'))|§{1(gi)+ 7 L “”). (6.43)

Similar bounds can be obtained for the H! seminorm of u; on all the other neigh-
boring subregions of €2;.
On 09);, we note that v; is equal to 2 at all the nodes except for the corners,
where it equals 3. Therefore,
[h(yiui) [h(z/l-ul-)A 4+ ...+ Ih(yiui)D

Since u; is discretely harmonic on €2;, we can use Theorem 1.5 to obtain

uiliny = [wilinzea, (6.44)
S C<|]h(’/iui)|§{1/2(am) + |Ih(l/iuz‘),4|12r{1/2(agi) + |]h(l/iui)D|§-Il/2(89i)>

[H (I (viua) 20,
H?2 )

IN

C(1+ log(H/h)) (IH (T (1) s g,y +
We note that A
a(ui, w) = [wilhi) + Y |Uj|§{1(gg)
j=1
From (6.43) and (6.44), it follows that

H(In(viu; %2 Qs
a(ug, u;) < C(l+lOg(H/h))2(‘H(Ih(yiui))‘%ﬂ(gi)+ 17 (H2)>|| ( Z)). (6.45)

We need to prove (6.39) only for u; € Range(7;). In Section 6.3, we concluded

that, if ﬁz = (2;, we have to require
/ H(In(viTi(u))) de = 0;
Q;
cf. (6.20). Therefore,

/ H(In(viu)) de = 0, Y u; € Range(T;).
Q;
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Then, from the Poincaré inequality (see Theorem 1.3), we obtain
IHUn(iui)|liz@) < CHYHIn(wiu)[inq,)- (6.46)
Finally, from (6.40), (6.45) and (6.46), we find

a(ug,u;) < C(L+log(H/h)*[H(In(viwy) 3, = C(1+ log(H/h))?a;(u;, u;).

Case 2. We now assume that the extended subregion Q) contains more than one
subregion. For simplicity, we make the same assumption as in Section 6.4, i.e., we
assume that €2; has exactly one nonmortar side; cf. Figure 6.3 and the notations
therein. From (6.18), it follows that

ai(ui, ui) = [H(Iviw)Eng, + THI )| Fq,, ) (6.47)

We are going to rely on the construction of u.; € H'(€;) from Lemma 6.2.
We recall that

Ut = H(Ip(vju;)) in €. (6.48)

We also need the estimates of the L? norm and H' seminorm of ., in terms of

a;(u;, u;), which were established in Lemma 6.2; see (6.24) and (6.25).

As before, on Q}, we obtain that

_ mUniui)a) | (I (Vive)ine) | T (In(viwi)p)
e 3 2 3 '

We use (6.48) and the stability properties of the mortar projection from Theo-

Uy

rem 2.1 to obtain
|Uz‘|§11(gg) = |Ui|§{1/2(921)
< Ol B szqony + 110ss) B zgony + 1100 0l )
= C(Hueazt,AH?{lﬂ(aQi) + ||Uea:t||?{1/2(agi) + ||Uea:t,D||?{1/2(agi)).
Then, from Theorem 1.5,

9 |[teqt| ‘%Q(Qi)
CO“@H‘H%(Q» + T)

IN

\Uiﬁ{l(gg)

| |u€ﬂ»‘t| |?42(S~L)

S C<|uezt|§{1(ﬁl) + T)
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Using the estimates (6.24) and (6.25), we conclude that
uiltnry < C(L+ log(H/h))? a;(us, u;). (6.49)

Estimates similar to (6.49) can also be derived for the energy of u; on Q2 and Q2.
On 11, we note that u; is equal to the mortar projection of u; p at the interior

nodes of 7,114, the nonmortar side adjacent to the vertex F', i.e.,

Ui |%‘+1,4 = WW(UZ',F)'

Also, u; vanishes on (41 5, since all the nodes on the mortar side (;41 5 are genuine

degrees of freedom which do not belong to N;. Then,

Us |39i+1 = Ujr T+ WW(“M”') + U Giyit1 + Ui E-

Using the values of v; at the boundary nodes of €2; 1, we obtain that

_ I (viug) p Ww(lh(yiui)F In(viug) |<i,i+1 I (viui) g
2 2 2 3 ’

From Theorem 2.1, we obtain that

U |aQiJrl

|7 (I (viwi) | |2 < Olln(vius) e3/200

1/2 iy .
Hol? (ig1,) i+1)’

and therefore, from Theorem 1.5,

|Uz'\%11(szi+1) = \Uiﬁpﬂ(agm)

< (1) lmon. + 103y

jit1)

+||1n (viw;) g |§{1/2(agi+1)>

||H([h(l/zul>>||%2(ﬁz+1)>
H? '

Since v;, and therefore H (I, (v;u;)) vanish on (;11, it follows from Friedrichs’ in-

< C(1+ log(H/h))2(|H(fh(Viui))|§ﬁ(mH) +

equality (see Theorem 1.4) that

IHIn(viu)l Tz, < CIHUA )l @ (6.50)

i+1)”
Thus,
|Uz‘|§{1(gi+1) < 0(1+lOQ(H/h))2|H(Ih(Vz‘Uz‘))ﬁ{l(giﬂ)a
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and, from (6.47), we conclude that

We note that u; vanishes on

;, and that it is equal to the mortar projection

of u;  on the nonmortar side of Q7 opposite (;415. Using the same arguments as

before, it is easy to see that

[wilipon < CIIMus) Bl o,y

(i) s,
< O+ log(H/M)Y (MU (i) s, + pUlALE

< O+ log(H/h)*|H(In(viui)) | o

i+1)?
and therefore, from (6.50),
\uiﬁ{l(gg) < C(1+log(H/h))a;(u;, u;). (6.52)

The last step of the proof of this case consists of estimating the H! seminorm
of u; on ;. We will use the fact that I, (v;u;) is equal to twice u; at almost all
the genuine degrees of freedom. More precisely, let m, be the mortar projection

corresponding to ; ;41 which vanishes at the end points of +; ;1. Then, on 0€;,

u; = ui7A+...+uZ~,D—|—ui |Ci’1—|—...—|—ui |Ci,3

"'_Wv(ui,B) + Ww(ui,C) + Ww(ui,E) + 7TW(ui,F) + Wv(ui Ci,iJrl)'

Using once again the nodal values of v;, the construction of ue,, and (6.48), it
follows that

it +... + Uert

Uezt, A + Uext, D + Uext Gi,3 + Uext, B + Uegt,C

Uy

3 2 2
T (Ueat,B) + Ty (Ueat,0) N o (In(viui)p) | m (In(viv)F)
2 3 2
71-W(Ih(’/iui) Ci,iJrl)
5 .

From Theorem 2.1, it results that

||7rw(uezt,B)||§{éé2( < ||uewt,B||§{1/2(aQi)

Vi i41)

||7Tw(fh(Vz‘Uz‘)E)||§{352(W+1) < v ellin 200,
2 2
||7T’Y([h(yiui) Ci,i+1)||Hé(<2(,yi’i+1) < ||Ih(ylul) Giit1 ||H362(Ci,i+l)
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Therefore,

|Uz'\§{1(gi) = \Ui|12ql/2(am)
< C( ||ue:pt,AH§_]1/2(aQi) + ... + Hue:vt,DszT{l/Q(aQi)
2 2
+ ||Uext Gi1 HHéo/Q(Ci,l) + o+ Huext Ci,3 ||Hé(<2(€i,i+l)

+ ||Ih(Viui)EH§{1/2(aQ y T ||Ih(Viui)FH§{1/2(aQ

i+l i+1)

+ [ In(viug)

Cii+1)||§_[1/2 o >
’ 00 (Yii+1)

From Theorem 1.5, we obtain

1
2
Wil < CO+log(H/M)) (el + 773 teatl e,

“H(Ih(yzul))“%Q(Qerl))
2 '

Finally, from (6.24) and (6.25), and from (6.50) and (6.47), we obtain

+C(1+ log(H/h))? <|H(fh(’/z‘“i))|12ﬁﬂ<m+1> +

luilFpo,) < C+log(H/h))? ai(ui,u;). (6.53)

Summing up the energy estimates for u; on all the neighboring subregions of

Q;, i.e, (6.49), (6.51), (6.52), and (6.53), we obtain
a(ug, u;) < C(1+log(H/h))? a;(ui, us).
U

We now establish Assumption 1 for Ty_y. An important ingredient is Lemma
6.3.

Lemma 6.5. For every u € V there exist ug € Vo and u; € V;, i =1 : N, such
that ©w = ug + sz\il u; and

a(ug, uo) + (s, u;) < C(1+log(H/h)) a(u, u). (6.54)

i=1

Proof. For simplicity, we assume once again that we are in the case when €2; has

exactly one nonmortar side; cf. Figure 6.3 and the notations therein.
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Let «; be the weighted averages of u over €;, given by (6.28). Let ug, the coarse

space component in the splitting of u, be given by
N
u = Y aHW)), (6.55)
i=1

where H(V;r ) are the basis functions of the coarse space Vj. The local space com-

ponents are given by

w = H(IW (u—a))). (6.56)
Since 1/;r form a partition of unity, see (6.17), it is easy to see that

N

N N
S = Y HI(w) =Y aHI(v]) = u—u,
i=1 i=1 i=1
and therefore u = ug + sz\il U;.

To estimate a;(u;, u;), we use (6.21) and (6.56), and obtain

di(ui,ui) = [HIu(vvl(u =), + IHIvl(u =)o,

— L (= @) Bpagany + (v (1 = @) s, - (6:57)

]

From the definition of v; we obtain that v;v)(u — «;) is equal to u — «; at all

the nodes of N;, and vanishes at all other nodes representing genuine degrees of

freedom. Thus
3
Vil/;r(u - ai) =Uu—«; on (U CU) U gi,i-{-l'
j=1

Since u € V' is a mortar function, [h(uiz/;r(u —a;)) = u—a; on J€2;. Then, from
the trace Theorem 1.2 and Lemma 6.3, it follows that

| Tn(viv) (u — alinrpa) = U= il

IN

1
C(luBy + zzllu— il )
2
< Clulipg,- (6.58)
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If both sides of €2, adjacent to (; ;41 are mortar sides, then Vil/T(u—ozi) vanishes

at all the nodes of 941 \ ; 1, and therefore

||[h(ViV;r(u - Oéi))H?—Il/Q(aQHl) = |[(v— ) Giyit1 ||12T{1/2(agi+1) (6.59)

We now assume there exists at least one nonmortar side of §2;,1 adjacent to
Giit1- Let 7iy14, adjacent to the vertex F and opposite 9} be that side. As
before, let (v — ;) p be the function which is equal to u — «; at " and vanishes at
all the other nodes on 9§;,1. The restriction of I (v;v) (u — a;)) to the interior of

Vi+1,4 1s the mortar projection of (u — o), i.e.,

Ih(z/l-yT(u — ;)

i

Yitl,4d 7T’Y((u - ai>F)7

where 7, is the mortar projection on ;14 with values 0 at the end points of 7,41 4.
From the stability properties of the mortar projection, see Theorem 2.1, it follows
that

= e, < Ol adelBsgn,, (660
From (1.3), it results that
1= 0 lEmeon < Cl@=a) Lo Bpign.,y  (661)
and therefore, from (6.60) and (6.61),
||Ih(Vin‘T(U - ai))“ééf(%%” < Ofl(u— ) g ||§{1/2(agi+1)' (6.62)

A similar bound would result if the side of €2;;; adjacent to (;;+1 at the vertex £
is a nonmortar.

We note that I, (v (u—a;)) = u—a; on (i1 Then, using (6.62), we conclude
that

T (u = 0)) 2 2gon,,,y < Cll(u— o)

Gi i+1 ||§—[1/2(8Qi+1)~ (663)

From (6.59) and (6.63), it follows that, regardless of whether the sides of ;1

adjacent to (;;4+1 are mortar or nonmortar sides,

I} (1= ) By < Il = 03) Ly Pvon, -
< CQU+logHM g (664)
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where the last inequality comes from Lemma 6.3.
From (6.57), (6.58), and (6.64), it follows that

di(usy ) < C(L+log(H/h))[ul} g

Summing over ¢ = 1 : N, we obtain

Mz

ai(ui,u;) < C(1+log(H/h)) ZIu|H1(Q)

=1

< C(1+ log(H/h)) a(u,u),

where C' is a constant which does not depend on the number of subregions, since
any subregion belongs to at most five extended subregions.

We have thus reduced the proof of (6.54) to obtaining a bound for the energy

of ug, i.e.,
aug,up) < C(1+log(H/h))a(u,u). (6.65)
Since ug = u — sz\il u;, we can use Schwarz’s inequality to estimate a(uy, ug), and
obtain
N
a(ug,ug) < 2a(u,u) + 2 Z alu;, u;). (6.66)

i=1
A proof along these lines for the conforming case appears in [53]. For the mortar
case, extra work is necessary due to the presence of the extended regions. Here,
we only give a short proof, since the details can be worked out as in the proof of
the second case of Lemma 6.4.

Since u; € V;, the support of u; is embedded in the union of €2; and its neigh-
boring subregions. By the definition (6.56),

a(ui,w) = M (u — ai)))lip q)-

Once again, we have two different cases according to whether the extended

subregion ﬁl consists only of €2;, or contains other subregions as well.
Case 1. If ﬁl = (2;, then all the sides of €); are mortars, and

a(uiyu;) < [HIW(V] (u = )i, + ZHIh (u— )|l (6.67)

Hyg (i,5)
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On €, we use the fact that u — oy = v;(v)(u — o)), and obtain as in (6.43)
that

[Ju— az‘”é(m))

(I (v} (1w = 0) iy < CL+log(H/D)) (Ju = il + ——

Then, from the Poincaré inequality (see Thereom 1.3), we find
KL (u = @),y < C(L+log(H/h)|ulipq,)- (6.68)
On O,
(= ) By, = Cllm (v a)l e

Cll(v; (U — ) l¢ia ||H1/2(8Q)

Vi 1) o (vi,1)

IN

IN

l B))2 9 [l — aill 72,
C(1+log(H/h)) (|u—04z‘|H1<m>+T>

C(1+ log(H/h))?|ul3p g, (6.69)

IN

Similar bounds can be obtained for the other neighboring subregions of €2;.
From (6.67), (6.68), and (6.69), we conclude that

a(ui,u;) < C(L+log(H/h)) ulipa,y = C(L+log(H/h))*|ul; (6.70)

HY ()"

Case 2. If €; contains more than one subregion, we assume once again that €2; has
exactly one nonmortar side; cf. Figure 6.3.

We can prove once again that

a(u;,u;) = C(1+log(H/h)) |u)?

Hl(Q )7

by using the fact that u — a; = v;(v (u — a;)), if we note that ey and u — a; have
similar L? and H! upper bounds; cf. Lemma 6.2 and Lemma 6.3.

In both cases, we conclude that an upper bound of the form (6.70) is satisfied.
When summing (6.70) for i = 1 : N, we obtain, using a simple coloring argument
as before, that

N
Zauz,uZ < C(1+log(H/h)) Z|U|H1(Q
i=1

=1

< C(1+4log(H/Rh))a(u,u). (6.71)
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Finally, from (6.66) and (6.71), it results that
(o) < C(1+ log(H/m)a(u,u).
Thus, (6.65), and therefore (6.54), are proven. O

We are now able to derive an estimate for the condition number of the balancing

algorithm for mortars introduced in Section 6.3.

Theorem 6.1. The condition number of the balancing algorithm grows only poly-
logarithmically with the number of nodes in each subregion, and is independent of

the number of subregions, N. More precisely,
K(Thw) < C(1+log(H/R))",
where C' 1s a constant that does not depend on the properties of the partition.

Proof. From Lemma 6.1, we find £(Tpy) < k(Tn_n), where Tyy_y is the Neumann-
Neumann operator (6.7) restricted to Range(I — F).

Since T is an additive Schwarz operator, we use the abstract Schwarz theory
of Section 3.2 to obtain a bound on x(Ty_y). From Lemma 6.5, it follows that

the constant Cj from Assumption 1 satisfies
C2 < C(1+log(H/h))>.

Assumption 2 follows from strengthened Cauchy-Schwarz inequalities. For each
local space there is a finite fixed number of local spaces which are not orthogonal
to it. Then the inequality p(e) < C can be established as in [52]. Since the coarse
space solver is exact, and using Lemma 6.4 for the local spaces, the following

estimate for the parameter w of Assumption 3 can be established,
w < O(1+log(H/h))?.

We have now estimates for all the parameters measuring the convergence of an

additive Schwarz method. From Theorem 3.1,
#(Tn_n) < C(1+log(H/h)),
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and therefore, from Lemma 6.1 we obtain that

A(Th) < C(1+log(H/R))"

We conclude this section by placing Theorem 6.1 in a general context.

The condition number estimate of our balancing algorithm for mortar finite
elements has two extra logarithmic factors compared to that of the balancing
algorithm for conforming finite elements [89, 91]. In the classical algorithm, the
constant Cy of Assumption 1 is equal to 1. The splitting we have used for our
algorithm is similar to the classical one, but fails to preserve Cy = 1 because the
extended subregion are not mutually disjoint. Thus, when establishing (6.54),
we have to use Theorem 1.5 and we therefore can only prove that C is of order
(14 log(H/h))>.

We now discuss a possible version of the algorithm for mortars, the purpose of
which is to make Cy = 1 in Assumption 1. Two conditions must be satisfied for C
to equal 1: the approximate bilinear forms should be computed over €2; instead of
Qi, and the local space component u; multiplied with the counting function should
equal u on 0€;. Since the values of u on the nonmortar sides of {2; depend on its
values at the opposite mortar sides, the local space must include degrees of freedom
of the nodes of those mortars, including the vertex values. Thus, we obtain the V;
space we have introduced.

If, instead of integrating over €; in (6.18), the definition of @ (-, -), we integrate
only over §2;, the Assumption 1 is satisfied with Cy = 1. However, Assumption 3
will not hold. Consider the case from Figure 6.3. Assume there are twice as many
nodes on the mortar side (;;+; than on the nonmortar side «;;1;. Then, there
exists a mortar function v; € V; which vanishes on 7, ;,, and is nonzero on (; ;1.

If we set the values of v; to zero at all the other nodes of 9€);, then
ai(vi,v1) = [H(IW(vjv) i@y = 0,

while
a(viavi) > |Ui|12T{1(Q¢+1) > 0.

Therefore Assumption 3 is not satisfied.
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6.6 The geometrically nonconforming case

The proof for the geometrically nonconforming case follows along the same lines as
for the geometrically conforming case. In this section, we show how to overcome
the technical difficulties inherent to a nonconforming partition.

The main difference between the two cases arises in Lemma 6.2, since opposite
the nonmortar side v there might be more than one mortar side. Therefore, a sim-
ple extension of the jump which involves only one subregion is no longer possible.
A remedy can be found using the techniques introduced in Section 4.3 to estimate
the L? norm of the jumps of mortar functions across nonmortars.

We use the notation of Section 6.4 and of Section 4.3. Let I'(; ;+1) be the union
of the parts of mortars opposite the nonmortar side v;;+1. As in Section 4.3.2, we
consider a rectangle, (,,c,,, oOpposite 7; 41, such that I'(7y;,41) is a side of ,c,,. As
before, it is possible to construct a function vye,, such that v,e, € H'(Q,e) and

Unew has the same average as v; on I'(7;,;41). From (4.45), we also obtain

q(i)
|Unew|12T{l(Qnew) < Z|U2 zl(Qz)a (672>
j=1

where Q7 j =1 : ¢(i), are the subregions opposite .
As in the proof of Lemma 6.2, we construct x; € H'(Q,), an extension of
Unew |F(%~,¢+1) U |’Yi,i+1

from I'(7;.i11) t0 Qpew, such that y; vanishes on the side of €,,.,, 0pposite I'(7;i41),

and
‘Xiﬁ{l(gmw) < C’viﬁfl(ﬂi) + |Unew‘§{1(ﬂnew)‘ (6.73)

Then, eyt € HY (4 U Qpew) is given by

v; on £
Uept =
“ Unew + X: On Qnew-

From (6.72) and (6.73), we find

et @000y < C(Iiliy + newlfi@un + il
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< (s + bl )
q(i)

< O(lolpay + Y lol)
j=1

= C a;(u, uy).

An estimate for the L? norm of u.y follows immediately from the Poincaré in-
equality (see Theorem 1.3) applied on €; U €,,c.
After this step, the rest of the proofs of Assumptions 1 and 3, see Lemma 6.4

and Lemma 6.5 follow as in Section 6.5, if the new function ., is used.
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