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Abstract. In this paper, we consider efficient multilevel based iterative solvers and effi-
cient and reliable a posteriori error estimators for mixed hybrid and macro-hybrid finite
element discretizations of elliptic boundary value problems. We give an overview concern-
ing the state-of-the-art techniques for these nonconforming approaches and illustrate the
performance of the adaptivity concepts realized by some selected numerical examples.
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1. Introduction.

We consider adaptive mixed hybrid and primal macro-hybrid finite element methods for
elliptic boundary value problems. Both approaches have in common that they repre-
sent nonconforming discretizations but differ in so far as the first one is based on a dual
formulation of the problems under consideration whereas the second one is founded on
a macro-hybrid primal variational formulation with respect to a geometrical conform-
ing nonoverlapping decomposition of the computational domain. We note that these
techniques have attracted a lot of attention during the last couple of years (cf.e.g.,
1, 2,3,6, 7,13, 14, 22, 23]) and are still subject of active research.

In this paper, we will present efficient multilevel preconditioned iterative solvers as well
as a posteriori error estimators that may serve as a tool for local adaptive refinement
of the triangulations. Both approaches will be outlined for a model problem in terms
of a boundary value problem for a linear second order elliptic differential operator in a
bounded polygonal or polyhedral domain Q@ C R¢, d=2ord =3

Lu .= =V-(aVu) + bu = fin Q,
u = 0onIl=0Q
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where only for simplicity we have chosen homogeneous Dirichlet boundary conditions.
The coefficients ¢ and b are assumed to be a symmetric, matrix-valued function a =
(@)=, ai; € L®(Q), 1 < 4,5 < d, and a scalar function b € L>({2) satisfying

d
a e < Y ai(0)&& < alé)P, EeRY, 0<a<a, (1.3)

1,j=1
0< < bla) <P (1.4)
for almost all z € .

The paper is organized as follows:

In section 2, we will briefly introduce the idea of mixed hybridization in case of quadri-
lateral or hexalateral triangulations (cf. subsection 2.1) followed by the construction of a
multilevel preconditioned cg-iteration (subsection 2.2). The multilevel solver is based on
the equivalence of the mixed hybrid approach with a nonstandard nonconforming primal
method in terms of the so-called rotated bilinear resp. trilinear functions. This enables
us to utilize multilevel preconditioners designed for the nonconforming setting. Finally,
in subsection 2.3 we will introduce an efficient and reliable a posteriori error estimator for
the discretization errors both in the primal and dual variables that can be motivated by
a superconvergence result known to hold true in the mixed hybrid case.

Section 3 is devoted to adaptive domain decomposition methods on nonmatching grids
which are based on the mortar finite element approach that will be described in subsection
3.1. Then, in subsection 3.2 we will sketch the construction of substructuring multilevel
preconditioners whereas in subsection 3.3 we concentrate on the development of a hierar-
chical type a posteriori error estimator that does provide a lower and an upper bound for
the discretization error.

Finally, in section 4 we will demonstrate the benefits of the adaptive finite element ap-
proaches by giving numerical results for some selected illustrative problems.

2. Adaptive mixed hybrid finite element methods.
2.1 The mixed hybrid approach.

Mixed finite element methods are based on a dual formulation of the elliptic boundary
value problem (1.1),(1.2). Introducing the flux j := a V u and the flux space H (div; ) :=
{q € L*(Q)¢ | divq € L*(Q) }, the elliptic differential equation (1.1) can be formally
written as a first order system whose variational formulation gives rise to the following
system of variational equations:
Find (j,u) € H(div; Q) x L*(Q) such that
a(j,q) + blqu) = 0, qeH(div;Q), (2.1)
b(G,v) — clu,v) = —(f,v)en , v € L*Q) (2.2)
where the bilinear forms a : H(div;Q) x H(div;Q) - R, b: H(div;Q) x L*(Q) - R
and c¢: L?(Q) x L?(2) — R are given by

a(qi,qz) = /Qa’lql-qzd:v, q, € H(div; ), 1 <v <2,
b(q,v) = /Qdiqudx, qe H(div;Q), v e L2(9) |

c(vy,v9) = /valvgdx, v, € L*(Q),1<v<2.
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As usual, we denote by (-,*)r.0, k¥ > 0, the standard inner product on H*(Q)¢ and
| - |k || - |k stand for the associated seminorms and norms, respectively. We further
observe that H(div;(2) is a Hilbert space with respect to the graph norm ||q||dgv0 =
(lalie + [ldiv al30)”.

For the applications in subsection 2.4, we consider a quadrilateral or hexalateral triangu-
lation Ty, of Q. For D C Q, we denote by N, (D), (D), Fr(D), and M, (D) the sets of
vertices, edges, faces, and midpoints of edges resp. faces of the triangulation 7, in D. If
D = Q, we simply write Ny, &y, Fr, and M, and we further refer to N, it Fint and
Mt as the sets of vertices, edges, faces, and midpoints of edges resp. faces being situated
in the interior of €2. To obtain a unified notation for d = 2 and d = 3, we identify the
sets of edges and faces in case that d = 2, i.e. &, with F, and ™ with F/™. Moreover,
Py(D), k > 0, stands for the set of polynomials of degree < k on D.

We approximate the primal variable u by elementwise constants, i.e., we consider the
ansatz space

Wi Th) == {va € L*(Q) | vi lr€e P(T), T€Th } .

The corresponding approximation of the flux j is then given in terms of the lowest order
Raviart-Thomas-Nédélec elements RTj(71") , T' € Ty, given by

RT[O](T) = Ql,o,...,o(T) X ... X Qo,...,0,1(T)

Where Qal:---zad(T) = {p : T — R ‘ p(x) = Zﬂzgaz a/glﬂ“'ngd xll"'l‘gd } °
Note that any vector field q € R1jo)(7") is uniquely determined by the following degrees
of freedom

lp(q) = /F n-qdo , F e Fy(T)

so that the dimension of RTi(T) is dim RTyq(T) = 2d (cf., e.g., [13]).
Then, if we choose the global ansatz space according to

RT[E]l(Q, 771) = H RT[O] (T) ,
TET,
we are in a nonconforming situation, since RT[B]I(Q; Tr) is not a subspace of H(div; ).
Indeed, any vector field q, € RT[E]I(Q; Trn) is in H(div;Q) if and only if for all puy
e L*(F™) , pw |r€ Po(F) , F € Fit

> /Mh[n'Qh]JdU =0
FeFint F

where [n - qn|; denotes the jump of the normal component of qy across the interelement
boundaries.

Therefore, in order to establish consistency of the nonconforming approach we impose
continuity constraints on the interelement boundaries by means of Lagrangian multipliers
from the multiplier space

My (4 F™) = {pn € L2(F) | pn [r€ Po(F), F € 7™}
Introducing the bilinear form d : Mg (£2; Fint) x RT[E]1 (Q; 7n) — R according to

d(Mhth) = Z ~/F Un [Il : qh]J do y M € M[O](Qaf}int) , Qn € RY}E]I(Q,E) )

FeFjrt
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the mixed hybrid finite element approximation of (1.1),(1.2) is as follows:
Find (jn, un, A\n) € RT[E]I(Q; Tr) X Wig (2 Tr) x Mg (S2; Fi™) such that

a(n,an) + b(an,un) + dw,an) = 0, an € RT3 (D Th) (2.3)
b(n,vn) — clun,vn) = —(f,vn)on , va € W Th) , (2.4)
d(pn,jn) = 0, pp € My(% F™) . (2.5)

Note that the idea of mixed hybridization is due to Fraeijs de Veubeke [17]. Analytical
investigations including a priori error estimates and postprocessing techniques have been
done by Arnold and Brezzi [4] (cf. also [13]).

2.2 Multilevel iterative solvers.

Identifying vector-valued and scalar finite element functions with vector fields and vectors,
respectively, in its algebraic form the saddle point problem (2.3),(2.4),(2.5) gives rise to

the linear system
An By Dy Jn 0
Bh, —Ch 0 Up = — fh (26)
Dy, 0 0 A 0

with a symmetric, but indefinite 3 x 3 block coefficient matrix. Since Aj, represents a
blockdiagonal matrix with 2d x 2d blocks in the diagonal and E, := C}) + By A,:l BF
turns out to be a diagonal matrix, static condensation of both the discrete flux j, and the
discrete primal variable uy, in (2.6) can be easily performed. Setting G := Dy, A, BF,
this yields the linear system

Sp A = —GrEy' fa (2.7)
with the symmetric, positive definite Schur complement S, := D, A;' DI — G, E;' GE
(see [13]). The efficient iterative solution of the saddle point problem (2.6) resp. the Schur
complement system (2.7) will be based on the fact that it is equivalent to a modified
nonstandard nonconforming primal approach obtained by the so-called rotated bilinears
(d=2) resp. trilinears (d=3) (cf., e.g., [18, 26]).
In particular, the rotated elements resulting from a rotation in the (x;, ;1 )-plane by 45°

are given by .
Ql(T) = {1:$i7$i+la$? _$?+1 | 1 < 1 < d—1 } .

Note that any function v € Ql(T) is uniquely determined by the following degrees of
freedom

1
lp(v) = m/vda , FeFy(T)
F

where |F'| denotes the area of F.
Then the global nonconforming ansatz space is as follows

RMLy(2Th) = {va € L*(Q) | v lr€ Qu(T), T € Th,
lp(’U|T) = lF(’U|TI) if F=0TNoT" and lF(U|T) =0if Fcaln 8Q} .

The modification consists in an enrichment of RM L;(€2; 7,) according to

NCu(%Th) == RMLyy(S%Th) © Ba(S%7Th) (2.8)
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where By (; Ty,) stands for the space of elementwise d-quadratic bubble functions vanish-
ing on the boundary of the elements

Bo(Th) = {on € L*(Q) | vp [r€ Qo,..2(T), va lor=0, } .

We further denote by P the orthogonal L?-projection P : L?(2) — Wi(Q; Tp), by Py
the weighted L>-projection Pp-1 : L*(Q)* — RTy'(2; Tn) given by

/ a ' (Py1q)-pdz = / alq-pdr , qe L*(Q)°, p € RT}, YT
Q Q
and by P the orthogonal projection P : NCpyj(; T5) — Mg (Q; Fi™) according to
/(Puh)vhda = /uhvhdo,Feﬂ"t,vhePo(F).
F F

We recall that [ up vy do, v, € Py(F) is well defined because of the definition of the
global ansatz space NC11(€%; 7). We introduce the bilinear form ayc : NCpy)(€Q;Tp) x
NC[l](Q; 771) — R by

anc(up,vp) = Z / 1(a Vuy) - Vo, + b(Puy) (Puy)) dx

TeTh

and we consider the following nonconforming primal finite element approximation of (1.1),
(1.2): Find uyc € NCpyj(€; Tp) such that

aNC’(UNC:Uh) = (Pfavh)O;Q , Up € NC[l](Q; 771) . (2-9)

There is a close relationship between the mixed hybrid approach (2.3),(2.4),(2.5) and
(2.9):

Theorem 2.1. Let (jn,un, An) € RT5' (2;Tn) X Wigi(5 Th) x Mig)(Q; Fi™) and unc €
NCpj(€2; Ty) be the unique solutions of 82.3),(2.4),(2 5) and (2.9), respectlvely Then there
holds X

Pa_l(aVuNc) = jh y PUNC = Up , PUNC = )\h . (2.10)

Proof. The assertion follows easily by verifying that jy,us, and A\, as given by (2.10)
satisfy the variational equations (2.3),(2.4), and (2.5).

We can take advantage of the equivalence stated in the previous theorem by using an
efficient multilevel preconditioner for the preconditioned cg-iterative solution of the non-
conforming primal approximation (2.9). In particular, due to the fact that the stiffness
matrix associated with the bilinear form ayc(-,-) is spectrally equivalent to its blockdi-
agonal and using basic properties of the projection operators P,-1 and P, an appropriate
preconditioner is given by

Rryr 0 ) : (2.11)

RNC = ( 0 RB2
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Here Rrarr is a preconditioner for the stiffness matrix Agrarr, associated with the bilinear
form

CLRML(Uh,Uh Z / aVuh Vvh—i—buhvh) dx uh,UhERML (Q 771)

TET;

and Rp, is a preconditioner for the stiffness matrix Ap, induced by the bilinear form

CI,BQ(Uh,’Uh Z / aP[d V’U,h) P]d(v ’Uh) +bP’U,h P’l)h) dx , Up, Uy € BQ(Q 771) .

TETh

A detailed proof of the spectral equivalence in case of simplicial triangulations is given in
[21]. Since the bubble functions spanning By (£2;7,) are strictly local, Ap, is a diagonal
matrix and we may thus take Rp, = Ap,. Therefore, it only remains to specify an
appropriate preconditioner Rgasr for Agpp. For that purpose, we assume that we are
given a hierarchy (7;);_, of quadrilateral or hexalateral triangulations generated by the
adaptive refinement process that will be described in the following subsection. We denote
by (RM Lpj($%;Tx))i—o the associated sequence of finite element spaces in terms of the
rotated b1- resp. trilinears with respect to the triangulations 75, 0 < k < j. As with all
nonconforming approximations we are then faced with the problem that this sequence is
nonnested. We note that in case of simplicial triangulations appropriate remedies have
been suggested in [12, 25|, and by the authors [21]. Here, we will follow the approach
in [21] and adopt a pseudo-interpolation operator originally due to Sarkis [27]. The
nonconforming finite element space RM L (€2; 7;) can be identified with a closed subspace
of a conforming counterpart. This enables us to construct a multilevel preconditioner
by means of the BPX-preconditioner (cf., e.g., [10, 32]) for the associated sequence of
conforming finite element spaces.

We denote by 7;+1 the triangulation obtained from 7; by uniform refinement and we
refer to S1(£2; 7,41) as the finite element space assomated with the standard conforming
P1 approximation of (1.1),(1.2) with respect to 7;,1. We define the pseudo-interpolation
operator Pryr, : RM Ly (€ T;) — S1(€; 7~;+1) according to

lr(v)) if p=mp € MM C N

(Prur Uj)(p) = Yp . —. )
ip uz::1 lgr(v;) ifpe J’fﬁ M;-"t

where v, is the number of edges (d=2) and faces (d=3) emanating from p € N;fl \ Mt
and F? € M;, 1 <v <y, stand for the corresponding edges and faces.

We denote by Rgpx the BPX-preconditioner with respect to the nested hierarchy S; (7o)
C -+ C 81(T;41) and by Py o S1(Ti41) — RM L11(€2; 7;) the pseudo-inverse of
the pseudo-interpolation operator Pgrjsr. Then the nonconformlng BPX-type precondi-
tioner Rgpsr is given by means of

R;zzlva = P}—{ML RI_?}JX (PgML)T . (2.12)

We remark that in its algebraic form the pseudo-inverse Pp,,; represents an m; X nji1
rectangular matrix of the form

P}J{ML = (IO)
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where m; := dim RM Ly (5 T;) , nj1 = dim S1(9; Tj4+1) and I stands for the m; x m;
identity matrix. Thus Pj,,, and (Pj,,; )T are easily computable and Ry}, is of the same
arithmetical complexity as Rgp -

Theorem 2.2. Let Rgyp be given by means of (2.12). Then there exist constants
0 < Yrumr < I'ryr depending only on the ellipticity constants and on the local geometry
of T, such that

Yemr I < Rgyp Armie < Trur I . (2.13)

Proof. The assertion can be proved by using Nepomnyashikh’s fictitious domain lemma
[24]. The proof follows the same lines as in the case of hierarchies of simplicial triangula-
tions (cf. [21]).

As an immediate consequence of the preceding result we obtain:

Corollary 2.3. Let Ayc be the stiffness matrix associated with the bilinear form ay¢
partitioned according to the splitting (2.8) of NCy1(€2; 7;). Further, let Ry¢ be given by
(2.11) with Rgpsz as in (2.12) and Rp, = Ap,. Then there exist constants 0 < yy¢ < I'ye
depending only on the ellipticity constants and on the local geometry of 7y such that

wel < RycAne < Tnel . (2.14)

2.3 A posteriori error estimation and adaptive refinement.

Local adaptive refinement of the triangulations can be performed by means of an a pos-
teriori error estimator for the discretization error e, := u — uy in the primal variable
measured in the L?-norm and the discretization error e; := j — jp in the fluxes measured
in the H (div;2)-norm.

The estimator for the error in the primal variable is based on the following superconver-
gence result:

Lemma 2.1. Let u, € Wi(§%;7,) be the elementwise constant approximation of the
primal variable u € L?(Q) and let 4y, be the nonconforming extension of the interelement
multiplier A, € Mg (; 75). Then, under the regularity assumptions v € H*(Q), f €
H'(Q) there holds

lu—unllon < Ch, |u—1dplloa < ChH . (2.15)

Proof. The proof is similar to that in case of simplicial triangulations (cf., e.g., [13]).

The preceding result (2.15) motivates the saturation assumption
lu—dnllon < Blu—uillon , 0<B<1 (2.16)

which implies that ||uj — 0.0 provides a lower and an upper bound for the discretization
error in the primal variable

(14+8)" lun —nlle < llu—unlloe < (1 =8)"" [lun — @nlloa -
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An estimator for the discretization error in the fluxes can be obtained by means of an
interpolation operator K : RT;'(2; Tp) — RM Lpy(€; 74)” due to Brandts [11] which is
locally defined by

1 .
/Fqua: 5 /F(q|T1 v qlp)do, 9T NOT, = F € Fit |

/t-qua =0, /n-quo = /n-q|TF do , FCOTpNT .
F F F

The error term |[j, — K ju|/o;o then provides an estimate of the discretization error in the
fluxes. Combining both estimators we obtain

ng =Y, Ner (2.17)
TET
ner = llin—Kinllho + llun—llsr + IIf =m0 fllsr (2.18)

where 7y f stands for the L%-projection of the right-hand side f onto Wig(€2; 7).
[0]

Theorem 2.4. Let g be given by means of (2.17),(2.18). Under appropriate regularity
assumptions and (2.16) there exist constants 0 < yg < I'g depending only on the ellipticity
constants and on the shape regularity of the triangulation such that

Proof. The proof is virtually the same as in case of simplicial triangulations (cf., e.g.,
[11, 21)).

o
We remark that in practice we only have approximations 4y, for u and jh for j, at hand
and thus want to estimate the total errors v — %, and j — jn. In this case, the iteration
errors ||up — p |00 and ||jn — jullgiv:o additionally enter the estimator ng. However, due to
the fact that 4, and jh are determined by means of an optimal multilevel preconditioned
cg-iteration, the iteration errors can be controlled within the iterative solution process,
for instance, by monitoring the residuals with respect to the iterates.
A final remark is due to the refinement process. We compute the average of the local
error terms

1
77211 = F Z ng;T
h TeT;,

where Ny :=card {T | T € T, } and mark an element T' € 7T}, for refinement if

2 2
nS;T Z 0 Mgy

with o > 0 being an appropriate safety factor (e.g. o ~ 0.9).

An element T € 7T;, marked for refinement will be subdivided into four (d=2) resp. eight
(d=3) congruent subelements. We note that nonconforming nodal points arising from
that refinement are treated in the standard way as slave nodes within the subsequent
iterative solution process.
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3. Adaptive domain decomposition on nonmatching grids.
3.1 The mortar finite element approach

For the elliptic boundary value problem (1.1),(1.2) in a bounded polygonal domain Q C
R?, we consider a decomposition

N
Q= U%, unQ =0, 1<i#j<N, (3.1)
i=1

Q2 into N mutually disjoint, polygonal subdomains €2;. We assume that this partition is
geometrically conforming in the sense that any edge of 0 €);, 1 < ¢ < N is either part
of the boundary 0 () of the entire domain ) or coincides with an edge of an adjacent
subdomain of the partition. We refer to

N

=1

as the skeleton of the decomposition and define
N
X(Q) = {ve]] H') | 2/ Aplydo=0, Ae HV(S), v [r=0} (3.3)
i=1 T “lii

where [v]; denotes the jump of v across I';; € S.

Then, the macro-hybrid variational formulation of (1.1),(1.2) with respect to the decom-
position (3.1) is as follows:

Find v € X(Q) such that

a(u,v) = (f,v)o0 , veX(Q) (3.4)

where

a(u,v) == > a;i(u,v) , a;(u,v) = /Q (aVu-Vv 4+ buv)de , 1<i<N .

=1

We further consider individual simplicial triangulations 7; of the subdomains €2; , 1 <
1 < N, and denote by

S1(QuTh) == {ve H(Y) | v|r€ PUT), TETi, vloamoa= 0,00 NIQ#0}

the standard conforming P1 finite element space with respect to 7;.
We decompose the skeleton S according to

Cr=

S = ’7[,7[ﬂ’ym:®,1§l7ém§L (35)

~

1

into the so-called mortars v, , 1 <[ < L, where each mortar +; is the entire open edge of
some subdomain Q) , M(I) € {1,..., N}. We denote by Qy( the adjacent subdomain
and refer to its corresponding edge as the nonmortar I';. This formal distinction between
mortars and nonmortars is essential, since due to the different triangulations of the trace
spaces

Wuwy(n) = {v |y [ v €S, Tuw) }s Wirwy(T) == {v I, | v e Si(Qiq, Trrgy) }
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do not necessarily coincide. We denote the outer unit normal vector on €2, by n whereas
n; stands for the outer unit normal vector on €2;. Then, the jump on I'; is defined by

[v]y = U‘QM@) - U‘QM(I)'
We impose weak continuity constraints on the internal subdomain boundaries by means
of Lagrangian multipliers from the multiplier space

Ml(S) = {,U,EL2(S) | EIvESl(QM(l),TM(l)), ].SZSL,
ploy=vlr,, ple€ Po(E), ENOT, #0}

where E are the edges of the nonmortar faces I';. Note that { p |, | © € Mi(S) } is a
subspace of Wiy (') of codimension 2.
We define

X(@7) = (ve[[ $@T) | X [ phlide =0, ped(s)}. (30

=1

Then, the mortar finite element approximation of (1.1),(1.2) amounts to the computation
of Uy € X1(92;T) such that

a(tm,v) = (f,v)o0 , v€X1(T) . (3.7)

We note that (3.8) can be equivalently stated as a saddle point problem. Introducing the
bilinear form

b(u,v) = —Z /Fz wvlydo , pe M(S), UEH HY(Q)

we are looking for a pair (Um, Am) € I, S1(Q2; T5) x M;(S) satisfying

a(tm,v) + b(Am,v) = (fiv)on , vE 1:[1 S1(92:5T:) (3.8)
by ) = 0 , € M(S) . (3.9)

In particular, (3.8),(3.9) satisfies the Babuska-Brezzi condition and the existence and
uniqueness of a solution is guaranteed (cf., e.g., [7, 8]). Note that the Lagrangian multiplier
A € My(S) provides an approximation of the normal flux n - aVu on the skeleton S of
the decomposition.

3.2 Multilevel preconditioned iterative solvers

The algebraic form of the saddle point problem (3.8),(3.9) is given by the linear system

U (A BT U, b
(i) - 5) ) - () e
where the first diagonal block A of the stiffness matrix A is a blockdiagonal matrix
A = diag (A4, ...Ax) with A;, 1 < 4 < N, referring to the n; x n; subdomain stiffness

matrices, n; := dim S;(€2;; 7;). The offdiagonal blocks B and BT represent the continuity
constraints on the skeleton.
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We will solve (3.10) by preconditioned Lanczos iterations with a blockdiagonal precondi-

tioner
R, O
R = ( 0 R,\) (3.11)

where R, := diag(Ry,..., Ry) consists of preconditioners R;, 1 < i < N, for the
subdomain stiffness matrices A; and R, is a preconditioner for the Schur complement
Sy, =B A1 BT,

We will construct subdomain preconditioners R; , 1 < i < N, and a preconditioner R for
the Schur complement Sy with respect to hierarchies (ﬁ(k))kKZO of nonuniform triangula-
tions of the subdomains €2; such that the spectral condition numbers of the preconditioned
matrices are independent of the refinement level. In particular, a natural candidate for
the preconditioners R; , 1 < i < N, is the BPX-preconditioner (cf.,e.g.,[10, 32]). We may
also use a BPX-type preconditioner for the Schur complement. Indeed, taking advantage
of the decomposition

o= (Y = (b))
Ay ) 7= Lty

of the matrices 4; and B} with T and T referring to interior and boundary nodal points,
respectively, we have a corresponding partition of S according to

Sy = 3 BER(SEH)H (BT (3.12)

=1

where Sg = A(FZ% — A(FZ} (A?})—l Agi) , 1 <14 < N are the individual subdomain Schur
complements. We obtain a Schur complement preconditioner Ry, if in (3.12) we replace
(St by (RY)=! where R can be constructed by means of the boundary diagonal

blocks of the BPX-preconditioners. For a more detailed discussion of this issue we refer
to [16, 22].

3.3 A hierarchical type a posteriori error estimator.

We construct a hierarchical basis a posteriori error estimator by a localization of the defect
equation on the subdomains’ level replacing the unknown normal fluxes on the skeleton
by the available multiplier Ay, € M;(S). The resulting Neumann problems are then
solved by using the standard conforming P2 approximation on the individual subdomains
and performing a further localization by means of the hierarchical two-level splitting of
the higher order finite element spaces. We note that this technique can be interpreted
as a hybrid approach with respect to the hierarchical type a posteriori error estimation
concepts as developed by Bank and Weiser [5] and by Deuflhard, Leinen, and Yserentant
[15]. We further remark that hierarchical type a posteriori error estimators for standard
nonconforming finite element discretizations of elliptic boundary value problems have been
established by the authors in [19, 20].

We assume that (7;(@) keN, are regular, locally quasiuniform, nested sequences of simpli-
cial triangulations of €; , 1 <1 < N. We denote by E,SD) the sets of edges of T = Ufilﬁ(k)

in D C 2 and by 0 < ¢ < C generic constants that only depend on the shape regularity
of 7;(0) , 1 <4 < N, and possibly on the constants o, @, 3, 3 in (1.3),(1.4).
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Assuming that the solution u of the macro-hybrid variational formulation (3.4) satisfies
u € [IY, H%(€;) and [n-aVu]; = 0 on S, it is easy to see that the discretization error
e := u — U, solves the variational equation

ale,v) = r(v) , ve [[H () (3.13)

i=1
where the residual r(-) is given by
r(v) = (f,v)on — b(n-aVu,v) — a(um,v) . (3.14)

Now, setting e; :==¢€ |q, , 1 <7 < N, we obtain from (3.13)

ai(ei,v) = (f,v)o0, — @i(Um,v) + / n;-aVuvdo , ve H () . (3.15)
09;\00

We replace the unknown normal fluxes n-aVu in (3.15) by the available Lagrangian mul-
tiplier \,, and approximate the resulting Neumann problems by using the finite element
spaces So(€2;; 7;(“) , 1 <14 < N, of continuous, piecewise quadratic finite elements:

Find é; € S2(; 7;(’“)) such that

a;(&;,v) = (V) , ve Sy T™) | (3.16)

7i(v) == (f,v)00, — @i(tum,v) + / Am [v]s do
89:\09
where v is extended to zero outside of €2;.
If we assume that the weak solution u is continuous on €2, we can define Dirichlet boundary
conditions of a discrete finite element solution pointwise on the nodal points on 0€2;. Let
Ug; € So(S; 7;(16)) , 1 <17 < N, be the solution of the discrete Dirichlet boundary value

problem on €2;
a'i(UQ,iav) = (faU)O;SL' , VE SQ;O(Qi;ﬁ(k)) ) (3-17)

where Sg;o(Qi;'];(k)) ={v € Sg(Qi;ﬁ(k)H v|gn, = 0} and ug; on the boundary 05); is
given by

ug () == u(x),
where x is either a vertex or the midpoint of an edge on 0€2;. We impose a saturation

assumption by requiring the existence of constants 0 < 3; < 3, 1 <1 < N, with 3 small
enough and independent of the refinement level such that

[uzi —ulllo; < Bi |l eillla, » 1<i<N (3-18)
where ||| - |/lo;;= ai(,)?,1 < i < N. In the sequel, we will further refer to
] - o= (X ||| - ||3,)"/* as the broken energy norm associated with the bilinear

form a(-,-) = XN, a; (-, ).
The solutions é; of (3.16) only provide a lower bound for the discretization error. In view
of

llell= 3 ile) + > [ (m-aVu—An) [umly do | (3.19)

i=1 e=1p,
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we further have to take into account the jumps [u,,]; across the interfaces. It can be
shown that

. 1/2
- 2 -
(Z > hE1||[um]J||0;E> , hg = |E|
=1 ECI}

is an appropriate tool for measuring the nonconformity of the mortar finite element solu-
tion.

To prove boths upper and lower bounds for the error in the broken energy norm we have
to impose another saturation assumption concerning the approximation of the normal
fluxes n - aVu on S by the multipliers from M;(S)

inf —n-aVullps < C ||| u— up 3.20
ot los < C 1wt I (3.20
where || - ||o;s stands for the weighted L2 norm
[ollos == (X hellvllze)?
ECS

Remark 3.1. The saturation assumption (3.20) is motivated by a priori error estimates

N
[ w—um ||| < C 3 hull3q,)"?

=1

|§;Qi)1/2

N
inf _[lu—n-aVullys < C (3 bl
=1

MEM1(S) B

which are due to Bernardi, Maday, and Patera [7, 8] and Ben Belgacem [6], respectively.
As a consequence of the saturation assumption (3.20) we have:

Lemma 3.1. Suppose that (3.20) is satisfied. Then there holds

IAm —n-aVulos < C ||| ellla - (3.21)

For the proof of (3.21) we refer to [30].
Summarizing the preceding results, we obtain:

Theorem 3.1. Under the saturation assumptions (3.17) and (3.20), there holds

N L
clllelllo < DoM1& o +32 > be'lllunlillee < Clllellls (3.22)
1=1

=1 E‘El"l

For a proof of Theorem 3.1. we refer to [31].
A localization of the Neumann problems (3.16) can be achieved by taking advantage of
the hierarchical two-level splitting

So(Q T) = S1(QTY) @ S0 TH) (3.23)

where S’Q(Qi;ﬁ(k)) stands for the hierarchical surplus spanned by the quadratic nodal

basis functions ¢g associated with E' € 5,?’“.
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Lemma 3.2. Let S'Q(Qi;'ﬁ(k)) = span{yg | E € 5,?"\F} and ap = 7i(¢r)/6(eE, ¢8),
1 <i < N, with 7;(-) given by (3.16). Then, for 1 < i < N there holds

c > aplllesllle <I&llls, < ¢ X o llleslll, - (3.24)
peei\ Beei\

Proof. The assertion follows from the strengthened Cauchy-Schwarz inequalities (cf.,e.g.,[15])

ai |l oi les 1l wi lllas > vi € S1(Q T, wi € So(; )
Q;
@ Il ee e |l e |l » B, E' € &, E+E'

a;(vi, w;) <
ai(pm, o) <

where 0 < ¢, <1, 1 <v <2, are independent of the refinement level.

[ ]
We are thus led to the following hierarchical type error estimator
nmro= (X mpr )
TET;,
) ) ) L . ) (3.25)
Mgr = X op lllelll® + X ¥ hp luslilloe , TeETr -
Ee&(T) I=1 Ee&,(T)NTy

The preceding results imply that 7y delivers a lower and an upper bound for the broken
energy norm of the discretization error.

Theorem 3.2. Let 1y be the hierarchical error estimator as given by (3.25). Then,
under the saturation assumptions (3.17) and (3.20) there exist constants 0 < vz < 'y
depending only on the shape regularity of 7y and on o, @, 8, 8 in (1.3),(1.4) such that

yane < |llelll < Tanug . (3.26)

Proof. The assertion follows readily from Theorem 3.1 and Lemma 3.3.
[ J

Remark 3.2. In practice, we only have iterative approximations (%, A, ) for the exact
solution (U, Apm) of (3.8),(3.9) at hand. Then, the iteration errors ||| w, — @, ||| and
I Am —Amllo;s also enter the bounds in (3.26). We remark that, due to the optimality of the
iterative solvers described in subsection 3.2, the iteration errors can be controlled during
the iterative solution process by monitoring the residuals with respect to the computed
iterates.

Remark 3.3. We note that residual based a posteriori error estimators for mortar finite
element discretizations have been developed in [16, 30]. The hierarchical basis error
estimator and a fully hierarchical basis error estimator that includes the error (n - aVu)
have been analyzed in [31].

4. Numerical results

In this section, we present some numerical results illustrating the benefits of the adaptive
mixed and the adaptive macro-hybrid finite element methods.

As an example for the mixed hybrid approach, we consider (1.1) with a = 1.0 and b = 0.25
and homogeneous Dirichlet boundary on the three dimensional unit cube 2 = (0, 1)® where
the right-hand side f has been chosen such that u(x) = 1000 - exp(—100((z — 0.4)* + (y —
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0.2)>+(2—0.3)?))-z(x —1)y(y —1)2(z — 1) is the solution of the problem. Note that u ex-
hibits an exponential peak at the interior point x = (0.4, 0.2,0.3)”. We solve the problem
by mixed hybridization with respect to a hierarchy of adaptively generated hexalateral
triangulations using the multilevel preconditioned cg-iteration as described in subsection
2.2 and local adaptive grid refinement based on the a posteriori error estimator of subsec-
tion 2.3. Nonconforming nodal points arising from the adaptive refinement process have
been treated in the usual way as hanging nodes.

z=0.3 cm

y=0.2 cm

Fig. 4.1: Final triangulation

Figure 4.1 shows the adaptively generated final triangulation at different clipping planes
whereas Table 4.1 contains the history of the refinement process by displaying the num-
ber of unknowns, the estimated and true errors as well as the effectivity index for each
refinement level. Note that the effectivity index is the ratio of the estimated and the true
error. We can see that there is a pronounced refinement in the vicinity of the exponential
peak and we also observe that the effectivity index rapidly approaches its optimal value 1.
A real-life application of the algorithm, namely the simulation of the neutron kinetics of
a nuclear power plant, can be found in [9].

| Level | # Nodes | Error | Est. Error | Eff. Index |

0 20 0.328555 | 0.0328704 | 0.118
1 208 0.322324 | 0.1057 0.328
2 886 0.195379 | 0.133779 | 0.685
3 2186 0.113028 | 0.0963011 | 0.852
4 9874 0.0573235 | 0.0548544 | 0.957
) 59267 | 0.0287311 | 0.0283626 | 0.987

Tab. 4.1: Effectivity index

The second example concerns the performance of the hierarchical type error estimator
for adaptive mortar finite element methods. We consider a problem on a domain with
a reentrant corner (cf. Figure 4.2a) where ¢ = 1, b = 100 and f is chosen such that
u = rgsz'n(gqﬁ) is the solution of the problem. We have further investigated a diffusion
equation in Q = (0,1)? with a discontinuous coefficient (a = 1 in Q; := {(z,y) C Q |
r<1/2,z<y<l—zxzorz>1/2, x>y >1—z}and a = 100 elsewhere) with the
solution u(z,y) = (x —y)(1 — z — y). We have solved both problems with respect to
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an adaptively generated simplicial triangulation using a preconditioned Lanczos iteration
with substructuring multilevel preconditioners of BPX-type (cf. subsection 3.2) and we
have used the hierarchical error estimator described in subsection 3.3.

| Level | # Nodes | Est. Error | Error | Eff. Index |
0 24 0.265 0.313 0.847
1 50 0.137 0.142 0.965
2 100 0.891-107' | 0.939-107! | 0.952
3 154 0.651-10~* | 0.676-10~* | 0.963
4 277 0.455-10~* | 0.470-10~* | 0.969
5 599 0.314-10~* | 0.321-10~* | 0.976
6 1069 0.217-107% | 0.221-10* | 0.981
7 2342 0.143-10~' | 0.145-10~" | 0.981
8 5190 0.957-1072 | 0.975-10~2 | 0.981
9 11510 | 0.631-1072 | 0.641-1072 | 0.984
Tab. 4.2a: Reentrant corner
| Level | # Nodes | Est. Error | Error | Eff. Index |

0 24 0.241 0.408 0.592
1 60 0.150 0.147 1.02

2 116 0.764-10~! | 0.759-10* | 1.01

3 320 0.392-10~' | 0.393-10~! | 0.997
4 1150 | 0.196-107' | 0.197-10~' | 0.998
5 4372 ] 0.100-107% | 0.991-1072 | 1.01

6 17044 0.497-1072 | 0.495-10~2 | 1.00

The history of the refinement process is given by Tables 4.2a and 4.2b. We again observe
that the effectivity index quickly approaches 1. Figures 4.2a and 4.2b show the adaptively

Tab. 4.2b: Discontinuous coefficient

generated final triangulation in the two cases.

For further numerical results, including fully potential flows around airfoils we refer to

[16, 30, 31].

Fig. 4.2a: Reentrant corner

Fig. 4.2b: Discontinuous coefficient
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