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Abstract

We present a protocol for the fault-tolerant execution of parallel programs. The protocol leaves
the implementation free to make choices concerning efficiency tradeoffs. Thus, we are proposing
a design pattern rather than a fully specified algorithm. The protocol is modeled with the help
of Petri nets.

Based on the Petri net model, we formally prove the correctness of the design pattern. This
verification serves two goals: first, it guarantees the correctness of the design pattern; second, it
serves as a test case for the underlying verification technique.
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1 Introduction

From time to time, computers crash. In most of these cases, the intermediate state of the execution of a
program is irrecoverably lost and the program must be restarted from the very beginning. The situation
becomes even worse in a parallel program, which is run on different computers. As the running time increases,
it becomes more and more likely that the parallel program never terminates successfully.

In order to deal with this unsatisfactory situation, different techniques for recovering from crashes without
throwing out all of the program’s work have been proposed in the literature. On the one hand, database
theory has a long tradition in this field though, originally, recovery concerned only data, not program
execution. In databases, stable storage and log files are used for this purpose [4, 16]. On the other hand,
there are techniques from distributed computing; e.g. replicated state machines [31] and checkpointing [8].
These techniques, however, cannot recover from a crash of all computers at the same time.

In this paper, we present a protocol for the fault-tolerant execution of long-running parallel programs on a
network of computers. The protocol combines techniques from database theory and distributed computing—
the protocol tolerates any number of crashes. The protocol is a generalization of the PLinda (Persistent
Linda) protocol [20] to conventional parallel programs. In addition, the protocol combines ideas of Lomet
and Weikum [26] for transparent application recovery with ideas of Neves et al. [28], which uses uncoordinated
checkpointing.

The protocol leaves the implementation free to make choices in several areas. For example, it does not
determine the commit points of the parallel program, on the one hand, but it allows the implementation
to insert a commit point any time. Likewise, it does not determine at which time read objects must be
released. Other aspects are completely ignored in the model of our protocol. This permits the implementa-
tion to tune these parameters to specific efficiency requirements. Therefore, we call the presented protocol
a design pattern for the fault-tolerant execution of parallel programs.

The focus of this paper is on a formal proof of this design pattern. We prove that the execution of
the parallel program on top of the protocol behaves as on a conventional failure-free multiprocessor—even
in the presence of crash faults. The notion of a formal proof is vague. We call a proof formal if there
is a mathematical model of the protocol, a mathematical representation of the requirement that must be
met, and the proof is in terms of this mathematics. We call a proof informal if it is not in terms of this
mathematics, but if it is in terms of our understanding of the protocol and of the requirements.

Typically, protocols of this complexity are not verified formally any more because the proofs are long;
they are tedious to construct and to read—this applies to our proof too. Nevertheless, we believe that formal
proofs are necessary because a proof in terms of our understanding of the protocol may easily miss a point
in the proof which is also missing in our understanding of the protocol. This was a problem, for example, in
otherwise excellent work by Xu and Liskov [32]. More arguments in favor of formal verification can be found
in the book of de Roever et al. [6]. Clearly, informal proofs may help to construct and to communicate a
formal proof. But, informal proofs are not sufficient.

In addition to have a verified design pattern for the fault-tolerant execution of parallel programs, the
purpose of the proof was to develop and to validate the applicability of a proof method for consistency
models. Though still under development, the method used [13, 12, 14, 22, 23] was designed for verifying
weak consistency models [7, 11, 17]. Here, we have shown that the proof technique can also be applied
to sequential consistency and to a more complex protocol, which combines fault-tolerance, replication, and
logging.

There is some other work that deals with the formal verification of DSM-systems. For example, there is a
special issue of Distributed Computing [27], which deals with the formal verification of a particular protocol
called lazy caching [1, 10]. Most methods (e. g. [29, 9, 15]), however, are restricted to sequential consistency
or are verified for a limited number of processors only. To the best of our knowledge, there is no formal
proof of a protocol which combines fault-tolerance, replication, and logging.



2 The protocol

In this section, we present the protocol for the fault-tolerant execution of a parallel program. Moreover, we
characterize the faults that are tolerated by the protocol. As a formal model, we use algebraic Petri nets
[30] equipped with different arc-types [23]. For the time being, we can ignore these special features—we will
come back to the different arc-types in Sect. 4.1.3.

2.1 The setting

Before introducing the model, we discuss our view of a parallel program. We assume that a parallel program
consists of a set of sequential processes which are executed concurrently. Each parallel program has a
distinguished set of shared variables that can be accessed by each of its sequential processes. Each shared
variable has a unique identifier, and a process can access a shared variable only by this unique identifier.

In the protocol, shared variables are stored on stable memory. An access of a process to a shared variable
invokes one of the following procedures of the protocol:

procedure R(o:identifier): value
procedure W(o:identifier; v:value)

A call R(o1) invokes a read operation on the shared variable with identifier o1; upon termination, the
operation returns some value'—informally, this can be considered to be the value of the corresponding
variable. A call W(o1,v1) invokes a write operation of value v1 on the shared variable with the identifier o1.

Note that there is a difference between a shared variable and its identifier. The identifier is just a name—
with no dynamics at all. The corresponding shared variable is a value associated with this identifier. In
particular, the associated value can change in the course of time. This difference is obvious, on the other
hand; on the other hand, it is subtle and often forgotten. Therefore, we call the set of identifiers of shared
variables objects in the rest of this paper. And we will use only the term object in the formal part of this
paper. The dynamic part of a variable is captured by the return values of the read operation.

In addition to the shared variables, each sequential process may have private variables that can be
accessed by this particular process only. The protocol is not aware of the private variables of a process. The
protocol is not even aware when the process accesses a private variable, nor is the protocol aware of the
process’s internal computations (e. g. a call of an internal procedure along with the involved stack operations
or a call of a built-in function) . The protocol is aware only of the process’s procedure calls (invocations) of
access operations to shared variables.

But, how can we deal with crashes of processes if the protocol is not aware of the private variables,
which will be lost upon the crash of a process? The answer is: continuations. A continuation comprises all
parts of a process’s state that determine its future behavior. From a given continuation, the computation
of a process can be resumed exactly at that point of the computation where the continuation was saved.
A continuation of a process typically comprises its code, its program counter, its stack, its heap, and all
private variables of the process. Note, however, that the shared variables are not part of the continuation of
a process. The shared variables are stored on stable memory, and thus survive crashes. A process can access
a shared variable only via the above procedure calls.

Let us introduce a running example of a sequential process in some kind of pseudo code, where the keyword
shared indicates the declaration of shared variables, and the keyword private indicates the declaration of
private variables:

1For simplicity, we do not consider typing of variables. It will turn out that we need not deal with values at all in the formal
part. For providing the correct intuition, we introduce values in this informal presentation.



process example;
shared x,y;
private h;

x:= 1;

h:= x;

y:=h
end.

Any correct computation of this process will invoke three operations of the protocol: A write of value 1 to
object x, a read on object x returning some value v, and a write of value v to object y. Note that there are
no invocations of read or write operations for variable h because this is a private variable, which is stored
and directly accessed by the process itself.

Next, let us consider the values that could be returned by the read operation on x. Since the process
will be running concurrently with other sequential processes, we cannot tell from the process above which
values will be returned by the read operation. From the process’s point of view, it could be any value. It
will be the responsibility of our protocol to return a value which is legal in a computation of this process
concurrently running with some other processes. We will give a definition of legal return values of a read
operation in Sect. 4.2.

Here, we consider only what is a legal process computation. Below, there are two computations of the
above process, where we represent only those operations seen by the protocol. The return value of a read
operation is represented after the read event separated by a colon; remember that the process itself has no
influence on this value:

Wix,1] RI[x]:1 Wly,1]

Wix,1] RI[x]:27 Wly,27]

Both computations are legal for the process example above. The first computation is the one that we would
expect when the process is run in isolation. But, the second execution could also happen (for example, when
another process writes 27 to object x).

Next, we show three computations which are not legal (illegal) for the process example:

Wlx,1] R[x]:27 Wly,1]
Wix,27] R[x]l:1 Wly,1]

Wly,11 R[x]:1 W[x,1]

The first one is illegal because the value written to y is not the value returned by the read operation on
x. This does not correspond to the semantics of the private variable h. The value returned by the read
operation on object x and the value written to object y should be the same; the process is responsible for
properly storing its private variables. The second computation is illegal because the first write event does not
write the value 1—the value of the constant in the process’s code. Clearly, this is a violation of the process’s
semantics. The third computation is illegal because it initially invokes a completely wrong event—a write
on object y.

We do not introduce a programming language and a formal semantics for processes. Consequently, it is
impossible to give a formal definition of legal computation of a process. We rather assume that, on a path
of computation of a process within a given concurrent ezecution of all processes of the parallel program by
the protocol, this computation is a legal computation of the process. This will be made precise in Sect. 4.3.
For the moment, it is sufficient to know that by computation, we refer to the computation of a sequential
process. By execution, we will refer to the concurrent execution of all processes of the parallel program by the
protocol introduced in the next sections. Within an execution, we will be able to identify the computations
of the different sequential processes.



2.2 The parallel program

In this section, we model the parallel program on the level of abstraction relevant for the protocol (see
discussion above).

Remember that a parallel program consists of a set of sequential processes which are running concurrently.
From the protocol’s point of view, a computation of a single process is a sequence of invocations of read and
write operations on some objects (shared variables). The protocol guarantees the persistent and consistent
storage of the objects and continuations of the process. In addition, a process can invoke a third operation:
a commit operation. A commit operation, however, has no effect on the process’s semantics. Therefore, we
do not require that the invocation of a commit operation is explicitly specified by the sequential process.
Commit operations could also be inserted by a compiler or a runtime system because they do not change
the process’s semantics. Of course, they might affect the performance.

From the protocol’s point of view, a process nondeterministically chooses from one of the three operations.
This is modeled by the Petri net shown in Fig. 1.

(/—p>>DRreq[o]

R[o]
processes

|Wreq[o]

.
WIo]

Figure 1: The parallel program

Each operation is split into two parts: a transition that invokes an operation (Rreq[o], Wreq[o], and Creq),
and a transition that terminates the corresponding operation (R[o], W[o], and Cdone). These transitions will
be merged to the corresponding transitions of the Petri net which models the protocol for the corresponding
operation (see Sect. 2.3).

When a processes p has finished one operation and has not yet initiated another operation, there is a
token p on place processes. While a token p is on place processes, some internal calculations of p are going
on, which cannot be observed by the protocol. Initially, there is no process running since, for simplicity, we
assume that all processes are started by the recovery protocol for the server (see Sect. 2.4.6). A process is
started by writing its continuation to the database and invoking the restart procedure (see Sect. 2.3.4). For
the same reason, all places of the protocol are initially unmarked. They will be initialized during the restart
procedure.

2.3 The client’s protocols

In this section, we present the protocol for each operation a process may invoke. These protocols are run on
the client’s side—i. e. on the same processor as the invoking process.

The protocol makes extensive use of locks and is similar to two phase locking [4]: A process must acquire
a read lock before reading an object; a process must acquire a write lock before writing an object. Write
locks are exclusive, whereas read locks are non-exclusive. A process keeps a write lock until it commits or
aborts (i.e. crashes)—as known from strict two phase locking. In contrast to two phase locking, a process
may release a read lock at any time—of course, it may not release the lock during a read operation. It



may even acquire a read lock several times before it commits. It will turn out that this is sufficient for
guaranteeing sequential consistency [25].
The protocol shows two more differences to two phase locking and the classical database approach:

1. When a process accesses an object, it acquires a local copy of that object. The local copy is only
accessible by this process. In this respect, the protocol corresponds to a distributed memory model.

2. The protocol is responsible for restarting crashed processes. Thus, the protocol must also store con-
tinuations of processes on stable memory.

In the following sections, we present a Petri net model for each operation that can be invoked by a process.
Moreover, we present a Petri net that models the crash of a process, and we present the protocol for restarting
a crashed process. Note that these protocols invoke operations of the server. The corresponding protocols
on the server’s side will be presented in Sect. 2.4; this includes protocols for the lock manager, for the data
manager, for the log manager, and for recovery. Note that transitions of the client invoking protocols on the
server are shaded. The precise meaning of these invocations will be explained in Sect. 2.5.

2.3.1 The read operation

When a process p wants to read some object o, it invokes? a read request operation on o as modeled in
the process’s behavior in Fig. 1. A read request Rreq[o] invokes the protocol shown in Fig. 2: If there is a

Rreq[o] D
(p.0)
(P.0)

RLck(0.p)  unlocked = UnLck(o,p)
(p.0) (p.o) (p.0)

(p.ord)

LdCpy(o.p)
(p.ord)

X =rdvx=wr (p,0,x)
Figure 2: The read operation

local copy of object o, the read event R[o] is immediately executed—terminating the read protocol. If there
is no local copy of object o, the protocol first acquires a read lock from the lock manager (RLck(o,p)) and
then requests a copy of object o from the data manager (LdCpy(o,p)). Then it proceeds in the same way
as described before. Note that place unlocked is marked by a token (p,0) when no local copy of object o
for process p is available. Still, place unlocked is initially unmarked because initialization of the protocols
on the client’s side is part of the restart procedure of the process (see Sect.2.3.4). The protocols for the
lock manager and for the data manager will be presented in Sect. 2.4, which discusses the protocols on the
server’s side.

A local copy of object o for process p is represented by a token (p,o,z) on place copies, where z may,
basically, take two values: rd for a copy which was acquired for read only access, and wr for a copy which
was acquired for write (and read) access. This way, process p (or rather the protocol running for it) keeps
track of its acquired read and write locks. Note that we will have a third value, ud, for  which will be
discussed during the commit operation. If a local copy with value wr or rd for x is available, a read operation
is allowed on this copy.

2This request need not necessarily be explicit established by the read operation; this could also be achieved by appropriate
hardware, which invokes the read operation on this object upon a read-miss exception.



As already mentioned, a read lock may be released at any time, when the process has received a copy
of the corresponding object. The process releases the read lock on object o by operation UnLck(o,p); at
the same time, the local copy of the object is deleted. Note that only copies that were acquired for a read
operation can be released by this operation because we explicitly require the third component of the released
copy to be rd. In order to allow as much freedom as possible in an implementation of this protocol (or an
application of the design pattern), we do not impose any restrictions about when to release a read lock. It
depends on the particular application whether it is sensible to keep the lock for some time or whether it is
sensible to release the lock right after the read operation.

Note that it might happen that a read operation is stuck while acquiring a lock on some object due to
cyclic dependencies in the waits-for graph (see [4]). In that case, we allow the protocol to first execute a
commit operation. This is represented by transition t1, which removes a token (p, o) from place rl—indicating
the start of a read operation of process p on object o—and adding a token p to place c1—indicating the start
of a commit operation (see Sect. 2.3.3).

After the completion of the commit operation, the process may issue the read operation again. Since
commit operations do not change the semantics of the program, inserting a commit operation will not do
any harm. Since all locks are released during the commit operation, cyclic dependencies can be resolved this
way (note that write operations may proceed in the same way). Therefore, the protocol allows resolving
cyclic dependencies in the waits-for graph without aborting any process, which is not possible in classical
two phase locking.

2.3.2 The write operation

The protocol for a write operation is similar to the protocol for a read operation. The protocol is shown in
Fig. 3.

wickcount

Wreqfo][ ]

®o (CRUENIRIGE)

unlocked

(p.o,wr)
Figure 3: The write operation

For a write operation, it is not sufficient to check the availability of a local copy of the object, since the
copy might have been acquired for read access only. A process may access a copy only if it has acquired a
write lock for the object. As already mentioned, a copy acquired for write accesses is indicated by attribute
wr. If the process has a write lock, it executes the write operation on its local copy immediately.

If the processes has no write lock on object o, it acquires a write lock from the lock manager (WLck(o,p)).
At the same time, it increments the number of its write locks (token (p,n) is removed and a token (p,n + 1)
is added to place wickcount). Then, it request a local copy of object o from the data manager (LdCpy(o,p));
the local copy receives the attribute wr. Then, the write operation is executed on the local copy.

Note that transition t2 allows the insertion of a commit operation while stuck during acquiring the write
lock. See end of Sect. 2.3.1 for more details.



2.3.3 The commit operation

The commit operation writes all changes made by the process since the last commit operation to the database.
This includes writing the new continuation of the process. During the commit operation, there is a well-
defined commit point: before the commit point, no changes are made on the database. After the commit
point all changes are written to stable memory, but are not yet written to the database. If the commit
operation terminates successfully (transition Cdone), all changes are also written to the database. However,
there could be a crash of the process after the commit point, but before the process could successfully update
its changes to the database. In order to deal with this problem, the protocol uses a log file, which is also
part of the stable memory: The process records all its changes in the log file before the commit point. It is
the server’s responsibility to update the changes of a process from the log file to the database if a process
crashes after its commit point without updating its changes. Altogether, stable memory consists of the log
file and the database as known from database theory.

Creq

Figure 4: The commit operation

The protocol for the commit operation is shown in Fig. 4: First, the process writes its continuation to
the log file (LogCnt(p)) and then writes its local copies of all objects it wrote since its last commit to the log
file (LogObj(o,p)). In the model, we do not assume that the copies are written in a particular order to the
log file—we just make sure that all copies have been written to the log file before the commit point. This
is achieved by keeping track of the number of written objects in the counter n for process p (token (p,n))
on place wickcount and comparing it to the number of copies written to the log. When all n copies have
been written, the process writes a commit record to the log file (C). The successful completion of this write



operation is the commit point during the commit operation.

If the commit record was successfully written to the log file, the continuation and the objects are updated
in the database (UpdCnt(p) and UpdObj(o,p)). Upon successful update, the process marks the particular
object as unlocked—though still locked at the lock manager. When all copies are marked unlocked—including
those that have been read only—we know that we have updated all objects and the continuation in the
database. This is recorded by writing a database updated record (DBu record) for process p to the log
file(LogDBu(p)). We will discuss later why the DBu record is necessary. After writing the DBu record, the
process releases all its locks at the lock manager (RelLck(p)) and finishes the commit operation.

Note that it is possible that the commit operation crashes right after the commit point. In that case, the
database is not updated at all. Since all changes are recorded in the log file before the commit point, the
recovery protocols can update the database accordingly (see Sect. 2.3.4, 2.4.4, and 2.4.6).

2.3.4 The fault model and the restart operation

Next, we formalize the fault model for processes. We assume that a process can crash at any time. When a
process crashes, it instantaneously loses all its information stored. This includes the processes continuation
(i. e. its process variables, its program counter, its stack, etc.) Moreover, it includes data kept by the protocol
(i.e. locks, local copies) on the client’s side. But, we assume that the crash of a process can be detected.

In the Petri net model, a crash of process p can be represented by a transition that (instantaneously)
removes all tokens with a p in its first component (i.e. tokens of the form (p,...)) from all places of the
protocols shown in Fig. 1-4 and the protocol for the recovery explained below. In order to detect the crash,
a token p is put to the place crashed processes.

The restart of a process is modeled in Fig. 5. When a crash is detected, the process checks in at the
server by CheckIn(p). Basically, the check-in defers the restart of the process until the server has redone
all committed values of the crashed process and has released all locks held by the process when the crash
occurred. The protocol for this redo procedure is discussed in Sect. 2.4.4. After a successful check-in, the
process loads its continuation from the data manager by LdCnt(p), initializes the protocol by setting all
objects to unlocked and setting the counter for write locks to 0 and restarts the continuation (by placing the
continuation to place processes).

crashed processes
®

p

[] Checkin(p)

p

P
LdCnt(p)

(n.0) p px0

wickcount  processes  unlocked

Figure 5: Recovery

2.4 The server’s protocols

In this section, we present the Petri net models for the lock manager, for the data manager, and for the log
manager. The lock manager keeps track of all lock operations of the different processes and guarantees that,
if a process holds an exclusive lock on an object, no other process holds a lock (exclusive or non-exclusive)
on the same object—or at least not both of these processes successfully commit. Since this property must

10



be guaranteed even on a crash of the lock manager, it keeps also track of all processes which hold a lock. A
process which is not ‘known’ to the lock manager is not allowed to commit successfully, i.e. to successfully
write a commit record to the log file (see discussion in Sect. 3.1).

Since these protocols share information, we assume that they are running on the same processor and,
thus, crash simultaneously (see Sect. 2.4.5 for details on the fault model). This restriction can be easily
overcome since the only shared information is the set of processes ‘known’ to the server. This information
could be kept by each manager separately. In that case, the protocols must make sure that after a crash of
the lock manager, the other managers set all processes to be ‘unknown’ before the lock manager resumes its
normal operation.

2.4.1 The lock manager

Figure 6 shows the protocols for lock and unlock operations. The lock manager keeps two tables: a table for
objects, where each object o is associated with a set® of processes which have a lock on this object, and a
table for processes, where each process is associated with a multiset of objects locked by this process.

RLck(0.p) (py known  (pl) WLck(o,p) UnLck(0o,p) (p1y known

locks xlocks locks

(a) Acquiring locks (b) Releasing individual locks

Figure 6: The lock manager

For each object o, there is a token (o,m) on place locks, where m represents the multiset of processes
which have a lock on object o. If this multiset is empty, a process p may acquire an exclusive lock; represented
by a token (o, p) on place xlocks. The empty multiset is represented by a pair of square brackets [].

The second table is represented by a token (p,1) on place known, where [ is the multiset of pairs (o, )
such that o represents an object and z can take the values rd or wr. A pair (o, 7d) in [ indicates that process
p holds a read lock on o; a pair (o, wr) in [/ indicates that process p holds a write lock (exclusive lock) on
0. The name of the place known indicates another purpose of this list: When there is a token (p,!) on place
known the lock manager is aware of the existence of process p (it knows process p; see life cycle of a process
Fig. 10).

Figure 6(a) shows the protocol for the lock operations and Fig. 6(b) shows the unlock operations for read
locks*. The unlock operation is the reverse of the corresponding lock operation: we have reverse the arcs.

Figure 7 models the release protocol, which releases all locks held by a process (collective unlock). It
moves the token (p,l) from place known to place releasing; in this state, the two transitions below can unlock
all locks of process p. When all locks are released, i.e. if the multiset of locked objects is empty, the lock
manager marks the process to be known (with an empty list of locked objects).

Note that there are three reasons for a process not to be ‘known’ by the lock manager: Either the process
contacts the lock manager for the first time, the lock manager has crashed, or the lock manager has explicitly
decided to ignore the process (see Sect. 2.4.4). There is only one way for a process to become known to
the lock manager: invoking a check-in operation (see Sect. 2.4.4). As long as the process is unknown, the
lock manager will refuse any other operation. In some cases this implies that the only way for a process to
continue is an abort (crash) and a recovery which restarts the process from its latest commit.

3In fact, we represent this set as a multiset in the formal model.
4The protocol from Sect. 2.3 does only unlock read locks individually; write locks are unlocked collectively during the commit
operation by the release operation.
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Figure 7: Protocol for the release operation

Note also that some operations of the data manager and the log manager are only available if the
corresponding process is known to the lock manager: writing a commit record to the log file and updating
an object or a continuation in the database (for details see below).

2.4.2 The data manager

The data manager allows the reading of objects and continuations from the database and the updating of
objects in the database. The protocols for these operations are quite simple as shown in Fig. 8. In this model,
we have two places which are graphically represented by an ellipse rather than a circle. This indicates that
this is stable memory, which is not affected by crashes. Tokens on these places will not be removed by a
crash—this will be formalized in the fault model for the server. From the Petri net point of view, the ellipses
do not make any difference—the graphical distinction should help to spot stable memory in the protocol
more easily.

objects

continuations

Figure 8: The data manager

The database objects initially stores a value for each object (shared variable of the program); the database
continuations initially stores the continuations of all processes. Both load operations, LdCpy(o,p) and Ld-
Cnt(p), return the requested copy respective continuation but leave the database unchanged. We assume
that the update operations UpdObj(o,p) and UpdCnt(p) overwrite the old version in place. Both update
operations can only be initiated by a process when the process is known to the server. The load operations,
however, may be executed any time.

Since writing to disk is not reliable, it may happen that we overwrite an old value without having the
new value in that place. This will be formalized in the fault model. We can recover from such faults by the
help of the information in the log file. This, however, requires that we are aware of a write fault. In order to
detect write faults, the protocol not only writes the object itself but also a checksum. Moreover, we assume
that a write fault always results in an invalid checksum (see fault model in Sect. 2.4.5). In our model, we do
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not explicitly represent the checksum. We add a second two-valued component to the object written, where
valid stands for a correct checksum and inwvalid stands for an incorrect checksum of this particular object or
continuation. A load operation will return a value only if the corresponding checksum is valid. Otherwise,
the operation will be blocked—it can be resumed only by invoking the restart procedure (see Sect. 2.4.6).
Of course, an update operation may overwrite any object—even if invalid. This is reflected by a variable v
for the validity flag in the corresponding arc-inscription. Since variable v can take any value, updating is
possible in any case.

2.4.3 The log manager

The log manager allows writing to the log file, which is part of stable memory. There are four kinds of log
records: update record, continuation records, commit record, and database updated record. An update record
consists of a pair (o, p). Its meaning is that process p has written object 0. A continuation record (ent, p) is a
continuation of process p. A commit record (¢mt, p) indicates the successful commit of process p. A database
updated record (dbu, p) indicates that a process has updated the database after its successful commit. In
order not to confuse update records and database updated records, we will call database updated records
DBu records in the rest of this paper.

In addition, log records receive consecutive sequence numbers. Moreover, there is a counter which points
to the sequence number of the last log record written. This counter is called log counter and is also held on
stable storage.

The protocols for these three operations are quite simple and are shown in Fig. 9. The log counter is
incremented and the corresponding log record is written with this increased sequence number. To write a
commit record or a DBu record, the process must be known to the lock manager. Otherwise, the process
which invokes this operation is blocked—it can resume operation only by aborting and recovering from the
latest commit. The reason for this blocking will be discussed in Sect. 3.1.

(n+1,dbu,p)

() \
LogDBu(p) !—.— LogObj(o,p) . LogCnt(p)

logcounter

Figure 9: The log manager

2.4.4 The check-in and the redo procedure

In Sect. 2.3.4, we have seen that a process and the protocols running on the client’s side may crash. Upon
crash, the state of the process and the corresponding protocols at the client’s side is lost. Only the information
that was explicitly saved on stable memory by invoking the corresponding sever operations will survive a
crash.

After a crash of a process, the server must make sure that the values in the database are consistent. In
particular, it must make sure that the values of the log file are updated to the database if the process crashed
right after successfully writing the commit record to the log file. On the other hand, the server must make
sure that no values are updated if the process crashed before the commit point. This is the task of the redo
procedure for a single process. Moreover, the server must make sure that the process cannot be restarted
before the redo procedure is completed. Otherwise, it could happen that it starts from an old continuation.
Likewise, the server must guarantee that other processes access the variables written by the crashed process
only after the redo procedure.
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The Petri net from Fig. 10 shows the life-cycle of a process from the server’s point of view: Initial-
ly unknown (after a successful start of the server), a Checkln(p) makes the process known to the server.
Remember, that some crucial server operations can only be invoked by a process (e.g. a writing a commit
record) that is known by the server. The server may decide to ignore a known process at any time. Typically,
the server will decide to ignore a process if the server has some evidence that the process has crashed®. In
the protocol, however, the server can ignore a process at any time. This way, the protocol and, in particular,
its correctness proof are independent from a particular crash detection mechanism. Moreover, the server is
free to ignore any process if this appears to be appropriate for the over-all execution (e. g. for performance
reasons).

unknown

logcounter

[t8

(GAN)

(pl+(ord))

(D redone (G

(pl+(ord)

(o,m+p)

locks xlocks
Figure 10: Life cycle of a process from the servers point of view

When the server decides to ignore a process, it first starts a redo procedure for this process in order to
make sure that the database is in a consistent state. The redo procedure is modeled in the Petri nets from
Fig. 11-14 and will be explained below. After a successful termination of the redo procedure, the server
releases all locks held by the process in the same way, locks are released by the process’s release operation
(cf. Fig. 7). When all locks are released, the process is unknown at the server. This completes the life-cycle
of a process at the server.

Next, we present the redo procedure for a process. After the server decided to ignore a process (occurrence
of transition Ignore(p); see Fig. 10), the redo procedure scans the log file backwards. If it encounters a commit
record for the process first, it writes the subsequent update records to the database. When it encounters a
continuation record of the process it writes the continuation to the database, and then terminates the redo
process by writing a DBu record to the log file in order to make sure that a process is not redone twice (see
Sect. 3.2 for a detailed discussion). If the first encountered log record for the process is no commit record, the
redo procedure terminates immediately—without updating the database and writing a DBu record. Note
that, during the redo procedure of a process, the log records of all other processes are ignored.

Let us consider the protocol for the redo procedure in some more detail. Figure 10 shows the start of the
redo procedure: transition Ignore(p) puts a token (n, p, false) to place process redo. The token (n, p, false)
on place process redo says that currently a redo procedure for process p is in progress, that the next log
record to be read is the one with sequence number n (scan counter), and that a commit record for p has
not yet been encountered (false). A true in the third component (commit flag) will indicate that a commit

5Remember, that process can resolve cyclic waiting for locks themselves by establishing an early commit; therefore, there is
no need for the server to resolve cyclic wait situations.
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process redo
(O,p.false)

(n+1,p.b)
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(n+1pbop’) (n+1,p,false,o,p)
pri
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(np,true)

(owalid)

objects

Figure 11: Redo p: Operations for an update record

was encountered during the backwards scan. Initially, the scan counter is set to the value of the log counter,
which represents the highest sequence number of a log record in the log file. A token p on place pr6 indicates
the termination of the redo procedure. Then, the server can proceed to release the locks of process p.

Figure 11 shows the actions taken when an update record is encountered during the backwards scan: If it
is an update record of a different process p’, the record is ignored and the scan counter is decreased. If it is an
update record of process p and a commit was encountered (i.e. the commit flag is true), the corresponding
object is updated to the database (occurrence of transition t12)). If no commit record has been encountered
(i.e. commit flag is false), the redo procedure for p terminates immediately (occurrence of transitions t11).
Figure 11 shows also the action taken when the backwards scan reaches the end (or rather the begin) of the
log file: The occurrence of transition t37 terminates the redo procedure. Note that this can happen only if
no commit was encountered during the backwards scan.

process redo

(n+1,p.b)

(n+lcnt,p')

(n+lcntp’)

(m+1,dbu,p)

(np.b) log
(n+1p.bp’)
+1,p,b,p'
(n+1pbp) (n+1,pfasep) s P
=
pr2
(n+1,p,true,p)
pr3
P
continuations logcounter

Figure 12: Redo p: Operations for a continuation record

Fig. 12 shows the actions taken, when a continuation record is encountered during the redo procedure.
Again, the log record is ignored if it is the log record of a process p’ different from p. If it is a continuation
record for process p and a commit was encountered, the continuation is updated to the database (transition
t16), a DBu record is written to the log file (transition t17), and the redo procedure terminates. If the
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continuation record is encountered before a commit, the redo procedure terminates (transition t15)—without
updating the database and writing a DBu record.

process redo

(n+1,p,b)

(n+l.cmtp’)
@‘:.&(/D
(phb) (n+l,cmt,p') log
(n+1,pb,p’)

(n+1pbp’)

prd

(n+1,p,false,p)

(n,p,true)

Figure 13: Redo p: Operations for a commit record

Figure 13 shows the actions taken, when a commit record is encountered. Again, a commit record of a
process p’ different from p is ignored (transition t19). If it is a commit record for process p, the commit flag
is set to true (transition t20). Note that it cannot happen that a commit record is encountered when the
commit flag is true already.

At last, Fig. 14 shows the actions taken, when a DBu record is encountered. Again, a DBu record of
a process p' different from p is ignored (transition t22). If a DBu record for p is encountered, the redo
procedure terminates (transition t23).

process redo

(n+1,p,b)

(n+1,dbu,p’)

(n+1,dbu,p’)

(n,p.b)
(n+1pbp)

(n+1,p,b,p) (n+1,pfalsep) "

p<>p’ t22]

8]
O

pr5

Figure 14: Redo: Operations for a DBu record

2.4.5 The fault model

As mentioned previously, the server (lock manager, data manager, and log manager) must be able to deal
with two kinds of faults: A crash of the processor on which the server is running (server crash for short)
and a write fault on the database. A crash of the server results in a loss of all its volatile data but does
not affect the stable memory (database, log file, and log counter). A write fault results in an object with an
invalid checksum in the database.

The crash can be modeled in the same way, as a crash of a process. A transition, which instantaneously
removes all tokens from all circle-shaped places of the models shown from Fig. 6 to Fig. 14 and even the
circle shaped-places of the recovery protocol defined below. Again we assume that, upon crash, a specific
place server crash will be marked—which allows us to detect this crash (see below).

The write faults of the data manager are modeled in Fig. 15. It provides another instance for transitions
UpdObj(o,p) and UpdCnt(p) that do not correctly write the object or the continuation®. By assumption, we
know that in this case, the checksum is invalid.

6Not correctly writing the object or the continuation is represented by using a non appropriate arc type, which still has to
be introduced (see Sect. 4.1.3)
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objects

continuations

Figure 15: Write faults

2.4.6 Server recovery

When the server is restarted after a crash, it first scans the log file from the highest sequence number to 0 in
order to update all objects which have been written (and committed), but have possibly not been updated in
the database due to the crash. Note that we only need to redo operations but do not need to undo operations
because updates to the database will be only made after the commit point.

When the backwards scan is finished, the lock table is initialized (no object is locked) and the table of
known processes is initialized (all processes are unknown). Then, the server is ready to accept requests for
the lock manager, the data manager, and the log manager.

server crash

logcounter

Figure 16: Recovery of the server: Start backwards scan and initialize tables

Figure 16 shows the initiation of the backwards scan, by reading the log counter and initializing the
table of objects and continuation which have been updated during the backwards scan and a table which
tells which processes have committed during the scanned section of the log file (see below). The scanning
of the log file itself and the operations taken when a particular log record is encountered are modeled in
Fig. 17-Fig. 19 below. The backwards scan terminates, when the scan counter is 0. Then, the tables of the
server are initialized.

A token (n,r,c¢) on place server restart says that n is the sequence number of the next scanned log record
(scan counter). The second component, r, is the set of all objects and continuations which have already
been updated during the current scan of the log file (redone list). The third component, ¢, is the set of all
processes for which a commit record was encountered during the current scan (commit list). Initially, the
redone list » and the commit list ¢ are empty.

Figure 17 shows the actions taken when an update record for object o of process p is encountered (i. e.
a record (n 4+ 1,0,p)). If the process is not in the commit list (i.e. ¢[p] = 0), this record is ignored and the
scan counter is decreased by one. If the object is in the redone list, the log record is also ignored and the
scan counter is decreased. If, however, the process is in the commit list and the object is not in the redone
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list (i.e. 7[0] = 0), the object is written to the database, the scan counter is decreased, and the object is
added to the redone list.

server restart

(n+1,0,p)

(n,r+o,c)

(n+1r,c,0,p)

(n+1r.c.0p) o

objects
Figure 17: Operations for an update record

Figure 17 shows the actions taken when a continuation record for process p is encountered (i.e. a record
(n + 1,¢ent,p)). If the process p is not in the commit list, the record is ignored and the scan counter is

server restart
(n+1,cnt,p)

(nr+p,c)
(n+1,r.c,p)

(n+1reperpp) L (L)

=0 [t30}
clpl o2

(n+1,r,c+p,p)
(m+1,dbu,p) )

continuations logcounter

Figure 18: Operations for a continuation record

decreased. If the process is in the commit list, but the process is also in the redone list, the record is also
ignored, and the scan counter is decreased. In addition, however, process p is removed from the commit list
because a continuation is the first record written to the log file during the commit operation. If the process
is in the commit list and is not in the redone list, the continuation of p is updated to the database. Then, the
process p is removed from the commit list and added to redone list. Moreover, the scan counter is decreased
and a DBu record for process p is written to the log file.

Figure 19 shows the action taken when a commit record for process p is encountered (i.e. a record
(n + 1,cemt, p)). The process is added to the commit list and the scan counter is decreased. Note that a
commit record for process p cannot be encountered when the process is already in the commit list; therefore,
we require ¢[p] = 0 in that situation. If this is not true, some unforeseen faults (a fault not covered by or
fault model) has occurred. In that case, the server cannot successfully recover.

At last, Fig. 20 shows the action taken when a DBu record for process p has been encountered (i.e. a
record (n + 1, dbu, p)). During the restart of the server, these records are ignored—DBu records are relevant
only for redoing a single process (see Sect. 2.4.4).
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Figure 19: Operations for a commit record
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Figure 20: Operations for a DBu record

2.5 The combined model

In Sections 2.2 through 2.4, we have presented many Petri nets, which modeled different aspects of the
protocol. Though intuitively clear, it remains to show how the different Petri nets interact with each other.
To this end, we combine all Petri nets into single large Petri net, which we call the combined Petri net model.
In the formal proof, we will refer to this combined Petri net; fortunately, it is not necessary to draw it as a
single Petri net—we just show how it is constructed from the different Petri nets.

Technically, the combined Petri net model is the union of all places and transitions of the different Petri
nets, where the shaded transitions of the client are synchronized with a corresponding shaded transition
(one with the same name) of the server. Since this is a standard construction in Petri net theory, we confine
ourselves to an informal explanation of the synchronization operation. In our model, we have three cases:

1. There is exactly one transition at the clients side and one transition at the servers side which carry
the same name. In this case, there is exactly one transition with this name in the combined Petri
net model. Figure 21 shows how this transition looks like for the synchronization of the RLck(o,p)
transitions. On the top of this figure, we have shown the client’s transition and the server’s transition.
On the bottom, we have shown the transition of the combined Petri net model. This transition inherits
all arcs from the two original transitions.

The same construction applies to the following transitions: WLck(o,p), UnLck(o,p), C, LdCnt(p), Lo-
gObj(o,p), LogCnt(p), LogDBu(p), and ChecklIn(p).

2. There are two different transitions on the client’s side that both invoke the same operation. In our
model, LdCpy(o,p) is the only example. This transitions is present in the Petri net model for the read
operation as well as in the Petri net model for the write operation. In that case, we have two instances
of this transition in the combined Petri net model.

The three original transitions (two on the client’s side and one on the server’s side) are shown at the
top of Fig. 22. The two different instances of the corresponding transition in the combined model are
shown at the bottom of Fig. 22.

3. At last, we have the case that there is only one invoking transition at the client’s side, but there are two
corresponding transitions on the server’s side. Transitions UpdObj(o,p) and UpdCnt(p) are examples
for this case. Note that the second instance on the server’s side originates from the fault model. An
UpdObj(o,p) can either be successful or non successful. Symmetrical to the above case, we have two
instances of this transitions in the combined Petri net model. Figure 23 shows the three UpdObj(o,p)
transitions of the original Petri net model on the top and the two instances of this transition in the
combined Petri net model on the bottom.

In order not to clutter the Petri net models with shaded transitions, we did not shade the transitions
of the program model that invoke and terminate the read, write, and commit (cf. Fig. 1 and the models
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RLck(o,p) in read protocol RLck(o,p) in lock protocol
(client) (server)

RLck(0,p)  unlocked RLck(0.p) (1)  known
(p.0) (p.0)

locks
unlocked
(nl) known
(pl+(o,rd))
rl
(o,m)
locks

RLck(o,p) in the combined model:

Figure 21: Synchronization of the RLck(o,p) transitions.

LdCpy(o,p) in read protocol
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LdCpy(o,p) at data manager
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LdCpy(o,p) in write protocol
(client)

r2 w2
®o) objects (bo)
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Givestwo versions of LdCpy(o,p) in the combined model:

Figure 22: Synchronization of the LdCpy(o,p) transitions.
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UpdObj(o,p) at data manager UpdObj(o,p) in commit protocol UpdObj(o,p) at data manager
(server) (client)

(server fault model)
copies

(p,o,ud)

objects objects
p
c4 UpdObj(o,p)
P
. copies . copies
(p.o,ud) (p.o,ud)

objects objects

Gives two versions of UpdObj(o,p) in the combined model

Figure 23: Synchronization of the UpdObj(o,p) transitions.

from Sect. 2.3). For each transition Rreq[o], R[o], Wreq[o], W]o], Creq, and Cdone, there exists exactly one
transition in the Petri net from Fig. 1 and exactly one in one of the Petri nets from Figures 2—4. Thus in
the combined Petri net model, there will be exactly one transition for each of these pairs. The construction
is the same as in the first case (cf. Fig. 21).

2.6 The data types

For completeness sake, Table 1 defines the domains and operations that are used in the Petri net mode.
Moreover, this table associates each variable that occurs in the Petri net with a domain. Altogether, we call
this the data type of the Petri net model.

Table 2 list the token domain associated with each place. A legal marking associates each place with a
multiset over its token domain. In a Petri net, an inscription of an arc to or from a place must evaluate to
a multiset over the place’s token domain. For convenience, we allow one exception: If the inscription of the
arc evaluates to the an element of the place’s token domain (rather than a multiset over the token domain),
we implicitly consider it as a singleton multiset (the corresponding operation is called multiset injection; cf.
Fig. 2). Since most arc inscriptions represent a singleton multiset, this convention helps to avoid cluttering
arc inscriptions with multiset injection operations [a] instead of a.

3 Discussion of the protocol

In this section, we discuss some subtle points of the protocol in order to motivate some design decisions of
the protocol and in order to demonstrate what could go wrong.

3.1 The need for restricting invocation of some operations

At first, we have a closer look to the distinction of known and unknown processes at the server. This dis-
tinction was motivated by the following assumption: We assume that the server has no means to distinguish
a slow process from a crashed process. Thus, the server cannot tell whether a server has crashed after a
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any set disjoint from process

the natural numbers including 0

= {ent, emt, upd} U object

Domains:  process any set
object
bool = {true, false}
nat
mode = {rd, wr,ud}
checksum = {walid, invalid}
logtype
M S(process) multiset over process

M S(object)

M S(object x mode)

M S(process U object)
Variables:

p, P : process

0 : object

n 1 nat

b : bool

x : mode

v : checksum

m : MS(process)

l : M S(object x mode)
¢ : M S(process)

T : M S(process U object)

Constants: P

0,1
Operations: (v, ...,")
-+ - :nat,nat — nat
-+-:MS(D),MS(D) - MS(D)
[]: D — MS(D)
<x-:nat Xx MS(D) — MS(D)

multiset over object
multiset over object x mode
multiset over process U object

M S(process), multiset in which each process occurs exactly once.
0 : M S(object), multiset in which each object occurs exactly once.
: nat, with their usual meaning.

tupeling

addition on natural numbers

multiset addition on M .S(D) for any domain D
multiset injection

scalar multiplication on multisets

Table 1: Data type: Domains, variables, constants, and operations
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processes
rl, r2, wl, w2

cl, c2, c3, c4, cb, cb

unlocked
copies
wlckcount

crashed processes, s

known, releasing

redo, redone
locks

xlocks
continuations
objects

log
logcounter
unknown
process redo
prl

pr2, pr4, pr5
pro

server crash
server restart
srl

sr2

: processes
: process X object

: process

: process X object

: process X object X mode
1 process X nat

: processes

: process x M S(objects X mode)

: process x M S(objects x mode)

: object x M S(process)

: object X process

: process X checksum

: object x checksum

: nat X logtype X process

1 nat

: process

: nat X process X bool

1 nat X process X bool x object X process

: nat X process X bool X process

: process

: dot

: nat x MS(object U process) x M S(process)

: nat X MS(object U process) x M S(process) x object X process
: nat X MS(object U process) x M S(process) x process

Table 2: Token domains for places
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commit if there are no subsequent update operations of this process within a given time limit—the process
might just be slow for some reason. In order not to block other processes forever, the server might withdraw
the locks from a process that appears to have crashed—even if the server can never be sure that the process
has crashed.

Figure 24 shows such a scenario. Process pl writes to some object 0ol. During the commit operation, the
process writes an update record for ol to the log file and then successfully commits. Let us assume that pl
crashes right after the commit point (i.e. after the successful write of the commit record). This part of the
execution is represented on the left hand side of Fig. 24—event t12 updates the update record of process
pl to the database. Since the state of a process and the state of the protocol running on the client’s side
are lost upon a crash, only the server has enough information to bring the database to a consistent state.
Thus, the server must make sure that the value of ol written by pl is updated to the database. This is
achieved by ignoring process pl at some point and starting the redo procedure for pl. This part of the
execution is represented in the middle part of Fig. 24. After the server has released the locks of pl on object
ol, another process may access object ol. Let us assume that process p2 first reads ol, then writes to ol,
then successfully commits, and then updates the value of ol to the database. This part of the execution is
represented on the right hand side of Fig. 24.

WJ[o1]
p=pl

LogObj(ol,pl)

p=pl

Ignore(pl)

UpdObj(o1,p2)
Figure 24: Database updated by server after a crash of pl

So far, nothing bad has happened. The scenario from Fig. 24 just shows that the server must eventually
update the value written by process pl to the database if p1 crashes right after the commit point. Now, let
us consider a slightly different scenario: Process pl did not crash after the commit operation but just was
slow. Remember that the server has no means to distinguish this scenario from the scenario before. So, it
will eventually decide to ignore process pl and to update the values written by pl to the database. Now,
let us assume that processes pl eventually invokes the update operation for object ol—after process p2 has
updated its value to the database. This scenario is shown in Fig. 25: It is a lost-update situation because the
value written by process p2 after reading the value written by pl is overwritten by the value of pl again. The
value of ol written by p2 is lost. Clearly, we do not want to allow such lost-update situations. Therefore,
the server must make sure that a process cannot update its written values to the database once the server
has decided to ignore it. For that reason, the protocol allows a process to invoke an update operations only,
when it is known to the server. After deciding to ignore a process, the server does not know the process any
more—after some intermediate states which are needed to redo the process and release all its locks.

Now, the question is which are those crucial operations that can be invoked only by a known process?
For example, the protocol allows to load objects from the database even by unknown processes. Likewise, an
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Figure 25: Database updated by server and by a slow update operation of pl

unknown process may write update and continuation records to the log file. The answer to this question can
be found in the protocols of the server: All operations with an arc from place known to the corresponding
transition can be invoked only by a known process.

But, there remains a more difficult question: How can we ever be sure that we did not forget another
scenario which results in a lost update or in another undesirable effect? We will come back to this question
in Sect. 3.3.

3.2 The need for database updated records

Next, let us discuss the following questions: Do we need DBu records at all? In which situations must a
DBu record be written?

Let us start with answering the first question and assume that the protocol does not write DBu records
at all. From the scenario of Fig. 24 we already know that the server must update the value written by pl to
the database after a crash of pl. Now, let us assume that process pl is fast and updates ol to the database
itself, then releases its locks, and crashes right after the release operation. Moreover, let us assume that
process p2 reads object ol, then writes to ol, then commits, and eventually updates ol to the database as
shown in Fig. 26. This time, the server is slow and starts to ignore pl after p2 has updated its values to
the database. Since pl has not written any further log record before it crashed, the server will find the very
same log records as in the scenario from Fig. 24 (remember that we currently consider the protocol without
DBu records). Thus the server will take the same actions during the redo procedure for process pl: It will
update the value of ol written by pl to the database. Again, we have a lost-update situation. The reason is
that the server did not know from the log file that process pl has already updated its values to the database
and released its locks. Therefore, the protocol requires that the process writes a DBu record after updating
all its values to the database and before releasing its locks—the DBu record allows the server to detect that
pl has already been updated the value of ol itself.

This answers the question whether we need DBu records. This leaves the question whether it is sufficient
to write a DBu record after the update operation of the process. In fact, it turns out that this is not
sufficient. Scenarios similar to the above one show that, whenever some updates to the database have been
made (by the process itself, by the server during a redo of the process, or by the server during its restart
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Figure 26: Another lost update situation: Late update by the server

procedure), a DBu record for the corresponding process must be written to the database.
Again, we are left with the question: How can we be sure that we did not forget another scenario which
results in a lost update or in another undesirable effect?

3.3 The need for formal methods

Let us come back to the question posed in the previous section: Can we be sure that we did not forget a
scenario which is undesirable? In the database and the transaction community, there is a lot of understanding
on the undesirable situations and on what could go wrong. In our protocols, however, the situation is different
from the classical database situation:

1. There are continuations of processes, which must also be stored in the database; in this sense, processes
take a similar role as objects in the classical situation. On the other hand, processes take a similar
role as transactions in the classical situation. This dual role of processes does not occur in the classical
database situation.

2. Though processes are similar to transactions, there are some crucial differences. First of all we do
not require that a process terminates (think of an infinite computation that calculates the digits of
7). Moreover, a single process may have many commit events. It might even happen that we have a
commit event and later on an abort (crash) of the same process—this does not occur in the classical
database situation”.

On the one hand, the understanding of classical transaction theory might help to identify critical scenarios.
On the other hand, it might provide a wrong intuition concerning processes. Therefore, we claim that the
only way to be sure not to forget some cases is to provide

1. a specification of what correctness should mean. In particular, the specification must be a precisely
defined mathematical object, which characterizes those operational models that satisfy the specification
and those that do not satisfy the specification. In that case, we call it a formal specification.

7One might argue, that processes are similar to nested transaction; but, nested transactions do not faithfully capture the
concept of processes.
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2. Moreover, we must provide a proof that the operational model satisfies the formal specification. In
order not to forget cases, the proof must be in terms of the operational model of the protocol rather
than in terms of an informal understanding. In that case, we call it a formal proof.

In Sect. 4 we will present a formal specification of correctness and in Sections 5, 6, and 7, we will present
a formal proof that our Petri net model (the combined Petri net model defined in Sect. 2.5) of the protocol
satisfies this specification.
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4 Specification

Informally, the protocol should guarantee that a parallel program which is executed on a faulty system
behaves as on a non-faulty system with a conventional shared memory. But what precisely does this mean?
For example, the protocol cannot guarantee any real-time properties for the program on the faulty system
since we did not impose any assumption on the frequency and the duration of crashes. Moreover, we need to
express the above informal requirement in terms of the Petri net model—or rather in terms of the executions
of the Petri net model—in order to give a formal proof.

Therefore, we first have a closer look to the executions of the Petri net model before formalizing correct-
ness. Correctness will be defined in two steps: First, we define the correctness of an execution. Second, a
Petri net model is correct if all its executions are.

4.1 Executions

In this section, we discuss the executions of the Petri net model.

4.1.1 Petri net executions

Figure 27 shows one ezxecution of the Petri net model, where we assume that there is only one process pl
and one object ol around. Note that, in an execution, we abbreviate the names of the places from the Petri
net. For example, svcr stands for server crash, cr stands for crashed processes, cn stands for continuations,
and ob stands for objects. A list of all abbreviations can be found in Table 3 on page 104.

Remember that, initially, the server as well as all processes are not running and thus need to be restarted
from the database. First, the server is restarted. Since the log counter (abbreviated Ic) is 0 initially, the
back-scan procedure terminates immediately and the table of locks (for the only object ol) is immediately
initialized (Ick.(01,[])). Moreover, process pl is unknown at the server right after this initialization (uk.pl).
Then, process pl checks in and loads its continuation (cn.pl) and restart it (p.pl). Upon restart, the write
lock counter of pl is initialized to 0 (wlc.(p1,0)) and all objects (here only object 01) are marked as unlocked
(unl.(p1,01)). Then, the process issues a write request on object o1 (Wreq[ol]). Since no local copy of this
object is available, a write lock operation is issued. The write lock operation increments the write lock
counter to 1 on the process’s side and marks object ol as exclusively locked by process pl on the server’s side
(xIck(o1,p1)). Then, the process loads a local copy of object ol from the server and sets the write attribute
on this copy (cp.(pl,0l,wr)). After this, the write operation is performed on the local copy—finishing the
execution of the write operation. Then, the process issues a read request on this object. Now that there
is a local copy of that object, the read can be immediately executed on this copy. Then, process pl could
execute the next operation and so on. We do not consider the execution beyond this point.

Of course, there are many other executions—in fact, there are infinitely many others. For example,
process pl could start with a read operation. And there are even more possibilities when more than one
process and more than one object are involved.

Technically, an execution is a so-called non-sequential process of a Petri net [5] which is equipped with
some additional information. Basically, an execution is an unwinding of the Petri net model starting in its
initial marking of the Petri net. It is again a Petri net—a Petri net without cycles and with non-branching
places. In order to make a clear distinction between a Petri net model and its execution, we call a transition
in an execution an event and we call a place in an execution a condition. A condition is said to be an
initial condition if it has no preceding event. In our example, these are the top-most conditions. The set of
initial conditions corresponds to the initial marking of the Petri net. Note that, in an execution, different
events may correspond to the same transition of the Petri net, and different conditions may correspond to
the same token on the same place. We say that the different events represent different occurrences of the
same transition and the different conditions represent different occurrences of the same token on the same
place.

In addition to the classical definition of non-sequential processes, we incorporate more information in
the Petri net and its execution. We have distinguished among different arc-types in the Petri net, which
immediately carry over to the executions. Moreover, we have inscriptions of transitions. The meaning of
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Figure 27: An execution
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the different arc-types will be discussed in Sect. 4.1.3. A formal definition of these so-called Arc-typed Petri
Nets and their executions can be found in [23].

4.1.2 Transactional view

The example execution from Fig. 27 already indicates that, even for simple scenarios, the corresponding
execution of the Petri net model is quite large. The reason is that this execution captures all details of the
protocol. Fortunately, we need not deal with all these details in the specification. Therefore, we introduce
abstract views of an executions masking those details that are not relevant for a particular purpose. For
example, Fig. 28 shows the essence of the execution from Fig. 27 from a transactional point of view: a

LdCnt(pl)

W/[o1]
p=pl

R[o1]
p=pl

Figure 28: Transactional view

continuation of process pl is loaded from the server and started. Process pl issues a write and a read
operation on object ol. The read operation returns the value written by the write operation—indicated by
the bold-faced arc from the write event to the read event. Since we omitted the conditions in the immediate
context of each event, we cannot tell from the event itself to which process it belongs. Therefore, we explicitly
state the involved process by a label p = pl; technically, this label indicates the value of variable p when the
corresponding transition occurred. We call this the transactional view of an execution because we consider
only the write and read operations of the process along with the commit and load continuation operations.
All conditions and all other events are deleted form the execution. However, we keep the arcs between the
remaining events: If there is a directed path of arcs of a particular type between two event in the original
execution, then there is an arc of the corresponding type between these events in the transactional view.

Figure 29 shows the transactional view of another execution, which involves two processes pl and p2
and two objects ol and 02. Note that the computation of pl crashes (after the first read event) and is
restarted later on. Though the transition corresponding to the crash is masked in the transactional view of
an execution, we know that pl must have crashed after the read event and was restarted afterwards because
of the LdCnt(p1) event. Note that there is no path of program causality from the first read event of pl to
the subsequent LdCnt(pl) event; there is only a normal path of causality.

Figure 29 can be considered as the execution of process example from Sect. 2.1, in the context of some
other process p2. Object ol corresponds to variable x and object 02 corresponds to variable y. Note, however,
that there are 5 events corresponding to the execution of pl due to the restart of pl after a crash. Moreover,
there is a commit event for process pl that might have been inserted by a compiler at the end of the process.

4.1.3 Events, program causality, and data causality

Basically, an abstract view of an execution consists of a set of events, where each event corresponds to the
occurrence of some operation. The corresponding operation is represented by a label. Moreover, there is a
partial order (also called causality) which represents the order in which these events occur in this particular
execution. Note that this causality is only a partial order; events which are not ordered by it are said to be
concurrent.

In our version of executions, we identify two particular causalities: program causality and data causality.
Program causality is graphically represented by arrows with a white arrow head. This causality represents
the order between events that is due to the control flow of the executed sequential process (cf. Sect. 2.3.1-
2.3.3). Each path of program causality corresponds to a computation of a sequential process as introduced in
Sect. 2.1. Thus program causality allows us to identify the computations of the sequential processes within
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the execution of the protocol. Note, however, that program causality is not a total order on the events of
the same process! The reason is that, due to faults, a process may restart from an earlier continuation (cf.
Fig. 29 and the discussion at the end of Sect. 4.1.2). But, we assume that the read and write events on each
path of program causality in an execution are a legal computation of the process (cf. Sect. 4.3).

LdCnt(p1) LdCnt(p2)
WJ[o1] R[02]
p=pl p=p2
R[o1] Wlo1]
p=pl
C
LdCnt(p1) p=p2
WJ[o1]
p=pl
R[o1]
p=pl
Wlo2]
p=pl
C
p=pl
R[o1]
p=p2

Figure 29: Transactional view of another execution

Data causality is graphically represented by bold-faced arrows. This causality represents the flow of
values between certain write and read events. Though we do not represent values explicitly in our Petri net
model, data causality reflects this information. We assume (cf. Sect. 4.3) that, for each read event, there is a
uniquely defined path of data causality® to this event. The sequence of write events on this path determines
the value returned by a read event. Thus, we choose this sequence as a representative of the value returned
by the read event (see [21] for a more detailed discussion). For a read event e, we call this sequence of write
events the write sequence of e and denote it by ws(e).

In an execution, an event labeled by R[ol] corresponds to the occurrence of a read operation on object
ol; we call this event a read event or—if the accessed object matters— a read event on object ol. Likewise,
we call an event labeled by W[ol] a write event or a write event on object 01. An event that is either a write
event or a read event is called an access event.

An event labeled by C is called a commit event. All events that can be invoked by the parallel program
(or rather its sequential processes) are called program events; so a program event is either an access events
or a commit event. Later on, we will also refer to events that correspond to the occurrence of some other
transition t of the protocol; we call this a t event for short.

In the proof, we will refer to the conditions immediately preceding an event. The set of all conditions
immediately preceding an event e is called the preset of e. Likewise, we call the immediate successor
conditions of an event e the postset of e. The union of both sets is called the context of the event.

4.1.4 Program’s view

Now, we introduce an even more abstract view of executions: the program’s view. It consists of all program
events (i.e. all access and commit events) of the execution along with the paths of program causality and the
paths of data causality between these events. We drop all other events and causalities. Figure 30 shows the

8Whenever we refer to a path of some causality, we mean a directed path of this causality; so a path always follows the
direction of the causality.
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program’s view of the execution represented in Fig. 29. Note that we dropped the causality from event e2 to

Figure 30: Programs view of the other execution

event e3 because it is neither a program causality nor a data causality. Likewise, we dropped the causality
from event e6 to event el0.

The program’s view of an execution provides all information necessary to specify the correct execution
of a parallel program: Program causality reflects the computations of the sequential processes with its read
and write operations on objects and its commit operations. Data causality reflects the propagation of values
between write and read events. In particular, the write sequence ws(e) associated with a read event e
represents the value returned by this read event.

4.2 Specification

Now, we are prepared to formalize the informal understanding of correctness of the protocol in terms of the
executions of the Petri net model. Informally, the execution of the sequential processes should appear as if
no faults occurred and as being executed on a classical shared memory.

In terms of the program’s view of the execution, this means that, for each process, we can identify a path
of program causality that corresponds to a correct computation of this process. Moreover, the access events
on these paths appear to be executed on a conventional shared memory.

We start by identifying such a path for each process by the help of commit events: An access event is
committed if there exists a path of program causality from this event to some commit event. In the execution
from Fig. 30, events e3, e4, 5, €7, and e8 are committed; events el, e2, and €10, however, are not committed.

Our first requirement is that, for each process p, the set of committed access events of process p forms an
initialized path® of process pl, where a set E of events forms an initialized path of process p if the following
conditions hold:

1. For two events e, e; € E there exist a path of program causality either from e; to e; or from es to e;
(all events are totally ordered by program causality).

2. For an event e € E and any access event ¢ with a path of program causality from e’ to e, we have
e' € E (E is prefix closed with respect to program causality).

We will argue in Sect. 4.3 that any initialized path of a process p corresponds to a correct computation
of process p.

9Remember that we consider directed paths only.
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In the execution of Fig. 30, the set of committed access events of process pl is {e3,e4,e5}, and the set
of committed access events of process p2 is {e7,e8}. Both sets form an initialized path of the corresponding
process.

Given these paths, we must make sure that the access events on these paths appear to be executed on a
conventional shared memory with no interference of the other (non-committed) events. This is captured by
the notion of sequential consistency [25]—slightly adapted to the situation of ignoring non-committed write
events (see [21] for more details).

We require that the set of all committed access events is sequentially consistent. A set E of access events
of a given execution is sequentially consistent if there exists a linear arrangement of E (i.e. a sequence in
which each event of E occurs exactly once) such that:

1. the linear arrangement respects program causality; i.e. if two events are ordered by program causality,
then these two events occur in the same order in the linear arrangement.

2. the value returned by the read event in the execution is the same as the value returned by the read
event when the events are executed in the order of the linear arrangement on a conventional memory.
In terms of our execution model this can be expressed as follows: Let e be a read event on object o.
By ws(e) we denote the sequence of write events on the same object which precede e in the linear
arrangement. Then, the above requirement reads: For each read event e of X holds: ws(e) = ws(e).

For example, the linear arrangement €7, e8, e3, e4, €5 is sequentially consistent, which covers exactly the
committed events of the execution from Fig. 30. Note that ignoring non-committed events is implicitly
covered by this definition: If an event e’ does not belong to set F, it does not occur in the corresponding
linear arrangement. Therefore, for no read event e € E, the event e’ occurs in w3(e); because of the
requirement ws(e) = ws(e), we know that event e’ does not occur in ws(e). By definition of ws(e), there is
no data causality from e’ to e in the execution.

To sum up, an execution is correct if,

A. for each process p, the set of its committed access events of p form an initialized path of p and
B. the set of all committed access events is sequentially consistent in the execution.

That’s it—as far as safety is concerned. As already mentioned, this definition is based on some assumptions
which will be discussed in Sect. 4.3 below.

The above requirement specifies a safety property, which says that a bad thing never happens [24, 2]
(e.g. it is a bad thing to return a wrong value to a read operation). Thus, the specification could be easily
implemented by never executing a commit event or even simpler by never executing any operation. Therefore,
we need an additional liveness requirement, which says that eventually something good will happen (e.g. a
good thing would be to successfully execute a commit event). In this paper, however, we concentrate on the
specification of the safety property. The reasons are the following:

1. Liveness cannot be guaranteed at all without further assumptions on the fault model. If crashes occur
frequently, it could happen that the protocol never recovers from a crash before the next crash. One
way out of this would be to require that eventually no faults occur any more.

This still leaves the problem of different processes conspiring against each other by not releasing locks.
One way out of this would be to have a fairness assumption on acquiring and releasing locks. Remember
that our protocol was allowed to insert commit points and thus to release locks.

Then, we could apply classical techniques of temporal logic for proving this liveness.

2. The focus of this paper is on the consistency and the correct interplay of loading and saving continu-
ations and objects. This requires a new way of thinking and new specification and proof techniques.
Therefore, we concentrate on these new techniques and their applicability in this paper.
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4.3 Assumptions

As already indicated in Sect. 4.2, the above specification is based on some assumptions.

First, we assumed that each initialized path of each process p (and thus by the requirement the set of
committed events of that process) are a legal computation of this process. This assumption can be split into
two parts:

1. We assume that in the execution each initialized path of a process p starts at the continuation of
process p that is initially stored in the database.

This assumption will be proved for the Petri net model by a simple structural argument in Sect. 8.4
(Property 12.2 & 4).

2. We assume that, whenever a continuation is loaded from the database and started as a process, the
sequence of operations invoked by this process is a legal computation of the corresponding continuation.

Moreover, we assume that, if a continuation of a process is saved at some point of the computation
and later on loaded and started, then it resumes the computation at exactly the point where the
continuation was saved.

Note that this assumption cannot be proved within our Petri net model. We did not introduce a
programming language for sequential processes along with a formal semantics and runtime system
executing this program. Implementing a sequential programming language is a different issue and
beyond the scope of this paper. In fact, the protocol works for any implementation of a sequential
programming language that allows to save and restart continuations and meets the above requirements.

In combination, both assumptions guarantee that each initialized path of a process p starts as process p
and keeps behaving as process p (even if stored as a continuation and restarted later on).

Note that the second assumption cannot be met if the program’s semantics makes any real-time claims.
For example, let us consider a situation where the next statement is a write operation and the program’s
semantics assumes it to be executed within 100ms. Then saving the continuation to the database at this
point and loading and restarting it-let’s say a minute later—will violate the programs semantics. Thus,
the second requirement excludes programs with real-time semantics. But, the second requirement does not
exclude programs with a semantics depending on time (or timers).

There are several reasons why we make this an assumption rather than making it a part of the model:

1. This way, we need not deal with the semantics of the sequential processes at all. The semantics
of sequential processes is a orthogonal (and complex) issue which requires different techniques. A
formalization would not provide any insight into the protocol and would rather blur the proof of the
protocol.

2. This way, we verify the protocol in a more generic way since we prove it independently of a particular
programming language. In fact, it works with any programming language having any semantics for
which the above assumptions are met.

Another assumption concerns the correct implementation of data causality. As stated before, we do not
represent values in our Petri net model explicitly. Rather, we represent propagation of values between write
and read events by data causality. Our interpretation is that a read event e returns the value which is the
outcome of the sequence of write events ws(e) preceding this read event with respect to data causality. This
assumption can also be split into two assumptions:

1. We assume that the path of data causality to event e is unique. This is necessary for ws(e) to be
well-defined.

This can (and will) be proved for the Petri net model by a simple structural property.

34



2. We assume that on each path of data causality (which corresponds to the paths on which data are
propagated) the value of the object is faithfully propagated. On this path, only a write operation
changes the value—according to its semantics. All other operations do not change the value!°.

Again, this requirement cannot be proved within our Petri net model. It remains an assumption on
the implementation since our model does not represent values at all.

There are several reasons for not including values in the Petri net model and to use data causality instead:

1. We need not bother about the domain from which the value should be chosen (we can leave it to the
programs semantics to assign a domain to a particular object).

2. We need not even fix a particular version of a write operations. For example, a write could also be
an atomic increment operation or even a ‘multiply by two and than add one’. Moreover, we can allow
write operations which only change a part of an object and do not touch another part (see [21] for a
more detailed discussion). We allow any version of write operations which can be implemented such
that the above requirement is satisfied.

In addition, we have some technical requirements on executions, which will be proven also in Sect. 8.4:
We require that there is a path of data causality between access events on the same object only, and we
require that there is a path of program causality between events of the same process only (Property 11).
Moreover, we require that each path of data causality and each path of program causality originates in some
initial condition of the execution (Property 12).

10Note that we do not require a particular representation of the value. Thus, there could be different representations of the
same value on different physical devices.

35



5 Refinement

In the previous section, we have specified the correct behavior—i.e. the correct executions—of our protocol.
Now, we are going to verify that each execution of the Petri net model meets this specification. Since the
proof is quite long, we structure it in the following way: First, we will refine the specification in several
steps. Each refinement resembles a design decision chosen in the protocol. For each refinement step, we will
give a proof of correctness, meaning that each execution which meets the refined specification also meets the
original specification. These proofs are independent of the protocol. At the end of the refinement process,
we are left with a bunch of requirements, which will be proven for the Petri net model.

We start with general refinement steps in Sect. 5, which apply to many protocols and do not assume a
particular operational implementation. In Sect. 6, we continue the refinement process with refinement steps
that are driven by our particular protocol. In Sect. 7, we will verify the remaining requirements for the Petri
net model.

5.1 Directly committed events

Both requirements, A and B, of the specification presented in Sect. 4.2 refer to the set of committed access
events of an execution. Remember that an access event el is committed if there is a path of program causality
from el to some commit event e2. Figure 31(a) shows a graphical representation of this definition. An event
labeled by X denotes a read or write event to some object. The arc of program causality between event el
and e2 denotes a path of program causality between these events.

Note that, according to this definition, the corresponding commit event €2 could be a commit event that
occurs after an intermediate crash and after a restart of the process by a LdCnt event as shown in Fig. 31(b).
In that case, we call e2 an indirect commit event of el. The problem with indirect commit events is that the

(a) A committed event el (b) €2 is an indirect commit event of el

Figure 31: Idea: Direct commit events

protocol is not aware of access events that happened before the restart of a process by a LdCnt event—in
particular, an indirect commit event is not aware of a write event and cannot take responsibility for updating
the value of the write event to the database. Therefore, it is difficult to verify requirements A and B directly
for the protocol.

In order to tackle this difficulty, we proceed as follows: We introduce the concept of directly committed
events and restrict requirements A and B to directly committed events. These restricted requirements will
be called A’ and B’. In order to guarantee the original specification, we add another requirement C, which
guarantees that each committed event is a directly committed event.

We start with the definition of directly committed events: An access event el is a directly committed
event if there exists a path of program causality from el to some commit event e2 on which no LdCnt event
occurs. A graphical representation of this definition is shown in Fig. 32. Intuitively, a direct commit event
occurs before the next crash of the process.

With this definition, the following three Requirements A’, B’, and C imply the specification from Sect. 4.2.
Note that A’ and B’ rephrase requirement A and B for directly committed events only. In combination
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Figure 32: Graphical notation for a directly committed event el

with Requirement C, this implies A and B.

A’: Directly commatted events form an initialized path:
For each process pl, the set of all its directly committed events form an initialized path.

B’: Sequential consistency of directly committed events:
The set of all directly committed events is sequentially consistent.

C : Committed implies directly committed:
Each committed event is a directly committed event.

5.2 Some notations: Situations

In the following sections, we will further refine requirements A’, B’, and C. In the presentation of these
requirements, we will make use of some graphical notation, which was informally used in the previous section
already. For example, Fig. 31(a) characterizes an execution with a committed access event el. Figure 32
shows the additional requirement for directly committed events (there is no LdCnt event on the path of
program causality from el to e2). Note that these figures apply to executions with more than two events
since we only represent those events of an execution that are relevant for a particular purpose. We call those
figures situations. An execution meets such a situation if we can identify the events of the situation in the
execution and the events satisfy the constraints expressed in this situation. This way, a situation denotes a
set of executions.

In the following, we will use implications between situations for representing requirements. For example,
Fig. 33 represents Requirement C': For each access event el with a path of program causality to some commit
event e2, there exists a path of program causality to some commit event e3 on which no LdCnt event occurs.
Note that the event el on the left hand side and event el on the right hand side of the implication denote
the same event. The commit events e2 and e3, however, may be different events because of the different
names. But e2 and e3 could also be the same event (if e2 also satisfies the constraints imposed on e3). If we
want two events to be different, we explicitly state this condition in the situation (e.g. by a label e2 # e3).

Figure 33: Graphical notation for Requirement C'

5.3 Refining the initialized path property: A’

Next, we refine property A’, which we call the initialized path property for short. This property can be split
into two requirements:
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A.1: Program causality between committed events: For each two directly committed events el and
e2 that belong to the same process, there exists a path of program causality from el to e2 or from e2
to el.

A.2: No preceding uncommitted events: If there exists a path of program causality from an access
event el to a directly committed access event e2 then event el is also a directly committed event.

Figures 34 and 35 show the graphical representations of these requirements in terms of implications between
situations.

Figure 35: Requirement A.2: No preceding uncommitted events

Obviously, requirements A.1 and A.2 in combination guarantee the initialized path property A’. Require-
ment A.1 guarantees that all directly committed events of the same process are totally ordered. Therefore,
there exists a root anchored path that contains all directly committed events of this process. Requirement
A.2 guarantees that each access events on this path is directly committed because each event preceding a
directly committed event is also a committed event.

5.4 Refining sequential consistency: B’

Next, we refine sequential consistency of the directly committed events (requirement B’). In the protocol,
we use locks in order to guarantee exclusive access to each object. A part of this is captured by the following
requirement. In this requirement, we use the concept of conflicting events: Two events are said to be in
conflict (or conflicting) if both access the same object, both are directly committed events, and at least one
of them is a write event.

B.1: Conflicting events are ordered:
Every two conflicting events are ordered by causality in one way or the other.

This requirement is graphically represented in Fig. 36. The two different ways of arranging the conflicting
events are graphically represented by two different cases on the right hand side of the implication. The two
cases are distinguished by two labels case i and case ii.

A causal order between a write event el and a read event e2 on the same object, however, does not
automatically imply that there is also a data causality from el to e2. For example, e2 could access an
outdated copy. Therefore, we explicitly require this implication:
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casei: W[o1] X[o1]

—_—— Xpo1

Figure 36: Requirement B.I: Conflicting events are ordered

B.2: Causal order implies data causality: Let el be a directly committed write event on some object
ol, and let e2 be a directly committed read or write event on the same object ol. If el happens causally
before e2, then we also have a path of data causality from el to e2.

This requirement is graphically represented in Fig. 37.

W[o1] [el————={e2| X[01]

Figure 37: Requirement B.2: Causal order implies data causality

A last requirement guarantees that a directly committed event never gets a value from an event that is
not directly committed. For convenience, we formalize the contraposition:

B.3: Data causality respects commit events: If el is a write event with a path of data causality to
some directly committed access event €2, then el is a directly committed event.

This requirement is graphically represented in Fig. 38.

Figure 38: Requirement B.3: Data causality respects commit events

In combination, requirements BI, B2, and B3 imply sequential consistency (requirement B’). Let us
explain why. At first, we fix a linear arrangement of all directly committed events: an arbitrary linearization
of the partial order on the committed events. By definition, this linear arrangement respects program
causality (because program causality is a part of the partial order). So, it remains to show that ws(e) = ws(e)
for each committed read event e. Remember that w3(e) depends on the chosen linearization. Let us consider
a read event e on object ol. By B.1, we know that the partial order of the execution totally orders all
committed write events on object 0ol and the read event e. Let e1 es...e,€en41 ... be the sequence of these
events. Since the linear arrangement was a linearization of this order, we know ws(e) = ejes...e,. By
B.2, we know that there is a path of data causality from write event e; to write event e;; for each i with
1 <i < n. Also by B.2, we know that there is a path of data causality from e, to e. It remains to show
that there are no other write events on the path of data causality towards event e. By assumption on our
execution model (Prop. 11.1), there is no path of data causality from a write event on a different object
02 # ol to event e. So it is sufficient to consider the write events on object ol: For each write event e; with
i > n + 1, there cannot be is no path of data causality from e; to e because, by definition of the sequence,
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there is a causality from e to e;—a contradiction to anti-symmetry of partial orders. So, the only additional
events on the path of data causality towards e could be write events on object ol that are not directly
committed. This, however, is excluded by requirement B.3. Thus, we have ws(e) = ws(e).

Altogether, we know that requirements B.1, B.2, and B.3 imply requirement B’.

5.5 Summary and discussion

In the previous sections, we have refined requirements A’ and B’. For the moment, we do not further refine
requirement C' because it will turn out that requirement C will be implied by two requirements that occur
during the further refinement A.2 (see Sect. 6.11). Altogether, it remains to show that requirements A.1,
A.2, B.1, B.2, B.3, and C are met by the Petri net model. These requirements will be refined further in the
next section.

However, it is worthwhile to notice the similarities between the requirement A.1 and the requirements
B.1 and B.2. Both establish a total order on events which are somehow related: A.1 guarantees that, for
two directly committed events of the same process, there is a program causality between these events. B.I
and B.2 guarantee that, for two directly committed write events on the same object, there is a data causality
between these events. Indeed, if there were no read events, we could replace the two requirements B.1 and
B.2 by a single requirement, which resembles A.1. Since we do not require a data causality from a read
event to a write event, we need the combination of B.1 and B.2. Even more evident, requirement A.2 and
requirement B.3 have the same structure.

These similarities are not by chance. Whenever the process executes a read or write event, the process’s
continuation is modified. Therefore, from the continuation’s point of view, each read or write event can be
considered a ‘write event on the continuation’! A ‘write event on the continuation’ basically needs the same
treatment as a write event on some other object—the only difference is that propagation of continuations is
represented by program causality and not by data causality.

This analogy will also pervade the following refinement steps and even the final verification steps. The
arguments in the case for continuations will be slightly simpler than the arguments in the analog case for
objects—since a continuation can be changed only by one process whereas an object can be changed by
different processes.

6 Further refinement

In this section, we further refine the specification. We start by refining requirements A.7 and A.2. Figure 48
on page 48 gives an overview of all refinement steps concerning requirement A’. In particular, there are
references to the page numbers on which the corresponding requirements are defined. Therefore, we do not
repeat the precise wording of the requirements which have been defined earlier. We give only a brief informal
description for the requirement to be refined.

6.1 Refining A.2

We start by refining requirement A.2 because this refinement step is straightforward—compared to the
refinement of A.1. Moreover, the resulting requirements will not be refined further.

Requirement A.2 (see p. 38) says that there is no program causality from any not directly committed
event to a directly committed event. Let us consider two events that are related by program causality. The
following requirement allows to distinguish between two cases:

A.2.1: Two cases of program causality: If el is an access event with a program causality to some
program event e2, then either

case i: we have a path of program causality from el to e2 on which an event e3 with a cnt.pl condition
in its postset and a LdCnt(pl) event e4 occurs (cf. Fig. 39). Moreover, there is no LdCnt event on
the path of program causality from el to e3.
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case ii: we have a path of program causality from el to e2 on which no LdCnt event occurs.

Requirement A.2.1 is graphically represented in Fig. 39, where the distinction between the two cases is
indicated by corresponding labels. Case i corresponds to a restart of process pl between events el and e2
due to a crash. In case 4, the process does not crash between el and e2. Note that this requirement applies
to all access resp. program events—not only to the committed ones. Note that we refer to the occurrence of a
place in this situation. Remember that we call this occurrence a condition, and that a condition represent the
occurrence of a particular token on a certain place in the Petri net model. In a situation, the interpretation
of an arc between an event and a condition differs from the interpretation of an arc between two events:
An arc between two events represents a path of the corresponding causality between these events in the
underlying execution. The path may even have length 0; in that case, the events are identical. In contrast,
an arc between a condition and an event in a situation means that the corresponding condition is in the
preset of the event—i.e. there is exactly one arc from the condition to the event in an execution that meets
this situation. Similarly, an execution meets a situation with an arc from an event to a condition only if the
condition is in the postset of this event. Thus, an arc between a condition and an event (or vice versa) means
that the condition occurs in the immediate context of the event. The condition denotes a token consumed
or produced by this particular event.

Due to this interpretation, we introduced another condition ¢2 between condition ¢l and e4 in the
graphical representation of requirement A.2.1. If ¢2 was omitted, case i would require that ¢l is also in
the preset of event e4. Note that the two conditions ¢1 and ¢2 could be identical in the corresponding
execution. An arc between two conditions is interpreted as a (possibly empty) path of the corresponding

Figure 39: Requirement A.2.1: Two cases of program causality

causality between these conditions. Since arcs between the same kind of nodes do not occur in Petri nets and
their executions, we will not be tempted to interpret these arcs as an immediate context. Altogether, our
interpretation of arcs, captures the spirit of Petri nets: All places that are related by an arc to a transition
form the context of this transition.

Let us consider requirement A.1 again. In order to guarantee this requirement we must make sure that
a read or write event is directly committed whenever its continuation is written to the database (cnt.pl).
This is formalized by the following requirement:

A.2.2: Written continuation implies commit: Let el be an access event, and let e2 be an event with
an arc of program causality to some cnt.pl condition ¢. Moreover, let there be a path of program
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causality from el to e2 on which no LdCnt event occurs. Then, there is a path of program causality
from el to some commit event e3 on which no LdCnt event occurs, and e2 happens causally after the
commit event e3.

Requirement A.2.2 is graphically represented in Fig. 40.

Figure 40: Requirement A.2.2: Written continuation implies commit

Requirement A.2 is an immediate consequence of requirements A.2.1 and A.2.2: Let us consider a
situation in an execution that meets the left hand side of requirement, A.2. In particular, we know that there
is an access event el with a program causality to some directly committed program event (remember that
an access event is a program event by definition). Now, we must show that in this situation el is a directly
committed event. Obviously, the above situation meets the left hand side of A.2.1 also. Therefore, we have
one of the situations on the right hand side of A.2.1. In case i, the situation meets the left hand side of
A.2.2, and therefore, we know that el is a directly committed event; finishing our proof in that case. In
case ii, there is a path of program causality from el to e2 on which no LdCnt event occurs. Moreover, in
the considered situation e2 is a directly committed event, which by definition, means that we have a path of
program causality from e2 to some C event e’ on which no LdCnt event occurs. Since paths of causality are
transitive (and e2 was not a LdCnt event), we have a path of program causality from el to a commit event
e’ on which no LdCnt event occurs; by definition, el is a directly committed event.

The above argument may appear a bit excessive. From the graphical representation of the requirements,
this implication is obvious. The purpose, of the detailed arguments above is to provide some feeling for
the involved techniques and on the meaning of the graphical representations of the requirements—without
giving a formal definition of their semantics. After some further examples of such arguments, we will start
skipping such obvious arguments.

6.2 Refining A.1

Next, we refine requirement A.1 (see p. 38). This requirement says that two directly committed access
events of the same process are ordered by program causality in one way or the other. The refinement of
this requirement resembles the idea already used in requirements B.2 and B.3: First, we require that all
access events of the same process are totally ordered (not necessarily by program causality); second, we
require that, from a directly committed event that happens causally before any other access event of the
same process, there is also a program causality to this other event.

A.1.1: Order between access events of the same process: Let el and e2 be access events of the same
process. Then, there is a path of causality from el to e2 or there is a path of causality from e2 to el.

A.1.2: Order implies program causality: Let el and e2 be access events of the same process, and let
el be a directly committed event. If there is a path of causality from el to e2, then there is also a
path of program causality from el to e2.

Requirement A.1.1 is graphically represented in Fig. 41, and requirement A.1.2 is graphically represented
in Fig. 42.

In combination, requirements A.7.1 and A.1.2 imply requirement A.71. Again, the argument is simple:
Let us consider a situation in an execution that meets the left hand side of requirement A.1; i.e. there are
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Figure 41: Requirement A.1.1: Order between access events of the same process

Figure 42: Requirement A.1.2: Order implies program causality

two directly committed events el and e2 that belong to the same process pl. We have to show that there
is a path of program causality from el to e2 or vice versa. The situation meets also the left hand side of
A.1.1. Therefore, we know that el or e2 are ordered in one way or the other. Without loss of generality, we
assume that el happens causally before e2. By assumption, el is a directly committed event. Therefore, the
left hand side of A.1.2 meets this situation, which implies that there is a program causality from el to e2.

6.3 Refining A.1.2

Next, we further refine requirement A.1.2 (see above) by distinguishing the following two cases: First, no
process crash occurs between el and e2; second, a process crash between el and e2, and the process is
restarted by a Checkln(pl) and a LdCnt(p1l) event.

A.1.2.1: Two cases of event ordering: Let el and e2 be two access events which belong to the same
process pl. Moreover, let there be a path of program causality from el to some commit event e3 on
which no LdCnt event occurs. Then, either

case i: there is a path of program causality from el to e2 on which no LdCnt event occurs, or

case #: there is a Checkln(pl) event e4 and a LdCnt(pl) event €3 such that e4 occurs causally between
el’ and e3, and there is a path of program causality from the LdCnt(p1) event €3 to e2.

This requirement is graphically represented in Fig. 43. Remember that we did not yet prove this requirement
for the Petri net model. For the moment being, we only claim that this requirement along with requirement
A.1.2.2, which will be defined below, implies requirement A.1.2.

In order to guarantee A.1.2, we must make sure that in case 7 of A.1.2.1 there is also a path of program
causality form el to e2. This is guaranteed by requirement A.1.2.2—via the LdCnt event.

A.1.2.2: Restart after commit implies program causality: Let el be an access event of some process
pl with a direct commit event el’. Moreover, let there be a Checkln(pl) event e4 and a LdCnt(p1)
event e3 such that e4 occurs causally after the commit event el’, and e3 occurs causally after e4. Then,
there is a path of program causality from el to e3.

Requirement A.1.2.2 is graphically represented in Fig. 44.
Obviously, requirements A.71.2.1 and A.1.2.2 imply requirement A.1.2. Therefore, we start omitting
detailed arguments at this point.

6.4 Refining A.1.2.2

At last, we further refine requirement A.1.2.2. First, we state some more details on the relation between the
commit event el’ and the LdCnt(pl) event e3 in the situation of the left hand side of requirement A.1.2.2.
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Figure 43: Requirement A.1.2.1: Two cases of event ordering

Checkin(p1)

¥
LdCnt(p1) LdCnt(p1)

Figure 44: Requirement A.1.2.2: Restart after commit implies program causality
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This will be captured by requirement A.1.2.2.1, which is graphically represented in Fig. 45. Since we

Checkin(p1)

€3] LdCnt(p.
3] Lacnp) LdCnt(p1)

Figure 45: Requirement A.71.2.2.1: Order of writing and reading continuations to or from the database

introduce some a new notation in this graphical representation, we start with explaining this new notation.
In Fig. 45 there is a crossed LdCnt(pl) event between el’ and e6, where the position is graphically indicated
by two lines. It indicates that no LdCnt(pl) event can occur ‘between’ el’ and e6. Since ‘between’ is slightly
ambiguous in the context of partial orders, we make the meaning of this more precise: Each LdCnt(p1) event
either happens causally before el’ or happens causally after e6. Note that this interpretation is different
from the meaning of the crossed LdCnt event between el and el’. This crossed event only claims that there
is no LdCnt event on the particular path of program causality from el to el’; in principle, there could be
another path of program causality from el to el’ on which a LdCnt event occurs. Indeed, there are paths
between el and el’ on which a LdCnt event occurs in some executions of the protocol; but these paths are
not program causality and the event is not a LdCnt(p1) event.

Altogether, A.1.2.2.1 says that, before the LdCnt(pl) event e3 can load some continuation from the
database (indicated by the corresponding condition cl), the continuation of el is written to the database.
Moreover, there are no LdCnt(p1) events between the commit event el’ and the write continuation event e6.
Note that the write continuation event is not required to be successful since the arc from e6 is not a program
causality—but it could be. Moreover, requirement A.1.2.2.1 adds some context: the event that writes the
continuation to the log file (event e€5). Note A.1.2.2.1 does not tell whether e6 uses the log file or the current
state of the process for writing the continuation to the database—both cases are possible. The later case
occurs if no crash occurs; the first case occurs if the process crashes before writing its continuation to the
database.

The situation shown in Fig. 45 is quite complex, and a textual description of the corresponding re-
quirement is quite clumsy. Since the graphical notation has a precise semantics, we will not give a textual
description for this and most of the following requirements. For the sake of completeness, we will give a
number and a reference to the corresponding figure within the text:

A.1.2.2.1 See Fig. 45

Requirement A.71.2.2.1 does not guarantee that there is a program causality from el to e3. In order to
guarantee this (as required by A.1.2.2), we introduce another requirement: For a possible intermediate event
e7 that writes the continuation cl, there either exists a path of program causality from el to e7 or event e7
gets its continuation from another read continuation event e8 that happens causally after ¢ (cf. Fig. 46).

A.1.2.2.2 See Fig. 46.
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p=pl

caseii:

Figure 46: Requirement A.1.2.2.2: Intermediate events don’t skip el and ¢

Now let us see why requirements A.1.2.2.1 and A.1.2.2.2 imply requirement A.1.2.2: We consider a
situation of an execution that meets the left hand side of requirement A.71.2.2. We must show that there is
a path of program causality from el to e3. Since the left hand sides of A.1.2.2 and A.1.2.2.1 are identical,
A.1.2.2.1 meets also the above situation. Therefore, we have the situation on the right hand side of A.1.2.2.1.
This situation is shown in Fig. 47 again. We will refer to this situation by (%) in the following.

Figure 47: Situation (*)

Now, it remains to show that there is a path of program causality from event el to condition cl. We
will proof this by repeated application of requirement A.1.2.2.2. To this end, we consider the!! event e7
which immediately precedes c1. We know that such an event exists since ¢l is not an initial condition (e6
is a preceding event). Moreover, by our assumptions on executions (Prop. 12.2), there is a path of program
causality from e7 to ¢l because there is a program causality from ¢l to e3. Therefore, the left hand side

of requirement A.1.2.2.2 meets this situation. Applying the requirement, we have one of the following two
situations:

' Note that an event that immediately precedes a condition is uniquely defined if it exists at all.

46



case i: There is a path of program causality from el to e7. By transitivity, we also have a path of program
causality from el via e7 to cl.

case ti: There is another event e8 between ¢ and ¢l that reads a continuation ¢2, and there is a path of
program causality from ¢2 to cl.

This situation also meets the situation (x) when ¢2 takes the role of ¢1 and e8 takes the role of e3. So
we can apply the same arguments as above, where we substitute ¢2 for ¢l and e8 for e3.

By recursive application of the above arguments, we either end up with a condition ¢,, for which there
is a program causality from el to ¢, and a program causality from ¢, via all intermediate c; to cl
(if case i applies at this stage) or we end up with an infinite chain of conditions c1,¢2,¢3, ... that all
occur between ¢ and cl. The second case, however, is impossible because an infinite chain of conditions
between two conditions is not possible in an execution.

A careful look at the above proof reveals that we did not use the fact that LdCnt(p1l) events are excluded
between the commit event and the event writing the continuation (e2 and e6). Similarly, we did not use
the details about the context of event el which are added by requirement A.7.2.2.1. Indeed, we do not
need this requirement for proving the refinement step; these details will be necessary, however, for proving
requirement A.1.2.2.2 for the Petri net model.

6.5 Overview: Requirement A’

Before refining requirement B’ in a similar way to requirement A, let us briefly sum up all remaining proof
obligations. Figure 48 represents all refinement steps for requirement A’ as a tree. Each node shows the
number of the requirement along with the page number of its definition. Since we have proven the correctness
of each refinement step, we are now left with the requirements at the leafs of the refinement tree. These are:
Al.1, A1.2.1, A.1.2.2.1, A.1.2.2.2, A.2.1, and A.2.2.

6.6 Refining B.3

In the following, we will refine requirements B.1, B.2, and B.3. An overview on all refinement steps can be
found in Fig. 59 on page 55. In analogy to the refinement of requirement A, we start by refining B.3.

Requirement B.3 (see p. 39) is refined to requirements B.3.1, B.3.2, and B.3.3, which are represented in
Fig. 49, Fig. 50, and Fig. 51 respectively.

We do not go into all details of these requirements because they are similar to the requirements A.2.1
and A.2.2. The new part here is the inscription of a path by cp.(pl,01,wr) in requirement B.3.1. This means
that each condition on this path of data causality is inscribed by cp.(pl,0l,wr). This basically reflects the
fact, that in case i the data causality from el to e2 is via the same local copy of object ol that was acquired
as a write copy. Requirement B.3.8 says that, in that case, both events are executed by the same process
during the same execution phase—i.e. without an intermediate crash resp. LdCnt event. Note that the dot in
the third component of cp.(pl,01,.) indicates that we do not restrict the value of this component. Therefore,
the copy can be a read or a write copy. Requirement B.3.2 resembles requirement A.5.2: If a change is ever
written to the database, the corresponding write operation is committed.

Altogether, requirements B.3.1, B.3.2, and B.3.3 imply requirement B.3. The arguments are analog to
the ones given in Sect. 6.1 for the refinement of requirement A.2: Let us consider a situation that meets
the left hand side of requirement B.3; i.e. there is a data causality from a write event el to an access event
e2, and e2 is a directly committed event. We must show that el is also a directly committed event. The
considered situation meets also the left hand side of requirement B.3.1. Thus, we have one of the two cases
on the right hand side of B.3.1. In case i, requirement B.3.3 guarantees that there is a path of program
causality from event el to el’ on which no LdCnt event occurs; requirement B.3.2 guarantees that there is a
path of program causality from el’ to some commit event on which no LdCnt event occurs. Altogether, we
know that el is a directly committed event in case i. In case i, requirement B.3.3 guarantees that there is
a path of program causality from el to e2 on which no LdCnt event occurs. Since, by assumption, e2 was a
directly committed event, el is also a directly committed event.

47



A’:p.37

N

A.1:p.38 A.2:p.38
A.1.1:p.42 A.1.2:p.42 A.2.1:p.40 A.2.2:p.41
A.1.2.1:p.43 A.1.2.2:p.43

L\

A.1.2.2.1:p.45 A.1.2.2.2:p.45

Figure 48: Overview on refinement steps of requirement A’
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cp.(p1,01,wr)

Figure 49: Requirement B.3.1: Two cases of data causality

LogObj(ol,pl)

Figure 50: Requirement B.3.2: Updated object implies direct commit

Vv
X[o1], LogObj(o1,p1) X[o1], LogObj(o1,p1)

Figure 51: Requirement B.3.3: Access on same copy implies same execution phase
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6.7 Refining B.1

Next, we refine requirement B.I1 (see p. 38) by the three requirements B.1.1, B.1.2, and B.1.8, which
are graphically represented in Fig. 52 through Fig. 54. Requirements B.1.1 gives the context in which a

WLck(01,p1)

YV
. w2.(pl,01)

LdCpy(o1,p1) m

sl
LdCnt
V

Wi[o1] [e .

cp.(pl,0l,wr)

k.(p1,[..(o1,wr)..])

LogCnt(pl) cp.(pl,01,wr)

Figure 52: Requirement B.1.1: Context of a write event

directly committed write event occurs—starting from the lock operation up to the commit operation. In
particular, the paths of data causality are precisely defined. Note that in the case of a write event the paths
of data causality between the corresponding events only show cp.(pl,0l,wr) conditions. Moreover, the server
knows process pl from the lock event until the commit event occurs. This is indicated by the path labeled
by k.(pl,[..(o1,wr)..], where the pair (ol,wr) indicates that object ol is exclusively locked for process pl
throughout.

Similarly, B.1.2 gives the context of an access event (i.e. a read or a write event; thus B.1.1 is a special
case of B.1.2). Since an access event can be either a read or a write event, we do not have as much detailed
information as in the case of a write event. But, we still know that the object is propagated from the
LdCpy(o1,pl) event to the access event. Moreover, the object is locked at the server from the lock event
until the access operation has happened. Note that the lock is not necessarily exclusive. We indicate this
by the label k.(p1,[..(01,.)..]). The label Lck(ol,pl) for event e3 indicates that e3 is a Wlck(o1,p1) event or
a RLck(o1,p1) event.

Requirement B.1.3 formalizes that a write lock is exclusive: Let el and e2 be two lock events on the
same object ol by processes pl and p2, where el is a write lock (WLck) and e2 is a read or a write lock (Lck).
Moreover, let there be a path of k.(p1,[..(o1,wr)..]) conditions from el to some event e3, and let there be a
path of k.(p1,[..(01,.)..]) conditions from e2 to some event e4. Then, B.1.3 requires that either e3 happens
causally before €2 (case i), or e4 happens causally before el (case ii), or el and €2 coincide (case iii). Note
that we have pl = p2 in case iii.

For two conflicting events of two different processes, the three above requirements imply that these events
are causally ordered in one way or the other as required by B.1. For two access events of the same process
we have already required in A.1.1 that they are ordered in one way or the other—even if the events are not
conflicting.
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=

LdCpy(o1,p1)

Figure 53: Requirement B.1.2: Context of an access event

WLck(o1,p1) Lck(o1,p2) casei:
K.(pL,[..(o1,wr)..]) ' k.(p2,[.(01,.)..]) =
[e4]
caseii:

caseiii: el = e2

Figure 54: Requirement B.1.3: Write locks are exclusive
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Altogether, requirements B.1.1, B.1.2, B.1.3, and A.1.1 imply requirement B.1.

6.8 Refining B.2

Now, we refine requirement B.2 (see p. 39) by distinguishing between two cases, which are then dealt with
separately. This step is almost the same as the refinement of requirement A.1.2 (see Sect. 6.3).

Let el be a write event on some object, and let e2 be some access event on the same object that occurs
causally after el. Then, requirement B.2.1 distinguishes between two cases:

case i: both events access the object via the same copy.

case 1i: e2 accesses a different copy, which is loaded by a LdCpy event e5 causally after a direct commit
event for event el and after a Lck event.

In case i, requirement B.2 is valid because of the path of data causality from el to e2. In case ii, requirement
B.2.2 guarantees that there is a path of data causality from e3 to e5. By transitivity, there is also a path of
data causality from el via e3 and e5 to e2.

casei: W[ol]

cp.(pl,01,wr)

caseii: W[o1]

cp.(pl,01,wr)

LogObj(ol,pl)

He

Lck(o1,p2)

V
. r2.(p2,01),
w2.(p2,01)

LdCpy(01,p2)

RBe
IXLdem

Figure 55: Requirement B.2.1: Two cases

6.9 Refining B.2.2

At last, we refine B.2.2 (see p. 53), which resembles the refinement of A.71.2.2. Indeed, the arguments for
correctness are the same as in Sect. 6.4. Here, we only have a more complex context for the write event.
This context, however, is not needed for proving the correctness of the refinement step; it is only necessary
(or at least helpful) for proving the resulting requirements for the Petri net model.
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Figure 56: Requirement B.2.2: Correct global propagation
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Figure 57: Requirement B.2.2.1: LdCpy(ol) after update of object and writing of update record to log.
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Figure 58: Requirement B.2.2.2: No skip of updates.

6.10 Overview: Requirement B

Figure 59 gives an overview on the refinement steps of requirement B’. The remaining proof obligations are
B.1.1, B.1.2, B.1.3, B.2.1, B.2.2.1, B.2.2.2, B.3.1, B.3.2, and B.3.3.

Note that we used requirement A.1.1 for proving the refinement of B.7—this obligation was already
listed at the end of the refinement A. Therefore, we do not list it here again.

6.11 Refining C

At last, we refine requirement C' (see p. 37), which states that each committed access event is also a directly
committed event. However, we need no further proof obligations because requirement C' is a consequence of
requirement A.2.1 and A.2.2 (see p. 40 and p. 41). Let us consider a situation that meets the left hand side
of requirement C': an access event el with a path of program causality to some commit event e2. Since a
commit event is a program event, this situation meets also the left hand side of requirement A.2.1. Applying
A.2.1 gives us two cases: In case i, €2 is a direct commit event for el. In case i, the situation meets the left
hand side of requirement A.2.2. Application of A.2.2 shows that el is a directly committed event.
Altogether, refinement of requirement C' does not add any further proof obligations.
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Figure 59: Overview on refinement steps of requirement B
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7 Verification

In the previous sections, we have refined the specification such that each requirement is an implication
between two situations. In the rest of this paper, we show that each execution of the Petri net model meets
these requirements. This will be proven for each requirement separately.

The basic structure of each proof is the following: We consider an arbitrary execution of the Petri net
model that meets the right-hand of the requirement. Then, we construct the context of the considered
situation from the Petri model. For this construction, we use different kinds of automata, which extract the
relevant behavior of the Petri net model: all paths between specific events, the chain of causes of some event,
etc. Details will be explained below.

Up to know, this proof is hand-made. The used techniques, however, are such that they can be automated.
For example, most automata used could be constructed fully automatically from the requirement and the
Petri net model; and most verification steps could be supported by techniques from automated theorem
proving. Unfortunately, these techniques are not yet implemented—a tool supporting this technique is an
ongoing project.

For understanding the verification technique, it is sufficient to consider the proofs of the first few
requirements—all other requirements follow the same arguments. Nevertheless, we do not skip the proof of
the other requirements and give a proof for each requirement. Each reader can decide himself where to stop

7.1 A.2.1: Two cases of program causality between access events

In this section, we verify requirement A.2.1 (see p. 40). This requirement says that a path of program
causality from one access event el to another access event e2 is either via some condition cnt.pl for some pl
or there is a path of program causality from el to €2 on which no LdCnt event occurs.

This can be proven by an automaton that represents all possible paths of program causality between
two access events in our Petri net model, which is shown in Fig. 60. In this automaton, we represent each
transition that has a program causality arc removing a token from some place and that has a program
causality arc adding a token to some place. In order to reduce the graphical representation, we have only
drawn one place a. Place a holds a token pl, if there is a token pl on one of the places process, cl, c2,
3, ¢4, c5 or ¢6, or there is some token (pl,0l) on one of the places rl, r2, wl, w2. A token pl on place a
basically represents an active process (Table 4 on page 104 list all abbreviations used in the proof). Note

el

UpdCnt(p1)

LogCnt(p1)

log.(.,cnt,pl)

29 sr2.pl 32

LdCnt(p1)
Figure 60: Automaton for program causality between two access events

that most transitions which remove a token pl from one of these places also add one token pl to one of
these places. This is captured by the transition with a loop to place a. We do not really care which are
these transitions except that it is not a LdCnt event—a LdCnt event does not remove a token pl from one
of the places corresponding to a (see below). This transition could for example be a UpdCnt(pl) event or
a LogCnt(pl)—both remove a token pl from one of the above places and add one token pl to it. A closer
look to the Petri net model of these operations on the server’s side in Fig. 8 and Fig. 9 reveals that both
transitions do not only have a program causality arc to one of the above places, but also have a program
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causality arc to cnt and log. In an execution, this corresponds to a split of program causality. Since the
automaton should represent all paths, we also need to include these two possibilities, which are represented
by the corresponding transitions in the automaton. The LdCnt transition removes a token from cnt and
also adds a token to it (via arcs of program causality); this is represented by the transition with a loop to
cnt. The LdCnt transition, however, also adds a token to place a via a program causality arc; so we again
have two instances of LdCnt(p). The transitions that correspond to the considered events el and e2 are
represented separately and labeled accordingly. Altogether, the automaton from Fig. 60 represents all paths
of the Petri net model between events el and e2. Thus, each path of program causality from an access event
el to some program event e2 in an execution of the Petri net model is represented by a path from el to e2
in the automaton from Fig. 60.

Now, let us have look at the possible paths. Clearly, there are paths from el to €2 on which no LdCnt
event occurs (case ii of A.2.1). If there is a LdCnt event on a path from el to e2, this path is via a cnt.pl
condition. Moreover, there is no LdCnt before the first occurrence of a condition cnt.pl on that path (case i
of A.2.1). This proves requirement A.2.1 for all executions of our Petri net model..

7.2 A.2.2: Written continuations are committed

Now, we verify requirement A.2.2 (see p. 41): If a continuation of some access event el is ever written to
the database (a cnt.pl condition c¢1) for some pl, then el is a committed event.

Again, we will use automata for proving this property. But, we will not explain the automaton in full
detail anymore. The proof requirement A.2.2, however, is a little bit more involved because there are three
different ways of writing a continuation to the database: by an update event during the execution of the
commit operation (UpdCnt), by an update event during the redo of an individual process (t16), or by an
update event during the restart of the server (t32).

These different cases are represented by the automaton in Fig. 61. In this automaton, a' stands for a
subset of the places of a used in the previous automaton; we exclude places c2 and c3 because we want to
have a closer look to what is going on during the commit operation at this stage. Again, a definition of a’
can be found in Table 4 on page 104. Moreover, we do omit the LdCnt operation in this automaton because
the assumption of A.2.2 only considers paths on which the LdCnt event does not occur.

| ]updcnt(p1)

Figure 61: Automaton for program causality between an access event and a cnt.pl condition

From the automaton, we can identify the following three cases:

case i: The path is via a UpdCnt(pl) event (executed during the commit operation); in that case there is a
commit event on this path. Since there are no intermediate LdCnt events, el is a directly committed
event.

case #: The path is via a LogCnt(p1) event and the continuation is written by an occurrence of transition t16
(i.e. it is updated from the log during the redo of a process).

case ii: The path is via a LogCnt(pl) event and the continuation is written by an occurrence of transition t23
(i.e. it is updated from the log during the restart of the server).
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Figure 62: A.2.2: Three possible cases

These cases are graphically represented in Fig. 62.

In case i, the proof is already finished. In cases i and i, we will show below that there is a commit
event e5 for process pl that happens after €3 and that there are no LogCnt(p1l) events in between as shown
in Fig. 63. Then by Property 1, which will be proven on page 105, we know that there is a path of program
causality from e3 to e5 on which no LdCnt events occur. By transitivity, we know that el is a directly
committed event.

Figure 63: There exist a commit event for pl without an intermediate LogCnt(p1) event.

For the moment, it remains to show that, in cases # and #ii, we can find a commit event €5 as shown in
Fig. 63. Informally, the argument is the following: If a continuation of process pl is updated in the database
during a backwards scan, then there must have been a commit record for process pl encountered before and
there are no log continuation records in between. Clearly, the commit record must have been written by a
commit event e5 for process pl. Since, the log is scanned backwards, the log must have happened causally
after the LogCnt(pl) event e3; since all intermediate log records were different from a log continuation
record, we know that there is no LogCnt(pl) between e3 and e5. In the following, we will give formalize
these arguments in terms of the Petri net model for case i and case i separately.

Case ii: What is necessary for transition t16 to occur with p = pl1? First of all, we know that the token
on pr2 must be (i + 1,pl, true,pl) for some i since t16 can only occur in that case (see Petri net model in
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Fig. 12 on p. 15); remember that ¢rue in the third component of this tuple means that a commit record for
pl was encountered during the redo procedure for pl. This token is produced by transition t13; in order to
produce this token, transition t13 needs a token (i + 1, pl, true) on place pr. Since this place is also initially
unmarked, there must be an event that produced this token, which needs some other tokens in order to
occur—and so on.

Figure 64 shows an automaton that represents the chain of causes for transition t13: all possible paths
that could produce a token (i 4+ 1,pl,true) on place pr: It could be either produced by transitions t10,
112, t14, t19, t22, or by t20. These transitions, in turn, need a token on places prl, pr2, pr4, or pr5, which
are characterized in more detail in the automaton. By the way, these transitions decrement the value of
i, which is indicated by a label i:= i-1 at the corresponding transition. Note that we introduce a counter
i in the automaton, in order to keep the representation of the automaton finite. We will use variable i for
representing a counter in all our automata; incrementation of the counter and decrementation of the counter
will be indicated by labeling the corresponding transition.

C
p=p1

log.(i+1,cmt,p1)

19, 121
t13: p'<>pl
118: p'<>pl

t18

m=i
prl.(i+1,pl,true,.,.)

pr2.(i+1,pl,true,p’): p'<>pl

pré.(i+1,pd,true,p’): p'<>pl pra.(i+1,p1,true,pl)

110, t12, t14, t19, 122
i=i-1

pr.(i+1,pl,true)

113
n=i

pr2.(i+1,p1,true,pl)
Figure 64: Automaton showing the chain of causes for t13.

What do we know from this automaton? Since all the places occurring in this automaton are initially
unmarked, we know that there must once have been a commit event for process pl—otherwise the chain
of causes would be infinite, which is impossible in our execution model. Let us call this commit event e5.
Next, we show that the commit event e5 happens causally after the LogCnt(pl) event e3 (cf. Fig. 62). This
is where the counter comes in. We now fix a particular value for the tuple (i + 1, emt, p1) on place log which
was produced by commit event e>—remember that i was used as a counter variable. Let us assume that e5
produced log.(m+1,cmt,pl). Let us assume also that, in the end (i.e. last occurrence of t13), the counter is
n. In the graphical representation of the automaton, these assumptions are indicated by labels m = i and
n = i at the corresponding transitions. Since all transitions of the automaton only decrease the value of i,
we know m > n. We even know m < n since, on each path from C to t13, there is at least one occurrence
of a transition that decrements the counter: transition t20. Moreover, we know that both events, e3 and
e access the log counter and m and n is the value of the log counter when these events occur. From the
Petri net model, we know that, the value of the log counter is only increased. Therefore, we know that el
happens causally before e5. This will be formalized by Property 5 on page 108. By applying this property
to the above situation, we know that e3 happens causally before e5.

So it remains to prove that there is no LogCnt(p1) event between e3 and e5. To this end, let us consider
the automaton again: On each path from C to t13 the events that read a log record with sequence number
i+ 1 (events: t18, t9, t13, and t18 and t21) and the events that decrement the counter i strictly alternate.
Thus, for each k with n < k < m, we have a log record different from (k + 1, cnt, pl): t18 reads a log record
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(k+ 1,emt, p'), 19 reads a log record (k + 1,0,p'), 121 reads a log record (k + 1,dbu,p"), t13, and t18 read
a log record (k + 1,cemt,p'). Transition t13 reads a log record (k + 1,cnt,p'); by the condition p' <> pl
imposed on transition t13 in the automaton, however, we know that this is no log continuation record for p1.
Now, let us assume that we have some LogCnt(pl) event that occurs between €3 and e5. By Property 5, we
know n < k < m. Thus, the LogCnt(pl) event writes a log record (k+1,cnt,pl). In combination, we have two
different log records with the same sequence number k + 1. This, however, is a contradiction to Property 6
on page 109, which says that there is at most one log record for each sequence number. Thus, there is no
LogCnt(pl) event between e3 and e5, which finishes the proof of A.2.2 for case ii.

Case iii: The proof of case iii is similar to the proof of case ii. Again, we characterize the chain of causes
of event t32 and t29. We know that transition t32 can only occur if we have a token (i + 1,.,[..pl..],p1)
on place sr2 for some i. Where [..pl..] represents a multiset in which at least process pl occurs—remember
that the third component of the tuple represents the multiset of processes for which a valid commit event
has been encountered during the scan. The automaton in Fig. 65 traces back the path to the commit event
which caused pl to be added to this set.

log.(i+1,.cmt,p1) ( e |

129:p<>pl

[1—

25| |

srl.(i+1,.,[..p1..]..,.) .

sr2.(i+1,.[..p1..],p):p<>pl m=i

126,127,t28
ii=i-1

130,t31:p<>pl .
i=i-1

[

t34:p=p1
ii=i-1

AN

) sr.(i+1,..[.pL.])

t32:p<>pl
i=i-1

sr3.(i+1,.,[..p1..])

t33
n=i

. sr2.(i+1,.,[..p1..],p1)
Figure 65: Automaton showing the chain of causes for t29.

The rest of the argument is identical to the one in case . Since all places of this automaton are initially
unmarked in the Petri net model, we know that there is a chain of causes for t29 which once originated in a
commit event e5 for process pl. This commit event writes a log record with a sequence number m + 1 with
m > n because there are only transitions that decrease counter i and there is at least on such transition
(t34). Therefore, e5 happens causally after e3 (by Property 5). Moreover, we know that on the path from
eb to e4 a log record (k +1,..) that is different from (k + 1, ¢nt, pl) is read for each k with n < k < m—due
to the alternation of the events that decrease i and the events that read a log record. Note that t34 and
t35 reads a log record and then decreases i. Again, a careful analysis of all events in this automaton shows
that no log record which is read on this path is a log continuation record for process pl: The only transition
that reads a continuation record is t29; this transition, however, is restricted to p # pl in the automaton.
By Property 6 and Property 5, we know that there is no intermediate LogCnt(pl) event between €3 and
e5—otherwise there are two different log records with the same sequence number.

7.3 A.1.1: Access events of the same process are ordered

Now, we prove requirement A.1.1 (see p. 42), which says that two access event which are executed by the
same process are ordered in one way or the other.

60



Let us consider two access events el and e2 which are executed by the same process. Figure 66 shows this
situation, were we add the condition in its preset and in its postset according to the preset and postset in the
Petri net model. Since an access event is either a read event or a write event, we know that the condition in
its preset is r1.(p1l,01) for a read event on some object ol or wl.(pl,01) for a write event on some object ol.
The condition in the postset is p.pl—in both cases. However, we don’t need this detailed information for
proving the property, we have indicated that it is one of the places active (abbreviated a) which was already
used before and is defined in Table 4. Remember that the conditions are in the immediate context of the
events; in particular ¢l and ¢3 are two different conditions and ¢2 and ¢4 are two different conditions if el
and e2 are different events. Conditions ¢2 and ¢3 as well as conditions ¢4 and ¢l1, however, could be the
same.

Figure 66: Two access events of the same process and their context

Now, let us consider the situation shown in Fig. 66. Let us assume that el and e2 are different events—
otherwise there is nothing to prove. There is an invariant (invariant (1) on page 105) which says that at
no time there is more than one token pl on place a (or rather on the collection of places represented by a).
Thus, we know that there is a causality from ¢2 to ¢3 or from ¢3 to c4—otherwise two different conditions
with a label a.pl are concurrent, which violates the invariant. Thus, each two different access events of the
same process are causally ordered in one way or the other.

7.4 A.1.2.1: Two cases of ordered access event of the same process

Now, we prove requirement A.1.2.1 (see p. 43). We have to prove the following: Let us consider two access
events el and e2 of the same process of some process pl, let there be a path of program causality from el
to some commit event el’ on which no LdCnt event occurs, and let e2 happen causally after el. We have
to show that there either exists a path of program causality from el to e2 on which no LdCnt event occurs
(case 1) or that there exists a Checkln(pl) event e4 followed by a LdCnt(p1l) event e3 such there is a path of
program causality from e3 to €2, and e4 occurs causally after el’.

The proof is in three steps: First, we show that, in the above situation, there is a path of program
causality from el to the corresponding commit event el’ on which only conditions a.pl occur (i.e. a token
pl or (pl,0l) on places process, rl, r2, wl, w2, cl, 2, c3, c4, c5, c6; see Table 4 on page 4). This will be
proven in Property 2 on page 105. Note that el is an access event of process pl and has a a.pl condition in
its postset, and el’ is a commit event of process pl and has a a.pl condition in its preset—thus, Property 2
applies to this situation. Intuitively, this property says that the process has been running without a crash if
there is no intermediate LdCnt event.

Second, there exists a LdCnt(p1) event e3 with a path of program causality to e2 on which only conditions
a.pl occur. This is proven in Property 4 on page 108. Intuitively, this property says that each program
event there must have been a LdCnt event and the process has not yet crashed since. Moreover, e3 has a
s.pl condition ¢ in its preset; condition ¢ in turn has a Checkln(pl) event in its preset (see Petri net model
on page 10).

Figure 67 shows the situation after these two steps.

Third, we exploit the invariant a[pl] + cr[pl] + s[pl] = 1 (invariant (1), see Table 5 on page 105), which
basically says that each process is exactly in one of the following states: it is running (at exactly) one point
in the protocol, it has crashed, or it has just checked in and is about to load its continuation from the
database. From this invariant, we know that no two conditions of the two paths from el to el’ and from e4
to €2 shown in Fig. 67 can be concurrent. Therefore, all conditions on this paths are linearly ordered. Since

61



m Checkin(p1)

Figure 67: Situation in the proof of A.2.1.1

el, el’, e4, and e2 have these conditions in their immediate context, these events are linearly ordered too.
The two paths could happen one after the other or both paths could overlap.
We consider all possible linearizations of the events on this two paths:

case i Event el happens on the path of program causality from e4 to €2 (due to the invariant, it must be
on this path). Note that el and e4 do not coincide because Checkln events are and access events
correspond to different transitions; thus, el happens on the path from e3 to €2. In this case, we have
a path of program causality from el to e2 on which no LdCnt events occur by assumption. Thus, we
have the situation of case i of A.1.2.1 (see above).

case i Event e4 happens causally after event el’. This is case i1 of A.1.2.1 (see above).

case i Event e4 happens causally between el and el’. According to invariant (1) above, condition s.p1 occurs
on the path from el to el’. This, however, is impossible; we know that only conditions a.p1 do occur
on this path; s is not contained in the places denoted by a (see above). Therefore, case i is impossible.

Altogether, we have shown that in a situation which matches the left hand side of requirement A.1.2.1 we
have the two cases on the right hand side of requirement A.1.2.1.

7.5 A.1.2.2.1: Correct order of update and loading from database

In this section, we prove requirement A.1.2.2.1, which basically says that a LdCnt operation and its pre-
ceding Checkln operation that happens causally after some commit event is deferred until the corresponding
continuation is written to the database (see p. 45). This is the most involved proof within of all properties in
the refinement tree of requirement A. The reason is that many different protocols can interfere when writing
a continuation to the database: After the commit point of a process, the process updates its continuation
in the database by issuing an UpdCnt(pl) event. The process, however, could crash before the process has
completed this update phase by writing its DBu record. In that case, the server will start the redo procedure
for this process. The action taken by the server during the redo of the process depend on when the process
crashed. Even worse, the server could crash during the redo procedure of the process. In that case, the
update is completed by the restart procedure for the server—again, the concrete actions taken depend on
how far the update procedure of the process itself and how far the update procedure during the redo of
process could proceed before the two crashes occurred. All these cases are captured in the proof below. But,
we do not distinguish the cases according to our understanding of the protocol in the proof; we distinguish
the cases according to the structure of the Petri net model. This way, we are sure not to overlook one of the
many cases.

Step 1, Setting up the scenario: We start with a situation that meets the left hand side of requirement
A.1.2.2.1. This situation is shown in Fig. 68. We have added already some context to this situation: By
a simple automaton for program causality, we know that there is a LogCnt(pl) event e5 on the path from
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»@ log(j+1,cnt,pl)

>® log(k+1,cmt,p1)

uk.pl

Checkin(p1)

LdCnt(p1)

Figure 68: A situation that meets the left hand side of A.1.2.2.1
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t13 pr2.pl t16
a.pl LogCnt(pl)

C,><Cnt

LogCnt(p1)

log.(.,cnt,pl) cnt.pl

129 rs2.pl t32

LogObj(.,p1)

el

Figure 69: Automaton which proves existence of LogCnt(pl) event
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the access event el to the commit event el’. This automaton is shown in Fig. 69. For each event in this
situation, we have added some of conditions in the immediate context of events el’, e5, €3, and e4. This
context can be picked up from the Petri net model itself.

By assumption, we know that event el’ happens causally before event e4. Moreover, we have the invariant

k[p1] 4 uk[pl] + rel[pl] + pri[pl] + red[pl] + sri =1

(invariant (2), see Table 5 on page 105) which says that, concerning a process pl, the server can be exactly
in one of the following states: Process pl is known to the server, it is not known to the server (but the server
is not in one of the redo, start or crashed phase), it is in the redo phase of process pl, it is in the restart
phase, or it is crashed. From this invariant, we know that conditions ¢4 and ¢5 must be ordered by causality
in one way or the other. Since the commit event €1’ happens causally before the Checkln event e4, we know
that ¢4 is causally before 5.

Step 2, from know to unknown: By invariant (2), we know that there is a path of causality from ¢4 to
¢5 on which only conditions corresponding to one of the places of invariant (2) occur. In particular, there is a
condition ¢6 that is the first occurrence of a uk.p1 condition on this path as shown in Fig. 70. By assumption

C 1]

[}
b
=
kel
=

Lde(pl)m @ kPl

S

c6) uk.pl

@ uk.pl
Figure 70: A path corresponding to invariant k[pl] + uk[pl] + rel[pl] + pri[pl] + red[pl] +sri=1

and invariant (2), we know that there is no occurrence of a condition uk.pl between conditions ¢4 and c6.
Next, we show that there is no LdCnt(p1) event between el’ and ¢6. Let us consider an arbitrary LdCnt(p1)
event e: By invariant (1) and the conditions a.pl in the context of events e and el’, we know that e occurs
causally before el’ or causally after el’. In the first case, e does not occur between el’ and ¢6. So, let us
consider the case that e occurs causally after el’ in more detail. The automaton in Fig. 71 shows a chain of
causes for the LdCnt(pl) event e: There must be a Checkln(pl) event e’ before, with a uk.pl condition in its
preset. By invariant (1), ¢’ occurs after the commit event el’ because, otherwise, s.pl is concurrent to a a.pl
condition in the immediate context of el’. Let us assume that e does not happen causally after ¢6; then, we
have another uk.pl condition between el’ and c6—a contradiction to the fact that there is no occurrence of
a uk.pl condition between conditions ¢4 and ¢6. Thus, there is no LdCnt(pl) event between ¢4 and c6.

uk.pl

Checkin(p1)

LdCnt(p1)

Figure 71: A chain of causes for a LdCnt(pl) event
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Step 3, paths from ¢4 to ¢6: Next, we investigate the paths from ¢4 to ¢6 in more detail. In particular,
we trace back the way of causes along the path from ¢4 to ¢6 along invariant (2). The automaton from
Fig. 72 shows all possible paths:

casei caseii caseiii

t17
p=pl

t11,15,t23
p=pl

137
p=p1

Redone(pl)

redone.(pl,.)
caseiv

18
p=pl

124

uk.p1

Figure 72: Causes of uk.pl condition ¢6 along invariant (6)

case i: The process becomes unknown at the server right after a redo procedure of the process, where the redo
procedure was terminated without any update because no commit record was encountered during the
scan back (transitions t11, t15, and t23 with p = pl).

case ii: the process becomes unknown right after the server has updated a continuation from the log to the
database during the redo of the process (transition t17 with p = pl).

case iii: the process becomes unknown at the server right after the redo, where the redo procedure was termi-
nated by reaching the first log record without doing any update (transition t37 with p = p1).

case iv: the process is unknown right after the server recovered from a server crash (transition t24).

Note that all events corresponding to one of the above transitions, happen causally after ¢4 because all
places in the automaton are places of invariant (2) and k.pl does not occur in this automaton.

So, we will consider the path on that invariant from these transitions back to c4. For clarity, we deal
with each of the above cases separately.

Case i: Let us see what could cause the occurrence of one of the above transitions t11, t15, or t23. Figure 73
shows a backward automaton, which contains only places of invariant (2). Since k.pl does not occur in this
automaton, we know that the chain of causes is initiated by an Ignore(pl) event e8, and we know that this
event occurs causally after the k.pl condition ¢4 (note that e8 could happen immediately after ¢4). In this
automaton, we have indicated some log records that are read by the transitions of the automaton (during
the restart procedure). These are represented by dashed lines because these places are not part of the
automaton. They are only represented to high-light the log records read on this path.

First of all, we know that, on this path, one of the log records (I+1,0,p1, (I+1,¢nt, pl), or (141, dbu, p1)
was read for some [. Since the Ignore event e8 happens causally after ¢4, and therefore also causally after
the commit event el’, we know by Property 5 (sequence numbers are increasing) that m > k. Since the
counter 7 of the automaton is m initially and is only decreased by all events, we know m > [. Moreover,
we know that, on each path of the automaton, a log records with sequence number 7 + 1 is read for each
1 with m < i < [; and we know that none of these log records are records of process pl (cf. condition
p' <> pl). By the uniqueness of sequence numbers of log records (Property 6), by the existence of the log
record (k + 1,emt, pl), and by m > k, we know | > k.

Now, let us investigate, where the above log records come from. This is represented in Fig. 74. The
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t9: p=pl<>p’
t13:p=pl<>p’
t18:p=pl<>p’
t21:p=pl<>p’

3 log.(i+1,.,p)):p'<>pl

prl.(i+1,pl,false,o0,p’):p’<>pl
pr2.(i+1,p1,false,p’):p’<>pl
pré.(i+1,p1,false,p’):p’'<>pl
pr5.(i+1,pl,false,p’):p'<>pl

) lem+l
Ignore(pl) m=i
110,t14,t19,t22
p=pl<>p’
ii=i-1
pr.(i+1,p1,false)

log(I+1,0,p1) !
log(l+1,cnt,pl) :
log(l+1,dbu,p1) :
prl.(i+1,pl,false,o,p1)
pr2.(i+1,plfalse,pl)
pr5.(i+1,p1,false,pl)

111,1523] |
p=pl

Figure 73: Automaton for case i

e7
LogObj(o1,p1) log(l+1,01,p1)
e7
casea LogCnt(p1) log(I+1,cnt,pl)
e7
LogDBu(p1)
t17 log(l+1,dbu,p1)
caseb
33

Figure 74: Write operations for log records in case i
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update record and the continuation record can only originate from a LogObj(ol,p1) resp. LogCnt(pl) event
(with possibly some read accesses on these log records in between). The situation for the DBu record is a
little bit more involved: This record could either be written by the process itself by a LogDBu(p1) operation;
but it could also be written during a redo of the process or during the recovery of the server (transitions t17
and t33).

We first consider the case (case i.a) in which the log record is written by a log event e7 of process pl.
Then we will show that the other case (case i.b) is impossible in our situation.

Case i.a: Now, we show that, for case i.a, we have an event e6 that updates the continuation of event el
in the database (see Fig. 68 on 63) and happens causally after el’ and causally before ¢6 (and thus before
¢1)—which finishes the proof of A.1.2.2.1 in this case.

First of all, we know that the log event e7 occurs causally after el’: The sequence number of the written
log record is | + 1, and we have | > k. By Property 5 (Increasing sequence numbers), we know that el’
occurs causally before e7. Remember that &+ 1 is the sequence number of the commit record written by el’

Next, we there is a path of program causality from el’ to €7 on which a UpdCnt(p1) occurs: By assumption,
we know that there is no LdCnt(p1) event between el’ and ¢6. In particular, no LdCnt(p1) occurs between el’
and e7 (since e7 happens causally between el and ¢6 by construction). By invariant (1) a[pl]+cr[pl]+s[pl] =
1, we know that there is a path from el’ to €7 on which only one of the places of the invariant occur. Moreover,
we know, by the above argument, that no LdCnt(p1) event occurs on this path. All possible paths between an
commit event and a LogObj(o1,pl), a LogCnt(pl), or a LogDBu(pl) event are represented in the automaton of
Fig. 75. The automaton shows that there is an UpdCnt(p1) event €6 on this path—note that each occurrence

LogCnt(p1)
e7 e7

Figure 75: Automaton for commit followed by a log operation

of an UpdCnt(pl) event has an condition cnt.pl in its immediate context following it. Moreover, there is
a path of program causality form el via el’ to e6 and e6 happens causally before e4. So e6 is the event
required on the right hand side of requirement A.1.2.2.1. Since no LdCnt(p1) event occurs between el’ and
¢6, and e6 happens causally between el’ and ¢6, we also know that no LdCnt(pl) event happens causally
between el’ and e6—as required in A.1.2.2.1.

Case i.b: Now, we show that case i.b is impossible in the considered situation. Let us consider the
occurrence of a t17 or a t33 event with p = pl. First of all, t17 produces a token pl on place pr6, or t33
produces some token on sr. By invariant (2), and by the automaton shown in Fig. 73, we know that t17 or
t33 must occur before the Ignore(pl) event (pr6.pl and sr do not occur in this automaton).

Now, let us investigate the path from the occurrence of an t17 or t33 event with p = pl to the Ignore(p1)
event — on the above invariant. This path is shown in Fig. 76. This automaton shows that there is a uk.pl
condition ¢7 on each path. This gives us another uk.pl condition between c4 and c6 and contradicts our
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server crash server crash

. server crash

uk.pl
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| ] checkin(p1)

D Ignore(pl)

Figure 76: Automaton for a path from t17 or t33 with p = pl to Ignore(pl)

assumption that ¢6 is the first occurrence of an uk.pl condition on the path from ¢4 to ¢5. Thus, case i.b is
impossible, which finishes the proof of case i.

Case ii: Now, let us assume that the event which caused the uk.pl condition is t17 with p = pl. Fig. 77
shows the chain of causes for this event. Again, we have only places of the above invariant (2) in this
automaton. So the Ignore(pl) event happens causally after condition ¢4. Thus, we know m > k > j by
Property 5. Remember that j+ 1 is the sequence number of the continuation record written by event 5. On
each path of this automaton, there exists an event that reads a log record (141, ent, p1) and this continuation
is written to the database by the next event. Let us call this event e6. In the following, we will show that
this is the update event that is required by A.7.2.2.1: It remains to show that there is a path of program
causality from el to the log(I+1,cnt,pl) condition.

Since the automaton only decreases the value of the counter i, we know m > [. Since on each path, the
events that read a log record and the events that decrease i strictly alternate, we know that there is a log
record (i + 1,...) for each i with I < ¢ < m. A careful analysis of the transitions t9, t13, t18, and t21 reveals
that, on this path, no (i + 1,ent,pl) record is read (the only transition t13 that reads a continuation is
restricted to log records of processes p’ different from pl). By Property 6 (uniqueness of sequence numbers
of log records), we know that there is no log record (i + 1, ent, pl) with I < i < m. On the other hand, we
have a log record (see Fig. 68) (j + 1, ent,pl) with j < m. In combination, we get j <.

By the same argument as before (see Fig. 74), we know that log record (I + 1, cnt,pl) must have been
written to the log file by some LogCnt(pl) event e7. Moreover, there is a path of program causality from e7
to the condition log.(I+1,cnt,pl). By j < I, we know that this event happens causally after e5. Moreover,
we know that there is no LdCnt(pl) between these events. By Property 3, we know that there is a path
of program causality from el to e7. Altogether, we have a path of program causality from el to e6. By
construction, there are no LdCnt(pl) events between el’ and e6, which finishes the proof of case ii.

Case iii: Now, we show that case i is impossible. Figure 78 shows the chain of causes for t37 with p = pl.
By the same arguments as before, we know m > j and that no (i + 1, ¢nt, pl) records with 0 < ¢ < m exits.
This is a contradiction to the existence of the log record (j + 1,cnt, pl) that is written by the log event e5.
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19,118,121
t13:p=pl<>p’
k.pl

pril.(i+1,p1,...)
pr2.(i+1,p1,.,p):pl<>p’
pra.(i+1,p1,...)
pr5.(i+1,p1,...)

110,t12,t19,t20,t22
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Ignore(p1)
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log(I+1,cnt,pl) ,,,,,
pr2.(i+1,p1,true,pl)
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- A cent.pl
pr3.pl

t17
p=pl

Figure 77: Chain of causes for t17 with p = pl

This finishes the proof of case iii.
19,t18,t21

prl.(i+1,p1,...)
pr2.(i+1,p1,.,p):p'<>pl
pra.(i+1,p1,...)
pr5.(i+1,p1,...)

110,t12,t19,t20,t22
tl4:p=pl<>p’
i=i-1

i lc.m+1
Ignore(pl) -
m=i

pr.(i+1,p1,..)

t37 i+1=0

Figure 78: Impossibility of case i

Case iv: Remember that case iv was the successful completion of the restart of the server by a t24 event.
Let us have a look at the chain of causes of this event. Again, we construct an automaton that has only
places of invariant (2) and does not contain a place k.pl. This automaton is shown in Fig. 79. It shows
that there exists a path along invariant (2) from the t24 event back to some t36 event, which we call e7. By
construction (the automaton does not contain a place k.pl), we know that e7 occurs causally after the k.pl
condition c4. Therefore, we have m > k by Property 5. Moreover, we have ¢ = 0 when t24 occurs. Due to
the strict alternation of reading log records and decreasing the counter ¢, we know that for each sequence
number i with 0 < ¢ < m a log record (i, ...) is read on the path from t36 to t24. Since sequence numbers are
unique (Property 6), we know that the log record (j + 1, cnt, pl), which was written by the LogCnt(p1) event
€5, is read on this path. The only transition of this automaton that can read the log record (j + 1, ent, pl)
are the two instances of transition t29.

We consider both instances of t29 separately: First, we consider the transition at the bottom: In that
case, the t29 event reads the log record (j+1,cnt,pl) and the following event t32 updates it to the database.
A simple automaton (cf. Fig. 74) shows that there is a program causality from e5 via the log record and via
129 to the update event t32.

Second, we consider the transition t29 at the top of this automaton. In that case, the continuation is not
updated to the database. Rather, it is ignored by the occurrence of transition t30 or t31. Informally, the
log continuation record is ignored because either a continuation of p1 has already been updated during this
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125,129

srl.(i+1,...)
sr2.(i+1,...)

126,27,128,130,31
I=1-

sr2.(i+1,...) t29

t32

134,135

sr.(i+1,.,.)

t33

sr3.(i+1,...) i+1=0

Figure 79: Automaton for t24 event

recovery of the server or there was no corresponding commit event. These situations are shown in Figures 80
(case vi.a) and 82 (case vi.b).

case tv.a: Let us consider the automaton of Fig. 80 first, which shows the situation when the log record

i*1,.,., p1)

sri.(i+1,[..p1..]...)

sr2.(i+1,[..p1..],.,p1)

t30
i=i-1

Figure 80: Ignoring an already redone continuation record: case vi.a

is ignored due to a prior redo. Event t30 ignores the record because process pl occurs in the set of redone
processes (indicated by label [..pl..] at the corresponding places). This automaton shows the chain of causes
for transition t30 and t29. We explain the automaton backwards: There is a phase immediately preceding
t29 in which pl is in the redone list. In the automaton, however, we do not represent all details; we only
represent the events that do not change this situation (one transition stands for the transitions incrementing
i; the other for the transitions leaving i unchanged). The only event that can add pl to the redone list is
t32 with p = pl. So, we have a (I + 1, ent, pl) record with [ > j. By the automaton of Fig. 74, we know that
there is a corresponding LogCnt(pl) event e8. By Property 5 and | > j this event happens causally after
e5. By construction, e8 happens causally before ¢6. In particular, there is no LdCnt(pl) event between e5
and el’ (by Property 2), and there is no LdCnt(pl) event between el’ and e8 by assumption (see Fig. 70).
By the same arguments as given in case i.a, there exists an intermediate UpdCnt(pl) event e6 and a path of
program causality from el to e6 (via e5): an automaton for a path from e5 to e8 along invariant (1) as shown
in Fig. 81. On each path of this automaton, there exists an UpdCnt(pl) event e6 that meets the situation on
the right hand side of requirement A.1.2.2.1—remember that in the chosen situation, no LdCnt(p1l) event
occurs between the two LogCnt(pl) events.
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LogCnt(p1) .
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Figure 81: Path between two LogCnt(pl) events with out on which no LdCnt(p1l) event occurs

case 1v.b: At last, we consider the automaton in Fig. 82, which shows the situation when a log record
is ignored because it is not in the commit list. The argument is the similar to the previous one. But, the
automaton shows two different possibilities: Either there are no commit records encountered during the
restart of the server before the occurrence of t29. In that case, the chain of causes starts with event t36 (case
iv.b.1). Or it starts with an event t29 that reads a log continuation record and the corresponding transitions
t30, t31, or t32 remove pl from the list of committed processes (case v.b.2).

Let us consider case iv.b.1 first: The automaton says that, in this case, for each i with j < i < m, there
is a log record for 7 + 1 and the log record is different from (i + 1, emt, pl) (remember that t36 happens after
¢4 and thus the automaton starts with 1 = m > k). On the other hand, we have a log record (k + 1, emt, p1)
with k > j, which violates the uniqueness of log records with the same sequence number(Property 6). Thus,
case 1.b.1 is impossible.

In case iv.b.2, we have a log record (I + 1,cnt,pl) with | > j. In this case, we can proceed as in case
iv.a: We know that there is LogCnt(pl) event that happens causally after LogCnt(pl) event e5; again, by
the automaton from Fig. 81, there is an intermediate UpdCnt(pl) event that satisfies the requirement of 6
on the right hand side of A.1.2.2.1.

7.6 A.1.2.2.2: Correct order of update and loading from database

In this section, we prove requirement A.1.2.2.2 (see p. 45), which basically says that intermediate updates
to the database do not write an older continuation. Figure 83 shows a situation that resembles the situation
of the left hand side of requirement A.1.2.2.2. We have added the immediate context to the LogCnt event
e5 and to the commit event el’. By Property 5, we know j < k.

First, we deal with the special case ¢l = ¢; in that case, we also know e7 = e6 because an event
immediately preceding a condition is unique in our execution model. Thus, we have a path of program
causality from el via e6 = €7 to cl. So, we have case i of the right hand side of requirement A.1.2.2.2.

In the rest of this proof, we assume c1 # c¢. Again, by our execution model and the invariant cnt[pl] = 1
(invariant (3), see Table 5 on page 105), we know that e7 happens causally after condition ¢— otherwise
there are two concurrent occurrences of cnt.pl conditions, which violates the invariant.

Now, let us investigate the different events that could occur in the preset of ¢l and have a program
causality to condition ¢l. Figure 84 shows all possible instances of transitions of the Petri net model which
update the continuation of process pl in the database:
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Figure 82: Ignoring an uncommitted continuation record: case iv.b

Figure 83: Situation matching the left hand side of A4.1.2.2.2
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casei: caseii: caseiii: caseiv:
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UpdCnt(p1) t16
LdCni(p1) &7 e7 132
e7 e7
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Figure 84: Four different update events for cnt.pl

case i: Event e7 is a load continuation event. Note that from the pragmatic point of view, this is not an
update event at all; but technically, it is an event which puts a token pl to place cnt and thus must
be considered in the proof.

In this case, however, we have a cnt.pl condition ¢2 in the preset of €7 (the continuation loaded) and
there is a program causality from ¢2 to e7. Moreover, we know that ¢2 occurs causally after ¢ because
of the above invariant (3) and because e7 happens causally after ¢,. So, we have the situation of case
# of the right hand side of requirement A.1.2.2.2 (where e7 and e8 coincide).

case #: Event e7 is a UpdCnt(pl) event. Remember that e7 happens causally after ¢. In particular, e7 happens
causally after the LogCnt(p1l) event e5, which will be exploited in the proof for this case below.

case iii: Event e7 is a t16 event, which updates the continuation in the database during a redo of process pl.
case iv: Event e7 is a t32 event, which updates the continuation in the database during the restart of the server.

Since case i was already proven above, we need to consider only cases #i—iv in the following. We proceed
in three steps: First, let u assume (a proof will be given below) that, in case i and case iv, we have a
LogCnt(pl) e7’ event with a program causality to e7 that causally happens after the LogCnt(pl) event e5. In
each of the remaining cases #i—iv, we either have a UpdCnt(pl) event €7’ = e7 which happens causally after
€5 (in case i1) or we have a LogCnt(pl) event e7’ that happens causally after e5 (in case 4 and case iv).

Second, we know that there exists a LdCnt(pl) event €8 with a path of program causality to e7' by
applying Property 4. Moreover, on this path only conditions a.pl occur.

The resulting situation is shown in Fig. 85. On the path of program causality from el to el’, only
conditions a.pl occur by Property 2.

Third, we prove for this situation, that there is a path of program causality from el to ¢l (case i of
requirement A.1.2.2.2), or that condition ¢2 occurs causally after condition ¢. The arguments are as follows:
By invariant (1), we know that all events on the two paths of program causality from el to el’ and from e8
to e7’ are sequentially ordered. This gives us the following cases:

e Event e8 occurs causally after el’: Since we know that no LdCnt(pl) event occurs between el and €6,
we know that e8 happens causally after e6. Again by invariant cnt[pl] = 1 (invariant (3)), we know that
condition ¢2 occurs causally after condition ¢. This is the situation of case ii of requirement A.1.2.2.2.

e Event e8 occurs on the path from el to el’; this, however, is not possible because we assumed that
there are no LdCnt events in this path.

e Event el occurs on the path of program causality from e8 to e7’. This gives us a path of program
causality from el via e7’ to cl. This is the situation of case i of requirement A.1.2.2.2.

It remains to show that, in case iii and case iv, we have a LogCnt(pl) event €7’ that occurs causally after
el’ and that has a path of program causality to e7.
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Figure 85: Situation in cases #i—iv
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log(l+1,cnt,pl) ¢ t13
I=i

pr2.(i+1,p1,true,pl)

cnt.pl

Figure 86: Chain of causes for t16 (case iii)
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LogCnt(pl) event e7' in case it  We start with the proof of case iii. Figure 86 shows the automaton for
the chain of causes for the t16 event (update during redo of process pl). Note, that this automaton contains
only places from invariant (2) and k.pl does not occur in this automaton. Therefore, event Ignore(pl) occurs
causally after the commit event el’ (which has a condition k.pl in its postset). By Property 5, we know
k < m. Due to the structure of the automaton, we know that on the path from the Ignore(pl) event to t16,
for each ¢ with [ < i < m, alog record with sequence number i+ 1 is read. Moreover, for all 1 with [ < ¢ < m,
the read log records are different from (i + 1, ent, p1) (the only transition, t13, reading a (i + 1, cnt, p') record
is restricted to p’ # pl). By the uniqueness of sequence numbers for log records (Property 6 and the log
record log.(j+1,cnt,pl), we have j < 1.

We know (see automaton Fig. 74) that there exists a LogCnt(p1) event e7’ that has written the log record
log.(14+1,cnt,pl) and there is a path of program causality from this log event to ¢l (via the occurrence of t13
and t16). By Property 5 and j < I, we know that e7’ occurs causally after the LogCnt(pl) event e5. Note
that e5 and e7’ could be identical. This gives us the event €7’ as shown in Fig. 85 and finishes the proof of
case iii.

LogCnt(pl) event e7’ in case v Figure 87 shows the automaton for the chain of causes for the t32 event
(update during restart of the server). Again, we know that t36 happens causally after the commit event el’
because the automaton contains only places from invariant (3) and k.pl does not occur in this automaton;
thus, by Property 5, we have k < m.

7 lem+l

srl.(i+1,r,c,.,.):r[p1]=0,c[p1]=0 .

126,127,128

14
t34:p<>pl
ii= El .

t33 sr3.(i+1,r,c,p):r[p1]=0,c[p1]=0

t34|p:=|pi[] n=i

t29:p<>pl

sr2.(i+1,r,[..p1..],p):r[p1]=0,p<>pl
srl.(i+1,r,[..p1..],.,.):r[p1]=0 _. .
. 132:p<>pl
. ii= ipl P

130,t31:p<>pl

sr3.(i+1,r,[..p1..],.):r[p1]=0

sr2.(1+1,r,[..p1..],p1):r[p1]=0

Figure 87: Chain of causes for t32 case iv

The automaton basically shows the part of the restart procedure in which the continuation of pl is not
yet listed as redone (otherwise t32 would not have occurred). The lower part of the automaton shows the
part from the commit event corresponding to the updated log record; in this part, no continuation record
for pl is read (except for (I + 1,cnt,pl)). The upper part of the automaton shows the behavior before the
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commit, event for process pl has been encountered. Note that, in this part, continuation records for process
pl could be read; but there are no commit records encountered for pl.

First of all, we know that there exists a LogCnt(p1) event e7’ that writes (I + 1, ent, pl) by the automaton
in Fig. 74, and we know that there is a path of program causality from e7’ to the t32 event e7. It remains to
show that €7’ occurs causally after e5. By Property 5, it is sufficient to show j < [. To this end, we consider
the automaton from Fig. 87 again. The only event in this automaton that reads a commit record for process
pl is t34 with p = pl (in the middle of the automaton); let n + 1 be the sequence number of this log record.
By m > k, and the uniqueness of sequence numbers of log records (Property 6), we haven =k or £ <. In
case k <1, we immediately have j <[ because j < k by assumption. It remains to show 7 <[ in case n = k
(and k > [): from the automaton, we know that all log records with sequence number i + 1 for I < i < k
are different from (i + 1, ent, pl). By Property 6, by the existence of the log record (j + 1, ¢nt, ,pl), and by
j <k, we know 5 <.

7.7 B.3.1: Two cases of data causality

In this section, we verify requirement B.3.1 (see p. 49): A path of data causality from a write event el on
some object ol to some access event e2 on the same object ol is either via a local copy cp.(pl,01,wr) or there
is an intermediate update to the database and a LdCpy(ol) event.

Analog to the proof of requirement A.2.1, this property can be proven by an automaton for data causalities
between the two events. The automaton for paths of data causality shown in Fig. 88 verifies requiremen-
t B.3.1. The occurrence of €2 on the left hand side of the automaton corresponds to case # on the right

el

WJ[o1]
LogObj(ol,pl)

cp.(p1,01,ud) UpdObj(o1,pl)

| T Xep.(p1.01,wr) t9 Pri(....01pl) t12

log.(.,01,p1)

X[o1] [, | t25 srl.(..,.,0l,pl) t28

e2

Figure 88: Automaton for paths of data causality from W[ol] events to some access event X[ol]

hand side of requirement B.3.1; the occurrence of €2 on the right hand side of the automaton corresponds
to case i on the right hand side of requirement B.3.1.

7.8 B.3.2: Updated object implies direct commit

In this section, we verify requirement B.3.2 (see p. 49): If there is a path of data causality from a write
event to an event that updates the database, then the write event is a directly committed event. The proof
is analog to the proof of Requirement A.2.2 (see p. 57).

Again, there are three different ways in which an object can be written to the database: by an update
event UpdObj during the execution of the commit operation, by an update event t12 during the redo procedure
of a single process, and by an update event t28 during the restart of the server. Formally, these three cases
are captured by the automaton of Fig. 89. This automaton captures all possible paths of data causality
from a W][ol] event el to an obj.ol condition c¢l. From this automaton, we get the following cases, which are
graphically represented in Fig. 90:
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el

wio1] [' |
UpdObj(ol,pl)

LogObj(o1,pl) cp.(p1,01,ud)

cp.(p1,01,wr) t9 prl.(k+1,.,.,01,pl) t12

Figure 89: Automaton for paths of data causality from W[ol] events to obj.ol conditions

case i: The path is via a LogObj(ol,p1) event €2 and the update event e3 is a UpdObj(o1,pl) event.
case ii: The path is via a LogObj(o1,pl) event €2, log records (k + 1,01, pl), and an t12 event e3.
case iii: The path is via a LogObj(ol,p1) event €2, log records (k + 1,01, pl), and an t28 event e3.

In the following, we prove that there exists a direct commit event el’ for el in each of the above cases.

casei: caseii: caseiii:
W[o1] W[o1] W[o1]

cp.(pl,01,wr)

cp.(pl,01,wr) cp.(pl,01,wr)

LogObj(o1,p1)

cp.(p1,01,ud) . LogObj(o1,p1) LogObj(ol,pl)

UpdObi(o1,p1) [e3
pdObj(o1,p1) log.(k+1,01,p1)

log.(k+1,01,p1)

o obj.ol

Figure 90: Req. B.3.2: Three cases

Case i: First of all, we know, by Property 9.1, that is nod LdCnt(pl) event between 1 and e3. By
Property 3, there is a path of program causality on which no LdCnt event occurs from el via e2 to e3.

Next, we show that, on the path of program causality from e2 to e3, a commit event occurs. The
automaton from Fig. 91 shows all possible paths of program causality from a LogObj(ol,pl) event to a
UpdObj(ol,pl) event. On all these paths, a commit event occurs—without a LdCnt event occurring before.
This commit event el’ is a direct commit event for event el.

Case ii and iii: By the same arguments as above (Property 9.1 and 3), we know that there is a path of
program causality from event el to e2 in case i and case #ii. Below, we will show, for both cases separately,
that there exists a commit event e5 of process pl that happens causally after event e2 with no LogCnt(p1)
event in between as shown in Fig. 92. Then, we know by Property 1 that there is a path of program causality
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e2
LogObj(o1,p1)

c2.pl LogObj(ol,pl)

UpdObj(ol,pl)
e3

Figure 91: Automaton for paths of program causality from a LogObj(o1,p1) event to a UpdObj(o1,pl) event.

Figure 92: Proof obligation for case ii and case .

from e2 to e5 on which no LdCnt event occurs. Thus, event e5 from Fig. 92 is a direct commit event for el.
It remains to show that the commit event e5 from Fig. 92 exists in case it and case i and that there is
no LogCnt(pl) event between €2 and e5.

Case 11:  We start with verifying the existence of event e5 from Fig. 92 for case . To this end, we consider
the automaton from Fig. 93. This automaton shows that there is a commit record (I + 1, emt, pl) for process
pl with a sequence number [+ 1 greater than k+1, which is written by a commit event 5. By Property 5, this
commit event e5 happens causally after e2. Moreover, the automaton shows that, for each i with k < i <1
there is a log record with sequence number 7 + 1 that is different from (i + 1, ent, p1). By the uniqueness of
the sequence numbers of log records (Property 6), we know that there is no LogCnt(pl) event that writes a
log record (i + 1, cnt, pl) with k < i < . By Property 5, we know that there is no LogCnt(pl) event between
e2 and eb.

Case i1: At last, we verify the existence of event e5 from Fig. 92 for case iii. The automaton from
Fig. 94 shows the chain of causes for the t28 event e3. The automaton shows the existence of a commit
record (I + 1,emt, pl) for process pl and the existence of the corresponding commit event e5. Moreover, it
shows that all intermediate log records for sequence numbers with i + 1 with k£ < ¢ < [ are different from
(i + 1,cnt,pl). By the same arguments as in case it we know that the commit event e5 happens causally
after e2 and that there is no LdCnt(pl) event between e2 and e5.

7.9 B.3.3: Access of same local copy implies same execution phase

Requirement B.3.3 (see p. 49) says: If there is a path of data causality from a write event el to an access
event e2 or a LogObj event e2 on which only cp(pl,01,.) conditions occur, then there is also a path of program
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p=pl

log.(I+1,cmt,p1)

19, t21
t13: p'<>pl
t18: p'<>pl

prl.(i+1,pl,true,.,.)
pr2.(i+1,pl,true,p’): p'<>pl
prd.(i+1,p1,true,p’): p'<>pl

t18
I=i

pra.(i+1,p1,true,pl)

10, t12, t14, t19, t22
i=i-1

prl.(i+1,p1,true,01,pl)

t12

e3

Figure 93: Automaton for chain of causes of t12 event.

log.(I+1,cmt,p1) .*.
129:p<>pl

[ 1=

5] |

srl.(i+1,.,[..p1..])

sr2.(i+1,.,[..p1..],p):p<>pl 1=i
. t34:p=pl
=1

26,127,128 |
i=i-1

AN

L) sr.(i+1,.[.p1.])

t30,t31:p<>pl .

ii=i-1

[

t32:p<>pl sr3.(i+1,.,[..p1..])
i=i-1

t33

() srL(+1,..[.p1.]0LpL)

e3

Figure 94: Automaton for chain of causes of t28 event.
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causality from el to e2 and there is no LdCnt event on this path.

It will turn out that we need a slightly more general version of this property for verifying other require-
ments. Therefore, we prove the more general Property 9 in Sect. 8.3. Requirement B.3.% is an immediate
consequence of Property 9 and Property 3.

7.10 B.1.1: Context of a write event

In this section, we proof requirement B.1.1, which talks about the context of a directly committed write
event (see p. 50).

Let us consider a situation that meets the right hand side of requirement B.1.1. From the Petri net model,
we know that there exists a cp.(p1,01,wr) condition in the postset of event el and a condition wlckent.(p1,0)
in the postset of the commit event el’. By invariant (7) (see Table 5 on page 105), we know that both
conditions cannot be concurrent. Thus, there exists some event e6 that removes the token (pl, 0ol,wr) from
place cp as shown in Fig. 95. The only transitions that remove this token (and do not add it again) in the
Petri net model are the LogObj(o1,p1) transition and the crash transition of process pl. An occurrence of a
crash transition for process pl is impossible for the following reason: Let us assume that e6 is a crash event
of process pl. Then, e6 has a condition cr.pl in its postset; by Property 2, there exists also a chain of a.pl
conditions between el and el’. Since e6 occurs causally between el and el’, this implies that a condition
a.pl and a condition cr.pl occur concurrently; this, however, is a contradiction to invariant (1). Thus, €6
cannot be a crash event of process pl. Altogether, we know that e6 is a LogObj(ol,p1) event. Since this
event has an a.pl condition in its immediate context, we know by invariant (1) that e6 occurs on the path
of program causality between el and el’. In particular, el’ is a direct commit event for e6. Thus, we can

Cm cp.(pl,01,wr)
Lantm
LogObj(o1,p1)
crash: p=pl
C
. wickent(p1,0)

Figure 95: B.1.1:Situation constructed from the assumption.

apply Property 10, which gives us the situation shown in Fig. 96. Note that we have renamed some events
in order to avoid name clashes. It remains to show that el occurs on the path of program causality from e4
to e5: By invariant (5), we know that either e4 occurs on the paths of cp(pl,0l,wr) conditions from el to
€6 or el occurs on the path of cp(pl,0l,wr) conditions from e4 to e6. The first case, however, is impossible
because e4 has a w2.(pl,0l) condition in its preset. Thus, an occurrence of e4 on the cp(pl,0l,wr) path
violates invariant (5).

It remains to consider the case that el occurs on the cp(pl,01,wr) path from e4 to e6. Since el has an
a.pl condition in its context, el occurs on the a.pl path from e4 via e5 to e6 by invariant (1). Since there
are only LogObj(ol,pl) events on the path from e5 to e6, by assumption, we know that el occurs before e5.
Altogether, we have the situation on the right hand side of B.1.1.

7.11 B.1.2: Context of an access event

In this section, we verify requirement B.I.2, which talks about the context of a directly committed access
event el (see p. 51). This context is similar to the context of a write event—but a lock need not be kept
until the commit event.

We distinguish two cases:
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WLck(o1,p1)

V
. w2.(pl,01)

V

LdCpy(o1,p1) K.(p1,[..(o1,wr)..]))

cp.(pl,0l,wr)

LogObj D

cp.(pl,01,wr)

a.pl
LogObj D

Figure 96: B.1.1: Situation after application of Property 10.

1. The access event el is a write event. In that case, requirement B.1.1 applies, and we get the situation
on the right hand side of B.1.1, which also meets the situation on the right hand side of B.1.2 (with
e5 =el’).

2. The access event el is a read event. We will prove requirement B.1.2 for this case below.

By Property 7, we know that there exists a LdCpy(ol,pl) event e4 and a RLck(o1,pl) event e3 as shown
in Fig. 97. By Property 9.1, there are no LdCnt(p1), no RellLck(pl), and no UnLck(ol,pl) events between
e3 and el. By Property 3, there is a path of program causality from e4 to el as shown in Fig. 97. By
Property 9.3, we get the right hand side of requirement B.1.2: an event e5 between el and el’ with a path
of k.(p1,[..(01,.)..]) conditions from e3 to e5.

Lck(o1,p1)
() k(pL, [.(01,)])

Y
. r2.(p1,01), w2.(p1,01)

v

LdCpy(o1,p1)

cp.(pl.01,.)

Figure 97: B.1.2:Situation constructed from the assumption.

7.12 B.1.3: Write locks are exclusive

In this section, we verify requirement B.1.3 (see p. 51): Write locks held by the server are exclusive.
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Let us consider a situation that meets the left hand side of B.1.3, and let us assume e3 £ €2, ed £ el,
and el # e2 (i.e. no case of the right hand side of B.1.8 applies). Then, we have one of the following two
cases:

1. Event e2 occurs concurrently to some k.(p1,[..(o1,wr)..]) condition c.

Since €2 is some Lck(o1,p2) event, €2 has a lock.(ol,m) condition ¢ in its preset for some m. This
condition ¢ is also concurrent to ¢. In this situation, invariant (9)

locks(o1,m) = Vp,Vm' : k.(p,m’) = m/[(o1,wr)] =0
is violated. Thus, this case is impossible.

2. Event el occurs concurrently to some k.(p2,[..(01,.)..]) condition c.

Since el is some WLck(o1,p2) event, el has a lock.(o1,[]) condition ¢’ in its preset. Again, this condition
¢’ is concurrent to ¢. Thus, invariant (8)

locks(o1,[]) = Vp,¥Ym : k.(p,m) = m[(ol,z)] = 0)
is violated. Thus, this case is also impossible.

Altogether, we know that either e3 < €2 (Req. B.1.3 case i), e4 < el (Req. B.1.3 case ii), or el = e3
(Req. B.1.8 case i) holds true.

7.13 B.2.1: Two cases of conflicting events

In this section, we verify requirement B.2.1 (see p. 52).

Let consider a situation that meets the left hand side of requirement B.2.1. Obviously, events el and e2
meet the situation on the left hand side of requirement B.1.1 and events el’ and e2’ meet the situation on
the left hand side of requirement B.1.2. Applying these requirements gives us the situation shown in Fig. 98.

By Requirement B.1.3, we have one of the following three cases:

e3 = e3' By Property 8, we know also e4 = e4’. Thus, we have e4d’ = e4 < el < el’. By invariant (5), we
know that el occurs on the path of data causality from e4’ to el’ on which only cp(pl,01,.) conditions
occur. In particular, we have a path of data causality from el to el’. Thus, we have the situation of
case i on the right hand side of requirement B.2.1.

e2 < e3' This situation immediately meets case it on the right hand side of requirement B.2.1.

e2' < e3 This situation is impossible because there is a cyclic causality 2’ < e3 <el <el’ <e2'.

7.14 B.2.2.1: Update database before load

In this section, we proof requirement B.2.2.1 (see p. 53). Figure 99 shows the assumption of requirement
B.2.2.1—the left hand side of the requirement. Basically, we have to show that there is an event e7 that
updates the object of the LogObj(o1,pl) event to the database causally between the commit event el’ and
the Lck(ol) event e2. Moreover, there exists an event e8 that writes a DBu record for process pl causally
after e7 and there are no Lck(ol) events between el’ and e8 (see page 53).

The proof of B.2.2.1 is quite involved because different update mechanisms may interfere: an update by
the process itself, an update during the redo procedure of a process, and an update during the restart of the
server. These different update mechanisms will be reflected in the cases i—iii below.
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WLck(o1,p1)

Y
LdCpy(o1,p1)

Y
. w2.(p1,01)

cp.(pl,01,wr)

cp.(p1,01,wr)

k.(p1:[..(o1,wr)..])

Lck(o1,p2)

LdCpy(o1,p2)

K,
demﬁ

Y
() w.(p2.01), r2.(p2,01)

Y

cpy.(p2,01)

k.(p2,[..(01,.)..])

Figure 98: B.2.1: Situation after application of B.1.1 and B.1.2.

LogObj(o1,p1)

Lck(01,p2)

r2.(p2,01), w2.(p2,01)

v
LdCpy(01,p2)

Figure 99: Assumption of Requirement B.2.2.1
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Step 1, adding context for process pl and process p2: We start by adding some context to the
situation shown in Fig. 99. Note that event el and el’ meet the situation on the left hand side of Property 10.
Thus, we know that we also have the situation on the right hand side of Property 10. This situation is shown
in Fig. 100, where we have added some context to the lock event e4, to the commit event el’, and to the
log event e6 and el, which follows immediately from the context of the corresponding transition in the Petri
net.

WLck(o1,p1)

xlck.(01,p1) (c6)

w2.(p1,01)

k.(p1,[..(o1,wr)..])

cp.(p1,01,wr)

cp.(pl,01,ud)

log.(k+1,cmt,pl) @ @ k.(p1,[..(o1,wr)..])

Lck(o1,p2)

r2.(p2,01),
w2.(p2,01)

y
O

k(p2,[-(01,)-])

j<i<k

Figure 100: Assumption of B.2.2.1: Added context

By Property 2, there is no LdCnt(p2) event between e3 and e3'. By Property 9.1, there is no RelLck(p2)
and no UnLck(o1,p2) event between e4 and e3. Thus, we can apply Property 9.3, which gives us an even e3"”
that occurs causally after e3 and there is a chain of k.(p2,[..(01,.)..]) from e2 to e3" as shown in Fig. 100.
Moreover, we have added the Ick.(01,.) condition in the preset of €2, which immediately follows from the
context of a lock transition in the Petri net model.

By Property 5 (increasing sequence numbers of log records), we also know j <1 < k.

Step 2, the path of causality between ¢6 and ¢7 By invariant (4), pri(xlck + Ick)[o1] + sver + sri = 1,
we know that there is a unique chain of conditions of this invariant from condition ¢6 to condition ¢7. In
particular, there exists a first occurrence of a Ick.(01,.) condition ¢8 on this chain. Informally, this is the
point at which the lock of process pl on object ol that was acquired by e4 is released at the server. In the
following, we will show that the object ol corresponding to the LogObj(ol,pl) event el is updated to the
database before this point.
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Step 3, the different cases Next, let us investigate the possible paths on the above chain from ¢6 to
8 (the first Ick(ol,.) condition). Figure 101 shows an automaton with all possible paths along invariant
(4) from the xlck.(o1,p1) condition ¢6 to the Ick.(ol,.) condition ¢8. The occurrence of the first condition

xlck.(o1,p1)

6 server crash

sver .'—4. server crash

p=pl,0=01

Ick(o1,[])

Figure 101: Three cases

Ick.(01,.) on this path is caused by an occurrence of either transition t4, transition t7, or transition t24; we
denote the corresponding event by €9. Let us discuss the different cases in more detail:

case i: The lock at the server is released by an occurrence of transition t4 (see Fig. 7 on page 12). This is
a release of the lock by the server after a corresponding request by process pl.

case ii: The lock at the server is released by an occurrence of transition t7 (see Fig. 10 on page 14). This
is a release of the lock after the process was redone by the server and is now going to be ignored.

case ii1t: A crash of the server releases all locks. A new lock operation, however, is only possible after a
successful restart of the server (the occurrence of transition t24, see Fig. 16 on page 17 and following
figures).

Note that, in particular, there are no Lck(ol,.) events between e4 and €9 because each lock event Lck(o1,.)
has an occurrence of condition Ick(01,.) in its preset. Such conditions, however, do not exist between e4 and
€9 by construction of €9 and invariant (4).

Step4, €9 occurs after el’ Before dealing with each of the above cases individually, we summarize what
we have so far in Figure 102. Where the indicated dashed causality from el’ to €9 needs a further argument,
which will be given below. Moreover, we know that no Lck(ol,.) event can occur between e4 and €9 (see
argument above).

Next, we give arguments for the dashed causality from el’ to €9: In each of the above cases, event €9 has
one of the conditions shown in Fig. 103 in its context. By invariant (2),

k[p1] + uk[p1] + rel[p1] + pri[pl] + red[p1]+ | sri + svcr |= 1

event e9 cannot occur between e4 and el’—otherwise are two different concurrent occurrences of condition
corresponding to invariant (2): one condition labeled k.(p1,[..(0o1,wr)..]) and the other condition labeled by
one of the conditions shown in Fig. 103. Since, by construction, €9 occurs causally after e4, event €9 occurs
causally after the commit event el’. And there is a chain of conditions of invariant (2) from ¢5 to c9.

Step 5, no intermediate condition uk.pl At last, we show that there is no intermediate uk.pl condition
between ¢5 and 9. To this end, we give an automaton for the paths from a k.(p1,[..(ol,wr)..]) condition to
a uk.pl condition. This automaton is shown in Fig. 104. On each path, there is either a t24 event, or there
is a t4 or the a t7 event with p = pl and 0 = o0l. Let us call this event e10. Each of these events has a
sri.(0,.,.) condition or a xIck.(ol,pl) condition in its preset, and has neither a xIck.(o1,p1) nor a sri condition
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WoLck(o1,pl)

V k.(p1,[..(01,wr)..])
LdCpy(01,p1)

xlck.(o1,p1)
cp.(pl,01,wr) sver
sr

cp.(pl,01,ud)

log.(k+1,cmt,pl) @ e N N
g| t4.t7:p=pl,0=0
i t24

(e8) Iek.(01,.)

LdCpy(01,p2)

j<l<k

Figure 102: Situation after three steps

casei: caseii: caseiii:
rel.(pL,[..(01.wn).]) (€9) red.(pL,[..(0Lwr).]) (c9) sri(0...) (c9)
[e9] ta le9] 7 [e9] 124
p=pl,0=01 p=pl,0=01
rel.(p1,) () red.(p1,) () uk.p1 ()

Figure 103: Context of event €9 in each case
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K.(pL.[..(o1wr)..])

() redo.(p1,[..(01,wr).])

rel.(p1,[..(o1,wr)..])

4
p=p1,0=01 L [ J0=01

rel.(pl,.)

uk.pl

Figure 104: Automaton for reaching uk.pl from k.(p1,[..(o1,p1)..])

in its postset. Thus, event €9 = €10 or €10 happens causally after €9. In both cases, the uk.pl condition
occurs causally after €9. Thus, there is no uk.pl condition between el’ and e9.

Now, the situation is similar to the situation in the proof of requirement A.1.2.2.1. This allows us to
re-use some of the arguments. For example, we know that there is no LdCnt(p1) event between el’ and e9.
The arguments are exactly the same as in A.1.2.2.1: basically, an intermediate LdCnt(p1) event would imply
a uk.pl condition between el’ and €9 (see Step 2 of the proof of A.1.2.2.1 and the corresponding Automaton
on page 64).

In the rest of the proof of B.2.2.1, we consider each of the above cases separately.

Case i: €9 is a t4 event with p = pl As already mentioned before, event €9 was caused by a RelLck(p1)
event in this case. The chain of causes for this event is shown in Fig. 105. Let us call the RellLck(pl) event

e8

ul.(p1,01)
LogDBu(pl)
c5.p1
RelLck(pl) ell
rel.(p1,.)
t4
p=pl e9

Figure 105: Release operation causes t4; release caused by LogDBu(pl) event
ell. Since t4 occurs causally after el’ and due to the chain of conditions rel.(pl,.) between ell and €9, we

know that ell also occurs causally after el’ by invariant (2) (see above). The RelLck(pl) event is caused
by a LogDBu(pl) event e8. By invariant (1), and the intermediate condition ¢5.pl, we know that also this
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event occurs causally after el’. This LogDBu(pl) event, in turn, has a ul.(pl,01) condition ¢10 in its preset
(a LogDBu(pl) event is deferred until all copies are set to unlocked on the process’s side).

Now, let consider our situation from Fig. 102 again. We have a cp.(pl,0l,ud) condition c4. By the
invariant (5)

ul[(pl, 01)] + r2[(p1, 01)] + w2[(p1, 01)] + pr1 2(cp)[(p1, 01)] + cr[pl] +s[pl] = 1

we know that there is a path from ¢4 to ¢10 on this invariant. As shown above, there cannot be a LdCnt(p1)
event on this path. Remember, that there are no LdCnt(pl) events between el’ and €9. An automaton that
characterizes all possible paths to the first occurrence of an ul.(p1l,01) condition is shown in Fig. 106. There
is only one event on this path: a UpdObj(ol,pl) event. This event €7 is the event required on the right hand
side of requirement B.2.2.1. Since we know that e8 happens causally between el’ and e9, we know that
there is no Lck(ol,.) event between el’ and e8. Thus, the LogDBu(p1) event €8 is the event required on the
right hand side of A.1.2.2.1.

cp.(p1,01,ud)

UpdObj(o1,pl) server crash

ul.(p1,01) cr.pl

server crash

Figure 106: Path without a LdCnt(p1) event from a cp.(pl,01,ud) to an ul.(p1l,01) condition along invariant

(5)

Case ii, €9 is a t7 event with p = pl: In this case, the lock of p1 on ol is released after the redo procedure
for process pl. Fig. 107 shows the chain of causes for the t7 event with p = pl. There are three different
cases:

caseii.a: caseii.b: caseii.c:

p=pl

111,115,123
p=p1

Redone(pl)

redone.pl

p=pl e9
Figure 107: Chain of causes of t7 with p = pl
case ti.a: The redo procedure does not update the database because the first log record encountered is an

update record, a continuation record, or a DBu record, which corresponds to an occurrence of one of
the following transitions t11, t15, t23 with p = pl.

case ti.b: The redo procedure updates the database, and it terminates by writing a DBu record to the log
file. This corresponds to the occurrence of transition t17 with p = pl.
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case ti.c: The redo procedure does not encounter a log record for process pl at all. This corresponds to an
occurrence of transition t37 with p = pl.

These cases are analog to the cases i—iii in the proof of requirement A.1.2.2.1. In case ii.a and case ii.c,
we can use exactly the same argument. Therefore, we start with these two cases and deal with case 4i.b at
the end.

Case ii.a: By the same argument as in case i of the proof of A.1.2.2.1, the occurrence of transitions t11,
t15, and t23 with p = pl results from a LogObj(.,p1), a LogCnt(p1), or a LogDBu(p1l) record event €10 that
causally occurred after the commit event el’ (see p. 65 and Fig. 73, 74, and 76). From our assumptions and
the construction of €10 , we know that no LdCnt(p1) event occurs between el’ and el0.

Figure 108 shows all possible paths of causalities from el’ to elQ along invariant (1); remember that
LdCnt(pl) events do not occur on these paths. The automaton shows that there exists a LogDBu(p1l) event
€8 on this path. Since we know already that there are no Lck(ol) events between el’ and €9, and since e8
occurs between el’ and €9, event e8 meets the requirements on the right hand side of B.2.2.1.

Figure 108: Automaton proving the existence of the LogDBu(p1l) event

It remains to show that there exists a UpdObj(ol,pl) event e7 between el’ and e8, and a path of data
causality from el to e7: From the Petri net model, we know that event e8 has a ul.(pl,01) condition ¢10
in its preset. By invariant (5), this condition cannot occur concurrently to the cp.(pl,01,ud) condition c4.
Since el’ happens before €8, we know that ¢4 occurs also before ¢10. Figure 106 shows that on each path
from ¢4 to ¢10 an UpdObj(o1,pl) event occurs, and that there is a path of data causality from el via ¢4 to
event e7.

Case ii.c: By the same arguments as in case #ii in the proof of A.1.2.2.1, we can show that this case is
impossible. There is at least one log record for process pl which that must be encountered during the redo
procedure for process pl (see case iii of proof of A.1.2.2.1 on p. 68).

Case 11.b: In this case, we know that some updates where made during the redo procedure for process pl.
It remains to show that also the effect of el was updated to the database—either during the redo procedure
or before.
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Figure 109 shows the chain of causes of the t17 event €10 with p = pl. Since in this automaton, we have
only places of place invariant (2), and since k.pl does not occur in this automaton, we know that the initial
Ignore(pl) event of this automaton occurs causally after the commit event el’. By Property 5, we know
m > k. Let m' be the sequence number of the continuation record encountered by the t13 event preceding

lc.m+1

Ignore(p1)
t9:p=pl<>p’ m=i

t13:p=pl<>p’
t18:p=pl<>p’ )
t21:p=pl<>p’ pr.(i+1,p1,false)
prl.(i+1,pl,false,.,p’):p'<>p:
pr2.(i+1,plfalse,p’):p’<>p
pra.(i+1,plfalse,p’):p’<>pl
pr5.(i+1,p1,false,p’):p'<>pl

s
P=p'=pl

t10:p=pl<>p’
tl4:p=pl<>p’
t19:p=pl<>p’
t23:p=pl<>p’

prd.(i+1,p1,false,pl)

log.(i+1,0,p1)
t9:p=pl<>p’ )

t13:p=pl<>p’
t18:p=pl<>p’
t21:p=pl<>p’ p=p'=pl

prl.(i+1,pl,true,.,p’):p'<>pl
pr2.(i+1,p1,true,p’):p'<>pl
pré4.(i+1,p1,true,p’):p'<>pl

pr5.(i+1,pl,true,p’):p’<>pl PP :pl

t10:p=pl<>p’
tl4:p=pl<>p’
t19:p=pl<>p’
t23:p=pl<>p’

pr2.(i+1,p1,true,pl)

Figure 109: Chain of causes of t17 with p = pl

t17 event e10. We distinguish two cases:

m' =j

m' >

The continuation record is the one written by the LogCnt(pl) event 6. By j < | < k < m, we know
by the structure of the automaton, that a log record with sequence number [ + 1 is read by an event
on some path of the automaton. Since sequence numbers of log records are unique (Property 6), we
know that this is the log record written by LogObj(o1,p1) event el and there is a path of data causality
from el to this read event. The only event of the automaton that can read this log record is the t9
event on the right hand side of the automaton (with p = p’ = pl). Then, we have also a t12 event,
which updates the object to the database. Obviously, there is a path of data causality from el via t9
to t12. So, the occurrence of the update event t12 is the event e7 required on the right hand side of
B.2.2.1. Moreover, the t17 event €10 is the event e8 required on the right hand side of B.2.2.1. By the
arguments given before, we know that there are no intermediate Lck(ol,.) events.

The continuation record is one which is written by a LogCnt(p1) event ell that happens causally after
€6. Since we know that there is no LogCnt(pl) event between €6 and el’, it must be causally after
the commit event el’. Thus, we have a LogCnt(pl) event ell that occurs causally after el’ without
intermediate LdCnt(p1) events. This case has already been considered in case i.a.

Case iii, €9 is a t24 event: At last, we consider the case that the event €9 is the successful termination of a
restart of the server. First, we show that the log records written by events e6, el and el’ are read during the
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restart procedure of the server. Figure 110 shows the chain of causes for the t24 event €9. Since the automaton
contains no place k and by the place invariant (2) k[p1]+uk[pl]+rel[pl]+pri[pl] +red[pl]+ | sri+sver |= 1, we
know that the t36 event initiating the restart of the server occurs causally after the commit event el’. Thus,
we have m > k + 1 by Property 5. By the structure of the automaton (alternation of events reading a log
record and decreasing ¢) and by the uniqueness of the sequence numbers of log records (Property 6), the log
records (k + 1,emt, pl), (I4+1,01,pl), and (j + 1, cnt, pl) are read on the path form t36 to t24. Altogether,

le.m+1

25129 | | J34135
sr.(i+1,.,.) =i

srl.(i+1,...)
sr2.(i+1,...)

Figure 110: The automaton for the restart of the server

we have the situation shown in Fig. 111, and the t36 event occurs causally after the commit event el’. By a

le.m+1

log.(k+1,cmt,pl)

el

LogObj(o1,pl)

log.(1+1,01,p1)

log.(j+1,cnt,pl)

e9

Figure 111: Situation during the restart of the server

simple automaton and the uniqueness of sequence numbers of log records, we know that there is a path of
data causality from the LogObj(ol,p1) event el to the t25 event.

In the following, we will show that after the t25 event, there is an event updating the update record to
the database. In the end, we will show that we also have an event e8 that writes a DBu record to the log
file after the update and before event e9.
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Let us have a closer look to the t25 events that reads the (I + 1,01,pl) record. Figure 112 shows the
three possible events that may succeed the t25 event. Note that one of these events must exist because the
restart of the server was terminated successfully (technically, the only possible paths from the t25 event to
t24 event is via these events).

t25
p=pl

srl.(i+1,.,.,01,p1)

(:::'obj.ol

caseiii.a caseiii.b caseiii.c

Figure 112: Possible actions upon read update record

Case iii.a: The update record is updated to the database by the t28 event. This is the update event e7
required on the right hand side of B.2.2.1. In this case, it remains to show that we also have the event
e8 that writes the DBu record after e7 and before €9 (see below).

Case i11.b: The update record is not updated to the database because object ol is already marked as
redone; i.e. we have srl.(I4+1,[..01..],.,01,p1). We will show below that this case is impossible. The
informal idea is that, in this case, there was an intermediate lock operation on object o1; this, however,
is impossible because the lock of pl was not yet released.

Case iii.c: The update record is not updated to the database because process pl is not marked as com-
mitted in the currently scanned part of the log file; i.e. we have srl.(I+1,.,c,01,p1) with ¢[pl] = 0. We
will show below that also this case is impossible. The informal idea is that, in this case, there must be
another LogCnt(pl) event between e6 and el—which is a contradiction to the considered situation.

Next, we will prove that case 4ii.b and case iii.c are impossible. Then, we will continue case #ii.a by
showing the existence of event e8 writing the checkpoint record.

Impossibility of case ii.b: If we have sr1(j+1,[..01..]..,01,p1), we know that there must have been an
event t28 that updates object ol before. Figure 113 shows the chain of causes for this condition. There
must be an intermediate t28 event with o = ol that updates a log record (I’ 4+ 1,01, p2) to the database,
where I’ > [. By a simple automaton we know that there must be a corresponding LogObj(o1,p2) event ell.
By B.3.2, we know that ell is a directly committed event. By Property 10, we have the situation shown
in Fig. 114. Let us investigate when these events el3, €12, ell, and el4 could occur (in relation to the
events of the situation from Fig. 102: Certainly el1 occurs causally before €9; by I’ > | we know that ell is
different form el. By Property 5, el1 occurs causally after el. By Property 8, the lock events e4 and el3 are
also different. Thus, by Requirement B.1.3, we either have e4 occurs causally after el4 (which establishes a
cyclic path of causalities and thus is impossible) or €13 occurs causally after el. In the latter case, we have
a Ick.(o1,[]) condition between el’ and e9. This, however, was impossible in the situation of Fig. 102 (¢8 is
the first occurrence of a Ick.(o1,.) condition) after e4. Altogether, we know that case #i.b is impossible.

Impossibility of case iii.c: Let us consider the situation of Fig. 111 and Fig. 112 again. If the t27
event occurs, we have a srl.(j+1,.,c,01,pl) condition before with ¢[pl] = 0. On the other hand, we know
that after the occurrence of the t34 event, we have a sr.(k,.,[..p1..]) condition (when a commit record for
pl is encountered, pl is added to the list of committed events). By k& > j + 1, we know that on the path
from the t34 to t27, pl must be removed from the list, which is possible only when a continuation record is
encountered. The corresponding automaton is shown in Fig. 115. We know that the 129 event with p = pl
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sri.(i+1,...)

.—.—. ii=i-1
o=o01
I'=i
,,,,, 01,p2)
5129 | | |wats
i=i-1
srl.(i+1,[..01..],.)
sr2.(i+1,[..01..],.)
o=01
t32 I=i
i=i1
126,127 () sri(+1[.01.],..01,p1)

130131
sr3.(i+1[.01.].) () t28:0<>0

Figure 113: Chain of causes for sr1(j+1,[..01.],.,01,p1)

€1) Iek(o1,])

WLck(01,p2)

v
LdCpy(o1,p2) p13

cp.(p2,01,wr)
k.(p2,[..(o1,wr)..])

log.(I'+1,01,p2)

Figure 114: The context of the other LogObj(o1,p2) event
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5[ |

t29:p<>pl

134,t35
i=i-1

log.(i+1,cmt,p1)

. téé:‘[;;pl

srl.(i+1,.,[..p1..],0,p)
sr2.(i+1,.,[..p1..],p):p<>pl .

wzpopl[ | [ Ji=ia
= 126,127,28 () sr2.(i+1,..[.pL.1p1)
t30:p<>pl

sr3.(i+1,..[.pL.1p):p<>pl ()
t33:p<>pl .

sri.(i+1,.,.)

t27:p=p1,0=01
i

Figure 115: Not in commit list implies intermediate log continuation record

reads a continuation record (7 + 1, ent, pl) with j < 7 < k. By Property 6.1, there is be a LogCnt(pl) event
that writes this log record. By Property 5, this LogCnt(p1) occurs causally between the LogObj(ol,p1) event
el and the commit event el’. By Properties 2, 3, and invariant (1), we know that the LogCnt(p1l) event must
occur on the path of program causality from el to el’. This is impossible in this situation because the only
events that occur on this path are LogObj events by assumption.

Existence of an event writing a DBu record for pl: Since case iii.b and case iii.c turned out to be
impossible, it is sufficient to consider case iii.a in the following. It remains to show that there exists an
event e8 that writes a DBu record after the update event e7 and before e9.

sr2.(j+1,.,.,p1)

132
p=pl

131
p=pl

sr3.(j,.,.,p1)

33 |
p=pt N log.(.dbu,p1)

Figure 116: Reactions to a read continuation record

It will turn out that this event is an reaction to a read continuation record of process pl. So let us
consider the 129 event of Fig. 111 in more detail. The possible reactions to a read continuation record are
shown in the automaton from Fig. 116. Again, there are three possibilities:

Case tii.d The continuation is updated to the database, and then a t33 event writes the DBu record for
pl. This event occurs causally after the update event t25 and causally before €9. Thus, in this case,
we have finished the proof of requirement B.2.2.1.

Case tit.e The continuation record is not updated to the database and there is no DBu record written
because the continuation is already in the redone list. In that case, a t30 event occurs with a condition
sr2.(j+1,[..p1..],-,p1l) in its preset.
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We will show below that, in this case, we have another LogCnt(pl) causally after the commit event
el’. By arguments already given in case ii.a, we know that, in this case, the situation meets the right
hand side of B.2.2.1.

Case iii.f The continuation record is not updated to the database and there is no DBu record written
because process pl is not in the commit list. In that case, a t31 event occurs with a condition
sr2.(j+1,.,c,p1) with ¢[pl] = 0 in its preset.

Since we have a t34 event with p = pl that encountered the commit record (k + 1,cmt, pl) before, we
know that there must be an intermediate event that reads a continuation record for process pl. We
can use the same automaton as in case iii.c (see Fig. 115). By the same arguments as in case #i.c,
there must be another LogCnt(pl) event on the path of program causality from the LogCnt(pl) e6 to
the commit event el’. This, however, was excluded by assumption. Thus, case #i.f is impossible.

It remains to show that, in case 7i.e, there is a LogCnt(pl) event that occurs causally after the commit
event el’ and before €9. By the arguments of case ii.a, this proves requirement B.2.2.1.

In order to prove the existence of this LogCnt(pl) event, let us investigate the chain of causes of the
t29 event with p = pl. The automaton is shown in Fig. 117 (note that this automaton is similar to the
one of Fig.113 in case iii.b). Thus, we know that there is a log record (j' + 1,cent,pl) with j < j'. By

sri.(i+1,...)

log.(j'+1,cnt,p1) ~ -

sr.(i+1,[..p1.],.
125, (i+1,[ 1)
t29: p<>pl

srl.(i+1,[..p1..],...)
sr2.(i+1,[..p1..],..p): p<>pl .

L] [ Ji=ia

126,127,128
30,131

t32:p<>pl
ii=i-1
() sri(+1,[.p1.]..p1)

sr3.(i+1,[..p1..1,p);p<>pl
133 [ |
Figure 117: Chain of causes for sr1(j+1,[..p1.],.,01,p1)
Property 6, we know that there is a corresponding LogCnt(pl) event. By Property 5, this LogCnt(p1l) event
occurs causally after e6. Since we know that no LogCnt(p1l) event occurs between e6 and el’, we also know

that the LogCnt(pl) event occurs causally after el’. Since the log record is read before €9, the LogCnt(pl)
event also occurs causally before €9. This finishes our proof of requirement B.2.2.1
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7.15 B.2.2.2: No skip of updates

At last, we verify requirement B.2.2.2, which is graphically represented in Fig. 118 again. Note that we have
renamed the commit event el’ to e2 for convenience. We must show that, after an object is updated in the
database by event e7, another update event €9 does not write an older value to the database.

WLck(o1,p1) casei: W[o01]

p=pl
LdCpy(ol,pl)
=
Cm caseii: obj.ol
LantIﬁ o
Y
LogObj(o1,p1) obj.ol @
1
LogObj D
/C obj.ol
Lck(ol)m
S~

obj.ol

Figure 118: Requirement B.2.2.2

In the Petri net model, there are only four possible transitions with a data causality arc to place object.
Thus, event €9 corresponds to one of the following transitions in the Petri net model:

case i: transition LdCpy(ol,p2) for some process p2.

case ii: transition UpdObj(ol,p2) for some process p2

case iii: transition t12, which updates object 0l during the redo procedure for some process p2.
case tv: transition t28, which updates object 0l during a restart of the server.

The different cases for event €9 are shown in Fig. 119. Note that ¢ occurs causally after ¢ because of
invariant (6) and because €9 happens causally after c— otherwise conditions ¢ and ¢’ are concurrent, which
contradicts invariant (): obj[ol] = 1.

In the following we consider each case separately.

Case i If we choose ¢2 = ¢’ and €10 = €9, case i immediately meets the situation on the right hand side
of requirement B.2.2.2 (case ).

Case ii In case e9 is an UpdObj(o1,p2) event, we first consider a chain of causes of the update event e9. An
automaton for a chain of causes of an UpdObj(o1,p2) event is shown in Fig. 120: the life cycle of a copy of an
object starting with a lock event. This gives us the situation shown in Fig. 121, where we have added a chain
of k.(p2,[..(o1,wr)..]) conditions from event el’ to event €9. The argument for this chain is the following:
First, we know that the WLck(o1,p2) event has a condition k.(p2,[..(0o1,wr)..]) in its postset. Moreover, the

96



casei: caseii:
obj.ol obj.ol
©) ©)
obj.ol 0 obj.ol o
Je9| LdCpy(o1,p2) Je9] UpdObj(o1,p2)
(et (e
obj.ol obj.ol
caseiii caseiv:
obj.ol obj.ol
©)
obj.ol e obj.ol e
Jeo|t12 Jeo|t28
0=01, p=p2 0=01, p=p2
(e (e
obj.ol obj.ol

Figure 119: Requirement B.2.2.2: Cases for event €9

WLck(o1,p2)
w2.(p2,01)
LdCpy(o1,p2)
R[o1]
cp.(p2,01,wr)
Wi(o1]

LogObj(o1,p2)
cp.(p2,01,ud)
UpdObj(o1,p2)

Figure 120: Chain of causes for UpdObj(o1,p2) event
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WLck(o1,p1)

Y
. w2.(pl,01)

LdCpy(o1,p1)

cp.(pl,01,wr)
WLck(o1,p2)

LogObj(01,p1) K.(pL[..(o1wr)..])

objiol () wa.(p2.01)

LdCpy(o1,p2)

C cp.(p2,01,wr)
k.(p2,[..(o1,wr)..])

LogObij(01,p2)

. cp.(p2,01,ud)

E UpdObj(o1,p2)

obj.ol

Figure 121: Situation in case i

UpdObj(o1,p2) €9 has a condition k.p2 in its preset. By Property 9.1, there are no LdCnt(p1) and RellLck(p1)
events between el’ and €9. By Property 9.2, there is a chain of k.(p2,[..(ol,wr)..]) conditions between el’
and e9.

Next, we distinguish two cases: €3’ = el and e3’ # el. If e3’ = el, we know that we have a path of
data causality from el to 9. Thus, the situation meets the right hand side of requirement B.2.2.2 (case 7).
If e3' # el, we know, by Property 8, that the corresponding lock events el’ and e4 are also different. By
requirement B.1.3, we know that either €9 occurs causally before e4 (this is impossible since this induces a
cyclic causality) or el’ occurs causally after e2. Moreover, we know by assumption that el’ must occur after
e7. Therefore, e2' occurs causally after e7. With ¢2 = ¢” and €10 = e2', this situation meets the right hand
side of requirement B.2.2.2 (case ii). Note that ¢ occur causally after ¢ because of invariant (6).

Case iii Now, we consider the case that €9 is a t12 event with p = p2 and o = ol. Remember that p2
could be equal to pl. The automaton from Fig. 122 shows the chain of causes of this event. Basically, this
is the redo procedure for process p2: The redo procedure is initiated by the Ignore(p2) event e5’; during the
redo procedure, a commit record of process p2 (event e6’) and an update record of process p2 for object ol
(event e7’) are encountered. These log records are written by the corresponding log events) e3' and e4'. This
situation is shown in Fig. 123. From the automaton, we know k < | < m. Moreover, we know that during
the redo procedure between event e5’ and e6’ there is a log record for each i + 1 with ¥ < 4 < m and the
encountered log records are different from (7 + 1, dbu, p2); the encountered log records for ¢ with k < i <1
are different from (i + 1, ent, p2). By the uniqueness of log records (Property 6), we know that there are no
log records (i + 1, dbu, p2) with k < i < m and no log records (i + 1, ent, p2) with k < i < 1. Thus, we know
that there is no LogCnt(pl) event between e3’ and e4’ by Property 5. By Property 1, we know that there
is a path of program causality from the LogObj(o1,p2) event e3' to the commit event e4’ on which neither a
LdCnt event nor a C event occurs.

Thus, €3’ is a directly committed LogObj(o1,p2) event, which allows us to apply Property 10. This gives
us the situation from Fig. 124.

Now, we distinguish two cases: the LogObj events el and e3’ coincide or are different. For el = e3', we
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e5’
Ignore(p2)
m=i

t9:p=p2<>p’

t13:p=p2<>p’
t18:p=p2<>p’
t21:p=p2<>p’ pr.(i+1,p2,false)
prl.(i+1,p2,false,.,p’):p'<>p
pr2.(i+1,p2,false,p’):p'<>p:
prd.(i+1,p2,false,p’):p'<>p2
pr5.(i+1,p2,false,p’):p'<>p2

118
p=p'=p2

t10:p=p2<>p’
t14:p=p2<>p’
t19:p=p2<>p’
123:p=p2<>p’

pra.(i+1,p2,false,p2)

19:p=p2<>p’

t13:p=p2<>p’
t18:p=p2<>p’
t21:p=p2<>p’

prl.(i+1,p2true,.,p’):p'<>p2
pr2.(i+1,p2,true,p’):p'<>p2
pra.(i+1,p2,true,p’):p'<>p2
pr5.(i+1,p2,true,p’):p'<>p2

prl.(i+1,p2,true,.,p2)

t10:p=p2<>p’ tl_ ’
t14:p=p2<>p’ pri.(k+1,p2,true,01,p2) i‘?:i?l
t19:p=p2<>p’ =
123:p=p2<>p’
112
p=p2 e9

Figure 122: Chain of causes for t12 event €9

WLck(ol,p1)

m pri.(.,p2,.)
C
demﬁ

LogObj(o1,p1)

LogObj(ol,pl)Iﬁ

LogObj [

cp.(pl,01,wr) log.(I+1,cmt,p2)

K (PLL (010 ]) . pra.(I+1,p2,false,p2)

pri.(.,p2,true)

log.(k+1,01,p2) LogObj(o1,p2)

Figure 123: The redo procedure initiating the t12 event
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WLck(o1,p1)

Y
. w2.(pl,01)

Ignore(p2,
n=m

pri.(.p2,.)

log.(I+1,cmt,p2)

WLck(o1,p2)

C |e2 :
- . pri.(.,p2,true)

log.(k+1,01,p2)

k.(p2,[..(o1,wr)..])

Figure 124: The corresponding LdCpy(01,p2) and WLck(o1,p2) events

have a path of data causality from el via €7’ to €9. Thus, we have the situation of the right hand side of
requirement B.2.2.2 (case i).

For el # €3’ we know, by Property 8, that e4 # el’. By requirement B.1.2, we know that either e2
happens causally before el’ or we know that e4’ happens causally before e4. For e2 < el’, we also know
that el’ happens causally after e7 because, by assumption, no lock event occur between e2 and e7. Thus
the situation meets the right hand side of requirement B.2.2.2 (case i) with ¢2 = ¢’ and €10 = e2'.

For e4’ < e4, we show that requirement B.2.2.1 is violated: The commit event e4’ occurs causally before
the WLck(o1,p1) event e4. We will show that there is no DBu record of process p2 written between e4’ and
ed—the existence of this DBu record, however, is required by B.2.2.1. Let us assume that such a DBu record
exists: This DBu record for p2 could only be written by a t17, a t33, or a LogDBu(p2) event. By invariant
(2) and the structure of these transitions, this event cannot occur between events e5’ and €9. Thus, the
event writing the DBu record for p2 must occur between e4’ and e5’. Thus, it receives a sequence number
i+ 1 with k¥ <4 <. From the automaton from Fig. 122, however, we know that there are no (i + 1, dbu, p2)
records with k < ¢ <. Thus e4’ < e4 is impossible, which finishes the proof of case .

Case iv At last, we consider the case of an update of object ol during the restart of the server (transition
t28). Figure 125 shows a backward automaton for the chain of causes for transition t28. The resulting
situation is shown in Fig. 126. Note that, for all conditions on the chain from e5’' to €9, we have r[ol] = 0,
i.e. object ol is not updated during the backwards scan before event €9. This property will be exploited at
the end of this proof. In addition to the chain of causes derived from the above automaton, we have indicated
also the LogObj(ol,p2) event e3’ that writes the update record encountered by event e7'. By requirement
B.3.2, we know that there is a direct commit event e4’ for this LogObj(o1,p2) event e3’. By Property 10, we
get the situation from Fig. 127.

Let us consider the situation of Fig. 127 and distinguish different cases: First, let us assume el = e3’. In
this case, we have a data causality from el to €9; thus, the situation meets the right hand side of requirement
B.2.2.2 (case 1).

For the rest of the proof, let us assume el # e3'. By Property 8, el # e3' implies e4 # el’. By
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le.m+1

25129 | RERES
i=i-1

srl.(i+1,r..);rfo1]=0
sr2.(i+1,r,.):rfo1] = 0

32 . t25: 0=01, p=p2

ii=i-1

sr3.(i+1,r..):r[o1]=0 . . srl.(i+1,r,[..p2..],01,p2): rlo1]=0

133
. 128: 0=01, p=p2
e9 ii=i-1

Figure 125: Chain of causes for t28 event

WLck(o1,p1)[e4]

V
. w2.(pl,01)

Ignore(p2)

V n=m
LdCpy(o1,pl)
p=pl

cp.(pl,01,wr)

v
LogObj(o1,p1) k.(pL[.(0L.wr).])

LogObj(ol,pl)m sri.(.,r,.):r[01]=0
LogObjD
C
Lck(ol,
oo )m\ log.(k+1,01,p2)

LogObj(o1,p2)

Figure 126: Backwards scan during restart of the server
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WLck(o1,p1) [e4]

Y
. w2.(p1,01)

Ignore(pz)

n=m
LdCpy(oL,p1)

cp.(pl,01,wr) WLck(o1,p2)

i
LogObj(01,p1) k.(pL[..(oLwr).])

log.(H+1,cmt,p1) (D= k.(p2[..(01wr).])

Figure 127: Complete situation in case iv

requirement B.1.3, this implies: €2 < el’ or ed’ < e4. We first consider the case e2 < el’: By assumption,
we know that no Lck(ol,.) event occurs between €2 and e7. Thus, el’ occurs causally after e7. Thus, €2’
occurs causally after e7 which, by invariant (6) also implies ¢ < ¢”. With ¢2 = ¢’ and e10 = €2’ the situation
meets the right hand side of requirement B.2.2.2 (case case ii).

It remains to consider the case e4’ < e4. We will show that this case is impossible: Let us consider the
transitions that could correspond to event e7. This could be transition LogObj(ol,pl), transition t12 with
p = pl and 0 = ol, or transition t28 with p = pl or 0 = 0l. Each of these events has a condition k.p1, pri.pl,
or sri in its immediate context. By invariant (2), this implies that €7 occurs causally before e5’ or occurs
on the path of sri conditions from e5’ to e6’. If event e7 occurs on the path from e5' to e6’, the event e7
is a 128 event with p = pl and o = o0l. This however is impossible, because this event adds object ol to
the redo list—remember that all conditions on the chain from e5' to €7’ are sri.(.,r,.) with r[ol] = 0. This
leaves the case €7 < e5’. In that case, we have e3' < el < €2 and, by Property 5, k < j <1 < m. By the
automaton of Fig. 125 and the uniqueness of sequence numbers of log records (Property 6), we know that
the log records written by el and e2 are read on the path from e6’ to €7’ as shown in Fig. 128. Remember
that, on the path from e5’ to e7’, we have only conditions sri.(.,r,.) with r[ol] = 0. Thus event €9’ can only
be a t27 event. This, however, implies that ¢[p] = 0 (i.e. process pl is no longer marked as committed, when
the update record for ol of process pl is encountered). On the other hand, we have a sr.(.,.,[..p1..]) after the
t34 event e6’. The automaton from Fig. 129 shows that, on the path from e6’ to €9', a continuation record
(i + 1,ent, pl) with j < 4 <[ is encountered (pl is removed from the commit list by t32). This implies,
that there is a LogCnt(pl) event causally between el and e2. By invariant (1) and the context of transition
LogCnt(pl) this event must occur on the path of program causality form el to e2. By assumption, we know
that only LogObj events can occur on this path; thus this last case is also impossible.

102



Ignore(pZ)

n=m

sri.(.,r,.):rfo1]=0

t34 [e6] n=l

p=pl

sri.(.,r,.):rfo1]=0

=pl
25 [e8]0=0)
. sri(j+1,r,c,01,pl):r[o1]=0, c[p1l] = 0

127 [e9] c[p1]=0

sri.(.,r,.):r[01]=0

t25
p=p2
. srl.(k+1,r,.,01,p2):r[01]=0

28
p=p2

Figure 128: More details of the restart procedure

le.m+1

134 ] e

sr.(i+1,.,[..p1..])

125 134,135
t29:p<>pl . i=i-1
srl.(i+1,.[..p1..],..)
sr2.(i+1,.,[..p1..],p):p<>pl
132 [ Jwop=p1
ii=i-1
sr3.(+1,.,[..p1..],p):p<>pl () sr2.(+1,.[.p1.1p1)
33
. t32: p=pl
i=i-1
.—. SFi.(.r.y,p1)

eg [ ]te7:p=p1

Figure 129: Automaton that proves the existence of an intermediate LogCnt(p1) event.
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8 Basic properties

In this section, we summarize the definitions of all abbreviations, and we prove all basic properties, used in
the previous proofs.

8.1 Abbreviations

We start with the abbreviations. Table 3 shows the abbreviations for place names.

cn = continuations
cp = copies
cr = crashed processes
kn = known
Ic = log counter
Ick = locks
ob = objects
pr = process redo
p = processes
sr = server restart
svcr =  server crash
uk = unknown
unl = unlocked
wlc = wickent = wickcount
xlck = xlocks

Table 3: Abbreviations of place names

Table 4 shows the definition of collections of places. Each collection is represented as a sum of places.
Basically, a collection sums up all tokens in different places. We use the projection to the first or second
component in order to select a particular component of a token in the sum. The projection functions are
denoted by pr; and prs, respectively.

a = p+pr(rl+r2+wl+w2)+cl+c2+c3+cd+c5+cb
a = p+pr(rl+r2+wl+w2)+cl+cd+ch+cb

cnt = prq(continuations)
k = pri(known)

obj = pri(objects)

pri. = pra(pr + prl + pr2 4+ pr3 + prd + pr5 +pr6)

red = pri(redone)

rel = pri(releasing)

sri = sr+srl+4sr2+sr3

Table 4: Abbreviations of projections and place collections

8.2 Invariants

Next, we define the invariants that are used in the proof. The invariants are shown in Table 5. All invariants
are an immediate consequence of a so-called place invariant of a Petri net [18, 19]. Invariants (1)-(6) and
(10) can be immediately checked from the Petri net model: Each transition that removes one token from
the corresponding collection of places also adds one token to the corresponding collection. Initially, the
number of considered tokens is 1. Therefore, the sum of considered tokens in the collection is 1 throughout
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) alpl] +erpl] +sfpl] =1

) k[pl] + uk[pl] + rel[pl] + pri[pl] + red[pl]+ | sri + svcr |= 1

) cnt[pl] =1

) pri(xick + Ick)[o1]+ | sver +sri |=1

) ull(pL,0l)] + r2[(p1, 01)] + w2[(pl,01)] + pr12(cp)[(pl, 01)] + crlpl] + s[pl] = 1
) objol] =1

) wickent(pl,0) = —cp(pl, o1, wr)

) locks(ol,[]) = Vp,Vm' : (k.(p, m') = m/[(0l,rd)] = 0)

) locks(ol,m) = Vp,¥Ym',Vz : (k.(p,m') = m'[(0o], z)] = 0)

(10) |lc|=1

Table 5: Invariants

the execution. This can be easily checked for each transition of the Petri net model separately—there are
techniques to check this fully automatically [3]. Therefore, we skip the details of these proofs. We only
mention the non-standard transitions of the Petri net model: the transition that models the crash of a client
and the transition that models the crash of the server. These transitions remove all tokens from a particular
set of places. For each of invariant (1)—(6) and (10), the occurrence of these transitions establishes the initial
marking of all places of the corresponding invariant.

Invariants (7), (8), and (9) are slightly more involved. They are an immediate consequence of the
invariants below, which are place invariants and can be checked by standard techniques:

(7) >, wickent[(pl,n)] - n =3 cpl(pl, 0,wr)] + w2[(pl, 0)]
(87) >, xlocks[(o1,0)] = 3_ , k[(p,m)] - m[(o1,wr)]
(9 locks[(ol,m)]-|m | =" . kl(p,m)] - m[(ol,rd)]

Invariant (7') says that the number of write locks for process pl, which are counted in wickent(pl,n) is equal
to the number of write copies of process pl plus the number of copies that pl is going to receive (i.e. when
it is in state w2 of the write protocol). Invariants (8') and (9') says that the number of locks on object ol
that are represented in the corresponding lock lists (xlocks or locks) coincides with the number of locks on
object ol that are represented in the list of known processes (k). (8') considers the number of read locks;
(9') considers the number of write locks.

These properties can be also verified for each transition separately. Note that the non-standard transitions
modeling the crashes reset both sides of the equation to 0.

8.3 Behavioral properties

Next, we verify the behavioral properties.

Property 1 Let el be a LogCnt(pl) or a LogObj(ol,pl) event, and let €2 be a commit event of process pl.
Moreover, let there be no LogCnt(pl) event that occurs between el and e2. Then, there is a path of program
causality from el to e2 on which only c2.pl conditions occur and on which no LdCnt events, RelLck events,
or C events occur.

Figure 130 shows a graphical representation of Property 1. The proof of Property 1 is in two steps. First,
event el has a ¢2.pl condition in its postset, and e2 has a ¢2.pl in its preset. By invariant (1), we know that
there is a path of causality on which only conditions a.p1, cr.pl, and s.pl occur (remember that, by definition
of a, condition ¢2.pl is a a.pl condition). By assumption, we know that no LdCnt(p1) event occurs on this
path. Figure 131 shows an automaton that covers all paths from el to e2 along invariant (1) on which no
LdCnt(pl) events occur. All paths meet the right hand side of Property 1.

Property 2 Let el be an event with an a.pl condition cl in its postset and e2 be an event with an a.pl
condition c2 in its preset, and let there be a path of program causality from el to e2 on which no LdCnt event

105



LogCnt(p1),
LogObj(01,p1)

/
LogCnt(pl)Ig\
AN

c2.pl

deCnt, RellLck, C
V

el

LogCnt(p1),
LogObj(o1,p1)

Figure 131: Property 1: Automaton for (1) paths from el toe2
occurs. Then, all conditions occurring on the path of program causality from el to e2 are a.pl conditions.
Moreover, there is no LdCnt(pl) event between el and e2.

Figure 132 shows a graphical representation of Property 2.

IXLdem(pl)

Figure 132: Property 2

The automaton from Fig. 133 shows all paths of program causality from el to e2 on which no LdCnt
events occur. Note that there are three instances for el in this automaton: one instance with an arc of
program causality from el to an a.pl condition, one instance with an arc of program causality to a cnt.pl
condition, and one instance with an arc of program causality to a log.(.,cnt,pl) condition. But, only the
first instance establishes a path of program causality to e2 (on which no LdCnt event occurs). Thus, on
all paths of this automaton from el to e2, there are only a.pl conditions. It remains to show that there is
no LdCnt(pl) event between el and e2: A LdCnt(pl) event e has a s.pl condition in its preset and a a.pl
condition in its postset. By invariant (1), this event cannot occur between el and e2—otherwise a s.pl and
a a.pl are concurrent, which violates the invariant.

Property 3 Let el be an event with an a.pl condition cl in its postset, and let e2 be an event with an a.pl
condition c2 in its preset. Furthermore, let el occur causally before €2 with no intermediate LdCnt(pl) event.
Then, there is a path of program causality from cl to ¢2 on which no LdCnt event occurs.

Figure 134 shows a graphical representation of Property 3.

By invariant (1), we know that there is a path of causality from el to e2 on which only conditions of this
invariant occur. The automaton from Fig. 135 shows all these paths on which no LdCnt(p1l) events occur,
which are excluded by assumption. All paths from el to e2 are paths of program causality on which only
conditions a.pl occur. This proves Property 3.
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Figure 133: Property 2: Automaton for paths of program causality from el to e2

deCnt(pl) =

Figure 134: Property 3

LdCnt(p1)

@ a.pl @ a.pl

Figure 135: Automaton proving Property 3
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Property 4 Let el be an event with an a.pl condition cl in its preset. Then, there exists a LdCnt(pl) event
e2 with a path of program causality from e2 to ¢l on which only a.pl conditions occur and on which no
LdCnt(pl) event occurs.

Figure 136 shows a graphical representation of Property 4.

LdCnt(p1)

(cDap1 cDap1
=>
Y Y

Figure 136: Property 4

The automaton from Fig. 137 shows the chain of causes of event el and immediately proves the property.

LdCnt(p1)

Figure 137: Property 4: Chain of causes of event el

Property 5 1. Let el be an event with a lc condition in its context. Then, event el has a lc.j’ condition
in its preset and a lc.j condition in its postset for some j and j' with j' < j <j +1.

2. Let el and e2 be two events that both have an Ic condition in its context. Then, event el and e2 are
causally ordered in one way or the other.

3. Let el be an event with a |c.j' condition in its preset and a lc.j condition in its postset, and let e2 be an
event with a lc.k condition in its preset and a lc.k' condition in its postset. Furthermore, let el occur
causally before €2 (see Fig. 138. Then we have el = €2 or we have j < k.

Figure 138 shows the graphical representation of Property 5.3. Property 5.1 follows immediately from

Figure 138: Property 5.3: el =e2or j <k

the structure of the transitions of the Petri net model: Each transition which accesses the log counter Ic in
its preset and its postset. Moreover, each transition either increments the value or leaves it unchanged.
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Property 5.2 follows immediately from invariant (10), which says that there is exactly one token on place
Ic. If the events el and e2 were not causally ordered, invariant (10) would be violated.

Property 5.3 follows from the automaton shown in Fig. 139: In case el # €2 we know that there is a
path from the lc.j condition to the lc.k condition along invariant (10); on this path, the counter i is only
increased. Therefore, we have k > j.

=i+l

Figure 139: Property 5.3: Automaton along invariant (10)

Property 6 1. Let ¢ be a log.(j+1,z,pl) condition for some value z and some process pl. Then, there
exrists an event e that e has a Ic.j condition in its preset and has a Ic.j+1 condition in its postset such
that there exists a path of causality from e to ¢ on which only lc.(j+1,z,p1) conditions occur. Let us call
this event e a log event e for the log.(j+1,z,pl) condition c. For z = ol for some object ol, event e is
a LogObj(ol,pl) event. For z = cnt, e is a LogCnt(pl) event. For z = c¢mt, e is a commit event with
p=pl. For z =dbu, e is a LogDBu(pl) event, a t17 event with p = pl, or a t33 event with p = pl.

2. Let cl be alog.(j+1,z1,p1) condition, and let c2 be a log.(j+1,22,p2) condition. Moreover, let el be a
log event for cl, and let €2 be a log event for ¢2 (see a.). Then, we have el = e2.

In particular, we have z1 = z2 and pl = p2. Moreover, for each log condition, the log event is unique.

Property 6.1 follows from the automaton shown in Fig. 140, which shows the chain of causes of a
log.(j+1,z,p1) condition. The arguments for Property 6.2 are as follows: By Property 6.1, we know that

€ Icj

lc.j+1

*Dz( 10g.(+1,2,p1)

C_P log.(j+1,z,p1)

Figure 140: Property 6.1: A chain of causes for a log.(j+1,z,p1) condition

for c1 there is a log event el with a lc.j condition in its preset and a lc.j+1 condition in its postset. By the
same argument, we have a log event e2 for ¢2 with a Ic.j in its preset and a lc.j+1 in its postset. Let us
assume el # e2. By Property BP:LogOrder.2, we know that el and e2 are causally ordered in one way or
the other. In either case, Property 5.3 gives us k + 1 < k — a contradiction. Thus, we have el = e2.

Property 7 1. For W[ol] event el with p = pl and each LogObj(ol,pl) el, there exists a WLck(ol,p1)
event €2 and a LdCpy(ol,pl) event e3 as shown in Fig. 141.
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WLck(o1,p1)

WI[o1]: p = pl [e1 = W[ol]: p = pl
LogObj(o1,p1) LogObj(o1,p1)

Figure 141: Property 7.1
2. For each R|ol] event el with p = pl, there exists a Lck(ol,pl) event e2 and a LdCpy(ol,pl) event e3
as shown in Fig. 142.

Lck(o1,p1)

r2.(pl,01),
w2.(p1,01)

V
LdCpy(o1,p1)

cp.(pl,01,rd),
cp.(pl,0l,wr)

R[ol]: p=pl => R[o1]: p=pl

Figure 142: Property 7.2

3. For each UpdObj(ol,pl) event el, there exists a LogObj(ol,pl) event €2 as shown in Fig. 143.

LogObj(o1,p1)

cp.(pl,01,wr)

R[o1]: p = p1 = UpdObj(o1,p1)
Figure 143: Property 7.3
Property 7.1 and 7.2 follow from the automata shown in Fig. 144, which represent a chain of causes of

the corresponding events. Property 7.3 follows immediately from the Petri net model—therefore, we omit
the corresponding automaton, which is almost identical to the situation in Fig. 143.

Property 8 1. In the following situation

Lck(o1,p1) Lck(o1,p1)
r2.(p1,01), r2.(p1,01),
w2.(p1,01) w2.(p1,01)

LdCpy(oL,p1)

we have el = el’ if and only if e2 = 2.

LdCpy(o1,p1)

2. In the following situation
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e2

WLck(o1,p1)

LdCpy(o1,p1)

cp.(p1,01,wr)

WI[ol]: p=pl
LogObj(o1,pl)

el

Lck(o1,p1)

LdCpy(o1,p1)

R[ol]: p=pl

e2

r2.(p1,01),
w2.(p1,01)

e3
cp.(p1,01,rd),

cp.(p1,01,wr)

el

Figure 144: Automata for proving Property 7.1 and Prop 7.2

LdCpy(o1,p1)

cp.(p1,01,rd),
cp.(pl,01,wr)

LogObj(ol,pl)

we have €2 = e2' if and only if e3 = e3'.

3. In the following situation

LogObj(o1,p1)

cp.(p1,01,ud) .

UpdObj(o1,p1)

we have €3 = €3’ if and only if e4d = e4’.

Here, we only proof Property 8.2; the other proof are analog: First, we assume e2 = e2'. We must show
that e3 = e3’. Let us assume to the contrary that e3 # e3'. We know that e3 and e3’ occur causally after 2
and on the same path of causality along invariant (5). Without loss of generality, we assume that e3 occurs
first. Thus, we have a path cp.(p1l,01,wr) conditions from e2 via e3 to e3’. This, however, is impossible since
€3 has a cp.(pl,0l,wr) condition in its preset, but not in its postset. Second, we assume e3 = e3'. By the
same arguments, we know there is a path of cp.(pl,01,wr) conditions from e2 to e2' (or vice versa). Again,
this is impossible, because €2 and e2’ have a cp.(0ol,p1,wr) condition in their post set but not in their preset.

The arguments for the other properties are the same; the only difference is that we use r2.(pl,01),

LdCpy(oL,pl)

cp.(p1,01,rd),
cp.(p1,01,wr)

LogObj(01,p1)

LogObj(ol,pl)

cp.(p1,01,ud) .

UpdObj(o1,p1)

w2.(pl,01) chains or cp.(pl,01,ud) chains in the argument respectively.

Property 9

1. If there is a path of r2.(pl,01), w2.(pl,01), and cp.(pl,0l,.) conditions from an event el to an event
€2 # el, then there is no LdCnt(p1l), no LogDBu(p1), no UnLck(ol,pl), and no RelLck(pl) event between

el and e2 (see Fig. 145).

2. Let there be two events el and e3 such that el occurs before €2, and such that el has a a.pl condition
and a k.(pl,[..(o1,wr)..]) condition in its postset, and such that €2 has a a.pl condition and a k.(pl,.)
condition in its preset. If there is no LdCnt(pl) event and no RelLck(pl) event between el and €3, then

there is a path of k.(p1,[..(o1,wr)..]) conditions between el and e2 (see Fig. 146).

3. Let there be three events el, €2, and e3 such that el occurs before €2, and such that e2 occurs before
e3. Moreover, let there be a a.pl condition and a k.(p1,[..(01,x)..]) in the postset of el, and let there be
a a.pl condition and a k.(pl,.) condition in the preset of 3. If there is no LdCnt(pl) event between el
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Iﬁ LdCnt(p1)

r2.(p1,01),
w2.(p1,01), => LogDBu(pl)
cp.(pl,01,.) UnLck(o1,p1)
RelLck(pl)

Figure 145: Property 9.1

el el
a.pl k.(p1,[...(o1,wr)...])

LdCnt(p1) IXL

RelLck(p1) Iﬁ K.(pL.[...(01wr)...])

I
\%

a.pl k.(p1,.)
e2 e2

Figure 146: Property 9.2

and e3, and if there are no RelLck(pl) and UnLck(ol,pl) events between el and €2, then there exists
an event e4 causally between €2 and e3 such that there is a path of k.(p1,[..(01,x)..]) conditions between
el and ed (see Fig. 147).

ap1() \\ 1) k.(pL[...(01X)..])
Iﬁ RelLck(p1)

IXL UnLck(o1,p1) =

Lck(o1,p1)

k(pL[..(01.%)..])

Figure 147: Property 9.3

Proof Property 9.1 : We know by invariant (5), that LdCnt(p1), LogDBu(p1) and UnlLck(o1,pl) events
cannot occur between el and e2—otherwise a s.pl condition or a ul.(pl,01) is concurrent to one of the
w2.(pl,01), r2.(pl,01), or cp.(pl,0l,.) conditions on the path from el to e2. It remains to show that there
is no RelLck(pl) event between el and e2: Each event that has a w2.(pl,01), r2.(p1l,01), or cp.(pl.0l,.)
condition in its postset has also a.pl in its postset. Thus, el has a a.pl condition in its postset (remember
that el # €2). Let us consider a RelLck(pl) event e and a chain of its causes as shown in Fig. 148. We must
show that this event e occurs before el or after €2: Remember that e’ does not occur between el and e2
as shown above; i.e. e’ occurs before el or occurs after e2. In the first case, e occurs also after e2, which
finishes the proof. Let us consider the second case: First, we know that el and €’ are different. Moreover,
there is a unique path of causality from e’ to el along invariant (1). The next event on this path from e’ to
el is the RelLck(pl) event e (see Fig. 148). By ¢’ # el, we know that e occurs before el on this path.
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ul.(p1,01) .
ul.(p,01) ()

| e'| LogDBu(p1)

v
[ e |RelLck(p1)

Figure 148: Property 7.1: Causes of a RelLck(pl) event

Proof Property 9.2 By invariant (2), we know that there is a unique path of causality from cl via ¢2
to e3 along this path. The automaton from Fig. 149 shows all paths from ¢1 to e3 along invariant (2) on
which no UnLck(o1,p1) and RellLck(ol) events occur—remember that these are excluded by assumption. This
automaton shows that we either have a path of k(p1,[..(0o1,wr)..]) conditions from el to €2, or we have a
ChecklIn(pl) event between el and e2. This, however, is impossible: Remember that a Checkln(pl) event has
a cr.pl condition in its preset. On the other hand, we know, by Property 3, that there is a path of a.pl
conditions from el to e2. Thus, an occurrence of Checkln(p1) between el and e2 would violate invariant (1).

k.(p1.,[..(o1,wr)..])

Checkin(pl) . . unknown.pl

Figure 149: Property 9.2: Automaton for paths from cl to e2 along invariant (2)

Proof Property 9.3 By invariant (2), we know that there is a unique path of causality from c1 via ¢2 to
e3 along this path. The automaton from Fig. 149 shows all paths from ¢l to e3 along invariant (2). On the
paths with the UnLck(o1,p1) or the RelLck(pl) event e4, the proof is finished because we know that e4 does
not occur between el and e2 by assumption; thus e4 occurs after e2. So it remains to consider the other
cases: In these other cases, we know that we have a CheckIn(pl) event between el and e3. We will show
that this impossible. Remember that a Checkln(pl) event has a cr.pl condition in its preset. On the other
hand, we know, by Property 3, that there is a path of a.pl conditions from el to e3. Thus, an occurrence of
CheckIn(p1) between el and e3 would violate invariant (1).

Property 10 The implication shown in Fig. 151 holds.

Proof Property 10: Let us consider the situation on the right hand side of Fig. 151. By Property 7.1
we immediately get the situation shown in Fig. 152. Moreover, we know that there are no LdCnt(p1) events
and RellLck(pl) events between e4 and el by Property 148. By Property 2, we know that there is a path

113



k.(p1,[.(01,)-])

Checkin(pl) . . unknown.pl

Figure 150: Property 9.3: Automaton for paths from ¢l to e3 along invariant (2)

WLck(o1,p1) [ed]

LogCnt(pl) E cp.(pl,01,wr)

LogObj(o1,p1)

Figure 151: Property 10: Context of a directly committed LogObj(ol,p1) event
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Wick(o1,p1) [e4]

Y
. w2.(pl,01)

i
LdCpy(o1,p1)

cp.(pl,01,wr)

LogObj(o1,p1)

Figure 152: Situation after applying Property 7.1

of a.pl conditions between e5 to el The automaton from Fig. 153 shows all possible paths from e5 to el
along a.pl; moreover it shows all possible paths from el to el’. This gives us the situation from Fig. 154,

e5

LdCpy(ol,pl)
apt LMDD
LogCnt(pl) €6
c2.pl LogObj(.,p1)
LogObj(o1,pl) el
c2.pl LogObj(.,p1)
C

el
Figure 153: Automaton for paths from e5 to el’ along a.p1 conditions

where we have added the k.(pl,.) condition in the context of e4 and el’ that follows immediately from the
Petri model. Since there are only LogObj events on the path from el to el, we know that there are no
RelLck(pl) and LdCnt(pl) events between el and el’—otherwise invariant (1) is violated. Altogether, there
are no RellLck(pl) and LdCnt(p1) events between e4 and el’. By Property 9.2, we know that there is a path
of k.(p1,[..(o1,wr)..]) conditions between e4 and el, which gives us the situation on the right hand side of
Fig. 151.

8.4 Assumptions on the executions

In our specification and in the proof, we made some assumptions on the executions. Some of these assump-
tions are explicit in the definition of an execution of a Petri net model (e.g. the acyclicity of causalities).
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Wick(o1,p1) [e4]

‘ w2.(p1,01) . k.(pL,[..(01,wr)..])

i
LdCpy(o1,p1)

Y
LogCnt(p1) ﬂ cp.(p1,01,wr)

apl (O k(p1.)

Figure 154: Situation after applying the path automaton

Other assumptions, however, must still be checked for our Petri net model. Here, we verify these remaining
assumptions.

We start with the assumption that a path of data causality always concerns the same object, and that a
path of program causality always concerns the same process. For short, we say that a path of causality is
on the same instance of an object or of a process, respectively.

Property 11 (Causalities are on the same instance) 1. Let el be an access event on some object
ol, and let e2 be an access event on some object 02. If there is a path of data causality from el to e2,
then we have ol = 02.

2. Let el be a process event of process pl, and let €2 be a program event of process p2. If there is a path
of program causality from el to €2, then we have pl = p2.

This assumption is graphically represented in Fig. 155. This property can be easily checked, by following

I
\%2

0l=02

=> pl=p2

Figure 155: Property 11: Causality are on the same instance

the paths of data causality or program causality in the Petri net model. On these paths, the value of o resp.
p does never. Formally, this could be proven by the corresponding automata: For data causality, we can use
the automaton from Fig. 88 on page 76. For program causality, we can use the automaton from Fig. 60 on
page 56.

The second assumption is that each path of data causality originates from the corresponding object in
the initial marking of place objects—its initial value in the database. Likewise, we assumed that each path
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of program causality originates in the initial marking of place continuations—the initial continuation of the
process. We formalize this property local to the context of each condition and each event.

Property 12 (Initialized paths) Let el and e2 be two events, let ¢ be a condition such that el is in the
preset of ¢ and e2 is in the postset of c.

1. Letel and e2 be two events, let ¢ be a condition such that el is in the preset of ¢ and €2 is in the postset
of c. If the arc from c to e2 is a data causality, then the arc from el to c is also a data causality.

2. Let el and e2 be two events, let ¢ be a condition such that el is in the preset of ¢ and e2 is in the
postset of c. If the arc from c to €2 is a program causality, then the arc from el to c is also a program
causality.

3. Let e be an event with an arc of data causality to some condition cl, then there exists a condition c2
in the preset of el with an arc of data causality from c2 to e.

4. Let e be an event with an arc of program causality to some condition cl, then there exists a condition
c2 in the preset of el with an arc of program causality from c2 to e.

This assumption is graphically represented in Fig. 156. The proof of this assumption is straight-forward.

1 3 €
= © [e] = [e]
CY

1l
\

Figure 156: Property 12: Initialized paths

The third and forth item immediately follows from the structure of the transitions of the Petri net model:
Each transition with an outgoing data causality arc has in incoming data causality arc; the same holds for
program causality arcs.

The proof of the first item is similar: Except for place objects each place with an outgoing data causality
arc has only incoming data causality arcs. So, the only condition ¢ that could violate the property is a
objects.(ol,v) condition. Let us assume we have such a condition ¢ in an execution that violates item 1:
Then, there is an incoming arc of this condition ¢ that is no data causality. Furthermore, there is an
outgoing arc of this condition that is a data causality. From the Petri net model, we know that the only
in-going arc of ¢ that is no data causality comes from an arc label by (01, invalid)—this implies v = invalid.
On the other hand, each out-going data causality arc is labeled by (o1, valid). Thus, we have v = wvalid.
Which is a contradiction.

The arguments for item 2 are analog for place continuations.
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9 Conclusion

We have presented a formal proof for a design pattern for the fault-tolerant execution of long-running parallel
programs. The proof is admittedly long and comprises many cases, but its parts and the applied methods
are simple: automata for distinguishing the relevant cases and for adding further details to a considered
situation. This way, the implication between situations are verified in a constructive way.

Up to now, the proof is hand-made. But, finding the corresponding automata for a given Petri net is
straight-forward in most cases. Given the automaton, checking the arguments is arduous but not difficult.
Basically, it is the vast number of different cases that intimidate a human proof checker. This task, however,
could be solved by automated theorem provers in a way similar to the proof checkers proposed in [3]—in
fact, some tasks can already be solved by this tool.

The development of a tool supporting the methods used in this paper is an ongoing project. In the long
run, a tool should be able to construct and to check the arguments given in Sect. 7—the most tedious part
of this paper. The hand-made proof in this paper is one milestone on the way towards this goal.
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