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Abstract

We develop an abstract model of memory management in distributed systems. The model is low-
level enough so that we can express communication, allocation and garbage collection, but otherwise
hides many of the lower-level details of an actual implementation.

Recently, such formal models have been developed for memory management in a functional,
sequential setting [8]. The models are rewriting systems whose terms are programs. Programs have
both the “code” (control string) and the “store” syntactically apparent. Evaluation is expressed as
conditional rewriting and includes store operations. Garbage collection becomes a rewriting relation
that removes part of the store without affecting the behavior of the program.

Distribution adds another dimension to an already complex problem. By using techniques devel-
oped for communicating and concurrent systems [7], we extend their work to a distributed environ-
ment. Sending and receiving messages is also made apparent at the syntactic level. A very general
garbage collection rule based on reachability is introduced and proved correct. Now proving correct
a specific collection strategy is reduced to showing that the relation between programs defined by
the strategy is a subrelation of the general relation. Any actual implementation which is capable of
providing the transitions (including their atomicity constraints) specified by the strategy is therefore
correct.

This model allows us to specify and prove correct in a compact manner two garbage collectors;
the first one does a simple garbage collection local to a node. The second garbage collector uses
migration of data in order to be able to reclaim inter-node cyclic garbage.

1 Introduction

Automatic memory management, or garbage collection, is a valuable service, significantly freeing pro-
grammer’s resources. Programmers can rely on the language implementation to find and deallocate
unneeded objects while also ensuring memory safety: no program will use dangling pointers. Although
garbage collectors come with their problems (e.g. run-time costs, possibly additional synchronization
costs in concurrent systems) the benefits usually outweigh the drawbacks if the collector indeed ensures
memory safety. Unfortunately, the proof that the garbage collector achieves that is very rarely done in
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a satisfactory manner; this happens not only because of the complexity of the strategies used, but also
because of the lack of a simple model of memory operations.

In this paper, we are presenting such a model. Starting from the A,-S calculus of Felleisen and
Hieb [4], and from Milner’s CCS [7], we introduce a language, A, which roughly corresponds to a
distributed, impure functional language.

In Section 2, we present the language A with a rewriting semantics that makes allocation and
communication explicit. The semantics defined allows us to use many of the proof techniques developed
for CCS. In Section 3, we define the semantic notion of garbage and introduce and prove correct the
free-variable garbage collection rule which models trace-based collectors. In Section 4 we provide two
“implementations” at the syntactic level: one that corresponds to a simple local garbage collector which
scans a local heap starting from the local “stack” and the “incoming reference list”, and another one
which is able to collect garbage cycles which span multiple nodes by migrating objects not referenced
locally. We prove that they are subrelations of the garbage collection relation, hence their correctness
follows. Section 5 discusses related work and Section 6 presents a summary and future work.

2 The programming language )|

Our model of memory management is based on a language and its accompanying semantics. To be
adequate for this task the language has to be expressive, with a natural allocation model and a natural
concurrency model. In order to have a manageable formalism (fewer cases, shorter proofs, etc.) we have
only included essential constructs which permit us to make our point.

While our language doesn’t correspond exactly to an existing language, it roughly corresponds to an
impure functional language with threads in a distributed environment. The communication mechanism
it uses is that of CCS: communication consists of synchronously sending and receiving a value via a port.
The allowable expressions, which include assignment, and their evaluation rules are based on A,-S.

2.1 Syntax

A program is a collection of one or more processes running in parallel; they are intended to model
the nodes, or sites, of a distributed system. A process P consists of a thread T and the local store it
has access to, also called heap H. The heap contains bindings which can be mutually recursive, since
we allow modification of bindings through assignment. The thread part of the process, which may be
thought of as the code of the process, may contain sub-threads, all of which share the local memory.
The syntax is presented in Figure 1.

Essentially, the thread specifies what communication is possible. Using CCS terminology, the syn-
tactic forms a thread can take are called combinators. We have the following combinators: idle thread,
prefix, composition, sum, conditional, and recursion. The intention behind these combinators is that the
idle thread ¢ cannot do any actions; prefix allows the specification of a communication (send or receive),
and composition allows threads to run in parallel. The sum combinator allows a nondeterministic choice
between the two component threads. Recursion allows a thread to be specified as the unique solution of
an equation containing a thread variable. Not all such equations have unique solutions. If the solution



(variables) z,y,2z€ Var

(integers) 1€ Int n=eee—=1]0]1|2] -

(expressions) e FExp z|i|Aze|le eg|zi=e

(heap values) h  Hval i| Az.e

(heaps) H Heap {z1 = hi,29 = hy ...}

(ports) o, € Port

(thread var)  X,Y € TVar

(threads) T,U Thread ¢ idle thread | Tv+ 15 sum
Ty || T2 composition | X thread variable
alz/l  prefix (receive) | fix {X =T} recursion
ale " prefix (send) | if 2 then 7T else U conditional

(process) P,Q Process (H,T)

(programs) E,F Prog P|EGOF

Figure 1: Syntax of \|

is unique,! it is denoted by fix {X = T}. We will precisely describe the behavior of all the combinators
when we present the semantics of the language.

We are only providing enough combinators to achieve the desired expressibility of the language. As
in CCS, we can add relabeling and restriction, but that would make our models more complicated than
is necessary. In CCS, relabeling is only a convenience: programs can be written more compactly by
reusing components. Restriction of ports makes it possible to isolate transitions internal to a component
of the program from interference from other parts of the program. Because our language does not allow
us to hide transitions, we have the extra burden to take these transitions into account when proving
bisimilarity of programs. In the programs written in A, in order to achieve a similar effect, we can give
unique names to the ports involved.

In A, the values are either integers ¢ or abstractions Az.e. Expressions may be values, applications
(e1 e2) or assignments z := e. The assignment produces both a value (that of €) and a side effect.

The heap is a set of pairs, also called bindings. The pairs consists of a variable and a value. The
variable in such a pair can be thought of as the location where the value is stored, rather than a program
variable. In all the rules requiring allocation ( Alloc, App, and a,) we have to ensure that a fresh variable
is chosen for a binding; this in effect guarantees the uniqness of “locations” in memory. On the other
hand, in the control string we expect to work with “program variables”. However, since each program
variable is allocated at a unique location, we can keep the correspondence between a program variable
and its location by replacing all occurrences of that variable in the control string with the heap variable
(the location). We could have chosen to represent program variables and locations by different syntactic
categories, but since no confusion is possible we preferred to have a simpler syntax. This notation is also
consistent with that found in the referenced papers. Dom(H ) denotes the bound variables of H, and
Rng(H) denotes the values bound in H. A variable may be bound to only a single value. Consequently,

1A sufficient condition for an equation X = T to have a unique solution is for the variable X to only occur in 7 in a
prefix combinator.



a heap can also be considered a finite function. Moreover, we require that a well formed program has
the domains of all component heaps disjoint (a variable is bound in at most one heap).

Notation: Ay, A|0|, .
A is the set of all well formed programs. A|0| is the set of all closed programs (no free variables or free

process variables). For a definition of free variables see Figure 5. The union of two heaps H; and H,
with disjoint domains, is denoted by H, W H.

2.2 Semantics

Operational semantics is usually represented by a state transition system. In our case, the state of the
program is syntactically apparent (it is available in the heap and thread parts of processes). Conse-
quently, our semantics will consist of a number of (transition) relations between programs (see Figure 3).
The relations are specified by decomposing the program into an instruction and an evaluation context,
and then giving rewriting rules for each possible instruction, together with the possible side conditions.
An “execution step” consists of selecting a pair from the relation such that the program matches its left
term; the right term is the resulting program. Informally, we will also say that the program made that
transition, resulting in the new program. When no rules are applicable, the execution halts.

Because processes need not be contiguous to communicate, we shall use the technique of labeled
transitions to express the laws of process reduction. Formally, we have a set of labels

Lbl = {a,|a € Port,v € Hval} U {@,|a € Port,v € Hval} U {comp, commy,ify,1f1, sumy, sumy, comm, }

and each label has associated a transition relation. Note that we have an infinite number of labels a,
and @,, one for each possible port—value pair. We will say that, for any a and », the labels a, and @,
are complementary, in notation a, — ag,.

The definition of these relations is given inductively. The fact that a pair belongs to a relation
will be asserted by some rules in case the pair occurs as the conclusion of that rules. A rule can also
have hypotheses, possibly requiring that some other pair of programs belongs to the same or different
transition relation. In notation, rules start with capital letters (as in Ify) while labels and the relations
they define are in small case. A rule without hypotheses is called an axiom. The other rules are
called inference rules. This mode of defining the relations will allow us to prove transition invariants
by induction on the length of the proof that the transition is possible. This proof method is called
transition induction (7).

With the exception of rule Comm, the left term of the pair is a process (thread—heap pair). The
transitions that a process can perform are all determined by the thread expression of that process (by
the thread combinators).

In rule @,, a thread a!y.T is able to send the value of y at port «, after which it behaves like T'.
The side condition expresses the fact that the value used in the label must coincide with the value ¥ is
bound to. The binding may occur anywhere in the program, not necessarily the local heap. In order
to simplify the presentation we did not introduce a transition to signal program errors like “unbound
variable error”. If no transition rule applies, the program is simply stuck.



Expression evaluation contexts, and instruction expression:

(contexts) Cl] e Ctat
(instructions) I € Instr

C[]@IOEC[]IOE:: Tl

Evaluation rules for expressions:

(Alloc)  (H,C[h), H") 2 (H w{z = h}, C[z]) x & Dom(H & H'

(App)  (H,Cley), H') == (H w{z' = h},Cle{z'/z}]) (HWH')(z) = Az.e,
(H&JH)(@/): h,z ¢ Dom(Hw H')

(Assign) (H @ {z = h},Clz = y], H') %" (Hw {z = hy},Cla]) (Hw H')(y) =

Figure 2: Expression evaluation contexts, instructions and evaluation rules for expressions

Program contexts: E[] == [] | E[]O E | F ® &]]

Rewriting rules for programs:

(@) E[(H, aly. T)] — E(H,T))] (H W Heap(E[]))(y) = v

(o) El(H, a2 T)] = EI(H @ {' = b}, T{z'/z})] 2’ ¢ Dom(H & Heap(E[)))
(Ify)  E[(H,if 2 then T else U))] lif# E[(H,TY] (H W Heap(E[]))(z)# 0

(If) E[(H,if z then T else U))] ,ifi)‘g[«}[’ U)] (H W Heap(&[)))(z) =

(Sum) E(H Ty + T2)) == E[(H,Ti))] i=1,2

(Commy) EWH, T UN] “==" €A T || U] EICH, T = E(H, T")]

EWH, U] = EIH', U")],a ~ b

ezp

(Comp) E[(H,a!Ce].T)] V= E(H',a!C[).T)] (H,C[e], HeapE[])) == (H', C[e),
exp € {alloc, app, assign}
(Comm,) E[E®F] T2 ER' @ F E[EG F) % E[E' 6 F]

SE®F] = E[E® F,a~b
(Fiz)  E[(H.fix {Y =T})] ~— E[(H',T")] E(H, Tiix {Y = T}/Y])] = E[(H',T")]
(Comy) EH, T UN] = EH,T" | UN] E[(H,TY] — E[(H',T")]
(Comy) EH, T UN — EH T U E(H,UY]— E[(H',T")]

where a € {a,,@,,ifo,1f1, commy, comp, sumy, sumy}.

Figure 3: Process evaluation rules
Programs: Contexts:

Heap((H,T)) =H Heap([]) =0
Heap(E® F) = Heap(E)W Heap(F') Heap(E © E[]) = Heap(&[] ® E) = Heap(E)W Heap(E]])

Figure 4: Definition of function Heap
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Free variables:

Expressions Threads
FV(2) = {2) V) =
Vi) =0 Fitats )= PUTAGR)
FV(Az.e) = FV(e)\{z) FV{aled) = FV(OUFVT)
(61 62) FV(el) U FV(GQ) ( )
PRin (X = T3) = FV(T)
Sets of values FUT|U)=FVT+U)=FVT)UFVU)
FV(if z then T else U) = {z} U FV(T)U FV(U)
FV(0)=10
FV(Sw{v})=FV(S)U FV(v) Processes and Programs
Heaps FV((H,T)) = FV(H)U(FWT)\Dom(H))
FWEGF) = (FV(E)U FV(F))\
FV(H)= FV(Rng(H))\Dom(H) (Dom(Heap(E)) U Dom(Heap(I')))
Free process variables:
FP(e) =0 FP(X) = {X}
FP(a?2.T) = FP(ale.T) = FP(T) FP(fix {X = T}) = FA(T)\{X}

FP(T||U)=FP(T+U) = FP(T)U FP(U) FP(if z then T else U) = FP(T)U FP(U)

Figure 5: Definition of F'V and FP functions

In rule a,, a thread a?z.T is able to receive at port a a value v. A new variable (2’ in this case)
is chosen and is bound in the local heap to the value received. The thread continues to behave like T
(where the variable 2’ has been substituted for z). The capture-avoiding substitution of a variable for
another is defined for all the syntactic components of programs (see Definition 10). The substitution of
z with a new variable is necessary to maintain unique bindings for variables in the presence of recursive
threads. Rules Ify and If; say that a thread if 2 then T else U behaves like U in case that z is bound
in some heap to the integer 0, and like T’ if z is bound to some other value. Rules Sum; and Sum,
say that the thread 77 + T3 can behave (non-deterministically) as either 77 or T3. Rule Commy, which
describes communication local to a node, applies in case that the thread expression is a composition of
two threads capable of transitions with complementary labels (sending and receiving a value v at some
port ). Note that the local heap is modified.

Transition relation Comp describes a computation step, whereby an expression is reduced to a value
(in one or more steps). This expression reduction is intended to define a left-to-right call-by-value
evaluation order. The expression is decomposed into an evaluation context and an instruction. The
decomposition is guaranteed to be unique [8], and is obtained by scanning the expression from left to
right and taking as the instruction the first redex encountered. The context is the expression with a
hole replacing the redex. Because of this mode of choosing the instruction, a context will always have



at the left of the hole only variables, hence the definition of expression contexts C] in Figure 2. In all
the evaluation rules for expression, we need to supply both the local heap H (which may be modified by
the transition) and the union H' of all nonlocal heaps (in case that some variable is bound non-locally).
The transition rule alloc applies when the instruction is a value, and specifies that a binding of a new
variable to that value is added to the local heap. The value is replaced by the variable in the expression
part. Recall that we required that all heaps have disjoint domains. This translates to the side condition
we have for this rule: z ¢ Dom(H W H'). Rule App specifies that the parameter of the abstraction must
be bound to the value of the argument y. Alpha-conversion is necessary to ensure that no conflicts
occur in the heap. In rule (Assign), the value of y replaces the value z is bound to.

There are also “compatible closure” rules: Fiz, Com; and Comy. The two Com rules say that if the
thread is a composition, and one of the component threads is able to make a transition, then the original
thread is able to make a transition with the same label. The Fiz rule specifies how the unwinding of
the recursion is made.

Finally, rule Comm, specifies that communication can take place between processes £ and F if, in
the context provided by &[], they are able to make transitions with complementary labels. Note that
an effect of applying the Comm, rule is that we may obtain “remote pointers”. However, they are
not syntactically distinguished from “local pointers”, and the same rules apply to them. Circularities
between different local stores can be obtained by embedding pointers in closures.

As we have already said, the program is partitioned into an instruction and an evaluation context.
However, unlike in the sequential case, this partitioning is not unique. Non-determinism can occur
directly, as a result of the sum combinator, or indirectly as a result of parallel composition. We can
have non-determinism because the order of transitions made by different threads is arbitrary and the
language has assignment; a typical example is a that of a thread reading a “global” variable and another
thread assigning to that variable a new value. Another source of non-determinism is overlapping redexes:
two threads attempt to send different values via some port a. These difficulties have to be dealt with
when defining the semantics of the language.

The “evaluation” of programs is just a union of some of the relations described above: a; and @;
which model how the program interacts with the environment, and comp, sumy, sumg, ify, if;, commy,
comm, which describe how the computation can proceed without such interaction. We will use the
following notation:

R = {ajla € Port,i € Int} U {@;|a € Port,i € Int} U{comp, commy, ify, if;, sumy, sumgy, comm, }
R* = RU {a,|a € Port,v € Hval} U {a,|a € Port,v € Hval}

R is the evaluation relation. We will make use of R* in various proofs. Here, a; stands for the set of
port—value pairs where the value can only be an integer. An explanation of why we don’t use the full
relations a,, and @, will be given after we define observational simulation.

2.3 Observational equivalence

The semantics defined is intended to model the behavior of a program which executes in some environ-
ment with which it can communicate through messages. But the program can also make transitions,



like Ify which do not involve communication. Two programs which cannot be distinguished by an ob-
server are observational equivalent. The question is: what is considered observable 7 We propose that
observable is only the communication the program has with the environment. The other transitions are
unobservable, also called internal.

It remains to decide when two programs communicate with the environment in an equivalent way.
Naturally, if both programs send (respectively receive) equivalent values via equivalent ports, they com-
municate in an equivalent way. In our case the values are integers, and their equivalence is mathematical
equality; on ports, the equivalence is the identity relation. Equality is certainly decidable on integers.
We disallow communicating A-abstractions with the environment, since equality on functions is not
decidable. Note, however, that internal communication of closures is possible.

Formally, we define observational simulation with respect to a relation (=) which abstracts from
unobservable computation.

Definition 1 The transition relation = on Ay with labels from {a;,@;} is defined inductively:
ESE fES E where a € {o;,@;}

E2E iR 2 B and E" & E' and b € {comp, commy, comm,., ify, if,, sumy , sumy }.
EAE ifESE"and B" - B

Definition 2 A relation R C A X A} is an observational simulation if it satisfies:
ERF and E= E'= 3F'st. F = F and E' R F'
where a € {a;,@;}. An observational bisimulation is a symmetric observational simulation.

Lemma 1 Let 81,83 be observational bisimulations. Then the identity relation Id on programs, the
inverse relation Sl_l, the composition relation S182, and the union relation S1 U Sy are all observational
bisimulations.

Definition 3 (Program Equivalence, =) Our semantic equivalence on programs is the coarsest ob-
servational bisimulation:

= U{S : S is an observational bisimulation }

Lemma 2 Relation =~ is an observational bisimulation and also an equivalence on programs.
Proof Relation = is a union of observational bisimulations; by Lemma 1, & is itself an observational
bisimulation. Reflexivity, symmetry and transitivity follow from the same lemma.

3 Garbage collection

Definition 4 (Garbage collection relation) A relation R C Aj x Ay is called a garbage collection
relation if it preserves bisimilarity, and has the potential of collecting garbage:

ER Fiff E~ F and Dom(Heap(I')) C Dom(Heap(F))



The garbage collected consists of all the bindings of variables in Dom(Heap(F))\ Dom( Heap(F)).
F is called a collection of F.

Note that the relation leaves open the possibility of a garbage collection algorithm to replace the
value a variable is bound to with something else (the integer zero, for example), as long as the programs
remain bisimilar. (This corresponds to replacing a pointer with NULL.) This is done in [8] to reclaim
space occupied by objects which, although reachable, would never be accessed by the program.

3.1 Free variable rule

The garbage collection algorithms we are going to define are all based on tracing: all the reachable
bindings are preserved. Following [4], reachability is modeled by considering the free variables. If a
heap binding is reachable, and the value bound contains free variables, the bindings of these variables
are reachable.

Since our garbage collectors will leave the thread part of the program intact, we first define a relation
to assert exactly this.

Definition 5 (Thread equivalence, %) is a relation on programs (respectively on program contexts)
defined by:
(H,T)

EoOF

p

(H',T) VYH,H'€ Heap 1~
EQF fEXE andFAF  E|OERFJOF if |~ F[] and E & F

£
e

Definition 6 (The sub-heap relation, Cy) £ Cy F iff Heap(F) C Heap(F).
Definition 7 (Free variable relation) The free variable relation (n&) C A|0| X A|0| is defined by:

EL FifELF and Fcy E

Note that this is a relation between closed programs. Our goal is to prove that the free variable
relation is also a garbage collection relation. In order to show this we need a number of technical lemmas.
We plan to proceed as follows: we define strong bisimulation on A, and show that if two programs are
strongly bisimilar, then they are observationally bisimilar. We will then show that a-conversion is a
strong bisimilarity. We need this result because two identical programs, making an alloc transition for
example, may choose different fresh variables, leading to syntactically different programs. However,
since the resulting programs can be a-converted into each other, the lemma will tell us that they are
bisimilar.

We then define strong bisimulation up to ~, and show that if § is a strong bisimulation up to ~,
then § C ~; it follows that S C =. Then, it is sufficient to prove that (l—fl) is a strong bisimulation up
to ~.

Definition 8 (Strong simulation) A relation S C A x A is a strong simulation if it satisfies:

VaeR, ESFand E+— E'= 3F st. F+— F and ' S F'

A strong bisimulation is a symmetric strong simulation.



Lemma 3 Let 81,8, be strong bisimulations. Then: the identity relation Id on programs, the inverse
relation Sl_l, the composition relation §18q, and the union relation §1 U Sy are all strong bisimulations.

Definition 9 The strong equivalence relation, ~, is the coarsest strong bisimulation:
~= U{S : S is a strong bisimulation }

Lemma 4 Relation ~ is a strong bisimulation and also an equivalence on programs. The result follows
from the previous lemma.

Lemma 5 Relation ~ is an observational bisimulation.

Proof. We have to show that: E~ F and E = E' = 3F' s.it. F 2 F' and E' ~ F”,
where a € {a;,@;}. We show this by induction on the length of proof of E = E'.

o B2 E because % F'.
But E ~ F implies 3F".F —— F' and E' ~ F'. It follows that F = F' and E' ~ I".

b . .
o 3 F because IE" . E —— E" and E" 2 E', where b € {comp, commy, comm,., if,, if,, sumy, sumy}.

But E ~ F implies 3F".F 2L B and E" ~ F". Using the induction hypothesis, from E" & E'
and E" ~ F" follows that 3F" . F" 2 F' and E' ~ .

o £ E' because IE".E 2 E" and E" 2 E.
From the induction hypothesis 3F" . F = F" and E" ~ F". From E" ~ F" and E" L B follows
that AF' . F "= F' and I’ ~ F",

Definition 10 (Substitution) A substitution 8 is an injective finite map from variables to variables.
0 is naturally extended to a function for all syntactic categories in the language in Figure 6.

Theorem 1 Let S = {(F,F)|FE, F € A|0| and 30.F = 0F}. S is a strong bisimulation.

Proof. We have to show: Va € R,(E,F)€ S and E v~ E' = 3F" s.t. F v+ F' and (E', F') € S.
First, we will strengthen the induction hypothesis for the particular case of the substitution relation.
Remember that RT = R U {a,,a,}. We will show that:

Va e RY(E,F)e S and £+ E' = 30 s.t. F' = 0'E' and F 2% P,

Note that this implies the property we want to prove, since Ya € R,a = 0'a (the actions in R don’t
contain variables). We shall prove this by transition induction.
Case 1: B % E' is an aziom. In this case, a must be one of o, @y, ify, if,, sumy, sumgy, comp.

This can only happen if AE[), H,T,H",T" s.t. £ =E[(H,T)], and E' = E[{(H',T"))].

o The derivation is an instance of &,
E[(H, alz. T =2 E[(H, TY] = E', where v = Heap(E)(z). Let 6 be such that I’ = 0.
But I = (E[(H,az.TY)]) = 0(E)[(OH,a'02.0TY)] “2% 0(E)[(OH,OTY). By taking 6’ = 6 it is

obvious that I 2% F'.

10



Values:
01 =1
0 Az.e =X z.(0e)

Heaps:
60 =0
b (Hy{z=v}) =0 H)W{fz=10v}

Labels: Threads:
0 a, = a(g ) 0 alz.U =alfz.(00)
6 @, =T v) 0 ale.U =alfe(6U)
0 a = a, otherwise 0e =c
0 X =X
6U ||V =@ U)|OV)
Processes and programs: 6 if z then U else V. =1if § 2 then 8 U else § V
6 (H, TY) =0 H,0T) bU+V =0U)+(0V)
6EOF =@ E)00F) 0 fix {X =U} =fix{X=0U}

Figure 6: Definition of substitution

o Ify, Ify, Sumq, Sums.

Since these transitions do not introduce new variables, and their labels are unaffected by substitu-
tion, we can take 8' = 0.

Ay

E[(H,a?z. TH] =% E[(HwW{zy = v}, T{z1/z})] = E' , where x1 ¢ Dom(Heap(E)) and let u = fv.
P = O(E[(H, 7. T)]) = 0(E)[(0H, 0262.0T)] -2 0(E)[(8H & {z; = u}, (9 {wa/c})),

where xo ¢ Dom(Heap(0F)). We can choose 8 = 0w {zy = z3}. Given that x5 ¢ Dom( Heap(6F))
and that the programs are closed, it follows that 6’ is indeed injective.

Since T{z/z}{x2/21} = T{xy/x} it follows that F % F' = §'E', so (E',F') € S.

o Comp.

— Alloc. Let z be the fresh variable chosen in the transition E -k E', and z' be the fresh
comp

variable chosen in the transition 0E — F'. If we take 8/ = 6 U{z = z'} we have §'E' = F'.
— App is treated similarly to a,.

— Assign. We can take §' = 6.

a . .
Case 2: E —— E' because of an inference rule: Fiz, Comy, Comy, Comm;, Comm,.

o Comy. We have E = E[(H,T || U)] == E[(H',T" || U)] = E' because E[(H, TH] = E[(H',T")].
Using the induction hypothesis, we have that 30" s.t. 0E[(H,T))] ol 'E(H, T )] = I".
On the other hand, 8"U = 0U. If we take 8' = 6" the conclusion follows.

o Comgy, Fizx are treated similarly.

o Commy (and similarly Comm, ). We have E = E[(H,T || U)] =" E[(H, T | U )] = E
because o, v s.t. (i) E[(H,TH] =% E[(H, T and (i) E[(H, UN] =2 E[(H', U"))].

11



Applying the induction hypothesis to (5[<<1_‘I,T>>],05[<<H,T>>]) we have that 30".0E[(H,T)] =%
O"E(H,T")]. Similarly 36" .0E[(H,U)] % 0" E[(H,U")]. Moreover, § = 8" C 6". It follows

that we can choose 6/ = §".

Definition 11 § is a strong bisimulation up to ~ if ' S F implies, for all a:
If E+* E' then, 3F', F = F' and E' ~ 8 ~ I".

If F % F' then, 3B, E "~ E' and B! ~ S ~ I,

Where ~ S ~ is the composition of the three binary relations ~, S and ~.

Lemma 6 If S is a strong bisimulation up to ~, then
(a) ~ 8 ~ is a strong bisimulation,

(b)S C ~.

Proof of (a)

E~S~FP=3FE,N.E~E,F~F and £y S Fy. But then,Va € R, E+> E' = 3E. K’ %~ E}.
Since S is a strong bisimulation up to ~, it follows that AF|.F} v F{ and E} ~ S ~ F}.

Finally, because Fy ~ F we have that 3F'.F v I and F! ~ F'. This proves 3F'.E' ~ S ~ F".

Proof of (b)
Id C ~, hence Id § Id C ~ S ~. It follows that S C ~ 8§ ~ C ~.

Lemma 7 (n—fi) is a strong bisimulation up to ~.

The proof of this lemma (in the appendiz) crucially uses the fact that the relation is on closed programs.
Theorem 2 (Correctness of GC) (l—fl) is a garbage collection relation. The result follows from
Lemmas 7, 6 and 5.

4 Implementation

The garbage collection rule we have given is just a specification of an algorithm, saying what has to be
done: partition the program in some way into the useful bindings and the garbage ones. We are now
going to present two algorithms to achieve this partitioning.

4.1 The Free-Variable Tracing Algorithm

We have as model a two space copying garbage collector. The collector traverses the graph of the
computation (the from-heap) putting all reachable objects into a to-heap. The traversal is started from
a set of roots, and objects reachable but not yet moved to to-heap are kept into a scan set.

But what are the roots of the computation 7 Since we do not want a system-wide copying but only
one local to each node, the roots for each node will be the free variables in the thread expression (the
local “stack”) and all variables bound locally but referenced globally.

12



In our model this is done as follows: first we define the (*22) relation (see Figure 7). The from-heap

is Hy, the scan set is S and the to-heap is H;. It can be seen that the remote pointers are not followed.
Only variables bound in the local heap are added to the scan set. As usual, the — relation is the
reflexive and transitive closure of —.

() (Hpw{e = h}, S w{a}, Hy) £ (Hy, SU(FV(h) N Dom(Hy)), Hy 8 {z = h})
(L) e[, T L gqm, TY) it (H, Dom(H) 0 (FV(T)U FV(ED)),0) i3 (H",0, H')

I

Figure 7: The algorithm fva

The algorithm to collect garbage is specified by the relation (M) It specifies that scanning is started
with the local heap H as the from-heap, the scan set is composed of the roots of the computation, and
the to-heap is empty. After scanning is finished (the scan set is empty), the live data is in H', while H"

contains only garbage. The (iv—a>) relation still doesn’t specify how the root set is computed but only
what it is composed of. In an actual implementation, the first part, F'V(T'), is obtained scanning the
stack. The other part, FF'V(£][]), is maintained during computation. This can be done for example by
using a variant of reference counting which uses lists of sites referencing an object (instead of a simple
count of them). Each site maintains a list of potential incoming and outgoing references, called the entry
table and ezit table respectively. Both tables are conservative estimates. When a pointer is exported,
the entry table on the local node and the exit table on the remote node are updated (if necessary).
Fach local GC cleans the exit table of useless entries. In turn, exit tables are used to clean remote entry
tables, yielding successively better estimates. More details about this method can be found in [10]

It is important to note that these steps can be described in our framework (the domain of the
transition relations can be augmented with sets for these tables). However, including them would have
made the presentation much less clear. Theorem 3 establishes the correctness of the algorithm.

Theorem 3 (ﬂ) C (n&)

Proof. Suppose £ i F; we have to show that % F, FCy E and FV(F)=10.
The definition of Cgr can be found in the appendiz (definition 6). We first show that the following

scan

invariants are preserved whenever (Hy, S, Hy) — (HY%, 5", Hy)
1. Hy U Hy = H} U H{. Obvious.

2. SU Dom(H;) C 8" U Dom(H]}). It can be seen that % removes a variable x from S only when it
adds a binding x = h to Hy.

3. [ FV(Rng(H,;)) C Dom(Hy) USU(FV(H))] = [ FV(Rng(H;)) C Dom(H{)U S"U(FV(H))]
Consider an arbitrary element z € FV(Rng(H})).

o [fz€ FV(Rng(H;)), the conclusion follows from the induction hypothesis and invariant 2.
o Ifze FV(h)\FV(Rng(H:)), we have the following cases:

13



(scan) (Hyw{z =h},Sw{z}, H) &2 (Hy, SU(FV(R)N Dom(Hy)), Hy W {z = h})

(recog) E[(H, TN —=" E[(H @ H,,TY] if Dom(H)N Dom(H,) =0 and H, # 0

sendg,

(sendy) E[(Hs, TY) =" E[(H:, T)] if (Hy, FUT)N Dom(Hy),0) ™% (H;,0, Hy)
and (H;, FV(E[]) N Dom(H;),0) =% (H,, 0, H,)

sendg

fue

(foe)  E[E]S BT if E[F] 2 (B
(foe)  ElE® F] L% €lE @ ) if [0 F] 2 S[E'e Fland E[E6 F] % Eo P

Figure 8: The second algorithm

— 2z ¢ Dom(H), but then z € (FV(H))
— 2z € Dom(H) = Dom(Hys)w Dom(H;). If = € Dom(H;) we are done. If z € Dom(Hy)
then z € (FV(H)N Dom(Hy)), hence z € 5.

E X F is obvious since the thread part is unaffected by this transition.

F Cgy F s derived easily from invariant 1.

FV(F)=10. Consider E = E[(H,T))] and F = E[(H',T))],
where (H,(FV(T)U FV(E]))n H,0) =2 (H", 0, H').

Initially, Hy = 0, so FV(Rng(H;)) C Dom(H;)U S U (FV(H)) is trivially satisfied.
Since invariant 3 proves the correctness of the induction step, it follows that FV(H') C FV(H) = 0.

4.2 The second free-variable tracing algorithm

The idea of the second algorithm, presented in Figure 8, is that we can also use object migration to
help collect inter-node garbage cycles. We start from the free variables in the local thread. The heap is
partitioned in locally accessible data H; and locally inaccessible data H;. The latter is further partitioned
into data accessible from the entry tables H,, and garbage H,. Note that H, is only referenced from other
nodes. Objects in H, are potentially part of garbage structures (possibly including cycles) spanning
multiple nodes. But then, if we migrate? H,, say to a node which references it, the resulting program is
bisimilar with the original program. However, the new program has shortened the length of at least one
garbage cycle (if it spanned the node garbage collected). Note that in case H, = () the sendy relation
coincides with fva. We do not claim that this algorithm guarantees the collection of cyclic garbage
spanning multiple nodes; improvements of the algorithm to make it guarantee such a collection are
beyond the scope of this paper. Here, we are only interested in showing how a proof of correctness can
be given using the model developed.

?This migration necessitates sending messages to all remote nodes having remote references to that part of the heap,
to inform them of the new destination of their references.
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Theorem 4 (n&) C (»&)

Proof We have to show that: if £ v p for some closed F, then E % F, FCqy FE and F closed.
There are two cases to consider:

o B F because IE[|, B/, s.t. E = E[E] gl E[E"]. But Y coincides with &Q_fl

o E 5 F because IE[], E', F', H, s.t.
E=EE' 0 F) and E[E'® F] "2 (B @ F'] and E[E' © F'] 225 €[ 0 FY).
Let B' = (Hy,T)) and F' = (H},U)). We have:
(Hy, Dom(H ;)N FV(T),0) ¥% (H;,0, H;) and (H;, Dom(H¢) N FV(E]]),0) &2 (H,, 0, H,).

Consider E' 2% E™.

(H;, Dom(H ;)0 (FV(T)U FVE]),0) i (H”,0, H')

It is easily seen that H' = H;UH,. Using theorem 3, E[E""'OF'] Cy E and FV(E[E"OF']) = 0. On
the other hand, Heap( E" © F') = Heap(E" © F"). The conclusion follows using simple properties
of free variables.

It may appear surprising that we didn’t have any deadlock considerations in our proofs. Note,
however, that our proofs rely on the transitions being atomic. An even lower-level implementation for
the second algorithm would have to address how fve can assure that sending and receiving parts of
the heap can be achieved atomically, so as to avoid deadlock, or inconsistencies, caused by two nodes

simultaneously initiating = towards each other. Such a lower-level implementation might employ for

example a simple token protocol for achieving this: before initiating E 2 node requests the token
(only one token exists in the system). When it receives the token, it sends H, and update messages
to all nodes which reference it. After it receives acknowledgments that the data has been received, it
releases the token. Thus, liveness is guaranteed. Note that no such considerations are necessary for the

first algorithm, since the 4% rule doesn’t involve two nodes.
It is only these lower-level implementations that would make a sharper distinction between the local
and remote communication relations in their proofs.

5 Related Work

Starting from the A, calculus developed by Plotkin in [9], Felleisen and Hieb [4] extend it to a calculus,
called A\,-S, suitable for reasoning about state and control in programming languages. This provides the
theoretical background of the development of a syntactic theory of memory management in [8]. While
in [4] an important effort is made in their model to avoid the garbage generated during computation, in
order to obtain a “clean” equational reasoning, in [8] the main topic is exactly that garbage. Using the
model developed for a typed language with polymorphism, they were able to prove formally that some
reachable data is garbage (it will never be accessed). This property was previously reported [5], but its
proof was less formal.
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Among other papers giving proofs of correctness of garbage collection are the following. Dijkstra [3]
presents an algorithm for a garbage collector running in parallel with the mutator, and proves it correct;
Ben-Ari [1] improves on the algorithm and simplifies the proof. Shapiro [10] proves correct in an informal
way a protocol for garbage collection in a fault-tolerant, distributed object-oriented system.

The communication model in our language is based on Milner’s CCS [6]. A full description of CCS
and its proof methods is [7]. Our calculus also has some similarities with the v-calculus proposed by
Boudol in [2]: his 7-actions, on which the evaluation of the language is based, corresponds to our
unobservable transitions. However, the goal of his paper is to develop a calculus for communicating
systems which has A-calculus as a sub-calculus.

6 Summary and future work

A strength of our model is that, being high-level, the various correctness proofs can be given formally in
a concise manner. However, the atomicity of the transitions in the examples provided is too coarse. This
can be addressed within the model developed by allowing the transitions to be more fragmented; for
example the communication transition may be split in its two components, sending and receiving, with
a way of recording that a message is “in transit”. Also, the garbage collection may be allowed to proceed
in parallel with the computation even on the same node (as described in [3]). This can be achieved
by raising the scan relation to a transition in the language, together with a way of synchronizing the
mutator with the collector. However, the more refined the models are, the more complicated the proofs
become.

An interesting extension of this work is to take into consideration various faults which can occur
in distributed systems. To this aim, relations describing specific faults (e.g. a communication relation
where the message is not received at the other node) can be added to the garbage collector relation.
Proving that the algorithm implementing the garbage collector preserves bisimilarity even in the presence
of these relations would be proof that the collector is resilient to these failures.
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A Proofs

Lemma 8 (Closed programs) Va € R, E v F and FV(E)=0 = FV(F)=10.
This is quite intuitive, since none of the transitions drops bindings in the heap, while those which add
variables also add bindings for them. A formal proof can be given by transition induction.

Lemma 7 (n—fl) is a strong bistimulation up to ~.
Proof. It will be enough to show:

EXY Foand BV B = 30 F" st F - F' and E' 2% F" and F'S F,

where S is the substitution relation. We shall prove this by transition induction. Thus, we first show
the property for transition whose deduction is done in one step (axioms) and then use the induction
hypothesis to show the property for longer deductions.

Note that it order to show E' % F", it is enough to prove that F" X E and F" Cy E'. F" is Just
an alphabetic variant of F', and F' closed follows from Lemma 8.

We will be implicitly using below the fact that whenever we have F XF and E = E[(H1,T))], there
exists F[| % €[] s.t. F = F[(Ha, TY).

a . . . . — . .
Case 1: E —— E'is an aziom. We have to consider the following cases: a = ,, @, ify, if;, sumy , sumgy, comp.

This can only happen if 3€[], Hy, T s.t. E = E[(Hy,TY], and E[{(Hy, T)] % E'.

o The derivation is an instance of @,
E=E[(Hy,alz.T)] NN E[(Hy,TY)] = E', where v = Heap(E)(z).
Because E L% F, we have E[(Hq,alz.T))] ~ F and F Cy E. The first of these implies that
3F(], He F = ]—"[<<H2,a'm TY) and F[] = X &[] Let 1" = F' = Fl(Hq, T)].

It is obvious that F == F' since = must be bound to the same value. It remains to show E' |——> F'.
- F' Cy E' is true by hypothesis.

- F' X E' is true because (Hq,T)) X (Hq,TY) and &[] 2 F.

° a,
E=E[(Hy,alz.T)] EAR Fl(Hz,alzT)] = F, where &[] X Fll and F Cy E.
E[(Hy,alz. T > E[(H, U {2’ = v}, T{2'/z})] = E', where 2’ ¢ Dom(Heap(E)).
Let F' = F[((Ho U {a" = v}, T{z"/2}))], where :C” ¢ Dom( Heap(F)). Obviously I’ v F".
Let F" = F'{z"[2'}. It is easy to check that B

o [fy (and similarly If,, Sumy, Sumg)
E = E[(Hy,if  then T; else T3))] o, E[(Hy,Ts))], because Heap(E)(z) = 0.
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E[((Hq,if = then T; else T3))] AR Fl{(Hz,if = then T3 else 13)] = F, where F] e &[] and
FCy E. Let F' = F" = F[({H, T2)).

- We verify F 0o, F1. Since T is closed we must have © € Dom(Heap(I)).
But Heap(F') C Heap(E), hence Heap(I')(z) = Heap(E)(z).
- BN B s also true.
o Comp
E = E[(H,a!Cle]. TY] ¥ E[(H', a!C[€].T)] because (H,Ce], Heap(E]])) =2 (H',C[€']), where
exp € {alloc, app, assign}.
On the other hand, E EAR Fl{(Hz,a!Cle].T)] = F, where FF Cy E and F] & &[]

— Alloc
(H,C[h], Heap(E]])) pllog (H @{z = h},Clz]), where x ¢ Dom( Heap(E)).
Let F' = F[(Hyw {zy = h},alClzo).TY], and F" = F'{zy/x}. It can be seen that F = F
and E' LY P,

— App, Assign are treated similarly.

Case 2: the inference rules.

o Comy (Comy is similar)
E = €[y, Ty || To)) 2 FI(Ha, Ty || o)) = F
E has one of the following actions: a € {a,, @, ify, if;, sumy, sumgy, comp, commy }.
EN(HL, Ty || T2)] —— EL(HT TT || T2))] because E[(Hy, T1)] — E[(H, T])].
Now, consider F[{(Hq,T1))]. We have F[{(H3,11))] ~ E[(Hqy, 1)), FI(H,Th)) Sa E[(Hq,Th))]
by assumption, and FV(F[(Hy,Th)]) C FV(F[(H2, Ty || T2))]) = O (by properties of free vari-

ables). So E[((Hy, T1)] 2 FI((Ha, T1)].
Since the proof of the transition E[(Hy, Th)] = E[{(H{,T])] is shorter, using the i.h., we have

that 3.1 H{, TN 2 FICHS, T and FI(Ha, )] - FI(H, T7)].

We now consider F' = F[(H}, T} || T2))]. We must show E[(H],T] || T2))] SNy P
E((H,T] || T2)] & FI(Hy, T || T2)] is obvious

ELCHT, Ty || To)] S FICHY, T1 [ T2)] because FI(H3, TI)] Cr EL(H7, T1)]

o iz
E=E[(H,ix {X =T1}))] EAN Fl{Hq fix {X =T})] = F and E - E[{(H], P))].
This transaction can only be inferred from E[{(Hy, Tifix {X = T}/ X)) = E[{(H], PY].
Consider F'((Hy, Tfix {X =T}/X])). We first show that:
E[(H, THx {X =T}/ X])] AN Fl{(Hq, Tlfix {X =T}/X])]. Using the i.h. IH} s.t.
Fl(Hy, THix {X = T}/ X)) = F[(H}, PY)] and E[{(H], PY] EAR FI{(HS, P)]. And this is the

desired conclusion.
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o Commy

= (T || To)] A FI(H, T (| To)] = F

Suppose that _the commy transition is possible. Then, for some a, v:

E((H, T1)] = E[(Hr, TTY] and E[(Hy, T2)] = E[(HT, T3).

Now take F[{(Hq, T1)]. Since F[{(Hz,T1))] - E[(Hy,Th))] and F[{(H2,Th))] Cu E[{(H1,T1))] (by
assumption), and F[{(H,,T1))] closed (FV(Ty) C FV(T || T_g)) it follows that

EN(Hy, T)] L F[(Ha, 1)), Using the i.h. F[(Ha, T)] 2 F[(Ha, T])] and

E[(Hy, TIN] 2 FI(H,, T!Y). Similarly, we obtain that

ENHL, TN A2 FICHL, T3], where FI(Hy, T)] = FI(HS, T4)].

We then have F V20 F! = FI(HL,TL || Ts)] It can be verified that E' LY ' s also true.

o Comm,
E A% F oand E 7 B! We have to show that IF" s.t. F ™% F' and E' 2% .
Now, E 27 E' can only be inferred if E = F1 ® Ey, and
J0.E1 O Ey 2% EL @ By, By © By &% By 6 E, and E' = E} ¢ E}.
Because E & F there must AR, Fy s.t. F = Fy O Fy, with Fy X Fi and Fy 2 Fs.
By i.h. (shorter inference) we have: Fy ® Fj L B O By, Fy O F, 2 FL o Fy, and
EL® By Y FL O Fy. Similarly, By © EY 2% Fy 6 FL. It follows that EL © E} 2% F! ¢ FL.
Two things remain to be checked:
-E{ 0 E), & F| ® F} because E1 ~ F| and E}, & F.
- E] © EY Cy F| © F} because Heap(F| © Fy) = Heap(F| ® Fy) and similarly for E. Using the
i.h. the relation holds.
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