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ABSTRACT

Finite element approximation of vector equations gives rise to very large, sparse
linear systems. In this dissertation, we study some domain decomposition methods
for finite element approximations of vector-valued problems, involving the curl and
the divergence operators. Edge and Raviart—Thomas finite element spaces are em-
ployed. Problems involving the curl operator arise, for instance, when approximat-
ing Maxwell’s equations and the stream function—vorticity formulation of Stokes’
problem, while mixed approximations of second order elliptic equations and sta-
bilized mixed formulations of advection—diffusion equations give rise to problems
involving the divergence operator.

We first consider Maxwell’s equations in three dimensional conductive media
using implicit time—stepping. We prove that the condition number of a two-level
overlapping algorithm is bounded independently of the number of unknowns, the
number of subregions, and the time step.

For the same equation in two dimensions, we show that the condition number
of certain new iterative substructuring methods increases slowly with the number
of unknowns in each substructure, but is independent of the time step and even
large jumps of the coefficients. We also analyze similar preconditioners for a three—
dimensional vector problem involving the divergence operator, and prove that the
preconditioners are quasi—optimal and scalable in this case as well.

For each method, we provide a series of numerical experiments, that confirm
our theoretical analysis.

This work generalizes well-known results for scalar second order elliptic equa-

tions and has required the development of several new technical tools.
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Chapter 1

Introduction

Computational electromagnetics study the numerical approximation of Maxwell’s
equations. These equations describe electromagnetic phenomena and form a vector
system of time—dependent partial differential equations. In the last ten years,
computational electromagnetics has become an extremely important research area
in numerical analysis. Among the areas of interest are the simulation of antenna
propagation in free space, scattering by complicated objects, analysis of optical
devices in integrated optics, and calculation of eddy currents in electric conductors.

This thesis focuses on the construction of preconditioners for finite element (FE)
approximations of Maxwell’s equations and some vector valued problems involving
the divergence operator. Many of these results have already appeared as technical
reports and some have been submitted for publication; [56, 57, 62]. We note that
the results of Chapter 4 have been obtained jointly with Barbara Wohlmuth and
Olof Widlund.

For the analysis of Maxwell’s equations, suitable Sobolev spaces have to be
introduced: H(curl; ) and H(div;2) are the spaces of square—integrable vec-
tors on the domain {2, with square—integrable curl and divergence, respectively;
see [26]. Suitable FE spaces, conforming in H(curl;{2) and in H(div;2), were
introduced in the late 1970’s, in particular, the Nédélec or edge element spaces, con-
forming in H(curl; ), and the Raviart-Thomas spaces, conforming in H(div ; Q);
see [44, 45]. These approximation spaces ensure the correct type of continuity

across the elements of the triangulation. Nédélec FE vectors have a continuous



tangential component across the boundaries, as is physically required for the elec-
tric and magnetic fields, while Raviart-Thomas vectors have a continuous normal
component, as is required for the electric and magnetic induction; see [18].

The study of efficient ways for solving the resulting algebraic system has re-
cently become the subject of extensive research. In a Domain Decomposition (DD)
approach, an approximate solver for the solution of a differential equation in a do-
main {2 is obtained by solving problems over smaller subregions and then patching
together the local solutions, by imposing continuity of suitable traces on the inter-
faces between the subregions. Iterative schemes can naturally be devised, where,
starting from an initial guess, one solves the local problems, in parallel or in se-
quence, in each step. These basic iterative methods give rise to preconditioners
that can be employed with Krylov—type methods to accelerate the convergence.
Finally, a coarse problem can be added to make the convergence independent of
the number of subregions. By their very nature, DD methods can, quite natu-
rally, be implemented on parallel computers and they can give rise to scalable
preconditioners.

Many of DD methods can be viewed as Schwarz preconditioners; see [54]. A
Schwarz preconditioner is defined by a family of subspaces, the sum of which
equals the original FE space, and solvers that are employed in these spaces (exact
or inexact solvers can be used). The algorithms considered here are two—level
methods, where the subspaces are related to a partition of the original domain into
smaller subdomains, and to a coarse space, built on a coarse triangulation.

We have studied variational problems involving the following bilinear forms

a(u,v) = /au-v da:—i—/bcurlu-curlv dz, (1.1)
Q Q
and
a(u,v) = /au-vdx+/bdivudivv dz, (1.2)
Q Q

defined in H(curl; Q) and H(div;$), respectively. The domain © is a bounded
connected polygon in R? or a polyhedron in R3. Dirichlet, Neumann, and Robin

conditions can be considered.



The study and analysis of preconditioners for Nédélec and Raviart—Thomas
approximations is quite new. Extensive work has started only in the past three
years, in order to extend classical Schwarz preconditioners to these vector problems.
Two—level overlapping Schwarz preconditioners for H(div; 2) and H (curl; 2) were
developed for two dimensions, in [6]. Multigrid and multilevel methods were con-
sidered in [6, 5, 31, 30, 7], and an iterative substructuring method in [3]. We
also mention [27, 25, 13, 39, 40, 16, 52, 53], which report on a study of a class
of two- and multi-level methods for mixed approximations of Poisson’s equation.
In [56], we have studied a two-level overlapping method for H(curl; ) in three
dimensions, and in [33], we have extended our results to problems in H(div;{2)
and with variable coefficients. In [57] and [62], we have studied some iterative

substructuring methods for problems in two and three dimensions, respectively.

1.1 Continuous problems

In this section, we will briefly review some problems involving the curl and diver-
gence operators.
When time-dependent Maxwell’s equations are considered, the electric field u
satisfies the following equation
0u Ju oJ
curl (g curlu) +e— 40— = ——
(v )teaE Yo =

Here J(x,t) is the current density and €, p, o are positive semi-definite tensors

. in Q x (0,T). (1.3)

that, in general, describe the electromagnetic properties of the medium. For their
meaning and for a general discussion of Maxwell’s equations, see [43, 18, 35]. A
similar equation holds for the magnetic field. For a conducting medium and low—
frequency fields, the conductivity o is large and the term in (1.3) involving the
second derivative in time can be neglected, giving rise to a parabolic equation.

For a perfect conducting boundary, the electric field satisfies the essential
boundary condition

u x np, =0.
A natural boundary condition

curlu X n,, =0,

3



can also be considered; see [18].
When Equation (1.3) is discretized with an implicit finite difference time scheme,

the following equation has to be solved
au+ curl (bcurlu) =F, (1.4)

in each time step. Here, a tends to infinity as the time step goes to zero and, in
the general case, depends on € and o, b is equal to 1/u, and F depends on the
current density J, as well as on the solution at the previous steps. The variational
formulation of (1.4) involves the bilinear form defined in (1.1).

For the spatial approximation of (1.3), Nédélec spaces can be employed; see
[44], [45], and Chapter 2. See [8], [41], [42], [15], [9], for the finite element and
spectral element approximation of time-dependent Maxwell’s equations and [49],
for a discussion of approximations of hyperbolic and parabolic equations.

Given a porous medium and a fluid in it, Darcy’s law states that the pressure

p and the velocity v of the fluid are related by the equation
Agradp = v, (1.5)

where A is a symmetric positive—definite tensor. In addition the velocity satisfies
the equation
—divu = f, (1.6)

where f is a forcing term. Equations (1.5) and (1.6) give rise to the following

mixed system
A~lv —gradp = 0,
—divv = f. (L.7)
Dirichlet
P = g1,
or Neumann

(Agradp) -n=v-n= g,

conditions can be considered on the boundary of the medium. For the approxima-
tion of the velocity, Raviart-Thomas spaces can be employed; see [48], [44] [45],
[14], and Chapter 2.



Stabilized mixed formulations of the Stokes problem can also give rise to prob-
lems involving the divergence operator; see [14, Ch. VI] and the references therein.

Still other applications of the space H(div; ) are given in [6].

1.2 Two—level overlapping methods

Two-level overlapping methods give rise to optimal and scalable preconditioners
and their application to scalar second—order problems has been studied extensively;
see [54]. We consider some problems involving bilinear forms of (1.1) and (1.2),
with strictly positive coefficients a and b.

In [6], a two-level overlapping preconditioner for two-dimensional problems
involving the bilinear form (1.2) is studied. This result is also valid for H(curl; Q).
In this thesis, we have extended this result to the three-dimensional case. Our
original analysis can be found in in [56]. We also note that our results have been
then extended to the case of H(div;€2) and our bounds have been improved, in
(33].

To begin a more detailed discussion, consider first a shape-regular triangulation
of the domain €2, obtained by refining a coarse triangulation with a mesh size H.

Consider then a covering of the domain (2 into overlapping subdomains and
the local FE spaces defined on them. Let § be the width of the parts common to
more than one subregion. The local components of the preconditioner are defined
in terms of the original bilinear form a and the local spaces supported on the
subdomains. The coarse component employs the FE space defined on the coarse
triangulation. Modified bilinear forms are defined for inexact solvers. The local
problems employ Dirichlet conditions, except on the part of the boundary that is
common to 02, where the original conditions are maintained; the coarse problem
inherits the boundary conditions of the original one.

In the following, we will denote by A the representation of the bilinear form
a on the FE space considered, and by B a symmetric Schwarz preconditioner, of

additive, multiplicative or hybrid form; see [54]. In Chapter 3, we prove that the



condition number of the preconditioned system satisfies

k(B 1A) < C (1 v %)2 (1.8)

Here C' is independent of the dimension of the original problem and the number of
subregions. Numerical results also show that it is independent of the ratio between
the coefficients a and b.

The proof of our results requires that the domain €2 be convex and that the
triangulation quasi—uniform, since some regularity results for vector fields are em-
ployed, together with some global estimates. These two assumptions are not re-
quired in the scalar case, where local averages can be employed; see [54]. A similar
argument cannot be applied to the spaces H(curl;2) and H(div; ), due to their

lack of regularity, and a more complicated analysis is required in this case.

1.3 Iterative substructuring methods

The method described in the previous section is optimal, but the condition number
may possibly increase if the coefficients a and b have large jumps. Fast iterative
substructuring methods have a condition number that is generally slowly increasing
with the number of unknowns, but is independent of even large jumps of the
coefficients. They have been successfully applied to scalar and vector problems in
H',in both two and three dimensions; see [22, 54]. Their use for three—dimensional
problems requires particular care in the choice of the coarse space.

The study of such methods, applied to vector problems in H(curl; ) and
H(div; Q) is new. We know of no previous work for H(div;), and only a few
papers on the H(curl; ) case; see [3].

In Chapters 4 and 5, we design and analyze some iterative substructuring meth-
ods for FE approximations in H(curl; Q) and H(div; ). Chapter 4 is joint work
with Wohlmuth and Widlund, and the original papers [57, 62] have been submitted
for publication.

We first consider two-dimensional positive-definite problems, for which the
analysis is the same for the H(curl;(2) and H(div;2) cases. The coarse space is

a standard coarse space, built on a coarse triangulation, with mesh size H. The
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coarse triangles are called substructures and the coefficients a and b are supposed
to be slowly varying on each substructure, but they may have arbitrary jumps
across their boundaries.

In Chapter 4, we study an iterative substructuring method based on individual
edges. We consider a partition of the domain €2 into subregions that are the union of
two substructures that share one edge. The local spaces are the FE spaces defined
on each such subregion. We establish the following bound for the condition number

K(B14) < C (1 + log %)2 (1.9)

where h is the diameter of the fine triangulation, and the constant C is independent
of the dimension of the problem, the number of substructures, and the jumps of
both the coefficients. We also prove that in the two limit cases a = 0 and b = 0,
the condition number remains bounded, and our numerical results also show that
these bounds are independent of the ratio a/b.

We have generalized this previous result to three-dimensional problems in
H(div;Q). Because of a property of the degrees of freedom for the Raviart—
Thomas spaces, the same algorithm can be defined for two-dimensional problems
and the estimate (1.9) can again be proven. In this case, the local spaces are
related to the unions of two substructures that share a common face.

We remark that the ratio H/h is related in a simple way to the number of
degrees of freedom in each substructure, and, since the analysis is carried out
locally, the condition number only depends on the value of this ratio in individual
substructures. In our estimates, the fine triangulation needs only be quasi—uniform
in each substructure separately.

In Chapter 5, we study a Neumann-Neumann method, where the local spaces
are defined on single substructures and establish the same estimate (1.9) for the
condition number of the corresponding method. We remark that an important
element in the definition of a Neumann—Neumann method is a set of scaling func-
tions defined on the boundaries of the substructures, which involve the values of
the coefficients of the partial differential equation. The use of these functions can
ensure that the condition number of the corresponding preconditioned system be

independent of the jumps of the coefficients across the substructures. We propose

7



a set of scaling functions, which involve only the values of one coefficient of (1.1)
and (1.2). An important feature of our method is that it is independent of jumps of
both coefficients. We know of no previous work on a Neumann—Neumann method
for Maxwell’s equations or no previous theoretical study of a Neumann—Neumann

method for the case where more than one coefficient has jumps.



Chapter 2

Function and Finite Element
spaces

2.1 Sobolev spaces

In this section, we recall some definitions and properties of certain Sobolev spaces.
In particular, we will introduce the spaces H (div; D) and H(curl; D), suitable for
analyzing certain vector problems. For a general theory of the classical Sobolev
spaces H*(D), we refer to [1, 46, 28], and for H(div;D) and H(curl; D), we refer
to [26, 18].

Let D C R", n = 2,3, be an open bounded connected set, with Lipschitz
continuous boundary dD and exterior normal n. Given a generic vector u € R”,
its Cartesian components are {u;, i = 1,---,n}. Let x denote the position vector.

The space L*(D) is the space of measurable functions ¢ such that

/ |g? dz < +o0.
D

The scalar product and norm in L?(D) are defined, respectively, by

(0:) = (@)oo = [ apde, lal = llall}p = (¢, Do

The space L?(9D) is defined in a similar fashion. We also define the space L?(D)",
of vectors u with components in L?(D), with scalar product and corresponding
norm, still denoted by (-,-)o;p and || - ||§.p, defined in the obvious way. Finally,

L%(D) is the subspace of L?(D) of functions with mean value zero in D.

9



The space H™(D), for m a positive integer, is the space of square-summable
functions, the +—th derivatives of which are also square-summable, for: =1,---,m.

We will use the space H!(D) extensively. The H'-seminorm is defined as

= / lgrad q|* dx.
D

The subspace of functions in H'(D) vanishing on the boundary 0D is denoted by
H}(D).

We will also need some Sobolev spaces of fractional order; see [1, 46]. For an
integer m greater or equal to zero and 0 < r < 1, the space H™1"(D) is the space
of functions ¢ in H™(D), such that

aa _ 2
e = [ [ 1T dady <0, = m

For 0 < s < 1, the scaled norm of a function ¢ € H*(D) is defined by

1
lallZp == lal2p + H25||q||§;z>, (2.1)
D

where Hp is the diameter of D and the scaling factor is obtained by dilation from
a region of unit diameter.
Analogously, for 0 < s < 1, the space H*(9D) is the space of square-summable
functions ¢ on 0D such that
y)[?
2= | /m) . y‘n B 45, ds, < oo,

with a scaled norm given by

1
lall%om = lalZop + HQSIIQIlﬁ;aD- (2.2)

We will also need some dual spaces defined on dD. For s > 0, the space
~%(0D) is the dual space of H*(0D), equipped with the norm

q,p
lalosop = sup LPL
pEH*(8D) Iplls;00

where (-, -) denotes the duality pairing between H *(0D) and H*(0D). We stress
the fact that the scaled || - ||s;sp—norm, defined in (2.2), is used in the previous

definition.
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With obvious modifications, we can define the Sobolev spaces H*(D)" and
H*(0D)" of vector—valued functions.

From now on, we will denote by C' a positive generic constant, uniformly
bounded from above, and by ¢ a positive generic constant uniformly bounded

away from zero.

2.1.1 The space H(div;D)

Given a vector function u € R”, the divergence operator is defined as

divu:=)_ gzz (2.3)

=1

The space H(div ;D) consists of square—integrable vectors, with square—integrable
divergence. This is a Hilbert space with scalar product and graph norm defined
by

('I.l, V)div;D = /Du -vdx + /DdiVUdiVde7 ||u||(21iV;D = ('I.l, u)diV§D‘

Given a vector u € H(div;D), it is possible to define its normal component u - n
on the boundary 8D, as an element of H~2 (8D) and the following inequality holds

lu-nZ;,, <C (IlallGp + Hplldivullgp) (2.4)

with a constant C' that is independent of Hp. As usual, the scaling factor is
obtained by dilation from a region of unit diameter. The operator that maps a
vector in H(div ;D) into its normal component is thus continuous, and it can be
shown to be surjective; see [26, Ch. I, Th. 2.5 and Cor. 2.8].

The following Green’s formula holds
/ u-gradqdm+/ divugdr = / u-ngdS, uc€ H(div;D), g€ H'(D),
D D oD

where the integral on the right hand side is understood as the duality pairing
between H~2(0D) and Hz(dD). The subspace of vectors in H(div; D) with van-
ishing normal component on 9D is denoted by Hy(div; D), the subspace of vectors
in H(div; D) with vanishing divergence by H (div ;D)

H(divy; D) := {u € H(div; D), divu = 0},

11



and the subspace of vectors in Hy(div ; D) with vanishing divergence by Hy(div o; D)
Hy(div g; D) := {u € Hy(div;D), divu = 0}.

The space L?(D)" has the following orthogonal decompositions, see [18, vol. 3, p.
215, Proposition 1],

L*(D)" = H(div; D) ® grad H, (D), (2.5)
L?(D)" = Hy(div¢; D) ® grad H' (D), (2.6)
L?(D)" = Hy(div¢; D) @ grad H' (D) @ grad H, (D),

where H!(D) is the space of harmonic functions in H!(D) and
grad #'(D) = grad H'(D) N H(divo; D).

These decompositions are the generalization of the Helmholtz decomposition for a
smooth vector into a divergence—free and a curl-free part.

Since H(div;D) C L?*(D)", the decompositions (2.5) and (2.6) give rise to
corresponding orthogonal decompositions of H(div;D) and Hy(div; D), into the

kernel of the divergence operator and its orthogonal complement:

H(div;D) = H(divy; D) @ H*(div; D), (2.7)
Hy(div; D) = Hy(div; D) ® Hy (div; D), (2.8)

where

H*(div; D) := H(div; D) N grad Hy (D),

Hy (div; D) := Hy(div; D) N grad H'(D).
We stress the fact that (2.7) and (2.8) are orthogonal both with respect to the
(+,-)o;p and (-, -)aiv;p inner products. The decompositions (2.7) and (2.8) ensure

that
lullo.p < C Hp ||divullo.p, u€ H*+(div;D)U Hy (div; D). (2.9)
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2.1.2 The space H(curl;D) in two dimensions

We now consider the case D C R%. Given a scalar function ¢ and a vector u, the

vector and scalar curl operators are defined, respectively, by

22
curlg = | —,—— ],

8332’ 8371
and 5 9
U9 U1
lui=—>——. 2.1
curiua 83:1 6372 ( O)

The space H (curl; D) consists of square—integrable vectors, with square—integrable

curl. This is a Hilbert space with scalar product and graph norm defined by
(W, V) eur1;p := /Du-vdx+/pcurlucurlv,dx, ullZue 0 = (0, W)cur1;p-
We define the unit tangent vector t on the boundary 0D by
t:= (—ng,n).
For a generic vector u, its tangential component on the boundary is
u-t=nxu.

Due to the definitions (2.3) and (2.10), a vector u = (uy, u2) belongs to H(curl; D)
if and only if the vector v = (—ug, uy) belongs to H(div; D). In addition,

v-n=—-u-t.

It is then clear that, using the results for H(div;D), for a generic vector u €
H(curl; D), it is possible to define its tangential component on the boundary as
an element of H~2(9D) and that the following inequality holds

lu- 12155 < C (llullop + Hp lleurlul5p)
2

with a constant C that is independent of Hp. The operator that maps a vector
in H(curl; D) into its tangential component is thus continuous and surjective; see

[26, Ch. I, Th. 2.11]. The previous inequality is proven first for a domain of unit
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diameter and then for an arbitrary domain, by a scaling argument. We recall that
the scaled Hz-norm is used in the definition of the dual norm || - ||_ 10D

The following Green’s formula also holds
/ curlugdz —/ u-curlgdr = / u-tqdS, ue€ H(curl;D), g€ H'(D),
D D oD

where, as usual, the integral on the right hand side is understood as the duality
pairing between H 2(dD) and Hz (D).

The subspace of vectors in H(curl;D) with vanishing tangential component
on 0D is denoted by Hy(curl;D), the subspace of vectors in H(curl;D) with
vanishing curl by H(curly; D), and the subspace of vectors in Hy(curl;D) with
vanishing curl by Hy(curly; D).

Since H(curl;D) C L*(D)" and grad H'(D) C H(curl; D), the decompo-
sitions (2.5) and (2.6) give rise to the following orthogonal decompositions of
Hy(curl; D) and H(curl; D),

Hy(curl; D) = grad H; (D) & Hy (curl; D), (2.11)
H(curl; D) = grad H'(D) @ H*(curl; D), (2.12)

where
Hy"(curl; D) := H(div o; D) N Hy(curl; D), (2.13)

H*(curl; D) := Hy(divo; D) N H(curl; D).
We note that (2.11) and (2.12) are orthogonal both with respect to the (-, -)o.p and
(*, *)curl;p inner products, and that they are valid also for n = 3; see Section 2.1.3.
2.1.3 The space H(curl;D) in three dimensions

We will now consider the case D C R®. Given a vector u, the vector curl operator
is defined by

[ 3U3 8u2 T
Oy Oy
curlu := % — %
8373 8961
8’&2 8u1
| 01 Oy |
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The space H(curl; D) consists of square-integrable vectors, with square-integrable

curl. This is a Hilbert space with scalar product and graph norm defined by

(W, V) cur1;p 1= /Du -vdr + /Dcurlu -curlv, dz, ||u||§ur1;D = (U, W)curl;D-
We remark that we will use the same notation H(curl;D) for the space in two

and three dimensions.

The tangential component of a vector u on the boundary 0D is defined by
w:=u—(u-n)n=(nxu)Xn.

Since |u;| = |n X ul, the vector u has vanishing tangential component if and only
if n xu = 0. With an abuse of terminology, we will, in the following, refer to n x u
as the tangential component.

Given a vector u € H(curl; D), it is possible to define its tangential component
n X u on the boundary 0D, as a vector of H ’%(8’13)3 and the following trace
inequality holds

In > ull? s 45 < C (J[ulf3p + H llcurlully)

with a constant C that is independent of Hp. The previous inequality is proven
first for a domain of unit diameter and then for an arbitrary domain, by a scaling
argument. We recall that the scaled H 3-—norm is used in the definition of the dual
norm || - ||y 9>

The operator that maps a vector in H(curl; D) into its tangential component
is thus continuous, but it is not surjective; see [26, Ch. I, Th. 2.11]. The space of
tangential traces of H(curl; D) is a proper subspace of H~2(9D)? and it can be
fully characterized; see [2] and the references therein for a more detailed analysis.

The following Green’s formula holds
/ curlu-v dx—/ u-curlvdr = / (nxu)-vdS, wue€ H(curl;D), ve H' (D)
D D oD

As in the two—dimensional case, the subspace of vectors in H(curl;D) with van-
ishing tangential component on 0D is denoted by Hy(curl; D), the subspace of
vectors in H (curl; D) with vanishing curl by H(curly; D), and the subspace of
vectors in Hy(curl; D) with vanishing curl by Hy(curly; D).

In the three-dimensional case, Equations (2.5) and (2.6) give rise to the same

orthogonal decompositions, given in (2.11) and (2.12).
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2.1.4 The kernel and range of the curl and divergence op-
erators

In this section, we will characterize the kernel and the range of the curl and di-
vergence operators. This characterization depends on the domain D where the
Sobolev spaces, previously introduced, are defined. We will review some results
valid for a particular set of Lipschitz domains and refer to [18, vol. 3, Sect. IX.1.3]
for the case of more general smooth domains, and to [4] for a generalization to a
larger class of Lipschitz domains.

We recall that D C R", n = 2,3, is an open bounded connected set, with
Lipschitz continuous boundary 0D. We only consider the case where D is simply
connected and its boundary consists of one connected component. We notice that
these two conditions are equivalent for n = 2. The results presented in this section
can be found in [18, vol. 3, Sect. IX.1.3], to which we refer for the proofs.

We clearly have that the kernel of the gradient operator consists of the con-
stants, when defined in H'(D), and of the zero function, when defined in H; (D).

The following proposition characterizes the kernel of the curl operator as the
range of the gradient operator, for simply—connected domains; see [18, vol. 3, pp.
217-221].

Proposition 2.1.1 If D is simply connected, then, for n = 2,3,
H(curly; D) = grad H' (D). (2.14)

Remark 2.1.1 In the case where D is not simply connected, grad H(D) is a
proper subspace of H(curly; D), and its orthogonal complement in H(curly; D)
can be fully characterized and is of finite dimension equal to the number of cuts
necessary to make D simply connected; see [18, vol. 3, p. 219, Prop. 2]. We
also note that (2.12) is a decomposition of the space H(curl;D) into the kernel
of the curl operator and its orthogonal complement, only with the hypothesis of

Proposition 2.1.1. In this case, we have, for n = 2,

lullo.p < C Hp ||curlullp.p, u € H*(curl; D), (2.15)
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and, forn =3,

llullo.o0 < C Hp ||curlullo.p, u € H*(curl;D). (2.16)

The next proposition characterizes the kernel of the curl operator in
Hy(curl; D) and, for the case n = 2, that of the divergence in Hy(div;D); see
Section 2.1.2, for a discussion of the relation between H(curl;D) and H(div ;D)
in two dimensions. This result can be found in [18, vol 3, p. 222, Prop. 3] and
[18, vol 3, p. 224, Cor. 5.

Proposition 2.1.2 If the boundary 0D is connected, then

Hy(curly; D) = grad Hy (D), n=2,3, (2.17)
Hy(div ¢; D) = curl H; (D), n=2. (2.18)

Remark 2.1.2 In the case where 0D consists of more than one connected com-
ponent, the subspace of H (D) of functions that are constant on each connected
component of OD replaces Hy(D) in (2.17) and (2.18). When there is only one
connected component, the gradients (and curls, for n = 2) of these two spaces co-
incide and (2.11) is a decomposition of the space Hy(curl; D) into the kernel of

the curl operator and its orthogonal complement. In this case, we have, for n = 2,
|lullo.p < C Hp ||curluljo.p, u € Hy (curl; D), (2.19)
and, for n =3,
|lullo;p < C Hp |lcurlullo,p, u € Hy (curl;D). (2.20)

The following two propositions complete the characterization of the kernel of
the divergence operator. For n = 3, we will need the space of vectors in H'(D)3,

with vanishing tangential component
H}(D)? := {u € H'(D)?, n x u|sp = 0}.
Proposition 2.1.3 If D is simply connected and n = 3, we have

Hy(div ¢; D) = curl Hy,(D)? = curl Hy (D)3, (2.21)
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A proof can be found in [18, vol. 3, p. 224, Prop. 4 and Rem. 5]. We note that
in the case where D is not simply connected, curl Hj,(D)? is a proper subspace of
Hy(div ; D) and its orthogonal complement is the same finite dimensional space

mentioned in Remark 2.1.1.
Proposition 2.1.4 If the boundary 0D is connected, we have

H(div; D) = curl H(D), n =2,
H(divo; D) = curl H(D)?, n=3.

A proof can be found in [18, vol. 3, p. 222, Prop. 3]. We note that in the case
where 9D consists of m > 1 connected components, curl H'(D) and curl H'(D)>?
are proper subspaces of H(div;D) and their orthogonal complements have di-
mension m — 1.

The following corollary is a direct consequence of Proposition 2.1.4 and gives
a necessary and sufficient condition for the existence of a vector potential for a

divergencefree vector.

Corollary 2.1.1 Let 0D be connected. A necessary and sufficient condition for
a vector u € L*(D)" to be of the form u = curlq, with ¢ € H (D) if n = 2, or
u = curlv, withve H(D)? ifn =3, is

divu = 0.

Incidentally, we observe that, due to Propositions 2.1.4 and 2.1.3, for n = 3,
the range of the curl operator on H(curl;D) and Hy(curl;D) coincides with
curl H'(D)? and curl Hj,(D)?, respectively. The following proposition generalizes
Corollary 2.1.1 to the case of more regular vectors, and ensures that a divergence—
free vector potential can be found in three dimensions; see [26, Ch. I, Th. 3.4,
Cor. 3.3 and Rem. 3.12].

Proposition 2.1.5 Let n = 3 and let 0D be connected. For s € [0,1], a necessary
and sufficient condition for a vector u € H*(D)3 to be of the form u = curlv,
with v € H'™(D)3 and divv = 0, is

divu = 0.
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We end this section with a characterization of the range of the divergence

operator.

Proposition 2.1.6 The divergence operator is continuous and surjective from
H(div;D) into L*(D), and from Hy(div;D) into Li(D).

Proof. The proof is quite simple and only the surjectivity needs to be checked.
Let ¢ € L*(D). If p € H'(D) is the solution of the following Dirichlet problem

Ap=gq, inD,
p=0, on dD,

then u := gradp € H(div;D) and divu = ¢. If, on the other hand, ¢ € L3(D)
and p € H'(D) is the solution of the following Neumann problem

Ap=y¢q, inD,
g—z =0, ondD,

then u := gradp € Hy(div;D) and divu=¢ 0O

2.1.5 Regularity results

In this section, we will give some regularity results for vector—valued functions.
Given the spaces
Hr (D) := Hy(div; D) N H(curl; D),
Hy (D) := H(div; D) N Hy(curl; D),

the following proposition is a classical result and a proof can be found in [4, Th.
2.17].

Proposition 2.1.7 If the domain D is convez, then the spaces Hy(D) and Hy (D)

are continuously embedded in H' (D)™,

In order to prove a more general result, we need a regularity result for the
Laplace operator that can be found in [17, Corollary 18.18]. In the following, we
assume that D is a Lipschitz polyhedron in three dimensions and that the largest

angle between the faces of D is w.
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Lemma 2.1.1 Let D C R? be a bounded, open, conver, polyhedron and s # —1 a

2

. (3w

s<m1n{—,——1}.
2w

Then the Laplace operator A defines an isomorphism:

real number, such that

A : H***(D)N Hy (D) +— H*(D). (2.22)

Remark 2.1.3 Since, for every fized bounded, convex, polyhedron the mazimum
angle w s strictly smaller than m, Lemma 2.1.1 implies that there exists a real
number sp > 0, such that the mapping (2.22) is an isomorphism, for any s €

[0,sp). We will always assume that sp is less than 1/2.
We are now ready to prove an embedding theorem.

Theorem 2.1.1 Given a bounded, open, convez, polyhedron D C R3, then there
exists a real number sp € (0,1/2), such that, for every t € [0,sp), the space of
functions w € Hy (D), satisfying the conditions

divw € H'(D), (2.23)
curlw € H'(D)?, (2.24)

is continuously embedded in H'T'(D)3.

Proof. The argument is the same as in the proofs of similar embedding theo-
rems, given in [4, Proposition 3.7]. These proofs employ the existence and regu-
larity of the vector potential of Proposition 2.1.5 and the regularity result for the
Laplace operator given in Lemma 2.1.1.

Let sp € (0,1/2) be the exponent of Remark 2.1.3 and let ¢ € [0, sp). Given
w € Hy(D), satistying (2.23) and (2.24), define

u = curlw € H' (D).

Let O be an open ball that contains D and let @1 be the extension by zero of u to
O\ D; u belongs to H'(0)3, as t < 1/2. Since, by Stokes’ theorem, the normal

component of u on I is zero, @ belongs to H(div,0), and diva =0 in O.
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The vector u satisfies the hypothesis of Proposition 2.1.5. There then exists a
vector v € H'(0)3, satisfying
u = curlv,
divv = 0.
Consider now the vector v in O\ D: Since D C R? is simply connected, O \ D
is also simply connected. From
curlv=u=0, inO\D,
we deduce that there exists a function ¢ € H**(O \ D), such that v = grad g in
O\D.
Define now x by
—Ayx =divw, inD, (2.25)
x=g¢, onD. (2.26)
Then the vector grad x has zero curl and divergence equal to (—divw) in D, and
satisfies the boundary conditions
grady xn=gradgxn=v xn, onJdD;

It is easy to see that the vector (w — v + grad x) has zero divergence and curl in
D and has zero tangential trace on 0D. By [26, Remark 3.9], it then follows that

it vanishes and consequently
w =v —grad x.

Consider now the Poisson problem given by (2.25) and (2.26). The function
q|ap belongs to H3?t4(9D). Using Lemma, 2.1.1, by the surjectivity of the trace
map from H?+*(D) onto H3/***(0D) and by (2.23), the solution of (2.25) and (2.26)
belongs to H*™*(D) and, finally, w belongs to H***(D)3. O

Remark 2.1.4 In Theorem 2.1.1, the constraint t < sp < 1/2 is necessary for
the extension by zero of curlw to be in HY(D)3. Theorem 2.1.1 is stated in [4,
Remark 3.8] without proof. Observe that the H*** regqularity of problem (2.25) and
(2.26), for t > 0, is employed. The conclusion of Theorem 2.1.1 is false for a

general non-convez polyhedron.
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2.2 Finite element spaces

Let Q2 be a bounded, open polygon or polyhedron and let 7, be a family of tri-
angulations of 2. We suppose that 7, consists of triangles or rectangles in two
dimensions, and of tetrahedra or parallelepipeds in three dimensions. h is the
maximum diameter of the triangulation. We suppose that 7, is shape-reqular, that
is, for each element in 7y, the ratio between its diameter and the radius of the
circle, or sphere in three dimensions, inscribed in it, is bounded from above, by a
constant that is independent of h; see [49, Def. 3.4.1]. In case the ratio between
the largest and the smallest diameter of 7}, is bounded independently of A, the
triangulation is called quasi—uniform.

Given an open set D in R", n = 1,2, 3, we now define some polynomial spaces.
Let Px(D), k > 0, be the set of polynomials of total degree at most k defined on
D, and let Pi(D)", for n = 2,3, be the set of vectors of R", the components of
which belong to P (D). Their subspaces consisting of homogeneous polynomials of
degree k are denoted by P,(D) and Py (D)", respectively. In addition, let Q,(D) be
the set of polynomials of degree at most & in each variable. For n = 2, let Qy, ,(D)
be the set of polynomials of degree k; in the first variable and k5 in the second
variable. We clearly have Qj 4 (D) = Q(D). For n = 3, the space Qy, x, x, (D) has
an analogous definition.

We first introduce the usual spaces of continuous, piecewise polynomial func-
tions, contained in H'(2), for k > 1, see [49, Sect. 3.2],

SE(Q) = {q € H'(); qlx € Px(K), VK € T},

S5u(Q) = {g € Hy(Q); alx € Pu(K), VK € Ta},
if 75, is made of triangles or tetrahedra, and

SH() = {q € H'(Q);qlx € Qu(K), VK € Tp},

S(I)C;h(Q) = {q € Hy(Q);qlx € Qu(K), VK € 77l}7

if T, is made of rectangles or parallelepipeds.
The corresponding nodal interpolation operator is denoted by ka. When there

is no ambiguity, we will simply use the notations S, (2), Sp.»(€2), and TI§.
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We will also need some finite element spaces which are conforming only in
L?(Q). For k > 1, see [49, Sect. 3.2],
Wi (Q) = {q € L*();qlx € Pr_1(K), VK € 77L}7
WEL(Q) = {q € L}(Q); gl € Px1(K), VK € Tp},

if T, is made of triangles or tetrahedra, and
WE(Q) = {q € L*(9); ¢|x € Qu_1(K), YK € To},
WE(Q) = {q € L}(Q); ¢|x € Qu_1(K), VK € Tp},

if T, is made of rectangles or parallelepipeds.

We will denote the L?~projection onto the spaces W (Q) and WE, () by TI}*
and Hth, respectively. As before, we will drop the superscript &k, when there is no
ambiguity.

2.2.1 Raviart—Thomas elements

The Raviart—-Thomas spaces are conforming in H(div ; €2) and were originally intro-
duced in [48] in two dimensions and then extended in [44] to the three dimensional
case; see also [14, 49].

We will first consider the case of triangulations made of triangles, for n = 2,
and of tetrahedra, for n = 3. Given a triangle or a tetrahedron K, we consider the

polynomial space
Di(K) :=Pp_1(K)" ®xPp_1(K), k>1.
A function u in Dg(K) is uniquely defined by the following degrees of freedom
/fu-np, p € Pr1(f), (2.27)
for each edge (n = 2) or face (n = 3) f of K. For k£ > 1, we add

/KU ‘P, P EPo(K)"
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It can be proven that this finite element is conforming in H(div;{2); see [44, 14].

Thus, the following finite element spaces are well-defined
RTy(Q) == {u € H(div; Q);u|x € Dg(K), VK € Ta},
RT5x(Q) := {u € Ho(div; Q); ulx € Dy(K), VK € Tp}.

The corresponding interpolation operator is denoted by Hka. When there is no
ambiguity, we will simply use the notations R7,(€2), R7o.1(22), and IIF7.
For the case k = 1, the elements of the local space have the simple form

]D)l(K) = {ll = a—i—bx, ac ]P)(](K)n, be IP()(K)}

It is immediate to check that the normal components of a vector in D (K) are
constant on each edge (n = 2) or face (n = 3) f. These values {\f(u), f C 0K}
can be taken as the degrees of freedom. As in the case of nodal elements, the
L?-norm of a vector u € D;(K) can be bounded from above and below by means
of its degrees of freedom
e > (HP ) <R, < 0 (HP W), (228)
fCOK fCOK
where Hj is the diameter of f and the constants ¢ and C' only depend on the
aspect ratio of the element K. The proof given for nodal elements in [49, Prop.
6.3.1] can easily be adapted to the present case, and similar estimates can also be
obtained for the case k > 1.
We will now consider the case of triangulations made of rectangles (n = 2) and

parallelepipeds (n = 3). The local spaces are defined as follows:

Sk(K) = Quu-1(K) X Q1 4(K), n=2,
Sk(K) = Qk,k—l,k—l(K) X Qk—l,k,k—l(K) X Qk—l,k—l,k(K)7 n=3.
A function u in S (K) is uniquely defined by the following degrees of freedom
/fu ‘np, pE€Qu(f), (2.29)

for each edge (n =2) or face (n = 3) f of K. For k > 1, we add
/Ku ‘P, PEQugp_1(K) X Qeyp—2(K), n=2,

/Ku ‘P, PE Qk—?,k—l,k—l(K) X Qk—l,k—Z,k—l(K) X Qk—l,k—l,k—?(K)a n = 3.
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The global spaces are defined as

RT; () = {u € H(div;Q);ulx € Sy(K), VK € Tp},
RTon(Q) := {u € Ho(div; Q);ulx € Sx(K), VK € Tp}.

For the case k = 1, the local space is
Si1(K) = {u, u; = a; + biz;, a,b € Py(K)"}.

It is easy to check the normal components of a vector in S;(K) are constant on
each edge (n = 2) or face (n = 3) f. These values {Af(u), f C 0K} can be taken
as the degrees of freedom. The bounds in (2.28) are also valid for a vector u in
S1(K).

For all the spaces defined in this section, the corresponding nodal interpola-
tion operator ITR7" is not defined in the whole space H(div;); some additional
regularity is required. In particular, the normal component on 0K of a vector
u € H(div;) generally only belongs to H~'/?(0K), and the degrees of freedom
(2.27) and (2.29) are not defined in general. These degrees of freedom are certainly
well-defined if the trace of a vector u on the boundary of a generic element is suf-
ficiently regular, that is, if u belongs to H"(2)" for r > 1/2. The following error

estimate can be proven using standard arguments as in [49, Sect. 3.4.2]
1
Hu - HZLWkuHO_Q < Ch"|ul.q, 5 <r < k. (2.30)

The constant C' depends only on the aspect ratios of the elements of 7, and the ex-
ponent r. See also [44] for other error estimates and [14, Sect. I11.3.3] for additional

comments.

2.2.2 Nédélec elements in two dimensions

Nédélec elements (also called edge elements) are finite elements which are conform-
ing in H(curl; (). Just as, in two dimensions, vectors in H(curl;(2) are obtained
from those in H(div; () by a rotation of 90 degrees, Nédélec finite element vectors
are obtained from those in the Raviart—Thomas spaces in the same way. How-
ever, we will see that the two families of elements are completely different in three

dimensions.
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In two dimensions (n = 2), it is enough to rotate the vectors in the Raviart—
Thomas spaces introduced in the previous section. In the case of triangles the local

spaces are thus
Ri(K) = {u+v, u€Pey(K)?, v €P(K)?, v-x =0}, k>1,
and a function u in Ry (K) is uniquely defined by the following degrees of freedom:

/U'tep, pE]Pk_l(E),
[

for each edge e, and, in addition, for £ > 1,

/u-p, p € Py o K)™.
K

Here t, is the unit vector that is tangent to e.
In the case k£ = 1, the local space Ry (K) has the form

Ry (K) = {u - [ " * Zif ] CacPy(K), be IPO(K)}.

It is easy to check that a vector in R (K’) has a constant tangential component
on each edge of K, and the corresponding degrees of freedom {A.(u), e C 0K}
can be taken as the values of the tangential component on the three edges e of K.
They can be written as

1
)\e(u)zﬁ/nxuds, e C 0K,

and the degrees of freedom in the global space will be associated to the edges of the
triangulation. By direct computation, the curl of a vector in R4 (K) is constant.

In the case of rectangles the local spaces are defined as

Ok (K) = Qp_1 () X Qpp—1(K),

and the corresponding degrees of freedom are

Ju-tep, peie)
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for each edge e of K, and, in addition, for £ > 1,

/K u'p, PEQ 14 oK) XQop1(K) n=2.

In the case k = 1, the local space Qx(K) has the form

. | a1+ bz 2 2
Ql(K)— {U.— la2+b2$1 ] s aEP()(K) s bE]Po(K) },

and a vector in Q;(K) has a constant tangential component on each edge of K, and
the corresponding degrees of freedom {A¢(u), e C 0K} can be taken as the values
of the tangential component on the four edges e of K. The degrees of freedom in
the global space will be associated to the edges of the triangulation and, by direct
computation, the curl of a vector in Q;(K) is constant.

Given these local spaces, the global ones, conforming in H(curl;{2) and
Hy(curl; (), are defined in the obvious way and are denoted by N'DF(Q2) and
NDE,,(Q), respectively, or by N'Dy(Q2) and N'Dy,(2), when there is no ambigu-
ity. Clearly, inequalities (2.28) and (2.30) still hold for the Nédélec spaces in two

dimensions.

2.2.3 Nédélec elements in three dimensions

We will now consider the three dimensional case, n = 3. We refer to [44, 26| as
general references for this section.

For triangulations made of tetrahedra, the local spaces on a generic tetrahedron
K are defined as

Ri(K) := {u-l—v; ucePl, 1 (K)? veP,(K)>, V-XZO}, k> 1;

see [26, Sect. II1.5.3]. A vector in u € Ry(K) is uniquely defined by the following

degrees of freedom, see [44],

/ u-t.p, pePi(e) (2.31)

for the six edges e of K, and, for £ > 1,
J wxm)-p. pera(f)”
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for the four faces f of K, and, additionally, for k£ > 2,

/K u-p, peP_;3(K)>.

Here t, denotes the unit vector in the direction of the edge e. It can be proven
that this finite element is conforming in H(curl; (), see [44], and the following

finite element spaces are therefore well-defined

NDF(Q) := {u € H(curl;Q);ulx € Ry(K), VK € T},
ND§, () == {u € Hy(curl;Q);ulx € Ry(K), VK € Tp}.
The corresponding interpolation operator is denoted by H’,:[ Dk, and, as usual, we

will drop the superscript k£, when there is no ambiguity.

In the case k = 1, the elements of the local space Ry (K) have the simple form
Ri(K)={u=a+bxx, abecP(K)}.

It is immediate to see that the tangential components of a vector in R;(K) are
constant on the six edges e of K. These values {A.(u), e C 0K} can be taken as
the degrees of freedom. Also in this case, for u € R (K), by the same argument
as in the proof of [49, Prop. 6.3.1], we have

¢ Y (HPAW) < ulfe < € X (HPAMW),  (232)

eCOK eCOK

where H, is the length of e and the constants ¢ and C' only depend on the aspect
ratio of the element K. A similar estimate can also be obtained for the case £ > 1.
We will now consider triangulations made of parallelepipeds. In this case, the

local spaces defined on a parallelepiped K are, see [44],

O (K) := Q16 (K) X Qg p—1,6(K) X Qg 51 (K),

and the corresponding degrees of freedom are

/ u-tep, pePyile), (2.33)

for the twelve edges e of K, and, for k > 1,
/f (uxn)-p, PE€Qar1(f) X Q_1x2(f),
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for the six faces f of K, and

/K u-p, PEQ_1pp2K) X Qugp_1p—2(K) X Qs p_2p_1(K).

The global spaces N'Dy(Q2) and N'D,;,(Q2), which are conforming in H(curl; )
and Hy(curl; ), respectively, are defined in the obvious way.

The interpolation operator on the space N'DF(f2) is not defined in the whole
space H(curl;Q); additional regularity is required. Different choices, and conse-
quently different error estimates, are possible; see [44, 26, 42, 3, 4, 7]. Here, we
only remark that the interpolant IT} P*u is not defined for a generic vector u in
H™(Q2)3 for 1/2 < 7 < 1, as it was the case for the Raviart-Thomas spaces, since
the degrees of freedom (2.31) and (2.33) involve the tangential component of u
on the edges, which is not necessarily defined. If we require that u € H"(Q)? for
r > 1, then the trace of u is defined on the edges. The following error estimate

can then be proven using standard arguments as in [49, Sect. 3.4.2]
Hu - Hﬁ“”“uHO;Q <CHulyg, 1<r<k, k>1, (2.34)

where the constant C' depends only on the aspect ratios of the elements of 7, and
the exponent 7. We note that (2.34) is only valid for & > 1, since the local spaces
R1(K) and Q;(K) do not contain the whole space P;(K)? and that u must be in
HT ()3 for r > 1; see [49, Sect. 3.4].

2.2.4 The kernel and range of the curl and divergence op-
erators

We now suppose that the domain €2 is a simply connected polygon or polyhe-
dron, with a connected boundary. In Section 2.1.4, we have seen that the range
of the divergence operator in H(div;) is L?(Q2) and the kernel of the curl op-
erator in H(curl;() is the space grad H'(Q). In two dimensions, the kernel of
the divergence operator is curl H'(2), and in three dimensions it coincides with
curl H(curl;(2). Similar properties hold for the spaces of functions satisfying
homogeneous boundary conditions.

In this section, we will state analogous properties for the finite element spaces

previously introduced. These results are well-known and can, for instance, be
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found in [26, 20, 10, 14, 29, 4]. In particular, we refer to [29] for the proofs of the
results in this section. The case when (2 is not simply connected or its boundary
is not connected, is treated in [4] and does not present any particular difficulties.

The following lemma is well-known and is often referred to as commuting—

diagram property; a rigorous proof can be found in [29, Th. 2.30].

Proposition 2.2.1 Let T, be shape—reqular and the functions q, u, v sufficiently
reqular. Then, the following identities hold

grad (I} ¢) = ™ (gradg),
curl (Hﬁmk u) =10 (curlu), n

(2.35)
(2.36)
curl (H‘,fkq) = H?Tk (curlg), n=2, (2.37)
(2.38)
(2.39)

|
N

curl (HJ,:[ o u) =177 (curlu), n =3,

div (MR™"v) =M (divv).

We remark that Proposition 2.2.1 is proved by local arguments on each element
of Ty, and the result is thus valid for an arbitrary Lipschitz domain. Proposition
2.2.1 implies that the interpolants of the finite element spaces, that we have intro-
duced, preserve the kernel of the relevant operators. An analogous result is valid
for the spaces that satisfy homogeneous boundary conditions.

The following Proposition characterizes the kernel of the curl operator; see [29,
Th. 2.36] for a proof.

Proposition 2.2.2 If Q is simply connected, with a connected boundary, the ker-
nels of the curl operator defined in N'DF(Q) and N'Dg,(Q) are grad S§(Q2) and
grad g, (), respectively.

We can now define the following decompositions of the Nédélec spaces into the

kernel of the curl operator and its orthogonal complement:

NDE(Q) = grad SF(Q) & NDF(Q), (2.40)
ND§, () = grad S,(Q) @ NDS;;,ZL(Q). (2.41)
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These decompositions are the discrete analogs of (2.12) and (2.11). We note that,
in general, the spaces N'D;(Q) and N'Dgj; () are not included in H*(curl; )
and Hj (curl; Q).

The following Proposition states the analog of (2.15), (2.16), (2.19), and (2.20).
Its proof can be found in [26, Ch. III, Prop. 5.1].

Proposition 2.2.3 Let Q) be convex and T, quasi—uniform. Then, for n = 2,
lulloge < C He [lcurlullge, u € NDFH(Q) UNDG; (), (2.42)
and, for n =3,

s < C Hg|lcurlullg,e, u € NDyH(Q) UNDE, (). (2.43)

[

We remark that, if €2 is only simply connected or T, is not quasi—uniform, (2.42)
and (2.43) remain valid, but the constants may depend on h.

We now consider the characterization of the kernel of the divergence operator.
For the two-dimensional case, we can use the results for H(curl;2) and prove
results analogous to Propositions 2.2.2. In particular, the kernels of the divergence
operator defined in RTF(2) and RT,(Q) are curl §§(Q2) and curlSf,(Q) and
the following decompositions hold

RTE() = curl SE(Q) @ RT(Q), (2.44)
RTe5(Q) = curl S, (Q) & RTo5 (). (2.45)

For the three—dimensional case, the following result can be found in [29, Th.
2.36].

Proposition 2.2.4 IfQ C R? is simply connected, with a connected boundary, the
kernels of the divergence operator defined in RTF(Q) and R%kh(Q) are
curl NDf(Q) and curl NDg,,, ().

We can now define the following decompositions of the Raviart-Thomas spaces

into the kernel of the divergence operator and its orthogonal complement, for n = 3,

RTE(Q) = curl NDE(Q) ® RTF(Q), (2.46)
RT(Q) = curl NDE, (Q) @ RTg5(9). (2.47)
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These decompositions are the discrete analogs of (2.7) and (2.8).
We end this section with a characterization of the range of the divergence
operator; see [29, Th. 2.36].

Proposition 2.2.5 The divergence operator is surjective from RTF(Q) into
WEQ), and from RT3, (Q) into W, ().
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2.3 Schwarz methods

In this section, we will recall some standard results on Schwarz methods. We refer
to [23, 54, 61, 50] and to the references therein for an introduction to Schwarz
methods.

Let V' be a finite dimensional space and let a(-,-) be a symmetric coercive
bilinear form on V. We consider the the following problem: Find u € V, such that

a(u,v) = F(v) Yv eV, (2.48)

where F'(-) is a linear functional defined on V.
A Schwarz preconditioner for the solution of (2.48) is built from the inverses of
suitable operators defined on a set of subspaces.

Suppose that the space V' admits the decomposition

V:Z‘/za

7

1=0

and that J + 1 symmetric positive—definite bilinear forms
a;(u,v), u,vevV,

are defined on the subspaces. Let us now define the following operators for : =
0,--,J:

Qi: V—=V,CV, (2.49)
a; (Qiu,v) = a(u,v), Yv € V;, (2.50)

and the additive Schwarz operator

J
Qua=>.Q;: V—V. (2.51)

=0

An additive Schwarz method provides the new equation

Qadu:ga

which can be much better conditioned than the original problem given by (2.48); it

can be solved effectively with the conjugate gradient method, without any further
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preconditioner, employing a(-, -) as the inner product. The right hand side g can be
chosen so that the new problem has the same solution as the original one. Iterative
multiplicative schemes can also be designed. The error e, at the (n + 1)-th step

satisfies the equation

eni1 = Enuen =T —-Qy)---(I—Qo)en, n>0, (2.52)
and the multiplicative Schwarz operator is defined by
Qmu =1 Emu-

The three following fundamental lemmas state the convergence properties of
the additive and multiplicative algorithms. We refer to [23, 54| for proofs and

additional comments.

Lemma 2.3.1 Let Q; and Quq be defined by (2.49), (2.50), and (2.51). We have

J
a(Qugu,u) = inf D a;(us, w). (2.53)
u=3 Ui i
Equivalently, if a representation, u = Y u;, can be found, such that
J
ai(ug,u;) < Cq a(u,u) Yu €V, (2.54)
i=0
then
(Ququ,u) > Cy? a(u,u) Yu € V. (2.55)

Lemma 2.3.2 Let ||-||, be the norm induced by a(-,-) and let w be a constant such
that

a(ui, u;) < wa;(ug,ui), u; €V, 1=0,-J. (2.56)
Then
101l = sup 19Ul (2.57)
ueV ”u”a

If, in addition, w € [0,2) and € = {¢;;} are the smallest constants for which
a(usyu) < elludla luglla Ves € Vi Vus eV, ijx1,  (259)

holds, then
a(Qaau,u) < Cy a(u,u), we, (2.59)

where Cy = w(o(€) + 1), with o(E) the spectral radius of €.
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Lemma 2.3.3 Assume that Lemma 2.3.1 and 2.3.2 hold. Then,

a) the condition number k(Quq) of the operator Qu.q of the additive Schwarz
method satisfies
K(Qaa) < w(e(€) +1)Cg; (2.60)

b) the norm of the error operator of the multiplicative Schwarz method, E.,,

satisfies

w
< — .
Bl < |1~ oo (2:61)

where @ := max{1l,w}.

We will also consider a particular hybrid algorithm in Chapter 5. This algo-
rithm will be multiplicative with respect to the levels and additive with respect to
the local solvers. We will be able to analyze it using only Lemmas 2.3.1 and 2.3.2.

We will now give the expressions of the matrix representations of the local
operators {Q;}. It will then be clear that the additive Schwarz operator is the
product the original matrix and a suitable preconditioner. A similar expression
can be found for the multiplicative method.

Introduce a specific set of basis functions for V' and its subspaces {V;}. Let A
and A; be the stiffness matrices of the bilinear forms a(-,) and @;(-,-) on V and
Vi, respectively, with respect to these bases. By identifying V' and V; with the sets
of degrees of freedom relative to the bases introduced, we can write, with an abuse
of notation,

A: V>V, A:Vi=>V, i=0,---,J,

and (2.48) gives rise to the following linear system in V'
Au = f.
We define the extension operators
Rl :Vi—V, i=0,---,J,

as the natural extensions from the local to the global spaces, mapping the degrees

in V; into the corresponding degrees of freedom in V. Here, the transpose operator
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is taken with respect to the Euclidean inner product. If V' is a finite element space
defined on a triangulation of a domain §2, the local spaces {V;, i = 1,---,J} are
often taken as finite element spaces defined on smaller subdomains {Q2; C Q}. The
extensions {RT} then map the local degrees of freedom into the corresponding
global ones. If a two-level method is considered a coarse space V, has to be
introduced. A possible choice for 1} is a finite element space defined on a coarse
triangulation, such that the fine mesh is a refinement of the coarse one. The
extension Rj is then the natural operator that maps the degrees of freedom of the
coarse space into the ones of the fine space.

Due to (2.49) and (2.50), it is immediate that the operators @; has the following
representation, still denoted by Q);,

Qi:V—YV,
Qi = (RTA;'R)) A,

and that the additive operator (0,4 can be written as

Qaa: V —V,
7 J

Qua =Y. Qi =Y (RTA'R)) A.
i=0 i=0

It is then clear that the additive preconditioner is

J
B =Y RIAT'R;.

1=0
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Chapter 3

Overlapping Methods for Nédélec
elements

In this chapter, we will describe and analyze a two-level overlapping method for

the Nédélec approximation of problems involving the bilinear form
a(u,v) := 721/ u-v+ 772/ curlu - curlv, u,v € H(curl;),
Q Q

where (2 is a bounded Lipschitz polyhedron in three dimensions and 7, and 7, are
positive quantities. We will prove that the condition number of the correspond-
ing preconditioned system is bounded independently of the number of unknowns
and the number of subdomains. This bound grows quadratically with the relative
overlap and linearly with the ratio 7;/n,. We will also prove that, in the limit
case 1o = 0, the condition number remains bounded independently of the relative
overlap, and we will present some numerical results, which suggest that the con-
dition number grows only linearly with the relative overlap and is independent of
possibly large ratios of the coefficients. When Dirichlet conditions are considered,
we require that the domain {2 be convex. Our result can easily be generalized to
treat the case of variable coefficients.

In the following, we will always assume that €2 is convex, but in Section 3.5,
we will show that this restriction is not needed when Neumann conditions are
employed.

Our analysis of overlapping methods is inspired by [6], where a Schwarz method

for a conforming finite element problem in H(div;2) in two dimensions is studied.
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Their result is also valid for H(curl; () in two dimensions; see [55]. In addition,
we will also use technical tools and results originally developed in [29], where a
multigrid method is studied for a Raviart-Thomas finite element approximation in
three dimensions. We note that we prove a regularity property that will enable us
to extend the tools in [29] and [32] to a general convex polyhedron; see Theorem
2.1.1. We also note that the results in this chapter were first presented in [56].
The author and Hiptmair have then extended them to the case of H(div;€2) and
have improved some bounds in [33].

We will carry out our analysis for tetrahedral meshes but our results are equally
valid for meshes built on parallelepipeds. In addition, we will only consider a
Schwarz additive preconditioner in full detail. Multiplicative and hybrid operators
can also be considered and Krylov subspace methods different than conjugate
gradient, such as GMRES, can also be employed as accelerators. The extension of
our analysis to other Schwarz methods is completely routine; see [54] for a more
detailed discussion. We also remark that we will only consider the case when the
problems defined on the subspaces are solved exactly. The extension to the case
when inexact solvers are employed can be carried out by using Lemma 2.3.2; see
[54, Assumption 3.

3.1 Finite element spaces and discrete problem

Let
TH:{Qu izla"'a‘]}a

be a triangulation of €2, of maximum diameter H, consisting of tetrahedra and let
Th be a refinement of Ty, with characteristic diameter h. We suppose that 7z and
Ty, are shape-regular and quasi—uniform. For £ > 1, we define the fine and coarse

spaces

VF =V := NDf,(),
%k = Vb = NDIS,H(Q)a

conforming in Hy(curl;Q); see Section 2.2.3. We remark that, in this chapter, we

will use the subscript 0 for quantities related to the coarse triangulation.
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We will also need the finite element spaces Sg.;, () and 8§ (€2), contained in
H} (), defined in Section 2.2, and define

7% = 7 := grad 8f,(Q),
Z§ = Zy = grad S}, ().

The kernel of the curl operator has already been studied in Section 2.2.4. Here,
we remark that, since €2 is convex, Proposition 2.2.2 holds and Z and Z, are the

kernels of the curl operator defined on V' and Vj, respectively. If we set

Z+h = 74 = NDgi (),
7k = 7 = NDER),

we have the following orthogonal decompositions

Vhk=ZFe ZHF, (3.1)
Ve =25 @ Zy " (3.2)

see (2.41).

3.2 Description of the algorithm

We will consider the following problem:
Find u € V* such that
a(u,v) = (f,v) VveVk (3.3)

where f € L2(Q)3. The case of N'D5(Q2) (Neumann boundary conditions) is treated
in Section 3.5.

Let us consider a covering {Q, i = 1,---,J} of Q, such that each subregion
2, is the union of fine tetrahedra of 7, and contains 2;. Define the overlapping

parameter 0 as
§:= '_IrllinJ {dist (092, Q) }-

We will assume that the following property holds (finite covering): see [54, Sect
1.3.1].
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Assumption 3.2.1 The overlapping subregions {2} can be colored using N, col-

ors, in such a way that regions with the same color do not intersect.

We note that more general partitions are possible and that the non overlapping
subregions {€2;} do not need to be related to the coarse elements in 7. Our results
remain equally valid for this more general case and we can then interpret the ratio

that appears in our bounds as

H jax {Hic)

5 min_ {dist(9%%, )}

Consequently, our preconditioner will be effective if the diameter of the subregions
{€2;} is comparable to the diameter of 7.

In order to define a Schwarz algorithm, we have to define a family of subspaces
and some bilinear forms defined on them. Fori=1,---,J, we define the subspaces
Vi C V, by setting the degrees of freedom outside 2} to zero,

VFE=V;:=V*n Hy(curl; ), i=1,---,J.

2

The space V' then admits the following decomposition
J
V=VW+> V. (3.4)
i=1

We will employ the original bilinear form a(-,-) on both the coarse space and the
local spaces. The effect of approximate solvers can be dealt with in a standard
way, using Lemma 2.3.2. The coarse and local operators (); are now defined by
(2.49) and (2.50), using @;(-,-) = a(-, ), and the additive Schwarz operator Q)4 is
defined by (2.51).

3.3 Technical tools

3.3.1 Some operators

In this section, we will introduce some projections; see [29, Ch. 5].
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As already noted in Section 2.2.4, the decompositions given in (3.1) and (3.2)
are discrete analogs of (2.12). But, while the following inclusions hold
Vo CV C Hy(curl; ),
Zy C Z C grad Hy (),
the space Zj is not contained in Zt, and neither of them is contained in
Hy (curl; Q). This fact makes the analysis of multilevel methods for H(curl;Q)-
conforming elements particularly cumbersome. In order to obtain suitable projec-
tions onto Zi- and Z1, Hiptmair [29] has introduced auxiliary subspaces, defined
by an orthogonal projection onto Hy-(curl;():
O : Hy(curl; Q) — Hy (curl;Q).
In particular, ©u is defined by
Ou := u —grad g,
where ¢ € H} () satisfies
(grad ¢, grad p) = (u,gradp), Vp € H;(Q).

It is readily seen that © preserves the curl and is an orthogonal projection in
L?(Q2)3 as well. We now define 1y and ¥ as the restrictions of © to Z; and Z*,
respectively, and the following spaces:

Zi = 9(Zy) =0(Zy),
Zt = 9(Z) =0e(Zh).
We note that we use different notations than those in [29]. The spaces Z;" and Z+
are finite dimensional. They are not finite element spaces, but the curls of these
functions are finite element functions. It can be proven that Z; is contained in
Z*, and that they are both contained in Hy-(curl; ). Moreover the operators
Vo : Zy — Z,
v: 7+t — 77,
are isomorphisms. Their inverses satisfy the following L* bounds; see [29, Lemma
5.15].
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Lemma 3.3.1 Let k > 2 and suppose that ) is convex and that the triangulations
Tu and Ty, are shape reqular and quasi-uniform. Then, there exists a constant C,

depending only on k and §2, such that

vl < € (9| + H [leurlv])), v ez, (3-5)
vl < € (W)l +hlleurlv]), veZ-" (3.6)

Proof. We will only prove (3.5). The proof of (3.6) can be carried out in exactly
the same way.

Consider v € Z;*. Since curl (9yv) = curlv € H'(Q), t < 5, Theorem 2.1.1
and (2.13) ensure that 9yv € H'™(Q), for ¢ < sq. Moreover,

[90v][1+1:0 < C lcurl (Fov)||,.q, -

The vector IIY?* (9yv) is thus well-defined; it has already been defined in Section
2.2.3. Using (2.34), the triangle inequality, and an inverse estimate, we can prove

[T @ov)| < € (Iovll + H' [|eur] (9gv)]l,0) (3.7)
< C(||9ov|| + H ||curl (9ov)||) -
In order to find a bound for v, we remark that, since 0f) is connected and since

curl (v —9yv) =0,

Proposition 2.1.2 ensures that there exists a function ¢ € H}(f2), such that
v — ¥yv = grad q. Employing (2.35), we obtain

v — H/}Imk (Jov) = H/}Imk (grad ¢q) = grad (H’}\I[Dkq) := grad p,
where p € 8§, (€2). We then obtain

IVI? = (v,TE" (9v) + grad p)
= (v I (Wov)) < IIvll [P (90v)| -

Inequality (3.5) follows by combining (3.7) and (3.8). O
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Remark 3.3.1 Lemma 3.5.1 is the main result of this section. The proof given
here is the same as in [29, Lemma 5.15] for a cube, but Theorem 2.1.1 allows
us to extend that to the case of a general convexr polyhedron. We remark that a

quasi—uniform mesh is required, since an inverse estimate s used.

We end this section, by introducing a projection onto the coarse space Z; . We
recall that, because of (2.20), the L?> norm of the curl is an equivalent norm in
Z§ C Hy (curl; Q). Define P, by

Py : Hy(curl;Q) — Z7, (3.9)

(curl (Pyv), curlw) = (curlv,curlw), we Z;. (3.10)

The operator P, is well defined, by the Lax-Milgram lemma, and it does not
increase the L?-norm of the curl. It satisfies an error estimate given in the following

lemma.

Lemma 3.3.2 Let k > 1 and let ) be a convex polyhedron. Then,
(I = Py)v|| < C H ||curlv|, v € Hy(curl;Q),

with C' independent of h, H, and v.

Proof. The proof is the same as the one of [29, Lemma 5.19]. We remark that
it requires a regularity result that is only valid for convex polyhedra. O
3.3.2 A partition of unity

We now consider the covering {€2, i = 1,-,J}. A partition of unity {x;, ¢ =
1,---,J}, relative to the family {2}, is a set of continuous functions, satisfying

the following properties,
J
supp (xi) C €, 0<xi<1, D> xi=1. (3.11)
i=1

Let now {x;} be the functions obtained from {x;}, by interpolating into the finite
element space S}(€2) of piecewise, linear continuous functions on 7y; by the lin-

earity of the interpolation operator, they also satisfy the same properties (3.11).
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Moreover, we have
lgrad xil ey < C671, i=1,---,J. (3.12)

The following lemma holds; see [23, Lemma 3.2], for a similar result for nodal

elements.

Lemma 3.3.3 Let v € V = V¥ and let {x;, i = 1,---,J} be a piecewise linear
partition of unity relative to {S2}. The following inequalities hold,

TP (av)|| < C vl i=1,--+,7, (3.13)
leurl (TP (xiv)) | < C flewrl (av)ll, i=1,-+-,0,  (3.14)

with constants C independent of v, @, h, and H.

Proof. We recall that the degrees of freedom in V* involve integrals of the
tangential components over the edges and the faces, as well as moments of v
computed over each tetrahedron in 7,; see Section 2.2.3.

Let us first consider (3.13). The vector v has continuous tangential component
across the edges and faces of the tetrahedra; since the scalar function x; belongs
to C(Q2), the vector x,;v satisfies the same conditions and, thus, the degrees of
freedom are well defined.

The interpolation operator H/}:[ D* is local, i.e. the values of H/,)/ D'y in each
tetrahedron K € 7T, only depend on those of v in the same element; therefore,
the degrees of freedom are calculated on each K and the interpolated function is
built from the appropriate basis functions. We therefore need only consider one
tetrahedron. We also note that the vector y;v is a polynomial of degree k£ + 1 over
each element. On the reference tetrahedron the interpolation operator is bounded
in the L2-norm, when applied to the finite dimensional space P, ;. Consequently,
it is easily seen, by a scaling argument, that, on any tetrahedron K, H’,:/ D! is
bounded by a constant that only depends on the degree k£ and the shape-regularity
constant of the triangulation, but is independent of the diameter of K. Inequality

(3.13) is obtained by summing over all the elements of 7p,.
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Let us next consider inequality (3.14). The vector curl (y;v) is a C* function in
each element and has a continuous normal component. Therefore, the interpolant
IIRT" (curl (x;v)) is well defined; see Section 2.2.1. Employing (2.38), we obtain

curl (Hﬁl\mk (xiv)) = szT’“ (curl(x;v)).

The inequality
TR (curl (xiv))|| < C [leur] (xiv)]l,

can be then obtained in the same way as (3.13), and this proves (3.14). O

3.4 Main result

In this section, we will prove an upper bound for the condition number of the

additive Schwarz operator Q.

Lemma 3.4.1 The largest eigenvalue of the additive operator QQquq s bounded from
above by (N, + 1), where N, is defined in Assumption 3.2.1.

Proof. The proof can be carried out in a standard way by a coloring argument;
see Lemma 5.6.3 or [54, p. 165]. O
In order to bound the lowest eigenvalue, we use Lemma 2.3.1. We first have to

find a stable decomposition according to (3.4).

Lemma 3.4.2 For every u € V¥, k > 2, we have

a(ui; ui) S Cg a(u: 11), (315)

k3

03:0(1+%) <1+(%)2>.

The constant C depends on k, the domain §2, the number of colors N., and the

J
—0
with

shape—reqularity and quasi-uniformity constants for Ty and Ty, but is independent
th7 H) 67 N, M2, and u.
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Proof. The vector u has the following decomposition
u=gradg+w, (3.16)

according to (3.1), where grad ¢ € Z and w € Z+. We will decompose grad g and
w separately.

Let us first consider the gradient term. Using the domain decomposition theory
for scalar elliptic operators (see [23] or [54, Ch. 5]), we can obtain a decomposition
q =3¢, for g € Sp.x(Q) C Hy (), and the following bound:

J
=0

J H
a(grad g, gradg;) = m Y lalio <C (1 + 3) mlali g
=0

(3

H
= C (1 + 3) a(grad ¢, grad );

see [54, Theorem 2, Section 5.3].

Consider now w € Z+. We will find a non-conforming approximation of w,
as described in [29], by first projecting onto Z*, then onto the coarse space Z;
and finally onto Z;-. We will, then, divide the remainder into a sum of functions
supported on the individual subdomains {€2}.

The first step is performed in the following way:
Define

wh:=0(w)e Z",
and consider the splitting
wh = v(‘]" +vT,
where
vy = Ppwt € Zj,

vti= (I - P)wt e 7%,

and the operator P, is defined in Section 3.3.1. Since ¥ and 1y are invertible on

Z+ and Z3, respectively, the following vectors are well defined

vo =1, (vy) € ZOL,

vi=91(v") ez
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The sum vy + v = w' is not equal to the original vector w, but it can easily be
seen that the difference (w — w’) is curl-free and, thus, by Proposition 2.1.2 and
(2.35), is the gradient of a function p € Sy.,(€2). Consequently, we have found the
decomposition

w = vy + Vv + gradp. (3.17)

Before proceeding, we have to find some bounds for the terms in (3.17) and
their curls. Since the operators O, ¥, and ¥y preserve the curl and Py does not

increase the L?-norm of the curl, it can be easily seen that

|curlvy|| < ||curlw||, (3.18)
|curlv|| < |lcurlw]]. (3.19)

We employ Lemma 3.3.1 to bound the L? norm of vy and v. Consider vy first.
By (3.5), we find

Ivoll < C (Ivgll + H [lcurlvoll) = C (|Iv{]l + H [leurlv]])
and, by Lemma 3.3.2,

|vol| < C||curlw™|| = C||curl w||. (3.20)

We next consider v. Applying Lemma 3.3.1 and 3.3.2, we find, in a similar way,

vl < C (Iv*]| + & [lcurlv]]) = C ([v*]| + A [[curlv*])) 5.21)
< C (H |curlw*|| + h ||curlv*|)) < C H|lcurlw]|. '

Since the L?-norms of vy and v are bounded, we can bound the L?-norm of grad p
in (3.17) in terms of the H(curl;)-norm of w. The gradp term can therefore
be decomposed in the same way as the gradient part of u in (3.16).

We now decompose the vector v as a sum of terms in {V;, i =1,---,J}. With

{xi}, the piecewise linear partition of unity relative to the covering {€2;}, we define
w, =N (xv) € Vi, i=1,---,J.
The function w' = v + v is thus decomposed as w' = 3/, w;, with
Wy = V.
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We have to check that the sum of the squares of the a—norm of the w; is bounded
by the square of the a—norm of w. The bounds for wy are given by (3.18) and
(3.20).

By inequality (3.13) of Lemma 3.3.3, we can write

Iwill < C [[xavll < C [lvll;

and, by (3.21),
||lw;|| < C H ||curlw]||. (3.22)

Employing (3.14), we can also write

[curlwillo0 < C [[eurl (xiv)llo,0

VAN

C (|lgrad x; X v|jo,0 + [|xi curlv[on)

IN

C (llgrad xillz=(@) [vllog: + lIxill ooy llcurlv]jo.a;)
C (67 vlloq + llcurlvijog)

IN

where we have used (3.12) for the last inequality. Finally, by (3.19) and (3.21), we
obtain

H
|lcurlw;|| < C (? |lcurl wi| + ||curlw||>
(3.23)

< C <1+§) lcurl w].

By summing over ¢ and employing Assumption 3.2.1, (3.18), (3.20), (3.22), (3.23),
and the equivalence of the graph and the energy norm, we find
J H 2

a(w;,w;) <C <1 + ﬂ) (1 + (F) ) a(w,w). (3.24)
-0

T2

2

Since (3.16) is also an a—orthogonal decomposition, inequality (3.15) holds. O
Lemma 3.4.3 The conclusion of Lemma 3.4.2 s also valid for k = 1.

Proof. The proof is similar to the one in [31, Section 5.2] and employs the
decomposition of V2 and the hierarchical decomposition of the degrees of freedom

for the Nédélec spaces.
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The vectors in Z' are gradients of scalar functions in 8&;h(Q) and can be de-
composed using the theory for scalar elliptic operators. Thus, we only need to
find a decomposition for a generic w € Z4!. Since w € V2, we can proceed
as in the proof of Lemma 3.4.2 (see Equations (3.16) and (3.17)) and we find a

decomposition
w = grad (q(2) +p(2)) + v(()2) +v® = grad ¢ + v(()2) + v®,

where ¢ € 83, (), vi? € ZH? and v® € Z12. The vectors v and v® satisfy
the following bounds (see (3.18), (3.20), (3.19), (3.21))

||curlv(()2)|| < ||curlw||,

V6]l < Cleurlw], (3.25)

|lcurlv®|| < ||curl w||,

|lv®@|| < C H||curlw]|.

Interpolating in V1, we obtain

w = Hﬁml (grad g + v(()Q) + v(2))
= Hﬁml (grad (1(2)) + H/I\{[DIV(()Q) + (HJ,:[DIV(Q) + (Hﬁml — H/I\{[DI) v(()2)) )

Equality (2.35) ensures that there exists a unique p € Sy, (), such that
Hﬁml (grad 6(2)) = grad p.
By setting

vy = H?{[DIV((E) € Vbl,

— Hﬁmlv(?) + (HQ/DI _ H%/pl) V(()z) c Vl,
we have found the decomposition

w = vy + v + grad p,
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which is the analog of (3.17). We now have to find some bounds for vy and v.
Since vy and v are piecewise quadratic functions, the same argument as in the

proof of Lemma 3.3.3 gives
2 2

I v | < ClIvi?l,

TP V@] < C|lv@,

|curl IN?'v? || < C||curlv? ], (3.26)

|curl IV P'v®)|| < C|curlv®)|,

leurl (" — TP ) v§?|| < Clleurlvg?|,
while [31, Lemma 5.2] ensures that

(™ = 1%™) v || < CH|IVEY|. (3.27)

Combining (3.25), (3.26), and (3.27), we obtain

||curlvy|| < ||curlw||,
[voll < Clcurlw]],
|lcurlv|| < ||curlwl||,

[v]l < C Hllcurlwl],

and, by setting
v; = Hﬁml (xiv), i=1,---,J,

we can now proceed as in the proof of Lemma 3.4.2. 0O
Combining Lemmas 5.6.1, 3.4.1, Theorem 3.4.2, and Theorem 3.4.3, we obtain
the final result.

Theorem 3.4.1 Let k > 1. There exists a constant C, such that the condition

number k(Quq) of the additive Schwarz preconditioner satisfies

K(Qua) < C (1 + %) <1 + (?)2) .

Here, C' may depend on the domain §2, on the the number of colors N., and on the

shape-regularity and quasi-uniformity constants of Ty and Ty, but is independent
th7 H) M, and N2-

20



3.5 Extensions

The bound in Theorem 3.4.1 tends to infinity as the coefficient 7, tends to zero.
This is due to the fact that the decompositions considered in Lemmas 3.4.2 and
3.4.3 are not stable in the L?>-norm. However, the numerical results in the next
section show that the condition number of the additive method remains bounded
and is independent of the overlap H/J, as 1, becomes small. In fact, the condi-
tion numbers appears to be bounded independently of the ratio n;/1n,. Here, we
show that in the limit case 7, = 0, a stable decomposition can be found and, con-
sequently, the overlapping preconditioner considered is still optimal. We remark
that Lemmas 3.4.2 and 3.4.3 remain valid in the limit case n; = 0.

Given a function u € V, consider the decomposition

Uy = 0e Vb,
u; = Hjh\,/Dk (qu) e V.

Lemma, 3.3.3 and Assumption 3.2.1 ensure that this is a stable decomposition with
respect to the L?-norm, and, consequently, Lemma 3.4.1 holds for n, = 0, with a
constant Cj that is independent of h, H, u, d, and 7;. Thus, in this limit case, a
coarse space is not needed.

For the Neumann problem, convexity is not necessary.

Theorem 3.5.1 When the whole space H(curl; Q) is considered, the conclusions

of Lemmas 3.4.1 and 3.4.2 are still valid, for a general polyhedral domain.

Proof. The proof of Lemma 3.4.1 is the same. For the lower bound of the
additive method, the proof can be carried out as in [32, Theorem 5]. The domain
is embedded in a larger convex domain, €2, and the decomposition for Hy(curl; ),
together with an extension theorem, is exploited. O

We conclude this section with some remarks on our assumptions. A conver
polyhedral domain is considered for the Dirichlet problem: this is necessary for the
Embedding Theorem 2.1.1 to hold. As pointed out in Remark 2.1.4, the theorem

is not valid for a general non—convex domain, unless the boundary is sufficiently
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regular. This assumption is also required for the proof of Lemma 3.3.2. Quasi-
uniform triangulations are assumed, for the proof of the inequalities in Lemma
3.3.1.

3.6 Numerical results

In this section, we present some numerical results to find out how the rate of
convergence of two Schwarz algorithms depends on the overlap, the number of
subdomains, and the coefficients 7, and 7o. We consider the Dirichlet problem (3.3)
in the unit cube (2, with uniform triangulations 7, and 7. The fine triangulation
7Tr. consists of n® cubical elements, with 4 = 1/n. The number of subdomains 7,
equals the number of coarse elements in 7.

We have tested the following Schwarz algorithms:

(i) The conjugate gradient method applied to the additive one—level Schwarz

operator

J
Qasl = Z Qz
=1

(ii) The conjugate gradient method applied to the additive two—level operator
J
Qas? = QO + ZQZ
i=1

For the two algorithms, Tables 3.1 and 3.2 show the estimated condition number
and the number of conjugate gradient iterations necessary to obtain a reduction
of 1079 of the residual norm, as a function of the problem size, the number of
subregions, and the relative overlap. The estimate of the condition number is
obtained from the parameters calculated during the conjugate gradient iteration,

using the method described in [47]. We observe:

e When the number of subdomains and the relative overlap are fixed, the
condition number and the number of iterations appear to be bounded inde-

pendently of the problem size.
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Table 3.1: One-level additive Schwarz algorithm. Estimated condition number and
number of CG iterations for a residual norm reduction of 107% (in parentheses),

versus n, number of subdomains and H/é. Case of gy =1, 7 = 1.

HJé
. Msup 8 4 2 1.33
g 23 - 14.10 (23) 8.95 (20)  8.94 (15)
16 2% | 28.05(25) 13.32 (21) - -
16 43 - 33.51 (29) 15.13 (23) 27.30 (28)
16 8 - - 57.31 (35) -
24 3% | 50.94 (30) 22.62 (24) - -
24 6° - 67.39 (35) 22.99 (26) 21.25 (27)
24 123 - - 73.69 (38) -
32 4% | 80.86 (36) 34.82 (25) - -
32 8 - 117.18 (43) 37.33 (29) 28.85 (28)
40 5% | 115.93 (41) 50.41 (29) - -
40 10° - 177.46 (46) 55.35 (31) 44.52 (29)
48 6% | 143.05 (43) 66.60 (32) - -
48 123 - 243.85 (55) 74.57 (35) 60.03 (33)
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Table 3.2: Two-level additive Schwarz algorithm. Estimated condition number and
number of CG iterations for a residual norm reduction of 107% (in parentheses),
versus n, number of subdomains and H/é. Case of gy =1, 7 = 1.

H/é

N Ngub 8 4 2 1.33

8 23 - 8.94 (19) 8.98 (20) 9.05 (15)
16 23 [14.05 (21) 8.49 (19) - -

16 43 - 8.61 (19) 9.86 (21) 27. 54 (28)
16 8 - - 10.59 (19) -

24 3 |13.86 (21) 8.45 (19) - -

24 63 - 8.43 (19) 9.05(19) 21.93 (27)
24 123 - - 9.39 (18) -

32 4% |13.02 (20) 8.30 (18) - -

32 8 - 8.37 (19) 8.78 (19) 21.39 (25)
40 5% | 13.12 (20) 8.29 (18) - -

40 10° - 8.29 (18) 8.68 (19) 22.28 (25)
48 63 | 12.91 (20) 8.36 (18) - -

48 123 - 8.32 (18) 8.64 (18) 22.93 (24)
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e For both algorithms, the condition number initially decreases with H/d, when
the number of subregions is fixed. For larger values of the relative overlap,
the number of colors N, increases, and, consequently, the condition number

increases, in accordance with our analysis.

e For a fixed value of the relative overlap, the condition number grows rapidly
with the number of subregions for the one-level algorithm, while it appears
to be bounded independently of the number of subregions, for the two-level
case. The two-level algorithm behaves better than the one-level method in
all the cases considered in Tables 3.1 and 3.2, except for problems of small

size and large overlap.

e We have compared the number of iterations obtained with our two-level
method, with those given in [54, p. 50|, for a two-level overlapping precondi-
tioner employed with GMRES, for the Laplace equation in two dimensions.
Taking into account that a different precision is required there and that the
number of conjugate gradient iterations varies logarithmically with the re-
quired precision, we can conclude that our iteration counts are comparable

with those for similar preconditioners for Laplace equation.

In a second study, we further analyze the upper bound of the inverse of the
minimum eigenvalue, given in Lemmas 3.4.2 and 3.4.3. We recall that the estimate
for the corresponding preconditioner for the scalar Laplace equation gives an upper
bound that is linear in H/J; see [54, Theorem 2, Section 5.3] and [23]. Figure 3.1
shows the inverse of the estimated condition number and some polynomial least-
square fits, versus H/§. We observe that the inverse of the smallest eigenvalue
appears to grow linearly for H/6 > 4 and is practically constant for H/6 < 4. This
suggests that the leading term of its asymptotic expansion is linear in H/d and the
bounds given in Lemmas 3.4.2 and 3.4.3 probably are not sharp. We also show the
quadratic polynomial least-square fit in the whole interval (1, 10].

We have also considered the effect on our method when the ratio between the
coefficients 7, and 7, is changed. We recall that the bounds obtained in Lemmas

3.4.2 and 3.4.3 remain bounded when 7, /1, tends to zero, but blow up when 7, /7,
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Table 3.3: One-level additive Schwarz algorithm. Estimated condition number and
number of CG iterations for a residual norm reduction of 107% (in parentheses),

versus b and H/é. Case of n, = 1, n = 16.

8 subdomains 64 subdomains
H/é H/$

T 8 4 4 2 1.33
1le-06 | 29.44 (26) 13.58 (22) | 34.50 (31) 14.50 (25) 14.36 (24)
le-05 | 29.44 (26) 13.58 (22) | 34.50 (31) 14.50 (25) 14.36 (24)
0.0001 | 29.43 (26) 13.58 (22) | 34.50 (31) 14.50 (25) 14.36 (24)
0.001 | 29.43 (26) 13.58 (22) | 34.49 (31) 14.51 (25) 14.37 (24)
0.01 | 29.40 (26) 13.58 (22) | 34.49 (31) 14.62 (25) 15.11 (25)
0.1 29.20 (26) 13.52 (22) | 34.41 (31) 16.04 (25) 28.18 (28)
1 28.05 (25) 13.32 (21) | 33.50 (29) 15.13 (23) 27.30 (28)
10 22.34 (22) 11.80 (18) | 25.81 (25) 10.19 (20) 24.98 (29)
100 | 11.51 (17) 8.04 (15) | 11.54 (18) 7.99 (17) 26.71 (26)
1000 | 8.11 (14) 8.00 (12) | 8.14 (14) 7.99 (14) 26.96 (25)
10000 | 8.53 (13)  8.00 (10) | 8.70 (14) 8.01 (12) 26.98 (23)
le+05 | 8.95 (14) 8.02 (9) 9.17 (15)  8.05 (10) 26.98 (22)
le+06 | 9.13 (14) 8.02 (9) 9.24 (15)  8.06 (10) 26.99 (22)

26




Table 3.4: Two-level additive Schwarz algorithm. Estimated condition number and
number of CG iterations for a residual norm reduction of 107% (in parentheses),

versus b and H/é. Case of n, = 1, n = 16.

8 subdomains 64 subdomains
H/S H/$

T 8 4 4 2 1.33
le-06 | 13.30 (21) 8.99 (20) | 8.94 (20) 13.44 (24) 14.31 (24)
le-05 | 13.30 (21) 8.99 (20) | 8.94 (20) 13.44 (24) 14.31 (24)
0.0001 | 13.30 (21) 8.99 (20) | 8.94 (20) 13.44 (24) 14.31 (24)
0.001 | 13.30 (21) 8.99 (20) | 8.94 (20) 13.43 (24) 14.32 (24)
0.01 |13.30 (21) 8.98 (20) | 8.93 (20) 13.35(24) 19.51 (26)
0.1 13.29 (21) 8.89 (20) | 8.86 (20) 12.64 (23) 27.83 (27)
1 14.05 (21) 8.49 (19) | 8.61 (19) 9.86 (21) 27.54 (28)
10 13.48 (19) 8.43 (17) | 9.03 (18) 8.67 (19) 24.99 (29)
100 9.94 (16) 8.04 (15) | 8.59 (18) 8.74 (18) 26.67 (26)
1000 | 8.11 (15) 8.07 (13) | 8.30 (17) 8.82 (17) 26.97 (26)
10000 | 8.55 (15) 8.08 (13) | 8.91 (17) 8.88 (15) 27.03 (23)
le+05 | 8.92 (14) 8.09 (12) | 9.40 (18) 8.92 (14) 27.04 (24)
le+06 | 9.00 (14) 8.09 (12) | 9.47 (18) 8.93 (14) 27.04 (24)
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Figure 3.1: Two-level method. Inverse of the estimated minimum eigenvalue (as-
terisk), least-square zero (solid line), first (solid line), and second order (dashed
line) fitting polynomials, versus H/§. The relative fitting error is 1.0, 1.4 and 3.5
per cent, respectively. Case for 7y =1, 7o = 1, n equal to 16, 18, and 20.

tends to infinity. In addition, an optimal bound is given in Section 3.5, for the
case 72 = 0, which is independent of the number of subdomains and the overlap.
Tables 3.3 and 3.4 show the estimated condition number and the number of
conjugate gradient iterations in order to obtain a reduction of 1079 of the residual
norm, as functions of 7;, the number of subregions, and the relative overlap, for

the two algorithms, applied to a problem of fixed size and a fixed 7. We observe:

e When the coefficient 7, is fixed, the observations made concerning Tables 3.1
and 3.2 are still valid.

e For a fixed number of subregions and a fixed overlap, the condition number
and the number of iterations are practically constant as a function of 7;, when
m < 1. The same behavior is observed for the two-level algorithm, when

m > 1. Moreover, the condition number of the one-level method decreases
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when 7); increases. When 7 is large, the condition number is less insensitive
to the overlap and the number of subregions; this is consistent with the our

analysis for the case 7o = 0, in which a coarse space is not needed.
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Chapter 4

Iterative substructuring methods
based on individual edges or faces

4.1 Introduction

In this chapter, we study some iterative substructuring methods (also called Schur
complement methods) for some Raviart-Thomas and Nédélec element approxima-
tions, in two and three dimensions.

In a substructuring method, the local spaces are related to a partition of the
original domain {2 into non-overlapping subdomains, called substructures. De-
pending on the particular method, the substructures can be the elements of a
coarse mesh or arbitrary connected subsets of €2, consisting of unions of elements
of the fine mesh. The lack of generous overlap results in bounds for the condition
number that are not optimal, but which can be made independent of the jumps
of the coefficients. This last property is not in general guaranteed for overlapping
methods.

If the degrees of freedom of the local spaces are related to the edges (or faces,
in three dimensions) of the substructures, we speak of edge space (or face space)
methods. In case they are related to the entire boundaries of the substructures,
they give rise to Neumann—Neumann methods; see [22, 54] and Chapter 5.

In this chapter, we will study an edge space method for H(curl;{2) and
H(div; ), in two dimensions, and a face space method for H(div;2), in three

dimensions. We note that we only know of one study of iterative substructuring
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methods in H(curl;(), in three dimensions. In [3] an iterative method for the
case of two substructures is studied. To our knowledge, methods for the case of an
arbitrary number of substructures still remains to be developed and analyzed.

The analysis presented in this chapter, on edge space and face space methods
in two and three dimensions, is contained in [57] and [62], respectively.

Many Schwarz methods have been designed and analyzed for the case of H'(Q)
in two and three dimensions; see, e.g. [23, 22, 54]. The substructuring methods
presented in this chapter all employ standard coarse spaces, built on coarse trian-
gulations. The choice of the coarse space for a Schur complement method in H'((2)
is a delicate matter, in three dimensions; see, e.g. [22, 60]. Thus, if a standard sub-
space built on a coarse triangulation is employed in a wvertez-based algorithm, the
condition number of the method cannot be both quasi-optimal and independent of
the jumps of the coeflicients across the inner edges of the substructures; see [22]. In
particular, if only edge, face, and interior spaces are used in addition to a conven-
tional coarse space, the condition number can be made independent of the jumps
but it will grow algebraically with the number of unknowns in each subdomain.
If, on the other hand, local vertex spaces are added then a logarithmic bound
can be found for the condition number of the iteration operator, but this bound
will not, in general, be independent of the jumps of the coefficients. The reason
is that the standard, vertex based interpolation operator onto the coarse space
has a norm that grows algebraically in three dimensions. For this reason, other
coarse spaces and iterative substructuring methods have been introduced, among
them the wire-basket based algorithms (see [22]), and the balancing methods (see
(37, 36, 16]). (We recall that the wire-basket is the union of the boundaries of the
faces which separate the substructures.) In this respect, there is an interesting dif-
ference between H'(2) and H(div;{) in three dimensions, since our new method
for H(div; () uses a standard coarse space that is just a smaller instance of the
original finite element problem. At the same time, we are able to maintain the
same kind of quasi-optimality and independence of the jumps as the best, more
complicated algorithms for the H'(Q) case. This is a consequence of a certain
stability result, given in Lemma 4.3.1, for the interpolant for the Raviart-Thomas

space, the degrees of freedoms of which are defined by averages of the normal
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component over the faces of the triangulation.

4.2 An edge space method in two dimensions

In this section, we will present some results for the space H(curl;Q) in two
dimensions. The analysis of the corresponding algorithm for H(div;€) in two
dimensions follows from that for H(curl;(2) and the observation that the func-
tions in H(div;{2) and in the Raviart-Thomas spaces are obtained from those in
H(curl;2) and in the Nédélec spaces, respectively, by a rotation of ninety degrees;
see Sections 2.1.2 and 2.2.2.

4.2.1 Discrete problem and finite element spaces

Let Q be a bounded polygon in R?. We consider problems involving the bilinear
form
a(u,v) := /(a curlucurlv+ Bu-v)dz, u,ve H(curl;), (4.1)
Q
where the coefficient matrix B is a symmetric uniformly positive definite matrix—

valued function with b,; € L*(Q2), 1 < 4,5 < 2, and a € L>®(R) is a positive
function bounded away from zero.

Let Ty be a triangulation of €2, of maximum diameter H, consisting of triangles
or rectangles, and let 7, be a shape—regular and quasi—uniform refinement of Ty,
with characteristic diameter h. A generic element of 7, and 7y will be denoted
by ¢t and T, respectively. The sets of edges of the triangulations 7, and Ty, are
denoted by &, and &g, respectively, and a generic edge by e and E. The elements
of Ty will be called substructures. For each interior edge £ € £g there are two
elements T;, T; € Ty such that E := 0T; N 0T}, and we set

Ty =T,UT,.

We also suppose that the coefficients @ and B are constant on each substructure
T and equal to ar and Br, respectively. The may have arbitrary jumps across the

edges of the substructures. In addition, the matrices { By} satisfy
Bra'n <n'Bry < yrn'n, V€ R,
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where (Br and 77 are positive constants, which can depend on the substructure 7.

In this section, we will only consider, in full detail, triangulations based on
triangles, but note that our results are equally valid for finite element spaces built
on rectangles. We also remark that our analysis is carried out locally for one
substructure at a time. We can therefore interpret the factor H/h, which appears
in our estimates, as

Hr
We consider the lowest order Nédélec elements, defined on the fine and coarse

mesh, respectively,
KXo 1= N'Dgy () = N Do (),
XO;H = NDé’H(Q) - ND();H(Q),

conforming in Hy(curl;Q); see Section 2.2.2. In the case D is a substructure or
the union of two substructures that have a common edge, we will also need the
finite element space Xo;,(D) C Ho(curl; D), and the space S, (D) = S;,, (D), of
continuous, piecewise linear functions that vanish on 0D.

4.2.2 Description of the algorithm

We consider the approximate problem:
Find u € Xy, such that

a(u,v) = (f,v) Vv e Xop, (4.2)

where f € L%(Q2)?. The generalization to the case of the N'D;(2) (Neumann
boundary conditions) does not present any particular difficulty.

In order to define a Schwarz , algorithm, we have to define a decomposition of
Xo,, into subspaces and some bilinear forms defined on them. We decompose Xy,
into the coarse space Xo.x, the interior spaces {Xr, T' € Ty}

XT = XO;h,(T)a T € TH,
and the edge spaces {Xg, E € €y}

Xg:={veXo| a(v,w)=0, w e X5, UXy,, suppv C Tg}.
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We note that any element v € Xp is the harmonic extension of a function defined
on the edge E to Tg, and that it is defined uniquely by its value of n X v on E. In
addition, the coarse space X5 is contained in the union of the edge and interior

spaces, and, consequently, the decomposition

Xop=Xom+ Y, Xr+ > X&, (4.3)
TeT EcEy
is not a direct sum.
We will use the original bilinear form a(-, -) on all the subspaces Xy, Xg, and
Xr.

4.2.3 A stability estimate for the interpolation operator

In this section, we will prove a stability estimate for the interpolation operator
pr : Xogp — Xom.

In particular, this interpolant will be logarithmically stable in the || « ||cur1 nOrm.
We note that the best bound for the L2-norm alone involves a factor of H/h; this
can easily be seen by considering an element u, for which all the interior degrees
of freedom vanish.

The interpolation operator has already been defined in Section 2.2.2. In partic-
ular, we recall that py is defined in terms of the degrees of freedom of the coarse
space Xo.p, 1.e.

)\E(pHu) = HLE /n X lldS, FE e gH (44)

E

As usual, we denote the diameter of a bounded open set D by Hp.

Lemma 4.2.1 Let T be a substructure. Then, there exists a constant C' > 0,
which depends only on the aspect ratios of T and the elements in Ty, such that for
all u € XO;h;

IN

leurl u] 5, (4.5)

H
C ((1 +log (E)) a2, + H%||curlu||g;T> . (46)

lleurl (prrw) 5.

IA

lpzullgr
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Proof. By (2.36) in Proposition 2.2.1, we have that

(curl (pr 1)) |r = (Qucurl (w)) |, (4.7)

where Qp is the L?-projection operator onto the space of constants on T € Ty.
Inequality (4.5) follows immediately.

Let E be an edge of 0T, of length Hg, and let v; and vy be its endpoints. The
restriction of the fine triangulation 7, to E splits E into a union of nonoverlapping
edges of the fine triangulation. Let e; and ey be the edges, which end at v; and vy,
respectively, and let ¢; and ¢, be the elements in 7}, to which e; and ey belong. We
now define a continuous, piecewise linear function, ¥z on 0T which satisfies: Vg
is equal to one on F, except on e; and ey, where it decreases linearly to zero; it is
extended by zero on 0T\ E. As shown in [54, Section 5.3.2], ¥ can be extended to
T, as a continuous piecewise linear function, still denoted by ¥, with an absolute
value less than or equal to 1, and with a gradient which is bounded by C/h on t;
and t and by C/r elsewhere. Here r is the distance to the closest of vy or v,.
for each edge E C OT.
Since the function n x (pgu), is constant, we can use Stokes’ theorem, (2.28),
and (4.4), and find that

Because of (2.28), it is enough to bound Hg(n X pgu)

s

Hg(n x pgu)|, = /(n X u)ds

= /ﬁE(n X 1) +% (n X u|el) +% (n X ulez)
J (4.8)

= !(ﬂEcurlu+gradﬁE X u) + % (n X u|81) + % (n X u|82)

< C (H||curlul|p;r + |95

yrllullo + [[allog, + llallog,) -

We next consider the second term on the right hand side of (4.8) in more detail.
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To obtain an upper bound for [Jg|;.r, we split T into t; Uty and T\ (¢, U o)

|79E‘%;T: / \grad 9p|* dx + / \grad 9 |* dz

t1Ut2 T\ (t1Ut2)

C / — dz + / —dx <c(1+/H7 dgbdr) (4.9)

t1Uto T\(tl Utz)

< C <1+log (%)) )

Taking (2.28), (4.8), and (4.9) into account, we find (4.6) by summing over all
Ecor. o

IN

Remark 4.2.1 We can obtain a similar estimate for the energy norm on the sub-
structure T. However in this case, the constant also depends on the ratio of the

coefficients

T/B(pHu)-(pHu)da: < Cgi( —|—log( ))/Bu udzx

+C TVT/a curlu curludz.
ar

4.2.4 Main result

In this section, we will prove our main result, i.e., a bound for the condition number
of the additive Schwarz operator, defined in (2.51), associated to the decomposition
(4.3). A bound for the error operator of the corresponding multiplicative operator,
defined in (2.52), can also be found using Lemma 2.3.3.

We proceed by first introducing an auxiliary decomposition of the Nédélec space
Xo:1(Q2), related to the Laplace operator, and prove, in Lemma 4.2.3, that a stable
splitting can be found. To do so, we will employ some results for piecewise linear
continuous functions. We will then use this result and Lemma 2.3.1 to prove a
lower bound for the smallest eigenvalue of the additive method. We conclude this
section by showing that there is also a bound that is independent of the the ratio

of the coefficients B and a in (4.1). As is often the case, a good bound for the

66



largest eigenvalue is routine and can be obtained by a standard coloring argument;
see, e.g. [54, Page 165].
We first consider the following splitting:

Xop=Xog+ Y Xr+ > Xp. (4.10)
TETH EcEy
For every coarse edge E, the space Xy consists of the gradient of functions in
So:n(Tg), which are discrete harmonic with respect to the Laplace operator on
T; and Tj, i.e., the extension with smallest H' semi-norm of all finite element
functions with the given boundary values.
It is then easy to see that

X();HﬂXT:X();HHXE:XEHXT:{O}, EEgH,TETH

Furthermore, for T} # T5 and E; # Es, the spaces X1, and X7, as well as X g, and
X £, have an empty intersection. Counting the degrees of freedom then guarantees
that (4.10) is a direct sum.

We remark that X is not defined by solving a homogeneous Maxwell equation
with boundary data given by piecewise constant functions, with zero averages over
the edges; see below for a discussion of that case.

We will need the following result for continuous, piecewise linear functions. A

proof can be found in [59, Lemma 3.3].

Lemma 4.2.2 Let ¢ € S} (Q) and n = ¢ — Hj’}ld), where Hg(ﬁ is the piecewise

linear interpolant on the coarse triangulation. Then the following estimate holds

S [yl <C 1+10§2‘¢‘2
Me1/20m) = g A LT

EcCoTr

We are now ready to prove the following lemma.

Lemma 4.2.3 For each u € Xy, there erists a unique decomposition

u=ug+ Z ur + Z flE, (411)
TET Ecfy

67



corresponding to (4.10), such that

a(ug,ug) + Y a(up,ur)+ > a(tg,up) <C (1 + log (%))Qa(u, u),

TETy Ec&y

with a constant C' > 0, independent of h, H, and u.

Proof. We have already proven that the decomposition (4.10) is unique. Be-

cause of this uniqueness and py(u — uy) = 0, we obtain
Uy = pgu.
Using Lemma 4.2.1, we immediately obtain an upper bound for the first term;
H
a(ug,ug) < Cn (1 + log E) a(u, u),

where 7 depends on the coefficients. An upper bound for 7 is given by

2
max max (7—T, Hr 7T) ; (4.12)
TeTu Br ar

see Remark 4.2.1.

The upper bound for the remaining terms is established on the substructure
level, and the global result is obtained by summing over all substructures.

Let us consider a generic substructure 7. For an upper bound of ||Gg||o.r, we
proceed by further decomposing the subspaces Xo.;, Xg, and Xr, restricted to T,
into gradient spaces and orthogonal complements.

We recall that Xo. restricted to 7" is equal to R(7T") and thus each uy € Xo.5z can
be written on T € Ty as

uy|r = grad ¢y + ar ( zT__yg ) := grad ¢, + uy,

where ¢q is a linear function and (zr, yr) is the center of gravity of the 7. Then,

it can be easily seen that this is a L?—orthogonal decomposition and that

[uollo;r < CH||curlugl|osr. (4.13)
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For the local subspace X1t = X.,(T), we use the orthogonal splitting already
introduced in (2.41), for Q2 = 7. Each ur € Xr = Xo.,(7) can be written as

ur = grad ¢r +u,

with ¢ € So;h(T) and u; € NDOL’h(T)
By the definition of X, each i is the gradient of a continuous piecewise linear

function ¢g.

By defining

Yi=¢o+dr+ Y, b, W:i=up+uy,
EcoT

we obtain the following decomposition for u on 7'
u=grady +w. (4.14)

We remark that this is not an orthogonal decomposition.
It follows, by definition, that ¢y + > gcsr ¢r is a discrete harmonic function.

Applying Lemma 4.2.2, we obtain

H\? 2
Z |¢E‘§{1/2(8T) S C (1 +10g ﬁ) ‘(ﬁo-f- Z ¢E‘1;T' (415)

ECoT ECoT

Using (4.15), the equivalence between the H'/2-semi-norm on 0T and the H'-

semi-norm on 7" for discrete harmonic functions, we obtain

> Nusllor <C 3 [bliaen. (4.16)

EcoT EcCoT
Since grad ¢7 and grad (¢o + Y gcor ¢r) are orthogonal in L?, (4.15) and (4.16)
yield
) H\? ,
> lasly < € (1+10g" ) llgrad ]y

EcCoT
In a last step, we have to bound ||grad 4|[5.;- by |[ul|?,.; Using inequality (2.42)
for Q =T, applied to uy, and (4.13), we obtain

[wllor < CLE?(leurlu[[5y + [leurl uollg.y)-
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Since curl ug is constant and curl u; has mean value zero on 7', they are orthogonal
in L?(T), and we finally find

Iwiz, < CLR2|lcurl wiZ,. (1.17)

Using (4.14), we obtain

[ullGon = [Pl + IWlICur + 2(w, grad ¥)os.
Applying Young’s inequality gives

2w, grad ¥)or < ol + Wl € >0
Employing (4.17), for 0 < € < 1, we obtain

[l = (1= Wiy + (1+ (1 = e )CLH?) eurl W[5,
The choice e = C H*/(C L H? + 1) gives
Yl < Cllullcumr

and thus

H 2
> |uglfr <C (1 + log F) [ s
ECOT

The norm of ur on 7" is then bounded using the triangle inequality. Summing over

all subdomains, we finally get

. H\\”
lonlZuma+ 3 lurlne+ 3 lslne < C (1+10g (5 ) Tulfue.

TeTu Ecor

Lemma 4.2.3 is now a consequence of the norm equivalence of the graph norm
||  ||cur1 @and the energy norm || - ||,. O

A detailed analysis of the constant C' shows that it depends on 7 but not on
jumps of the coefficients. In case of time-dependent Maxwell’s equations 7 tends
to infinity if the time step tends to zero, and then the constant C' in Lemma 4.2.3

deteriorates. This is due to the fact that the interpolation operator pg is not
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logarithmically stable with respect of the L?-norm. As previously remarked, the

best bound for the L?-norm alone is

H
lorullor < C—-llpmullor-

In contrast to the auxiliary decomposition (4.10), (4.3) is stable with respect to
the L?-norm, as we will show later.

We will now consider the decomposition given by (4.3).
Theorem 4.2.1 For each u € Xy, there exists a decomposition

u=ugy + Z ur + Z ug,
TeTH E€&n

corresponding to (4.8) such that

a(ug,ug) + Y a(up,ur) + Y a(ug,ug) < C (1 + log (%))2“(11’ u),

TETH EEEH

with a constant C' > 0, independent of h and u.

Proof. The proof is based on the stability of the splitting (4.10). Each function
in X can be written as the gradient of a piecewise discrete harmonic function ¢g
with respect to the Laplace operator, while this is not generally true for a function
up € Xg. However, it can be characterized as the solution of a minimization
problem. Choosing uy = pgu, which ensures that ug X n|gp = ug X n|g, we
obtain

a(ug,up) = vEer)gi;;?(Tm a(vg,vg) < a(lg, g).
vgxn|g=upxn|p
We remark that the coarse space contribution ug is exactly the same as in the
direct decomposition of Lemma 4.2.3. O
Finally, we consider the splitting (4.3) for the limit case a = 0. In this case,

the bilinear form a(-,-) is just a weighted L?-scalar product

a(v,w) :/Bwvda:.
Q

71



Let us, for the moment, decompose u in
u= Y et Y 6
TGTH EEEH

where g € Xoy with A () = Ae(ug), e C E and A (idg) = 0 elsewhere, and
ur € Xp. Then the bound (2.28) guarantees that

> [[asllge < Cllu

EcEy

2
0;Q2°

We remark that tig is an extension by zero to the interior of the substructures and

in general not contained in Xg. Considering now the unique decomposition of u,

u= Y ur+ Y ug

TETH Ec€y

where ur € Xt and ug € Xg, we get, because of the minimization property of

ug,

> |[upl[Ge < Cllu

Ecéqy

2
0;Q2°

This proves the stability of the decomposition of u with respect to the L?-norm.
Thus as 1 becomes large, we expect an upper bound for the condition number
which is independent of the ratio H/h. We remark that this result cannot be
obtained with the splitting (4.10).

In the second limit case, B = 0, the bilinear form a(-,-) is no longer positive
definite. However, we can still work with a preconditioned cg-iteration in a sub-
space, if the right hand side f is consistent. Then the stability of py with respect
to the L*norm of the curl, (4.5), gives us optimal results, i.e. a condition number
which is independent of the ratio H/h.

Remark 4.2.2 As we have already pointed out in the beginning of Section 4.2, our
results and analysis carried out for the space H(curl; Q) and Nédélec elements are

also valid for H(div; Q) and the lowest-order Raviart-Thomas elements.
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4.2.5 Numerical results

In this section, we present some numerical results on the performance of the iter-
ative substructuring method described in the previous sections, when varying the
diameters of the coarse and fine meshes, and the coefficients a and B. We refer to
[54], for a general discussion of practical issues concerning Schwarz methods. Our

numerical results are given for a decomposition slightly different than (4.3)

Xop = Xog + Y Xon(Tk).
Ee€y
Because of the orthogonality between the spaces { X7} and {Xg}, this decompo-

sition is stable if and only if (4.3) is. The corresponding preconditioner is

B=R, Ay Ru+ Y (R Ag' Rg),
EcEy

where the extension matrices RL, and {RL} map the degrees of freedom of the
coarse and local spaces, respectively, into the the global ones, and Ay and {Ag}
are the matrices relative to Dirichlet problems on the coarse mesh and on the
regions Tg; see Section 2.3.

We have considered the domain 2 = (0,1)? and a uniform rectangular triangu-
lations 7, and Tg. The fine triangulation 7, consists of n? square elements, with

h =1/n. The matrix B is given by
B = diag{b, b}.

In Table 4.1, we show the estimated condition number and the number of
iterations in order to obtain a reduction of the residual norm by a factor 1075,
as a function of the dimensions of the fine and coarse meshes. For fixed ratios
H/h, the condition number is quite insensitive to the dimension of the fine mesh.
The number of iterations varies slowly with H/h and our results compare well
with those for finite element approximations in H! of Laplace’s equation; see, e.g.
[54]. We remark that the largest eigenvalue is bounded by 5 in all the cases in
Table 4.1, except for (n = 32, H/h = 16) and (n = 64, H/h = 32); the latter cases

correspond to a partition of 2 by 2 subregions and, consequently, the bound for
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Table 4.1: Estimated condition number and number of CG iterations for a residual
norm reduction of 107% (in parentheses), versus H/h and n. Case of a =1, b = 1.

|H/h | 32 | 1.6 | 8 | 4 | 2 |
n=32 - 20.23 (11) | 26.50 (20) | 19.10 (20) | 12.86 (17)
n=64 | 26.27 (11) [ 35.94 (20) | 27.16 (21) | 19.00 (17) | 12.90 (16)
n=128 | 46.83 (20) | 36.68 (18) | 27.06 (17) | 18.92 (16) X
n=192 - 36.71 (17) [ 27.00 (17) | 18.90 (16) X
n=256 | 47.80 (18) | 36.66 (17) | 26.97 (16) | 18.89 (16) X

the largest eigenvalue is 3.

In Figure 4.1, we plot the results of Table 4.1, together with the best second
order logarithmic polynomial least—square fit. The relative fitting error is about
1.8 per cent. Our numerical results are therefore in good agreement with the
theoretical bound obtained in the previous section and confirm that our bound is
sharp.

In Table 4.2, we show some results when the ratio of the coefficients b and a is
changed. For a fixed value of n = 128 and a = 1, the estimated condition number
and the number of iterations are shown as functions of H/h and b. The numerical
results also confirm the theoretical results in the limit cases b = 0 and b = oo.
More precisely, we remark that the condition number tends to be independent of
the ratio H/h when the ratio b/a is very small or very large. We recall that when
Maxwell’s equations are discretized with an implicit time—scheme, the time step
is related to the ratio b/a. The iterative substructuring method presented in this
chapter therefore appears very attractive for the solution of linear systems arising
from the finite element approximation of time-dependent Maxwell’s equations.

In Table 4.3, we show some results when the coefficient b has jumps across
the substructures. We consider the checkerboard distribution shown in Figure
4.2, where b is equal to b; in the shaded area and to b, elsewhere. For a fixed
value of n = 128, by = 100, and a = 1, the estimated condition number and the

number of iterations are shown as functions of H/h and by. For by = 100, the
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Table 4.2: Estimated condition number and number of CG iterations for a residual
norm reduction of 107 (in parentheses), versus H/h and b. Case of n = 128 and
a=1.

|H/h | 32 | 16 | 8 | 4 |
b=1e—5]3.87 (10) | 4.68 (13) | 4.86 (13) | 4.92 (13)
b=1e—4]3.87(10) | 36.3 (16) | 26.2 (16) | 13 (15)
b=1e—3]16.9 (11) | 36.5 (16) | 27 (16) | 18.7 (16)
b=1e—2]46.9 (14) | 36.7 (17) | 27.1 (16) | 18.9 (16)
b=1e—1]46.9 (14) | 36.7 (17) | 27.1 (17) | 18.9 (16)
b=1 46.8 (20) | 36.7 (18) | 27.1 (17) | 18.9 (16)
b=1le+1|453(22)|36.4(22) | 27 (18) |18.9 (17)
b=1le+2|40.8 (25) | 34.8 (23) | 26.7 (20) | 18.9 (19)
b=1le+3|29.8 (24) | 28.4 (23) | 24.5 (21) | 18.4 (19)
b=1le+4|17.4 (18) | 17.3 (17) | 16.8 (18) | 15.3 (17)
b=1e+5]9.41 (14) | 9.37 (14) | 9.3 (14) [9.15 (14)

coefficient b has a uniform distribution, and this corresponds to a minimum for the
condition number and the number of iterations. When b, decreases or increases,
the condition number and the number of iterations also increase, but they can still

be bounded independently of bs.
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Figure 4.1: Estimated condition number from Table 4.1 (asterisk) and least—square
second order logarithmic polynomial (solid line), versus H/h; relative fitting error
about 1.8 per cent.

Table 4.3: Checkerboard distribution for b: (b1, by). Estimated condition number
and number of CG iterations for a residual norm reduction of 107° (in parentheses),
versus H/h and by. Case of n =128, a = 1, and b; = 100.

| H/h | 4 | 8 | 16 |
by = le — 3 [ 18.9708 (25) | 25.2740 (27) | 29.2245 (30)
by = le — 2 [ 18.9700 (25) | 25.2707 (27) | 29.2087 (30)
by = le — 1] 18.9630 (25) | 25.2432 (27) | 29.0817 (30)
by=1 18.9343 (25) | 25.1751 (27) | 28.9695 (30)
by =le+1 | 18.8344 (24) | 25.0193 (28) | 28.7278 (29)
by = le+2 [ 18.0958 (19) | 23.9682 (19) | 28.0473 (21)
(25) (28) )
(23) (24) )
(18) (18) )
(15) (14)

by = le+3 | 17.1748 (25) | 21.0009 (28) | 28.2490 (28
bo =le+4 | 17.0405 (23) | 24.8333 (24) | 30.4664 (23
bp = le+5 | 18.0374 (18) | 25.7533 (18) | 30.7846 (17
bp = le+ 6 | 18.2865 (15) | 25.7317 (14) | 5.4293 (11)
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Figure 4.2: Checkerboard distribution of the coefficients in the unit square.
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4.3 A face space method in three dimensions

In this section, we will present some results for the space H(div ;2) in three dimen-
sions. The algorithm presented here is the generalization to the three-dimensional
case of the edge space method described in Section 4.2. But, as opposed to the
two—dimensional case, it has no direct generalization to H(curl; ) in three dimen-
sions, since, in this case, the Raviart—Thomas and Nédélec spaces are completely
different; see Section 2.2.

4.3.1 Discrete problem and finite element spaces

Let © be a bounded Lipschitz polyhedron in R3. We will consider problems in-

volving the bilinear form

a(u,v) := /(a divudivv+ Bu-v)dz, u,veH(div;). (4.18)
Q
As in the two—dimensional case, the coefficient matrix B is a symmetric uniformly
positive definite matrix—valued function with b;; € L*(Q2), 1 < 4,j < n, and
a € L*(Q) is a positive function bounded away from zero.

Let Ty be a triangulation of €2, of maximum diameter H, consisting of tetrahe-
dra or hexahedra, and let 7, be shape—regular and quasi—uniform refinement of Ty,
with characteristic diameter h. A generic element of 7, and 7y will be denoted by
t and T, respectively. The sets of faces and edges of the triangulations 7, and Ty,
are denoted by F,, Fy and &, £y, respectively. A generic face will be denoted by
f and F'| and a generic edge by e and F, respectively. As before, the elements of
the coarse triangulation are called substructures. For each interior face F' € Fpg,
there are two elements T}, T; € T such that F := 0T; N 9T}, and we set

TFZZ ; U

S
Q.

We also suppose that the coefficients @ and B are constant on each substructure
T and equal to ar and Br, respectively. The may have arbitrary jumps across the

inner faces of the substructures. In addition, the matrices {Br} satisfy
Brnn <n" B <arn'n, Vn e R,
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where (Br and 77 are positive constants, which can depend on the substructure 7.

In this section, we only consider, in full detail, triangulations based on hexahe-
dra, but our results are equally valid for finite element spaces built on tetrahedra.
Much of the analysis is carried out on a cubic substructure divided into cubic el-
ements but the results remain equally valid if the elements and substructures are
images of a reference cube under sufficiently benign mappings, which effectively
means that their aspect ratios have to remain uniformly bounded. We remark that
our analysis is carried out locally for one substructure at a time. We can therefore
interpret the factor H/h, which appears in our the estimates, as

Hr
We consider the lowest order Raviart—Thomas elements defined on the fine and

coarse meshes, respectively,

Xog = RTg(Q) = RTo(Q),

Xoi = RT54(Q) = RT0,u(Q),
conforming in Hy(div;{); see Section 2.2.1. We will also need the the finite ele-
ment space Xo.,(D) C Ho(div;D), when D is a substructure or the union of two
substructures that have a common face, and X,(D) := RT;}(D), when D is an ar-

bitrary Lipschitz polyhedron. We will introduce some finite element spaces defined

on the boundaries of the substructures in Section 4.3.3.

4.3.2 Description of the algorithm

We will consider the approximate problem:
Find u € Xy, such that

a(u,v) = (f,v) Vve Xpp, (4.19)

where f € L?(Q)3. The generalization to the case of the RT,(f2) (Neumann bound-
ary conditions) does not present any particular difficulty.

We decompose Xy, into the coarse space Xg.g, the interior spaces {Xr, T €

Tu}
XT = Xo;h(T), T € TH,
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and the face spaces {Xp, F € Fy}
Xp:={ve Xl alv,w)=0, we X, UXy,, suppv C T}

We note that any element v € X is the harmonic extension of a function defined
on the face F' to Tr, and that it is defined uniquely by its value of n-v on F. In
addition, the coarse space X,z is contained in the union of the face and interior

spaces, and, consequently, the decomposition

Xon = Xoym + Z X7+ Z Xr, (4.20)
TeTu FeFy
is not a direct sum.
We will use the original bilinear form a(-, -) on all the subspaces Xo.,, Xr, and
Xr.

4.3.3 Technical tools

A stability estimate for the interpolation operator

As in the two—dimensional case, we need a stability estimate for the interpolation

operator onto the coarse space
PH : XO;h — XO;H-

In particular, this interpolant will be logarithmically stable in the || - ||q;y norm.
We note that the best bound for the L?-norm alone involves a factor of H/h, as
can easily be seen by considering an element u, for which all the interior degrees
of freedom vanish.

The interpolation operator has already been defined in Section 2.2.1. In partic-
ular, we recall that pg is defined in terms of the degrees of freedom of the coarse

space Xo,p, 1.e.

1
Ar(pgu) == m/n -uds, F e Fy. (4.21)
P
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Figure 4.3: Decomposition of the face F.

Lemma 4.3.1 Let T be a substructure. Then, there exists a constant C' > 0,
which depends only on the aspect ratios of T and the elements in Ty, such that for
allu € XO;h;

Idiv (ol < ldivuli, (422
H .
lowully < € ((1+10g(5)) Iulfyy + B Idivullf, ) . (129
Proof. By (2.39) in Proposition 2.2.1, we have that

(div (pru)) |7 = (Q@nudiv (u)) |7, (4.24)

where Qg is the L2-projection operator onto the space of constants on T € Ty.
Inequality (4.22) follows immediately.

The proof of (4.23) is similar to the one of the analogous estimate in Lemma
4.2.1, and uses Green’s formula, (2.28), and a partition of unity very similar to one
given in [22] for the simplex case. We consider a face F' C 97, and note that it
is partitioned into Ng non-overlapping faces f € Fj,; see Figure 4.3 depicting, for
simplicity, just a very regular case. We then number these faces so that f;, 1 <
i < nr have at least one vertex on an edge of F, (see Fig 4.3), and {fi, fo, f3, fa}
are the faces that contain a corner point. Let ¢; C T, be the associated elements.
We note that since, by assumption, the triangulation of the face is quasi-uniform,
ng < C(H/h).

Let 97 be a continuous, piecewise trilinear function defined on 7. It vanishes

on 0T\ F and is equal to one at all the interior mesh points of F'. The extension of
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YF to the interior of 7" has values between zero and one, and the absolute value of
its gradient is bounded by C/ max(r, h) where r denotes the distance to the wire-
basket of T. We refer to [22] for an explicit construction of such a function for a
simplex; this construction can easily be adapted to the cubic case. It is proved in
[22] that

Wplir < C(1+1logH/WH, |[Vp|[5p < CH®. (4.25)
Because of (2.28), it is sufficient to bound Ar(pgu), for each face F* C 9T. Apply-

ing Green’s formula, we obtain

Pl Ar(pmu) = [ (u-n)ds

F

4 ng
= /ﬂp(u-n)ds+gzl|fi| (u-n‘fi) +%Z5|fz| (u.n‘fi)
aT = =

. 3 1 e
= /(ﬁpdlvu+gradz9p-u)+ZZ|fi|)\ﬁ(u)+§Z|fi|)\fi(u).
=1 =5

or

By using (2.28), the absolute values of the last two terms can be bounded by

np np 1/2
OS> W lullog, < Onif?h'V? (Z ||u||3m) < CHYJulloq,
i=1

=1

and, by using (4.25), we find the following bound for |F| |Ar(pgu)|

C (H*|divullor + (H(1 +1og H/R) 2 [[ullor + H' ?llullor) . (4.26)

Observing that

np 2 ng
<Z h1/2||u||o;tz-) < np Y hl[ulg, < CH|[ullgy,
=1

=1

and summing over all F' C 97T, (4.26) finally gives

. H
lpwullr < CHAdivul, +C (1+10g (4 )) llulir
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Remark 4.3.1 We can obtain a similar estimate for the energy norm on each
substructure T':
H
/B (pgu) - (pgu)dz < clr (1 + log (—)) /B u-udz
T Pr h T
Hiqyr

ar

+C /a divu divudz.

Trace spaces

In this subsection, we will introduce some discrete trace spaces, together with
an equivalent norm defined on them, and prove a decomposition lemma for these
spaces. We recall that the normal component of a vector in H(div;{2) on the
boundary belongs to H 2(S2), and a stability estimate was given in (2.4).

Given a substructure 7', define Sy (0T) as the space of functions which are
constant on each face F' C 0T its dimension is six. We also define S, (0T as the
space of functions that are constant on each fine face f € F,, f C 0T, and its
subspace Sy, (0T), of functions that have mean value zero on 07 It is immediate
to check that the normal component of a vector in X, (T") belongs to S,(9T).

We will first introduce some norms in S,(07") and Sp,,(0T") that are equivalent

to the H 2-norm. The following lemma is valid for functions in H *%(89).

Lemma 4.3.2 There exists a constant ¢, which is independent of the diameter of
D, such that for each 1 € H™2(dD) with (1,1) =0

) (¢, ¢)
¢ sup |¢|i <[l 300 < sup E = (4.27)
$EH 2 (9D) 5:0D bEH3 (9D) ;0D
$F#const ¢F#const

Proof. The upper bound in (4.27) is an immediate consequence of the definition
of the H~*/2-norm. The proof of the lower bound in (4.27) is based on the following

norm equivalence

2
1
cllélli o < 16liop + 75 (/4543) < C18l[10p- (4.28)
D

oD
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This is a Poincaré-type inequality; see, e.g. [46, Chap. 2.7] for a classical introduc-
tion to such inequalities. We note that the scale factor results from writing down
the result for a region of diameter one and using dilation. Then, the definition of

1

the H~2z—norm and the assumption that (1, 1) = 0 yield, for all real «,

(¥, 9)
||1/)||—%;3D: Slilp ||¢—2&||1 .
$EH 2 (8D) 5:0D
$F#const.

The lower bound is obtained by using (4.28) and choosing o = [ ¢ ds. O

As a second step, we replace the supremum over the whole space H %(GT) by
the supremum over a finite dimensional space, in the definition of the H ~3-norm.
In order to do so, we have to introduce a suitable approximation of the space
Hz(dT). Our approximation V,(8T) of Hz(9T) is given as a direct sum

Vi(0T) := Qn(9T) + B (9T).

Here @), (0T) is the space of all continuous piecewise bilinear functions and By, (0T')

a space of bubble functions vanishing on the faces f € F,, f C 0T":

Qu(dT) = {9 € C°AT), ¢, € Q:(f), f CIT, f € Fu},
Bh(aT) = {QS S CO(aT)’ ¢\f =05 ©1 P2 P3 Q04,f C aTa f € fhaaf € R}a

where ¢;, 1 < i < 4, are the nodal basis functions that span Q;(f) on the face
f- The support of any such bubble basis function is exactly one element. This
property is often exploited, e.g., in local a posteriori analysis [58]. The following
lemma shows that the H2-seminorm of an element ¢ = bg + ¢p in V4 (0T), with
g € Qn(0T) and ¢p € By (9T), is equivalent to the sum of the seminorms of ¢p
and ¢g.

Lemma 4.3.3 There exists a constant C, which depends only on the aspect ratio
of T, such that for each ¢ = ¢g + ¢, with ¢g € Qun(0T) and ¢ € By(IT), the

following equivalence holds

|¢|%;BT < g Lor T \¢B Lor < C‘¢‘%;8T' (4.29)
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Proof. The lower bound follows from the triangle inequality. To prove the
upper one, we consider one element at a time and note that the restriction of the
two subspaces to a face f of an element are of fixed dimension. It then follows
immediately from the linear independence of the basis functions the fact that
églloss < Clig
gives the same inequalities for 7. An interpolation argument then gives a bound
in H? from which (4.29) follows directly. O

We now introduce the operator

o;f and |pgl1.r < C|¢l1;s. Squaring these inequalities and adding,

P, : H2(dT) — V,(97T),

defined by
Ph = PQ+PB-

Here, Py is the L?-projection onto Q,(0T) and Py a projection onto Bj(9T),
defined by

/Pqu dsz/(¢—PQ¢) ds, feF, fcoT.

f f
We note that the operator P}, preserves integrals over each face f.

Lemma 4.3.4 The operator Py, is bounded uniformly in Lo(0T) as well as in
Hz(dT).

Proof. 1t is well known that Py is L2- and H'-stable, since 7y, is quasi-uniform;
see, e.g. [12]. We then obtain the Hz-stability of Py by an interpolation argument.
To prove the H %fstability of P,, we also have to consider Pg. The proof of its

L?—stability is quite elementary. By using the inverse inequality

o
65 or < 1165 lEor 0n € BA(OT),

and the approximation property of Py, see [12], we find that

bor < % > (/(¢—PQ¢) d0)2

fcor
feFy,

C
g”ﬁb — Podllsor < Clgl1or-

C
1Psél[30r < P56

IA

85



We recall that we use a rescaled norm for the space Hz(97T); see Section 2.1. O

We are now ready to prove an important lemma. It establishes the equivalence
of a discrete norm and the H~2—norm for functions in S),(8T). Its proof employs
the stability of P, in H > and the fact that this operator preserves the integrals
over the faces f. This latter property is not satisfied by Py alone.

Lemma 4.3.5 There exist constants, ¢ and C, such that, for any ¢ € S,(0T),

¢ s SO < g ()

4€V,(07) 19l 1507 €V om) Jliwra

(4.30)

Furthermore, if (4,1) = 0, the || - ||%;3Tfn0rm in (4.30) can be replaced by the

seminorm and the supremum can be taken over the non-constant functions ¢.

Proof. The lower bound follows directly from the definition of the || - \L%;BT
norm. For the upper bound, let ¢ € S,(8T). There then exists a ¢ € Hz (9T

such that
o (9 0) ¢>

H¢|I or

Recalling the definition of P}, and the fact that 1 is constant on each element, and

H,lva—%;aT —

using Lemma 4.3.4, we find that

WJ Ph¢> <C (¢, Pro)

]l 1or <2 <O
. 16l107 1Padl|10m

The proof is now completed by proceeding as in the proof of Lemma 4.3.2. O
We are now ready to prove a decomposition lemma for the traces of Raviart—

Thomas functions on a substructure.

Lemma 4.3.6 Let T be in Ty and let {up, F C 0T} be functions in Sy, (0T),
which vanish on OT \ F. Let p := Y pcor ur. Then there exists a constant C,
independent of h and py, such that, Vuy € Sy(0T),

1l g 5 < C(1+ log H/) (1 + Yog H/B) [+ sl gy + 11l o).
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Proof. Since pp € Sy,,(0T), we obtain

|urll_s0r <C sup (ur, @)

)
st (om) | 1.0m

by applying Lemma 4.3.5.
Now, any ¢ € V,(0T) can be split uniquely into ¢g + ¢5, ¢ € Qn(0T),
¢p € By(0T) and by using Lemma 4.3.3, we find that

pr|| 190 < C sup {ur, ¢Q> + sup (1r, dB) . (4.31)
27 ¢QEQh(3T) ‘QSQ'%’aT ¢B€Bh(6T) ‘¢B|l’aT
¢ #const. ¢ #0 2

For any ¢q € Qx(0T), we now define a weighted average cy, by

}{Ih(ﬁFﬂsQ) ds
0= T Tgpds
F

Here, 95 is given in the proof of Lemma 4.3.1 and I, is the nodal interpolation
operator onto Q,(07). Then, the first term on the right in (4.31) can be replaced
by

— C
sup <:LLF5 ¢Q ¢Q> _ sup <MFa ¢Q> ’ (432)
sgenon) |0Q = Coglior  seenom |doliar
QSQ;éconst. ¢Q#0,C¢Q =0

i.e., we need only consider functions ¢y which have a zero weighted average. The
following norm equivalence is similar to (4.28) and can be proved by the same

standard techniques
(160l pr + HEG) < 60l o < Cdalor + HS).  (4:33)

We remark that, because of (4.33), in the last term of (4.32), the Hz-seminorm
can be replaced by the full norm.

We next decompose ¢p into the sum of terms ¢p,r supported on individual
faces ' C 0T

pp= Y B (4.34)

FeFy
FCOT
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T )

T

H
I'h

Figure 4.4: Neighborhood of the wire-basket.

Similarly, we decompose ¢¢ into a sum of contributions ¢¢.r, supported on indi-
vidual faces F' C 0T and ¢q,, supported in a neighborhood of the wire-basket
which is one element wide; see Figure 4.4. Thus,

bq = Z bq;F + Q- (4.35)

FeFg
FCoT

Local inverse estimates combined with interpolation arguments easily give

|¢B;F

ior < Closliy (4.36)

Similar arguments give

1
|¢Q;w‘2l;aT < C_HQSQ;UJH?);BT < CH‘ZSQ;ng;Wa (4-37)
2 h

where W is the wire-basket of 7. We note that ||¢g.ullg.y is defined by a line
integral and that, as usual, we use rescaled norms. By using the inequality
[u"|[i;r < Cl[ut]]3 3,67, Which is valid for discrete harmonic functions, and [22,

Lemma 4.3 and Lemma 4.5], we can prove

H¢Q;w
|pqir|

Bw < CQU+log H/R) [|6gll or- (4.38)
Yor < C(U+10g H/W [dal3 or- (4.39)

The proofs in [22] are for the simplicial case; they can be carried out in exactly
the same way for the case of cubes and are therefore omitted. Combining (4.37)
and (4.38), we find

16010 < C(1+1log H/h) [I6ll1 57 (4.40)
2 2
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We find, by using the splitting (4.35), that

(e, dq) = Y (1r, bg.i) + (s PQuuw)
Fcar (4.41)

= (i, do;r) + (1br, POsw)-

Since I (Vr¢q) = ¢g;r = In(Vrdq;r) and since we can always assume that cg, = 0,

we obtain
(m, ¢qr) =0, Vun € Su(9T),

and ¢y, » = 0. The first term on the right side of (4.41) can be bounded by means
of (4.39)

{1, b@sr)| = {1+ pm, dqir)| < C(1+log H/R) bl or |l + pall1or- (4.42)

For each ¢q,, there is a unique gz~SB; F € By(9T) such that

/¢Q;wd8:/q~5B;Fd8: ij:hafCFa
! f

with <;~5 gy = 0 on 0T \ F. Moreover, this mapping is continuous

~ 1, - 1
||¢B;F||2%;3T < CEH(/ﬁB;FHg;aT < CEH(/ﬁQ;ng;aT < C||¢Q;w |2%;6T'

By means of this bound and (4.40), we finally obtain
e )| = |(prs dme)| = (1 6m:6) | < Cllnl|-gorl bl yor
< OO +1og H/W2ull_yorlallyor- (1.4
Using (4.36), we find for the second term on the right hand side of (4.31)

(ir, dB)| _ (1, OB;r)| < ||1“H—%;8TH¢B;FH%;3T
¢B|%;3T

‘¢B‘%;8T |¢B‘%;8T

||N||—%;3T ‘¢B;F‘%;8T

C

o < Olullsor  (444)
3:0T

The proof is completed by combining (4.31), (4.32), (4.33), (4.35), (4.42), (4.43),
and (4.44). O
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An extension operator

An important step in finding a stable decomposition of Xy, (€2) involves a discrete
extension operator from the boundary of a substructure to its interior. The stable
extension operator, defined in the next lemma, provides a divergence-free extension
of the boundary data given on 07T. This fact ensures that the stability constant
will be independent of the diameter of 7. This will not be true for some other

extension procedures, as can be easily checked using a rescaling argument.

Lemma 4.3.7 There exists an extension operator Hy : Sou(9T) — X4(T), such
that, for any p € So.n(0T),
div 77[T,u =0,

and

1Hrnllor < Cllull- 100 (4.45)
Here C' is independent of h, H, and p.

Proof. The proof is similar to one given in [29, Lemma 2.47]. We will first prove

the result for a substructure 7' of unit diameter. Consider a Neumann problem

Ap = 0, inT,
9¢
on
Here, 0/0n is the derivative in the direction of the outward normal of dT. This

= u, ondT.

problem is solvable, since the boundary data p has mean value zero on 07. We can
select any solution, e.g., that with mean value zero on 7. Our extension operator
Hyp is defined by Hpp := [T u, where u = grad ¢, and IIX7" is the interpolant
onto the Raviart—Thomas space; we will show below that Hleu is well defined.

An elementary variational argument shows that |[ullo;r = [¢]1,r < C|lpll 1,57

2
In order to estimate ||TIX7 uljoy, we will now estimate ||u — IIR7 ullo;r. This

requires the use of a regularity result and a finite element error bound. Since p
is piecewise constant on 07, it belongs to H*(0T), for all s < 1/2. Using the
surjectivity of the map ¢ — 0¢/0n from H3/?*5(T) onto H*(0T) and a regularity
result given in [17, Corollary 23.5], we deduce

||¢||%—|—5;T S C“,U”s;aT, s < €r. (446)

90



Here er is strictly positive and depends on 7.
The {\f(u), f € F} are well-defined, since u € H>#(T), with s > 0; see the

discussion at the end of Section 2.2.1. Equation (2.39) ensures that
div (TIF"" u) = @y (divu) =0,

where @), is the L? projection onto the space of constant functions on each fine
element ¢t C 7.

Employing the error estimate (2.30) with » = 1/2 + s, (4.46) and an inverse
inequality, we find that, for s < e,

1 1
lu— TR ullor < CAY**[1gll3. o < Cllull_ - (4.47)

The bound for the Ls—norm of HhRTlu is then obtained by applying the triangle
inequality.

We now consider a substructure 7" of diameter H, obtained by dilation from the
substructure of unit diameter. Using the previous result and a scaling argument,

we obtain

div?T[Tu = 0,
[ Hrpllor < Cllpll-1or,

where C' is independent of the diameter of 7. O

4.3.4 Main result

In this section, we will prove our main result, i.e., a bound for the condition number
of the additive Schwarz operator, defined in (2.51), associated with the decompo-
sition (4.20). A bound for the error operator of the corresponding multiplicative
operator, defined in (2.52), can be then found using Lemma 2.3.3.

As for the two—dimensional case, we will first prove a stability result for an
auxiliary decomposition. We will need the spaces {)? r}, which are divergence free
subspaces of X, and are built in the following way:

Consider a face F' € Fy and any function g on F', that is piecewise constant and

has mean-value zero on F. Then, u can be extended by zero to all of 07}, to obtain
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a function of Sy, (0T;), still denoted by u. Let u; := 7A-[Tiu. In a similar way, we can
extend —y by zero on 97} \ F, and construct a function u; = Hr, (—p), on T;. The
minus sign has to be chosen, since the elements 7; and 7 have outward normals
in opposite directions. We define Xy as the space of functions u, the restriction of
which to T; and T are equal to u; and uj, respectively, and that are zero outside
Tp. Thus, each element in Xpis uniquely defined by its normal component on F’,
and its dimension is equal to the number of fine faces in F' minus one.

We are now ready to prove our main result.
Theorem 4.3.1 For each u € Xy, there exists a decomposition

u=uy -+ Z ur + Z ur,
TETu FeFy

corresponding to (4.20), such that

a(ug,ug) + Y a(ur,ur)+ > a(up,up) <C (1 + log (%))2a(u, u),

TeTu FeFy

with a constant C, independent of h, H, and u.

Proof. We remark that, because of the equivalence of the graph and energy
norms, we only have to prove the stability of the decomposition (4.20) with respect
to the graph norm.

We will first prove the stability of the decomposition

Xop=Xou+ > Xo+ Y Xr, (4.48)
TETH FeFy
and we will then employ the energy-minimizing property of the harmonic exten-
sions {ur}. We also consider one subdomain 7T at a time; the global result is
obtained by summing over all subdomains.

Counting the degrees of freedom shows that (4.48) is a direct sum, and con-
sequently for each u, (4.48) defines a unique ug. In particular, pg(u —ug) =0
yields ug = pyu. Using Lemma 4.3.1, we immediately obtain an upper bound for
the first term

H
| < € (1410g ) l[ul -
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For each face F' C OT there is a unique up € Sp.,(0T) which is zero on 0T\ F', such
that (u—ug)-n|, = pr. By means of the definition of Xp, we obtain Up = Hr pr,
in 7. Combining (4.45) and Lemma 4.3.6, we obtain, for any puy € Sy (07T),

[Ur|[Givr < C(+logH/R)||(u—uy) nl|,,,
, ? , (4.49)
+ C(1+log H/R)||(u = ug) - 0+ pul|” 1 op-

The trace formula (2.4), the triangle inequality, and Lemma 4.3.1 yield
1(u—upg) 0|, < C(1+log H/A)||ul[Gy o
and the choice ug = ug - n, finally, gives
187Gy < C(1 +log H/R)||ul[Gy -

An upper bound for ||ur||3;, ;- is now an easy consequence of the triangle inequality.
The stability of (4.48) with respect to the energy norm || - ||, is a consequence
of the norm equivalence of the graph norm || - ||g;v and the energy norm. More

precisely, the multiplicative constant in the upper bounds is proportional to

2
max max (7—T, fir 7T> ; (4.50)
TeTH ﬂT ar

see Remark 4.3.1.

In order to prove the stability of the decomposition (4.20), we set uy := pgu
and extend the trace ur = (u — ug) - ny,, harmonically in 7; and T; to obtain
a function up € Xp. The energy-minimizing property of the harmonic extension

yields
2

H
a(ur,up) < a(@p,ar) < C (1 + log ﬁ) a(u, u).

The remainder u — ug — > pc s, Ur is a sum of elements belonging to the interior
spaces, the contributions of which can be bounded using the triangle inequality. O

Finally, we consider the splitting (4.20) for the limit case @ = 0. In this case,
the bilinear form a(-,-) is just a weighted L2-scalar product

a(v,w):/Bv-wdaf:.
Q
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Let us first decompose u as follows

u= ) ar+ ) U,
TeTH FeFu
where Uy € Xo, with Af(ap) := As(u), f CF, f € F, and Ap(Gr) = 0 elsewhere,
and uy € Xp. Then, (2.28) guarantees that

_ 2 2
> llurlls < Clulfe.
FecFyg
We remark that tip is an extension by zero to the interior of the substructures
and, therefore, in general not contained in Xg. Let us now consider the unique

decomposition

u= > ur+ Y up,

TeTH FeFn
where ur € X7 and ur € Xr. By using the minimization property of ur and the

fact that ugp - n;, = g - n|,, we obtain

> Murllg< Y0 [luelfs < Cllulfs.
FeFg FeFg
This proves the stability of the decomposition of u with respect to the L?-norm.
Thus, as the ratio between the coefficients B and a becomes large, we expect an
upper bound for the condition number which is independent of H/h. We remark
that this result cannot be obtained with the splitting (4.48).

In the second limit case, B = 0, the bilinear form a(-,-) is no longer positive
definite. However, we can still work with the preconditioned conjugate gradient in
a subspace, if the right hand side f is consistent. Then, the stability of pg with
respect to the L2-norm of the divergence, (4.22), gives us an optimal result, i.e.,

we obtain a condition number which is independent of H/h.

4.3.5 Numerical results

In this section, we present some numerical results on the performance of the iter-
ative substructuring method described in the previous sections, when varying the

diameters of the coarse and fine meshes, and the coefficients a and B. As before,
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Table 4.4: Estimated condition number and number of conjugate gradient itera-
tions for a residual norm reduction of 107 (in parentheses), versus H/h and n.
Caseof a=1,b=1.

(H/nw ] 8 1 4 [ 2 |
n=8 - 13.28 (14) | 15.15 (22)
n=16 | 19.46 (16) | 23.26 (24) | 17.37 (24)
n=24 | 32.78 (27) | 25.55 (26) | 17.43 (2])
n=32 | 33.48 (27) | 26.01 (26) | 17.42 (21)
n=10 | 35,50 (27) | 26.08 (%5) | x

n=13 | 3647 (28) | 501 (22) | x

we refer to [54], for a general discussion of practical issues concerning Schwarz
methods. Our numerical results are given for a slightly different decomposition
than (4.20)

Xo;p = Xoyg + Z Xopn(Tr)-
FeFy

Because of the orthogonality between the spaces { X7} and {XFr}, this decompo-
sition is stable if and only if (4.20) is. As for the two—dimensional method, the

corresponding preconditioner is

B=RL Ay Ru+ > (RpAs' Rp),
FEFy
where the extension matrices RY, and {RL} map the degrees of freedom of the
coarse and local spaces, respectively, into the the global ones, and Ay and {Ap}
are the matrices relative to Dirichlet problems on the coarse mesh and on the
regions Tr; see Sections 2.3 and 4.2.5.

We have considered the domain 2 = (0,1)? and uniform triangulations 75 and
Ti. The fine triangulation 7, consists of n® cubical elements, with h = 1/n. The
matrix B is given by

B = diag{b, b, b}.

Table 4.4 shows the estimated condition number and the number of iterations

to obtain a reduction of the residual norm by a factor 1076, as a function of the
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Table 4.5: Estimated condition number and number of conjugate gradient itera-
tions for a residual norm reduction of 107% (in parentheses), versus H/h and b.
Case of n =24 and a = 1.

E
b=1e-09 | 4.00 (10) | 5.81 (16) | 6.29 (15)
b=1e-08 | 4.00 (10) | 5.81 (16) | 6.29 (15)
b=1e-07 | 4.00 (10) | 5.82 (16) | 6.29 (15)
b=1e-06 | 4.00 (10) | 21.0 (18) | 6.29 (15)
b=1e-05 | 17.5 (11) | 25.0 (19) | 16.1 (18)
b=0.0001 | 29.5 (12) | 25.0 (19) | 17.1 (18)
b=0.001 | 30.9 (15) | 25.3 (21) | 17.2 (18)
b=0.01 |32.3 (20) | 25.4 (22) | 17.2 (18)
b=0.1 32.6 (22) | 25.5 (25) | 17.4 (20)
b= 1 32.8 (27) | 25.6 (26) | 17.4 (21)
b=10 | 30.0 (29) | 23.4 (26) | 17.1 (23)
b=1e+02 | 23.6 (26) | 20.4 (25) | 15.1 (22)
b=1le+03 | 14.4 (21) | 14.1 (22) | 12.6 (19)
b=1le+04 | 8.42 (16) | 8.57 (17) | 9.43 (17)
b=1e+05 | 6.75 (14) | 6.98 (15) | 7.92 (17)
b=1e+06 | 6.72 (14) | 6.91 (15) | 7.80 (16)

dimensions of the fine and coarse meshes. The estimate of the condition number is
obtained from the parameters calculated during the conjugate gradient iteration,
using the method described in [47]. For a fixed H/h, the condition number appears
to remain bounded independently of the number of fine mesh points n. The number
of iterations varies slowly with H/h and n.

We remark that the supports of the face spaces, consisting of the union of two
substructures, can be colored in such a way that spaces with the same color do not
intersect and that the largest eigenvalue of the additive Schwarz operator 7, is
bounded by the number of colors plus one; see [54, p. 165]. The largest eigenvalue
is 7 in all the cases in Table 4.4, except for (n = 8, H/h = 4) and (n = 16,
H/h = 8); the latter cases correspond to a partition into 2 by 2 by 2 subregions

and, consequently, the largest eigenvalue is bounded by 4.
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* calculated condition number; — least square fitting
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condition number
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Figure 4.5: Estimated condition number from Table 4.4 (asterisk) and least-square
second order logarithmic polynomial (solid line), versus H/h; the relative fitting
error is about 4.5 per cent.

In Figure 4.5, we plot the results of Table 4.4, together with the best second
order logarithmic polynomial least—square fit. Our numerical results are in good
agreement with the theoretical bound obtained in the previous section and they
suggest that our bound is sharp.

In Table 4.5, we show some results when the ratio of the coefficients b and a is
changed. For a fixed value of n = 24 and a = 1, the estimated condition number
and the number of iterations are shown as functions of H/h and b. These numerical
results also confirm the theoretical results in the limit cases b = 0 and b = oo, as
given in the previous section, since we find that the condition number appears to
be bounded independently of the ratio H/h when the ratio b/a is very small or

very large.
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Chapter 5

Iterative substructuring methods:
Neumann—Neumann methods

5.1 Introduction

In this chapter, we will introduce and analyze some Neumann-Neumann precon-
ditioners. We will apply them to the same problems considered in Chapter 4 in
H(curl; ) and H(div;€) in two dimensions, and in H(div;€2) in three dimen-
sions.

In a substructuring method, the local spaces are related to a partition of the
original domain () into non—overlapping subdomains, called substructures. In a
Neumann—-Neumann method, the degrees of freedom of the local spaces are related
to the entire boundaries of the substructures; see [11, 19, 34, 37, 16, 24, 51, 22, 38,
54]. For an introduction to iterative substructuring methods, we refer to Section
4.1 and to the references therein.

An important element in the definition of a Neumann—Neumann method is a
set, of scaling functions defined on the boundaries of the substructures, which in-
volve the values of the coefficients of the partial differential equation. The use of
these functions can ensure that the condition number of the corresponding pre-
conditioned system be independent of the jumps of the coefficients across the sub-
structures. Here, we propose a set of scaling functions, which involve only the
values of one coefficient of the bilinear form (5.1). An important feature of our

method is that it is independent of jumps of both coefficients.
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In order to analyze our methods, we will need the tools described in Section
4.3.3, and which were developed for three—dimensional problems. In Section 5.5, we
will modify them for the two—dimensional case and then carry out the analysis of
our Neumann—Neumann algorithms in full detail only for H(div;€2). For problems
in H(curl; ) in two dimensions, the result follows from that in H(div;€)) and
the observation that the functions in H(div;2) and in the Raviart-Thomas spaces
are obtained from those in H(curl; ) and in the Nédélec spaces, respectively, by

a rotation of ninety degrees; see Sections 2.1.2 and 2.2.2.

5.2 Finite element spaces and operators

Let 2 be a bounded polygon or polyhedron in R", n = 2,3. For any D C (2, we

define the bilinear form

ap(u,v) := /(a divudivv+ Bu-v)dz, u,veH(div;Q). (5.1)
D

In case D = (), we set
a(+,-) == aql-, ).
As in the previous chapter, the coefficient matrix B is a symmetric uniformly
positive definite matrix—valued function with b;; € L*(Q2), 1 < 4,5 < n, and
a € L*(Q) is a positive function bounded away from zero.
The results presented in this chapter are equally valid for n = 2 and the bilinear

form

/(a curlucurlv+ Bu-v)dz, u,v € H(curl;Q).
D

Let Ty be a shape-regular triangulation of 2, of maximum diameter H, consisting
of triangles or rectangles, for n = 2, and of tetrahedra or parallelepipeds, for
n = 3. Let also 7, be a shape-reqular and quasi-uniform triangulation, with
characteristic diameter A, obtained by refining the elements of Ty, in such a way
that 7, is conforming in 2. We will use some of the notations in Sections 4.2.1 and
4.3.1, but will change others, in order to unify our analysis for the cases n = 2, 3.

A generic element of 7, and Ty will be denoted by ¢ and T, respectively. For
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n = 3, the sets of faces of the triangulations 7, and 7y, are denoted by F; and
Fu, respectively. For n = 2, the sets of edges of the triangulations 7, and Tg,
are also denoted by F;, and Fy, respectively. A generic face (or edge, for n = 2)
will be denoted by f or F'. The elements of the coarse triangulation are called
substructures. The interface I' is the union of the parts of the boundaries of the

substructures that do not belong to 0€2,

I:= [J or\ on. (5.2)
TETy
We also suppose that the coefficients @ and B are constant on each substructure
T and equal to ar and Br, respectively. They may have arbitrary jumps across

the interface. In addition, the matrices {Br} satisfy
Brn'n <n'Brn < yrn'n, VneR", (5.3)

where (Br and 77 are positive constants, which can depend on the substructure 7.

In the following, we will only consider, in full detail, triangulations based on
rectangles and parallelepipeds, but our results are equally valid for finite element
spaces built on triangles and tetrahedra. Much of the analysis is carried out on a
square or cubic substructure divided into square or cubic elements, but the results
remain equally valid if the elements and substructures are images of a reference
square or cube under sufficiently benign mappings, which effectively means that
their aspect ratios have to remain uniformly bounded. We remark that, as in the
previous chapter, our analysis is carried out locally for one substructure at a time.

We can therefore interpret the factor H/h, which appears in our the estimates, as

Hr
maX max ——.
TeTy t€Th Ht

tCT

We consider the lowest order Raviart—Thomas elements defined on the fine and

coarse meshes, respectively,

Xogp = R%}h(g) = RTo;n(S2),
Xoi := RTgn(Q) = RTou (%),

)
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which are conforming in Hy(div;€2); see Section 2.2.1. For a generic substructure

T, we will also need the finite element spaces

Xn(T) = ’R77l1(T),
Xow(T) = RT(T).

We will now define some finite element spaces on the boundaries of the sub-
structures; see Section 4.3.3. Given a substructure 7', define Sy (9T) as the space

of functions which are constant on each face (edge, for n = 2) F C 0T
Su(0T) :={¢: 0T — R | ), constant, F' € Fy, F C 0T'};

its dimension is six, for n = 3, and four, for n = 2. We also define S, (0T as the

space of functions that are constant on each fine face (edge) f € F,, f C 9T
Sp(0T) := {1 : 0T — R | ¢}, constant, f € Fp, f C 9T},

and its subspace Sy, (0T), of functions that have mean value zero on 0T

Son (AT := {w € Su(dT) | /1/de - 0} .

It is immediate to check that the normal component of a vector in X (7") belongs
to Sy (0T). Finally let S,(I") be the global space of piecewise constant functions
on I', such that their restriction to the boundary of a substructure 7T belongs to
S(9T)

Su(D) = {6 : T > R | 9, € Sy(T)}.

We will now define some extension and interpolation operators. For each substruc-

ture T" and each function ¢ € S;,(9T), the harmonic extension operator
Hr : Sh(aT) — Xh(T),
is the vector u := Hr1p which satisfies

ar(u,v) =0, v &€ Xon(T). (5.4)
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The corresponding global operator
H - Sh(F) — Xg;h,
satisfies
G(H¢, V) =0, ve Xo;h(T)7 T € Ty, (55)

or, equivalently,
(Ho)y, = Hr (Vior) -

The space of the harmonic extensions on the substructures is denoted by yo;h C
Xop, and u € Yo;h if and only if u verifies (5.4).

We will also need the space of the coarse harmonic extensions, )70; u C Yo;hi
YO; u 1is the space of harmonic functions, the normal component of which is constant

on each coarse face (edge, if n =2) F € Fg, ie,u¢€ YO;H if and only if
u-n|y € Sy(0T), T € Ty.

We remark that the functions in the spaces Xz and YO; g have the same normal
traces on the boundaries of the substructures.

The interpolation operator pgy onto the coarse space Xo.q,
pu : Xopn — Xom,

has already been defined in Section 2.2.1. In particular, we recall that pg is defined

in terms of the degrees of freedom of the coarse space

1
Ar(om) = / n-uds, Fe& Fu. (5.6)
F

In a similar fashion, the degrees of freedom (5.6) define a unique interpolation
operator Il

HH : XO;h — YO;H-

Here, for any vector u € Xy,;, IIgu is the unique function in Xvo;h, such that

(Ogu) -n|yp = (ppu) -n|y, T € Ty
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5.3 Discrete problem and Schur complement sys-
tem

We will consider the approximate problem:
Find u € X, such that

a(u,v) = (f,v) Vv e Xop, (5.7)

where f € L?(Q)". The generalization to the case of the R7,(2) (Neumann bound-
ary conditions) does not present any particular difficulty. In particular, we re-
mark that if Neumann conditions are considered on some part of the boundary
0Qn C 09, 02y has to be added to I'; see definition (5.2) and, e.g., [24].

We will now introduce a Schur complement formulation of problem (5.7). We
refer to [54, Ch. 4] and to the references therein, for a general discussion and some
implementation issues related to Schur complement methods.

Let T; be a substructure. Let A and A® be the matrices of the bilinear forms
a(-,+) and ar,(-,-). Given two functions u € Xy, and u® € X,(T;), the column
vectors of the corresponding degrees of freedom are denoted by U and U®, respec-
tively. If {wy} and {wgi)} are the basis functions of Xy, and X, (7;), respectively,

we have
u = > Uywy,
k

D (1) (1)
u® = ZU]- W,

J

The variational problem (5.7) can then be written as a linear system
AU = F.
The local matrices A® can be represented as
A48
Al Al

where we divide the local vectors U® into two subvectors, U I(i) and U g), of de-
grees of freedom corresponding to faces (edges, for n = 2) inside 7; and on 07,

respectively.
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Since the variables interior to the substructures are associated with only one
substructure, they can be eliminated in parallel across the substructures, using a

direct method, and the reduced system
SUs =G, (5.8)

only involves the variables corresponding to the degrees of freedom on the interface
I'. Once the solution Ug of (5.8) is found, the local values UI(i) of the solution can
be obtained by solving one local problem for each subdomain.

The local Schur complements are
S = Afjy — Ay (A7) AR,

and they are always defined since the matrices {A?I)} are invertible.

With Upg a vector containing the coefficients relative to the degrees of freedom
on [, let RZ- be the restriction matrix, such that RiUB contains the coefficients
relative to the degrees of freedom on 07;. The global Schur complement and the

vector G can then be obtained by subassembling local contributions:

S = Y RISYR,
T;€TH
G = Py X AEAY (45) RO
T:€TH

For a substructure 7; and a vector U ,(;'), it immediately follows that

Ugﬂ}ﬂnUg): min VO Ay O (5.9)

V=g
and that the minimum is obtained for the vector U® that satisfies
AVTD L AU — . (5.10)

We recall that, if U® are the degrees of freedom of a local vector u, (5.10) is
equivalent to (5.4), and, consequently, (5.10) defines the harmonic functions.
We recall that, if u € X,(7T;), its normal component u - n on 97; belongs to

Sk(0T;), the space of piecewise constant functions on 97;. Let

(W fr € Fn, fr C OTY,
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be the basis functions of S (07;), with w,(f) equal to one on the face fi (edge, if
n = 2) and vanishing on the other part. Since the degrees of freedom of the space
X(T;) are the values of the normal component on the fine faces f C T, then
given a vector U ,‘;') = U of degrees of freedom on J7;, there is a unique function
Y € Sy(0T;), such that

=3 Tl
k

Consequently, a vector U g) of local degrees of freedom on O07; also represents
degrees of freedom of S, (07T;). For ¢ and ¢ in S,,(97T;), the following local bilinear

form is then well-defined
51,0, 9) = WO SO0,y =S uPyl) g =3 algd.
k k

In the same way, the set of global vectors Up of degrees of freedom on I' also
represents the set of degrees of freedom of S,(T"), and, for ¢ and ¢ in S,(T"), we
can define the global bilinear form

s, ¢) = 3 WO 50O

T;€Tu
Let
{Y, fx € Fn, fr CT},

be the basis functions of S (I")
With these definitions, (5.9) and (5.10) give, for ¢ € S,(0T;),

st, (¥, ) = min ar,(u,u) = ar,(Hr,Y, Hr), (5.11)

ue Xy (1;)
u-n=y

and, for ¢ € Si(I),

s(,¢) = min a(u,u) = a(Hy,HY) = > an(HryW, Hey®),  (5.12)

ueXqp TieT;
un_'¢ €T

where () = Yo~ In (5.11) and (5.12), the normal component u - n is taken on

0T; and T, respectively.
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Finally, the variational formulation of (5.8) can be given as:
Find ¢ € Sp,(T), such that,

s(v,0) = [ guwds, e SyD), (5.13)
r
where g := >, G-

5.4 Description of the algorithms

We will build a Schwarz preconditioner for the Schur complement system (5.8),
corresponding to the variational problem (5.13). Because of (5.12), instead of
working with functions in S, (') and the bilinear form s(-,-), we can work with
the space of harmonic extensions X, and the original bilinear form af(-, -).

An important element in the definition of a Neumann-Neumann method is a
set of scaling functions defined on the boundaries of the substructures, which in-
volve the values of the coefficients of the partial differential equation. The use of
these functions can ensure that the condition number of the corresponding pre-
conditioned system be independent of the jumps of the coefficients across I'; see
[11, 19, 34, 37, 16, 24, 51, 22, 38, 54]. Here, we propose a set of scaling functions,
which involve only the values of one coefficient of (5.1). An important feature of
our method is that it is independent of jumps of both coefficients ¢ and B in (5.1).
This is due to the particular divergence—free extension employed in the proof of
Lemma 5.6.2; see Lemma 4.3.7. Because of the nature of the degrees of freedom
in Xy, our scaling functions will be particularly simple, compared to those for
problems in H'(Q).

Following [51, 52|, our family of scaling functions will depend on a parameter
§>1/2. (5.14)

Let T be a substructure. We define a piecewise constant function pur € S, (0T) by

>
,l,l,T|f = D,Y—(S’ f € fh,, f C GT, (515)
T
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where vp and vy are the largest eigenvalues of the coefficient matrices Bp and Br,
respectively, as in (5.3). Here, the sum is taken over the substructures that share
the face f (edge, if n = 2). We remark that if the coefficient matrix B is constant,
pr), is the total number of subdomains to which f belongs. In addition, due to
the nature of the degrees of freedom in Xy, this sum in (5.15) always has just two
terms, and the function ur belongs to the subspace Sy (97), of piecewise constant
functions on the coarse faces (edges) F' C dT. We will also need the corresponding
function in S, (T"), still denoted by ur, obtained from pg by extending it by zero
to all of I'. Given two substructures 7" and D that have a common face (edge, if

n=2) F =T N D, we will also use the notation

H1iD = HUT |, = KD|p-

We remark that if Neumann conditions are considered on some part of the
boundary 0€0y C 012, the functions ur are also defined on 9€2y. In this case, the
sum in (5.15) has only one term, if f C 0Qy, and pry, = 1.

For § = 1, the same counting functions are considered in [16], where a Neumann—
Neumann method for the mixed approximation of the Laplace equation is studied.

We now define the pseudoinverses {,uTT} of the functions {7} on I'; by
wh, =pz',, fCOT;  pf, =0, fCT\OT. (5.16)

The functions {ur}} are also constant on each coarse face ' C Fy.

It is immediate that {,uTT} is a partition of unity on I':

OSM;SL Z,uj_'pzl, a.e. on [.
TeTn
In order to define a Schwarz algorithm, we need a family of subspaces and a
bilinear form for each of them. Given a substructure 7', we define Xr C )Ai:o;h,
as the space of harmonic extensions, that vanish on I' \ 0T. We remark that the
support of a function u € X is contained in the closure of the union of 7 and the
substructures with a common face (edge, if n = 2) with 7. Since the degrees of
freedom of the Raviart-Thomas spaces are defined on the faces (edges, if n = 2)

of the triangulation, the harmonic extension u vanishes on the substructures that

107



share only a vertex with 7" and, if n = 3, also on the substructures that share only
an edge with 7.

We define the following decomposition of the space of harmonic extensions:

Xop = Xog + > Xr- (5.17)
TeTn

Our next step is to define suitable bilinear forms on the subspaces. On the coarse
space, we employ the original bilinear form af(-, -).

On the space YT, we define an approximate bilinear form. The corresponding

local problem only involves the solution of a Neumann problem on the substructure
T. Tt is defined by

&T(u, V) = ar (HT(,LLTH . n), HT(,U,TV . n)) s u,v e YT; (518)

cf. [51]. We note that the local bilinear form is built with the original one, defined
in the substructure 7, and with the harmonic extensions of the traces on 07", scaled
by pr.

We will consider a hybrid Schwarz preconditioner, where one solves first the
global problem and then the local ones, in parallel. The error propagation operator
is given by

E:=(I- Z Qr)(I — P),

TeTu
where the orthogonal projection Py and the operators {Q7} are defined by

Py Yo;h — YO;H; a(Pyu,v) = a(u,v), ve€ YO;H
Qr : Yo;h — Xrs; ar(Qru,v) = a(u,v), v e Xr.
The corresponding Schwarz operator is
I-E=FP+ Y Qr(-H).
TeTn

In the following, we will employ the symmetrized operator, obtained by an addi-

tional coarse solve,

Qup :=1— (1 - P) (I— > QT> (I - Py)

TeTH

(5.19)
- Po+(I—Po)< > QT>(I—P0)=P0+ > Qr,

TETy TETy
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where

QTZI(I—P())QT(I—P()), TETH

Since P, is a projection, this can be done at no extra cost.

We choose this hybrid algorithm since the local bilinear forms (5.18), though
coercive on the spaces YT, are not uniformly coercive with respect to H. In order
to have a coercivity constant that is independent of H, the local bilinear forms
have to be defined on smaller spaces. In Section 5.6, we will show that the local
operators Q1 need to be defined on the subspace Ran(I — Fp), and their image
has to be projected on Ran(I — F), for their norm to be independent of H; see
Lemma 2.3.2. We refer to Section 5.7, for some remarks on the implementation of
Neumann—-Neumann methods.

Similar hybrid algorithms have been employed successfully in some Neumann-—
Neumann methods for scalar or vector equations in H'(Q); see [37, 38, 16, 54, 61].
For these methods, the local operators ()7 are not defined on the whole space
but only on Ran(l — P,) and the local bilinear forms are coercive only on local
spaces contained in Ran(I — F). For our methods, the situation is somewhat
different, since the local problems are always solvable, but a good stability constant

is obtained only on local spaces contained in Ran(I — P,).

5.5 Technical tools

In this section, we will modify some results proven in Section 4.3.3 for the two—
dimensional case, and prove a technical lemma.

We first consider pg, the interpolation operator onto the coarse space. The
stability estimate in Lemma 4.3.1, for n = 3, can easily be proved for n = 2, by
modifying the proof of Lemma 4.2.1 for H(curl; ).

Let T be a substructure. A closer look at the proof of Lemma 4.3.7 shows that
it is valid for both n = 2, as well as n = 3. Consequently, for n = 2, 3, a divergence

free extension can be found

Hr : Soun(0T) — X4(T),

109



such that (4.45) holds. We remark that a similar result also holds for H(curl;(2)
and n = 2. In particular, given a function p € Sg,,(9T), a curl-free extension Hoyp
can be found into the Nédélec space defined on T, such that (4.45) holds. In the

proof of Lemma 4.3.7, it is enough to choose u := curl ¢ and ﬁTu = Hﬁmlu.
For n = 2,3, define V,(8T) C Hz(9T) as

Vi(0T) := Qu(3T) + B, (3T);

see Section 4.3.3. Here Q,(0T) is the space of all continuous piecewise bilinear
(linear, for n = 2) functions and By (07T) a space of bubble functions vanishing on
the faces (edges) f € Fy, f C 0T

Qu(dT) = {¢ € C°AT), ¢, € Qu(f), f C T, f € Fu},
By(0T) = {¢ € C%0T), ¢, = ay p1---yw-v, f C T, f € Fp,ay € R},

where ¢;, 1 < i < 2("=1 are the nodal basis functions that span Q, (f) on the face
(edge) f.

Lemma 4.3.5 is then valid for both n = 2 and n = 3. The proof given in Section
4.3.3 for n = 3, can also be carried over to n = 2, by noticing that Lemmas 4.3.2,
4.3.3, and 4.3.4 are also valid for n = 2.

It remains to prove Lemma 4.3.6, for n = 2. The proof follows that of Section

4.3.3, but a different Sobolev-type inequality is employed; see (5.25) and (5.26).

Lemma 5.5.1 Let n = 2 and let T be in Tg. Let {ug, E C 0T} be functions
in So.n(0T'), which vanish on 0T \ E and let p := Y pcor be- Then there ezists a
constant C, independent of h and pg, such that, Vug € Sy (0T),

Proof. Using Lemmas 4.3.5 and 4.3.3, we have

> sqeanen |poliar  esemon [dnl1ar
¢ #const. ¢ g#0 2
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Let ¥g be the function given in the proof of Lemma 4.2.1 and let I, be the
nodal interpolation operator onto Q,(0T). If, for any ¢ € Qn(0T'), we define the

weighted average cy, by
E[ Ih(Vedq) ds

C¢Q = fﬁE ds ’
E
we can write
, —c
sup <IU’E'a ¢Q> — sup <IU‘E ¢Q ¢Q> — sup <:U'Ea ¢Q> ] (521)
sean@n) |0Qliar  sge@nom 0@ — Copoliar  voeanem. |Dl1or
¢Q;éconst. 2 ¢Q7éconst. 2 ¢’Q #0, C¢Q:0 2

In the last term of (5.21), the H >-seminorm can be replaced by the full norm,
because of (4.33). We next decompose ¢p into the sum of terms ¢p.g supported
on individual edges F C 0T

= ) OB (5.22)

BeFy
ECOT

Similarly, we decompose ¢¢ into the sum of contributions supported on indi-
vidual edges £ C 0T,
¢Q;E = 79E¢Qa E cor

and a remainder ¢q.,:

¢Q;w = ¢Q - Z ¢Q;E- (523)

ECOT
We remark that ¢¢., is the sum of four contributions, one for each vertex of 9T,
and has support contained in the union of the two fine edges in F; that end at
that vertex.

Local inverse estimates combined with interpolation arguments easily give

|¢B;E‘ 2%;371 S C'|¢B 2%;371- (524)

Similar arguments give
¢1(,2 <C—1¢w2 < Clldgw 2 5.25
‘ Q; |§;8T h|| Q; HO;BT H Q; ||L (87)- ( : )

Using [23, Lemma 3.3], we have,
16qsullie(ory < C(1+1log H/R) ll¢qlli o (5.26)
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see also [12, Lemma 2.3], [21, Lemma 1], and [54, Lemma 7, p. 170], for a proof of
similar Sobolev—type inequalities. Combining (5.25) and (5.26), we find

16gul3 o < OO+ log H/h) l|gll3 or- (5.27)

Using the inequality ||[u”||1.r < C||u?|? /o;or» Which is valid for discrete harmonic

functions, and the same argument as in [54, p. 172, Th. 3], we have,

bare|3pr < O+ log H/WY b} (5.28)

see also [23, Th. 5.1] and [22, Lemma 4.5], for proofs of similar inequalities.
By using the splitting (5.23), we find

(e, Q) = Y (um, dg.p) + (1B, PQuw)
Ecar (5.29)

= (1, 9qip) + (1B, PQu)-
Since I, (Vrpdg) = dg.r = In(Irdg.r) and since, according to (5.21), we can always

assume that cs, = 0, we obtain

{(pa,dgE) =0, Vug € Sy(dT),

and ¢y, = 0. The first term on the right side of (5.29) can be bounded by means
of (5.28)

{1 b@im)| = {1+ pm, dois)| < C(1 +1og H/h)|dqllor 11+ pall-yor- (5-30)

The second term on the right side of (5.29) can be bounded using the following
argument: For each ¢g., there is a unique QEB;E € B (9T) such that

/QSQ;U, dSZ/(}NSB;E ds, e€ Fy, eCF,

with gEB; g = 0on dT \ E. Moreover, this mapping is continuous

~ 1 -~ 1
HQSB;EHQ%;GT < CBHQSB;EHg;BT < Cﬁ”‘ﬁQ;w ‘g;aT < C||¢Q;WHZ%;6T'

By means of this bound and (5.27), we finally obtain

(e baw)l = (e, b5:6)| = (1 d5:5)| < Cllpll 1,00/l 0l

< C(+log H/W) |l _s,orlidell s or- (5.31)

%;6T
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Using (5.24), we find for the second term on the right hand side of (5.20)

(s, 08) [ dmm)| _ [l sor [195:mll0r
@5 5;0r 98l10r [¢8]10r
il 1or 9881,
S C TZT 256T S CHuHié;aT. (532)
B|l.9T
27

The proof is completed by combining (5.20), (5.21), (4.33), (5.23), (5.30), (5.31),
and (5.32). O

We end this section with the following lemma.

Lemma 5.5.2 Letn = 2,3 and let T and Ty be two substructures with a common
face F € Fy (edge, if n = 2). Let ur be a function in L*(0T, UdTy), that vanishes
outside F'. Then there is a positive constant C, that only depends on the aspect
ratios of Ty and Ty, such that

larll s m; < Cllaell_

Proof. We will only give the proof for the three-dimensional case. The case of
n = 2 can be proved in the same way.

Let T be the unit cube, and let F; and F, be two functions that map 77 and
Ty, respectively, onto 7', respectively, such that 7 (x) = Fo(x), VT € F.

We have

</'1’Fa1/]>
lpeell-giom, = sup Tl
YEHZ (T) 5:0T1
- 3
>~ FRN > )
ders (o1 Hﬁ”@””%;af ) pens(om) ||1/’||§;8T2

where the constants C'; and C5 only depend on the aspect ratios of the substruc-
tures and (%) := pp(Fi1(2)) = pr(Fo(z)). The product C,Cy(Hy,/Hr,)*? can
then be bounded by a constant that only depends on the aspect ratios of the two

substructures. O

113



5.6 Main result

In this section, we will prove a logarithmic bound for the condition number of the
hybrid operator Tj,, introduced in Section 5.4. We refer to [61], for similar proofs

for a hybrid method for the Laplace equation.
Lemma 5.6.1 We have
a(Thypu,u) > a(u,u), ue Yo;h.

Proof. We will first prove a lower bound for the smallest eigenvalue of the

operator

Y. Qr.

TeT

Given a function u € )70;,1, for T € Ty, let
ur :=H (M;’ (u- n\p)) e Xr, (5.33)

where the partition of unity {u}} is defined in (5.16). We remark that ug is
obtained from u by taking its normal component on I' and multiplying it by the
cut—off function ,ur}, obtaining a function that is non—zero only on 97. We finally
extend it harmonically into 7" and its neighboring substructures.

Since { ,uTT} is a partition of unity on I' and the vectors u and uy are all harmonic

extensions, we have

u = Z ur.

TET
In view of Lemma 2.3.1, we have to bound the sum of the energies of the ur. Using
the definition of uy and the fact that the functions {,LLTT} are the pseudoinverses of

the {ur}, we have

Z ar(ur,ur) = Z ar (Hr(pr ur - n), Hr(ur ur - n))

TeT TeET

= > ar(u,u) =a(u,u).

TETH

114



Lemma 2.3.1, ensures that the smallest eigenvalue of ). ()7 is one. The same
TETu
quantity is also a lower bound for the smallest eigenvalue of T}, since Fy is an

orthogonal projection. In fact,

a(Thypu,u) =a (Pou + Z Qru, u)

TETy

= (POu P0u —|—a( Z QT ] P()) (I—P())u> 2(1/(11,11).

TeTH

In order to bound the largest eigenvalue, we will first prove an upper bound

for the norm of the local operators {Qr}; see Lemma 2.3.2.

Lemma 5.6.2 Let T be a substructure. Then there is a constant C', independent
of h, H, the coefficients a and B, and the parameter §, such that

~ H\2
1Qzlla < Cn (14107 )

where ) '
(Ol i sup “QrwCrw)
' ue Xy a’(ua 11)
and ;
= = Yr Yr
n:= zr%@rX{n} grnaxmax{ﬁT - } (5.34

Proof. Let Iy : Xop — )70; u be the interpolation operator defined in Section

5.2. Since P, is an orthogonal projection and it has the same range as [I5, we have
(I -R)(I-Tg)=1-H,
and we can then write
@T: (I-P)Qr(I—-PF)=U-F)I-Iu)Qr( - ). (5.35)
It is therefore enough to estimate the norm of
(I - g)Qr,
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when applied to Ran(I — P).

Let u € Ran(I — P,), and w := (I — IIy) Qru. The support of functions in
X1 extends to the neighboring substructures of 7', while the approximate bilinear
form ar(-,-) only involves the values of w in 7. We will first bound the energy of
w in T, and then that from the neighboring substructures, in terms of a,(w,w).
We remark that we only need to consider the substructures that have a common
face (edge, if n = 2) with 7. We also remark that w is discrete harmonic. Let D
be one of these substructures and F' = 97'NAdD. Using then the fact that w-n has
mean value zero on F' and vanishes elsewhere on 0D, and Lemma 4.3.7, we have

ap(w,w) < ap <ﬁp(w-n),ﬁp(w-n))
N , (5.36)
< | Ho(w-n)| < Cwllw-nl?, .

with a constant C' that does not depend on the diameter of D. Using Lemma 5.5.2
gives

o
o llw-nl%y,, < Cyplldrw -n|?y ,m=C 2 19 (nr w021 57, (5.37)
T;D

where 5 is identically one on F' and vanishes on the rest of 07. Lemma 4.3.6

(Lemma 5.5.1, if n = 2) and the fact that yzyw - n has mean value zero on each
face (edge, if n = 2) of T ensures that the last term in (5.37) can be bounded by

H
rE . (5.38)
(”IUTW . n||2_%;aT + (1 + log E) ||pr w - n + ¢H||2_%;3T) )

where 1y is an arbitrary function of Sy (9T).
Combining (5.36), (5.37), and (5.38), we obtain

H
ap(w,w) < ZD <1 + log —) .

HTip h (5.39)

H
(”MTW : n||2,%;aT + (1 + log ﬁ) |prw -n+ ¢H||2§;3T> :
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The second term in (5.39) can be bounded by taking ¥y = —pur (Ilg Qru)-n, and
using the trace estimate (2.4), and the definition (5.18),

< O (Hldiv (Hr (ur(@ru) - m)[2, + 1 (ur(Qr) - m)[12,.)

; (5.40)
< C—ar (Hr (pr(Qru) -n), Hr (ur(Qru) - n))

YT

- cL ar(Qru, Qru).
YT
For the first term in (5.39), we use the definition of w and obtain
|z w - n”Q—%;GT < 2||pr (Qru) - n||2—%;6T + 2||pr (Ug Qru) - n||2—%;6T - (5.41)

A bound for the second term in (5.41) can be found in the following way:

It can easily be checked that the normal component of the vector

wy = pg (Hr (ur (Qru) - n)),

on 0T is equal to ur (Il Qru)-n. We remark that wy is obtained by first extend-
ing the normal trace (ur (Q7u)-n) harmonically into 7" and then interpolating into
the coarse space Xo.i. Using the trace estimate (2.4) and the stability estimates

for py in Lemma 4.3.1, we find

o (g Qru) - ml2 o = w02y 5 < C (B ldivwr 3 + [[wall3r)

< O (1t tog ) (B2 v (e (ur(@rw) - )3 + [ (ur(@rw) - )

< 0L (1+1og ) ar (P (e (@ew) ) Mo (s (@) - w)

T
H
= ¢ (1 + log —> ar(Qru, Qru).
T h
(5.42)
Finally, combining (5.39), (5.40), and (5.42), we obtain
H 2
ap(w,w) < Cn (1 + log —) JD ar(Qru, Qru). (5.43)
h IU’T;D YT

117



An estimate for the energy ar(w,w) can be found in a similar way:
If a substructure D shares a face (edge, if n = 2) with 7', let Fp := 0T N 0D be
the common face. Since w - n has mean value zero on each face of 97", Lemma

4.3.7 can still be applied. We have

ar(w,w) < ar (ﬁT(W -n), ﬁT(W . n)) <r HﬁT(W ) n)Hi;T

(5.44)

< Cyrllw- n||2,%;aT =T

Z 19FD (W ) n)

—%;6T

T 2
< O 0 (w0l 1
D T;D

where the sum is taken over the substructures D that share a face (edge, if n = 2)
with 7', and ¥p, is equal to one on Fp and vanishes on the rest of 07. Lemma
4.3.6 (Lemma 5.5.1, if n = 2) thus gives the following bound for the last term in
(5.44):

T H
cd (1 + log —) :
D /’L’%“;D h

. (5.45)
(w2 g+ (1410w ) rw -Gy

where 1y is an arbitrary function of Sy (9T).
An upper bound for (5.45) can be obtained in the same way as for (5.39). (5.44)
and (5.45) give

2
CLT(W, W) S CT] (1 + log %) (Z M;D> dT(QTu, QTH). (546)
D )

Employing (5.43) and (5.46), and summing over the substructures that share a
face (edge) with 7', we obtain

H 2
a(w,w) < Cnp (1 + log i) ( %; + 7D> ar(Qru, Qru).
D MT:p T

It can easily be checked that the terms

Yr + Vo _ (’YT‘F’YD)V%J
wrpyr (8 +70)%
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are homogeneous functions of yr and 7p, and can be bounded by 2, independently
of yr,vp > 0, and 6 > 1/2. We then obtain

2
a(w,w) < Cn (1 + log %) ar(Qru, Qru).

Using the definition of Q7 and and the fact that we have chosen u € Ran(I — F),

we can write
2

a(w,w) <y (1+1og %) o(u, Qru)
2
e (1 +log %) o (u, (I — Py)Qr(I — Py)u)

2
= Cn (1+10g%> a(u, w).

By applying Schwarz inequality, we finally obtain

a(( = Tl) Qru, (1 = T) Qru) = a(w,w) < € (1+1og ) a(u,w)

and the proof is completed by noting that (I — P,) is an orthogonal projection. O

Lemma 5.6.3 There is a constant C, independent of h, H, u, the coefficients a

and B, and the parameter §, such that

H\? —
a(Thybua ll) < 077 (1 + log E) CL('I.I, 'I.l), uc XO;h-

Proof. The proof employs the previous Lemma and a standard coloring argu-
ment; see, e.g., [54, p. 165] or [6, Th. 4.1]. We present it here for completeness.

Let T be a substructure and define €24 as the union of 7" and the substructures
that have a common face (edge, if n = 2) with 7. Let xr be the characteristic

function of Q27. We have, for u € Yo;h,

a <Z Qru, Z C~2Tu> = Z a (XT@TU, XD@DU)
T T T,D

/2

< Ya (XD@TU, XD@TU) v a (XT@DU, XT@DUI)1 (5.47)

T,D

< Da (XD@TU, XD@TU) <CYa (QTU: @TU) -
T

T,D
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In the last step, we have used the fact that, in the sum over T and D, every
integral over a single substructure is counted at most 6 times (4 times, if n = 2),
the number of faces (edges) of a substructure. Using Lemma 5.6.2, we can then
write
da (QTU, QTU) < Y a (QTU, 11) Q7 ||a

T

' (5.48)

2
< Cn (l—i-log%) a(Z@Tu,u>.
T

Combining (5.47) and (5.48) and using Schwarz inequality, we obtain

4

a (Z C~2Tu: Z QTU> < C 772 (1 + IOg %) a’(ua 11)-
T T

Another application of Schwarz inequality gives

~ H\ 2
) SC 1+1 7 ’ ’
a (;QTU u) n ( og h,) a(u, u)

and the bound for T}, is obtained by noting that F; is an orthogonal projection.
0

Lemmas 5.6.1 and 5.6.3 combine to give the following theorem.

Theorem 5.6.1 There is a constant C, independent of h, H, the coefficients a
and B, and the parameter §, such that

2

H
K(Thyb) S CT] (1 + log E) y
where n s the constant in Lemma 5.6.2.

We remark that the same constant 7 also appears in the estimates for the edge
and face—space methods in Chapter 4; see (4.12) and (4.50).

The estimate given in Theorem 5.6.1 remains bounded when the coefficient
matrix B tends to zero, but becomes unbounded when a becomes small. The
following lemma ensures that in the limit case @ = 0, the condition number of the
hybrid operator is bounded independently of H/h and the jumps of the coefficient
B.
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Lemma 5.6.4 In the limit case a = 0, there is a constant C, independent of h,

H, the coefficient matriz B, and the parameter §, such that
K(Thy) < C,

where
T
sl

Proof. 1t is immediate to check that Lemma 5.6.1 still holds. It is then enough
to prove a bound for ||Qr]|., as in Lemma 5.6.2, since the coloring argument in
the proof of Lemma 5.6.3 can also be employed in the limit case a = 0.

Let T be a substructure and let Qr = (I — Py)Qr (I — Pp) be defined in Section
5.4. Since a = 0, the bilinear forms a(-,-) and ar(-,-) are just weighted L? scalar
products.

Let u € )70;,“ and w := QQru € YT. The proof is similar to the one of Lemma
5.6.2. The support of functions in X7 extends to the neighboring substructures
of T, while the approximate bilinear form ar(-,-) only involves the values of w in
T. We will first bound the energy of w in 7', and then that from the neighboring
substructures, in terms of ar(w,w). We remark that we only need to consider the
substructures that have a common face (edge, if n = 2) with 7. We also remark
that w is discrete harmonic. Let D be one of these substructures and F' = 9T'NoD.
We have

A~ A~

ap(w,w) < ap (Hp(w-n),HD(w-n))
(5.49)

A

Hp(w - n)Hz_D < Crp Y b} Ap(w)?,
’ fCF

< 7

where Hp, (w-n) is the extension by zero of w-n into D and, for the last inequality,
we have used (2.28).
The last term in (5.49) can be bounded using the fact that the function pr is

constant on F' and the degree of freedom Af(w) is the normal component of w on
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f C F. We can then write

1
Do RN (W) = Y b B A (w)?

fCcF X DT fCE
= X A ()’
KT fcr
1
S > W As (Hr(prw - n))?
DT ol
fer (5.50)
2
< O Harw )y
DT
1
< C&— ar (Hr(pr w - n), Hr(ur w - n))
Kpa T
1
= C¢& ar (W, w),
M%;T’-YT T( )

where we have also used (2.28). Combining (5.49) and (5.50), and using the defi-

nition of w, we obtain

ap(w,w) < C§ =2 —Gr (Qru, Qru); (5.51)
Up.r YT
see (5.43).
An estimate for the energy ar(w, w) can be found in a similar way:
If a substructure D shares a face (edge, if n = 2) with T, let Fp := 0T N 9D be

the common face. We have

A

ar(w,w) < ar (’}:[T(w -n), Hp(w - n))
(5.52)

< gr|Hr(wen)| < Cour X WA,
’ fcor

where H7(w-n) is the extension by zero of w-n into 7" and, for the last inequality,
we have used (2.28).
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The right hand side of (5.52) can be bounded using similar arguments as in
(5.50):
1
ey hpAs(w)? < Coar Y —— Y W} As(Hr(prw - n))?

fcor FpCcoT Hp;r fCFp
< C Y Y WA M (pr w - m))?
Fpcar PDiT ;op (5.53)
< C&ar (Hr(prw - n), Hr(prw - n)) Z

2
Fpcor MDT

= Céar (Qru,Qru) Y !

2
FpcoT Hp;r

Y

where we have used (2.28) and the definition of w.
Employing (5.51), (5.52), and (5.53), and summing over the substructures that
share a face (edge, if n = 2) with 7', we obtain

G,(W, W) S Cf (Z 77';_7%) a (QTU: QTU) 3
D

Hr YT

and a bound for ||Qr||, can then be found as in the proof of Lemma 5.6.2. O

We remark that Lemma 5.6.4 gives an optimal bound for the limit case a = 0.
Thus, as the ratio between the coefficients B and a becomes large, we expect
an upper bound for the condition number which is independent of H/h; see the

numerical results in the next section.

5.7 Numerical results

In this section, we present some numerical results on the performance of the hybrid
Neumann-Neumann method described in the previous sections, when varying the
diameters of the coarse and fine meshes, and the coefficients a and B. We will only
consider two—dimensional problems.
The hybrid operator is given in (5.19). The matrix representation of the pro-
jection P is
By S = (RY S;' Ry) S,

where RY is the natural extension matrix from the coarse space into the fine space,

defined on the interface I', and Sy is the matrix representation of the bilinear form
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s(+,-) on the coarse space, defined by
Sy = Ry S RYL.

We remark that, if ny is the dimension of the coarse space, ng applications of the
Schur complement are required, in order to calculate Sg. Since the basis functions
of the coarse space are supported on single coarse edges (faces, if n = 3), only the
solution of at most two Dirichlet problems on two substructures are required for
the application of S to a coarse basis function.

For a generic substructure 7;, the matrix representation of the local operator
Qr; is

B;S:= (Rl D;'Si" D' R;) S;

see (5.18). Here the natural extension éZT maps the local degrees of freedom on
0T; into the corresponding global ones on I', the diagonal matrix D; represents the
multiplication by the scaling function pg,, and S; is the Schur complement of the
local bilinear form ar,(-,-), with respect to the variables on 07;. The matrix S;
does not need to be calculated explicitly, but the action of its inverse on a local
vector can be calculated by solving a Neumann problem on the substructure 77j;
see [54, Sect. 4.2.1]. We also note that, as is often the case for Neumann-Neumann

methods, the local averaging operators {D; '} satisfy
S"R, D' R; = Id;

see, e.g., [22, 54].
We have considered the domain ©Q = (0,1)? and uniform rectangular triangu-
lations 7, and Tz. The fine triangulation 7, consists of n? square elements, with

h =1/n. The matrix B is given by
B = diag{b, b}.

In Table 5.1, we show the estimated condition number and the number of
iterations in order to obtain a reduction of the norm of the preconditioned residual
by a factor 1078, as a function of the dimensions of the fine and coarse meshes.

For a fixed ratio H/h, the condition number and the number of iterations are quite
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Table 5.1: Estimated condition number and number of CG iterations necessary for
a reduction of 107® of the norm of the preconditioned residual (in parentheses),
versus H/h and n. Case of a =1, b= 1.

|H/h | 32 | 16 | 8 I
n=32 - 3.075 (4) [ 2.881 (10) | 2.182 (8) | 1.505 (5)
n=64 | 4.004 (4) [3.791 (11) | 3.023 (10) | 2.113 (7) | 1.508 (5)
n=128 | 4.860 (12) | 3.985 (11) | 2.935 (8) | 2.033 (6) X
n=192 - 3.978 (10) | 2.854 (7) | 1.974 (5) X
n=256 | 5.112 (12) | 4.01 (10) | 2.854 (7) | 1.974 (5) X

insensitive to the dimension of the fine mesh. Our results compare very well with
those for finite element approximations in H' of the Laplace equation; see, e.g.
[54], and with those for the iterative substructuring method based on individual
edges, described in Chapter 4; see Table 4.1.

In Figure 5.1, we plot the results of Table 5.1, together with the best second
order logarithmic polynomial least—square fit. The relative fitting error is about
2.8 per cent. Our numerical results are therefore in good agreement with the
theoretical bound obtained in the previous section and suggest that our bound is
sharp.

In Table 5.2, we show some results when the ratio of the coefficients b and a is
changed. For a fixed value of n = 128 and a = 1, the estimated condition number
and the number of iterations are shown as a function of H/h and b. In accordance
with Theorem 5.6.1, the condition number is independent of the ratio b/a, when
b/a < 1. Table 5.2 also shows that, in practice, this holds for b/a > 1, and that,
when b/a is very large, the condition number tends to be independent of H/h.
Our numerical results then confirm our analysis of the limit case a = 0, in Lemma
5.6.4. The numerical results in Table 5.2 compare very well with those in Table
4.2.

We finally consider some cases where the coefficients have jumps. In Table 5.3,

we show some results when the coefficient b has jumps across the substructures. We
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Table 5.2: Estimated condition number and number of CG iterations necessary for
a reduction of 107® of the norm of the preconditioned residual (in parentheses),
versus H/h and b. Case of n =128 and a = 1.

\H/h | 4 | 8 [ 16 | 32 |
b=1le-5 [2.033 (6) [ 2.935 (8) | 3.988 (11) | 4.871 (12)
b=1le-4 |2.033 (6) | 2.936 (8) | 3.988 (11) | 4.871 (12)
b=1e-3 | 2.033 (6) | 2.936 (8) | 3.988 (11) | 4.871 (12)
b=1e-2 | 2.033 (6) | 2.936 (8) | 3.988 (11) | 4.871 (12)
b=le-1 |2.033 (6) | 2.935 (8) | 3.988 (11) | 4.87 (12)
b=1 2.033 (6) | 2.935 (8) | 3.985 (11) | 4.86 (12)
b=1le+1 | 2.032 (6) | 2.931 (8) | 3.959 (11) | 4.765 (12)
b=1e+2 | 2.026 (6) | 2.881 (8) | 3.705 (10) | 4.15 (10)
b=1e+3 | 1.932 (5) | 2.507 (7) | 2.806 (8) | 2.862 (7)
b=le+4 [ 1.613 (4) [ 1.717 (5) | 1.751 (5) | 1.771 (5)
b=le+5 | 1.124 (3) [ 1.134 (3) | 1.15 (3) | 1.154 (3)

consider the checkerboard distribution shown in Figure 4.2, where b is equal to b;
in the shaded area and to b, elsewhere. For a fixed value of n = 128, b; = 100, and
a = 1, the estimated condition number and the number of iterations are shown as
a function of H/h and by. For by = 100, the coefficient b has a uniform distribution,
and this corresponds to a minimum for the condition number and the number of
iterations. When b, decreases or increases, the condition number and the number
of iterations also increase, but they can still be bounded independently of b,. The
results in Table 5.3 compare very well with those in Table 4.3.

In Table 5.4, we show some results when the coefficient ¢ has jumps. We
consider the checkerboard distribution shown in Figure 4.2, where a is equal to ay
in the shaded area and to ay elsewhere. For a fixed value of n = 128, a; = 0.01, and
b = 1, the estimated condition number and the number of iterations are shown
as a function of H/h and ay. We remark that for ay = 0.01, the coefficient a
has a uniform distribution. A slight increase in the number of iterations and the
condition number is observed, when a; is decreased or increased and when H/h is

large.
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estimated condition number and quadratic log fit
5.5 T T T T

condition number
w
T
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0 5 10 15 20 25 30 35

H/h

Figure 5.1: Estimated condition number from Table 5.1 (asterisk) and least—square
second order logarithmic polynomial (solid line), versus H/h; relative fitting error
about 2.8 per cent.

Finally, we recall that when Maxwell’s equations are discretized with an implicit
time-scheme, the time step is related to the ratio b/a. The iterative substructuring
method presented in this chapter therefore appears very attractive for the solution
of linear systems arising from the finite element approximation of time—dependent

Maxwell’s equations.
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Table 5.3: Checkerboard distribution for b: (b1, by). Estimated condition number
and number of CG iterations for a reduction of 1076 of the norm of the precondi-

tioned residual (in parentheses), versus H/h and by. Case of n = 128, a = 1, and
b, = 100.

| H/h | 4 | 8 | 16 ]
b, =1le— 4] 5.344 (14) | 7.514 (16) | 9.989 (19)
by =1le — 3| 5.321 (14) | 7.481 (16) | 9.945 (19)
by =1le—2]5.248 (13) | 7.379 (16) | 9.81 (19)
by =1le —15.031 (12) [ 7.073 (15) | 9.402 (18)
by =1 4.442 (11) | 6.239 (14) | 8.289 (17)
by =1e+ 1| 3.249 (8) | 4.532 (11) | 5.987 (14)
by =1le+2 | 2.026 (6) | 2.881 (8) | 3.705 (10)
b, =1e+3| 3.15(8) |4.138 (11) | 4.932 (13)
by =1le+4 | 3.556 (9) | 4.043 (11) [ 4.384 (13)
by =1le+5 | 2.638 (8) | 3.24 (11) [ 3.912 (13)
by =1le+6 | 2417 (8) [ 3.176 (11) [ 3.919 (13)

Table 5.4: Checkerboard distribution for a: (a1, as). Estimated condition number
and number of CG iterations for a reduction of 107% of the norm of the precondi-
tioned residual (in parentheses), versus H/h and ay. Case of n = 128, b = 1, and
a; = 0.01.

| H/h | 4 | 8 | 16 |
ap=1e—7] 21(6) [3.399 (9) | 5.909 (13)
a=1e—6] 2.1(6) [3.196 (9) | 5.537 (13)
a; =1e—5]2.059 (6) | 2.882 (8) | 4.165 (11)
as = le —4 | 2.051 (6) | 2.857 (8) | 3.403 (10)
ay =1le—31.944 (5) | 2.853 (8) | 3.611 (10)
ay = le — 2| 2.026 (6) | 2.881 (8) | 3.705 (10)
a; =1e—112.032 (6) | 2.933 (8) | 3.948 (11)
ap=1 2.033 (6) | 2.938 (8) | 3.975 (11)
a; =1le+1]2.033(6) | 2.939 (8) | 3.977 (11)
a; =1le+2]2.033 (6) | 2.939 (8) | 3.978 (11)
a; =1le+3]2.033 (6) [ 2.939 (8) | 3.978 (11)
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