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Abstract

Order of magnitude reasoning — reasoning by rough comparisons of the sizes of quantities —
is often called “back of the envelope calculation”, with the implication that the calculations are
quick though approximate. This paper exhibits an interesting class of constraint sets in which
order of magnitude reasoning is demonstrably much faster than ordinary quantitative reasoning.
Specifically, we present a polynomial-time algorithm that can solve a set of constraints of the
form “Points a and b are much closer together than points ¢ and d.” We prove that this algorithm
can be applied if “much closer together” is interpreted either as referring to an infinite difference
in scale or as referring to a finite difference in scale, as long as the difference in scale is greater
than the number of variables in the constraint set. We also prove the first-order theory over
such constraints is decidable.

1 Introduction

Order of magnitude reasoning — reasoning by rough comparisons of the sizes of quantities — is often
called “back of the envelope calculation”, with the implication that the calculations are quick though
approximate. Previous AI work on order of magnitude reasoning (e.g. [Raiman, 90], [Mavrovouniotis
and Stephanopoulos, 90], [Davis, 90], [Weld, 90]) however, has focussed on its expressive power and
inferential structure, not on its computational leverage.

In this paper we exhibit an interesting class of constraint sets in which order of magnitude
reasoning is demonstrably much faster than ordinary quantitative reasoning. Specifically, given a
set of constraints of the form “Points a and b are much closer together than points ¢ and d,” the
consistency of such a set can be determined in low-order polynomial time. By contrast, it is easily
shown that solving a set of constraints of the form “The distance from a to b is less than or equal
to the distance from ¢ to d” in one dimension is NP-complete, and in higher dimensions is as hard
as solving an arbitrary set of algebraic constraints over the reals.

In particular, the paper presents the following results:

1. The algorithm “solve_constraints(S)” solves a systems of constraints of the form “Points a and
b are infinitely closer than points ¢ and d” in polynomial time (Section 4).

2. An improved version of the algorithm runs in time O(max(n?a(n), ne, s) where n is the number

of variables, e is the number of edges mentioned in the constraint set, and s is the size of the
constraint set. (Section 5.1).
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3. An extended version of the algorithm allows the inclusion of non-strict constraints of the form
“Points a and b are not infinitely further apart than points ¢ and d.” The running time for this
modified algorithm is slower than that of solve_constraints, but still polynomial time. (Section
5.2)

4. The same algorithm can be applied to constraints of the form “The distance from a to b is
less than 1/B times the distance from ¢ to d,” where B is a given finite value, as long as B is
greater than the number of variables in the constraint set. (Section 6)

5. The first-order theory over such constraints is decidable. (Section 7)

As preliminary steps, we first discuss order-of-magnitude spaces (section 2) and then present
a data structure called a cluster tree, which expresses order-of-magnitude distance comparisons
(section 3)

2 Order-of-magnitude spaces

An order-of-magnitude space, or om-space, is a space of geometric points. Any two points are
separated by a distance. Two distances d and e are compared by the relation d < e, meaning
“Distance d is infinitesimal compared to €” or, more loosely, “Distance d is much smaller than e.”

For example, let ®* be the non-standard real line with infinitesimals. Let ®*™ be the corre-
sponding m-dimensional space. Then we can let a point of the om-space be a point in R*™. The
distance between two points a, b is the Euclidean distance, which is a non-negative value in $*. The
relation d < e holds for two distances d, e, if d/e is infinitesimal.

The distance operator and the comparator are related by a number of axioms, specified below.
The most interesting of these is called the om-triangle inequality: If ab and bc is both much smaller
than zy, then ac is much smaller than zy. This combines the ordinary triangle inequality “The
distance ac is less than or equal to distance ab plus distance bc” together with the rule from order-
of-magnitude algebra, “If p < r and ¢ K r then p+ g L r.”

It will simplify the exposition below if, rather than talking about distances, we talk about orders
of magnitude. These are defined as follows. We say that two distances d and e have the same order
of magnitude if neither d < e nor e < d. In R* this is the condition that d/e is finite: neither
infinitesimal nor infinite. (In [Raiman, 90] this is notated “d Co e”.) By the rules of the order-of-
magnitude calculus, this is an equivalence relation. Hence we can define an order of magnitude to
be an equivalence class of distances under the relation “same order of magnitude”. For two points
a,b, we define the function od(a,b) to be the order of magnitude of the distance from a to b. For
two orders of magnitude p, g, we define p < q if, for any representatives d € p and e € ¢, d < e.
By the rules of the order-of-magnitude calculus, if this holds for any representatives, it holds for
all representatives. The advantage of using orders-of-magnitude and the function “od”, rather than
distances and the distance function, is that it allows us to deal with logical equality rather than the
equivalence relation “same order of magnitude”.

For example, in the extended real line, let 6 be a positive infinitesimal value. Then values such
as {1,100, 2 —506 + 1002 . . .}, are all of the same order of magnitude, o1. The values {4, 1.0018, 35 +
e~1/9 ...} are of a different order of magnitude 02 < ol. The values {1/6,10/8 + §°...} are of a
third order of magnitude 03 > ol.



We now give the formal definition:

Definition 1: An order-of-magnitude space (om-space) Q@ consists of:

A set of points P;

A set of orders of magnitude D;

A distinguished value 0 € D;

A function “od(a,b)” mapping two points a,b € P to an order of magnitude;

A relation “d < €” over two orders of magnitude d,e € D
satisfying the following axioms:

A.1 For any orders of magnitude d, e € D, exactly one of the following holds: d < e, e € d, d = e.

A2 Ford,e,f€D,ifd<eande< fthend < f.
(Transitivity. Together with A.1, this means that < is a total ordering on orders of magnitude.)

A.3 For any d € D, not d < 0.
(0 is the minimal order of magnitude.)

A.4 For points a,b € P, od(a,b) = 0 if and only if a = b.
(The function od is positive definite.)

A.5 For points a,b € P, od(a,b) = od(b, a).
(The function od is symmetric.)

A.6 For points a,b,c € P, and order of magnitude d € D,
if od(a, b) < d and od(b,c) < d then od(a,c) <K d.
(The om-triangle inequality.)

A.7 There are infinitely many different orders of magnitude.

A.8 For any point a; € P and order of magnitude d € D, there exists an infinite set as, as ... such
that od(a;,a;) = d for all i # j.

The example we have given above of an om-space, non-standard Euclidean space, is wild and
woolly and hard to conceptualize. Here are two simpler examples of om-spaces:

I. Let 6 be an infinitesimal value. We define a point to be a polynomial in § with integer
coefficients, such as 3 + 56 — 86°. We define an order-of-magnitude to be a power of §. We define
o™ & 6" if m > n; for example, 6 < §*. We define od(a, b) to be the smallest power of § in a — b.
For example, od(1 + 4% — 36,1 — 552 + 45%) = 2.

II. Let NV be an infinite value. We define a point to be a polynomial in IV with integer coefficients.
We define an order of magnitude to be a power of N. We define N? « N7 if p < ¢; for example,
N* <« N® We define od(a,b) to be the largest power of N in a — b. For example, od(1 + N2 —
3N3,1—5N? +4N*) = N*.

It can be shown that any om-space either contains a subset isomorphic to (I) or a subset
isomorphic to (II).

We will use the notation “d<e” as an abbreviation for “d < e or d = ¢€”.
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Figure 1: Cluster tree

3 Cluster Trees

Definition 2:

Let P be a finite set of points in an om-space. A non-empty subset C' C P is called a cluster of
Piffor every z,y € C, z € P—C, od(z,y) < od(z,2). If C is a cluster, the diameter of C, denoted
“odiam(C')” is the maximum value of od(z,y) for z,y € C.

Note that the set of any single element of P is trivially a cluster of P. The entire set P is
likewise a cluster of P. The empty set is by definition not a cluster of P.

Lemma 1: If C' and D are clusters of P, then either C C D, D C C, or C and D are disjoint.

Proof: Suppose not. Thenlet z € CND,y€ C—D, z€ D — C. Since C is a cluster, od(z,y) <
od(z, z). Since D is a cluster, od(z, z) < od(z,y). Thus we have a contradiction.

By virtue of lemma 1, the clusters of a set P form a tree. We now develop a representation of
the o.m. relations in P by constructing a tree whose nodes correspond to the clusters of P, labelled
an indication of the relative size of each cluster.

Definition 3: A cluster tree is a tree T such that

e Every leaf of T is a distinct symbol.
e Every internal node of T has at least two children.

e Each internal node of T is labelled with a non-negative value. Two or more nodes may be
given the same value. (For the purposes of sections 4-6, labels may be taken to be non-negative
integers; in section 7, it will be useful to allow rational labels.)

e Every leaf of the tree is labelled 0.

e The label of every internal node in the tree is less than the label of its parent.

For any node N of T', the field “N.symbols” gives the set of symbols in the leaves in the subtree
of T rooted at IV, and the field “N.label” gives the integer label on node N.



Thus, for example, in figure 1, n3.1abel=3 and n3.symbols = { a, d }; nl.label = 5 and nl.symbols

= {a7b7 ¢, daeafag}'

As we shall see, the nodes of the tree T represents the clusters of a set of points, and the labels

represent the relative sizes of the diameters of the clusters.

Definition 4: A wvaluation over a set of symbols is a function mapping each symbol to a point in
an om-space. If T is a cluster tree, a valuation over T is a valuation over T.symbols. If N is any
node in T and T is a valuation over T', we will write I'(IV) as an abbreviation for I'(/V.symbols).

We now define how a cluster tree T' expresses the o.m. relations over a set of points P.

Definition 5: Let T be a cluster tree and let T’ be a valuation over T. Let P = T'(T), the set
of points in the image of T' under I'. We say that =T (read I' satisfies or instantiates T') if the
following conditions hold:

ii.
iii.

iv.

For any internal node N of T, I'(N) is a cluster of P.
For any cluster C of P, there is a node N such that C=I'(N).
For any nodes M and N, if M label < N label then odiam(I'(M)) <« odiam(T'(N)).

If label(M) = 0, then odiam(M) = 0. (That is, all children of M are assigned the same value
under T'.)

The following algorithm generates an instantiation I' given a cluster tree T':

procedure instantiate(in T : cluster tree; ( : an om-space)

return : array of points indexed on the symbols of T

variable G[N] : array of points indexed on the nodes of T

Let k be the number of internal nodes in T';
Choose §p = 0 K §1 € 02 K ... K g to be k + 1 different orders of magnitude;

/* Such values can be chosen by virtue of axiom A.7 */

pick a point x € ;

G[T] == =;

instantiatel(T, Q, d; . .. 0k, G);

return the restriction of G to the symbols of T'.
end instantiate.

instantiatel(in N : a node in a cluster tree; ) : an om-space; d; ... : orders of magnitude;

in out G : array of points indexed on the nodes of T')

if N is not a leaf then

let C ...C} be the children of N;
x1 = G[N];
q := N .label;
pick points z3 ...z, such that
forall4,j € 1...p, if i # j then od(z;,x;) = dg;
/* Such points can be chosen by virtue of axiom A.8 */
fori=1...pdo

G[C,] =T
instantiatel(C;, 2,61 ..., G)
endfor

endif end instantiatel.



Thus, we begin by picking orders of magnitude corresponding to the values of the labels. We
pick an arbitrary point for the root of the tree, and then recur down the nodes of the tree. For each
node N, we place the children at points that all lie separated by the desired diameter of N. The
final placement of the leaves is then the desired instantiation.

Lemma 2: If T is a cluster tree and ) is an om-space, then instantiate(7, ) returns an instantiation
of T.

Proof: Let 69 = 0. For any node N, if =N label, we define A(N) = §;. The proof then proceeds
in the following steps:

i. For any nodes M,N, if M is a descendant of N in T then od(G[M],G[N]) € A(N). Proof:
If M is a child of NV, then this is immediate from the construction of x> ...z, in instantiatel.
Else, let N = Ny,N>...N; = M be the path from N to M through T'. By the definition
of a cluster tree, it follows that N;.label < N.label, for ¢ > 1 and therefore A(N;) < A(N).
Thus od(G[M], G[N]) < (by the o.m.-triangle inequality) max;—;.. 41 (0d(G[Niy1], G[N;]) €
max;—1..q—1(A(N;)) (since N;_; is the child of N;) < A(N)).

ii. Let N be a node in T; let C; and Cs be two distinct children of N; and let M; and M,
be descendants of C; and C, respectively. Then od(G[M1],G[Mz])) = A(N). Proof: By
the construction of z...z, in instantiatel(N), od(G[Ci],G[C:]) = A(N). By part (i.),
od(G[M;],G[C1]) € A(Cy) € A(N) and likewise od(G[M2],G[C2]) < A(N). Hence, by
axiom A.6, od(G[M1], G[M:]) = A(N).

iii. Let a and b be any two leaves in T', and let N be the least common ancestor in T" of a and b.
Then od(G[a], G[b]) = A(N). Proof: Immediate from (ii).

iv. For any node N, odiam(I'(N)) = A(N). Proof: From (iii), any two leaves descending from
different children of N are at a distance of order A(N), and no two leaves of N are at a distance
of order greater than A(N).

v. For any node N, I'(N) is a cluster of I'(T"). Proof: Let a and b be leaves of N, and let ¢ be
a leaf of T — N. Let I be the common ancestor of @ and b in T and let J be the common
ancestor of a and ¢. Then I is either NV or a descendant of N and J is a proper ancestor
of N. Therefore by part (i), A(I) < A(J). But by (iii), od(I'(a),T'(b)) = A(l) € A(J) =
od(T(a),T'(e)).

vi. For any internal nodes N, M if M label < N.label then odiam(I'(M)) <« odiam(T'(N)). Proof:
Immediate from (iv) and the construction of A.

Moreover, it is clear that any instantiation I' of T' can be generated in this way (Given an
instantiation T', just pick G[N] at each stage to be T" of some symbol of N.)

Two further results will be useful.

Lemma 3: Let T be a cluster tree and let I' be an instantiation of 7. Let a and b be symbols of T'.
Let N be the least common ancestor of @ and b in 7. Then od(I'(a),I'(b)) = odiam(I'(N)).

Proof: Since I'(a) and I'(b) are elements of I'(IV), it follows from the definition of odiam that
0d(T'(a),T'(b)) <« odiam(I'(N)). Suppose the inequality were strict; that is, od(I'(a),['(b)) <
odiam(I'(V)). Then let C be the set of all the symbols ¢ of T' such that od(I'(a), [(c)) < od(T'(a), T'(D)).
Then odiam(I'(C)) = od(I'(a),T'(b)) < odiam(I'(N)). It is easily shown that ['(C) is a cluster in
I(T). Therefore, by property (ii) of definition 5, there must be a node M such that M .symbols =
C. Now, M is certainly not an ancestor of N, since odiam(T'(M)) <« odiam(T'(N)) but M .symbols



contains both a and b. But this contradicts the assumption that N was the least common ancestor
of a and b. 1

Corollary 4: Let T be a cluster tree and let ' be an instantiation of T'. Let a, b, ¢, d be symbols of
T. Let N be the least common ancestor of ¢ and d in T', and let M be the least common ancestor
of a and b in T. Then od(T'(a),T'(b)) <« 0d(T'(c),T'(d)) if and only if M label < N label.

Proof: Immediate from lemma 2 and property (iii) of definition 5 of instantiation.

4 Constraints

We now consider a system S of constraints of the form od(a,b) < od(c,d).

Let T be a cluster tree. We will say that T+S (read “T satisfies S”) if every instantiation of T
satisfies S. In this section, we develop an algorithm for finding a cluster tree that satisfies a given
set of constraints.

The algorithm works along the following lines: Suppose we have a solution satisfying S. Let D
be the diameter of the solution. If S contains a constraint od(a,b) < od(c,d) then, since od(c,d) is
certainly no more than D, it follows that od(a, b) is much smaller than D. We label ab as a “short”
edge.

If two points u and v are connected by a path of short edges, then by the triangle inequality the
edge uv is also short (i.e. much shorter than D). Thus, if we compute the connected components
H of all the edges that have been labelled short, then all these edges in H can likewise be labelled
short. For example, in table 1, edges vz, wz, and zy can all be labelled “short”.

On the other hand, as we shall prove below, if an edge is not in the set H, then there is no
reason to believe that it is much shorter than D. We can, in fact, safely posit that it is the same
o.m. as D. We label all such edges “long”.

We now can assume that any connected component of points connected by short edges is a
cluster, and a child of the root of the cluster tree. The root of the cluster tree is then given the
largest label. Its children will be given smaller labels. Each “long” edge now connects symbols in
two different children of the root. Hence, any instantiation of the tree will make any long edge longer
than any short edge.

If no edges are labelled “long” — that is, if H contains the complete graph over the symbols
— then there is an inconsistency; all edges are much shorter than the longest edge. For instance, in
table 2, since vw, wzx, and zy are all much smaller than zy, it follows by the triangle inequality that
vy is much smaller than zy. But since we also have the constraints that zy is much smaller than vz
and that vz is much smaller than vy, we have an inconsistency.

The algorithm then iterates, at the next smaller scale. Since we have now taken care of all the
constraints od(a,b) < od(c,d), where cd was labelled “long”, we can drop all those from S. Let
D now be the greatest length of all the edges that remain in S. If a constraint od(a,b) < od(c,d)
is in the new S, then we know that od(a, b) is much shorter than D, and we label it “short”. We
continue as above. The algorithm halts when all the constraints in S have been satisfied, and S is
therefore empty; or when we encounter a contradiction, as above.

We now give the formal statement of this algorithm. The algorithm uses an undirected graph
over the variable symbols in S. Given such a graph G, and a constraint C' of the form od(a,b) <
od(c, d), we call refer to the edge ab as the “short” of C, and to the edge cd as the “long” of C'. The
shorts of the system S is the set of all shorts of the constraints of S and the longs of S is the set of
all the longs of the constraints. An edge may be both a short and a long of S if it appears on one



side in one constraint and on the other in another constraint.

procedure solve_constraints(in S: a system of constraints of the form od(a,b) < od(c,d)).
return either a cluster tree satisfying S if S is consistent;
or false if S is inconsistent.

type: A node N of the cluster tree contains
pointers to the parent and children of N;
the field N.label, holding the integer label;
and the field N.symbols, holding the list of symbols in the leaves of N.

variables: m is an integer;
C is a constraint in S;
H, I are undirected graphs;
N, M are nodes of T}

begin if S contains any constraint of the form, “od(a,b) < od(c,¢)” then return false;
m := the number of variables in S;
initialize T to contain the root N;
N .symbols:= the variables in S;

repeat H := the connected components of the shorts of S;
if H contains all the edges in S then return(false) endif;
for each current leaf N of T do
if not all vertices of N are connected in H then
N label := m;
for each connected component I of N.symbols in H do
construct node M as a new child of N in T
M .symbols:= the vertices of I;
endfor endif endfor
S := the subset of constraints in S whose long is in H;
m:=m—1;
until S is empty;

for each leaf N of T
N label := 0;
if N.symbols has more than one symbol
then create a leaf of N for each symbol in N.symbols;
label each such leaf 0;
endif endfor end solve_constraints.

Tables 1 and 2 give two examples of the working of procedure solve_constraints.

We now prove the correctness of algorithm solve_constraints. We will assume throughout that
the two variables in the long of any constraint in S are distinct.



S contains the constraints

1. od(w,z) < od(v,w).
2. od(z,y) < od(y, 2).
3. od(v, z) € od(w,y).
The algorithm proceeds as follows:
Initialization:
The tree is initializes to a single node with nl.
nl.symbols:= { v,w,z,y,2z }

First iteration:
The shorts of S are { wz, zy,vz }.
Computing the transitive closure, H is set to { wz, zy, wy,vz }.
nl.label := 5;
Two children of nl are created:
nll.symbols:= w, z,y
nl2.symbols:= v, z
As vw is not in H, delete constraint #1 from S.
As yz is not in H, delete constraint #2 from S.
S now contains just constraint #3.
Second iteration:
The shorts of S are { vz }.
The connected components H is just {vz}.
nll.label := 4;
Three children of nll are created:
nlll.symbols:= w;
n112.symbols:= z;
n113.symbols := z;
As wy is not in H, delete constraint #3 from S.
S is now empty.

Cleanup:
nl2.label := 0;
Two children of n12 are created:
n121.symbols:= v;
n122.symbols:= z;

(See figure 2.)

Table 1: Example of computing a cluster tree
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Figure 2: Building a cluster tree
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S contains the constraints

od(v,w) < od(z,y).
od(w,z) < od(z,y).
od(z,y) < od(z,y).
od(z,y) < od(v, 2).
od(v, 2) <€ od(v,y).

The algorithm proceeds as follows:

Initialization:
The tree is initializes to a single node with nl.
nl.symbols:= { v,w,z,y,2z }

First iteration:
The shorts of S are { vw, vz, zy, zy,vz }.
H is set to its connected components, which is the complete graph over v, w, z,y, 2.
The algorithm exits returning false

Table 2: Example of determining inconsistency

Lemma 5: Let S be any set of constraints of the form od(a,b) < od(c,d). Let H be the transitive
closure of the shorts of S. If § is consistent, then not every edge of S is in H.

Proof: Let T be a valuation satisfying S. Find an edge pq in S for which od(T'(p),T'(¢)) is maximal.
Now, if ab is a short of S — that is, there is a constraint od(a, b) < od(c, d) in S — then od(I'(a), T'(d))
< 0d(T'(c),I'(d)) K 0d(T'(p),T(g))-

Now, let ab be any edge in H, the transitive closure of the shorts of S. Then there is a path
a; = a,as...ar = b such that the edge a;a;y1 is a short of § for ¢ = 1...k — 1. Thus, by the
om-triangle inequality, od(T'(a), I'(b)) € maxi=1_x1(0d(T'(a;), ['(ai+1)) < od(T'(p),T(g)). Hence pg
# ab, so pg is not in H. 1

Lemma 6: The values of S and H in any iteration are supersets of their values in any later iteration.

Proof: S is reset to a subset of itself at the end of each iteration. H is defined in terms of S in a
monotonic manner. 1

Lemma 7: S cannot be the same in two successive iterations of the main loop.

Proof: by contradiction. Suppose that S is the same in two successive iterations. Then H will be
the same, since it is defined in terms of S. H is constructed to contain all the shorts of S, Since
the resetting of S at the end of the first iteration does not change S, H must contain all the longs
as well. Thus, H contains all the edges in S. But that being the case, the algorithm should have
terminated with failure at the beginning of the first iteration. I

Lemma 8: Algorithm solve_constraints always terminates.

Proof: By lemma 7, if the algorithm does not exit with failure, then on each iteration some
constraints are removed from S. Hence, the number of iterations of the main loop is at most the
original size of S. Everything else in the algorithm is clearly bounded. (We will improve on this
bound below.) 1

Lemma 9: If algorithm solve_constraints returns false, then S is inconsistent.

Proof: If the algorithm returns false, then the transitive closure of the shorts of S contains all the
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edges in §. By lemma 5, § is inconsistent.

Lemma 10: If constraint C of form od(a,b) < od(c,d) is in the initial value of S, and edge cd is
in H in some particular iteration, then constraint C' is in S at the start of that iteration.

Proof: Suppose that C is deleted from S on some particular iteration. Then edge cd, the long of
C, cannot be in H in that iteration. That is, it is not possible for edge cd to persist in H in an
iteration after C' has been deleted from S. Note that, by lemma 6, once cd is eliminated from H, it
remains out of H. L

Lemma 11: The following loop invariant holds: At the end of each loop iteration, the values of
L.symbols where L is a leaf in the current state of the tree are exactly the connected components
of H.

Proof: In the first iteration, T is initially just the root R, containing all the symbols, and a child
of R is created for each connected component of H.

Let T; and H; be values of T and H at the end of the ith iteration. Suppose that the invariant
holds at the end of the kth iteration. By lemma 6, Hy1 is a subset of Hy. Hence, each connected
component of Hy1 is a subset of a connected component of Hy. Moreover, each connected com-
ponent J of Hy, is either a connected component of Hy; or is partitioned into several connected
components of Hyp1. In the former case, the leaf of T} corresponding to J is unchanged and re-
mains a leaf in Ty4;. In the latter case, the leaf corresponding to J gets assigned one child for
each connected component of Hy; that is a subset of J. Thus, the connected components of Hy 1
correspond to the leaves of Tpy;. L.

Lemma 12: If procedure solve_constraints does not return false, then it returns a well-formed
cluster tree T'.

Proof: Using lemma 11, and the cleanup section of solve_constraints which creates the final leaves
for symbols, it follows that every symbol in S ends up in a single leaf of T. As m is decremented
on each iteration, and as no iteration adds both a new node and children of that node, it follows
that the label of each internal node is greater than the label of its father. Hence the constraints on
cluster trees (definition 3) are satisfied. I.

Lemma 13: Let a,b be two distinct symbols in & and let T be the cluster tree returned by
solve_constraints for S. Let N be the least common ancestor of a,b in T'. Then either N is assigned
its label on the first iteration when the edge ab is not in H, or the edge ab is in the final value of H
when the loop is exited and N is assigned its label in the final cleanup section.

Proof: As above, let H; be the value of H in the ith iteration.

If N is the root, then it is assigned its label in the first iteration. Clearly, a and b, being in
different subtrees of N, must be in different connected components of Hj.

Suppose N is assigned its label in the kth iteration of the loop for £ > 1. By lemma 11, at
the end of the previous iteration, IN.symbols was a connected component of Hy_1, and it therefore
contained the edge ab. Since N is the least common ancestor of a, b, it follows that a and b are
placed in two different children of N; hence, they are in two different connected components of Hy.
Thus the edge ab cannot be in Hy.

Suppose N is assigned its label in the cleanup section of the algorithm. Then by lemma 11,
N .symbols is a connected component of the final value of H. Hence the edge ab was in the final
value of H. L

Lemma 14: Let S initially contain constraint C' of form od(a,b) < od(c,d). Suppose that
solve_constraints(S) returns a cluster tree T. Let M be the common ancestor of a,b in T and
let N be the common ancestor of ¢,d. Then M .label < N.label.
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Proof: Suppose N is given a label in a given iteration. By lemma 13, cd is eliminated from H in
that same iteration. By lemma 10, constraint C' must be in S at the start of the iteration. Hence
ab is a short of S in the iteration, and is therefore in H. Hence M is not given a label until a later
iteration, and therefore is given a lower label.

It is easily seen that cd cannot be in H in the final iteration of the loop, and hence N is not
assigned its label in the cleanup section. 1

Lemma 15: Suppose that solve_constraints(S) returns a cluster tree T'. Then any instantiation of
T satisfies the constraints S.

Proof: Immediate from lemma 14 and corollary 4.

Theorem 1: The algorithm solve_constraints(S) returns a cluster tree satisfying S if S is consistent,
and returns false if S is inconsistent.

Proof: If solve_constraints(S) returns false, then it is inconsistent (lemma 9). If it does not return
false, then it returns a cluster tree T' (lemma 12). Since T" has an instantiation (lemma 2) and since
every instantiation of T is a solution of S (lemma 15), it follows that S is consistent and 7' satisfies
S. 1

There may be many cluster trees that satisfy a given set of constraints. Among these, the cluster
tree returned by algorithm solve_constraints has an important property: it has the fewest possible
labels consistent with the constraints. In other words, it uses the minimum number of different
orders of magnitude of any solution. Therefore, the algorithm can be used to check the satisfiability
of a set of constraints in an om-space that violates axiom A.7 and has only finitely many different
orders of magnitude. If the algorithm returns 7" and T has no more different labels than the number
of different orders of magnitude in the space, then the constraints are satisfiable. If T" uses more
labels than the space has orders of magnitude, then the constraints are unsatisfiable.

The proof is easier to present if we rewrite algorithm solve_constraints in the following form,
which returns only the number of different non-zero labels used, but does not actually construct the
cluster tree.!

function num_labels(S);
if S is empty then return(0)
else return(1l 4+ num_labels(reduce_constraints(S)))

function reduce_constraints(S)

H := connected components of the shorts of S;

if H contains all the edges in S then return(false) to top-level
else return(the set of constraints in S whose long is in H)

It is easily verified that the sequence of values of S in successive recursive calls to num_labels is
the same as the sequence of values of S in the main loop of solve_constraints. Therefore num_labels
returns the number of different non-zero labels in the tree constructed by solve_constraints.

We now show the following results.

Lemma 16: If S; and S, are consistent sets of constraints, and S; D S» then reduce_constraints(S)
D reduce_constraints(Ss).

Proof: Immediate by construction. The value of H in the case of S; is a superset of its value in
the case of S, and hence reduce_constraints(S1) is a superset of reduce_constraints(Ss).

IThe reader may wonder why this simpler algorithm was not presented before the more complicated algorithm
solve_constraints. The reason is that the only proof we have found that the system of constraints is consistent if
num_labels does not return false relies on the relation between num labels and the constructive solve_constraints.
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Lemma 17: If S; and S» are consistent sets of constraints, and S; D S2 then num_ labels(S;) >
num_labels(Ss).

Proof by induction on num_ labels(S>). If num_labels(Ss) = 0, the statement is trivial. Suppose that
the statement holds for all &', where num labels(S;) = k, and let num_labels(S2) = k+1. Then k+1 =
num_labels(Sy) = 1 4+ num_ labels(reduce_constraints(S»)), so k =num_labels(reduce_constraints(S2)).
Now, suppose S; D S». By lemma 16 reduce_constraints(S;) D reduce_constraints(S2). But then by
the inductive hypothesis num_labels(reduce_constraints(S;)) > num labels(reduce_constraints(Sz)),
so num labels(S;) > num_labels(Sz). 1

Lemma 18: Let S be a set of constraints, and let I' be a solution of S. For any graph G over the
symbols of S, let nd(G,T) be the number of different non-zero values of od(a,b) where edge ab is in
G. Let edges(S) be the set of edges in S. Then nd(edges(S), I') > num_labels(S).

Proof: by induction on num_labels(S). If num labels(S) = 0, then the statement is trivial. Suppose
for some k, the statement holds for all S’ where num labels(S’) = k, and suppose num_labels(S) =
k + 1. Let pg be the edge in S of maximal length. For any set of edges E, let small-edges(E,T)
be the set of all edges ab in E for which od(I'(a),I'(h)) < od(I'(p),I'(g)). Since small-edges(E)
contains edges of every order of magnitude in E except the order of magnitude of pgq, it follows
that nd(small-edges(E,T), I') = nd(E,T') — 1. Let G be the complete graph over all the symbols
in §. By the same argument as in lemma 5, small-edges(G,T') D H, where H is the connected
components of the shorts of S, as computed in reduce(S). Let S’ be the set of constraints whose
longs are in small-edges(G,T'). It follows that &' D reduce(S). Now small-edges(G,T") D edges(S’)
D edges(reduce(S)). Hence nd(edges(S), I') = nd(G,T") = nd(small-edges(G,T'), ) + 1 >
nd(edges(reduce(S))) + 1 > (by the inductive hypothesis) nl(reduce(S)) + 1 = nl(S). 1

Theorem 2: Qut of all solutions to the set of constraints S, the instantiations of solve_constraints(S)
have the fewest number of different values of od(a,b), where a, b range over the symbols in S.

Proof: Immediate from lemma 18.

Corollary 19: Let Q have all the properties of an om-space except that it has only k different
orders of magnitude. A system of constraints S has a solution in  if and only if the tree returned
by solve_constraints(S) uses no more than & different labels.

Proof: Immediate from theorems 1 and 2. I

5 Extensions and Consequences

5.1 An efficient implementation of solve_constraints

It is possible to implement algorithm solve_constraint somewhat more efficiently than the naive
encoding of the above description. The key is to observe that the transitive closure H does not
have to be computed explicitly; it suffices to compute it implicitly using merge-find sets (union-find
sets). Combining this with suitable back pointers from edges to constraints, we can formulate a
more efficient version of the algorithm.

We use the following data structures and subroutines:

e Each node N of the cluster tree contains pointers to its parents and children; a field N.label,
holding the integer label; a field N.symbols, holding the list of symbols in the leaves of N; and
a field N.mfsets, holding a list of the MFSETS for the symbols in V.

e An edge E in the graph over symbols contains its two endpoints, each of which is a symbol;
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a field E.shorts, a list of the constraints in which E appears as a short; and a field E.longs, a
list of the constraints in which E appears as a long.

A constraint C has two fields, C.short and C.long, both of them edges. It also has pointers
into the lists C'.short.shorts and C.long.longs, enabling C' to be removed in constant time from
the constraint lists associated with the individual edges.

We will use the disjoint-set forest implementation of MFSETs [Cormen, Leiserson, and Rivest,
1990, p. 448] with merging smaller sets into larger and path-compression. Thus, each MFSET
is a upward-pointing tree of symbols, each node of the tree being a symbol. The tree as a
whole is represented by the symbol at the root. A symbol A has then the following fields:

— A.parent is a pointer to the parent in the MFSET tree.

— A.cluster_leaf is a pointer to the leaf in the cluster tree containing A.

— If A is the root of the MFSET then A.size holds the size of the MFSET.

— If A is the root of the MFSET, then A.symbols holds all the elements of the MFSET.

— If A is the root of the MFSET then A.leaf ptr holds a pointer to the pointer to A in
N .mfsets where N = A.cluster_leaf.

We can now describe the algorithm.
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procedure solve_constraintsl(in S: a system of constraints of the form od(a,b) < od(c, d)).

return either a cluster tree T satisfying S if S is consistent;
or false if S is inconsistent.

Variables: m is an integer;

0.
1
2
3.
4.
5
6
7

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.
31.
32.
33.

a, b are symbols;

C is a constraint in S;

H is an undirected graph;
E, F are edges;

P is an MFSET;

N, M are nodes of T';

begin if S contains any constraint of the form, “od(a,b) < od(c,c)” then return false;

H = ()

for each constraint C in & with short E and long F' do
add F and F to H;
add C to E.shorts and to F'.longs endfor;

m := the number of variables in S;

initialize T to contain the root N;

N .symbols := the variables in S;

repeat for each leaf N of T, INITTALIZE MFSETS(N);
for each edge £ = abin H do
if E.shorts is non-empty and FIND(a) # FIND(b) then
MERGE(FIND(a), FIND(b)) endif endfor
if every edge E = ab in H satisfies FIND(a) = FIND(b)
then return(false) endif
for each current leaf N of T' do
if N.mfsets has more then one element then
for each mfset P in N.mfsets do
construct node M as a new child of N in T
M .symbols:= P.symbols;
endfor endif endfor
for each edge E = abin H do
if FIND(a) # FIND(b) then
for each constraint C' in E.longs do
delete C from S;
delete C from FE.longs;
delete C from C.short.shorts endfor
delete E from H endif endfor
m:=m—1;
until S is empty;

for each leaf N of T
N label := 0;
if N.symbols has more than one symbol
then create a leaf of N with label 0 for each symbol in N.symbols;
endif endfor end solve_constraints1.
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procedure INITIALIZE MFSETS(N : node)
var A : symbol;
N.mfsets := ()
for A in N.symbols do
A.parent := null;
A.cluster_leaf := N;
A.symbols := { A };
A.size := 1;
N.mfsets := cons(A,N.mfsets);
Alleaf ptr := N.mfsets;
endfor end INITTALIZE_MFSETS

procedure MERGE(in A, B : symbol)
if A.size > B.size then swap(A4, B);
A.parent := B;

B.size := B.size + A.size;

B.symbols := B.symbols U A.symbols;
Using A.leaf ptr, delete A from N .mfsets;
end MERGE

procedure FIND(in A : symbol) return symbol;
var R : symbol;
if A.parent = null then return A
else R := FIND(A.parent);
A.parent := R; /* Path compression */
return(R)
end FIND.

Let n be the number of symbols in S; let e be the number of edges; and let s be the number of
constraints. Note that n/2 < e < n(n —1)/2 and that e¢/2 < s < e(e — 1)/2. The running time of
solve_constraint1 can be computed as follows. As each iteration of the main loop 8-28 splits at least
one of the connected components of H, there can be at most n — 1 iterations. The MERGE-FIND
operations in the for loop 9-11 take together time at most O(max(na(n), e) where a(n) is the inverse
Ackermann’s function. Each iteration of the inner for loop lines 16-18 creates one node M of the
tree. Therefore, there are only O(n) iterations of this loop over the entire algorithm. Lines 14, 15 of
the outer for loop require at most n iterations in each iteration of the main loop. The for loop 22-26
is executed exactly once in the course of the entire execution of the algorithm for each constraint C,
and hence takes at most time O(s) over the entire algorithm. Steps 20-21 require time O(e) in each
iteration of the main loop. It is easily verified that the remaining operations in the algorithm take

no more time than these. Hence the overall running time is O(max(n2a(n), ne, s).

5.2 Adding non-strict inequalities

The algorithm solve_constraints can be modified to deal non-strict comparisons of the form od(a, b)
< od(c, d) by, intuitively, marking the edge ab as “short” on each iteration if the edge cd has been
found to be short.

Specifically, in algorithm solve_constraints, we make the following changes:

e The algorithm takes two parameters: S, the set of strict constraints, and W, the set of non-
strict constraints.
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¢ Replace the line

H := the connected components of the shorts of S

with the following code:

1 H := the shorts of S;

2 repeat H := the connected components of H;

3. for each weak constraint od(a,b) < od(c,d)

4 if ¢d is in H then add ab to H endif endfor
5 until no change has been made to H in the last iteration.

The proof that the revised algorithm is only a slight extension of the proof of theorem 1. We
need the following new lemmas and proofs:

Lemma 20: Let S be a set of strict comparisons, and let WV be a set of non-strict comparisons. Let
H be the set of edges output by the above code. If SU W is consistent, then there is an edge in S
that is not in H.

Proof: As in the proof of lemma 5, let T' be a valuation satisfying S U W and let pg be an edge in
S such that od(T'(p),'(¢)) is maximal. We wish to show that, for every edge ab € H, od(I'(a),T'(b))
< od(T'(p),T'(q)), and hence ab # pg. Proof by induction: suppose that this holds for all the edges
in H at some point in the code, and that ab is now to be added to H. There are three cases to
consider.

e ab is added in step [1]. Then, as in lemma 5, there is a constraint od(a,b) < od(c,d) in S.
Hence 0d(T'(a), T'(b)) < 0d(T'(c),T(d)) K 0d(I'(p),T'(q))-

e abis added in step [2]. Then there is a path a; = a,as . ..a; = b such that the edge a;a;; is in
H fori=1...k—1. By the inductive hypothesis, od(a;, a;+1) < od(p, ¢). By the om-triangle
inequality, od(T'(a),T'(b)) < max;—1. k—1(0d(T(a;),T(ai+1)) < od(T'(p),T(q)).

e abis added in step [4]. Then there is a constraint od(a,b) < od(c,d) in W such that cd is in
H. By the inductive hypothesis, 0d(T'(c), ['(d)) < od(T'(p),(q)).

Lemma 21: Let W contain the constraint od(a,b) < od(c,d). Suppose that the algorithm returns
a cluster tree T. Let M be the least common ancestor of a and b in T, and let N be the least
common ancestor of ¢ and d. Then label(M) < label(N).

Proof: By lemma 13, N is assigned a label in the first iteration where H does not include the edge
cd. In all previous iterations, since cd is in H, ab will likewise be put into H. Hence M does not get
assigned a label before N, so label(M) < label(V).

The remainder of the proof of the correctness of the revised algorithm is exactly the same as
the proof of theorem 1.

Optimizing this algorithm for efficiency is a little involved, not only because of the new oper-
ations that must be included, but also because there are now four parameters — n, the number of
symbols; e, the number of edges mentioned; s, the number of strict comparison; and w, the num-
ber of non-strict comparisons — and the optimal implementation varies depending on their relative
sizes. In particular, either s or w, though not both, may be much smaller than n, and each of these
cases requires special treatment for optimal efficiency. The best implementation we have found for
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the case where both s and w are {2(n) has a running time of O(max(n®,nw,s)). The details of the

implementation are straightforward and not of sufficient interest to be worth elaborating here.

An immediate consequence of this result is that a couple of problems of inference are easily
computed:

e To determine whether a constraint C' is the consequence of a set of constraints S, form the set
SU-C and check for consistency. If SU-C is inconsistent then SE=C. Note that the negation
of the constraint od(a,b) < od(c,d) is the constraint od(c,d) < od(a,b).

o To determine whether two sets of constraints are logically equivalent, check that each constraint
in the first is a consequence of the second, and vice versa.

6 Finite order of magnitude comparison

In this section, it is demonstrated that algorithm solve_constraints can be applied to systems of
constraints of the form “dist(a,b) < dist(c,d) / B” for finite B in ordinary Euclidean space as long
as the number of symbols in the constraint network is smaller than B.

We could be sure immediately that some such result must apply for finite B. It is a fundamental
property of the non-standard real line that any sentence in the first-order theory of the reals that
holds for all infinite values holds for any sufficiently large finite value, and that any sentence that
holds for some infinite value holds for arbitrarily large finite values. Hence, since the answer given
by algorithm solve_constraints works over a set of constraints S when the constraint “od(a,b) <
od(c,d)” is interpreted as “od(a,b) < od(c,d)/B for infinite B”, the same answer must be valid for
sufficiently large finite B. What is interesting is that we can find a simple characterization of B in
terms of S; namely, that B is larger than the number of symbols in S.

The proof is not very different from the proof of theorem 1. First, to avoid confusion, we will
use a four-place predicate “much_closer(a, b, c,d)” rather than the form “od(a,b) < od(c,d)” as we
are not going to give an interpretation to “od” as a function. We fix a finite value B > 1, and
interpret “much_closer(a, b, ¢,d)” to mean “dist(a,b) < dist(¢,d) / B.”

We next redefine what it means for a valuation to instantiate a cluster tree:

Definition 6: Let T be a cluster tree and let T" be a valuation on the symbols in 7. We say that
I'FT if the following holds: For any symbols a,b,c,d in T, let M be the least common ancestor of
a,b and let N be the least common ancestor of ¢, d. If M .label < N.label then much_closer(a, b, ¢, d).

We next prove the analogue of Lemma 2:

Lemma 22: Any cluster tree T has an instantiation in Euclidean space #™ of any dimensionality
m.

Proof: Let n be the number of symbols in 7.

We modify procedure instantiate as follows:
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procedure instantiate(in 7' : cluster tree; Q : an om-space; B : real);

return : array of points indexed on the symbols of T';

Let n be the number of nodes in T

a:= 2+ 2n + Bn;

Choose 61,95 .. .0, such that §; < d;41/a;

pick a point z € Q;

G[T] = u;

instantiate1(T,Q, 61 .. .0y, G);

return the restriction of G to the symbols of T'.
end instantiate.

instantiatel(in N : a node in a cluster tree; Q : an om-space; 01 ..., : orders of magnitude;

in out G : array of points indexed on the nodes of T')

if N is not a leaf then

let C ...C)p be the children of N;
x; = G(N);
q := N label;
pick points 23 ...z, such that
for all i,j € 1...p, if i # j then §, < dist(z;,z;) < nd,
/* This is possible since p < n. */
fori=1...pdo

G(C,) = T
instantiatel(C;, 2,61 ... 0, G)
endfor

endif end instantiatel.

The proof that this returns an instantiation of T is essentially the same the proof of Lemma 2,

except that we now have to keep track of real quantities. For any node N, if =N .label, we define
A(N) = §;. The proof then proceeds in the following steps:

i

ii.

iii.

iv.

For any i < j, §; < §;/a?~%. Immediate by construction.

For any nodes M ,C, if M is a descendant of C in T' then dist(G[M], G[C]) < anA(C)/(a—1).
Proof: Let C = Cy,C1 ...Cr = M be the path from C to M through T'. Then
dist(G[M], G[C]) < (by the triangle inequality) » . o , ,dist(G[Cit1], G[Ci]) <
2imo..r—1(MA(C) /') < (a/a —1)(nA(C)).

Let N be anode in T'; let Cy and C> be two children of N; and let M; and M> be descendants
of Cy and C5 respectively. Then

A(N)1 - 2n/(a—1)) < dist(G[M1], G[Mz])) < nA(N)(1 + 2/(a — 1))
Proof: By the triangle inequality,

dist(G[C1], G[C3]) < dist(G[C1], G[M1]) + dist(G[M1], G[Mz]) + dist(G[Mz], G[C2)).
Thus, dist(G[C1], GICs)) — dist(GIC1], GIMy]) — dist(G[Ma], G[Ca)) < dist(G[My], G[Ms)).
Also, by the triangle inequality,

dist(G[My], G[My]) < dist(G[C1], G[Ca]) + dist(G[C1], G[My]) + dist(G[Mz], G[Ca)).
By construction, A(N) < dist(G[C1], G[C:]) < nA(N),
and by part (ii), for ¢ = 1,2, dist(G[M;], G[C;]) < anA(C)/(a —1) < nA(N)/(a—1)
as A(C) < A(N)/a.

For any symbols a,b,c,d in T, let P be the least common ancestor of a,b and let N be the
least common ancestor of ¢,d. If P.label < N.label then much_closer(Gla], G[b], Glc], G[d]).
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Proof: By part (iii), dist(G[a], G[b]) < nA(P)(1+2/(a — 1))
and dist(G[c], G[d]) > A(N)(1-2n/(a—1)). Since A(P) < A(N)/a and since o = 2+2n+ Bn,
it follows by straightforward algebra that dist(G[a], G[b]) < dist(G][c], G[d]) / B.

We next prove the analogue of lemma 5.

Lemma 23: Let S be a set of constraints over n variables of the form “dist(a,b) < dist(c,d) / B”,
where B > n. If S is consistent, then there is some edge in S which is not in the transitive closure
of the shorts of S.

Proof: Let I' be a valuation satisfying S. Let pg be the edge in S for which dist(T'(p),T'(¢)) is
maximal. Now, if ab is a short of S — that is, there is a constraint much_closer(a,b,¢,d) in § —
then dist(T'(a),T'(b)) < dist(T'(c),T'(d))/B < dist(T'(p),T'(q))/B.

Now, let ab be any edge in H, the transitive closure of the shorts of S. Then there is a simple
path a; = a,az2...a; = b such that the edge a;a;4+1 is a short of S for s = 1...k — 1. Note that
k < n. Then, by the triangle inequality,

dist(I'(a), [(b)) < dist(D(a1), D(az)) + dist(T(as), D(as)) + ...+ dist(T(ar_1),T(ar)) <
(k — 1)dist(I'(p),T'(q)) / B < dist(I'(p),T(q))

Hence pq # ab, so pq is not in H. 1

Theorem 3: Let S be a set of constraints over n variables of the form “dist(a,b) < dist(¢,d) / B”,
where B > n. The algorithm solve_constraints(S) returns a cluster tree satisfying S if S is consistent
over Euclidean space, and returns false if S is inconsistent.

Proof: Note that the semantics of the constraints “much_closer(a, b, c,d)” enters into the proof of
Theorem 1 only in lemmas 2 and 5. The remainder of the proof of Theorem 1 has to do purely with
the relation between the structure of S and the structure of the tree. Hence, since we have shown
that the analogues of lemmas 2 and 5 hold in a set of constraints of this kind, the same proof can
be completed in exactly the same way. L

It may be noted that the proof of lemma 22 does not depend on any relation between n and B.
Therefore, if solve_constraints(S) returns a tree T', then S is consistent and T satisfies S regardless of
the relation between n and B. However, it is possible for S to be consistent and solve_constraints(S)
to return false if n > B. On the other hand, the proof of lemma 23 holds in any metric space. Hence,
if B > n and solve_constraints(S) returns false then S is inconsistent in any metric space. However,
there are metric spaces other then 2™ in which the cluster tree returned by solve_constraints may
have no instantiation.

7 The first-order theory

In this section, we show that if the om-space is rich enough then the full first-order language of order-
of-magnitude distance comparisons is decidable. Specifically, if the collection of orders of magnitude
is dense and unbounded above, then there is a decision algorithm for first-order sentences over the
formula, “od(W, X) < od(Y, Z)” that runs in time O(4™(n!)2s) where n is the number of variables
in the sentence and s is the length of the sentence.

The basic reason for this is the following: As we have observed in corollary 4, a cluster tree
T determines the truth value of all constraints of the form “od(a,b) < od(c,d)” where a,b,c,d are
symbols in the tree. That is, any two instantiations of 7" in any two om-spaces agree on any such
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constraint. If we further require that the om-spaces are dense and unbounded, then a much stronger
statement holds: Any two instantiations of T over such om-spaces agree on any first-order formula
free in the symbols of T over the relation “od(W, X) < od(Y, Z)”. Hence, it suffices to check the
truth of a sentence over all possible cluster trees on the variables in the sentence. Since there are
only finitely many cluster trees over a fixed set of variables, this is a decidable procedure.

The result that any such sentence ¢ is decidable could also have been obtained as follows: Let
a(B) be the formula open in B that results from replacing every formula inside ¢ of the form “od(a, b)
< od(c,d)” by the formula “dist(a,b) < dist(c,d)/B”. Let 8 be the sentence, “For arbitrarily large
B, a(B).” Then, by the correspondence between non-standard and standard analysis, 3 is true over
the ordinary real numbers if and only if ¢ is true over the hyper-real numbers. We can then apply
Tarski’s theorem [1951] to show that § is decidable. In this way we can show the much stronger
result that the entire first-order language with addition, multiplication, <, and < is decidable over
the hyperreal numbers.

The much more limited proof we shall give here, however, has three advantages: (a) It is much
simpler. (b) It gives a much better running time. (c) It shows that the truth of a formula in this
language is the same over any dense, unbounded om-space.

Let £ be the first-order language with equality with the single predicate symbol “much_closer(a, b, ¢, d)”
and no function or constant symbols. We will assume without loss of generality that the sentences
in £ have been transformed so that the only logical symbols used are — (not), A (and) 3 (exists),
and quantified variables, and so that no sentence uses the same variable symbol with two different
quantifiers. It is easily shown that £ is as expressive as a language with the function symbol “od”
and the relation symbol <.

Definition 7: An om-space Q with orders of magnitude D is dense if it satisfies the following

axiom:

A.9 For all orders of magnitude §; < d3 in D, there exists a order of magnitude d5 in D such that
01 K 62 K 03.

Q is unbounded above if it satisfies the following:
A.10 For every order of magnitude d; in D there exists d2 in D such that é; < 2.

If D is the collection of orders of magnitude in the hyperreal line, then both of these are satisfied.
In axiom [A.9], if 0 « d1 <K 83, choose §2 = /0103, the geometric mean. If 0 = §; <K d3, choose
02 = 030 where § < 1. In axiom [A.10] choose d2 = 61 /8 where § < 1.

Definition 8: Let T be a cluster tree. Let lo = 0,l1,l5...l; be the distinct labels in T in
ascending order. An extending label for T is either (a) I; for some i; (b) Iy + 1 (note that Iy is the
label of the root); (¢) (I;—1 + 1;)/2 for some i between 1 and k.

Note that if T has n distinct labels, then there are at most 2n + 2 different extending labels for
T.

Definition 9: Let T be a non-empty cluster tree with root R. Let x be a symbol not in 7. The
cluster tree T' extends T with x if T' is formed from T by applying one of the following operations
(a single application of a single operation).

1. T is the null tree and 7" is the tree containing the single node x.

2. T consists of the single node for symbol y. Make a new node M, make both z and y children
of M, and set the label of M to be either 0 or 1.
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3. For any internal node N of T (including the root), make x a child of N.

4. Let y be a symbol in T, and let NV be its father. If N.label # 0, create a new node M with an
extending label for T" such that M .label < N.label. Make M a child of N, and make z and y
children of M.

5. Let C be an internal node of T' and let NV be its father. Create a new node M with an extending
label for T such that C'.label < M.label < N.label. Make M a child of N and make x and C
children of M.

6. Let R be the root of T'. Create a new node M such that M.label = R.label + 1. Make R and
z children of M. Thus M is the root of the new tree T".

(See figure 3)

Note that if T is a tree of n symbols and at most n — 1 internal nodes then

e There are n — 1 ways to carry out step 3.

e There are n possible ways to choose symbol y in step 4, and at most 2n for the label on M in
each.

e There are at most n — 1 different choices for C' in step 5, and at most 2n choices for the label
on M in each.

e There is only one way to carry out step 6.

Hence, there are less than 4n? different extensions of T' by x. (This is almost certainly an
overestimate by at least a factor of 2, but the final algorithm is so entirely impractical that it is not
worthwhile being more precise.)

Lemma 24: Let T be a cluster tree and let I' be a valuation over om-space (2 satisfying 7T'. Let =
be a symbol not in T', let a be a point in 2, and let I'' be the valuation I' U {x — a}. Let T" be the
cluster tree corresponding to I'V. Then T” is an extension of T by z.

Proof: If T is the empty tree, the statement is trivial. If T contains the single symbol y, then if
a = T'(y) then operation (2) applies with M .label=0; if a # I'(y) then operation (2) applies with
M label=1.

Otherwise, let y be the symbol in T such that od(I'(y),a) is minimal. (We will deal with the
case of ties in step (D) below.) Let F' be the father of y in T'.

Let D=0d(T'(y),a). Let V be the set of all orders of magnitude od(T'(p),T'(q)), where p and ¢
range over symbols in 7. We define L to be the suitable label for D as follows: If D € V| then L
is the label in T corresponding to D. If D is larger than any value in V then L is the label of the
root of T plus 1. If D € V', but some value in V is larger than D, then let D; be the largest value
in V less than D; let D5 be the smallest value in V' greater than D; let L1, Ly be the labels in T'
corresponding to D1, Dy; and let L = (Ly + L2)/2.

One of the following must hold:

A. T'(y) = a, and F.label=0. Then apply operation (3) with N = F.

B. I'(y) = a and F'label # 0. Then apply operation (4) with M .label = 0.

C. I'(y) # a, but od(['(y),a) is less than od(I'(z),a) for any other symbol z # y in T. Apply
operation (4) with M label set to the suitable value for D in T.
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D. There is more than one value y; ...y, for which od(I'(y;,a) = D. It is easily shown that in
this case there is an internal node () such that y; ...y is just the set of symbols in the subtree
of (). There are three cases to consider:

D.i D=odiam(I'(Q.symbols)). Then apply operation (3) with N = Q.

D.ii D > odiam(I'(Q.symbols)), and @ is not the root. Then apply operation (4) with
C = Q. Set M.label to be the suitable value for D. (It is easily shown that D <
odiam(I'(N .symbols)), where N is the father of Q.)

D.iii D > odiam(I'(Q.symbols)), and @ is the root. Apply operation (5).

Lemma 25: Let A = {a;...a;} be a finite set of points whose diameter has order-of-magnitude
D. Then there exists a point u such that, for i =1...k, od(u,a;) = D.

Proof: Let by = a;. By lemma A.8 there exists an infinite collection of points bs, b ... such that
od(b;,b;) = D. Now, for any value a; there can be at most one value b; such that od(a;,b;) < Dj if
there were two such values bj; and b;2, then by the om-triangle inequality, od(b;1,bj2) < D. Hence,
all but k different values of b; are at least D from any of the a;. Let u be any of these values of
b;. Then since od(u,ai) = D and od(ay,a;) < D for all 4, it follows that od(u, a;) < D for all a;.
Thus, since od(u,a;) < D but not od(u, a;) < D, it follows that od(u,a;) = D.

Lemma 26: Let T be a cluster tree; let T’ be a valuation over om-space  satisfying T'; and let T
be an extension of T by z. If Q is dense and unbounded above, then there is a value a such that the
valuation I' U {z — a} satisfies T".

Proof: For operations (1) and (2) the statement is trivial.

Otherwise, let L be an extending label of T'. If L = 0, then set D = 0. If L is in T, then let D
be the order of magnitude corresponding to L in T under T'. If L; < L < Ly where L; and Ly are
labels of consecutive values in T', then let D; and D» be the orders of magnitude corresponding to
Ly, Ly in T under I'. Let D be chosen so that D; <« D <« D,. If L is greater than any label in the
tree, then choose D to be greater than the diameter of the tree under I'.

If T' is formed from T by operation (3), then using lemma 25 let a be a point such that
od(a,'(y)) = odiam(N) for all y in N.symbols.

If T' is formed from T by operation (4), then let a be a point such that od(a,I'(y)) = D.

If T' is formed from T by operation (5), then let a be a point such that od(a,T'(y)) = D for all
y in C.symbols. (Note that, since M.label < N.label, D < odiam(/N.symbols).)

If T is formed from T by operation (6), then let a be a point such that od(a,I'(y)) = D for all
y in R.symbols.

In each of these cases, it is straightforward to verify that I' U {z — a} satisfies 7". I

It should be observed that the conditions on 2 in lemma 26 are necessary, and that the state-
ment is false otherwise. For example, let (2 be the om-space described in example I, section 2, of
polynomials in an infinitesimal 6. Then 2 is not unbounded above; there is a maximum order-of-
magnitude O(1). Let T be the starting tree of figure 3 (upper-left corner), and let T be the result
of applying operation 6 (middle bottom). Let ' be the valuation {u — §,v — 26,w — 1}. Then T’
satisfies T', but it cannot be extended to a valuation that satisfies 7', as that would require = to be
given a value such that od(v,w) < od(z,w), and no such value exists within Q. The point of the
lemma is that, if €2 is required to be both dense and unbounded above, then we cannot get “stuck”
in this way.
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Correspondingly, lemma, 28 is also not satisfied in this space. Let ¢ be the formula “Ix od(V, W)
< od(W, X)”, free in U,V,W. Then the valuation {u — d,v = 20, w — 1} satisfies T' but not ¢,
whereas the valuation {u — §2,v — 262, w — J} satisfies both T and ¢.

Lemma 27: Let T be a cluster tree. Let X be a variable not among the symbols of 7. Let «
be an open formula in £, whose free variables are the symbols of 7" and the variable X. Let ¢ be
the formula dxa. Let Q be an om-space that is dense and unbounded above. Then there exists
an instantiation I' of T in  that satisfies ¢ if and only if there exists an extension 7" of T' and an
instantiation I of T" that extends ' and satisfies a.

Proof: Suppose that there exists an instantiation I' of T" that satisfies Ax«a. Then, by definition,
there is a point a in Q such that T' satisfies a(X/a). That is, the instantiation T'U {x — a} satisfies
a. Let I =TU{z — a}. By lemma 24, the cluster tree T' corresponding to I’ is an extension of T'.

Conversely, suppose that there exists an extension T’ of T' and an instantiation I'’ of T satisfying
a. Let T be the restriction of I to the symbols of T'. Then clearly IT" satisfies the formula Ixa. 1

Lemma 28: Let T be a cluster tree. Let ¢ be an open formula in £, whose free variables are the
symbols of T'. Assume that the only logical symbols in ¢ are — (not), A (and), 3 (exists), = (equals)
and variables names, and that the only non-logical symbol is the predicate “much_closer”. Let €2 be
an om-space that is dense and unbounded above. If one instantiation I' of T in 2 satisfies ¢ then
every instantiation of T in (2 satisfies ¢.

Proof by structural induction on the form of ¢. Note that an equivalent statement of the inductive
hypothesis is, “For any formula v, either v is true under every instantiation of T, or 1) is false under
every instantiation of T.”

Base case: If ¢ is an atomic formula “X = Y” or “much_closer(W, X,Y, Z)” then this follows
immediately from corollary 4.

Let ¢ have the form —). If ¢ is true under I', then ¢ is false under I'. By the inductive
hypothesis, 1) is false under every instantiation of 7. Hence ¢ is true under every instantiation of T'.

Let ¢ have the form ¢ A 8. If ¢ is true under T' then both ¢ and € are true under I'. By the
inductive hypothesis, both v and € are true under every instantiation of T'. Hence ¢ is true under
every instantiation of T .

Let ¢ have the form Jxa. If ¢ is true under I" then by lemma 27, there exists an extension
T' of T and a instantiation I'" of 7' such that « is true under I''. By the inductive hypothesis, «
is true under every instantiation of T'. Now, if A’ is an instantiation of T’ that satisfies a;, and A
is the restriction of A’ to the variables in T', then clearly A satisfies 3xa. But by lemma 27, every
instantiation A of T can be extended to an instantiation A’ of T'. Therefore, every instantiation of
T satisfies ¢. 1

Definition 10: Let T be a cluster tree, and let ¢ be a formula open in the variables of T'. T satisfies
¢ if every instantiation of T satisfies ¢. By lemma 28, if the om-space is dense and unbounded, this
condition is equivalent to the condition that some instantiation of T' satisfies ¢.

Theorem 4: Let T be a cluster tree. Let ¢ be an open formula in £, whose free variables are the
symbols of T'. Assume that the only logical symbols in ¢ are — (not), A (and), 3 (exists), = (equals)
and variables names, and that the only non-logical symbol is the predicate “much_closer”. Let €2 be
an om-space that is dense and unbounded above. Algorithm decide(T), ¢) returns true if T satisfies
¢ and false otherwise.
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function decide(T : cluster tree; ¢ : formula) return boolean
case
¢ has form X =Y return (distance(X,Y,T) = 0);
¢ has form “much_closer(W, XY, Z)”: return distance(W, X, T) < distance(Y, Z,T));
¢ has form —): return not(decide(T, 1))
¢ has form 9 A 8: return(decide(T, ) and decide(T,0))
¢ has form Ixa;
if for some extension 7" of T' by X, decide(T", o) = true
then return true
else return false endif end decide

function distance(X,Y : symbol; T : cluster tree) return integer
N := the common ancestor of X and Y in T

return(N.label)

end distance

Proof: Immediate from the proof of lemma 28. 1

Running time: As we have remarked above, for a tree T of size k there are at most 4k? extensions
of T to be considered. The total number of cluster trees considered is therefore bounded by II7_, 4k>
= 4"(n!)2. Tt is easily verified that the logical operators other than quantifiers add at most a factor
of s where s is the length of the sentence. Hence the running time is bounded by O(4™(n!)?s).
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