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Abstract

In this paper, we extend an algorithmic approach to constructing ordered restriction maps
from images of a population of individual DNA molecules (clones) digested by restriction
enzymes. The original algorithm was capable of producing high-resolution, high-accuracy
maps rapidly and in a scalable manner given a certain class of data errors, including con-
tamination, sizing errors, false and missing restriction sites and unknown orientation. Here
we extend this set of errors to include possibly broken molecules where the amount of
breakage is not known beforehand, which is necessary for handling larger clones. In an
earlier paper [AMS97], we had shown that the problem of making maps from molecules
with end fragments missing as the only source of error is NP-complete. We also show how
to handle multiple reliability levels in the input data when calling restriction sites.

1 Genomics and Optical Mapping

Optical mapping [CAH+95, CJI+96, HRL+95, JRH+96, MBC+95, SCH+95, SLH+93, WHS95] is a
single molecule methodology for the rapid production of ordered restriction maps from individual DNA
molecules. Restriction enzyme cleavage sites are visible as gaps that appear flanking the relaxed DNA
fragments (pieces of molecules between two consecutive cleavages). Relative fluorescence intensity (mea-
suring the amount of fluorochrome binding to the restriction fragment) or apparent length measurements
(along a well-defined “backbone” spanning the restriction fragment) are used as size-estimates of the
restriction fragment and used to construct the final restriction map using an algorithmic approach de-
scribed in [AMS97]. This approach is based on Bayesian inference and is capable of recovering from a
number of data errors of unknown magnitude including sizing errors, false and missing restriction sites
and unknown orientation by exploiting the redundancy in the multiple DNA molecules. This is done by
hypothesizing a probabilistic model of the data and the errors and looking for the hypothesis that best
fits the observed data given a prior distribution of restriction maps. The best hypothesis is found using
a heuristic global search combined with local function optimization. This is not guaranteed to find the
correct solution, but the Bayesian approach is capable of providing a probabilistic confidence measure
which signals when the solution is not reliable due to insufficient data or too much error in the data. Since
the problem is shown to be NP-complete in the presence of each of many of these error sources [AMS97],
this is the best one can expect.

In this paper we extend the error model to allow for molecules which have a piece at either end broken
off and therefore missing from the data. This error term is important when handling large cloned DNA
molecules (e.g., large BAC based clones roughly of length 150Kb), since they are highly likely to have
pieces broken off at either end during the handling. The entire model including this new error term is
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presented. In addition we show how to handle multiple reliability levels in the input data when calling
restriction sites, where the exact reliability levels are not known and must be deduced from the data.
2 Maps by Bayesian Inference
The Bayesian approach to compute maps consists of:
e A Model or Hypothesis H, of the map of restriction sites including the errors.
e A prior density distribution over the Hypothesis f(#).

e A conditional density distribution of the data molecules D;
f (D j‘H)’
e The conditional density distribution of the Hypothesis via Bayes’ rule:

FH) H;‘ilfwjl%)‘

JHID) = ==

Using this formulation, we search over the space of all hypotheses to find the most “plausible”
hypothesis that maximizes f(#|D). There is no need to compute f(D), the prior of the data, since it
is the same for all 7{. We use a simple prior f(#) which is just a Poisson distribution of the number of
cuts (restriction sites) reflecting our expectation of a certain number of cuts per unit length based on the
enzyme used. The expression for f(D;|H) is based on our data and error model and is more complex.

2.1 The Data Model

Unless otherwise specified, the indices %, j, u and k are to have the following interpretation:
e The index 7 ranges from 1 to NV and refers to cuts in the hypothesis.
e The index j ranges from 1 to M and refers to data items (i.e., molecules).

e The index u ranges from 1 to U; and refers to a possible orientation and breakage hypothesis for
molecule j.

e The index k ranges from 1 to K, and refers to a specific alignment of cuts in the hypothesis with
data j and breakage/orientation u.

Our Bayesian model is specified as follows:

2
If

Number of cuts in the hypothesis H.

&
1l

The ith cut location on H.

m; = Number of cuts in the data D;.

U; = The number of predefined possible breakage values and orientations for data D;. This is typically
the same for all j.
K, = Number of possible alignments of the data D, against the hypothesis H with breakage and orien-

tation wu.

sijuk = The cut location in D; (suitably oriented) matching the cut h; in 7, given the alignment Aj,;. In
case such a match occurs, this event is denoted by an indicator variable m;;,; taking the value 1.
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Mijuk

Juk

De;

o

8Zjy,

Eijy

Sijuk

An indicator variable, taking the value 1 iff the cut s;j,% in D; matches a cut h; in the hypothesis
H, given the alignment Aj,;. It takes the value 0, otherwise.

Number of false (non-matching) cuts in the data D; for alignment Aj,;, that do not match any
cut in the hypothesis . Thus Fj,; = m; — Efil Mijuk

Probability that the ith sequence specific restriction site in the molecule will be visible as a cut.

Gaussian standard deviation of the observed position of the ith cut when present and depends on
the accuracy with which a fragment can be sized.

Expected number of false-cuts per molecule observed. Since all sizes will be normalized by the
molecule size, this will also be the false-cuts per unit length.

Probability that the data is invalid (“bad”). In this case, the data item is assumed to have no
relation to the hypothesis being tested, and could be an unrelated piece of DNA or a partial
molecule with a significant fraction of the DNA missing. The cut-sites (all false) on this data item
are assumed to have been generated by a Poisson process with the expected number of cuts = \,,.

Expected number of cuts per “bad” molecule.

ZRju = The mean amounts of breakage on the left and right side of H respectively for breakage
hypothesis and orientation v of data D;.

The Gaussian standard deviation common to all breakage values with means ZL]-U, ZRju.

The probability that any molecule j would break according to hypothesis u : ), prj, =1 over all
u corresponding to the same orientation.

1-— ZLju — ZRju = The rescaling factor for D;.
—— erf((hi — Z%ju)/oe) + \/%_w erf((1 — Z®;, — hi)/oe) — 1 = The probability that cut h; is not in

var
the broken off part of molecule D;. Note that erf(z) = [*__ e 12 (g,

SijukSZju + A ju The expected rescaled value of s;j,x given breakage hypothesis u. (This is a slight
approximation since breakages cannot be negative)

We assume that a broken molecule is less likely to have false cuts compared to unbroken molecules
in proportion to its DNA.

From these definitions and assumptions it is not hard to write £ the log of the probability density
expression f(D|H) with respect to the (unscaled) cut locations in data Dj:

M
L = Zlogfj, where

=1
(1= ) SA g2
_ . — Db
fi = pee ’\”Anm]+T > Fjuk
u=1 k=1

e~ (Sijuk—hi)? /207

(2

N

—Afsz; F; mj
f]uk = e N 7“>\f J“kSZjuJ XH
=1

Mijuk
> (1 = pe; Biju) 1 ~08)

A detailed derivation can be found in [AMS97] for all terms not related to broken molecules. For
broken molecules the preceding equations propose to consider a fixed number of breakage values at
either end in different combinations Z",, Z®;, with their probability distribution given by prj,- In this
abstract the prj, values are assumed fixed, even though in the full paper we describe a parameterized
form of pr;, whose parameters are optimized along with the other Bayesian parameters.
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2.2 Local Search Algorithm

In order to find the most plausible restriction map for any size N, we shall optimize £ over the following
parameters:

Cut Sites = hq, hg,...,hnN,
Cut Rates = Pc13Pc2y- -3 PeNs
Std. Dev. of Cut Sites = o1,09,...,0nN,

Auxiliary Parameters = pp, Ay and A,.

Let us denote any of these parameters by 6. Thus, we need to solve the equation
oc
00
to find an extremal point of £ with respect to the parameter #. Often the equation cannot be solved

directly, but an approximate solution is used to get a better parameter estimate and the gradient is
recomputed. We list the results below.

0,

2.2.1 Case: 0 = py

In this case it is computationally easy to compute both the first and second derivations of £ hence we
use Newton’s equation:

oL ) (ej —d;)
Opy poej + (1 —pp)d;’
o°L (ej — dj)”
= - , and
Opy? 2 [pvej + (1 — po)d;]?
U, K;
1 _ J Ju
e = e An}\ My and d] = ( 2pb) fguk
u=1k=1
2.2.2 Case 2: 0 = hjy pe;y 0i (1=1, ..., N),or A¢
In this case,
or MLZ
90 Zzprjuzﬂ'juk:Xjuk,
j=lu=1 k=1

where

_ (1=pv\ fjuk
Tjuk = 9 fj

= Relative probability of the alignment Aj,;, for data item D).
Fiuk OAf
Xjuk(e) = (;\—: - SZju) W

N
4 Z [mijuk Ope; 1 — myj 8pciEiju:|

im1 pCi 60 ]. — chEzgu 89

N
0 [ —(Sijuk — hi)? 1 Oo; 1 O0E;j,
+ ;m’“’“ [% ( 207 T 500 "By 00 )
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Before, examining the updating formula for each parameter optimization, we shall introduce the
following notations for future use. The quantities defined below can be efficiently accumulated for a fixed
value of the set of model parameters.

o = E]. 2w PTju D op TjukMijuk = Number of cuts matching h;
Uy = Z Do PTrjy Dok TjukMijuk Sijuk = Sum of scaled cut locations matching h;
Ty = Z > uPTju Dk Wyuknguksjuk = Sum of square of scaled cut locations matching h;
g = ZJ 2w PTjy Do Tjuk = Number of “good” molecules
Yq = D05 2w PTju Dk TjukM; = Total cuts in “good” molecules
BG = Y., prju Zk T jukSZjuy = Sum of broken molecule sizes
FE, = .. y > u P Biju D g Tiuk = Number of “good” molecules spanning h;
ZE; = Y0, 2 J“”u”“ >k TjukMijuk = Weighted Uy,
_ pr; fu,G’L u _ .
ZEP; = Z] Zu I_IJ)C ]”u Zk W]uk(]- — m”uk) = Welghted Hg — lI;Oi
— pr u iju J— .
FEP; = Z > 1—1{% JW Yok Tjuk(l —mijur) = Weighted pg — Ug;,
where

_ 0Eijy hi — Z"j, 1-2Z%, —h
Giju = oh, _G( - G - :

We note here that f; and the ¥’s can all be computed efficiently using a simple updating rule that
modifies the values with one data item D; (molecule) at a time. This rule can then be implemented
using the dynamic programming recurrence equations described in [AMS97]. All other quantities can be
computed with negligible additional overhead since they involve the same summations over index k.

Using the above notation we can compute the first derivatives of £ and hence the update equations
for the parameters in this case as follows:

oL 1
B—hi = 0_1'2 (U1 — hiWo;) — pe;ZEP; — ZE;
Uy,  o?
= hji=— — = (p¢;ZEP; + ZE
7 lDOi \IJOZ (pCz 7 + Z)
oL v
= Y _rrp
apci De;

1

1- pciFEi/ug
= e =Y0i(VoiFE;/pug) + FEP;(1 — p;FE; / f1g)

with FEP;

oL _ =% .
OAs Y
_ S W,
= )\f:=7’)’g Bzéz 0:
oL 1 9 Wo;
& o (Ui — 2Ty, + h2Ty;) —
aO'Z' 0'13( 21 iV + 7 Oz) o;
N o2:= (Tg; — Zhi‘l\il.z‘ + h2Tg;)
7
oL 1
o\, = bW ij—’)’g — (M — pg)

J
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Zj mj —"Yg
= Api=———,
M — pg

Frequently it is possible to constrain p. = pcy = --- = pcy and 0 = 01 = --- = on. In that case the
corresponding gradients and update equation for p. and ¢ become:

oL 1 T,
= Z [E (Wgi — 2k Uq; + by Tg;) — —O'Z

do - 0;
i i

= o2 :=Zi(‘1’2i — ‘I’%z’/‘I’Oi)
> Poi

oL W |
B = (5w

~\ P

. 1
with (2; FEPZ') x T (% > FEi/ug)
> Yoi '
(303 Woi) (3 o4 PR/ pg) + (30, FEP:) (1 — B 37, 78, /11y

2.3 Efficient Selection of Breakage Hypothesis

= Dci=

In practice it would be prohibitively expensive to actually compute the previous equations for all U;
possible breakage hypothesis for each molecule j. For example considering just breakages of up to 40%
(say, in steps of 1%) of the molecule would require a total of 41 x 42/2 = 861 hypothesis per molecule,
which would make the total run time 861 times more expensive just to consider broken molecules.
Fortunately for each j, only a small number of all U; breakage hypotheses actually make a significant
contribution to the total probability and gradients. These can be selected by performing an approximate
match computation of each breakage hypothesis against the hypothesis H and selecting only those that
have a significant effect. Since U; covers both orientations of the molecule, we take advantage of the fact
that usually in one orientation all hypothesis score uniformly poorly. Making the number of hypotheses
selected for complete evaluation adaptive to each j results in the most efficient code with an average of
only 12 hypotheses needing to be evaluated. Compared to the effectively two orientations in [AMS97]
this is still about 6 times slower, but is essential for handling data where 20—80% of the molecules are
broken in varying amounts.

3 Input Cut Site Data with Multiple Confidence Levels

The image processing software is often not able to tell with certainty if a location along a molecule
corresponds to a cut or not. In such cases more information is preserved if the image processing software
passes along whatever information it had on the certainty with which it was able to determine the
presence of a cut. Unfortunately the heuristics used in the image processing software do not allow this
certainty to be expressed as a probability and the best that can be expected is to assign a score along
some scale say a number v in [1, W].

We can use this information optimally as part of our Bayesian inference mechanism by using a new
index v ranging from 1 to W corresponding to the possible input confidence scores on cuts and the
following new parameters:

pf, = False cut probability for cuts with confidence v in “good” molecules.
F, = Fraction of cuts with confidence v in “good” molecules.

F) = Fraction of cuts with confidence v in “bad” molecules.

6 o Restriction Maps December 1996



We show in the full paper how the log probability density expression £ can be extended to include
these new parameters and describe the gradients and update equations for these parameters. Only one
new expensive term ¥, corresponding to “the number of cuts with confidence v matching any model
cut” needs to be computed increasing the total run time by about another 30%.

4 Conclusion

In this paper, we make two contributions toward the construction of restriction maps with optical mapping
data.

1. We extend the model in [AMS97] to include broken molecules.

2. We extend the model to allow for different levels of reliability in the input data, where the exact
reliability levels are not known and must be inferred from the data itself.
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