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Abstract. An iterative substructuring method for the system of linear elasticity in three dimen-
sions is introduced and analyzed. The pure displacement formulation for compressible materials is
discretized with the spectral element method. The resulting stiffness matrix is symmetric and positive
definite. The method proposed provides a domain decomposition preconditioner constructed from
local solvers for the interior of each element, and for each face of the elements and a coarse, global
solver related to the wire basket of the elements. As in the scalar case, the condition number of the
preconditioned operator is independent of the number of spectral elements and grows as the square
of the logarithm of the spectral degree.
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1. Introduction. Finite element discretizations of problems in structural me-
chanics require the solution of large and sparse linear systems of equations. In the
past, such systems have often been solved by direct methods. These methods are lim-
ited by their high arithmetical costs, memory requirements, and poor scalability on
parallel computers. In order to overcome these limitations, a great deal of research
has in recent years focused on the design and analysis of efficient iterative methods.
Solvers which combine a Krylov space accelerator with a robust preconditioner have
been shown to outperform direct solvers in large three-dimensional elasticity computa-
tions; see Dickinson and Forsyth [11], Farhat and Roux [14] and the references therein.
Domain decomposition provides some of the best preconditioners for elliptic problems;
see Smith, Bjgrstad and Gropp [35] for a general introduction and Le Tallec [20] and
Farhat and Roux [14] for a discussion of domain decomposition in structural mechan-
ics. In this paper, we will focus on the system of linear elasticity in three dimensions.
For more general problems and methods in nonlinear elasticity, we refer to Ciarlet [10]
and Le Tallec [21].

Iterative substructuring methods form an important family of domain decomposi-
tion algorithms, with origins in the direct substructuring techniques developed in the
structural analysis community over several decades. When an iterative substructuring
method is used, the domain of the elliptic problem is decomposed into nonoverlapping
subdomains. After the elimination of the interior variables, the discrete problem for
the interface variables, known as the Schur complement system, is solved iteratively by
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a preconditioned Krylov space method, such as PCG or GMRES. The preconditioner
is constructed from the solutions of local problems and a coarse global problem; see
Dryja, Smith, and Widlund [12] and Smith, Bjgrstad, and Gropp [35, Ch. 4].

In this paper, we will study iterative substructuring methods for spectral ele-
ment discretizations of systems of elliptic equations. Spectral elements originated in
computational fluid dynamics growing out of earlier work on spectral methods on a
single region (see, e.g., Canuto, Hussaini, Quarteroni and Zang [8], Maday, Patera,
and Rgnquist [22], Bernardi and Maday [3], Funaro [15], Karniadakis and Sherwin
[17] and the references therein). The related p and h — p versions of the finite ele-
ment method were developed for problems in computational structural mechanics (see
Szabd and Babuska [36]). We note that the p— and h — p version finite elements differ
from spectral elements in the choice of bases and quadrature rules for evaluating the
integrals of the Galerkin formulation. For all these methods, improved accuracy is
achieved by increasing the spectral degree aas well as the number of elements. We
note that iterative solvers for a variety of higher order methods have been developed
by Mandel [24], Katz and Hu [18], and Guo [16]; see also the theses of Pavarino [28],
Casarin [9], and Bici [4].

In our previous work [29, 31], we considered the scalar case and iterative sub-
structuring methods with a wire basket based coarse space. Each spectral element is
then the affine image of a reference cube considered as a subdomain of the domain
decomposition method. The wire basket preconditioner for the Schur complement is
based on a solver for the interior of each element, a solver for each face (shared by two
elements) and a coarse solver for the wire basket (the union of the edges and vertices
of the elements). We proved, and verified numerically that the convergence rate of this
method is independent of the number of elements and the jumps in the coefficients of
the elliptic operator, and that it depends only weakly on the spectral degree. An al-
ternative proof was later given by Casarin [9]. This type of wire basket preconditioner
was originally proposed for h-version finite elements by Smith [32, 33, 34]; see also
Bramble, Pasciak and Schatz [5] for earlier related work. Other iterative substructur-
ing methods that have been successfully applied to elasticity problems and h-version
finite elements are the Neumann-Neumann methods, see, e.g., [20], the balancing do-
main decomposition method of Mandel [23] and the FETI method of Farhat and Roux
[14]. Schwarz methods for nonconforming finite elements in planar elasticity have been
considered in Xu and Li [37]. Multigrid methods have also been extended to elasticity
problems; see Koc¢vara and Mandel [19], Parsons and Hall [26, 27], and Brenner [6, 7].

In this paper, we extend the wire basket preconditioner to the system of three-
dimensional linear elasticity discretized with spectral elements. We consider compress-
ible materials for which the Poisson ratio v is bounded away from 1/2; e.g., v < 0.4.
In this case, the pure displacement formulation is valid and it leads to a symmetric
positive definite stiffness matrix. For almost incompressible materials, characterized
by v close to 1/2, the pure displacement formulation breaks down; in addition to prob-
lems with locking (see Babuska and Suri [1]), the stiffness matrix becomes increasingly
ill-conditioned (see Figure 1). A possible solution is to use a mixed formulation. This
approach, as well as the related Stokes problem for incompressible fluids, will be the
subject of part IT of this work [30].

The main result of this paper is a polylogarithmic bound for the condition number
of the iteration operator with the wire basket preconditioner. As in the scalar case,
this result is obtained by working within the Schwarz framework; see [35, 12, 13].

The paper is organized as follows. In Section 2, we briefly describe the system of



linear elasticity. In Section 3, we discretize the problem by the spectral element method
and Gauss-Lobatto-Legendre quadrature. In preparation for the definition of the wire
basket preconditioner, we introduce, in Section 4, two extension operators from the
interface to the interior of each element and in Section 5 an extension operator from
the wire basket to the interface and interior of each element. In Section 6, we construct
the wire basket preconditioner in matrix form, while in Section 7 we give a variational
formulation in the Schwarz framework and prove some technical results and the main
theorem. In the concluding Section 8, we report on some numerical experiments in
three dimensions.

2. The linear elasticity system. Let Q C R? be a polyhedral domain and let
[y be a nonempty subset of its boundary. Let V be the Sobolev space V = {v €
H'(Q)? : v|r, = 0}. The linear elasticity problem consists in finding the displacement
u € V of the domain €, fixed along I'g, subject to a surface force of density g, along
Iy = 9Q\ Ty, and a body force f:

(1) Qp/ e(u) : e(v) dz + )\/ divadivvde =< F,v> VveV.
Q Q
Here A and p are the Lamé constants, €;;(u) = %(gg; + gixi) the linearized strain

tensor, and the inner products are defined as

e(u) : e(v) = quj(u)qj(v), <F,v>= /Qva dm—}—/r > givi ds.

i=1j=1 14=1

We denote the bilinear form of linear elasticity by

a(u,v) = 2/,&/(16(11) ce(v) dx + )\/ﬂdivu divv dz;

see, e.g., Ciarlet [10] for a detailed treatment of nonlinear and linear elasticity. This
pure displacement model is a good formulation for compressible materials, for which
the Poisson ratio v = 2(;\—4-#) is strictly less than 1/2, e.g., v < 0.4. In this paper,
we confine our analysis to this case. For almost incompressible materials and the
related Stokes problem for incompressible fluids, we will use a mixed spectral element

formulation; see part IT of this work [30].

3. Spectral elements and Gauss-Lobatto-Legendre quadrature. Let Q¢
be the reference cube (—1,1)3, and let @, (ﬁref) be the set of polynomials on Qe of
degree n in each variable. We assume that the domain Q can be decomposed into N
nonoverlapping finite elements ;, each of which is an affine image of the reference

cube,
Q= Uf\;lﬁi.

Thus, Q; = ¢;(Qrer), where ¢; is an affine mapping. The displacement u is discretized,
component by component, by conforming spectral elements, i.e. by continuous, piece-
wise polynomials of degree n:

VnI{VEVZUk|ﬁlO¢iEQn(§ref), i=1,---,N, k=1,2,3}.

A very convenient tensor product basis for V” can be constructed using Gauss-
Lobatto-Legendre (GLL) quadrature points; other bases could be considered, such
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as those based on integrated Legendre polynomials common in the p-version finite
element literature; see Szabd and Babuska [36]. Denote by {&,ﬁj:&}%,k:o the set of
GLL points on [—1,1]3, and by ¢; the quadrature weight associated with &;. Let I;()
be the Lagrange interpolating polynomial which vanishes at all the GLL nodes except
&;, where 1t equals one. The basis functions on the reference cube are then defined by
a tensor product as

li(x1)lj (w2)lx (3), 0<4,j,k<n.

This is a nodal basis, since every element of Qn(ﬁref) can be written as

u(y, o, x8) = 3> > ulée &, &)l (w1)l (22) k().

i=0 j=0k=0

The reference element can be decomposed into its interior, six faces, twelve edges,
and eight vertices. The union of its edges and vertices is called the wire basket of the
element and is denoted by Wi.er. Analogously, each basis function can be characterized
as being of interior, face, edge, or vertex type:

- interior: ¢, 7,k # 0 and # n;

- face: exactly one index is 0 or n;

- edge: exactly two indices are 0 and/or n;

- vertex: all three indices are 0 and/or n.
Each displacement component can therefore be written as the sum of its vertex, edge,
face, and interior components,

U =uy +ug +ur +uy,

where each term is expressed in terms of the corresponding basis functions.
We now replace each integral of the continuous model (1) by GLL quadrature. On
Qmﬁ

(V) = D > > uléi &, 6)0(&, &5, k) oiojon,

1=0 j=0%k=0
and on all of Q,

n

N
(u, 0= (uods) (&, &5, &k) (v 0 05) (&, &5, €k) | s loiajon,

s=14,5,k=0

IVE

where |Jg| is the determinant of the Jacobian of ¢5. This inner product is uniformly
equivalent to the standard Ls—inner product on @, (Qrer); it is shown in Bernardi and
Maday [2, 3] that

(2) [l sy < (W 0ree < 27[ullT (0, ) Yt € Qn (Qrer)-

These bounds imply an analogous uniform equivalence between the H!(Q)-seminorm
and the discrete seminorm (Vu, Vu), o based on GLL quadrature. Applying these
quadrature rules, we obtain the discrete bilinear form

an(u,v) =2u(e(u) : €(v))n,a + A(divu, divv), q,
4



and the discrete elasticity problem:
Find u € V" such that

(3) an(u,v) =< F,v>,q Vv € V™.

An analysis of the spectral element discretization for the Laplacian and Stokes prob-
lems can be found in Bernardi and Maday [2, 3] and in Maday, Patera, and Rgnquist
[22]. The same techniques can be applied to provide an analysis and error estimates
for the linear elasticity problem.

We denote by K the symmetric and positive definite stiffness matrix associated
with the discrete problem (3). Tt is less sparse than the stiffness matrices obtained
by low-order finite elements, but is still well-structured and the corresponding matrix-
vector multiplication is relatively inexpensive if advantage is taken of the tensor prod-
uct structure; see, e.g., Bernardi and Maday [2, 3]. See also Figure 1 for a sparsity
plot of the stiffness matrix K on the reference element.

For an interior element, a, (-, ) has a six-dimensional null space A/, spanned by
the rigid body motions r;

N =span{rj, j=1,---,6}.

On Qrer, the r; are given, componentwise, by three translations

1 0 0
(4) r = 0 ; ry = 1 s rs3 = 0 y
0 0 1
and three rotations
0 3 T2
(5) rgy=| 3 |, 1r5= 0 , Te= | —x
—X9 —X 0

We note that it is easy to show that both the divergence and the linearized strain
tensor of these six functions vanish.

4. Extensions from the interface. In the construction of our algorithm, we
need to extend piecewise polynomials from the boundaries of the elements to their
interiors.

Let T be the (interior) interface of the decomposition Q = UN | Q; :

[ = (UX,09;)\ 0Q.

' is composed of Np faces Fj (open sets) of the elements and the wire basket W,
defined as the union of the edges and vertices,

[=UrE B UW.

Let VR = V?(T) be the space of restrictions of V" to the interface. We note that, on
each face, any function in V is an affine image of a (), space with two variables. We
define local subspaces consisting of piecewise polynomials with support in the interior
of each element,

(6) VI =V"nHi (), i=1,---,N.

We will consider two ways of extending a piecewise polynomial defined on T to the
interior of each element ;. These extensions are constructed locally, i.e. element by
element.



4.1. The discrete harmonic extension. The discrete harmonic extension is
defined as the operator H™ : VE — V" that maps an element u € V{ into the
unique solution H”u € V7? of

by (H"u,v)=0 Vv € V7, H'u=u on 0Q;, i=1,---,N,

where b, (u,v) = (Vu: Vv), g is the discrete bilinear form associated with the vector
Laplacian. This is just the component by component discrete harmonic extension used
extensively in the study of iterative substructuring methods for scalar elliptic prob-
lems. As in the scalar case, the discrete harmonic extension satisfies the minimization

property

by (H™u, H™u) = minb, (v, v) VveV" with v=u on T.

4.2. The discrete elastic extension. We can also extend a piecewise polyno-
mial from T to the interior of each element by solving a linear elasticity problem in
each element. The discrete elastic extension £" : VE — V7" is the operator that
maps a piecewise polynomial u € V} into the unique solution of

(7)) an(&™u,v)=0 Vv evVy:, E"a=u on 09y, i=1,---,N.

In our applications to elasticity problems, we will choose the range of this extension
operator,

(8) Ve =£&"(Vr)

as the subspace of interface displacements. The elements in this subspace are com-
pletely determined by their values on T'.
The discrete elastic extension satisfies the minimization property

an (E"u, E™u) = mina, (v, v) VveEeV”? with v=u on T.

5. Extension from the wire basket. In the construction of our algorithm, we
will also need to extend piecewise polynomials from the wire basket to the faces. As
this 1s also a local operation, we can restrict our attention to the reference element.
A preliminary extension operator I™ from the wire basket is constructed for any
function u € V™ by expanding its restriction to the wire basket, using the vertex and
edge basis functions described in Section 3,

™u= uy + ug.
Given that we are using a nodal basis, " will simply vanish at all the face GLL
points outside the wire basket. Therefore this extension operator does not preserve the
rigid body motionsr;, j = 1,---,6. In order to construct a scalable algorithm, we must
define an extension operator that preserves the rigid body motions on the interface;
see Mandel [23] and or Smith, Bjgrstad, and Gropp, [35, p. 132] for a discussion of
this null space property.

We start by considering the difference between each of the r; and the function
obtained by using the preliminary extension. They can all be expressed in terms of
four scalar functions, defined on each face by

fozl—fwl, flzml—fwl‘l, f2ZI2—I~WI2, fSZIE;—INW:L‘g.
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We remark that in our previous study of the scalar case, see [29, 31], only F° was
needed, because the null space of the discrete bilinear form on an interior element
consists only of constants. Each of our four functions, just defined, vanishes on the
wire basket and each can be split into six face terms,

6 6 6 6
FO=>"F, FL=>"F, F=> F, FE=>"Fi
k=1 k=1 k=1 k=1

Here, the Tj,j =0,1,2,3, vanish on all faces except Fj. For each scalar component
u'?) of u, we define a new extension " u from the wire basket to the interface as follows:

On a face Fy, for which the two relevant variables are x; and z, the restriction of
"4 to Fy has the form

(9) Il = W) 4oy F2 4 bp FL+ b FE

The weights ag, b}, b7, and b3 are given by the following moments (the factors % and
13—6 come from the fact that we work on the reference element):

(U(i)a 1)n 8F) 1 ()
= : =3 ! 1 n )
ag @, D or, S(U yDn.or,

) (@) ) 3 )
U, Tj)n oF, .
bJ:( L AL k:_u(l)’m' S9F, j=1,2,3.
k (l‘j, Ij)n,aFk 16( ])n, k
We note that on each face only three correction terms are used; see (9). For a vector
valued displacement u, the extension operator is then defined as the discrete elastic
extension of the scalar face functions given by (9), i.e.

u= En(IWu(l), W) IWU(S)).

A simple computation shows that, on each face, the new extension operator reproduces
all P, polynomials and therefore also all the rigid body motions. If, e.g., u = ¢g +
c121 + caxs + cazs, we have on the face F, = {23 = 1},

1
ay = g(co +eci1z1 4 caxs + 3, 1) oF, = co + cs,

1 3
b, = E(CO +ci1x1 + caxy + C3, ﬂfl)n,aFk = C1,

bi = E(Co + 121+ caa + €3, 22)n,0F, = C2,
as required. Moreover, any rigid body motion r is also reproduced inside each element,
i.e. £"r = r. This follows from the minimization property of the elastic extension and
the fact that a,(r,r) = 0. Therefore, I"'r =r, Vr € N. We note that the extension
operator I defines a change of basis in V}; the face basis functions are unchanged,
but the wire basket basis functions are transformed according to (9).



6. A wire basket preconditioner for linear elasticity. In this section, we
describe our wire basket preconditioner for linear elasticity problems in matrix form.
A variational form of the method and an analysis using the Schwarz framework will be
given in the next section. We model the wire basket preconditioner on our previous
work on the scalar case; see [29, 31].

The stiffness matrix K of the discrete linear elasticity problem (3) is built by
subassembly from the individual contributions from each element €2;,

N
u’ Ku = Z u(i)TK(i)u(i).
i=1

In each element, we order first the interior variables and then the interface variables,
obtaining local stiffness matrices of the form

KO = K}.Z)T KY.F) .
kW g0

The interior unknowns are eliminated by solving local linear elasticity problems, ob-
taining local Schur complement matrices

, . T ,
s = gl - g g0 k)

The global Schur complement is also built by subassembly from the local contributions
N T . ,

(10) ul Sur = Zuij) S(Z)up.
i=1

We solve the interface problem with the coefficient matrix S using a preconditioned
Krylov space method, such as CG. We can then avoid forming S explicitly, since only
the matrix-vector product Sv is needed and this product can be evaluated by solving
N local linear elasticity problems. R

We now introduce a wire basket preconditioner S for S, based on the solution of
local problems for each face and a coarse, global problem associated with the wire
basket. If the interface unknowns are ordered by placing the face variables first, and
then the wire basket variables, the local Schur complements can be written as

5@):[ Ser, Siw ]
Sty Siw

We then perform a change of basis in the space spanned by the wire basket functions
in order to satisfy the null space property, i.e. in order to ensure that the null space
of the local contribution S®) to the preconditioner is the space of rigid body motions
N. This can be done by using the extension operator I defined by (9), since IV
reproduces rigid body motions. In matrix form, this change of basis is represented
locally by the transformation matrix

o
w0 i )




where the 7(*) are identity matrices of the appropriate oreder. Then S is transformed
into

()
nonzero  Syiw

Iy 0 S}f%T 5}%
Rt | st s

R
0 K

_ l S(FZ,)F nonzero ]

The local preconditioner S is constructed by

a) eliminating the coupling between faces and the wire basket;

b) eliminating the coupling between all pairs of faces, i.e. by replacing Sl(;l)t«“ by its
block-diagonal part §g}7,

c) replacing the wire basket block 5‘(42,)‘4, by a simpler matrix §1(,IZ)W: Let M@ be
the mass matrix of the local wire basket W), defined by u” M()u = (u, u)nyw(l). We
replace §£IZ,)W by a scaled rank-six perturbation of M (). On the reference element,

6

P . (1) . M(i)"T
(i)  _ () _ (M"rj)( r;)
(11) Sww = (1 +logn)(M g 1']TM(i)1'j ).

j=1

This corresponds to using a simpler approximate solver for the wire basket variables;
see the next section for further details. We then return to the original basis:

RIE R

192 §) — , . o ;
(12) RO 1@y [ 0 80 | 0 1,

The action of RU) and R(*) on a face shared by two elements Q; and €); is the same,
because the extension of any function defined on the wire basket to a face, using the
operator I" | is determined only by the values on the boundary of that face. Therefore
the preconditioner can be obtained by subassembly

§_[IFF 0 ] Spr 0 [IFF —RT]
- —R IWW 0 SWW 0 IWW ’

and

S7'S = RoSyly RES + Y Rp.Splp, RE,S,
k

where Ry = (R, Iww); see Dryja, Smith, and Widlund [12]. We have thus obtained
an additive preconditioner, with independent parts associated with each face and the
wire basket. Multiplicative and hybrid variants can also be defined and analyzed
in a completely routine way once that the analysis of the additive method has been
completed; see, e.g., Smith, Bjgrstad, and Gropp, [35].

7. Variational formulation and analysis of the method. Working inside the
standard Schwarz framework, see, e.g., Smith, Bjgrstad, and Gropp, [35], we define
an iterative substructuring method by first decomposing the space V" into subspaces
associated with the interiors and a space associated with the interface, which, in turn,
will be further decomposed:

N
V=3 "VP+VE
i=1

9



Here VI = V™ N HE(Q;)? are the interior spaces and V2 = £7"(VR) the interface
space defined in (8). It is easy to see that

an(E™ur, EMur) = u%Sur,

where S is the Schur complement defined in (10). Our wire basket method is defined
by the following decomposition of the interface space:

Vi=Vo+) Vi,
k

where
Vo = range(I"V)

is the wire basket space consisting of discrete elastic extensions of piecewise polyno-
mials with given values on the wire basket. Their extension to the faces is determined
using the interpolation operator I'"V given in (9), and where

Vi ={veV':v=E8"W, we Vi with w=0 on I'\ Fi}

are face spaces consisting of piecewise discrete elastic extensions of polynomials asso-
ciated with individual faces.

We now define a projection-like operator for V4 and a projection for each of the
other subspaces

To : Vi = Vg by ao(Tou,v) = ap(u,v) Vv € Vy,

Tr, : Vg = Vg, by an(Tr,a,v) = ap(u,v) Vve V.

On the wire basket space, we use the special bilinear form

N 6
do(u,u) = (1 + logn) ZicﬂfHu = il e

i=1 Jj=1
which leads to a simplified solver for this space, constructed from the matrix §‘(,IZ,)W
defined in (11). This can be seen by a computation analogous to that of the scalar
case. In fact, the minimizing c;; are given on the reference element by

(13) e = ((‘“w

T, T)n Wiee
When deriving this formula, we use the fact that the r; are L?—orthogonal on Wies.

Therefore,

6 6

(14) icIllfHu = il e = (W), we =Y

j=1 7j=1

(U;l’j)i,wm

(xj,r)n wo




We are now ready to define the additive Schwarz operator

T=To+Y T,
Fy

and to formulate the main result of this paper.
THEOREM 7.1. The condition number of the iteration operator T is bounded by

cond(T) < C(1 +1logn)?,

where C 1s a constant independent of n and N.
By explicitly computing the matrix form of the operators Ty and Ty, , we see that

the matrix form of the operator 7" is given by S-1s. Therefore, Theorem 7.1 provides

~

a polylogarithmic bound on cond(S~15).

7.1. Technical tools. Before proving the main theorem, we need the following
technical results. In the following estimates, C' will denote a generic constant indepen-
dent of n and N.

LEMMA 7.2.

1Pl 00 < CllulEay, -

The proof consists of applying the scalar result, [31, Lemma4.4], to each displacement
component:

3 3
117 ali s = DI 0D, < C Y 112wy = Cllal[Fagwys-
i=1

i=1
LEMMA 7.3. For each face Fy of Qrer

= T w0 g < OO+ logm) Pl -
Again the proof follows from the scalar result, [31, Lemma 4.6].
LEMMA 7.4.

1F 13172,y < C(1 +logm), i=0,1,2,3,

The bound for F° is identical to [31, Lemma 4.8]. The other bounds follows from
a slight modification of the proof of [29, Lemma 5.7]. We just have to notice that
since u = x; on 0fer, we are again able to avoid a second (1+ logn) factor, since the
maximum of the absolute value of this function is 1.

LEMMA 7.5. a) The squares of the coefficients ay, b, j=1,2,3, of the extension
operator IV are all bounded by

C(1 +logn)[|ulip q,.,)o-

b) The same bound holds for the analogous quantities

iz (0 Dawee 5 (w9 2w,

b} b} j - 172737
(1, D W (Tj, Tj)n Weee

computed over the whole wire basket Wier instead of just the boundary of one face.

11



Proof. a) A bound for aj, is obtained as in the scalar case (see [29, (29)]); we again
work on the reference element:

Lo i i
ai = g (1) o, < Clu@3 op, < C(1+logn)|[u 7 q

ref)’

where we have used [29, Lemma 5.3] and the equivalence of the continuous and quadra-
ture based L2-norm for functions of V”. A bound for the b). is obtained similarly:

i 3 i 3 i )2
(b)? = (E)z(u( V2 op, < (E)zllrjlli,mllu( N om, < Cll2 o5,

and we conclude as before by using [29, Lemma 5.3].
b) The same bound follows as in part a) by applying [29, Lemma 5.3] to each edge of
Wref~ O

LEMMA 7.6. Consideru € V" and its contribution from the faces, up = u—I" u.
For each face Fy, we have

[lu— IWu||J2q¥2 < C(1+logn)?[ulf g, )

(F)?

Proof. Consider a face Fi where the two relevant variables are z; and z3. We
apply Lemmas 7.3, 7.4, and 7.5 to each displacement component, obtaining

2
mulliye o, (

(1) — (| = W ()12
Ju = =1 a2 . )

= ||u<i)_fwu(i)_akfg—b,if;—b,if,fniluléz(ﬂ

< OO =T o FGR Ty g OV IER S O I s )

< CO(1 +log ”)ZHUU)Hip(nrﬁy

Since I" reproduces constant functions, the left hand side does not change if u() is

shifted by a constant and we can conclude our proof by using Poincaré’s inequality. O
We will also need the following form of Korn’s inequality; see Ciarlet [10].
LEMMA 7.7.

VIl (s < CUlEWIL2(s + IVIL2(0000) ¥v € H' (Qrer).

The reverse inequality is of course also true.

7.2. Proof of Theorem 7.1. We now prove a bound on the condition number
cond(T) by proving upper and lower bounds for a related generalized Rayleigh quo-
tient. Since the subspace decomposition defining T satisfies the null space property
(see, e.g., Smith, Bjgrstad, and Gropp, [35, p. 132]), it is enough to prove upper and
lower bounds locally on an interior element and then apply the standard Schwarz the-
ory. For simplicity, we assume that the element is the reference element Q.. We
denote by ay, ret(+, -) the restriction of a, (-, ) to Qrer and by Fj the faces of Qpes.

Consider u € V and its decomposition into wire basket and face components.
Locally (on the reference element), we have

6
u=ug+ E ugp,,
k=1

12



—I"u on Fy

defined by ug = I"'u and up, = £"(tp, ), where up, = { 0 on 0Qur \ Fy
ref k

The lower bound can be written as

6

[10 ,ref 110,110 + Zan ref quaqu) < Cl(l + log n) (¢} ref(u 11) Yu S VfT,‘L7
k=1

and the upper bound as

6
an,ref(ua 11) S 02(a0,ref(u07 110) + Z an,ref(ququk) Yu € VTSL
k=1

We note that if u is a rigid body motion, then there is nothing to prove because both
sides of both inequalities vanish.

a) Lower bound. We first consider the wire basket term. From the definition of
dg ref, equations (13) and (14), we have

(o]
o ret (W0, o) = (1 +log n)inf flu =Y~ ejrl|Zag, 00
’ j=1

3

Wee y Lj)n Wie
1+logn ||u - D e ] =)
1 1 J L (Wref)7
Tl JWies j=1 .Z‘] ’ .Z‘] N, Wres

where only two terms in the last sum differ from zero; consider the componentwise
structure of the rotations given in (5). Using [29, Lemma 5.3] and Lemma 7.5, we can
bound the i—th component of the displacement by

C(|[u — (@ o w,.r

1 Lj)n Wee
s T, +Z U by )
) )1, Wref

j=1 IJ’IJ)H Wees

< C(1 + logn)|lu™|3

(res)

Therefore, by adding the three components and by using Korn’s inequality, (Lemma
7.7), we obtain

@o ref(uo, ug) < C(1 + log ”)2||u||12ql(ﬂref)3

< C(1+log n)z(an,ref(u: u) + ||u||%2(ﬂref)3)'

Since the left-hand side is invariant if u is shifted by a rigid body motion r € N, we
can remove the L?-term by a quotient space argument:

g ref(10, ug) = @o rer((w — 1), (W —1)0)

< C(1+logn)*(an per(w, ) + [[u = x[[Z2q, )0)-

13



Therefore
o rer (10, 00) < C(1 + Tog ) (an eer(w,) + inf [Ja = ¥},

and we conclude by using a Poincaré-type inequality; see Necas [25].
Consider now each face term individually. Lemma 7.6 and Korn’s inequality
(Lemma 7.7) imply that

an,ref(qu 3 qu) S an,ref(%nqu7%nqu) S C|%nqu |12L[1(Qref)3

= Clan s, o < O+ log ) ulingg

0 (Fk)3

ref

< C(l + log ’n)2(an,ref(u; 11) + ||uI|%2(ﬂref)3).

As before, the L?-term can be removed with a quotient space argument, since the
left-hand side is invariant if u is shifted by a rigid body motion r € V.
b) Upper bound. We have

an,ref(ua 11) S 7(an,ref(IWua IWU) + Z an,ref(qu 3 qu))~
k=1

Since

3
an,ref(IWu, IWH)) S Cl%n(fwu)|%[1(ﬂref)3 = CZ |7‘ln (IWU(Z))@Il

i=1

(ret)?

there remains to bound each displacement component of the wire basket extension
operator:

(Qree) "

6
[H (1Y uD) Gy = P D 4+ (anFL + BLFL + bEFE + BLFD) in
k=1

Here only two of the weights bi in each term of the sum differ from zero. By Lemma
7.4, this last quantity is bounded by

6 3
T B ey + D (@G- (F) i ) + D G 1 (FD )
k=1 7j=1

6
Ol 22,0 + (1 +logn) D (af + (6))* + (b7)* + (52)°)
k=1

< C(1 +logn)[[ul?[|7

Wres)

2

The last inequality holds because the coefficients, a3, (bi) , are all bounded by

(@), D om < (@) D) wher < Cllu 72y, 0y
14



FiG. 1. Left: sparsity pattern of the stiffness matriz K, for n = 5, with the lexicographic order
for each component of the displacement.
Right: semi-logarithmic plot of the condition number cond(K) of K for n =3,4,5 as a function of
the Poisson ratio v; when v — 0.5,cond(K) — co.

condn(K)

0 100 200 300 400 500 600 03 0.35 0.4 0.45 0.5

nz = 47232 Poisson ratio
see the proof of Lemma 7.5. Therefore,

1T ulf g, < C(1+ logn)|jul|72y,

ref

and
6
am ret (11, 0) < C((1 -+ Tog ) [ulZgp, 0 + 3 et (s, ur)):
k=1

If we shift u by the rigid body motion r = 2?21 c¢;r;, with the coefficients ¢; given
by (13), we can conclude that

6

anrer(u, 1) < C((1+ logn)[ju = xl|7 2,2 + Y n,rer(ur,, ur,))
k=1

6
= C(Gi0 0, (M0, M0) + D i rer(p, , 1)),
k=1
0

8. Numerical results. In this section, we report on the results of a numer-
ical study of the local condition number using the wire basket preconditioner. All
computations were carried out in Matlab 5.0. We recall that S is the Schur com-
plement of the stiffness matrix K for the discrete linear elasticity problem (3) and
that S denotes the wire basket preconditioner for S. The local contribution from an
element ; are denoted by S®) and S®)| respectively. Figure 1, left panel, shows
the sparsity pattern of K when n = 5 and the lexicographic order is used for each
component of the displacement. The right panel is a semi-logarithmic plot of the con-
dition number cond(K), the ratio of the largest to the smallest nonzero eigenvalues of

15



TABLE 1 )
Local condition numbers for the wire basket method with original wire basket block S%,;/)W

v=103 v=204
n | cond(SHT M) Ay Am | cond(SOTT 8Dy Am
2 12.2708 2.3493  0.1915 18.1491 27501 0.1515
3 17.4251 2.3915  0.1372 22.3718 2.8175  0.1259
4 24.9668 2.5550  0.1023 30.9845 2.9122  0.0940
5 34.0775 2.6995 0.0792 40.1506 3.0032  0.0748
6 42.5610 2.8032  0.0659 49.6922 3.0765 0.0619
7 52.6813 2.8805 0.0547 59.2671 3.1298  0.0528
8 61.3649 2.9369  0.0479 68.0866 3.1723  0.0466
9 70.3584 2.9810  0.0424 77.6509 3.2043  0.0413
10 78.2626 3.0163 0.0385 85.7246 3.2318  0.0377

TABLE 2

5

Local condition numbers for the wire basket method with approzimate wire basket block Sy,

v=103 v =04
n | cond(SO7T 50 Ay Am | cond(SO7 50y Ay, Am
2 16.6074 3.6828 0.2218 26.3776 5.0205 0.1903
3 30.3822 3.5840 0.1180 51.1020 5.5494  0.1086
4 40.2729 3.3967 0.0843 65.3653 51190 0.0783
5 51.7355 3.4773  0.0672 80.7182 5.1366  0.0636
6 63.2516 35712 0.0565 93.0737 51010 0.0548
7 76.3325 3.6988 0.0485 110.8017 5.1580  0.0466
8 89.9607 3.8827  0.0432 124.2012 5.1945 0.0418
9 105.0605 4.0638 0.0387 139.9723 5.2592  0.0376
10 119.4171 42311 0.0354 153.3947 5.3092  0.0346

the stiffness matrix on the reference element for n = 3,4, 5, which clearly shows the
limitation of the pure displacement formulation for almost incompressible materials:
when v — 0.5, cond(K) — oo and a mixed formulation should be used instead.

As we have pointed out in Sections 6 and 7.2, our wire basket algorithm satisfies
the null space property and therefore the local condition number cond(§(i)_15(i)) for
an interior element is an upper bound for the condition number of the whole precon-
ditioned operator cond(S~1S). For an interior element, both S() and S®) have the
six-dimensional null space A spanned by the rigid body motions. The local condition
numbers are computed as the ratio of the extreme eigenvalues Ay; and A, of S~ g)
in the space orthogonal to A". Table 1 provides the local condition numbers and ex-
treme eigenvalues for ¥ = 0.3 and 0.4 when the wire basket preconditioner contains
the original wire basket block S%)W. Table 2 provides the same quantities when the
wire basket preconditioner contains the simplified wire basket block §‘(,IZ,)W, defined in
(11).

As in the scalar case, the simplified wire basket block is less expensive but yields
higher condition numbers than the original block. In both cases, it is difficult to discern
a difference between a linear and a polylogarithmic growth of the condition numbers.
However, the log-log plot of Figure 2 seems to indicate that the growth of A1 is less

than linear.
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FiGg. 2. Log-log plot of 1/Am as a function of n for v = 0.3; "X’ denote values for the method
with the original wire basket block, while ’o’ denote values for the method with simplified wire basket

block
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