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Abstract

Optical Mapping is an emerging technology for constructing ordered restriction maps
of DNA molecules [1, 2, 3]. The underlying computational problems for this technology
have been studied and several cost functions have been proposed in recent literature. Most
of these propose combinatorial models; one of them also presents a probabilistic approach.
However, it is not a prior: clear as to how these cost functions relate to one another and to
the underlying problem. We present a uniform framework for the restriction map problems
where each of these various models is a specific instance of the basic framework. We achieve
this by identifying the following approaches to the ordered restriction map problem: (1)
using data consensus or agreement, and, (2) optimizing a characteristic function of the data.
Our framework also opens up the possibility of exploring other cost functions. An additional
feature is that we not only integrate the combinatorial models but also analyze the probabilistic
model within the same framework. Finally, we indicate the open problems by including a
survey of the best known complexity results for these problems.

1 Introduction

The Human Genome Project aims to determine the entire sequence of Human DNA and to
extract genetic information from it. In this context an important step is to build restriction
maps of portions of the DNA [4]. A restriction enzyme cleaves or cuts a DNA molecule at some
fixed site called the restriction site. An ordered restriction map specifies the location of these
identifiable markers or restriction sites along a DNA molecule. A microscope-based technique
called Optical Mapping [1, 2, 3] is a very promising emerging technology for rapid production of
ordered restriction maps.

We present a uniform framework for the ordered restriction map problems. In this process,
we identify two approaches to the ordered restriction map problem: (1) using data consensus
or agreement, and, (2) optimizing a characteristic function of the data. Various computational



problems proposed in [5, 6, 7, 8, 9], turn out to be instances of problems in this uniform framework.
Our framework also opens up the possibility of exploring other cost functions. Also, an interesting
consequence has been the analysis of a general probabilistic approach [8] in the context of this
combinatorial framework. While most of these problems turn out to be inapproximable as shown
in the survey (Section 6), it is important to bear in mind that the hardness proofs are for the
problems in their total generality. In real life, the data arise from a well-controlled (benevolent)
process. For instance the Exclusive Binary Flip Cut has been shown to be MAX SNP-hard [9],
but a dense instance', which the real data satisfies, has a polynomial time approximation scheme

(PTAS) [6].
We conclude the paper with a brief survey of the known complexity results and open problems.

Organization of the paper. In Section 2, we give an informal introduction to the problem. Section 3
discusses the data consensus/agreement approach. Section 4 discusses the characteristic alignment
approach. Section 5 presents the analysis of a general probabilistic approach. Section 6 presents
a survey of related work.

2 The Ordered Restriction Map Problem

We will define the problem informally as follows. Let us view this as a game played by Ann and
John. John has a string S, of length n, of 0’s and 1’s. He makes m copies of this string and,
using some process, alters the m copies in some controlled manner.

John assures Ann that the number of these alterations is not very large. Now, this altered set of
m strings, called the data set, is made available to Ann and she is required to guess the original
string S John started with. Ann makes a (reasonable) guess by providing an S’. The problem
that Ann solves is the Ordered Restriction Map problem.

Let us now look at the (reasonable) alterations John can make.

1. False Positives: John can change some 0’s to 1’s in the m copies. But he must assure Ann
that the number of such changes is very small.

In practice, these may be due to actual false cuts or due to errors in the pre-processing
stage.

2. False Negatives: John can change some 1’s to 0’s in the m copies. But he must assure Ann
that the number of such changes is no more than mc; for each column j. Note that in
the absence of this restraint on John (and with False Positives), Ann will have no way of
guessing a reasonable S’.

'A problem is dense if the number of 1’s or cuts in a column is m~, where m is the number of molecules or
rows and 0 < v <1 is a fixed.



(1 —¢;) = p; is the digestion rate of the experiment or the minimum number of 1’s required
for a column j to be designated a consensus site 2.

3. Spurious Molecules: John can throw out some, say k, molecules from this data set and throw
in k random strings of 0’s and 1’s in its place.

In practice, some “bad” molecules get into the sample population; these need to be invali-
dated and not used in the map computation.

4. Sizing Errors: John moves the positions of some 1’s in a small neighborhood, that is, for
some ¢ > 0, he can move the position of a 1 in the molecule at j to anywhere between j — ¢
and j + &.

This corresponds to the possible sizing errors of the fragments. The input data does not
depict the location of restriction sites accurately because of the error inherent in measuring
the lengths of fragments that remain after digestion by the restriction enzyme. Thus a 1 at
some site in the molecule might in fact signal a restriction site in one of its neighbors. This
fuzziness is the result of coarse resolution and discretization, other experimental errors, or
errors in preprocessing the data prior to constructing physical maps such as in the image
processing phase.

5. Orientation Uncertainties: John flips some of the strings: if s = zy29...2,_12, is a string
with z; =0 or 1,7 =1,2,...,n, the flipped string is z,2,_1 ...z227.

When the molecule is laid out on a surface, the left-to-right or right-to-left order is lost.
However, the orientation information may be given in the data (using a more elaborate
chemical protocol) with a vector arm on one fixed side of the molecule [1]. The model can
view this as a consensus cut site at one end of the map. Notwithstanding this, there is a
non-zero probability of the orientation of the molecule being still unknown.

6. Missing Fragments: John can remove some fragments of the string (the substring between
two 17s).

This corresponds to fragments that get washed away during the experiment, which is com-
mon for BAC DNA, although not for cosmids and ADNA [8].

The correspondence of the Ann and John game to the Ordered Restriction Map problem is as
follows: a string is a molecule, the length of the string corresponds to the number of sites on each
molecule, the 1’s in the string refer to cuts and the 0’s refer to no-cuts at that site. The string S is
called the map, and the 1’s on S are the consensus cuts. The changes that John makes correspond
to the various experimental and/or pre-processing inaccuracies that creep in at various stages.

Ann is required to produce an S’ that gives an alignment of the molecules that optimizes a cost
function. Alignment of the rows/molecules refers to assignment of the following:

21t may be noted that if the number of false positives per column j is q;, then Ann cannot make a reasonable
guess, if the following holds: p; + ¢; = 1, for any j.



1) Labeling a molecule as spurious or not.

2) Labeling the orientation of the molecule as flipped or not.

3) Assigning a left-flushed or right-flushed or any other positioning of each
molecule.

A map is an n-length string that designates each site as a consensus cut site or not.

Circular Ordered Restriction Map Problem. If John take the string S and glues the two
free ends producing a “seamless” ring, the corresponding problem is the circular DNA problem.
In this version John makes m altered rings (instead of linear molecules as in the previous case)
available to Ann. The seamlessness refers to Ann not having any information about where John
glued the ends. The problems in the linear version also appear in the circular configuration and
we do not explicitly categorize any of these in the rest of the paper.

The Cost of an alignment is a function (measure) of the alignment which we optimize. This paper
explores various forms of “reasonable” cost functions. Recall that a 1 in S’ at location 7 implies
that there are at least mp; 1’s in the aligned data set in column j. For the rest of the paper let
mp; = c;, that is ¢; is the minimum number of 1’s required in column j for it to be a consensus
cut column.

3 Consensus/Agreement with data

This approach uses the mutual agreement between the molecules to obtain an alignment of the
molecules and a map. There are two views to this: one uses an explicit hypothesis and the other
does not. We will discuss these views in the next two sections, and show that the latter is a
particular case of the former.

3.1 Consensus/Agreement with a Hypothesis

Let hypothesis H have K restriction sites each at location [,k = 1,2,...K. As the location of a
site is not exact, assume that it has a distribution G;() about the correct location [; in 7, with
standard deviation o;. Further assume that given H and a molecule 7 with some fixed alignment,
we can designate every cut site in the molecule as true or false. A true site will correspond to [;
of H, for some 7, at a distance d; from it, and, a false site will have no such correspondence. For
an alignment of the rows/molecules define the following:

T, = Z (number of true sites in molecule 7 at /), (1)

=1



m

F; = Z (number of false sites in molecule ¢ at /). (2)
=1

Let F' =3, F;. Then M, the match for an alignment with hypothesis # is defined as

M= Z{f] (dj) +9;(Fj)}, (3)

and the problem is to maximize M. f() and g¢() are “suitable” functions on the number of true
and false sites respectively at a location j, depending on whether j is a consensus cut site or not
in the hypothesis H. An alternate form of M can be obtained by defining function §() on F
instead of F; in equation (3).

Agreement with a hypothesis uses the following optimization function:
m

max M(H, 1) . 4
(over all hypotheses H & alignments) {; ( )} )

3.1.1 Properties of functions f;() and g;()

Note that by their usage, f;,¢,9:{0,1,2,...,m} — R. What must be the conditions on f;() and
g;() (or g;()) so that the “mutual agreement” of the molecules (or data) is not violated?

1. fi(z) < fi(y), Vz <y, and 2,y > ¢;.
2. g;(z) <gi(y), Ve>y, and z,y < ¢;.
3. g;(z) > fi(z), Vz <y,
4. gi(z) < fi(z), Vz>c¢;.

The first condition states that the “agreement” must steadily increase with increase in matches,
else it violates it; the second condition has the same spirit. These conditions ensure that a
consensus cut column at j has at least ¢; 1’s. Hence one can see that the cost functions can be
“designed” using the constants ¢;’s (or probability p;’s) by defining appropriate f;() and g;() that
satisfy the above conditions.

Let G; have a very small o;,V/. This leades to the idealized version of the problem, where the
location of a site is supposed to be exact; thus the molecules can be represented as a string of
0’s and 1’s. Thus the data can be represented in a m X n binary matrix [M;;] with each entry as
either 0 or 1. Each row represents a molecule and each column refers to a site on the molecule:

-th

thus there are m molecules and n sites. A 1 at position (¢, §) means that the 7' site (column)



of the ith molecule (row) is a cut. A 0 indicates the absence of a cut. A hypothesis is a map or
a n-length vector with 1’s representing a consensus cut site and 0 representing its absence. Let
S ={p1,p2,-..,pn} be the digestion rates of the locations j = 1,2, ..., n. The different problems
that respect the “mutual agreement” criteria appear in the following sections.

3.1.2 Problem Instances

Binary Flip Cut (BFC) [5]: Given M;; and the digestion rates S, find an alignment of the
rows/molecules and a map that maximizes the number of 1’s in the consensus cut columns (which
is at least mp; for the consensus cut column j). The alignment takes orientation uncertainties into
account; incorporating the missing fragment errors gives rise to Binary Shift Cut (BSC) problem
[8], [7], [9], and incorporating the good/spurious molecule error gives Binary Partition Cut (BPC)
problem [8], [9].

Exclusive Binary Flip Cut (EBFC) [5, 6]: Given M;; find an alignment that maximizes the number of
1’s in consensus cut columns where only one of j or j = n — j+ 1 is a consensus cut satisfying the
following condition: the column with the higher number of 1’s (between j and j) is the consensus
cut.

The EBFC problem can alternately be defined in terms of the digestion rate, p; = ¢;/m. Note
that this is an equivalent definition of the EBFC problem (see [9] for further explanation):

Sj = {ilM;; = 1 AND M = 1}
S; = H{i|M;; =1 XOR M; = 1}

S5

Cj:Sj-i- 5 (5)

Balanced BFC (BFCpg): Given M;;, find an alignment of the rows/molecules and a map that
maximizes the number of 1’s in the consensus cut columns and the number of 0’s in the columns
that are not consensus cut columns. In a similar spirit as before we get the Balanced BSC (BSCg)

and the Balanced BPC (BPCp) problems.

Conservative BFC (BFC¢): This gives a conservative evaluation of the cost per consensus cut
column and is defined as follows. Given M;;, find an alignment of the rows/molecules and a map
that maximizes the number of 1’s less the number of 0’s in the consensus cut columns. In a similar
spirit as before we get the Conservative BSC (BSC() and the Conservative BPC (BPC() problems.

Note that all these problems also appear in the circular ordered restriction map problem.

Lemma 1 If f;(z) is a linear function and f;(z) = g;(z), 0 < z < m, M() is a constant
function.



Proof: Under these conditions, every column (irrespective of the alignments of the rows) can
either be or not be a consensus cut column without affecting the cost. If f;(z) = az+ 3, for some
a > 0, then the cost function is always oA + nf3 where A is the number of 1’s in the input matrix
and n is the number of columns. (Note that this is not true if the functions are not linear since
h{a + b) # h(a) + h(b) where h() is not a linear function.) o

Table 1 lists these problems and the forms of f() and g() and Figure 1 plots these functions for
convenience. It is interesting to note that problems with linear f() such as EBFC, BFC and others
gives rise to inapproximable combinatorial problems [9]. However, attempting to simplify the cost
function trivializes the problem as shown in Lemma 1.

3.2 Consensus/Agreement without (explicit) hypothesis

In this approach, we take d molecules, and solve the problem exhaustively: we take all possible d
sets from the m molecules and get an alignment of all molecules. The approach is summarized
as:

max {i i i M(il,ig,...,id)}. (6)

(over all alignments) | [21 020, iomig,

Informally, we are looking for d mutual agreements between molecules. In particular if d = 2,
then the task is to maximize pairwise match. We will show that this formulation which does not
have an explicit hypothesis is actually a special case of the one with a hypothesis.

2d—1

Given s molecules, i1, i3, .. .,%4, they can be matched for an alignment (out of the possible

configurations in the situation where orientation uncertainty is modeled). The total number of
such alignments depend on the errors being modeled. For a § > 0, define

AX (1,49, ...,iq5) = # of cut sites that are within § of each other, given X,
and,
DX(il, ig,...,14) = 7 of cut sites that are not within § of each other, given X,

where X denotes one of the alignments and the match is made respecting this alignment. Let

M (inyiny o oyia) = AX(iryig, .y 10) (7)
M?(ilvi%"wid) = AX(¢171.27"'7id)_DX(i17i27"'7id)' (8)

Notice that AX and D¥ incorporate all the errors being modeled.



Consensus/Agreement Criteria

Problem

| o; | Errors Modeled | f(x) | g(=) ] ¢
Linear f()
A-1 Exclusive Binary implicit
Flip Cut (EBFC) [5], [6]. Orientation (eqn b)
A-2 Binary Flip Cut uncertainties
(BFC) [5], [6],[9] small
A-3 Binary Shift Cut Missing
(BSC) [8], [7] fragments
A4 Binary Partition Good/spurious T —cy 0 user defined
Cut (BPC) [8], [9] molecules
A-5 Weighted Flip Cut Orientation
(WFC) [6] fixed | uncertainties,
sizing errors
A-6 EBFChax,x Orientation c;— implicit
uncertainties (eqn b)
Balanced problems
A-T BFCp [7] Orientation
uncertainties
A-8 BSCpg Missing 20 —m m — 2z implicit
small fragments (¢; =m/2)
A-9 BPCp Good/spurious
molecules
Conservative problems
A-10 BFC¢ [T7] Orientation
uncertainties
A-11 BSCe Missing x m—zx implicit
small fragments (¢; =m/2)
A-12 BPC¢ good/spurious
molecules
Weighted Consistency Graph (WCG) problems Quadratic f()
A-13 Pairwise match )
under M, small All errors 0 No ¢;
A-14 Pairwise match 2(5) = (5 implicit
under M (eqn 10)
degree-d f()
A-15 d-wise match @)
under M, small All errors 0 No ¢;
A-16 d-wise match 2() - (5 implicit
under Mo (eqn 9)

Table 1: Problems using the consensus/agreement criterion (identified primarily by monotonically
increasing f;()). All the problems also model fafse positive and false negative errors. Recall that
c; = mp; is the minimum number of 1’s or cuts required in a column j for it to be a consensus
cut column.



Theorem 1 The matching with d-wise agreement is equivalent to the following optimization
problems.

T,
max Z (d])’ under My,

(over all configurations)

T; m
max 2177 ) - , under Mo, 9
(over all conﬁgurations)zj: ( (d) (d)) ’ )

where T; represents the number of cuts at the position | in that configuration.

and,

Proof: Consider a configuration. The number of matches per column is (ZJ) We need to
maximize this over all the columns, hence the result. Similarly the other cost function where the

() (()-(2) o

a

cost 1s

Corollary 1 The pair-wise matching problem is equivalent to the following optimization problem:

max ZTJ(TJ -1,
J

over all configurations

where T represents the number of cuts in the position | in that configuration.

Case d = 2 : Construct a graph G corresponding to a given problem, with every vertex v;
corresponding to a molecule 7. Let X =S denote a configuration where both the molecules 7 and
j are taken as is, and X = O denote the configuration where one of them is flipped. Every edge
e;; = v;v; is labeled and weighted as follows. Label L(v;v;) is defined as:

L(ei;) = { ' MS(i?j) z MO(LJ')’

—1 otherwise.

Define Flip(L(e;;)) = —L(e;;). Weight Wit(e;;) is defined as (notice that all the weights are
negative)®:
I/Vt(eij) = mln(MS(Z7J)7MO(Z7J))_maX(MS(Z7])7MO(I7])) (11)
= —IM3 (6, 5) = MO(i, j)]

3For readers uncomfortable with the use of negative weights, this problem may be viewed as a mazimization
problem with positive weights (by negating all the weights). However, we use the negative weight to retain the
naturalness of the optimization problem.
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Figure 1: The plots of the f;(z) and g;(z) functions for the different problems using the con-
sensus/agreement criterion. f;(z) is the increasing function in all plots. g;(z) is the decreasing
function in (b) and the horizontal line in the others. In each case, ¢; is given by the zero of
(To create the plots certain values of m were assumed; since the
purpose of these plots is to indicate the shape of these curves, we skip the other details that are

the polynomial f;(z) — g;(z).
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Vertices v;,v;, vy, are consistent if L(e;;)L(ejr)L(e;5) = 1. A labeled graph G is said to be
consistent if every three vertices v;, v;, vy are consistent.

Weighted Consistency Graph (WCG) Problem: Given the match problem with the corresponding
graph G, the problem is to obtain a set of edges S = {e!, €2, ..., e"} with new labels L(e;;) defined

as follows:
20N —L(eij) if €;; € S,
Lleij) = { L(e;;)  otherwise

such that

1. G is consistent under the labels L(), and,

2. S°F, Wt(e') is minimized.

If G is consistent, an alignment of all the molecules can be obtained by simply following any
spanning tree, and computing the relative orientation of every pair of molecule.

An interesting starting point is to assume that Wt(e) is constant for all edges and then find the
minimum number of flips required to get a consistent graph. This is called the Consistency Graph
Problem [9]. We make the following observations about a graph in this context.

Lemma 2 For any graph G, there always exists a consistent labeling of the graph and an upper
bound on the number of flips is the number of edges labeled “—17.

Lemma 3 For an inconsistent triplet of vertices (edges), exactly one edge can be flipped to make
it consistent and that edge can be any one of the three.

These observations may be useful in designing (approximate) algorithms to solve the problem.

4 Optimizing the characteristic of an alignment

Yet another way to formulate the problem is to optimize or bound a characteristic of an alignment.

4.1 Optimizing K, the number of consensus cuts

Minimizing number of consensus columns (BFCy,in x): Given M;; and the digestion rates S, find an
alignment of the rows/molecules and a map that minimizes the number of consensus cut columns.
In a similar spirit one can define BSC;n k and BPCink .

11



Maximizing number of consensus columns (BFCy,ax x): Given M;; and the digestion rates S, find an
alignment of the rows/molecules and a map that maximizes the number of consensus cut columns.
This cost function has been suggested in [8]. This has been defined as BFCx in [9]. In a similar
spirit one can define BSC,.x x and BPC . k-

4.2 Optimizing discrepancy

Define a discrepancy d;, between a column j and its conjugate j as the difference in the number of
1’s between the column j and j, given an alignment. Now, different cost functions can be defined
based on d;. Note that discrepancy is meaningful only in the context of EBFC problems.

1. EBFCiinmax : Obtain an alignment and a map that minimizes the maximum of the individual
(7 = 1,2, ..., n/2) discrepancies. Note that this attempts to concentrate the 1’s in the
consensus cut columns.

2. EBFCiax,min : Obtain an alignment and a map that maximizes the minimum of the individual
(7 = 1,2, ..., n/2) discrepancies. Note that this attempts to distribute the 1’s as evenly as
possible.

3. EBFCmax,max: EBFCpin,min: These can be defined in the same spirit but do not appear to
be interesting values and the functions are very simple to compute.

4. EBFCpin,z: Obtain an alignment and a map that minimizes the sum of the discrepancies.

5. EBFCiax,x: Obtain an alignment and a map that maximizes the sum of the discrepancies. It
is interesting to note that this satisfies the consensus/agreement criterion as the associated
f;(z) and g;(z) functions satisfy the conditions discussed in Section 3.1.1. It can be verified
that EBFChpaxx (A-6) attains its optima at the same alignment as EBFC (thus these two
problems are identical).

4.3 Bounding Alignment Errors

Another class of problems is where we seek to obtain an alignment when the number of molecules
that show the error is bounded by a fixed number, say v. Let /; denote the number of molecules
that are flipped 4, let I, denote the number of molecules that have missing fragments and let I,
denote the number of spurious molecules in an alignment. Thus /; < + and so on for the optimal
alignment. To retain consistency of notation we call these problems BFC.;, BSC.; and BPC.;
when in the alignment /¢, I, or I, respectively are at most v. One can also envisage problems

*In an alignment let j be the molecules flipped; then due to the symmetrical nature of this error I; =

12



where multiple errors are being handled simultaneously. Note that all these problems also appear
in the circular ordered restriction map problem.

The underlying chemical process that gives rise to the restriction map problem is fairly accurate

and it is assumed that only a small percentage of error (orientation uncertainty or missing frag-

ments or spurious molecules) creeps into the process. Hence these cost functions are meaningful.

B-1
B-2

B-3
B-4

B-12
B-13
B-14

Characteristic Optimization

Problem Errors Modeled Cost Function On c;
max {32, 1;(13)G;(d;) + 9;(Fy)} |
(eqn 3)
fi(=) 9;(2)
EBFChin,x» Orilentation implicit (eqn 5)
BFChin uncertainties
BSCi Missing f ¢ Loe<g 0 defined
min K issing fragments 0 otherwise user define
BPChin K Good/bad molecules
BFCrax Orientation
BSC Missing f ¢ 0 z<c 0 defined
max K issing fragments 1 otherwise user define
BPCrax K Good/bad molecules
Probabilistic potentially zIn(-)+ g(z) = implicit
Model [8] all (m—2)In(1 - %) z(lnZ —1)
Using discrepancy d;
EBFCin max Hlin(over all H & aligns) {max; dj}
Orientation implicit
EBFCrax,min uncertainties MaX(gver all # & aligns) {min; d;} (eqn b)
EBFCrin s Hlin(over all # & aligns) %5 dj}
Bounding alignment errors
BFC. T Orien uncert I; < v under cost function C
BSC T Missing fragments Is < ~ under cost function C depends on C
BPC. I Good/bad molecules I, <~ under cost function C

Table 2: Classification of problems using the optimization of a characteristic of an alignment.
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5 A Probabilistic Approach

A probabilistic model for the restriction map problem is present in [8]. We will analyze this model
in the context of our framework.

We will not attempt to give a complete definition and description of the proposed model here.
The reader is advised to look at [8] for notations and other details.

At the heart of the model is the following definition (equation (1) in [8], which we reproduce
verbatim):

N —(sijr—hi)? /202
€ J 2
= [ (.G

=1
However, for the sake of ease of understanding, we use the example that the authors use to explain
the above formula (which we again produce verbatim) shown below:

Mgk
) (1= pe)' 7m0k | x AP5e™  (12)

e—(sl—h1)2/20% e—(SN—hN)2/20'?\]

X (1—=pe,) XA M XX B
Voo, TRl XA P Ty

This defines the underlying cost function for the probabilistic algorithm. Pr [D;|#, A;x] denotes
the probability of the molecule j aligned (alignment index k) by A;; with the hypothesis H.
€1,C9,...,cN are the consensus cuts and sy, Sg,..., sy are their locations in the hypothesis #.
hi, ha, ..., hy denote the distances of each of these cuts, if they exist, in the molecule j from the
exact locations under the alignment A;;. M is the number of molecules and N is the number of
consensus sites in the molecule. Ay is the expected number of false cuts. [} is the number of
false cuts in the data D; for the alignment A;; that do not match any hypothesis H.

Pr;i, = Pr(D;|H, Aji] = pe,

(13)

To understand this function better, consider the special case where every molecule is good. Then,
the cost function that equation (13) suggests can be viewed as form (4). In [8] the log-likelihood,
L, which is to be maximized, is computed as (we again reproduce verbatim):

L= Zln Pr(D;|H]. (14)

J

Note that in the special case where every molecule is good, by the definition of Pr[D;|H] in [8],
the following holds:

Pr[D;|H] = %ZPT[DA%,Ajky (15)
k

Under the assumption that, when a molecule is matched against a hypothesis, the alignments that
do not match give a very low probability, that is Pj; ~ 0, £ corresponds to M of equation (4).
Now, to understand how this function behaves, consider the special case where (G has a constant

14
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Figure 2: The plot of f(z) = zIn(%F) + (M — z)In(1 — §7) with M = 100 and ¢ =
0.1,0.3,0.5,0.7,0.9,1.0. The ”perfect” cup shape is obtained when ¢ = 1.0; the curve with
the lowest dip corresponds to a = 0.1.

o1, VI; for different values of the constant we get plots of the function as shown in Figure 2 (using
the equation (16) discussed below). For further discussion, we choose the curve, which corresponds
to G() = 1 because of its appropriate shape > Let z = Z]]\il m;;k, for a configuration. m;;; is
the indicator variable for molecule j and cut ¢ of the hypothesis H, under alignment Aj. Since p.,
is the probability of cut 7, p.,, = /M. Let y = Z]]\il Fi, where ;1 is the number of false cuts
in data D;. Thus Ay = y/M, by definition of Af.

Notice that equation (12) uses indicator variables s;;; and m;;; and a count variable F; that
gives the number of false cuts per molecule j for the alignment A;; (although s;;; does not
appear explicitly in the equation it is nevertheless used, see [8] for details). The number (and the
values) of the variables s;;; and m;;; depend on the number of cuts in the hypothesis 7 and the
value of I;;, depends on decisions whether cuts in a molecule correspond to cuts in the hypothesis
‘H or not. Hence we can effectively discretize the model depending on the number and values of
these variables.

Inpc

As p., = e "%, if there are z molecules showing a cut at location j (thus M — z that do not) for

®Notice that if Gi() = a = 0.1 is used, the §() curve in Figure 3 is such that f(z) < §(z), for all # > § > 0,
where 4 is a very small number, which is not desired.
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an alignment Ay, we have (using equation (14)),

fz) = In ((elnpcj)gf(eln<1—pc]>)M—z>

= xlnpcj + (M —z) ln(l—pcj) (16)
= zn(37) + (M —2)In(1 - 37)
assuming G;() = a = 1.0 (see Figure 2). Similarly, if there are y false cuts, then,
gly) = M (ln e"\f) +yln )y
= —MMXs+yln)s (17)
= y(ngz—1)

f(z) is such that f(a 4+ b) < f(a) + f(b), for a +b < M/2 and f(a+b) > f(a)+ f(b) for
a+b> M/2. Thus for a +b < M/2, the model prefers to put the 1’s into one consensus site and
for a + b > M/2 it tries to distribute the cuts between j and its conjugate j.

Now, based on our framework, we suggest a possible modification that explicitly models the
digestion rates p;’s.

1. Modeling the false cut at different locations separately, and,

2. Using a term k; < 1 that ensures that the digestion rate is at least p;, 0 < p; < 1.

For clarity, we skip the subscript j of k;, p; in the rest of the discussion. Now equation (13) can
be modified as:
6_(51_}7‘1)2/20% e—(SN—hN)2/20'§V

Y
Prjk:pqwx(l_pQ)Xk/\fze n X oo X Pey \/ﬂO’N

k can be viewed as a factor that “discourages” Ay to be large and the extent of this “discourage-
ment” is governed by equation (21) as shown below. Using equation (18), equation (3) modifies
to:

(18)

M =D {fM)Gi(d) + g(F)}, (19)
[
where
F; = (number of molecules that have a false site at [),
and,
ky
=ylln—=-1]). 2

9(y) =y < o ) (20)
k is such that

g(z) < f(z), for z > pM. (21)

Figure 3 shows a plot of the functions f() and ¢() for different values of k.

This concludes the analysis of the probabilistic model in our framework.
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Figure 3: The plots of the f(z) and g(z) functions for the probabilistic model (f(z) is the cup-
J(

shaped curve and the other is the g(z) curve). Thus (a) shows the f() and §() functions for
equation (12) and (b) and (c) show the f(z) and ¢(z) functions for equation (18).
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6 Complexity Results

In this section we review the known complexity of the problems discussed in the previous sections.

The Exclusive Binary Flip Cut problem (A-1) was shown to be NP-Complete in [7]; this result
was improved in [9] to show that the problem is MAX SNP-hard. MAX SNP hardness implies
that obtaining an € approximation for a problem, where € > ¢, for some fixed €y (depending on
the problem) is NP hard. Thus a MAX SNP hard problem can not admit a polynomial time
approximation scheme (PTAS) [10]. In [6], it was shown that a dense instance of this problem
admits a PTAS. An instance of a problem is dense if the number of 1’s or cuts in a column is m,
where m is the number of molecules or rows and 0 < v < 1 is a fixed constant. It can be verified
that EBFCpaxs (A-6) attains its optima at the same alignment as EBFC, hence EBFCpaxx is
also MAX SNP hard. Further, in [9], it is shown that achieving an approximation ratio 1 — T /7
for EBFC is NP-hard, where T denotes the upper bound on the polynomial time approximation
factor of the well-known max cut problem.

The Binary Flip Cut (A-2) and Weighted Flip Cut (A-5) problems were shown to be MAX SNP
hard in [9]. A different hue of this problem, BFCyaxx (B-5) was shown in [8] to be NP-hard.
This result was improved in [9] to show that the problem is MAX SNP hard. It is further shown
in [9] that achieving an approximation ratio 1 — T /7 for BFC and WFC and an approximation
ratio of (1 —Y/7)pmaz/Pmin for BEChax i is NP hard where p,,.;, = min; p;, and py,., = max; p;
(the maximum and minimum of the digestion rates).

The Binary Shift Cut problem (A-3) was shown to be NP-Complete in [7], and another hue of this
problem, BSCax x (B-6), was shown to be NP hard in [8]. Both these results were improved in [9]

where it was shown that the problems are MAX SNP hard. Further, achieving an approximation
ratio of 1 — T /6 for BSC and a ratio of (1 — T/6)pmas/Pmin for BSChax k is NP-hard.

A version of Binary Partition Cut problem, under known number of bad molecules,was shown to
be NP hard in [8]. It was shown that the general BPC problem actually has a polynomial time
algorithm in [9].

Different hues of the Binary Flip Cut Problems, BFCp (A-7) and BFC¢ (A-10) were shown to
be NP complete in [7]. It has been shown in [9] that the Weighted Consistency graph problems
(A-13, A-14) and d-wise match problems (A-15, A-16) are MAX-SNP hard and achieving an
approximation ratio of 1 — T in each case is NP hard [9].

The complexity of the remaining problems is unknown at the time of writing this paper.
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7 Conclusion

This paper presents a uniform framework to model problems arising from the emerging Optical
Mapping technology in constructing ordered restriction maps. The attempt has been to integrate
different approaches and problem formulations proposed in recent literature in this area, and to
link the cost functions proposed in these approaches to one another and to the underlying problem.

We identify two main approaches to the ordered restriction map problem, one involving the use of
a consensus or agreement method, and the other optimizing a characteristic function of the data.
We use this to develop a framework where each of these models for the restriction map problem
becomes a specific instance of the basic framework we propose. Interestingly, we have been able
to encompass the combinatorial approaches with the probabilistic approach, all within the same
framework. Finally, we have indicated the open problems by including a survey of the best known
complexity results for these problems.

The availability of this framework opens up the possibility of exploring other cost functions, other
variants of the problem and new approaches to solving these problems.
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