Schwarz Preconditioners for
Spectral and Mortar Finite Element Methods with
Applications to Incompressible Fluids

Mario A. Casarin Jr.

Courant Institute of Mathematical Sciences
New York University

March 1996

A dissertation in the Department of Mathematics Submitted to the Faculty of
the Graduate School of Arts and Sciences in partial fulfillment of the requirements
for the degree of Doctor of Philosophy at New York University.

Approved:

Olof B. Widlund, Advisor



(©Mario A. Casarin Jr.
All rights reserved 1996



ABSTRACT

The spectral element method has been used extensively for the simulation of
fluid flows. The resulting linear systems are often not amenable to direct methods of
solution, and are especially ill-conditioned. Domain decomposition preconditioners,
well adapted to the solution on parallel computers, are proposed and analyzed; both
two and three space dimensions are considered.

Second-order elliptic equations are considered first, and the now well-developed
theory of domain decomposition methods for finite elements is fully extended to
spectral elements. This includes an analysis of exotic coarse spaces, which have
proven necessary for the efficient solution of elliptic problems with large discon-
tinuities in the coefficients, as well as a study of overlapping methods. Estimates
of the condition numbers of the Schur complement restricted to an edge (in two
dimensions) or to a face (in three dimensions) are also given; in particular, a fast
method is designed and studied in full detail for problems with many subregions.

The Stokes problem, when restricted to the space of discrete divergence free
velocities, is symmetric positive definite. A number of preconditioners are pro-
posed, which are based on previous results for the scalar elliptic case, and new
global models. The construction of a basis for the constrained velocity space is not
required, and the resulting condition numbers grow only weakly with the degree N
and are independent of the number of subdomains.

We also consider the stationary Navier-Stokes equations, solved with Newton’s
method. In each iteration, a non-symmetric indefinite problem is solved using a
Schwarz preconditioner. A new coarse space is proposed which satisfies the usual
properties required by the elliptic theory, and also a specific H!-approximation
property. The rate of convergence of the algorithm grows only weakly with V, and
does not depend on the number of subdomains, or the Newton step.

Finally, a hierarchical basis preconditioner for the mortar finite element method
in two dimensions is proposed and analyzed. The result shows that the flexibility
allowed by the mortar method can be combined with a good preconditioner to
produce an attractive and fast method. This is further demonstrated by extensive

numerical experiments.
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Chapter 1

Introduction

1.1 A Brief Overview

In order to find approximate solutions to partial differential equations discretized
by finite elements or finite differences, discrete linear systems have to be solved.
Domain decomposition methods have been developed for this purpose; see, e.g.,
[62, 40, 41, 63, 67, 98, 68]. These are usually of iterative type, and involve the
solution of many local and one global problem in each iteration. A major goal is
to obtain algorithms that are scalable, i.e. the solution of a problem of size 2.5 can
be obtained with 2P processors in about the same time as a similar problem of
size S on P processors. Therefore, the iteration count has to be approximately
independent of the number of processors; this has been achieved for a number of
domain decomposition preconditioners, and in particular for all the methods studied
in this thesis. The global solve corresponding to a coarse model plays a major role
in accomplishing this goal.

This thesis can be viewed as part of a research program which now focuses at
extending these algorithms to harder and more important problems and discretiza-
tion methods. The techniques and framework previously developed for domain
decomposition preconditioners of finite element discretizations of second-order el-
liptic problems is used in many ways throughout this thesis.

The spectral element method may be regarded as a domain decomposition

method, since the discretization space is based on a partition of the domain into



logically square or cubic subdomains. Several advantages result from this property:
the use of tensor product bases and quadrature rules, geometrical flexibility, and
good potential for parallelization. Some of the main contributors to the theoretical
and practical development of these methods are Christine Bernardi, Paul Fischer,
Yvon Maday, Anthony Patera, and Einar Renquist [12, 58, 73, 74, 57]; their work
has been central to ours.

In the main part of this thesis, we consider spectral element discretizations of
second-order elliptic, and the incompressible stationary Stokes and Navier-Stokes
equations. A number of different domain decomposition methods have already
been proposed for solving the resulting system of linear equations, many without
rigorous theoretical justification. An important goal of this thesis is to develop an
appropriate theory that explains the good convergence behavior of some of these
algorithms. The next step is then to design improved versions of the existing
methods, given the insight provided by this new theory. We believe that we have
accomplished these goals, to a reasonable extent, for a number of problems. Finally,
in the last chapter, we develop, analyze and test an efficient Schwarz algorithm for
the mortar finite element method.

In Chapter 3, we present a theory that supports the very clever and insight-
ful experimental work of Shannon Pahl [88] and Einar Rgnquist [100] on domain
decomposition methods for elliptic second-order equations. This theory allows us
to design other efficient preconditioners, and also provides several tools for further
developments in the subsequent chapters. We note that while the principal goal is
to develop algorithms for parallel architectures, many of these methods can also be
used efficiently on machines with a single processor. Some of our results provide
new proofs of results obtained by Pavarino and Widlund, but the new tools are also
used to study and develop new algorithms, in particular the overlapping methods
for the spectral element discretization; see Section 3.1.

Chapter 4 starts by developing a theory to account for the very good experimen-
tal results obtained by Babuska et al. [5, 6, 7] for an iterative substructuring method
for the p-version finite element in two dimensions. The most efficient variant of
their method, actually implemented, is not covered by the theory in [5]. We have

been able to develop such an analysis, and as an outgrowth of our study, we have



proposed an algorithm for the spectral element in three dimensions which substan-
tially improves the weakest part of one of the methods previously proposed. In our
improved algorithm, the face components of the residual are preconditioned with
a diagonal matrix, without significantly decreasing the rate of convergence of the
overall method; see subsection 4.6.2. Known alternatives involve relatively expen-
sive solutions of Poisson problems in the union of two subregions. Our new method
has been tested by Einar Rgnquist, and the results show a significant improvement;
the iteration count is within a factor of two of some of the best preconditioners for
the finite element method (a low-order discretization), while the work per iteration
is substantially reduced. Some of these experiments are described at the end of
Chapter 4.

Rgnquist has also proposed very ingenious and efficient domain decomposition
preconditioners for the incompressible, stationary Stokes and Navier-Stokes equa-
tions; see [100]. Motivated by his work and also by the important work of Fischer
and Patera [57] and Fischer and Rgnquist [58] on the unsteady problem, we have
developed a theory that attempts to explain rigorously the success of Rgnquist’s al-
gorithm. Chapter 5 contains our results for the Stokes problem. As with Rgnquist’s
method, our algorithm is based on iterative substructuring. However, his algorithm
uses the GMRES method for the Stokes problem, and iterates over the velocity and
the pressure, while we propose an iterative method that constrains the velocities
to the subspace of discretely divergence free velocities. The Stokes equation then
becomes a symmetric positive definite problem, for which the preconditioned con-
jugate gradient method can be used. We note that our method does not require
the construction of an explicit basis for this divergence free subspace.

In Chapter 6, we introduce a domain decomposition method for the incompress-
ible, stationary Navier-Stokes equation. Although we again work in the space of
discretely divergence free velocities, the GMRES method is used, since the lin-
earized problem resulting from the Newton iteration is not symmetric positive
definite. We remark that our work does not fully explain the success of Rgnquist’s
algorithm, but we believe that this attempt brings a much greater understanding
of the mechanisms involved, as well as some promising new methods that will be

implemented and compared with Rgnquist’s in the near future.



The Schwarz framework of Dryja and Widlund [52] accommodates, in an ele-
gant fashion, the use of overlapping spaces in the design of preconditioners. The
preconditioner is viewed as consisting of different modules, each of which is often
associated with a geometrical object, or with a simplified global model. We try
to stress, throughout the thesis, that the judicious use of this flexibility, by adding
some simple local spaces and reducing both the dimension of the global problem
and the overall condition number, is beneficial and very cost effective. This theme
is present in Sections 3.5, 4.6, and Chapters 5 and 6.

We remark that the modularity of the methods is very important for two differ-

ent reasons:

o the codes generated by this technology are modular in nature, and therefore

inherently easy to implement and modify, especially on a parallel machine;

e the analysis for a variant of a previously known method often requires only
new insight into one of the components of the complete algorithm; new meth-

ods can also be assembled using components from other methods.

The first point has been very well illustrated for finite elements by the release of
PETSc, a software package designed to take advantage of this flexibility. Many
new methods can be implemented with ease, by modifying the components one at
a time, e.g., using different inexact solvers or iterative methods. The second aspect
is used to great advantage especially in Section 4.6 and Chapter 5, and has been
stressed in [66, 109].

Mortar methods attempt to increase the geometrical flexibility of both the spec-
tral and the finite element method; see [14]. We only consider the geometrically
conforming version of the h-version of the method, for which the intersection be-
tween two subdomains is either empty, a vertex, or a whole edge of a subdomain.
The meshes within the substructures into which the original domain has been parti-
tioned do not necessarily match on the interfaces; an integral constraint is imposed,
which still preserves the convergence properties of the method. In Chapter 7., we
propose hierarchical basis preconditioners for these methods in the plane, and obtain
condition numbers that grow only polylogarithmically with the maximum number

of points on an edge of the substructures. The flexibility of the Schwarz framework
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is again used to substantially decrease the dimension of the global space. In Section
7.4, we report on relatively extensive experiments to support our theory.

Chapter 3 has appeared in a slightly different form as a technical report [37].
We note that Chapter 4, except for Section 4.6 was published as [36]. Chapter 7 rep-
resents joint work with Olof Widlund [39]. These three reports have already been
submitted for publication. Section 4.6 represents joint work with Einar Rgnquist
and Olof Widlund.

The remainder of this introductory chapter introduces some background ma-
terial on Sobolev spaces and the spectral element discretization of the various
problems we will consider. For details on the mortar finite element method for
second-order elliptic problems, we refer to Section 7.2. Chapter 2 contains a brief
discussion of some iterative methods and the abstract framework of Schwarz meth-
ods. For a more detailed overview of the material of Chapters 3-7, we point to the
introductory sections of each chapter. We have also included an index of symbols

as an appendix, in order to help the reader.

1.2 Sobolev and Trace Spaces

Sobolev and trace spaces provide essential tools for the study of partial differential
equations, for the analysis of numerical algorithms, and for the analysis of domain
decomposition algorithms for the resulting linear systems of equations. In this sec-
tion we collect some well-known results about these spaces that are used throughout
this thesis. A more thorough introduction to the most important tools, specifically
those used in domain decomposition theory, may be found in [102, Section 1.2].
For a more complete development of the theory, we refer to [85] and [64].

Let  be a bounded Lipschitz region in R%. Let x represent a point in Q or on
its boundary 99, let u, v, f, g be scalar valued functions, let u, v be vector valued
functions, and let u; be the i-th component of u, a vector with d components.

The space L*() is defined as the closure of C'>(Q) in the norm



The H'-semi-norm is defined by
Q

and the scaled norm is given by

1
lullin) = lulin + 57 luliz)-
Q

where Hg is the diameter of ; this scale factor is generated by dilation starting
from a region of unit diameter. The spaces H'(Q) and Hj(Q) are the closures of
C>(Q) and C§°(Q), respectively, under the H'-norm.

Lemma 1.2.1 (Poincaré’s inequality) Let

1
__ L d
u |Q|/Qu z,

be the average value of u, where || denotes the volume of Q. There exists a

constant C' (), which depends only on the Lipschitz constants of 0N, such that
Hu — ﬂ”]ﬁ(g) < C(Q) HQ|U|H1(Q) Yu € Hl(ﬂ)

We also need the Poincaré-Friedrichs inequality. The main idea of its proof can

be found in [43, Theorem 6.1] and in [85, Chapter 2.7.2].

Lemma 1.2.2 (Poincaré-Friedrichs’ inequality) Let A be a an open subsel of
IO with posilive measure. There exisls a constant C(Q, A) such that Vu € H'(Q),

1
) < C(OA) H (ulie) + 7 ( f ude)*) (1)

The constant C(2, A) depends only on the Lipschitz constant of 02 and on the

measure of A relative to 0.

Let H'?(A) be the trace space of H'(Q) on A. The K-method of interpolation
gives the equivalent definition H'/2(A) = [L%(A), H'(A)]1/2 ; see [71, Section 1.15].



This space can also be characterized by several equivalent semi-norms. One of

them is:

lulFri2ay = Jﬁﬂ |71 ()
Another equivalent semi-norm that has the nice property of being intrinsic, i.e. it
only refers to the values of the function on A, is:
2
il = [, M ds(a) ds (),
The norm of the space H'/%(A) is therefore given by the norm produced by the
K-method of interpolation, or by

ull7r72a) = [ulznreay + [ullZ2ga)s

where | - |51/2(5) is given by any of the two expressions above.

The closures of Cg°(A) and C*°(A) under the H'/?(A)-norm are both the space
H'?(A). However, the extension of u € H'?(A) by zero to the whole of 9 is not
a bounded operator from H'/2(A) to H'/2(99). To obtain a bounded extension, we
have to restrict ourselves to a strictly included subspace HSéQ(A) C H'?(A), and
use a stronger norm. The space HSéZ(A) is formed by the functions v € H'/?(99)
that vanish outside A, endowed with the norm |[v|[g1/2(5g). This space is isomorphic
to the interpolation space [L*(A), Hy(A)]1/2; see [71, Chapter 1]. An equivalent
norm for HSéQ(A) is given by:

ol = o+ [ 7 dS(o): (12)
Hyl*(8) W) T Jy d(x, 9A) ’ ‘

see [85].

1.3 Ellipticity and the Babuska-Brezzi Theory

We start with the following well-known lemma, which establishes existence, unique-

ness and well-posedness for the elliptic problems to be considered.

Lemma 1.3.1 (Lax-Milgram Lemma) Let B be a bilinear form on a Hilbert
space H. Assume that B is bounded,

B(w,0)] < K [[wla- ol Vw,veH,

7



and coercive, i.e. there exists an o > 0 such that
B(v,v) > alv||} VveH

Then, for every bounded functional f € H*, there exists a unique element uy € ‘H
such that
B(ug,v) = f(v) YveH,

and

‘;L{*

uglln <

/]

The counterpart of the Lax—Milgram Lemma for a certain class of saddle point

problems is given by the following result; see Brezzi and Fortin [26].

Lemma 1.3.2 (Babuska-Brezzi Lemma) Let V' and Q be Hilbert spaces with
norms || - ||v and || - ||g, respectively. Let a(-,-) be a continuous bilinear form on
V x V, let b(-,-) be a continuous bilinear form on V x @Q, and assume thal the
range of the operator B : V — @', defined by (Bv,q) = b(v,q), is closed in Q' i.e.
there exists kg > 0 such that

b(v,q)
sup
veV HVHV

> ko llqllo/kerBT = Ko (qoei}?iBT g+ qlle) Vg€ Q. (1.3)

Assume also that the operator given by the bilinear form a(-,-) is elliptic on Ker B,
i.e. there exists ag > 0, such that

: a(u0,vo)
infy exerB SUPv,eKerB Vollv Tuollv > ap,

(1.4)
infy,ckerB SUPy, e Ker B m > ayp.
Then, the problem:
Findu €V and p € ) such that

a(u,v)+b(v,p)=hL(v) VeV

b(u,q) =l(q) VqeQ,

has a solution (u,p) Yl € V' and Vl; € Im B. The first component, u, is unique,
while p is defined up to an element of Ker BT. Furthermore
1 el 1
< —||l|lv: + (1 + —) —||L2]|o 1.5
< il + (4220 g, (15)

8



e U Jal
a a
IPllg/xerBT < E(l + a—)HllHV' + H(l +

0

el
— N2 o- 1.6
Dge. o)
We note that (1.3) and (1.4) are not only sufficient but also necessary for the

existence of a solution; cf. Brezzi [25].

1.4 Variational Formulation of the Equations

1.4.1 Second Order Elliptic Problems

Let © be a bounded polyhedral region in R? with diameter of order 1. We consider
the following elliptic self-adjoint problem:
Find v € Hg(Q) such that

a(u,v) = f(v) Vv e Hy(Q), (1.7)
where

a(u,v):/ﬂk(m) Vu-Vuvdr and f(v):/ﬂfvdz: for fe L*(9),

where C' > k(z) > ¢ > 0; C and ¢ are constants. The results of Chapter 3 and
of Section 4.6 also hold for mixed Neumann—Dirichlet boundary conditions, but
here we restrict ourselves to homogeneous Dirichlet conditions, to simplify our
discussion. In Chapter 7, we present, for a different discretization, the modifica-
tions needed to extend our algorithms and analysis to problems with these mixed
boundary conditions.

It is elementary to verify, using Lemma 1.2.2, that this problem satisfies the
hypothesis of the Lax-Milgram lemma, and hence the solution u exists, is unique,

and satisfies:
ullzi) < CEONfla-1@)»

where C(f) depends on © and on the supremum and infimum of the coefficient



1.4.2 Stokes Problem

We consider the Stokes equation in the velocity-pressure formulation:
—vAu+Vp=1f in(Q,
V-u=0 1inQQ, (1.8)

ufsg = g,
where the system has been properly non-dimensionalized and v > 0 is the viscosity.

We need a few standard definitions in order to state the variational formulation

of (L8). Let V = (H}(Q)%, Q = LA(Q) = {q € L*(Q). Jy q dz = 0},

Ou; Ov;

(u,v _VZ/Q:L’]@;L’]

7,7=1

b(v,q) = — JoqV vz,
and
<17V> = fo vdr — G(UO,V),
for some ug € (H*(Q))? with uglag = g in HY?(Q), and V - u, = 0.
Then, for f € (H7'(Q))%, g € (H'?(99))?, a weak solution of (1.8) can be
obtained by first finding (w,p) € (H}(R))? x Li(Q) such that:
{ a(w,v)+b(v,p) = (Lv) Vve (H(Q)),

b(w,q) = 0 Vqe L5(%),
and then letting u = w 4+ ug. An equivalent formulation is given by:
Find (u,p) € (H*(Q))? x L(Q) such that:
a(u,v)+b(v,p) = (f,v) Vve (H}(D)),

bu,q) = 0 Vg€ L3(Q), (1.9)

ulpe = g,
where (f,v) = [of - v dz. A straightforward application of Lemma 1.3.2 together

with an extension lemma [60, Lemma 1.2.2] gives the following result; see [60,

Theorem 1.5.1].
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Theorem 1.4.1 Let Q be a bounded and connected Lipschilz region of R:. Then
there erists a unique pair (u,p) € (H(Q))? x Li(Q) which solves (1.9).

By restricting the test functions v to be solenoidal, i.e.
v Vo = {we (H(Q)'|V - w =0},

we can determine the velocity u by solving the following self-adjoint elliptic prob-

lem:

a(u,v)=(f,v) VYvelg. (1.10)

1.5 Spectral Element Method

We triangulate (2 into non-overlapping substructures {€;}  of diameter H;. In
the standard spectral element literature, the substructures €); are usually called ele-
ments. However, in what follows, we denote the €; by substructures or subdomains.
Later on, we will further divide the substructures into hexahedrals, which will be
called elements.

Each €; is the image of the reference substructure { = [—1,+1]° under a map-
ping F; = D; 0 G; where D; is an isotropic dilation and G; a C'*® mapping such that
its Jacobian and the inverse thereof are uniformly bounded by a constant. In Sec-
tion 3.2, we show that our bounds depend on this constant, and are better the closer
this constant is to one, i.e. the closer the substructures are to cubes. We also as-
sume that the partition into substructures is geometrically conforming, i.e. in three
dimensions, the intersection between the closures of two distinct substructures is
either empty, a vertex, a whole edge or a whole face; this is a standard assumption
in finite element theory. Some additional properties of the mappings F; are required
to guarantee an optimal convergence rate. We refer to [12, problem 2], and refer-
ences therein for further details on this issue, but remark that affine mappings are
covered by the available convergence theory for these methods; see also [24, Sec-
tion 8.4] for an analysis involving isoparametric mappings in a related context. We
assume for simplicity that k(z) has the constant value k; > 0 in the substructure

;, with possibly large jumps occurring only across substructure boundaries. The

11



bounds for the iterative substructuring methods will be independent of these jumps.
For the overlapping methods, we need to introduce more stringent restrictions on
k(x) to obtain bounds that are independent of the jumps; see the discussion after
Lemma 3.3.4. We remark also that if k(z) varies moderately in each substructure,
all our results are easily seen to hold.

We define the space PV (Q) as the space of polynomials of degree at most NV
in each of the variables separately. The space PV (;) is the space of functions vy
such that vy o F; belongs to PN(Q). The conforming discretization space P (Q) C
Hg(Q) is the space of continuous functions the restrictions of which to Q; belong
to PN(€).

Let A = [—1,1]. For each N, the Gauss-Lobatto-Legendre quadrature of order
N is denoted by GLL(N) and satisfies:

1

pe PN, [ pla)de = Y a6 (111)

-1

Here, the quadrature points ¢; are numbered in increasing order, and are the zeros
of (1 —z*)L!(z), and L,(z) is the Legendre polynomial of degree n; see (4.2). The
weights p; are given by:

2
T NN DIE(E)
The GLL(N) quadrature has the following important property:

(0<j<N). (1.12)

s

Vpn € PY(A),  [lpnlliaa) Z (&)ps < 3lpwlIL2(a); (1.13)

see [12, Corollary I11.1.3].
In three dimensions, the discrete L*(Q)-inner product is defined by

N
Y ki (wo I) - (vo ) - | Jil(&, 6. &) - piprpr, (1.14)

1 7,k,l1=0

M:

7

where |J;| is the Jacobian determinant of F;.
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1.5.1 Second Order Elliptic Problems
We define a discrete bilinear form for u,v € H'(Q) by:
ag(u,v) = (Vu, Vo)y, (1.15)

where (-, )y is computed component-wise. The discrete problem with homogeneous

boundary conditions is then:

Find uy € PN(), such that
CLQ(UN,UN) = (f, UN)N Yooy € Pév(ﬂ) (116)

We number the GLL nodes of all the substructures, and choose nodal basis
functions qbév € PYN(9Q), which are one at the GLL node j and zero at all the
others. This basis gives rise, in the standard way, to the linear system Kyx = b.
Note that the mass matrix of this nodal basis, generated by the discrete L? inner
product (1.14), is diagonal. The analysis and experimental evidence show that the
spectral element method just described achieves very good accuracy for reasonably
small N for a wide range of problems; see [12, 73, 74] and references therein. The
practical application of this method for large scale problems, however, depends on
fast and reliable solution methods for the system Kyx = b. A direct method is
often not an economical choice, because of long range interactions between the
basis elements, and because this is a discretization of a three dimensional problem,
which demands large computer resources even for the much simpler seven-point

finite difference stencil; see [53].

1.5.2 The Stokes Problem

Let (PYN(9))* be the space of vector-valued velocities with each component in
PN(Q). While the velocities are taken to be continuous functions, the pressures
can be discontinuous across subdomain boundaries. The restriction of the pressure
space PN=2(Q) to each Q; is PN72(€);). We note that PN=2(Q) c L*(9), but
PN=2(Q) ¢ HY().

To simplify the presentation, we assume that g = 0 in (1.9). In the general
case, the discrete formulation is completely analogous, while the analysis of the dis-

cretization error is somewhat more involved. Here we are concerned with solution
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methods for the resulting linear system, and the case g # 0 presents no essential
additional difficulty; the same is true for mixed Dirichlet and Neumann bound-
ary conditions, and hence we consider only the homogeneous Dirichlet boundary
conditions.

The spectral element discretization of (1.9) is given by:

Find (u,p) € (PN () x PN=2(Q) N L23(N) such that:
ag(u,v) +b(v,p) = (Lv) Vve (F(Q),
) (1.17)
b(u,q) = 0 Vge PN2Q)n LiN).

Here, ag(-,-) is the same as in (1.15), calculated as the sum over the components
of the vector arguments u and b, and with &; = v, for all «. The form b(-,-) in
1.17 is defined in subsection 1.4.2, and can be computed exactly by the GLL(N)
quadrature rule only if each substructure is the image of a cube under an affine
mapping. However, we assume that the discrete problem being solved is actually
(1.17); such an assumption is also made in the analysis of the Stokes approximation
given in [75], and we refer to that paper for further details on this issue.

We choose the same basis {qbév } as before for each component of the space
(PN (Q))4, and use the same notation {quv}, with j now varying over a d-times
larger set of values, since there are d degrees of freedom per point. We number
the GLL(NV) nodes ¢ within the subregions €; by an index r, and define a basis for
PN=2(Q) by B,,(&,) = 6,1y, for all 71, 73, where § is the Kronecker symbol. We note
that any function of PN=%(Q) is uniquely represented by its values at the interior
GLL(N) nodes &,.. The choice of the internal GLL(N) nodes is an implementation
choice; a basis for PN=2(Q) could also be generated by using Gauss quadrature
points, which are all internal to the substructures.

By writing the solution (u,p) in terms of these two bases, we arrive, in a

standard way, to a linear system equivalent to (1.17):

Au+ Bp=f
(1.18)
Bu = 0.

To each component of the velocity, there corresponds a diagonal block of A which

is equal to the scalar spectral element stiffness matrix Ky from subsection 1.5.1.
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The entries of B are given by B;,. = b( ;V,ﬁr), and f is a vector with components
f, = (f, qb;\[} Here and in what follows, an underline is used to denote vectors in an
Euclidean space; they are often very large vectors. We note that, in the full stress
formulation of the Stokes problem, the matrix A is no longer block-diagonal, and
our study is not directly applicable to that case; see [59].

The analysis of the discretization error of this approximation is given in [75],
and proceeds along the lines of the standard approximation result for mixed finite
elements [60, Theorem 1.1.8]. The key point in the analysis is an estimate of the

inf-sup constant as a function of the degree N; see [75, Lemmas 5.3 and 5.4].

Lemma 1.5.1 For each N, there exists a By > 0 such that

- b(v.q)
N L G sup
g€PN=2(Q)NLF(Q) ve(PY(Q))? ||V||H1(Q)||Q||L2(Q)

> B

If the geometry is rectilinear, i.e. the F; are affine mappings, then there exists a
constant (3, independent of N, and such that Bn > ﬁng_d, ford=1,2, or3.

As far as we know, the only rigorous approximation result for the case of many
substructures applies only when the mappings F; are affine. We refer to [75] for
a detailed study of this issue and the full analysis of the discretization error, and
remark that very good convergence properties are predicted by the theory and have

been extensively verified in practice; see [58, 73].
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Chapter 2

Domain Decomposition Methods

2.1 TIterative Methods

For problems in two dimensions, direct methods are still the solution method of
choice for most industrial or academic problems discretized with the standard fi-
nite element or finite differences methods. These methods take advantage of a well-
developed set of mesh ordering techniques and software for Gaussian and Cholesky
factorizations. For three-dimensional problems, however, the situation changes dra-
matically. Even for the seven-point finite difference stencil, the computer resources
needed grow very rapidly; see [53].

For spectral element methods, memory and work requirements are even larger
for the same number of degrees of freedom, because of the long range interactions
between the basis elements. Therefore, iterative methods are almost a necessity
in order to use these discretizations. For symmetric positive definite problems,
the method of choice is the preconditioned conjugate gradient method; we give a
brief review of its most important properties in the next subsection. For non-
symmetric or indefinite problems, it is harder to point to one iterative method as
the best in all circumstances. Indeed, many different iterative schemes may be
used with success for any single problem, although the goal of the preconditioning
may vary for each individual problem and iterative method. Depending on the
iterative method being used, keeping the eigenvalues of the preconditioned problem

in the right half of the complex plane may insure convergence, as is the case for
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GMRES. For other iterative solvers like preconditioned conjugate residuals, it is
most important to obtain eigenvalues that are bounded away from zero, although
the spectrum may have positive and negative parts; see e.g. the recent progress on
block preconditioners for the Stokes problem [55, 69, 106]. We consider here only
the GMRES method, and present some of its properties in subsection 2.1.2

The important observation is that for all acceleration methods, the precondition-
ing plays a crucial role in the rate of convergence, and ultimately in the applicability
of the methods; if a low quality preconditioner is used, GMRES may even fail to

converge.

2.1.1 Preconditioned Conjugate Gradients

We consider a linear system

Az = b, (2.1)

where A is symmetric and positive definite. Let A be another symmetric positive
definite matrix of the same size, and let v be a vector. The preconditioned con-
jugate gradient (PCG) is an iterative method for solving (2.1), which requires the
operations Av and A~'v once per iteration. It also requires the storage of a few
vectors and the computation of a few inner products per iteration.

Let xg be an initial guess, x be the exact solution, and z,, be the nth iterate of

the PCG method. Then, the following convergence estimate holds:

(0 — 2) Al — 7) < 2(%1 1)2”(:130 o) Alzo — 2), (2.9)

where

(A4

B /\min(./zl_l.A)'
Therefore, PCG is an effective method when
o Av is relatively inexpensive to compute,

e A 'v is also relatively easy to evaluate, and

® k is small.
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Most of the domain decomposition methods of this thesis are designed having
this method in mind, and we will have the explicit goal of substantially reducing &
while being able to compute A~y efficiently, especially in a parallel environment.
We note that if A is the spectral element stiffness matrix Ky, efficient ways of

computing Av efficiently are available; see [12, 74].

2.1.2 GMRES

The GMRES method [101] is an iterative method that in each step minimizes
the residual over a certain Krylov subspace. For a general non-symmetric matrix
A, there is no three-term recurrence relation available, and the work and storage
grow linearly with the number of iterations. Therefore, the restarted or truncated
versions of the algorithm are also used; see [101]. We note that conditions for a
short-term recurrence relation to exist are well known; see [56].

Since this is a well-known scheme, we do not present a full algorithmic descrip-
tion, and state only one convergence result that will be used in Chapter 6 to analyze
a preconditioned method for the stationary Navier-Stokes equation. We note that
there are several different estimates of the convergence of the GMRES algorithm;
see [H4, 101, 111].

Let [-, -] be an inner product, which is usually generated by an auxiliary sym-

metric positive definite matrix A, i.e. [-,:] = (A-,-). Let A be a preconditioner of

A, and define

o @A AT A
ATAT o0 (a4 AmAT T el

where the norm |[|-|| is generated by [+, -]. The following theorem can be established,
by considering the decrease of the norm of the residual r,, = ./Zl_l.Axm — bin a

single step of the algorithm; see [54].

Theorem 2.1.1 (Fisenstat, Elman, and Schultz) If ¢ ;1 4 > 0, then the GMRES

method converges and after m steps, the norm of the residual is bounded by

2 m/2
]l < (1— A ““) ol

2
CA—IA
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Compared to the estimate given above for the PCG method, this estimate seems
rather poor; it emphasizes the need for a good preconditioner A, so that the param-

eters in (2.3) fall within reasonable limits to make the method of practical value.

2.2  Multiplicative and Additive Schwarz Methods

As early as 1869, H. A. Schwarz [105] used a domain decomposition idea to con-
struct solutions to the Laplace problem for easily decomposable domains. Pierre-
Louis Lions restated the algorithm in variational form, in a paper that provided
a starting point for the revival of the interest in the method [72]. We concern
ourselves with extensions of the method for the solution of finite element or other
Galerkin methods for problems in a region {2 decomposed into the union of many
subdomains.

We consider for simplicity (1.7), discretized by choosing a subspace V" = V" ((2)
(e.g., a spectral or finite element space), and look for an approximate solution

up € V" that satisfies
a(up,vp) = f(op), Vo, € 1743 (2.4)

Assume that we are given subspaces {V/}M  C V*(Q), such that their sum spans
the whole of V(Q):

VE=VE+ W 4 4 Vi
and inner products bs(-,-): V* x V! — R. We define approximate projections
T, : Vh — VI by:
bs(Tswp,vp) = a(wp,vy) Yo, € Vsh Ywy, € V. (2.5)

We remark that if bs(-,-) = a(-,-), Ts is an orthogonal projection in the a(-,-)-inner
product.

Let up be the unique solution of (2.4), assumed to exist for any reasonable
choice of a space V". The multiplicative Schwarz method is given by the following

iterative scheme, where u{ is an initial guess, and u} the kth iterate:

(ub™ —up) = (I = To)(I = Ty) - (I = Tag)(uf — uy). (2.6)
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This may be written as

where Tims = I — (I = To)(I —Ty)--- (I — Tar). This iteration can be interpreted

as a Richardson iterative scheme for solving the equation

Tmsun = g, (2.7)

where g may be computed without knowing the solution wj, since for each s, and
for wy, = uy, the right hand side of (2.5) is, Vv, € V!,

alup,vy) = f(on).

If there are only two subspaces Vi = H}(Q) and V, = Hy (), where Q) and
), are overlapping subdomains satisfying Q) UQ, = Q, and by(-,-) = a(-,-), this is
exactly the reformulation by Lions of the method proposed by Schwarz.

The rate of convergence of u} to uy will of course depend on the choice of the
spaces V" and the bilinear forms b,(-,+). Even if these elements of the algorithm
are fixed, there are many variants of the method. For the operator Tig itself, we
may use iterative methods more powerful than the Richardson iteration scheme; for
efficiency reasons equation (2.7) may be accelerated by the GMRES method. We
also mention briefly a few alternatives to T, and refer to [27, 48, 80] for more
detailed studies; all the methods are acceleration schemes applied to an equation
Tup, = g, where T is a polynomial of the operators T, and g can be calculated
without knowing wuy, as in (2.7).

For the operator Tins, the problems (2.5) have to be solved in a sequential man-
ner. This may be remedied in part by observing that if the intersection of Vs}f
with VSZ is trivial, then 75, and 7, may be computed at the same time, which is
extremely important to enhance the efficiency of computations on parallel comput-
ers. This is called the coloring strategy [29, 30]. If, however, there is one space,
for example V*, which has a non-trivial intersection with all the other subspaces,
then this is ‘a possible bottleneck’ for parallel computations, ‘with many proces-

sors idly waiting for the solution’ of this single problem; see [102, p. 26]. It turns
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out that for any scalable method for an elliptic problem, the presence of such a
space is absolutely necessary, as shown in [115], and hence we need to look for an
alternative.

The additive Schwarz operator Ths proposed by Dryja and Widlund [49] and
Matsokin and Nepomnyaschikh [84] is the simplest polynomial of the arguments
To, Ty, ..., Ty, for which one can still compute ¢ = Taguy, given only the right
hand side f(vp):

Tas:T0‘|‘T1‘|‘""|‘TM-

The algorithm then amounts to solving the equation Thgup = ¢ using a Richard-
son iteration or a conjugate gradient method, since all the T, (and hence Tyg) are
symmetric with respect to the inner product given by a(-,-). For an additive al-
gorithm, all the solves Tiv;, may be performed concurrently, which has obvious
advantages for the implementation on parallel computers. In the next subsection,
we will state some theoretical results which show that both algorithms are conver-
gent at approximately the same rate, under certain assumptions.

In practice, the multiplicative methods usually converge faster, and one would
like to preserve this fast convergence and the good parallelization properties of Thg.

In this direction, Cai [27] has proposed a hybrid method, given by
Teai=7To+ (I = (I =Ty)--- (I = Th)),

combining the multiplicative and additive schemes. For these and other reasons
related to the solvability of some local problems, Mandel and Brezina [80] proposed
an alternative hybrid method:

We conclude this discussion of the many different combinations of these oper-
ators by pointing out that the best choice of polynomial of Ty, ..., Ty depends on
the particular problem and computer system where the algorithm will be imple-
mented. For example, the particular properties of convection-dominated flows have
been used to great advantage in practical computations, by selecting a particular

polynomial of the Ty; see [31].
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2.3 Abstract Condition Number Estimates

We state two abstract results on the condition number of the operators Ths and
Tms. The framework given by these theorems is sufficiently general to analyze
several domain decomposition and multigrid algorithms that have been proposed
for elliptic problems; see [47, 48] for several applications of these methods.

The basic assumptions of these theorems are the following three hypothesis;
here and in what follows we will drop the subscript A in the notation for discrete
functions.

H1: There exists a constant C2 such that every u € V() can be decomposed

into a sum u = ¥, u,, with u, € V", which satisfies
st(us,us) < C’ga(u,u);

in other words, the sum of the approximate energies of the components can be
estimated in terms of the energy of the original function.

H?2: There exists a constant w > 0 such that

a(u,u) < why(u,u) Yue VP s=0,1,..., M.

3

H3: There exist constants &;;, 1,7 =1,..., M, such that
a(ui,ug) < Egalui, u)?a(uy,u;)? Yu; € VI, Yu; € v
Let p(&) be the spectral radius of the matrix £, with entries &;.
Theorem 2.3.1 Assume that H1, H2, and H3 hold. Then,
Cia(u,u) < a(Tasu,u) < (p(€) + Nwa(u,u) Yu € V*(Q).

The proof of this lemma can be found, e.g., in [52].

¥ —u be the error at step

We state now a result for the operator Trs. Let €* = u
k of the iterative algorithm (2.6). It is clear that an upper bound for the relative
decrease of the a-norm of the residual at each iteration is given by an upper bound

on the a-norm of the error propagation operator Fys = (I —Ty)--- (I —Ts).
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Theorem 2.3.2 Assume that H1, H2, and H3 hold. Assume further that w < 2.
Then,

2—w

(1 +207(€)7)C8

|1Es|l; <1~
where w = max(1,w)

We note that w < 2 is a natural assumption; otherwise for at least one of the factors

we would have

1(E =Tl > 1.

A quite similar theorem was first proved in [20]; see also [52].
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Chapter 3

Quasi-Optimal Schwarz Methods for
the Conforming Spectral Element
Discretization

3.1 Introduction

The spectral element method has been used extensively to discretize a variety of
partial differential equations, and its efficiency has been demonstrated both ana-
lytically and numerically; see [73, 74], and references therein. The method uses
polynomials of high degree in each element, and a particular choice of basis and
numerical quadrature rules. In large scale problems, long range interactions be-
tween the basis elements within each substructure produce quite dense and expen-
sive factorizations of the stiffness matrix, and the use of direct methods is often
not economical because of the large memory requirements [58]. In the past decade,
many preconditioners have been developed for finite element discretizations of these
equations; see, e.g., [67, 68, 98]. For both families of discretizations, the design of
preconditioners for three dimensional problems is especially challenging.

Early work on preconditioners for spectral methods was carried out by Canuto
and Funaro [35] and Pavarino [91, 92, 93]. Some of the algorithms studied by
Pavarino are numerically scalable (i.e., the number of iterations is independent of
the number of substructures) and optimal (the number of iterations does not grow

or grows only slowly with the degree of the polynomials). However, each application
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of his preconditioners can be very expensive.

Several iterative substructuring methods, which preserve quasi-optimality and
scalability, were later introduced by Pavarino and Widlund [94, 95]. These precon-
ditioners can be viewed as block-Jacobi methods after the stiffness matrix has been
transformed by using a certain basis. The subspaces used are analogues of those
proposed by Smith [108] for piecewise linear finite element discretizations. The
bound for the condition number of the preconditioned operator grows only slowly
with the polynomial degree, and is independent of the number of substructures.

The tensorial character of the spectral element matrix can be exploited when
evaluating its action on a vector [74], but does not help when evaluating the action
of the inverse of certain blocks of this matrix, as required when using these precon-
ditioners. Orzag [86] and Deville and Mund [45] have proposed the use of a finite
difference and a ()1 or P; finite element model, respectively, as preconditioners for
the spectral element matrix. The triangulation for this finite element method is
based on the hexahedrals defined by the Gauss-Lobatto-Legendre (GLL) mesh of
one substructure. This preconditioner has been demonstrated both numerically, in
[45], and theoretically, by Canuto [34], to have a condition number independent of
the degree of the polynomials. We note that ideas similar to those in [34] and [45]
also appear in Quarteroni and Zampieri [99] and references therein. The spectral
equivalence results of Canuto [34] and generalizations for other boundary conditions
were also obtained independently by Parter and Rothman [89].

Based on these ideas, extended to the case of several substructures, Pahl [88]
proposed efficient, easily parallelizable preconditioners for the spectral element
method using iterative substructuring and overlapping Schwarz methods applied
to the GLL finite element model. Pahl also performed experiments for a model
problem in two dimensions, demonstrating that these preconditioners can be very
efficient. In other words, high order accuracy is combined with efficient and in-
expensive low-order preconditioning. The work of Pahl, however, did not contain
any rigorous theoretical justification for the experimental results obtained. Einar
Rgnquist has also proposed some iterative substructuring-based methods for three-
dimensional problems, and conducted relatively large experiments [100]. Again, no

rigorous theory was proposed to support these results. In Section 4.6, we present a
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variant of the original algorithm by Rgnquist together with some numerical results.

The previous analysis of Schwarz preconditioners for the h-method has relied
upon the shape-regularity of the mesh, see [19, 48, 51], which does not hold at all
for the GLL mesh. In this chapter, we analyze some Schwarz finite element precon-
ditioners defined on this mesh, and derive polylogarithmic bounds on the condition
number of the preconditioned operators for iterative substructuring methods, and
a result analogous to the standard finite element bound for overlapping Schwarz
algorithms. Then, by applying Canuto’s result, [34], we propose and analyze a new
overlapping preconditioner that uses only blocks of the spectral element matrix to
define the local contributions of the preconditioner. We also give a new proof of
one of the estimates in [94]. In summary, the equivalence between the spectral and
finite element matrices, and the tools we develop here, allow us to extend the anal-
ysis available for the domain decomposition preconditioners of the standard finite
element case to the spectral element case. We remark that our techniques may
also be used to estimate the convergence of a large class of domain decomposition
preconditioners on some non-regular meshes.

The remainder of the chapter is organized as follows. The motivation and
strategy of our analysis are presented in detail in Section 3.2. In Section 3.3, we
state and prove our core technical results. In sections 3.4 and 3.5, we formulate and
analyze several representative iterative substructuring and overlapping algorithms.

Section 3.6 briefly describes some numerical experiments performed by Pahl [88].

3.2 Finite Element Preconditioning and Some Sim-
plifications

The condition number of Ky is very large even for moderate values of N; see
[12]. Our approach is to solve this system by a preconditioned conjugate gradient
algorithm. The following low-order discretization is used to define several precon-
ditioners in the next sections.

The GLL points of degree N, denoted GLL(N), define, in a natural way, a tri-
angulation Th of () into N3 parallelepipeds, and on this triangulation we define the

space PE(Q) of continuous functions that are trilinear (1) in each parallelepiped
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of T". The spaces P"(Q;) and P}(Q) are defined by mapping in the same way as
for PV (€;) and PY(9). The finite element discrete problem associated with (1.7)
is:

Find uj;, € P}(R), such that
a(up,vp) = f(op) Yo, € Pgl(ﬂ). (3.1)

The standard nodal basis {qAb?} of PE(Q) is mapped by the F; into a basis for
Ph(€), for 1 < i < M. These bases and the bilinear form a(-,-) give rise to a
system K,z = b.

We could also define a finite element system generated by dividing each hexahe-
dral of 7" into tetrahedrals, and using P finite elements on this new triangulation.
As will become clear in the following, the analysis for P; elements carries over im-
mediately from the analysis for ()1 elements, and from the following equivalence of
norms. Let K be an element of Til, and let uy € Q1(K). If ug is the continuous
function with restrictions to each tetrahedral into which K has been decomposed
belonging to P, and coinciding with u; at the vertices of K, then it is easily seen
that the H'-norms of u; and u, are respectively equivalent to each other, with
constants independent of N; the same is true for the L?-norm. We remark that the
Py elements have been shown to produce smaller condition numbers when used as
a preconditioner, and should be prefered in a practical implementation. For the
sake of simplicity, we restrict our analysis to the case of )1 elements.

Let / be the distance between the two leftmost GLL(N) points & and & in
the interval [—1,41]; & is on the order of 1/N2, while the distance between two
consecutive GLL points increases to a maximum, close to the origin, which is on
the order of 1/N; see [12]. Hence, the aspect ratios of some of the elements of the
triangulation Th grow in proportion to V.

We use the following notations: = <y, z > u, and v <X w to express that there

are strictly positive constants C' and ¢ such that
r<Cy, z>cu, and cw <v<(Cw, respectively.

Here and elsewhere ¢ and C' are moderate constants independent of H, N, and
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Let @y belong to PN(Q), and let @), = [A}LV(QN) be the unique function of PE(Q)
for which
in(ze) = in(za),
for every GLL(N) point z¢4 € Q. Then, by corollary 1.13, page 75 of [12] and the

results in [34], we have:

Up,

T2y = Nnl o) < (@ns an) N, (3.2)

and

A

2
Uh |1

@ = QNﬁIl(Q) = ag(tn,n), (3.3)
where aj is given by (1.14) and (1.15) with .J; = 1 and k; = 1. The basis of the
proof of this last result is the H'-stability of the polynomial interpolation operator
at the GLL nodes for functions in H'([—1,+1]), proved by Bernardi and Maday
[11, 12]. The L*-stability of the GLL quadrature of order N for polynomials of
degree N, and properties of the GLL nodes and weights are also important in the
argument. We remark that the first equivalence of (3.3) and generalizations to other
boundary conditions were obtained independently by Parter and Rothman [89].
Consider now a finite element function u defined in a substructure ; with
diameter of order H. Changing variables to the reference substructure by (&) =

v(Fi(2)), and using the bounds on the Jacobian of F;, we obtain

HUH%%QL) = Hd U 22(())7 (34)
and
[ulfr ) = H' i 12111((2)7 (3.5)

where d is the dimension and is equal to 1, 2, or 3.

These estimates can be viewed as spectral equivalences of the stiffness and
mass matrices generated by the norms and the basis introduced above. Indeed, the
nodal basis {q;?} is mapped, by interpolation at the GLL nodes, to the nodal basis
of PN(Q). Then, (3.3) can be written as

' Kyt =< 47 Ky, (3.6)



where u is the vector of nodal values of both @y or uj, and R’h and R’N are the

stiffness matrices associated with |- |2, o and ag4(.,.).

' ' ()

Let K}(Ll) and K](\Z;) be the stiffness matrices generated by the bases {gb?} and
{gij}, respectively, for all nodes j in the closure of €;, and by using | - |%11(Q£_) and
aga,(+,-), respectively. Here, ag o, (-, ") is the restriction of ag(-, -) to the subdomain

Q. If u is the vector of nodal values, and u® is its restriction to Q;, then

w7 KDy = O g9y

?

by (3.3) and (3.5). The stiffness matrices Ky and K}, are formed by subassembly
[48]:
u Kyu=Y; g(i)TK}(f)g(i); (3.7)

an analogous formula holds for K. These last two relations imply that
ul Kyu < u' Kyu. (3.8)

This shows that K} is an optimal preconditioner for K in terms of number of
iterations. All these matrix equivalences, and their analogues in terms of norms,
are hereafter called the FEM-SEM equivalence.

We next show that the same results also hold for the Schur complements S, and
Sn. The interface of the decomposition is defined as I' = UM, 99, \ 9Q. The Schur
complement matrices S} and Sy are obtained by the elimination of the interior
nodes of each €2; by Cholesky’s algorithm; see [48]. A function uy is said to be

(piecewise) @-discrete harmonic in Q if, Vi,
aga(un,on) = 0, Vo € PN(9:) N H().

The definition of (piecewise) h-discrete harmonic functions is analogous. It is clear
that uLSyur = ag(un,uy) and that uLS,ur = a(up,up), where u;, and uy are
respectively h— and ()—discrete harmonic and ur is the vector of nodal values on
I' of u;, and wuy.

The matrices Sy, and Sy are spectrally equivalent. Indeed, by subassembly (3.7),

it is enough to verify the spectral equivalence for each substructure separately. For
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the substructure €;, we find:

HT 2 2
Wl SPuY = ag o, (un, un) = ag, (1 (un), i (un)) > (3.9)

N o (G
ag, (Ha(Tun), Ha(Ihux)) = ag, (un, u) = uf Sju?,

where Hj, is the h-discrete harmonic extension of the interface values, and I% is the
composition of f]}{, with F;. Here, we have used the FEM-SEM equivalence and the
well-known minimizing property of the discrete harmonic extension. The reverse
inequality is obtained in the same way.

This equivalence implies that Sj, is an optimal preconditioner for Sy, in terms
of number of iterations. However, as before, the action of the inverse of 5}, is too
expensive to produce an efficient preconditioner for large problems.

In his Master’s thesis [88], Pahl proposed the replacement of K} and S, by

preconditioners K}, and Sy, respectively. If the condition number satisfies
k(K7 Ky) < C(N), (3.10)

with a moderately increasing function C'(N), then a simple Rayleigh quotient ar-
gument shows that x(K;'Ky) < C(N); an analogous bound can be derived for
SNYh_lSN. K, and S, are domain decomposition preconditioners based on 7", and are
designed so that the action of their inverses on vectors are inexpensive to evaluate.

In the next three sections, we define our preconditioners and then establish
(3.10) and its analogue for S, and gh_l We note that the triangulation 7j is not
shape-regular, and that all the bounds of this form for Schwarz preconditioners
previously established in the literature require some kind of inverse condition, or

regularity of the triangulation, which, as pointed out in Section 3.2, does not hold

for the GLI mesh.

3.3 Technical Results

In this section, we present the technical lemmas needed to prove our results. As

is clear from the start, we draw heavily upon the results and techniques of Dryja,

Smith, and Widlund [48].
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3.3.1 Some estimates for non-regular triangulations

In this section, we develop all the estimates necessary to extend the technical tools
developed in [48] to the case of non-regular hexahedral triangulations. We recall
that € = [—1,41]" is the reference substructure, and Th its triangulation generated
by the GLL mesh. Let K = [—1,+1]" be the reference element, and let K c
be a parallelepiped of T with sides hy, hy and hs; these mesh parameters are not
necessarily comparable in size. The function @ is a trilinear (@) function defined
in K. In this subsection, we use hats to represent functions defined in K, and no
superscript for points of K.

Our first result provides expressions of the LQ([%)— and Hl([%)—norms of a tri-
linear function @ in terms of its nodal values. Let e; be one of the coordinate
directions of R’, and let a, b, ¢ and d be the vertices of one of the faces that are
perpendicular to e;. Let a’, b, ¢/, and d’ be the corresponding points on the parallel

face. z, denotes a generic vertex of K.

Lemma 3.3.1 Lel @ be trilinear in K. Then,

22(1%) = hlhghg E (ﬁ(xa))z, (311)

Ta ER’

U

and
, hihhs
LK) ™ 2

10

> (a(wa) —iay,))”. (3.12)

rq=a,b,c,d

Proof. These formulas follow by changing variables, and by using the equiva-
lence of any pair of norms in the finite dimensional space Ql(ﬁ’). a

In the next lemma, we give a bound on the gradient of a trilinear function in

terms of bounds on the differences of the nodal values. Its proof is routine.

Lemma 3.3.2 Let @ be trilinear in K such that

t(a) — a(b)] < Cla —b|/r for
some constant C' and parameter r, and for any two vertices a and b belonging to

one face of K. Then
|V

<

3

= Q

where C' is independent of the parameter r.
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Lemma 3.3.3 Let t be a trilinear function defined in [{’} and let ) be a O function
such that |V < C/r, and |0] < C for some constant C and parameter r. Then

A

2
u

-2
m@Ey T

A

g
|0, 1" (94)|3 72 i))- (3.13)

L2(K)

<

Here C' is independent of N and r, and 1" is the Q1 -interpolant using the values

at the vertices of K.

Proof. By equation (3.12), and letting hq, hy, and hs be the sides of the element
K:
hihohs

P
10 D) a5y < =

> (W@)d(z) - a(a")d(a"))’

r=a,b,c,d

Each term in the sum above can be bounded by

The bound on V4 implies that |J(z) — J(2')| < hi/r, and therefore

hifa hihahs . . . h?
10100 By 2 S i) — i) YD ()
7 r=a,b,c,d r=a,b,c,d r
j U ?,{1(]{,) + T_2 U 22(1%), (314)

since ¥ is bounded. 0

3.3.2 Further technical tools

The iterative substructuring algorithms are based on subspaces directly related to
the interiors of the substructures, and the faces, edges and vertices. Let €;; be the
union of two substructures €2;, ©;, and their common face Fj. Let W, represent the
wirebasket of the subdomain €;, i.e. the union of all its edges and vertices. We note
that a face in the interior of the region {2 is common to exactly two substructures,
an interior edge is shared by more than two, and an interior vertex is common to
still more substructures. All the substructures, faces, and edges are regarded as

open sets.
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The following observations greatly simplify our analysis in the next sections.
The preconditioner S, that we propose is defined by subassembly of the matrices
SNY,(Li); see Section 3.4. We then restrict our analysis to one substructure. The
results for the whole region follow by a standard Rayleigh quotient argument. The
assumption that the { F;} are arbitrary smooth mappings improves the flexibility
of the triangulation, but does not make the analysis essentially different from the
case of affine mappings. This is seen from the estimates in Section 3.2, where we
have used only bounds on the Jacobian and inverse of the Jacobian of F;. Therefore,
without loss of generality, we assume, from now on, that the F; are affine mappings.
Throughout this subsection, u is a finite element function belonging to P*.

For a proof of Lemma 3.3.4 and a general discussion, see Bramble and Xu [21].

Lemma 3.3.4 Let QM be the L? projection of u € P*(Q) onto the coarse space
VH . Then,

lu — Q™ ul[F2(q) = H?|ultq),
and

Q" ulfn ) = |ulfnq)-

We remark that these bounds are not necessarily independent of the values k; of
the coefficient. A sufficient condition to guarantee this independence is that the
coeflicients k; satisfy a quasi-monotone condition; see [47].

In what follows, some of the results are stated for substructures of diameter
proportional to H, but the arguments are given only for a reference substructure.
The introduction of the scaling factors into the final formulas is, by the results of

Section 3.2, routine.

Lemma 3.3.5 Lel uw, be the average value of u on W;, the wirebaskel of subdo-

main ;. Then
||U||%2(W]) = (1+ 10g(N))||u||%11(9])7
and
[l = uw, |[72 0w, = (1 4 log(N)|ulfn q,)-

Similar bounds also hold for an individual substructure edge.
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Proof. In the reference substructure, we know that Pk VE, where P* was
defined in Section 3.2, and Vhis a ()1 finite element space defined on a shape-
regular triangulation that is a refinement of Th ; we can refine all the elements of
T with sides bigger than, say, 3?1/2, where h = 1/N?% Now we apply Lemma 4.3
in [48], a well-known result for shape-regular triangulations, to get both estimates.
g

In the abstract Schwarz convergence theory described in Section 2.3, the crucial
point in the estimate of the rate of convergence of a two-level algorithm is the proof
that all functions in the finite element space can be decomposed into components
belonging to the subspaces, in such a way that the sum of the resulting energies
are uniformly, or almost uniformly, bounded with respect to the parameters H and
N. The main technique for deriving such a decomposition is the use of a suitable
partition of unity. In the next two lemmas, we construct functions that are used to

define such partitions of unity.

Lemma 3.3.6 Let Fy, be the face common to Q; and Q;, and let 0x, be the function
in P"(Q) that is equal to one at the inlerior nodes of Fy, zero at the remaining

nodes of 0Q); U 08, and discrete harmonic in Q; and Q;. Then
105, |11 (0, = (14 log(N))H,
The same bound also holds for the other subregion ;.

Proof. We define functions é}'k and 9 7, 1n the reference cube; 07, and Jx, are
obtained, as usual, by mapping; see Section 3.2. We construct the function lgfk
with the same boundary values as é}‘k, and then prove that the bound given in
the Lemma holds for Igfk. The standard energy minimizing property of discrete
harmonic functions then gives the estimate for é}‘k. The six functions 1§k which
correspond to the six faces of the cube also form a partition of unity at all nodes
belonging to the closure of the substructure except those on the wirebasket; this
property is used in the next lemma.

We divide the substructure into twenty-four subtetrahedra by connecting its
center C' to all the vertices and to all the six centers C} of the faces, and by

drawing the diagonals of the faces of Q; see Fig. 3.1.
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Figure 3.1: One of the segments C'CY,

The function lgfk associated with the face Fy is defined to be 1/6 at the point
C'. The values at the centers of the faces are lgfk(cj') =0z, for y = 1,...,6, where
d; 1s the Kronecker symbol. 1§}'k is linear on the segments C'C';. The values inside
each subtetrahedron formed by a segment C'C; and one edge of F; are defined to
be constant on the intersection of any plane through that edge, and are given by
the value, already known, on the segment C'C’;. Next, the whole function J 7, 1s
modified to be a piecewise ()1 function on Th by interpolating at the GLL nodes;
the values of this finite element function at the nodes on the wirebasket are defined
to be equal to zero.

We claim that |V1§fk(;r;)| < C/r, where z is a point belonging to any element K
that does not touch any edge of the cube, and r is the distance from the center of
K to the closest edge of the cube. Let ab be a side of K. We analyze in detail the
situation depicted in Fig. 3.2, where ab is parallel to C'C}. Let e be the intersection
of the plane containing these two segments with the edge of the cube that is closest
to ab. Then |1§_7-‘k(b) — 1§fk(a:)| =< D, by the construction of igfk, where D is the size
of the radial projection with center e of ab onto C'C}. By similarity of triangles,

we may write:
dist(a,b)

[0:5,(6) =z, ()] = — =, (3.15)

r
where 7/ is the distance between e and the midpoint of ab. Here we have used that
the distance between e and C'Cy is of order 1. If the segment ab is not parallel
to C'Cy, the difference |1§fk(b) — @fk(aﬂ is even smaller, and (3.15) is still valid.
Notice that v is within a multiple of 2 of r. Therefore Lemma 3.3.2 implies that
Vi z, ()] < C/r.
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; G

Figure 3.2: Geometry underlying equation (18)

In order to estimate the energy of 3 7,, we start with the elements K that touch
an edge & of the cube. Let h3 be the side of K which is parallel to £. Then hj is
greater than or equal to the other sides of [&’, by the properties of the GLL nodes,
as explained in Section 3.2. Since the nodal values of igfk in K are bounded by 1,

by the construction of 9 7,, we have:

197 iy = s,

by using equation (3.12). Summing over R’, we conclude that the energy of rlgfk is
bounded independently of N for the union of all elements that touch the edges of
the cube.

To estimate the contribution to the energy from the other elements of the sub-
structure, we consider one subtetrahedron at a time and introduce cylindrical co-
ordinates using the substructure edge, that belongs to the subtetrahedron, as the
z-axis. The bound now follows from the bound on the gradient of J F, given above
and elementary considerations. We refer to [48] for more details, and also to the
proof of the next lemma, where a similar computation is performed. 0O

The following lemma corresponds to Lemma 4.5 in [48]. This lemma and the
previous one are the keys to avoiding the use of HS({Q estimates and extension

theorems in the analysis of our algorithms.

Lemma 3.3.7 Let 0z, () be the function introduced in the proof of Lemma 3.3.6,
let Fy be a face of the substructure Q);, and let I" denote the interpolation operator
associated with the finite element space P" and the image of the GLL points under
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the mapping F;. Then,

Xk: 1"V pu)(x) = u(z),

for all nodal points x € Q; that do not belong to the wirebasket W;, and

1" (0 7,0) 1,y = (1 +1og(N))?||ul31(q,)-

Proof. The first part is trivial from the construction of rlgfk made in the previous
lemma. For the second part, we work in the reference substructure, and first
estimate the sum of the energy of all the elements K that touch an edge & of
the wirebasket. We provide a detailed argument only for K touching Fj; the other
elements that touch an edge are treated similarly. The nodal values of [B(lg}‘k i) in
such an element are 0,0,0,0, @(a), @(b), ﬂfk( )u(c) and ﬁfk(d) (d); ﬂfk lies between
0 and 1. Moreover, let hs be the side of K that is parallel to €. Then hs = hq
and hs = ha, by the geometrical properties of the GLL: mesh. Now, equation (3.12)
implies:

A A

5, 0) 2 iy = ol (@) + i (8) + (D, ()ir(e))? + (D, (d)ir(d))?).

Then, applying (3.11) for the segments that are parallel to £, and Lemma 3.3.5, we

have:

Z |[h(19}-k )

K

(i) = (1 +1og(N) il q,),

where this sum is taken over all elements K that touch the wirebasket of ).
We next bound the energy of the interpolant for the other elements. By the
proof of the previous lemma, |Vi§ 7| < C/r, where r is the distance between the

element K and the nearest edge of Q. Then, Lemma 3.3.3 implies that

E |[h ﬂfk Ix

Kc& K CQ

—2

U

Ix

22(12') );

where the sum is taken over all elements A that do not touch the wirebasket of €.
The bound of the first term in the sum is trivial. To bound the second term,
we partition the elements of ) into groups, in accordance to the closest edge of Q;

the exact rule for the assignment of the elements that are halfway between is of no
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importance. For each edge of the wirebasket, we use a local cylindrical coordinate
system with the z axis coinciding with the edge, and the radial direction, r, normal

to it. The sum restricted to each of these groups of elements can be estimated by

c N T
L 2 [ [ [ 5 dz o .

The integral with respect to z can be bounded by using Lemma 3.3.5. We

an integral
Z r2||4

Kch

obtain

. c
i 22(12') = (1+ 10g(0/h))||u||ip(@) /r:}l rdr

¥

Kch

and thus

2
HY(Q)”

U

S Mg )

Kc&

e = (1 +log(C/h)*

O

We note that this proof is an extension of an argument given in [48] for shape-
regular meshes, and that equation (3.13) replaces the use of the inverse inequality,
which if used here would introduce the bad aspect ratios of the elements into the

estimates.

Lemma 3.3.8 Let gz, and uy, be the averages of u on 0Fy, and W;, respec-

tively. Then,
_ 1
(us,)" = rllullizomy,

B 1
(uw,)? = E||U||%2(wj)-

The proof is a direct consequence of the Cauchy—Schwarz inequality.

Lemma 3.3.9 Let u € P"(;) be zero on the mesh points of the faces of Q; and

discrele harmonic in ;. Then,

|U|%11(Q]) = ||U||%2(W])-

This result follows by estimating the energy norm of the zero extension of the
boundary values using equation (3.12) and by noting that the harmonic extension

has a smaller energy.
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3.4 Iterative Substructuring Algorithms

At this point, we can propose and analyze several iterative substructuring methods
previously developed for finite elements. We choose the wirebasket algorithm pro-
posed by Smith [108] because it is efficient, and its analysis raises all the important
technical issues. In a practical problem, the choice between the many alternatives
now known should be made on the basis of the theoretical results that can be
derived from our theory, as well as numerical experimentation.

Smith’s algorithm is a wirebasket based method, and it is also described as
Algorithm 6.4 in [48] in the context of standard finite elements. It can be viewed
as a block-diagonal preconditioner after transforming Sj, into a convenient basis,
and the same is true for our algorithm.

By the abstract framework of Schwarz methods of Section 2.3, we know that in
order to describe the algorithm we only need to prescribe subspaces, the sum of
which spans the whole space of h-discrete harmonic functions of Py (Q), and one
bilinear form for each subspace.

For each internal face Fj, we let Vr, be the space of h-discrete harmonic func-
tions that vanish at all the interface nodes that do not belong to this face. The
functions in Vi, have support in €2;;, the union of the two substructures ; and Q;
that share the face Fj. The bilinear form used for these spaces is a(-,-).

The wirebasket subspace is the range of the following interpolation operator:

Iu = ST u(ze)er + Y Upprbpr.
%

TEEWY

Here, @y is the discrete harmonic extension of the standard nodal basis functions
o, Wy is the set of nodes in the union of all the wirebaskets, and uspx is the

average of u on JF*. The bilinear form for this coarse subspace is given by
bo(u,u) = (1 +log(N Zk mf [lu = eill72om

These subspaces and bilinear forms define, via the Schwarz framework, a pre-

conditioner of S} that we call SN';WWB.
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Theorem 3.4.1 For the preconditioner §h7WB, we have
R(SiwsSn) < C(1 + log(N))?,
where the constant C' is independent of N, H, and the values k; of the coefficient.

Proof. We can apply, word by word, the proof of theorem 6.4 in [48] to the

matrix Sp, using now the tools developed in Section 3.3. This gives
w(SiwpSh) = (1+log(N))™.

The harmonic FEM-SEM equivalence (3.9) and a Rayleigh quotient argument com-
plete the proof; see Section 3.2. 0O

The next algorithm is obtained from the previous one by the discrete harmonic
FEM-SEM equivalence, by which we find a preconditioner §N7WB from §h7WB.
The subspaces that define the preconditioner are now contained in the space of
Q-discrete harmonic functions of PN ().

Each face subspace, related to a face Fj, consists of the set of all @)-discrete
harmonic functions that are zero at all the interface nodes that do not belong to
the interior of the face Fi. The bilinear form for these spaces is ag(-,-).

The wirebasket subspaces are defined as before, by prescribing the values at
the GLL(NV) nodes on a face as the average of the function on the boundary of the
face. The bilinear form used for the wirebasket subspace is bOQ(-, -), obtained from
bo(+,-) by applying the GLL(N) quadrature to compute the L*-norm on each edge
of the wirebasket. This is exactly the wirebasket method based on GLL quadrature
described in [94].

The following lemma shows the equivalence of the two functions uj and ux with

respect to the bilinear forms by(-, ) and bOQ(-, -), respectively.

Lemma 3.4.1 Let uy, be a )y finite element function on the GLL(N ) mesh on the
interval 1 = [—1,+1], and let un be its polynomial interpolant using the nodes of
this mesh. Then,

N
inf [[up, — |72 = inf ) (un (&) — ¢)*p;
i=0
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Proof. The GLL(N) quadrature has the following important property:
For any polynomial uy of degree N defined on 1,

N
lunl|72a) < D2 un(&)ps < 3llunllizqay;
7=0

see [12, p. 75]. Therefore, it is enough to prove that:
inf |[un — C||%2(1) < inf |un — C||%2(1)-

We prove only the < part of this last estimate, since the opposite inequality is
analogous. The inequality without the infimum is valid for the constant ¢, that
realizes the inf in the right hand side by the FEM-SEM equivalence. By taking the
inf of the left hand side the inequality is preserved. 0O

Theorem 3.4.2 For the preconditioner §N7WB, we have
K(SywpSy) < C(1 +log(N))?

where the constant is independent of the parameters H, N, and the values k; of
the coefficient.

Proof. In this proof, the functions with indices A~ and N are h- and @)- discrete
harmonic functions respectively, and they agree at the GLL nodes that belong to
the interface I'. As observed in Section 3.2, it is enough to analyze one substructure

); at a time, and prove the following equivalence:

bOQ,Wi(qu UN) —|— Z k‘2|uN — HNﬁfkeN,fkﬁIl(Qi) = (316)
FrCLy
bo,w; (un, ur) + Z kilun — Uo7, 0h7, |%[1(Qi)7
FrCQy

where the subscript W; means that only the contribution from the wirebasket of
; is used to define the bilinear form. We prove only the < part; the proof of the
reverse inequality is analogous. We first note that Lemma 3.4.1 bounds the first
term on the left hand side by the first term on the right hand side.

Each term in the sum on the left hand side can be bounded from above by
2kilun — Unor, 0N, 7, |121[1(Qi) + 2k;|(Un,07, — Unp7,) 0N, 7, |121[1(Qi)-
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The first term of this expression can be bounded from above by the corresponding
term on the right hand side by using the harmonic FEM-SEM equivalence. The

second term is bounded by

CkZH(l + 10g(N))|ﬂh73}'k — ﬂN,STkP =
ChiH(1 4 1og(N))[(un — cawi)sz, — (un — caw)oz, *s

where ¢, y, is the average of u over W;. Here we have used that the estimate
on the energy norm of 8, r,, given in Lemma 3.3.6, implies a similar estimate for
On 7., by (3.9). Applying the Cauchy-Schwarz inequality, as in LLemma 3.3.8, and
the FEM-SEM equivalence, we can bound this last expression in terms of the first

term of the right hand side of equation (3.16). O

3.5 Overlapping Schwarz Algorithms

We now consider the additive overlapping Schwarz method, which is discussed, for
standard finite element discretizations, e.g., in [50, 51]. We recall that an abstract
framework, Theorem 2.3.1, is available for the analysis of this type of algorithm.
Here we only discuss the additive version, but the analysis can also be extended in
a standard way to the multiplicative variant by using Theorem 2.3.2. This variant
has proven more effective in many practical problems.

As in the previous section, a preconditioner K} for Kj, is specified by a set of
local spaces together with a coarse space. We also have to provide bilinear forms
(approximate solvers) for the elliptic problems restricted to each of these subspaces.
Here we work with exact solvers, i.e. the bilinear form is a(-,-). The extension to
approximate solvers is straightforward.

In the context of spectral elements, the following construction was first proposed
by Pahl [88]. The domain 2 is covered by substructures €;, which are the original
spectral elements. We enlarge each of them, to produce overlapping subregions (0,
in such a way that the boundary of €, does not cut through any element of the
triangulation 7" generated by the GLL nodes. The overlap § denotes the minimum
distance between the boundaries of €; and Q;. When § is proportional to H the

overlap is called generous, and when § is comparable to the size of the elements of
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T*, we speak of a small overlap. For the sake of simplicity, we again restrict our
analysis to the case when all the mappings F; are affine. The general situation can
be treated similarly.

The local spaces are given by P((), the set of functions in PZ(€)) that vanish
at all the nodes on and outside @Q;. The coarse space is the ()1 finite element
space defined on the mesh generated by the subregions €);, the elements of the
coarse triangulation, which are shape-regular by assumption; see Section 1.5. This

setting incorporates both small and generous overlap.
Theorem 3.5.1 Pahl’s additive Schwarz algorithm salisfies:
k(KphsKn) < (14 H/6)
The constant C' is independent of the parameters H, N, and §.

Proof. As before, we follow the proof of the analogous theorem for shape-regular
finite elements; see Theorem 3 in [51]. The proof applies, word by word, except for
the estimate of ax (1(0;wp), [1(0;wp)) where I}, is the interpolation operator, {6;}
a partition of unity (different from the one described in Lemma 3.3.6), wy, a finite
element function, and ag(-,-) the restriction of a(-,-) to the single element K € T".
It is known that 6; can be found such that |6;] < 1, and |V§;| < C/é. Lemma 3.3.3

gives:

1
ax(In(0ion), In(0iwn)) < Clwalfn ) + 5 l0nllzam)s

where the constant ' depends on the coefficients k;. The rest of the proof follows

without any change, and we obtain
k(K s Ky) < C(1+ HS).

The FEM-SEM equivalence and a Rayleigh quotient argument complete the proof.
U

Remark 3.5.1 Fven though the theory does not rule oul the possibility of growth
of the constant C of Theorem 3.5.1 when the coefficient k(x) has large jumps, only
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a very moderale increase has been observed in numerical experiments; see e.q. [65].
We also note that when the overlap is generous, the method is optimal in the sense

that the condition number is uniformly bounded with respect to N and H.

Remark 3.5.2 In the present algorithm, the local spaces are allowed to be more
general than those considered by Pavarino [91, 92, 93]. For each crosspoint w,,
Pavarino defines an extended subdomain €, as the union of all the subdomains

that contain x, as a vertex. Therefore, § is always on the order of H.

We now apply the FEM-SEM equivalence to the subspaces that define R’h AS,
to propose yet another preconditioner; this is the same technique used to derive
the preconditioner §N7WB from S’mWB. The coarse space is the same as the one for

[gf}% 4s, while the local spaces are given by
Vo = {ov € Py (Q) such that Iy (vw) € Fy(2)}.

Notice that the polynomials of VQ]Y are generally not equal to zero outside Q;, and
therefore VQ]Y 7 PN ().

These subspaces and the use of the bilinear forms ag(-,-) and a(-, ) for the local
and coarse spaces, respectively, define our new preconditioner ]§7N7 as. Theorem
3.5.1 and a simple application of the FEM-SEM equivalence for each of the local

spaces immediately give:

Theorem 3.5.2
k(KyysKn) < C(1+ HJS).

Remark 3.5.3 To the best of our knowledge, this preconditioner R’NAS is new.
FEven though ]g’}hAg is superior to RNAS for the model problem considered here,
because the local problems are much easier to solve, the comparative efficiency in

more complicated problems can only be determined by experiments.
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3.6 Comments on the Numerical Experiments by

Pahl

We describe here some of the experiments performed by Pahl [88]. These experi-
ments have motivated our analysis, and are used to illustrate the efficiency of some
of the algorithms considered in the last two sections. For more details on this very
thorough study, we refer to [88].

The region ) was taken to be the unit square in the plane, and the tests were
based on the two dimensional analogues of some of the methods described in the
previous two sections. {2 was subdivided into a uniform M x M mesh of squares,
with sides H = 1/M. In each square, polynomials of degree N were used. The
coefficient k(z) was equal to one, and the right hand side of (1.7) was chosen so
that the exact solution was v = zy(l — z)(1 — y). The stopping criterion for
the PCG iteration was a reduction of 107° in the Euclidean norm of the residual,
and only iteration counts were reported. The experiments were performed for the
finite element based preconditioners of the spectral element stiffness matrix; see
our Theorems 3.4.1 and 3.5.1.

In a first set of experiments, the iterative substructuring methods were consid-
ered. Several preconditioners were studied. We focus our attention on the wire-
basket preconditioner analyzed in Section 3.4, and an analogue of the balancing
preconditioner of Mandel and Brezina [80]. For N = 4 and M between 2 and 12,
the number of iterations was bounded by 10, and grew hardly at all, with increasing
M. For M =7 and N between 4 and 12, the iteration count increased very slowly
with NV, and was bounded by 11 for the wirebasket and balancing preconditioners.
We remark that the analysis of the finite element balancing preconditioner for the
spectral element method is a straightforward application of the results of Section
3.4 and the existing theory for shape-regular finite elements; cf. [90]. Pahl’s results
corroborate, in a clear cut way, the results of the theory.

The overlapping Schwarz preconditioner was studied in a second set of experi-
ments. The domain was divided as before into M x M subdomains, polynomials of
degree N were used within each subdomain, and § was taken to be on the order of

one or two mesh intervals. From the geometrical properties of the GLL mesh, it is
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easy to see that the bound on the condition number given by Theorem 3.5.1 grows
like (1 4+ H/§) < N?. Hence, our theory predicts an iteration count which is linear
in N and independent of M. The experiments performed by Pahl showed that
for N = 4, the number of iterations grows very slowly with M between 2 and 12,
and presents a sublinear growth when N increases from 4 to 12, for M = 7. The
maximum iteration count was 22, achieved for M =7 and N = 12. Our estimate
seems pessimistic in its dependence on N, at least for this range of values, while
it describes the dependence on the number of subdomains quite well.

An important practical question, also addressed by Pahl’s experiments, is the
choice of the most efficient overlap ¢ for a particular problem and decomposition
of the domain. The greater the overlap, the smaller the iteration count, but since
a more generous overlap also increases the work to solve the local problems, it is
hard to decide in advance what the best § would be. The results obtained by Pahl
indicate that, for M = 7 and N between 4 and 9, one mesh size overlap appears to
be a good choice in terms of total work on a serial machine, while a more generous

overlap seems to be appropriate for larger V.
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Chapter 4

Diagonal Edge Preconditioners in
p-version and Spectral Element

Methods

4.1 Introduction

Polynomials of high degree have been used extensively to approximate second order
elliptic partial differential equations in the plane. Two well-known discretization
schemes are the p-version finite element method [112], and the spectral element
method [73, 74].

For each substructure €;, the basis of the polynomial space PV (;) is usually
chosen so that it can be partitioned into sets of functions associated with the interior
of the element, the individual edges, or the vertices.

Let the stiffness matrices corresponding to the p-version and spectral element
methods for the homogeneous Dirichlet problem defined in one element be denoted
by K, and Ky, respectively. Let the usual bases for these methods, which will be
described in Section 4.2, be used to generate these matrices. Then, the condition

numbers satisfy:

k(K,) < N* and k(Ky)x N? (4.1)

see [12] and [97]. Here, and in what follows, < means that the ratio of the quantities
being compared is bounded from above and below by constants independent of the

degree N. These conditioning results are even worse for a domain partitioned
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into many elements, and they suggest that an unpreconditioned conjugate gradient
method is likely to require many iterations; this is actually seen in numerical tests.
Diagonal preconditioning of these full matrices has also been used, but the condition
number still increases quadratically with V; see [12, 97].

Many domain decomposition preconditioners can be viewed as block-Jacobi
preconditioners after an appropriate change of basis has been made. Each block
is determined by a subspace of the discrete space, and by an exact or inexact
solver; see [48]. The decomposition into subspaces corresponds to the elimination
of the coupling between different sets of basis functions. We note that it has been
determined experimentally that there is a very strong coupling between the interior
and the standard interface basis functions [7]. A block-Jacobi preconditioner that
eliminates the problem associated with this strong coupling has been proposed
by Babugka, Craig, Mandel, and Pitkaranta [5] for the p-version finite element
method in two dimensions. A change of basis is performed by computing the Schur
complement with respect to the interior degrees of freedom; the new interface basis
functions are orthogonal to the interior ones. In this new basis, the preconditioner is
built from one block of relatively small dimension associated with a global problem,
one block for each edge of the triangulation into elements, and one block for the
interior of each element; exact solvers are used for all blocks. The condition number
of this algorithm is bounded from above by C(1 4 log(N))?; see [5]. This result
can be extended straightforwardly to the spectral element method.

However, for all the implementations that we know of, the Schur complement
blocks associated with the edges are preconditioned by their diagonals; in other
words, inexact solvers are used to totally decouple the edge degrees of freedom.
This substantially reduces the amount of work in constructing and evaluating the
action of the preconditioner, because it eliminates the need to assemble and factor
the edge Schur complement blocks, or, alternatively, the need to solve, in each
iteration, Dirichlet problems in the unions of pairs of subregions; see [5, 48]. The
use of this diagonal preconditioner has been found not to increase the condition
number of the overall iterative process appreciably, if at all; see [5, 6, 7, 77]. No
theoretical result is derived in [5] to support this particular variant of the algorithm.

In this chapter we prove that the blocks of the Schur complement associated
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with each edge, preconditioned by their diagonal, have condition numbers that
grow approximately linearly with N, both for the p-version and for the spectral
element method; see Theorems 4.3.1 and 4.4.1.

There are at least two applications of these results: the first immediate conse-
quence is that, for the algorithm as actually implemented in [5] and [6], the condition

number & grows faster than polylogarithmically in N. In fact, x satisfies
CN <k <CN(1+log(N))°.

A very similar estimate holds for the spectral element case. These results can also
be easily extended to the p-version finite element applied to triangular elements;
see Remark 4.3.1. The numerical results presented here demonstrate that the linear
growth predicted by this estimate is present for large N, but also that the actual
condition numbers are relatively small, even for N on the order of 50; see Figs. 4.1
and 4.2.

Many domain decomposition algorithms have also been developed for problems
in three dimensions; see e.g. [38, 78, 79, 88, 94, 95, 100]. Again, the Schur com-
plement blocks associated with the faces play a major role. We propose diagonal
preconditioners for these blocks that produce very reasonable condition numbers
for the overall process. In Section 4.6 we analyze one such diagonal preconditioner,
applied to a three-dimensional elliptic equation. As above, an essentially linear
upper bound on the condition number is derived, and some results of numerical
experiments performed by Einar Rgnquist are discussed, showing a substantial im-
provement over his original preconditioner, which used a different scaling of the

variables on the interfaces.

4.2 On Polynomials and Trace Norms

Let Q = [—1,+1]% with the side [—1,+1] x {1} identified with A = [—1,+1].
Let PV (A) be the space of polynomials of degree less than or equal to N, and let
PN(A) be the set of polynomials in PV (A) that vanish at —1 and 1.

The space PN() is given by tensorization of PN(A); analogously, P (Q) is
the tensor product of PV (A) with itself.
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The Legendre polynomial basis {L,}n,>0 results from applying the Gram-
Schmidt procedure to the set 1,z,2% ..., and normalizing so that L,(1) = 1.

The following properties are classical, and can be found in [12]:

(1 =2?) L (2)) +n(n+1)La(z) =0 (n > 0), (4.2)
[ = — 75 (n=20) (4.3)
[ vy = 2n1+ (L (2) = Loa(2) (02 1), (4.4)

We recall that for each N, the Gauss-Lobatto-Legendre quadrature of order N
is denoted by GLL(N) and satisfies:

Vp e PPN7I(A), /_11 p(z) dz = ﬁjp(&)ﬂj-

Here, the quadrature points {; are numbered in increasing order, and are the zeros
of (1 —x?)L ().
We next describe the basis functions used in the two methods. Following

Babugka and Szabé [112], a polynomial basis for the p-version finite element method

on PN(A) is defined by no(z) = (1 — 2)/2, m(z) = (1 + x)/2, and

1 T
I\ L i—1 d i_ . .
() — [ b iz (4.5)

| Liza |l

A p-version polynomial basis for PV () is given by tensorization of this one di-
mensional basis.

The basis for the spectral element method on PN(A) is given by {¢;}X, the
Lagrange interpolation basis at the GLL points, i.e. £;(&) = &;;. The spectral
element basis in two and three dimensions are also given by tensorization of the
one dimensional basis.

The remainder of this section describes some Schur complement and trace norm
properties. They are valid for both the p-version and the spectral element method.
In each case, the basis can be partitioned into two sets of functions. The first
is formed by the basis functions vanishing on 9€; these are the interior (i) basis

functions. The others are the boundary (b) basis functions. The Schur complement
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is defined by S = Ky, — beKZ»;lKib, where the subscripts refer to blocks of the
stiffness matrix K, ordered appropriately.

Let w be the restriction of a function of PV (Q) to 99, let w, be the vector of
its boundary degrees of freedom, and let || - |[g1(q) and | - [g1(q) be the standard

Sobolev norm and semi-norm, respectively. We easily find that
whSw, = mmu|u|H1 @ = |Hw|H1 (4.6)

where the minimum is taken over all functions v € PV () such that u|sq = w, and
Hw is the function achieving the minimum. It is also easy to see that (w;,w;)" =
Hw satisfies:

Kiw; + Kgpwy, = 0.

The first expression of (4.6) defines a Schur complement symmetric bilinear form
that only depends on the boundary values of the function, and can be estimated

in terms of a trace norm. By Theorem 7.4 of [5], for any w € PM(f), there is a
u € PN(Q) with u = w on 99, such that

ullm@) < Cllwllmirz(say: (4.7)

We recall that the space HSéQ(A) is the space of functions v € H'/?(9) that
vanish outside A, endowed with the norm |[v|[g1/2(5q). This space is isomorphic to
the interpolation space [L*(A), Hj(A)]1/2; see [71]. An equivalent norm for HééQ(A)

is given, in this context, by:

Wl = [ [T D gy g [ D
T —y 11—.1:

see [85].
Let vp be the trace on A ~ [—1,1] x {—1} of a function of PV (Q) that vanishes
on I\ A. Let v, be the vector of degrees of freedom associated with the interior

of A, and let S be the Schur complement restricted to these degrees of freedom.
Then, by using (4.6) and (4.7), we obtain, Vv, € PN (A):

()
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4.3 Diagonal Edge Preconditioning for the p-version
in 2d

In what follows, we only work with S, the Schur complement related to A, as in
(4.9), and we therefore drop the subscript A. Accordingly, the vectors consist of the
degrees of freedom associated with the interior of A. The p-version and spectral

element Schur complements are denoted by S5, and Sy, respectively.

Theorem 4.3.1 Let D, be the diagonal of S,. Then, Yu € PN (A),

Nonin (W Dptt) < u'Spu < Ny’ D), (4.10)
with
¢ < AMnaz < C, (4.11)
and Clog(V)
¢ N og

Proof. Let u(z) = YN, a;n;(z). By using (4.9) and the Courant-Fischer char-
acterization of the extreme eigenvalues in terms of a Rayleigh quotient, we only
in terms of YN, a?||n: . We start by showing

need to estimate ||u||12ql/2 1
00

2
(A) | |Hoo’ ()

that ||m||12‘150/2(1\) =< 1/i. Indeed, from (4.2), we have

7i._ 1/2(1 - J?Z)L;'—l- (4‘13)

Ty

Then, by integrating by parts and using (4.2) again, the second term of (4.8) is
easily seen to be of order 1/7%. To compute the first term of (4.8), we note that it is
the square of the L%-norm of a polynomial of degree less than or equal to 7 — 1. We
use the GLL(7 — 1) quadrature rule which, by (1.13), gives the value of the integral,
to within a multiplicative constant. The use of this quadrature rule results in a
double sum that can be reduced to

i1

> (0i(€)) e,

1=0
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since the ¢; are zeros of the n;, by (4.13). This last sum can be computed exactly
by using (1.12) and (4.5) for N =1 — 1, and we find that ||m||1211§g2(1\) < 1/1.

We prove only the right inequality of (4.11), since the left inequality is clear by
taking u = n,. Given u € PY¥(A), we define an extension of u, E(u) € PV(Q) such
that F(u) = u on A, and F(u) vanishes on 9Q\ A. By (4.6) and (4.9), it suffices to
show that |E(u)|fql(ﬂ) < CY N, (a?/i). We choose E(u)(z,y) = SN, aini(x)i(y),
for some ; € PN(A), ¥;(—=1) = 1, 1;(1) = 0, that will be chosen momentarily. A

simple computation shows that
N
|E(w)|fay = D aiai(nhn}) (i) + (06, m5) (80, 45)).

1,J=2

Here, (-, ) is the L*(—1,1) inner product. By using (4.3), (4.4), and (4.5), we find:

1
(mi,mi) < oy (ni,mi) < 1. (4.14)

Moreover, we also have (n},7}) = 0 if 2 # 7, and (n;,n;) = 0 if [s — j| > 2. These
estimates together with the Cauchy-Schwarz inequality imply

N
Bty < CDai(lillzaay + (/)19 72n)-
=1

The piecewise linear interpolant using the GLL(N) points I% is defined for any
vy € PN(A) and is given by v, = I&(vn), vn(&) = vin(&;), for 5 = 0,1,..., N.

The inverse of 1% is denoted by IY. By using results of Canuto [34], we have:

on]lr2a) X |vallzeay and oy ]2y X [Jvg |2 (a)- (4.15)

For i =2,...,N, let {: be one of the GLL(NV) points, with a distance to —1
proportional to 1/i. Let 1, ,(x) be the piecewise linear function that goes from 1 to
0 linearly between —1 and §;(;), and is zero for z > §;(;), and choose ; = IN(;5).
By (4.15), we have ||¢i||%2(1\) = 1/i, and ||77/J2{||%2(A) < 1, since this is true for ¢, .
Then,

s

[E)lmey < O ai((1/i) +(1/i%)i),

=1
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which implies the right inequality of (4.11).
We next prove the left inequality of (4.12). We recall that u(z) = SN, a;ni(z).

Since {n!} is an orthonormal set in L*(A), we have

a; = /1 u'(z)ni(z) dx . (4.16)

-1

By integration by parts and a duality argument, we get

a; < |/ z)dx |
= ||“||H1/2 ||77 sz,
S ||u||H§({2(A)||77i||H1/2
= ||u||Héo/2(A)\/i_71/2||Li—1||H1/2.

Here, the penultimate inequality follows from [71, Proposition 12.1]. The H'/%-
norm of L; has been computed in [3], using a Gaussian quadrature rule, and is
known to be bounded from above by C(log(i))!/?. Therefore,

N N
S @l < OO0l — )llul
1=2 1=2

which implies the left inequality of (4.12).

We prove the right inequality of (4.12) only for the case of NV even. For N odd,
the same proof applies, with N replaced by N—1. Let u(x) = (Ln(z)—1) € PN (A).
By (4.16) and integration by parts, we obtain, for 2 < < N:

a = i 1)2 /L —/ Ln(2) L (2) dz )
= 2/i—1/2,

if i is even, and zero, otherwise. Again by using the results of [3], |[|[Lx—1|]? ,/, . <

HOO (A) -
C'log(N). Therefore:

2 2 2||n2|| 1/2 C N
@ > > o,
||U||H342(A) log(NV) ieven, i>2

which implies the right inequality of (4.12). O
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Remark 4.3.1 Theorem 4.3.1 also holds for the p-version applied to triangular
substructures. Indeed, the analogue of (4.10) for triangles can be translated into
inequalities involving the HgéQ-nOT’m, by the extension theorem; see [5, Theorem

7.4]. The result is then implied by the proof of Theorem 4.3.1.

4.4 Diagonal Edge Preconditioners for the Spectral
Element Method in 2d

Theorem 4.4.1 Let Dy be the diagonal of Sy. Then, Yu € P (A),

AN (' Divu) < u' Sy < N g Dyvu), (4.17)
with
¢ < Anaz < C, (4.18)
and
c N C

W< 41
Nlog(N) — “min =N (4.19)

Proof. Let u(z) = SN u(&)l n(x), where {; y} is the Lagrange interpolation
basis related to the GLL(N) points. By (4.9), we only need to estimate ||u||12ql/2
in terms of %, u2(§i)||£i’N||iI§({2(A)' "

Let vV € PYN(A). A consequence of (4.15) is that not only are the L% and

H'-norms of vy and v, = I[%(vy) equivalent, but also

(4)

||UN||H30/2(A) = ||vh||Héo/2(A); (420)

a detailed argument can be found in [37].
We start by showing that ||€ivN||Héo/2(A) = 1. Let l;, = [%(l;n), by = &1 — &,
and 6; = arccos(§;). Then, for 1 <i < N —1,
(N—i—(1/2)n <0, < (N —i+ 1)7‘[';
N - T N
see [12, p. 76]. This relation implies that h;1; < h;, for 0 <7 < N —1. A simple
computation shows that for 1 < i < N — 1, ||£i7h||%2(A) < Ch; and ||Ei7h||?'_[1(A) <

(4.21)

C'/hi. By interpolating between these two spaces and using (4.15), we obtain
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1Cinll 12y = C. A rather tedious, yet elementary, computation using (4.8) shows
that one of the positive terms which form ||/, ||? B2 is greater than a positive

constant, and this shows that ||€th||Hl/2(A) < 1. Then by (4.20), we find that

||€z,N|| 1/2 =< 1.
HOO (A)

The left inequality of (4.18) follows by taking v = {3y, and using that
||€27N||H1/2(A) =< 1. To prove the right inequality, we use (4.20) and restrict our-

00

selves to piecewise linear functions. Let F(uy)(z,y) = SN, un(&)in(2)in(y), for
some ; , with ¢; ,(—1) = 1 and ¢; 4(1) = 0. We go through the same steps as in
the proof of Theorem 4.3.1. Since the mass and stiffness matrices corresponding to

the £; , are tridiagonal, we obtain, as before:

| E(un)lf < C Z (un(€))*((1/hi)[1$iml 12 (a) + (B ll(¥i) 1 Z2(a))-

By (4.15), we can choose the v, , so that the coefficients of (ux(&;))? can be bounded
above by a constant, thus proving (4.18).

Our remaining task is now to prove (4.19), and we start with the left inequality.
For u € PY(A), it is well known that

ey < OO+ Tog (Nl By (422)

see Theorem 6.2 of [5]. Then,

N-1

N-—
|u Z 1+10g ||u|| 1/2( A)’

—_

and this, in turn, implies the left inequality of (4.19).
For the right inequality, let us(z) = 1 — |z|, and let uy = I (uz). A standard
argument of interpolation between L*(A) and Hj(A) and a simple computation

shows that ||UN||H§0/2(A) < 1. We also have

Y ve)” > X (u(e)
= Y (-&y
i—[N/2'|
= N Z 1—(:080))2,
i= [N/z]
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where, by (4.21), the 6; are asymptotically equidistant on the interval [0, 7/2]. This
last sum is then a Riemann sum for (1/7) 07r/2(1 — cos(#))* df, and therefore,
N-1

> (un(&))* = O,

=1

completing the proof of (4.19). O

Remark 4.4.1 The Schur complement associated with an edge for a finite element
space based on a quasi-uniform triangulation with a parameter h has a condition
number on the order of 1/h; see [15]. The techniques used to prove Theorem 4.4.1
can be used to establish that this condition number is between 1/h and |log(h)|/h.
Although ours is a slightly weaker result, our methods can be used in a context more

general than for quasi-uniform meshes, e.g., for the GLL mesh.

4.5 Numerical Experiments in 2d

We have performed numerical experiments to determine the actual values of the
eigenvalues of Theorems 4.3.1 and 4.4.1. The results for 4 < N < 50 are given
in Figures 4.1 and 4.2. They agree, in a clear-cut way, with the theoretical results
developed here. We remark that for these values of N, the approximate linear
growth of the inverse of the smallest eigenvalue is clear, and that the graph of the
largest eigenvalue appears to approach a horizontal asymptote. Table 4.1 gives
the condition numbers for both D;ISP and DR,ISN, for 4 < N < 15. We note
that the relatively small condition numbers help explain the good convergence rates
experienced with the algorithm implemented in [5], by the modular character of the

Schwarz framework.

4.6 Diagonal Face Preconditioner for the Spectral
Element Method in 3d

For three-dimensional problems, the preconditioner proposed in [5] has to be re-

placed by a preconditioner especially designed for three dimensional problems. A
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straightforward generalization of that method results in a condition number increas-
ing at least quadratically with the degree N. We note that Chapter 3 presents a
variety of much better preconditioners for three-dimensional second-order elliptic
problems. For the iterative substructuring algorithms proposed there, the factor-
ization of the matrix related to the GLL finite element mesh in each subregion £}, is
a preprocessing step, since back-substitution using this factored form is performed
at every step of the algorithm.

In the next subsection, we propose another iterative substructuring algorithm
in addition to those of Chapter 3, which can be traced back to [48], and which was
proposed in a slightly different form in [96].

The weakest point of this type of preconditioners is its face component, since,
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N | &(D;'S,) | &(Dy' Sn)
4 1.33 2.46
5 1.53 3.13
6 1.80 3.81
7 2.06 4.51
8 2.33 5.20
9 2.59 5.90
10 2.85 6.60
11 3.12 7.29
12 3.38 8.00
13 3.64 8.70
14 3.90 9.40
15 4.16 10.09

Table 4.1: Condition numbers of DS, and Dy Sy for an edge

in each iteration and for each face, it requires the solution of a Dirichlet problem in
the union of the two subregions sharing that face. This entails a new ordering of the
nodes, and the factorization of the stiffness matrices corresponding to these unions.
An alternative would be to use the inexact solver proposed by Couzy and Deville
[44]; a tensor product basis can be used to solve a related problem in the union
of two non-deformed subregions derived from the original ones by an averaging
procedure.

In subsection 4.6.2, we propose a simplification of this component of the algo-
rithm by introducing diagonal preconditioners of the face components.

The new algorithm has a condition number bounded from above by
C(1 4+ log(N))>N.

We will present evidence that its growth is at least linear. However, as we will see
in subsection 4.6.3, the actual condition numbers are relatively small. As before,
numerically computed bounds for the conditioning of some of the modules of the
algorithm (such as these diagonal face preconditioners) can be used to estimate the

rate of convergence of the overall iterative process, by using the Schwarz framework
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of Section 2.3.

In subsection 4.6.3, we present some numerical results obtained by FEinar
Rgnquist, of Nektonics Inc. These experiments show a linear growth of the condi-
tion numbers, and the small number of iterations encountered in practice. These
three-dimensional results are obtained for a domain partitioned into 256 subdo-
mains, and for a problem with 64 subdomains, with polynomial degrees up to 14,
which appears to be the current limit of practical values of N. These are large
problems, and as we will see, they can be solved with relatively modest computer

resources.

4.6.1 An Iterative Substructuring Algorithm with a Stan-
dard Coarse Space

For the problem (1.16) in three dimensions, we describe an additive Schwarz pre-
conditioner with a standard coarse space, as first proposed in [96].

The coarse space VT = PJ() is the space of images via F; of continuous
piecewise trilinear functions, to which we associate the bilinear form a(-,-).

The interior spaces are given by Vg, = PN(€);), and the corresponding bilinear
form is ay(-,-), given, for u,v € Vg, by an(u,v) = a(1k(u), [N (v)).

To each face Fj, shared by two subregions ); and ;, we associate the space
Vr, C PN(Q) of piecewise h-discrete harmonic functions in Q; and §;, vanishing
on and outside (9Q; U 9Q;)\F. The bilinear form is again a(-, ).

The space Viy C PYN(Q) associated with the wirebasket W is formed by func-
tions that are zero at all the GLL nodes that are not on an edge or vertex. The
bilinear form aw(u,v) is defined as [}, u(z)v(z) dz, calculated with the GLL(N)
quadrature edge by edge. We remark that in the preconditioning step, this corre-
sponds to the multiplication of the inverse of a diagonal matrix with the appropriate
subvector of the residual.

For this preconditioner, each vertex degree of freedom belongs to two spaces,
namely V7 and Vjy. This is very important for the performance of the algorithm,
and can be seen to be necessary both from the theoretical point of view (see [48,

Algorithm 6.3] for a discussion in a related context), and from practical consider-
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ations.
Let T's be the preconditioned operator for the algorithm just described. By
using the tools given in Chapter 3, we can easily get the following result, the proof

of which we omit; see [96, Theorem 4.4].

Theorem 4.6.1
k(Ts) < C(1 4 log(N))?,

where the constant C is independent of N, the number of subregions, and the
Jumps of the coefficient across subdomain boundaries, provided these coefficients

are quasi-monotone.

If the coefficients are not quasi-monotone, then we expect the bound to deteri-
orate when the jumps are very large. However, when this preconditioner is used
in the context of CFD computations, the jumps are not a concern; see Chapters 5

and 6

4.6.2 A Diagonal Preconditioner for the Face Component

Apart from the factorization of the matrix corresponding to Dirichlet problems in
the subregions, the computation of the Tz, is the computationally intensive part
of the preconditioner, because each of them involves the solution of a Dirichlet
problem in the union of two subregions.

We propose to replace the bilinear form for each of these subspaces by a diagonal
form, which dramatically reduces the number of floating point operations for these
components of the preconditioner.

We consider one face F at a time, and denote by Sz the Schur complement of
the degrees of freedom on F with respect to the nodes interior to the two subregions
that share the face F. We work on a reference configuration for which these two
neighboring subregions are reference cubes, and F is the square [—1,1]%.. As in
the derivation of (4.9), we can use the extension theorem for spectral element
discretizations, [8, Theorem B.4], to show the uniform equivalence of the Schur

complement norm and the HgéQ—norm. In other words, let vz € P (F), and

61



vz be the vector of degrees of freedom associated with the interior of F. Then,
Yvr € PéV(F)

o (F)
Let u € PN (F) be the restriction to F of any function in V. Let

N-1N-1

Z Pz+/0] ur 5275])) .

=1 =1

The diagonal matrix D is defined by
Mt}'D}'Mf = d(u7 u)a

and will be used as an approximate solver on the space Vrz. We then have the

following theorem.
Theorem 4.6.2

AoN(u Dru) < u'Sru < XN (' Dru),

min max

with
)\}'N S C

max

and
FN 5 c
min = N1+ log(N))’

where C' and ¢ are independent of N.

Proof. By using the same notations as in the proof of Theorem 4.4.1, and

dropping the subscript F, we may write u(z,y) = 32, 57, u(&, &)l v ()l n(y). By

4.23), we only need to estimate ||ul|%,,, in terms of d(u,u).
gY
00

To estimate \- | we start by noting that, by (1.13),

min

diuw) < O [ (&) dy+z/ v.&) d)
= O lu(&: )zaq +Z||U (5 €Iz )
where [ is the interval [—1,1].
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By using Lemma 3.3.5, each term of these sums is bounded from above by

C(1+ 1Og(N))||u||12111/2’ resulting in the estimate of )\iljj.
00 A]’—N

Z v, and for that we use yet another alternative

Our task now is to estimate
expression for the HSéZ—norm, which can be found for instance in [85, Lemma

I1.5.3]. The square of this equivalent norm is given by the sum of

// |Ju(s, S_t Nz ) ds dt.
// (-, S_t SOz ) ds dr.
u) = /I/I J(g;’(;)”y;}_)

where o((z,y), 0F) is the distance between the point (z,y) and dF.

Let Pl(F) be the space of piecewise bilinear functions, obtained from P (F)

by interpolation at the GLL(N) nodes. Let uj = I%(u), where u € P (F). Then,
)\}' N

max’

and

to prove the estimate on it is enough to bound ||u||ijl/2(f) from above by
00

d(up,up), since d(up, up) = d(u,u) and

Ik

2 - .
enlliggge ey = Melliagery

see (3.9) and (4.23).

Let u;j be defined by u; x(&,y) = u(&;,y) &, i.e. u;p agrees with u on the
segment {£;} x [—1,1], and is zero on {&;} x [—1,1], for j # 4. It is clear that
win(x,y) = wi n(&, y)lin(x) has support in [€5_1,&41] X [—1, 1], and that uy(z,y) =
Yiuin(z,y).

We claim that, Vi,

[Jws 117, 173 < (pi+ i) (u( €))% (4.24)
j
We start by estimating [1(uy).

Luin) = WnllTaenlwin(& )ineg
Cpl Z uih(&a ‘fj)a
J

IN
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by (1.13) applied to £;,(x) and by (4.18) applied to u;x(&;,-), since the diago-
nal elements of Dy (the diagonal of the edge Schur complement) are of order 1.

Analogously, we have:

L(uin) = win(& MEanlnlineg

< O piu (6 &),
J

since |€Z»7h|12ql/2(1) = 1, by the proof of Theorem 4.4.1. By using the trivial inequality
(o((z,y),0F))"t < 2((o(x,01)) ' 4 (c(y,d1))™"), where o(x,dI) is the distance of
x to 01, the estimate of [3(u; ) is analogous to the estimates of Iy (u; ) and I(u; ).
This completes the proof of (4.24), since u;; and uy agree on & x [—1,+1].

Next, we write up(x,y) = ¥; uin(z,y), and arrive at

Ii(up) < C/I/I (S_lit)QZ;/I(uzh(x,s) — ui7h(;v,t))2 dz ds dt,

by applying the Cauchy-Schwarz inequality, and by noting that for fixed (s,t), the
integrands (u; 5(z, s) — u; n(z,t))? have disjoint support for any two values of 4 that
differ by two or more from each other.

Then, by (4.24),
L(un) < C Y0 Nuin) < C30Y (pi+ pi)uin(6i: &)

The estimates for I(up) and I5(uy) are analogous. O

Let Tsp be the preconditioned operator defined in Section 4.6.1, except that the
bilinear form for each Vz, is replaced by d(uz,,vz,) = Etﬁ Dz, ug, . Then, by com-
bining Theorems 4.6.2, 4.6.1, and the abstract Schwarz framework, we immediately

obtain the following result.
Theorem 4.6.3

£(Tsp) < (C1(1+1log(N))*)(C2N(1 +log(N))),

where (' is the constant given by Theorem 4.6.1, and Cy is the constant given by
Theorem 4.6.2; they are both independent of N and H.
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Remark 4.6.1 We explicitly distinguished between Cy and Cy because they may be
of very different magnitudes. If Cy is estimated by solving a generalized eigenvalue
problem in the union of two reference substructures, this numerically computed esti-
mate can be entered directly into the estimate of the theorem. This is an advantage

of the modularity of the Schwarz framework; see Section 1.1.

4.6.3 Comments on Some Experiments by Einar Rgnquist

We report on some numerical experiments performed by Einar Rgnquist, of Nek-
tonics Inc., to assess the actual value of the condition number of the operator T'sp
of Theorem 4.6.3, and especially one of its variants. The Poisson problem with
homogeneous Dirichlet boundary conditions was solved for different choices of the
domain €.

Most of the results were obtained, in this preliminary study, with each of the
diagonal matrices Dz, replaced by D%, . Let F be a face of a reference substructure.
The diagonal entry corresponding to (&;,&;) € F is equal to p; + p; for Dz, while
for D it is set to (%); the actual matrices D, are obtained by mapping from
the reference face. This was the preconditioner first proposed by us for the face
subspaces, before we had a proof of Theorem 4.6.2. When this alternative is used
for the face subspaces, the preconditioner is denoted by TS,,. We present results for
this alternative because this set of experiments is the most complete now available,
although estimates that accurately explain its properties have not yet been found.

We first let 2 be the union of two unit cubes 0y and 2, sharing a face F. In
this case, the operators Tsp and T, are generated by using three spaces: Vo, , Va,,
and V. Table 4.2 shows the condition numbers for Tsp = Tq, + Tq, + 4T+ and
Tin = Ta, + Ta, + Tr. The factor 4 was found to further decrease the condition
number of Tsp; it clearly does not affect by more than a factor 4 the bound of
Theorem 4.6.3. If this factor is not used, an increase of 20% in x(7Tsp) is observed.
We note that the values in the first column of Table 4.2 are consistent with the
approximate linear growth of the condition number expected from Theorem 4.6.3.

We next let Q = [—1, 1], and divide it into 64 equal cubic subdomains. Table 4.3

shows the condition number of T¢,, with a piecewise trilinear (();) or triquadratic
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N | (Tsp) | £(Tsp)
4 5.74 5.79
6 7.25 7.70
8 8.25H 8.47
10 9.16 9.41
12 10.2 10.4
14 12.8 12.9
16 15.8 15.8
18 19.1 19.1
20 22.8 22.7
22 26.9 26.7
24 - 31.1

Table 4.2: Condition numbers for the two subregion problem

(Q2) coarse space; the last column gives the number of degrees of freedom of the
system being solved.

Finally, in Table 4.4, we show the condition numbers of 7%, on a non-cubical
domain (' formed by deleting 32 subdomains out of the 64 into which the cube
[—1,1]* had been decomposed, and then partitioning each of the remaining ones
into eight equal cubes, to produce a decomposition into 256 cubes. The resulting
region ' is connected, but it has no trivial geometrical symmetries.

From the results presented here, we conclude that Tsp (or TSp, for which there
is no satisfactory theoretical explanation yet) can be expected to be very effective,
even for domains partitioned into many substructures, and for realistic values of

N; indeed, quite large problems were solved with modest computer resources.
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N | &(T¢p) &(Tép) #D.O.F.
trilinear | triquadratic
3 7.03 3.66 2,197
4 10.0 4.89 4,913
5 13.0 6.61 9,261
6 16.4 8.49 15,625
7 19.7 10.2 24,389
8 23.0 12.2 35,937
9 26.3 14.0 50,653
10 29.7 16.0 68,921
11 33.1 17.7 91,125
12 36.7 20.0 117,649

Table 4.3: Condition numbers of T, with trilinear and triquadratic coarse spaces,
and 64 subdomains

N k(Tép) # D.O. F.
triquadratic
3 7.70 8,635
4 11.0 19,401
5 14.4 36,671
6 18.0 61,981
7 21.6 96,867
8 25.2 142,865

Table 4.4: Condition numbers of T, with a trilinear coarse space, and 256 sub-
domains
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Chapter 5

Schwarz Methods for the Stokes
Equation

5.1 Introduction

In this chapter, we consider fast methods of solving the linear system resulting from
the discretization of the Stokes problem by the spectral element method; see (1.17).
The Uzawa procedure has long been the prefered method of solution. The velocity
is eliminated from the first equation of (1.18) and inserting into the second one,
yielding:

BA™'B'p = BA7'{.

The coefficient matrix BA~! B, preconditioned by the mass matrix for the pressure,
corresponds, heuristically, to a zero-order operator, and indeed has a relatively small
condition number. The PCG method is used to find p; each iteration requires an
exact solve with A. For large scale problems, a factorization of A is not an efficient
choice, for well-known reasons, as pointed out, e.g., in Section 2.1. Each exact solve
with A is performed by using a preconditioned iterative solver, which generates a
costly inner iteration; see [61, 73]. Once p has been found to the required accuracy,
u is obtained from the first equation of (1.18).

In the finite element context, block-diagonal and block-triangular precondition-

A B'Y
B0 )
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see [55, 69, 106]. This approach attempts to take full advantage of the power of
the preconditioners developed for second-order elliptic equations (such as each of
the diagonal blocks of A) and the many iterative methods available for indefinite
matrices. These block methods have had considerable success in recent years, and
we believe that a practical comparison with the type of algorithms introduced in
this section would be a worthwhile undertaking.

Einar Rgnquist has proposed an iterative substructuring method that is based
on a decomposition of the domain into interiors of subregions, faces, edges, and ver-
tices. The coarse problem is a Stokes problem approximated by a lower-dimensional
pair of discrete spaces on the coarse mesh, such as the ()5 — (g element pair. Stokes
problems are solved within the subregions, while a diagonal scaling using elements
of the matrix A is performed on the interface velocity variables. Both velocities
and pressures are used in a GMRES iteration. This scheme avoids costly inner
iterations, and its built-in parallelism is certainly a very desirable feature. In [100],
relatively large problems in three dimensions are solved with modest computer re-
sources. The number of iterations is small (on the order of 40 for M = 64 and
N = 6, with 44,501 degrees of freedom). The small iteration count and the ex-
cellent approximation properties of the spectral element method for flow problems
makes this a very efficient scheme.

Bramble and Pasciak [18] and Le Tallec and Patra [113] have proposed precon-
ditioners for the h- and p- version, respectively, based on the elimination of the
variables interior to the subregions, via the solution of a Stokes problem for each of
them. By a standard extension theorem, the resulting bilinear form for the inter-
face velocity degrees of freedom is positive definite and spectrally equivalent, up
to a factor involving the Babuska-Brezzi constant, to the bilinear form of the Schur
complement corresponding to the interface velocity components; see [60, Lemma
[.2.2], [18, 113], or our Lemma 5.3.2. Although distinct in important respects, both
of these methods use global pressure variables as Lagrange multipliers to constrain
interface velocities and to guarantee that the discrete divergence free condition
holds. The PCG method is used as the accelerator of the iterative process.

In an effort to more fully understand Ronquist’s scheme, we have developed iter-

ative substructuring methods, for which the velocities are restricted to the space of
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discretely divergence free functions in the spectral element sense; i.e. the velocities
satisfy the last equation of (1.17). We note that the computation of a basis for this
divergence free space in this context, is too expensive to be of practical value, and
is not required here; to accomplish that, the Lagrange multiplier technique of [18]
and [113] is used. The PCG method is applied to the resulting symmetric, positive
definite linear system. The condition number of our algorithms grows at most like

C(1 + log(V))’

B ’

where (B is the Babuska-Brezzi constant introduced in Lemma 1.5.1.

This approach can be nicely adapted to the solution of the steady Navier-Stokes
equation by Newton’s method, since in each iteration only the velocity of the pre-
vious step is used. The pressure is computed only when required, typically after
the velocity has been obtained to the prescribed accuracy; see Chapter 6.

The idea of developing domain decomposition preconditioners for mixed prob-
lems by restricting the velocity (or an analogous quantity) to its constrained space
has already appeared in [81, 82, 83]. The problem is then reduced to a symmetric,
positive definite one. Moreover, in contrast with our case, bases for discrete diver-
gence free spaces are available for some finite element methods; this fact is used to
design multigrid and domain decomposition methods in [22, 23, 87].

The next section introduces some notations. Section 5.3 gives a proof of an
extension lemma that will be used throughout the chapter. In Section 5.4, we
propose and analyze a Lagrange multiplier-based preconditioner that is similar to
an algorithm proposed by Le Tallec and Patra [113]. In Section 5.5, the Q3 — Qg
pair is used to generate a coarse space for the Stokes problem; the construction of
the coarse projection operator is intimately connected with the standard proof of
the inf-sup condition for this pair; see Section 5.4. It will become clear that many of
the stable element pairs with discontinuous pressures generate appropriate coarse
spaces for the spectral element discretization. Moreover, from the point of view of
analysis, the spectral element method may be replaced by any other finite element
discretization with discontinuous pressures on a fine mesh. The theory carries over
without any substantial change; see Remark 5.5.3. Several aspects of this analysis,

which is analogous to the Schwarz theory now available for non-imbedded finite
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element spaces for elliptic problems, appear here for the first time. They involve
the following well-known ingredients: L?-approximation properties and H'-stability
of the coarse projection and of the interpolation from the coarse to the fine space;
see (5.13) and Lemma 5.5.1.

Section 5.6 introduces yet another type of coarse space, based on the curl of C''-
finite element functions on the coarse mesh. The central new result of this section
is Lemma 5.6.1, which allows us to analyze the resulting domain decomposition

preconditioner in Theorem 5.6.1.

5.2 An Extension Operator

For a subregion );, we define an extension operator
EPY L (PN (0)) — (PN (),

where u; = EZS ’N(gi) is the velocity component of the solution to the following
Stokes problem:
Find (u;,p;) € (PY(9,))%, PN=2(;) N LE(9;)), such that:

ag(ui, vi) +bo,(vi,pi) =0 Vv € (B ()%,
bgi(ui,qi) =0 Vq € pN_Z(QZ') N Lg(ﬂz), (51)

U;lag, = g
Here, bg, (-, ) is the restriction of b(-,-) to ;, ag(-,-) is the standard discrete form
for the spectral element method; see subsection 1.5.2. In other words, u; is the
solution of a homogeneous Stokes problem with g; as boundary data, and zero
right hand side within €;; u; will also be called the Stokes-harmonic extension of
the boundary values g;. We remark that u; always exists, even if the outward fluxes
Joq, & - dS is not equal to zero, since the test space for the pressure does not
include the constant function, and the Babuska-Brezzi condition is satisfied for the

problems restricted to each subregion.
We remark that if u; = EZ»S’N(gi), then

CLQ@L.(UZ',UZ') = min CZQ@Z.(VZ',VZ') \V/VZ' € Pév(ﬂz), (52)

Vi |6Qi =8:
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where

P() ={vi € (PY())*| ba,(vi,q:) =0 Vg € PV72(Qi) N L)}

We also define an analogous operator EZ»S’}L that in general is less expensive to
compute than EZ»S’N, but still satisfies a minimizing property analogous to (5.2).
Let

B (PN (00)° — (PV())?,
where u; = EZS ’h(gi) is the velocity component of the solution to the following
Stokes problem:
Find (u;, pi) € (PY ()4, PN=2(Q;) N LE(9;)), such that:
ap(ug, vi) + bo,(vi,pi) =0 Vv, € (Pév(ﬂi))dv

bo,(wi,q:) =0 Vg e PN72(Q) N LE(), (5.3)

U;lag, = g
Here, ap(u;, vi) = a(1%(w;), I%(v;)), where the interpolation operator I% is given in
Section 3.2. The extension Ef’h differs from EZS’N only as far as the bilinear form for
the velocity is concerned; the solution of (5.3) involves a sparse, finite difference-
type matrix for each of the diagonal velocity blocks, whereas (5.1) involves the
spectral element stiffness matrix, which is much less sparse. However, since the
space PN(Q) is a tensor product space, the operator Ef’N or variations thereof may

also be used in practice; see Remark 5.4.1.

5.3 An Extension Lemma

The goal of this section is to compare the energy of the extension u; given by (5.1)
or (5.3) with the energy of its discrete harmonic extension. This is a standard result
the proof of which we repeat here for completeness; cf. [18].

Let

Pow(Q) = {v € (R (Q)".b(v.q) =0 Yge PY*(Q)n Li(Q)}, (5.4)
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and

Pry(Q) = {v e (R ()", v

0, = EXN(v]pg,) and /mv-nds — 0, ¥i}. (5.5)

Lemma 5.3.1
PG (Q) C Pog(Q).

This result easily follows from Green’s Theorem, since the zero flux condition on
0%); translates into the constraints on Péyv(ﬂ) given by the pressure test functions
which are constant in each ;. The next result states that the Schur complement
bilinear form is equivalent, up to a constant, to ag(+, ) when restricted to Pll\fv(ﬂ).

This lemma is crucial in our approach to the preconditioning of the Stokes problem.

Lemma 5.3.2 Let u € (PN(Q))? be of the form ulg, = EXV(ulag,), and let

Hu € (PNV(Q))? be the component-wise Q-discrete harmonic extension of ulagq,;
see Section 3.2. Then,

,BNCOCLQ@Z.(U, u) S aQ@i(Hu,Hu) S aQ@i(u, u) \V/’L

The same conclusion holds if Eva s replaced by Ef’h and/or if the Q-discrete

harmonic extension H is replaced by the h-discrete harmonic extension Hy,.

Proof. The right inequality is a consequence of the minimizing property of the
()-discrete harmonic extension applied to each component of u.

For the left inequality, we note that, according to Lemma 1.5.1, the pair of
spaces (P ()4 x PN=2(Q;) N LE(9;) satisfies a Babuska-Brezzi condition. Then,
we can use [60, Lemma I1.1.1] to find a z € (P (;))? such that

b(z,q) = b(Hu,q) Yqe PY72(Q) N L),
and 1
ag,(z,2) < —ag,(Hu, Hu).
BN

Then, the trace of Hu — z € PY () agrees with that of u on 99, and satisfies
the left inequality of the theorem. We can now conclude by using the minimizing
property of EZSN(), i.e. equation (5.2).

An analogous proof applies to Ef’h and /or to H;, by the FEM-SEM equivalence;
see Section 3.2. [
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5.4 A Lagrange Multiplier Based Algorithm

We propose an additive Schwarz preconditioner, induced by the following subspace

decomposition, which is orthogonal with respect to the ag(-,-) bilinear form:

Pow(Q) = (@i, P (), D Priv () (5.6)

where Péyv(ﬂi) = PY(Q:) N HL ().
To each space (PéYv (€))%, we associate the bilinear form ag g, (-, ), which de-

fines an operator T, in the Schwarz framework.

Let the bilinear form a(-,-) be defined by

d('? ) = Zaj('v ')7

J=1

where the (-, -) are bilinear forms associated with good preconditioners for the
Laplace operator restricted to the space of ()-discrete harmonic functions. We

assume, for definiteness, that
cmina(HuFaﬂuF) § CLQ(HUF,HUF) S cmaxa(HuFaHuF)7 (57)

Yur € Pll\fv(ﬂ) C (PN(Q))*. Here, Hur is the component-wise Q-discrete har-
monic extension of ur to the interior of the subregions. Typically ¢pax is bounded
independently of N, while ¢y, is bounded away from zero by ¢(1+log(N))~2, with
both bounds being independent of the number of subregions. To the space Pll\fv(ﬂ),

we associate a bilinear form
5(-) = a(H-, H).

The Lagrange multiplier based preconditioned operator 1,4 is defined by:

M
Nag = Tr + Y Tay;

=1

the reason for its name will become clear in the next section.
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5.4.1 Practical Computation of the Preconditioner

By definition, Tgu € P(ivv(ﬂi) is given by
ag(Tou,v) = ag(u,v) Vve P(ivv(ﬂi).

However, the construction of a basis for the space PéYV (€;) is too expensive for the
algorithm to be of any practical value. We therefore need an alternative way of
computing Tg,u. It is easy to see that this function is the solution of a discrete
Stokes problem in ;. Indeed, Tg,u € P(ivv(ﬂi) satisfies:

{GQ(Tﬂzqu)+b(VaP) = ag(u,v) Vve (P (%)),
(5.8)

b(Tou,q) = 0 Vg€ PN=2(Q;) N L2(Q).

This is a standard Stokes problem that can be solved locally and in parallel for all
subdomains €;. The right hand side needed in the first equation of (5.8) is readily
available in our iterative procedure, since we work with the nodal basis of (P} (9))?
and the stiffness matrix A.

Similarly, Tru € PgV(Q) is given by:
§(TFU,VF) = aQ(u,Vp) \V/VF € Pli\,TV(Q)

Again, it is not feasible to construct a basis of Pll\fv(ﬂ), and we must find a com-

putationally more effective way of solving this problem. We first note that

Pro(@) = {ve (RN via =B (vla,) Vil,

is a space for which a standard nodal basis is easily available. We can select
the functions that are one at one interface node and zero at the others, and which
are properly extended to the interior of the ;. The dot indicates that the flux
constraints of PI{YV, given in (5.5), are not enforced for the elements of PRV(Q).

We see, from (5.5), that Pll\fv(ﬂ) is formed exactly by the functions of PDV(Q) that

have zero flux across the boundaries of the ;. By Green’s formula:

/ u-ndS:/ Voude=0 V¥i. (5.9)
I Q;
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Therefore, we may introduce a space of Lagrange multipliers given by
Py = {p € L}(Q),p is constant in each ;}, (5.10)
and (Tru,p) € Ppy(ﬂ) x P, satisfies:

$(Tru,v) + b(v,p) = ag(u,v) VYve PF,V(Q)v
(5.11)
b(TQiu,q) =0 \V/(] S PO-

By (5.9), it is clear that the solution Tru of this saddle point problem belongs to
.

By taking a basis for Pry(Q) as described above (the degrees of freedom are
the values at the interface nodes), and the trivial basis for Fy, this equation may

be rewritten equivalently as:

STru + Bfp = Su
(5.12)
BoTru = 0.

Here S is the Gram matrix with respect to 3(+,-) and the basis of PRV(Q) just
described, while By is the Gram matrix with respect to the bilinear form b(-, -) and
the pair of spaces PDV(Q) X FPy. up is the vector of nodal values of u on I'; and
the matrix S is defined as ul-Sur = ag(u, u), for u € PN (Q).

Then, by performing a block Gaussian elimination and back-substitution, we

easily find that:
Tru = (1 — §7 By(BoS~ BY) ™ Bo) (3~ Suy).

It is easy to see that the matrix Bog_lBé is invertible, by proving an inf-
sup condition for the pair of spaces PDV(Q) x Py; see [18, Theorem 4.1]. The
matrix (BOS'_IBé) may be precomputed and factored in a preprocessing step of
the algorithm, and then used within the iteration.

We may use a domain decomposition preconditioner of the form:
G-1 _ G-1 , -1
5= ; Svi T Sglobal’
k
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where the V}, are locally supported subspaces, as is the case for the iterative sub-
structuring algorithms of Section 3.4. From (5.9), we observe that each column of
B corresponds to the computation of the flux of a function across the boundary
of a subregion ;. Then, the product of g;kl and this column of Bf vanishes if the
support of Vj does not intersect 0€2;, and hence does not need to be performed.
In other words, in the precomputation of (BOSN'_lBé), the local parts of the pre-
conditioner need only be applied a number of times that is equal to the number
of subdomains that intersect the support of each individual local space. The same
reasoning also shows that the computation of this matrix involves the solution of a
number of global problems that is equal to the number of subdomains.

The saddle point problem (5.12) may also be solved iteratively. Bramble and
Pasciak [18] have proposed a preconditioned conjugate gradient method for this

system. An alternative would be to use a block preconditioner; cf. [55, 69, 106].

5.4.2 Analysis of the Preconditioner

The operator T}, has one global space, Pll\fv, while the local spaces are orthogonal
to each other in the ag(-,-)norm. Hence, hypothesis H3 of Theorem 2.3.1 is
trivially satisfied with £ equal to the identity matrix. Note that 3(-,-) involves a
partitioning into subspaces; however, this fact does not enter the analysis of 7,4
since these subspaces are all grouped in PI{YV, and we may use (5.7) directly.

Hypothesis H2 follows immediately for the local spaces P&fv(ﬂi), 1 <1 <M.
For the space ng(ﬂ)v we have

ag(Hu, Hu) < Cmax 5(u,u),

<
ag(u,u) < o o

by Lemma 5.3.2 and (5.7), and we may take w = e,

The decomposition (5.6) is orthogonal in the ag(-,-)-inner product. Then, given
u € Péyv(ﬂ), we can easily define ur € Pll\fv, and then the u; € PSYV(QZ'), such that

M
u=ur+) u;

=1

and
M

ag(ur,ur) + Y ag(uy,u;) < ag(ur, ur).
=1
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Then, by (5.7), we obtain:

CNL(HUF, %UF) § GQ(HUF, HUF)

Cmin

1

IN

ag(u,u).

Cmin

Therefore, we have:

1

M
(NI(HUF, HUF) + Z CZQ(UZ', 112') § CLQ(U, ll)7
=1 Cmin
which proves hypothesis H1 of Theorem 2.3.1 with CZ = 1/¢min, and hence the

following result.

Theorem 5.4.1 The operalor Tj,, satisfies
Cmax
K(Tlag) : O/BNCOCmin‘

The condition number of this method appears to be worse than the correspond-
ing algorithm for the Laplace equation only by a factor By'; the same will be true
for all the preconditioners of this chapter. Although this factor grows algebraically
with IV, as predicted by the theory (Lemma 1.5.1), a much more moderate growth
is observed for the practical range of values of N; see [75]. One could use a modi-
fication of the algorithm of subsection 4.6.2 to generate the bilinear form 3(-,-); we
would then expect an iteration count of the same order as those encountered in the
experiments described in subsection 4.6.3.

We note that the computation of Tru requires the evaluation of S~'v twice per

iteration, where v is a generic vector of the same size as u.

Remark 5.4.1 By the FEM-SEM equivalence and Lemma 5.3.2, we may replace
the extension operator EZ»S’N by EZ»S’}L, and still maintain the condition number es-
timate of Theorem 5.4.1. The same is true of the algorithms proposed in the next
lwo sections.

Similarly, the operator Ef’N may be replaced by EZS’N|QZ,, where Y is a right
parallelepiped which is derived from Q; This extension can be computed exactly and
efficiently by using a fast method based on the tensor product form of the Laplace
operator on Q.. This approach has been used very efficiently by Couzy and Deuville

[44]
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5.5 Another Domain Decomposition Preconditioner

If we consider only iterative methods with velocities in the discrete divergence free
space Pé}fv, then the design and analysis of 7j,, from the standard result given in
Lemma 5.3.2 is relatively straightforward. However, it has two serious drawbacks:
two applications of S~ to a vector are necessary in each iteration, and it requires
the factorization of ng_lBS, or at least the exact solution of a problem with this
coefficient matrix in each step of the iteration.

In this section, we present a first attempt to reduce these difficulties. We
propose a different method by partitioning Péyv(ﬂ) into a coarse space and local
subspaces. In each of these subspaces the constraints are easier to deal with.

In our view, such an approach gives more insight into the resulting method and
why it works, while the approach of Section 5.4 relies, maybe too heavily, on the
equivalence (5.7) and the use of Lagrange multipliers. It can also be argued that
the preconditioners proposed in this section and in the next give more insight into
an iterative solution of the Navier-Stokes equation.

The analysis of our preconditioner is closely related to the study of Schwarz
methods with non-embedded spaces, which has attracted considerable attention in
the past few years; see [22, 23, 28, 17, 42]

There is no obvious basis of locally supported functions for P(ivv, and we will
therefore work with a coarse space that is not contained in this space. We note
that there are many finite element methods for which the choice of a coarse space
and of local spaces for the discrete divergence free space is trivial by using a curl-
like isomorphism between a space of discrete stream functions and the discrete
divergence free ; see [22, 23, 87]. We are far from this situation here, and our
construction has to be essentially different.

We describe the construction in detail for two dimensions. The three dimen-
sional case is analogous; see [60, Section 11.3.1], and Remark 5.5.2. For a reference

square §) = [—1,1]%, let

VnH(Q) = (QI(Q))Z @ span{pi, Pz, P3, P4},

where p; € (QQ(Q))Z vanishes on the edges &; for j # 1, and is normal to &;. For
example, for the edge & given by z =1, p1 = ((1 + z)(1 — y?),0).
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The space VA (Q) C (HL(Q))? is the space whose restrictions to each ; is the
image of VHH(Q) under the mapping F;, which is here taken to be isoparametric
with respect to the space (Ql(Q))Q, see [60, Section A.2]. There are 12 degrees of
freedom per element, namely the nodal values at each vertex and the fluxes across
each of the edges.

Let Q¥ () be the space of functions of zero mean on Q that are constant within
each subdomain ;. It is well-known that for the discretization of the Stokes prob-
lem on the coarse mesh, the pair V1 — QI yields a stable discretization in the
Babuska-Brezzi sense, with a stability constant bounded away from zero indepen-

dently of H. The proof of this result involves the construction of an operator

mr: (HH(Q))? — VH(Q) such that:
Je(mgpv —v)-ndS =0 V edges & of Ty,

||V — ﬂ-HV||L2(Qi) § OH|V|H1(R(Q£.))7 (513)

mav]ae) < ClVIEme)),

where R(£);) is the union of the subdomains adjacent to €;; see [60, Lemma 3.2].
The operator mg plays the role of the fine-to-coarse operator in our algorithm; for
standard elliptic problems, the L*-projection on the coarse grid space is often used

for that purpose.
Let VI, () be defined by:

D,VH

VnHvH(ﬂ)z{ueVnH|/ V-udx:/ u-ndS =0}
, . |

08

This space plays the role of our coarse space, but it is clearly not contained

in PG(Q), since a function u € VG () in general fails to have a divergence

orthogonal to the space PN=%(Q;) in L2(€;); see (5.4). We define a transfer operator
I VIS (Q) = PRo(Q) by:

D,VH

It (ug)|sa, = unlag;
(5.14)
I (um)le, = EXN (apag,).

This operator has the following stability and approximation properties.
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Lemma 5.5.1

[ (am) e < Clunlm@,
lum — If(um)|lr2 ) < CHlug|m -

Here, C' is independent of N and H.

Proof. The constant C' can easily be bounded from above by 3y', by using
Lemma 5.3.2. However, uy has degree at most 2, and is not, therefore, a generic
function that is being extended as in the second equation of (5.14).

We first note that for uy € V| q := V - uy belongs to P*(Q;). We also

n
note that it is enough to consider one subregion at a time, and that by a scaling
argument, these estimates can be obtained from similar inequalities for the reference
substructure €.

Let A =[—1,1], and let my_y be the orthogonal L*-projection from L?*(A) into
PN=2(A). We claim that, Yon € PN(A)N HE(A), if mxy_o(pn) is of degree at most
2, then

llonllrzay < Cillmv—z(en)lz2a), (5.15)

where ] is independent of N.

We follow the proof of Lemma 1.5.1, given in [12, Proposition 1V.7.2] for two
dimensions. Indeed, let oy = Eiv:o ay Ly be the orthogonal decomposition of pp;
see Section 4.2. Then, my_s(pn) = Ziv:_oz agLy, which implies that a5 = 0, for
3 <k < N —2. Moreover, it is clear that

1 1
2 e 2 P (516
lenllze(ay = llmn—a(on)lzz(a) + lan-i] (N —1/2) + el (N +1/2) (5.16)

by (4.3) and the orthogonality of the decomposition. Since pn(+1) = 0 and the

Legendre polynomials have values +1 at the endpoints, we have:

ag+ar+ayt+an_; +ay =0
ap—aor+as+ (=)¥ tay_ + (=1)Nay = 0.

This in turn implies that, if V is even,

lan|? < C(laof* + |aaf?) < Cllmn-a(en)22(a)-
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It is clear that a similar argument applies for N odd and for an_;. These inequal-
ities, together with (5.16), clearly imply (5.15).

Next, (5.15) and the proof of Proposition IV.7.2 in [12] can be applied straight-
forwardly to obtain a polynomial vy € P¥ (Q) such that

bV, 4) = [dllz2(a);

and

Unl[E g < €O

(? %2(1\)7
where C' is independent of N, C; comes from (5.15), and § corresponds to ¢ in the
reference structure. Let vy be defined by vy = Gy — V. Then, vy agrees with

uy (and with [AﬁﬁH) on A€, belongs to PéV(Q), and satisfies:

720) < C

where the new (' incorporates both €' and (', above.
By the definition of [Afé[ and the minimizing property of EZ»S’N, equation (5.2), we

have:

which is the H'-stability on 0.
The L2-stability follows from the Poincaré-Friedrichs inequality. Indeed, Gy —

[A}}ﬁH has zero trace on 9S). Then, (1.1) applied to this function gives

Up — IZ(ﬁH)Hp(Q) < O|UH|H1(Q)-

The proof of the lemma now follows from a straightforward scaling argument.
U
For u,v € VH we define the coarse space bilinear form by az(u,v) = a(u,v).

The coarse solver T} is given by

ag(THu,w) = ag(u, [w) Yw € VI, (Q).

D,VH

For each edge &; shared by two subregions {); and €1;, let €;; be the union of £);,
Q;, and &;. The local space Vg, C P(ivv(ﬂ) consists of functions ug, with support
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in ;;, and whose values in the interior of ; and Q; are given by EZ»S’N and E]‘S’N,
respectively. This definition implies that Vue, € Vg, C Péyv(ﬂ), Je,ug, -mdS =0.
The bilinear form associated with Vg, is ag(-,-).

For each interior vertex v,, let £(v,) be the collection of all edges having v,, as
an endpoint. We define ¢,,, ., € Pé?fv(ﬂ) by assigning values at the interface nodes,
and using the EZ»S’N to extend these values to the interior of the subdomains. We let
G z(vn) = (1,0), let ¢, » be equal to zero at all the interface nodes not adjacent
to v,, and V& € E(v,), we let ¢, be equal to a constant vector at the node
v/ next to v, on the edge &. This constant vector is taken to be normal to the

interface at v/, and so that

no

Gup - dS =0,
&k
We define ¢,,, , analogously. The one-dimensional vertex spaces are given by:

Vin.w = span{e,, .} and V, , = span{¢,, ,}.

The bilinear form associated with the vertex spaces is ag(-,-).
The interior spaces are Vg, = éYv(Qi), and the bilinear form associated with
all of them is ag(-, ).

The preconditioned operator is now

M
To=IETI + > (Tono + Topy) + > Te, + > Ta,. (5.17)

Un Ex =1
This operator does not exactly fit the Schwarz framework given by Theorem
2.3.1, but the following extension of that result for our particular case is immedi-
ately seen to hold by following the steps of the standard proof and making the ap-
propriate changes; cf. [22, 23, 28, 17, 42]. Let V4 denote the coarse space VH{IVH(Q),

and let V; and b,(-,-), s > 1 denote all the other (local) spaces and bilinear forms,

respectively.

Theorem 5.5.1 Suppose that Ty, satisfies
H1'’: There exists a constant CZ such thal everyu € P(ivv(ﬂ) can be decomposed

into a sum Ihug + 2s>1 Us such that

ag(ug,ug) + Ebs(us,us) < C’gaQ(u,u).

s>1
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H2’:
CLQ([;LIUH,[QIUH) § OCLH(UH,UH) VUH < Vn];,IVH
and for s > 1,
ag(us,u,) < Cby(u,, uy).

Then, Amax(Tn) < C and Muin(Tn) > C/C3.

We next apply this theorem to derive a condition number estimate of Ty,. Hy-
pothesis H2’ clearly holds by Lemma 5.5.1.

To verify H1’, we have to decompose a function u € P(iVV(Q). Let iy = myu,
and let w = iy — u. By (5.13), w has flux zero across all the edges of the €;, and
satisfies [W|p1(q,) < [ulmr) and |[Wl|r2) < CH|ulgirq.))-

For each interior vertex v,, let ¢,,, , coincide with ¢, , on the interface I', and
let ngn,r- be the zero vector at all the GLL nodes interior to the €;; qgvmy is defined

analogously. Let

ﬁvn,'r - wl(vn)qgvn,w ﬁun,y - wQ(vn)(;vn,y-

Then, z = w — 3, (U, + U,,,) vanishes at all the vertices and has zero flux

across the edges, since w, qun,x, and qgvmy have this property. We claim that

2[5 (0 < C(1 +1og(N))uliza.)),
and
12][72 0.y < CH*[ulin =)
Indeed, by using the definition of the qun,a: and the FEM-SEM equivalence, we have:

2

N4

||9an,z||%2(9¢) < and |9~5un,z|ijl(gé) <

the same inequalities also hold for qgvmy. These in turn imply, together with a

standard Sobolev-like inequality, that

||Z||%2(Qi) < C(HWH%?(&L') + ||W||%oo(ni) > (||<5un,z||%2(szi) + ||9~6vn,y||i2(ﬂi)))
'Uneaﬂi
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CH?
o))

IN

ClIwl[Z2(0;) + C (1 +log(N))([[wl[71(q,))(

1 +1log(N)
< CHY(1+ T)H“’H%ﬂ(m)

< 0H2|u|121[1(72(ﬂi))7

where the last inequality follows from the inequalities satisfied by w, and || - [|g1(q,)

refers to the scaled H'-norm; see Section 1.2 A similar argument shows that

Zlin) < CO+log(N)Iwlliq,
< C(1+log(N))|Wlfiq,)-

We may now partition z into z = Y ¢, Us,, where tg, = ["(J¢,2), and the U,
are the two dimensional analogues of the partition of unity functions of Lemma
3.3.7. This same lemma implies, together with the estimates just obtained for uy,

Uy, », Uy, 4, and z, that
|ﬁH|12111(Q) ‘|‘Z(|ﬁvn,z|12ql(m + |ﬁvn,y|%11(m)‘|‘z |ﬁ€k|12111(9) < 0(1‘|‘10g(N))3|U|12111(Q)7
Un Ex

since the union of the R(£;) or the union of the regions adjacent to the vertices
cover the region a finite (and small) number of times.
This decomposition of u is such that

(am + Z(ﬁvn,z + Uy, 4) + Z ug,)|r = ulr.

Un Ex

We next modify this decomposition, keeping the values on I'; and extending all
the components to the interior of the ); as Stokes-harmonic functions, by using
the EZSN The modified components are now denoted by ug, u,, s, u,,,, and ug,.
By Lemma 5.3.2, and since the edge components are now ag(-, -)-orthogonal to the

functions in P(ivv(ﬂi), we can choose ug, € P(ivv(ﬂi) such that

u=ugy+ E(uvmz +u,,,) + Zugk + Euﬂn
Ex Q;

Un

and

ag(um,ug) + ) (ag(Uu, e, Wue) +  aQ(U,y, Uu,y)) + D ag(ue,, ug,) +

Un Ex
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> ag(ug,,ug,) < ca —I—;(J)Vg(N))SaQ(u,u).

Q;

The following result easily follows from Theorem 5.5.1.

Theorem 5.5.2 The condition number of Ty, satisfies:

C(1 +log(N))*
B '

Remark 5.5.1 In this version of the algorithm, we use exact solvers for all the

k(Th) <

local subspaces. We can also use inexact solvers, and we mention here just one

possibility. For the edge spaces, we can use the bilinear form
a(u,u) = ag(Hu, Hu),

or some other form that is spectrally equivalent to a(-,-), e.g., a tensor product

based inexact solver for the Dirichlet problem in the union of two subregions; see

Couzy and Deville []4].

Remark 5.5.2 In three dimensions, edge and face functions play the role of the
vertex and edge functions of the two dimensional version, respectively. For each
edge, the edge function is the analogue of the ¢,, above; il is nonzero for the
interface nodes adjacent to the edge, and have zero flux across all the faces of the
subregions. The condition number estimate is the same as in Theorem 5.5.2, where

O is now the Babuska-Brezzi constant for the three dimensional discretization.

Remark 5.5.3 The same analysis would apply for a finite element discretization
of the Stokes problem, where the spaces (PN (Q))? and PN=%(Q) are replaced by a
standard stable pair of spaces, for which the Babuska- Brezzi condition is indepen-
dent of the discretization parameter h. We require the pressure space to be formed
by functions discontinuous across subdomain boundaries. The upper bound of the
theorem is then replaced by C'(1 + log(H/Rh))*. It is also clear thal an analogous
result holds if a different stable finite element pair replaces the pair VI x Py in the
construction of the coarse space, as long as the coarse pressure space is formed by

functions discontinuous across subdomain boundaries.
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5.6 A Stream Function Based Coarse Space

One advantage of using the operator Ty of Section 5.5 is that the coarse space for
this operator is a finite element space commonly used for the solution of the Stokes
problem, except here it is used for the coarse space solution. We now propose
another coarse space that makes it possible to avoid the use of the Stokes-harmonic
extensions £ in the definition of the coarse component. It relies on a finite
element space VH € C1(Q2) formed by piecewise polynomials and provides a coarse
space of even lower dimension. We restrict ourselves to two dimensions, and remark
that an analogous, although much more involved theory could be developed for
three-dimensional problems, by using vector potentials and a different formulation
of the Stokes equations; see [60, Section IIL.5].

The main characteristic of the new coarse space VH = curl(\N/H) is that uy €
VH is exactly divergence free, and therefore belongs to P(ivv(ﬂ). However, this
requires the use of C'! elements, and we have only been able to satisfy this re-
quirement if the mappings F; : QO — Q; are affine; in the remainder of this section
we assume that this relatively restrictive condition holds. We also assume that
0 is a connected polygonal region, though not necessarily simply connected. Let
00© 90 . 99" be the connected components of €, where Q) is also the
boundary of the unbounded component of the complement of 2.

For the reference square Q, the Bogner-Fox-Schmit finite element space is the

space of polynomials p € QQ(Q), see [43, Section 2.2]. The degrees of freedom are

plai), a; a vertex,
Dp(a;)(a; — a;), a; adjacent to a;,

D*p(a;)(a; — a;)(a; — a;), a; # aj, both adjacent to a;;
see Figure 5.1, where the notation for the degrees of freedom is clear.

For our purposes, we will not need the degrees of freedom associated with the
mixed second derivative at the vertices. Let ‘N/bH(Q) be the Bogner-Fox-Schmit space
of bicubic functions (hence the subscript b) such that the mixed second derivatives
at the vertices are zero; this space has been used by Zhang [118, 119], in a different
context. The mappings F; now define the space ‘N/E,H(Q) C HZ(Q), obtained by
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Figure 5.1: The Bogner-Fox-Schmit element

setting all the degrees of freedom on 0 to zero. The coarse space used for our
algorithm is given by
V(@) = curl(7(Q)),

where curl(y) = (g—d’, - g—¢). The curl operator is well defined since all the functions
in V;#(Q) have continuous first derivatives.

For u € Péyv(ﬂ), the coarse projection Tu € Vif1(Q) is given by

a(Tfu,vy) = ag(u,vy) Yvg € V(). (5.18)

This problem may be viewed as a finite element approximation to a biharmonic
equation, in terms of stream functions in ‘N/E,H(Q) Indeed, if ¥y, oy € ‘N/bH(Q) are
such that curl(vg) = Ty u and curl(¢y) = vy, ¥ may be found as the solution

to the equations:

V(A¢m, Adm)rz () = ag(u,curl(¢n)) Vou € V;7(Q),
Y =000 000, Yy =cond, 1<j<p, (5.19)
W—H = 0 on 0.

on

We note that the ¢; are unknown constants. In the general non-homogeneous
case glag Z 0 as in (1.9), an analogous formulation is available; see [60, Theorem
[.5.5].

In the finite element literature, many different ways are described for solving
the biharmonic equation as a way of solving the Stokes problem. These methods

are designed for solving the problem on a fine mesh, for which the construction of a
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C! element is very costly. That has motivated several formulations of mixed type,
for which the C' requirement is relaxed; see [60, Chapter I11]. Here, we insist on
this requirement, so that the operator I is given by the trivial operator, which is
allowed since V7 (Q) C P (9).

The other spaces are the same as before. Therefore, our new preconditioned

operator is given by:

Ty =T +> (T, o+ T y) +ZTgk+ETQ

Un é‘k Qz
Our goal now is to prove a condition number estimate for the operator T,. We

start by analyzing the new coarse space in detail. For a vertex a; of the coarse
triangulation Tg, let R(a;) be the union of the subdomains sharing a;. We define

a projection operator by:

fy Poe() — KH(Q)
u — 77/):77[)(11)7

where for a given u, v is defined by:

o0 o

(o @mx aj) = (0,0) Va, €00,
o o |
(G~ ) = ] Jage, M) 2 Vo€ 0,
0% _ (5.20)

m(a]) =0 \v’a] < Q,

Y(ag) =0 for a fixed ag € H50(0)

V(ay) —¥(a;) = /g u-ndS Vaja €Q,
k
where a; and a; are connected by an edge ;. We note that these equations assign
values to degrees of freedom which are independent of each other.
The Bogner-Fox-Schmit element has the following standard Hermite basis func-

tions:
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e ¢;(x), associated with the interpolated value at a;,

o ¢, ;(x)and ¢, ;(x), associated with the ;- and xo-derivatives at a;, respec-

tively, and
® Ou.,i(7), associated with the second mixed derivative at a;.

The mixed derivative degrees of freedom need not be considered here, since by the
definition of ‘N/bH(Q), they are set to zero.

By writing the basis functions explicitly, we easily obtain:

63y < Cr Versliy < CHP, and |y fing <CHL (321)
The key result of this section is the following lemma.
Lemma 5.6.1 Given v € HZ(Q), the function o = (V) salisfies:
Je(curl((v)) —v) - ndS =0 VY edges € of Tn,
v — curl(@(v)IBaay < CH VB gany (522

|curl(¢(v ))|H1 ) < C|V|H1 Q)"

Proof. The first statement is clear from the identity curl(¢)) - n = —T and the
last line of (5.20).

We start with the L2-approximation property. If ¢ = (¢1,¢é) is an arbitrary
constant in the reference substructure €, L/AJ((A:) € ‘N/E,H(Q) satisfies ;/;(é) = —Coly +
C1%9+ C3, where ¢3 is an arbitrary constant. Indeed, as is easily checked, both sides
have the same values for the degrees of freedom of V; (Q) Therefore, curl(y(c)) =
c.

Since the curl of a constant function is zero, we may assume, in order to estimate
the norms of curl(¢y)) over an individual subregion, that i)(a;) = 0, where the a;,
1 < 5 <4 are the vertices of ;. Hence, for x € );,

4 4 o o /
= 3 0(a)8(0) + D (@) 0) + () 0)

=2
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Then, by (5.21),

9,
[lu—curl(y)[| 72, < [lullzzq, +ZC|¢ a, |2+ZOH2 a¢( )I2+| ( ).

Let & be the edge connecting a; to a;. The definition of ¥, (5.20), gives
) < [ Jufas [ 145 < CHYJull g
£y £

by the Cauchy-Schwarz inequality, and a trace theorem coupled with a scaling
argument. The same inequality is easily seen to hold for the vertex diagonally
opposite to a;, by using a triangle inequality. Moreover, Va; € 0f);,
oy 9 1 C
____ow? / 2 42 < = |{lul|2 :
|a$1( )| |R(a])| R(a )u2 > 2 || ||L2('R(a]))

J

with an analogous estimate for a—w(aj). Here, uy is the second component of u,
T2

and we have used the Cauchy-Schwarz inequality. Then,
[la — curl(y)[[72 () < CH*[[ullfnra,)-

Since u +— t(u) is linear and curl(y(c)) = ¢, the use of a Poincaré inequality
completes the proof of the second statement of Lemma 5.6.1.

The H'-stability property follows from the L2?-approximation and an inverse
inequality in a standard way:

C
|curl(;/;)|ip(ﬂi) > EHCUI’I(WH%?(Q)

N

IN

C
77z (e = eurl(¥)|[Z2(a,) + [ullz2(q,))

< Cllullfra)
and the proof is completed by again using a quotient space argument. 0O
These properties of ¥(u) yield the following theorem, the proof of which is the

same as Theorem 5.5.2, setting I% to be the injection operator, and using Lemma

5.6.1 instead of (5.13).

Theorem 5.6.1 The condition number of Ty satisfies:
C(1 +log(N))*
B '

K(Tb) §
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Chapter 6

Schwarz Methods for the Stationary
Navier-Stokes Equations

6.1 Statement of the Problem and Newton’s Method

The stationary Navier-Stokes equations with homogeneous boundary data can be

written in the form:

—vAu+ Y u(Dju)+Vp=1 inQ,
Vou=0 in, (6.1)

u=0 in J%;

see [60, Section 1.5].
Following [100], we consider a Galerkin spectral element discretization of 6.1,
given by:

Find (4, py_2) € PN (Q) x (PN=2(Q) N L(N)) such that
{ a(ﬁN,VN) + C(QN; ﬂN,VN) + b(VN,ﬁN_Q) = fQ fVN dr \V/VN € Pév(ﬂ),
(6.2)

b(in, gyv_2) =0 Vgn_o € PN72(Q) N L2(Q).

The bilinear forms a(-,-) and b(+,-) have been defined in subsection 1.8. For u,v,

and w € H'(Q), the trilinear form ¢(+; -, -) is defined as:

d
c(u;v,w) = > / ui(Djv;)w; de.
Q

t,5=1
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As far as we know, an analysis of the discretization error incurred when approx-
imating (6.1) by (6.2) is not yet available. However, numerical computations show
that Gy is a good approximation for u, at least for Reynolds number Re = 1/v on
the order of 50; see [100].

In practice, the bilinear and trilinear forms appearing in (6.2) have to be com-
puted by using a quadrature formula of good quality, e.g., GLL quadrature. For
simplicity, we only analyze (6.2), but remark that the solution method and estimates
that will be presented in this chapter extend straightforwardly to the quadrature
case.

Following Rgnquist [100], we solve the non-linear system of equations (6.2) with
Newton’s method; see [60, subsection 1V.6.3], where a now classical framework for
the Navier-Stokes equations is given. From an initial guess u%;, Newton’s method
produces a sequence of iterates u%, k =0, 1,.... Given u ', we find u¥; € PN ()
by solving (see [60, equation IV.6.52]):

a(uéc\fv VN) + c(uég\f_l; uéc\fa VN) + c(uﬁ“\,; u?V_lva)
+o(vn, py_g) = (f*, V) Vvn € PN (D), (6.3)
b(uk, qnv_2) =0 Vgn_o € PN72(Q) N LE(Q),

where
(f*,vy) := /QfVN dz 4 c(uk7t ukt vy,

We assume that Gy is a non-singular solution of (6.2) in the sense that the
system (6.3) is uniquely solvable if we set ui~' = ty. If the Reynolds number
Re= 1/v is small enough, this can be proved by classical arguments (see [60,
Theorem 1V.2.4]); our analysis does not assume that, although the iteration count
of the method may deteriorate when Re increases. By choosing u% sufficiently
close to Gy, we can conclude that the system (6.3) is solvable, for k£ > 1, and that
uk, — Gy as k — oo, with a quadratic convergence rate. Moreover, it is clear that

there exists a constant C', depending only on tiy, such that

luklm@) < Clunlmg (k> 0). (6.4)
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In this chapter, we will develop Schwarz preconditioners for the system repre-

senting the Newton step (6.3). We fix k, and to simplify notations, set uy := uf,
w :=uk !, and g := f*. Then, uy is the solution of the following problem:
Find uy € P)y () such that
BW(quvN) = (g7VN) VN € PéYV(Q)7 (65)
where
Bw(uy,vy) = a(uy, vy) + c(w;uy, va) + c(uy; w, vy). (6.6)

The form By(-,-) depends on w (the previous iterate). However, we will exploit
that the H'-norm of w is uniformly bounded; see (6.4). In what follows, we drop
the subscript w.

The next section briefly presents two Schwarz methods for non-symmetric prob-
lems, adapted from [32, 33, 116], where a theory is developed for scalar second-order
equations. After these modifications it can be applied to (6.5). The preconditioning
step involves the solution of a coarse problem and a number of local problems. In
addition to a decomposition lemma analogous to hypothesis H1’ of Theorem 5.5.1,

two crucial hypothesis are used in this theory:
e Garding’s inequality for B(-,-), and
e an approximation property for the coarse subspace.

We prove Garding’s inequality for B(-,-) in Section 6.3. We establish this
inequality assuming only that w € H}(Q); the constants of this inequality will
depend on |W|g1(q), the viscosity v and the domain .

In Section 6.4, we introduce a coarse space ‘N/n]ijH(Q), which satisfies the require-
ments of the Schwarz theory. The restriction of uy € ‘N/nlevH(Q) to the interface I'
is the same as that of a function ugy € Vn]jIVH(Q), which was defined in Section 5.5;
the normal flux across each 99, is required to be zero. The extension of tg to the
interior of the €, is given by a linear operator which preserves the trace on I', and is

chosen so that iy € PY(£;) is the best approximation of ug in the ag,(+,-)-norm.
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6.2 Schwarz Preconditioners

We will design Schwarz preconditioners for B(-,-), by viewing B(-,) restricted to
P&fv(ﬂ) as a perturbation of the symmetric bilinear form a(-,-). We first present
a preconditioner that is closely related to one of the methods proposed in [32] for
standard second-order problems; it is based on a decomposition of PéYV(Q). As
before, we assume that 7y is a shape regular triangulation, not necessarily quasi-
uniform, and set H = max; H;, where H; is the diameter of €2;.

Let Vo C Péyv(ﬂ) be a coarse space, usually of dimension much smaller than
Péyv(ﬂ), and let V,; C Péyv(ﬂ), s > 1, be the local spaces. The operator Qg :
Péyv(ﬂ) — Vo is defined by

B(Qou,vo) = B(u,vg) Vvg € V. (6.7)

We remark that although B(-,-) is not necessarily positive definite, (6.7) is
guaranteed to have solutions for sufficiently small values of H; see property P3
below. Let V;, s > 1 be the local spaces used to define the operator Ty; see (5.17).
In three dimensions, there is one local space associated with the interior of each

;, one space related to each face, and one for each edge. For s > 1, the operator

P Péyv(ﬂ) — V; is defined by
a(Psu,v,) = B(u,v,) Vv, eV, (6.8)

Following [32, 33, 116], we need to verify that B(-,-) and the decomposition
{V;}s>0 satisfy the following properties:
P1: (Garding’s inequality)

B(u,u) > Cra(u,u) = Collullizq) VYu € (H(Q))"

P2: There exists a constant CZ, bounded from above by

(1 + log(N))”
By

such that any u € P(ivv(ﬂ) can be decomposed into a sum

u:z:u57

s>0

C
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for which
S a(u,,u,) < Cla(u,u).

s>0

P3: Given any € > 0, there exist constants Hy > 0 and C(Hy) > 0 such that if
H < Hy, and u € Péyv(ﬂ), (6.7) has a unique solution Qou,

|Qoull < C(Ho)l[ul|z (o,
and
|Qou — ul[r20) < C(Ho)H"[|Qou — u[m1(0)-
P4: Let Ny(-,-) be given by
Nw () = ce(w;u,v) + c(u;w,v).
There exists a constant Hy > 0 such that if H < H,,

VU= Qo)

u,v€H () |ulm@)lvlm(g)

< O(HO)H’Ya

for a constant v > 0.
Let B*(u,v) = B(v,u) Vu,v € Hj(Q). We consider the problem:
Find pg € Hj(Q) such that V - ¢, = 0 and

B (g, v) = /ng dr Vv € HY(Q) with Vv = 0. (6.9)

By hypothesis, the system (6.3) is uniquely solvable. Then a classical argument

can be used to show that
(6.9) has a unique solution p, € Hy(Q) Vg € (L*(Q))". (6.10)

We assume that the solution of (6.9) satisfies the following regularity estimate,

Vg € (L*(Q))"
g € (H'™(Q))", and ||ogllmiea) < Cllglliz@), (6.11)

for a constant v > 0.
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Theorem 6.2.1 Assume that (6.11) is valid. Then, properties P1, P2, P3, and
P4 hold.

Property P1 will be proved in Section 6.3. A coarse space for which P2, P3,
and P4 are valid will be introduced in Section 6.4, where these properties will also

be proved.

Remark 6.2.1 We have chosen to use (6.11) for clarity, but analogous resulls can
be obtained, by using instead a relatively recent resull of Schatz and Wang [104).
Properties P3 and P4 would then become:

P3’: For any ¢ > 0, there exist constants Hy > 0 and C(Hy) > 0 such that if
H < Hy, and u € P(ivv(ﬂ), (6.7) has a unique solution Qou,

|Qoul| < C(Ho)l[ul|zm (o,

and
||Qou — ul|z2(0) < C(Ho) ¢ [|Qou — ul|mi(a).
P4’: Let Ny(-,-) be given by

Nw(+, ) = c(w;u,v) + c(u; w,v).

Then, for any ¢ > 0, there exists a constant Hy > 0 such that if H < Hy,

oy U= Qo)

wweH @) [tlm@)lvlmg)

< C(Hy) e.

The proofs of P3’ and P4’ are analogous to the proofs of P3 and P4 that
we will present in Section 6.4; inequality (6.21) is replaced by a similar relation
derived by Schatz and Wang [104, Theorem 2]. We note that if (6.11) is valid, Hy
can be bounded from below by an explicit constant depending on v, Cy and Cy. If
(6.11) does not hold, an explicit bound cannot be obtained.

Our main results (theorems 6.2.2 and 6.2.3) are still valid, if we replace P3
and P4 by P3’ and P4’, respectively.
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Theorem 6.2.2 (/32]) There exist positive constants Hy, ¢(Hy), and C(Hy) such
that the operator

Qa:QO+ZPs

s>1

salisfies, Yu € Péyv(ﬂ),
a(Qau, Qau) < C(Ho)a(u,u),

and

c(Ho)Ci%a(u,u) < a(Qqu,u).

We omit the proof of this theorem, which uses the properties P1, P2, and P4,
since it is very similar to the proof of Theorem 1 in [32].
This result immediately implies an upper bound on the iteration count of the

GMRES method applied to the preconditioned system

QaEN = bv

where b is chosen so that uy is the vector of nodal values of uy.
Following [33] and [116], we also define a multiplicative variant of this algorithm.

The error propagation operator is given by:

I—Qm:=[(I-P)(I - Qo).

s>1

A perturbation argument analogous to that leading to Theorem 3.2 in [116] can
be used to prove the following result; see also [33]. The proof uses property P4,
which is itself proved by using P1 and P3; see Section 6.4.

Theorem 6.2.3 ([116]) Let 6y be defined by

5wy 1S Quuo)

uveHL () |U|H1(Q)|U|H1(ﬂ) '

If 8¢ is sufficiently small, achievable by virtue of property P4, then

C 64
_ <1 - = )
= Qmlla <1 =75+ 17—
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This result again provides an upper bound on the iteration count of the GMRES
method applied to the preconditioned system

QmEN = b7

where b is chosen so that uy is the vector of nodal values of uy.

6.3 A proof of Garding’s inequality

In this section, we prove Garding’s inequality (property P1), using a method
that only requires an upper bound for |[w|g1(q), which by (6.4) remains uniformly
bounded throughout the Newton iteration (6.3). The dimension d may be 2 or 3,
and we will use a classical Sobolev imbedding theorem, and the Gagliardo-Nirenberg
inequality.

A simple computation shows that

B(u,u) = 1// |Vul® dz + Z / w;(Dju;)u; + (Djw)uju; de Yu,w € Hy(Q).

7,7=1

We observe that, by integration by parts,
/ wj(Djui)ui dr = —/ uZD](w]uz) dz
Q Q
= —/ UZ(D]’UJJ)UZ + wjui(Djui) dzr.
Q

Hence,

(u,u) —V/|Vu|2d:v—|— Z/ Dw]u + (Djw;)uju; de.

ij=1
An upper bound on the L*-norms of the derivatives of w, if available, could easily
be combined with this inequality to prove P1. Instead, we give a more general
argument. We derive a bound for a typical term of the last integral. By applying
Holder’s inequality and a Sobolev imbedding argument, Theorem 1.4.4.1 in [64],
we find that

|/Q(Djwi)ujui dz|

IN

[Djw;|| L2 o ;|| 2o oy il [ e @)

IN

C)IWlm @ llullF2q)

2
C()|w|m ) (77|U|H1(Q) + 0(9)77_3||11||L2(Q)) -

IN
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In the last inequality, we have used the Gagliardo-Nirenberg inequality; see The-
orem 1.4.3.3 in [64]. Here n > 0 is arbitrary. By choosing 1 small enough, we
obtain

v
B(u,u) > S uff ) — Callullzzq),

where (5 is a constant that depends on |W|g1(q), 2, and v. This completes the
proof of P1.

6.4 A Coarse Space

In this section, we define a new coarse space ‘N/fVH(Q), and show that properties
P2, P3, and P4 hold.

We first define an extension operator [N}}, similar to the operator I, defined in
(5.14). Let I}y : VIG (Q) — PPG(Q), and let fiy = Ify(ap) for ug € Vi (Q).

The restriction of uy to a subregion €); is the solution of the following non-

homogeneous Stokes problem:
Find ug € PY(9Q;), with Gy = ug on 9%, and py € PN=2(Q;) N L(;) such that

a(lp,vy) + b(vy,pr) = alug,vy) Vvy € PN (),
(6.12)
b(Up,gn_2) =0 Van_o € PVN=2() N L3(y).
By restricting the test function vy to have zero discrete divergence, i.e. vy €
P(ivv(ﬂi), Uy can also be determined by:
Find ay € PY(Q;), uy = ug on 9%, and such that

a(ﬁH,VN) = a(ﬁH,VN) Vvy € Pé?fv(ﬂz) (613)
The new coarse space is defined by:

T H
Vn7VH

(Q) = I5(Vals,, ().

A reasoning analogous to that of the proof of Lemma 5.3.1 easily shows that
\N/nlevH(Q) C P(ivv(ﬂ). This is our coarse space Vp; cf. Section 6.2. The next lemma
shows that Gy is the function of P(ivv(ﬂ) which coincides with ug on I', and which
is the best approximation of ug in the a(-,-)-semi-norm (and in the H'-semi-norm,

since they differ only by a fixed factor v).
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Lemma 6.4.1 Let uyg € Vn]jIVH(Qi) be given, and let ug = jﬁl(ﬁg) Then

|UH—ﬁH|H1(Qi) = inf |WN_ﬁH|H1(Qi).
WNEP@](Qi),WN:ﬁH on 9§;

Proof. Any wy can be written as wy = ug + vy, where vy € PSYV (€Q;). Then,

a(wy —ug,wy —ug) = a(Ug—ug+ vy,Uyg —ug+ Vvy)
= a(Ug —upg,uy —up) + 2a(ty —upg,vy) + a(vy, vy)
> a(Uyg —ug,0g —ugy),

since the second term vanishes, by (6.13). O

The next lemma shows an approximation property of ‘N/H{IVH(Q), which is essen-

tial in establishing properties P3 and P4.

Lemma 6.4.2 There exists a constant C, independent of N and H, such that
Vu € Hy(Q) with V-u =0,

jnf |\~/H_u|H1(Q) § C inf |VH—11|H1(Q).
vaeVIS (Q) veeVE(Q)

Proof. Let ug € V.7 (Q) realize the minimum in the right hand side. The pair
VHE(Q) x P°(Q) N Li(Q) yields a stable discretization in the Babuska-Brezzi sense,

with a stability constant Gy > ¢ > 0; see (5.13) and the discussion preceding it.
Then, we can find zg € V. (Q) such that

b(zr, qn) = b(u —up,qn) Vam € P°(Q) N Li(Q),

and

Zw | () < 5—H|u —ug|r(q);

see [60, Equation (1.16)]. Let ug = ug + zy. Then, uy € VH{IVH(Q), and since
V-u=0,

IN

|ZH|H1(Q) + |ug — u|H1(Q)

C
< (/B—H—|—1)|UH—U|H1(Q). (6.14)

u— ﬁH|H1(Q)
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We now choose g € ‘N/nleVH(Q) as iy = [Nﬁl(ﬁg) Then, from Lemma 6.4.1,
|ﬁH_ﬁH|H1(Q) § |WN_ﬁH|H1(Q) \V/WN € Pév(ﬂl) with Wy = le on 892 (615)

Let wy = uy + vy, where vy € Péyv(ﬂi) is yet to be chosen. Since uglg, has
degree at most 2, the argument in the proof of Lemma 5.5.1 applies, and hence we

may choose vy € P(ivv(ﬂi) such that

bQi (VN7 QN—2) = _bQi(ﬁHa QN—Q),

and

V| @) < ClIV - anllzeg),

with C' independent of N. Therefore,
Wy —an|ria) = [Valmie) < ClIV - aglle@)- (6.16)
Since V - u = 0, we have
Wy —ug|pie) < Cl|V-(ag —u)l||r2@) < Clug —ulpq,)- (6.17)

Finally, by using the triangle inequality, (6.15), and (6.17), and summing over
all the subdomains, we find that

lUg —ulm@ < |[0g —ug|m@ + [0g — ulpg)
< |wn —unlpe) + g — ulgig)
< Clug — ulg ) + [ug — ulg g

C
< 0(1 + —)|uH — u|H1(Q).
B

In the last inequality, we have used (6.14). O
Proof of P3. lLet u € Péyv(ﬂ), and let e = u — Qou. We follow the steps of a

classical argument of Schatz [103]. From P1 and (6.7), we obtain

Civleling — Callellfzq) < Blee)
= Ble,u)

< lelgylulm(a)-
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Assuming that e # 0, dividing through by |e|y1(q), and using Lemma 1.2.2, we find
that

Cll/|e|H1(Q) - C£||e||L2(Q) S |u|H1(Q). (618)

We next estimate the L>-norm of the error. From (6.9), the definition of B*(-, "),
. . . ~ va:i
(6.7), and the continuity of B(-,-), we obtain, Vo € V5 (),

foe-edr  B*(pe,e€)

lellze@) = =
@ el Ilellzea)
B(e7@e> _ B(e79oe - S‘BH>
||e||L2(Q) ||e||L2(Q)
Pe — SBH 1
||e||L2(Q)

Since V,1() is an unconstrained finite element space which contains the piece-
wise linear functions, a standard argument (see, e.g., [43]) and (6.11) show that
there exists a oy € V.1(Q) such that

lpr — @elmia) < CHpe|m+va) < CH||e]|r2(q). (6.20)
We now combine (6.19), (6.20), and Lemma 6.4.2 with u = @, and obtain that
|e]|r2@) < CH|e|m (). (6.21)

Therefore, by introducing (6.21) into (6.18), and using Lemma 1.2.2, we find
that

(Crv — C3CHY )|elmq) < |ulm(q). (6.22)

We choose Hy > 0 such that for H < Hy, we have Civ—CyC HY > 0. If u = 0, then

inequality (6.22) implies that e = 0. Therefore, the finite-dimensional linear system

(6.7) has a unique solution, and hence is solvable Vu € H}(Q), with V-u = 0. The

use of (6.21) and (6.22) completes the proof of P3. 0

Proof of P2. We claim that the analog of Lemma 5.5.1 holds for [N;} For
Ug € VHI?VH(Q%

|[NI}'—LI(ﬁH)|H1(Q¢) < Clug|ria:). (6.23)
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and
||le — [Nﬁl(ﬁH)HLz(QZ) < CH|ﬁH|H1(Q£). (6.24)

Indeed, let iy = I}(y). By combining (6.15) and (6.16), we find that
U — unlmq) < Clunlm @),

which clearly implies (6.23). Lemma 1.2.2 and a scaling argument can now be used
to prove (6.24); see the end of the proof of Lemma 5.5.1.

The estimate of C¢ is analogous to the analysis given in the verification of
hypothesis H1’ for the operator T,,; see Theorem 5.5.2. Let my be the operator

given in 5.13. Then, given u € PéYV(Q), the coarse space component is defined as

iy = Iy (mr(w)).

The remainder of the proof is similar; (6.23) and (6.24) are used instead of Lemma
5.5.1. We obtain

U

Proof of Pj4. Property P3 and a standard interpolation argument easily imply
that

1Qou — ul| 129y < CHC(Ho)lulmi(g). (6.25)

Therefore, P4 will be proved (with v replaced by +/2) if we can show that N(-,-)
satisfies
N, V)] < Cllullagy Vi@ Yu,v € H(9), (6.26)
where ' depends only on Q, [w|g1(q), and v.
By definition, we have that

d
N(U,V) = E </ wj(Djui)vz- dr —I-/ uj(Djwi)vi dl') .
= Q Q
2,7=1
Each term of the first integral can be estimated by integrating by parts, using
Holder’s inequality, and Sobolev’s imbedding theorem [64, Theorem 1.4.4.1]:

i(Djug)vi d
‘/Qu]( Ju;)v; d

= ‘—/ ui(Djwj)vi + uiwj(Djvi) dr
Q
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< lwillps @l Djw;l | 2@yl lvill e o)
i || s (@) | [w;] | ze (@) | Djvil | 22 ()

< ullgre@)|wla @) v @)-

The second integral can also be estimated similarly, and (6.26) is established. O

6.5 Remarks on the Implementation

In this section, we comment on some implementation issues specific to our method,
and point to some alternatives that may further enhance its efficiency.

In each application of the preconditioner, the computation of Qou for u €
Péyv(ﬂ) appears to require the solution of a linear system with a coefficient matrix
generated by a basis of the space ‘N/nleVH (©). To avoid constructing such a basis,
we can work with the space V() = I5(VF(Q)), and use pressure Lagrange
multipliers in P°(); this is analogous to the procedure used in Section 5.4. The
vector of nodal values of Qou is the velocity component of the solution of the

system:
BoQou + Bypo = 1,

BoQou = 0.
Here, ug is the residual vector of (6.7). The matrix By is defined in (5.12), while
By is generated by a basis of ‘N/HH(Q) and the form B(-,-). This matrix is the sum
of the stiffness matrix generated by a(-,-) (which is independent of w = u’'), and
a matrix Ny, generated Ny (-, ), which has to be recomputed in each Newton step,
since it changes with w.

The construction of a basis of ‘N/HH(Q) involves the solution of a small number
of inhomogeneous Stokes problems within each );; a factorization of these local
matrices can be precomputed, and used throughout the Newton process.

In practice, the construction of such basis can conceivably be avoided. ()ou may
be replaced by [NQI(QOU), where Qou is the solution of (6.7), with V5 = Vn]?VH(Q); we
do not currently have a full theoretical justification of this variant of the algorithm.
We intend to perform numerical experiments in the near future, to settle this and

other issues mentioned in what follows.

105



As briefly explained in Remark 5.5.1, in the context of the Stokes operator,
inexact solvers may be used for the solution of the local problems, i.e. the bilinear
forms may be replaced by forms computationally more convenient. Such variants
can easily be analyzed by our techniques.

A number of alternatives to Newton’s method can be considered, in an attempt
to decrease the work associated with the recomputation of Ny(-,-) in each step.
This recomputation affects not only the coarse solver, as explained above, but also
the residual computation in each step of the GMRES method applied to (6.5), since
the matrices are seldom assembled in the spectral element method.

A well-known method is described in [60, Equation 1V.6.53], for which the
modified Newton’s step is given by:

a(uﬁc\ﬁ VN) + c(u?\,; uﬁc\fa VN) + c(ué“\,; u?\fv VN)
+b(va, ph_y) = (F5,vy) Yvy € PN(Q), (6.27)

b(uk, an-2) =0 Van_o € PN72(Q) N L3(Q),

for a suitable f¥, which depends explicitly on u® and uk . It is clear that each step
requires much less setup than (6.3); the trade-off is that the convergence uk, — ty
is linear. Again, u%; has to be chosen sufficiently close to .

We next describe a form of the Picard iteration to find an approximate solution

to (6.1). In each step, we find u§ € P () by solving
a(uf, vn) + &uy 5 uk, v) + bV, pl_s)
— (5, vn) Yva € PN(Q), (6.28)
b(uf,gn—2) =0 Van_o € PN72(Q) N L(Q);

see [60, Equation 1V.1.19]. Following a now standard trick due to Temam [114,
Equation 1.3.23], we set

é(u;v,w) = %(c(u; v, w) — c(u;w,v)).

By integration by parts, it is easy to see that
&u;v,w) =c(u;v,w) Vu,v, and w € Hy(Q) with V-u = 0.
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Moreover,

éu;v,w) = —&(u;w,v) Vu,v, and w € Hy(9).

In the context of the time-dependent Navier Stokes equations, these relations are
very important to obtain meaningful discretizations. They also appear to be nec-
essary to guarantee that the scheme (6.28) will converge to an approximation of
the solution of (6.1). For the continuous problem, the Picard iteration is known to
converge to the solution, for any initial guess, if v is sufficiently large; we expect
the same behavior here.

With this choice of trilinear form, (6.28) corresponds to a form By(-,-) which
can be written as

Bw(u,v) = a(u,v) + é(w;u,v),

where a(-, -) is symmetric, and é(+; -, -) is anti-symmetric. In this case, the estimates
of the lower and upper bounds relevant to the GMRES method (see (2.3)) are
improved and greatly simplified.
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Chapter 7

Hierarchical Preconditioners for the

Mortar Methods

7.1 Introduction

Mortar finite element methods were introduced about seven years ago by Bernardi,
Maday, and Patera; see [14]. The discretization of an elliptic, second order problem
starts by partitioning the computational domain €2 into the union of nonoverlapping
subregions (substructures), {€;}_,, and an interface I, which is the set of points
which belong to the boundaries of at least two subregions. For convenience, we
use the notation [ for the total number of substructures, and reserve M for other
purposes. Here, we restrict ourselves to the geometrically conforming case in two
dimensions; the intersection between the closure of two different subregions is either
empty, a vertex, or a whole edge. We note that mortar element methods have
also been developed for geometrically nonconforming decompositions of the given
region, i.e. for decompositions which violate this rule, as well as for problems in
three dimensions.

The restriction of the mortar finite element space considered here to any sub-
region {; is just a standard piece-wise linear finite element space. We can adopt
a strategy of successive refinement to obtain flexible, geometrically conforming,
and shape regular triangulations of each of the subregions. The meshes of two
neighboring subregions do not necessarily match on their common interface and

the elements of the discrete space V" are typically discontinuous across the inter-
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face I'. Instead of pointwise continuity, the interface jumps are made orthogonal
to a carefully chosen space of trial functions. In our work, we exclusively consider
the second generation mortar element methods for which continuity is not even
imposed at the vertices of the substructures; even if the meshes match across the
interface between adjacent subregions, the mortar finite element functions will not,
generally, be pointwise continuous.

Similarly as when working with other nonconforming methods, the original bi-
linear form a(-,) is replaced by a'(,), defined as the sum of contributions from

the individual subregions to a(-,-):

I

aF(uh,vh) = Eagi(uh,vh). (7.1)

i=1
For ujp = vy, we obtain the square of what is often called a broken norm. Here the
norm has been broken along I' and it is finite for any element of the mortar space
even if it is discontinuous across I'.

It is known that the resulting discrete variational problem gives rise to a linear
system with a symmetric, positive definite matrix, and that its solution is an accu-
rate approximation to the exact solution of the continuous problem; see [8, 9, 14]
where error bounds of the same type as for standard conforming methods are de-
rived.

In this chapter, we address the issue of solving this linear system efficiently. We
note that direct methods and classical, unpreconditioned iterative methods have
well-known limitations. Domain decomposition algorithms, which form a special
family of preconditioned conjugate gradient methods, have been developed exten-
sively for standard conforming finite elements. The present study is part of an
effort to extend the applicability of these methods to a wider family of discretiza-
tions. Here, we have chosen to use a hierarchical preconditioner modeled on an
algorithm developed by Smith and Widlund [110]. That work, in turn, was based
on a result of Yserentant [117]. We note that, in the conforming case, this was
found to be an effective preconditioner with certain advantages over some similar
iterative methods because of being relatively simple, and as effective as the others;

cf. [107] for motivation and a comparative study.
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Our algorithm is a preconditioned conjugate gradient method with a condition
number bounded from above by C(1 + 5)2. Here ¢ is the maximum number of
successive refinements of any individual subregion {2; into elements, and C' a con-
stant which depends on the minimal angle of the triangulations into subregions
and elements, but which is otherwise independent of ¢, and the number and size
of the substructures and elements. Our method is an iterative substructuring algo-
rithm, i.e. the linear system is first reduced in size by implicitly eliminating all the
nodal variables interior to the subregions. The nodal values on €y, the part of
the boundary where a Neumann condition is imposed, are also classified as being
interior. In each step of the iteration, we solve a local boundary value problem
for each subregion, perform very fast local transformations between the nodal and
hierarchical bases restricted to each individual edge, and solve a global problem of
a dimension equal to the number of crosspoints of the partitioning of the region into
substructures. We note that the global coarse space of our algorithm is the same
as for the conforming case. This is in contrast with those proposed in Achdou,
Maday, and Widlund [4] and Dryja [46], which are of higher dimension.

Other iterative substructuring methods for mortar finite elements have been
described and analyzed by Achdou, Kuznetsov, and Pironneau [1, 2] and Le Tallec
[70]. Ongoing work in the field also includes Maday and Widlund [76]. We also
note that certain technical issues related to extending the algorithm of this paper
to higher order elements are discussed in a recent paper by the first author; cf. [36].

In the next section, we introduce the mortar space V", and establish some
properties of certain special vertex basis functions. In Section 3, we introduce the
hierarchical structure, and describe and analyze our algorithm. In Section 4, we
report on some numerical experiments that demonstrate the effectiveness of the

algorithm in a relatively wide range of situations.

7.2 The Elliptic Problem and the Mortar Finite
Element Method

Let © be a bounded polygonal region in R? with a diameter on the order of 1. For

simplicity, we consider only Poisson’s equation as a model problem. The boundary
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of Q, 99, is the union of 90y and 92p on which Neumann and homogeneous
Dirichlet conditions are imposed, respectively. We assume that 9€2p is a closed set

of positive measure. Let

alu,v) = /QVU - Vo dz (7.2)

define an elliptic and continuous bilinear form on Hy(92,9Qp), the subspace of
H'(Q) with elements which vanish on dQp. Let f(-) be a continuous linear func-
tional on Hy (€, 99Qp); it includes a contribution from the nonhomogeneous Neu-
mann boundary values, if any, in the form of a line integral. Then, by the Lax-

Milgram lemma, there is a unique u € Hg(Q, 9Qp) satisfying

a(u,v) = f(v) Yve Hy(Q,00p). (7.3)

7.2.1 Triangulation of the region and the subregions

We assume that € can be partitioned into nonoverlapping, shape regular triangular
substructures, {€;}1_,; we will focus on the analysis of the case of triangular sub-
structures but we note that a similar theory can be developed for the quadrilateral
case. As noted before, the intersection between the closure of any two distinct
substructures is either empty, a vertex, or a whole edge; this coarse triangulation is
geometrically conforming. We also assume that if 9€2; N 9} is nonempty, then the
boundary condition does not change type in the interior of any edge of ;. We note
that we are primarily interested in the case of a large number of subregions, since
the potential for parallelizing our method depends on having enough subproblems.
Our analysis will only involve individual subregions and their next neighbors. The
subregions are assumed to be shape regular but there is no need to assume that
the coarse triangulation is quasi-uniform. To simplify our analysis, we assume that
the triangulation of each subregion is quasi-uniform. We will denote the diameter
of the subregion ; by H;, and the smallest diameter of any of its elements by h;.
Our results depend only on the minimal angle of the overall triangulation, and 7,
the maximum of the number of refinement levels £(z) of the substructures €;.

We start the detailed description of the finite element space V" by defining
a multi-level triangulation within each substructure; see [117]. Each ; is sub-

divided by a nested family of standard conforming finite element triangulations
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Ti={0 LT, T, . ,7?@. The quasi-uniform triangulation 7;’,; is obtained from
the next coarser triangulation, 7%, by subdividing each of its triangles into four,
not necessarily equal, but shape-regular triangles. In particular, triangles of level

k 41 have diameters of an order approximately one half of the diameter of those of

level k.

7.2.2 The mortar finite elements

The interface I' is defined by the coarse triangulation and is given by
= Ul_, 00\ o0.

A set of mortars {v,, }_, is obtained by selecting open edges of the substructures
such that

Our view is that a mortar v,, belongs to just one substructure, denoted by Q;(),
while the other edge, which geometrically occupies the same place, is denoted by
0m. We refer to it as a nonmortar, and the subregion to which it belongs is denoted
by €;(m). The restrictions of the triangulations of 2;(,,,) and €;(,,,) to this common
edge will typically differ and are denoted by v" and 6" | respectively. Discontinuous
mortar finite element functions have different traces on ~,, and d,, given by one-
sided limits with respect to the two subregions €, and ;). An important
component of our preconditioner will be related to the union of the two subregions
Qi(m) and Q) and the edge in between, and we will denote this set by R(Ym)-
Similarly, R(€2;) is the union of all subregions §2; the closure of which intersects
the closure of ;. We also introduce the notation Vh(E) to mean the restriction of
V% to a set ¥ which, in this paper, will always be a single subregion or the union
of a few of them. Finally, we denote by V/*(X) the subspace of V"(X) of functions
which vanish on 0¥.

Even though we will use a hierarchical basis in the design of our preconditioner,
we can primarily work with a nodal basis. We will use a nodal basis of the mortar

finite element space associated with the following sets of nodes:

e all nodes interior to the substructures and on 9y,
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e all nodes interior to the mortars, and

e all nodes of vertices of subregions except those on 9Qp.

We denote by V the set of vertices of the substructures that are associated with
degrees of freedom of V", i.e. those for which the values are not given by the
Dirichlet data on 9€Q2p. Each crosspoint of I' corresponds to several nodes of V and
to one degree of freedom for each of the subregions that meet at that point; these
nodes are in the same geometrical position, but are assigned to different subregions.

For each m, we further define a space of test functions W"(4,,) given by the
restriction to the nonmortar 4,, of the original finite element space defined on

0¥

j(m) subject to the constraints that these continuous, piece-wise linear functions

are constant in the first and last mesh intervals of 6% .

The mortar projection m, maps the space of finite element functions de-
fined on ~* into that of §%. Given w!(™ in Qi(m), and boundary values of
w/(™) at the two endpoints v,, and wv,, of §,, we determine the values of
T (w0 0?0 (v, ), w0 (v,,)) at the interior nodes of 6% by

/5 (@0 g (@ I (5 ) @) (0 Vebds = 0 Vb € Wh(S).  (7.4)

After these preparations, the mortar finite element space V”* can now be fully
defined. The restriction of V" to Q;, V*(£;), is a regular conforming finite element

space as described above. For each nonmortar there is a set of constraints,
w5 = (W ) (0,)), 6 (v,,), (7.5)

which replace the pointwise continuity of conforming spaces.
The discrete problem is then:
Find v € V" such that
a'(u,v) = fF(v) Yoe V", (7.6)

where a'(u,v) is defined in formula (7.1) and, similarly, f*(v) is the sum of con-
tributions from the different subregions.

The rate of convergence of the solution of (7.6) to the solution of (7.3) is com-
parable to that of a conforming discretization; cf. [10], [14], and references therein

for theoretical and experimental results.
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At the expense of an exact solution of a finite element problem per subregion,
with homogeneous Dirichlet data, we reduce problem (7.6) to that of finding the
piece-wise discrete harmonic part of the solution. We recall that a finite element

function u is discrete harmonic in the subregion £; if
a(u,v) =0 Yo e V"N Hi(Q),

and that a discrete harmonic function provides the unique minimal energy extension
of finite element boundary data given on the boundary 9€);. In what follows, we will
work exclusively with piece-wise discrete harmonic functions, without restricting
the generality of our discussion; from now on V" will denote this subspace.

We next formulate a basic result proven in [14].

Lemma 7.2.1 The mapping m,, is stable:

|7Tm(u7070) ) < C|U|Héo/2(wm) Vu € HS({Q(%?%) (77)

s

We end the subsection by proving a Poincaré inequality and formulating a
Friedrichs inequality. They will be formulated for a region R (¢, ) which is the union
of the substructures which have a crosspoint ¢, in common. In order to obtain a
result that is independent of the mesh, we will establish the inequality for a space
V(R(CT)), which contains all possible V*(R(c,)) as a subspace but which itself is
not a finite element space. The restriction of V(R(CT)) to any of the substructures
Qi C Rlc,) equals H'(Q;). As in the case of mortar finite element functions, we
potentially have two traces on any edge I';; between any pair of substructures ),
and ;. We only impose one constraint per edge, namely that qu [u]lds = 0, where

[u] is the jump of u across T';.
Lemma 7.2.2 Let u € V(R(c,)). Then,

inf f[u — Aiemen <C D Hiluling,)- (7.8)
Q;CR(cr)

Here C' depends only on the minimal angle of the substructures that form the coarse
triangulation of R(c,) and is independent of the diameters of the substructures and

their triangulations.
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Proof. We note that we can confine our study to a finite number of configurations
allowed by the minimal angle condition on the coarse mesh. Each configuration
corresponds to a specific number of substructures that have the crosspoint ¢, in
common. We assume in our discussion that ¢, is an interior crosspoint; the exten-
sion of our argument to cases when ¢, € 90y poses no problems. The problem
can be further specialized by noticing that a piece-wise affine map can be found
that maps the triangulation of R(e¢,) onto a regular polygon R(0) of diameter 1,
centered at 0, the image of ¢.. This mapping is benign under the assumption of
shape regularity. It also accounts for the factors H]2 in the estimate.

Thus, what remains is to prove the Poincaré inequality (7.8) for this finite
number of special reference regions. We use a variant of a well-known argument

given, e.g. in Ciarlet [43, Theorem 3.1.1]. Our result follows by proving a bound

> lulliz,y <CC > |u|12111(QJ)+(/ u(z)dz)?) Vue V(R(0). (7.9)

Q,;CR(0) Q,;CR(0) R(0)

Following Ciarlet, we use a proof by contradiction. We assume that there is a
sequence of uy € V(R(O)) with unit L?—norm, for which all the terms of the right
hand side of (7.9) go to zero. By applying Rellich’s theorem, one subregion at the
time, selecting a subsequence of the previous subsequence every time we move on
to a new subregion, we find a limit function which is locally in H'(£;), and which,
because of the continuity of the trace mappings, satisfies the jump conditions of
V(R(O)) Thus, the limit function belongs to V, and is a constant, which must
vanish since the last term of (7.9) vanishes in the limit. O

We note that a proof of the following Friedrichs inequality can be found in [13];

a proof can also be given using the same techniques as above.

Lemma 7.2.3 Lel u € V(R(CT)) vanish on at least one of the edges of the sub-
structures that form R(c.). Then,
lullfomiey £ C D2 Hluling,): (7.10)
Q;CR(er)
Here C' depends only on the minimal angle of the substructures that form the coarse
triangulation of R(c,) and is independent of the diameters of the substructures and

their triangulations.
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Figure 7.1: Three cases of vertex basis functions

7.2.3 Vertex basis functions

As we have already pointed out, the mortar finite element functions are typically
multi-valued at the crosspoints of the subregions. In order to describe and analyze
our algorithm, we need to define a special vertex basis function for each of these
degrees of freedom and derive estimates of their norms. These special functions
are piece-wise discrete harmonic functions.

For each vertex v, of V, let ¢,,, € V() be defined by the value 1 at v,, with all
other nodal values on I' set to zero. This completely defines ¢,,, since the interior
nodal values on the nonmortars are given by the mortar projections, and those in
the interior of the €; by discrete harmonic extensions.

As indicated in Fig. 1, ¢, differs from zero at the interior nodes of some of the
nonmortar edges associated with the same crosspoint as v,. The marked node is
the vertex v, and it touches two, one, or no mortars. In the figure, we distinguish
between values at the vertices and at the interior nodes of the edges. The bold
lines represent mortars, and 7 and N stand for zero and nonzero values of the
vertex function ¢,, at the vertices or at the interior nodes of the edges. The figure
displays the three basic configurations in the case of four subregions meeting at a
crosspoint.

In the first case, v, is the left endpoint of a horizontal mortar +,,. Then, ¢,
coincides with the standard nodal basis function ¢, on ~,,. Across the edge, on
the nonmortar, ¢,,|s,, = Tm(@.,,0,0).

In the second and third cases, v, is the left endpoint of a horizontal nonmortar
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0m. By construction, ¢, vanishes on the mortar +,, across the edge. Therefore,
¢Un|5m = Wm(()? 17 0)
The following two lemmas provide estimates that will be used in Lemma 7.2.6

to estimate the a' (-, -)- and L*-norms of ¢,,,.

Lemma 7.2.4 Let § be a nonmortar and let m be the mortar projection associated
with it. Then,
17(0,1,0) (5 < C. (7.11)

and

’:’T(O,l,O)||H1/2(5) S C. (712)

Proof. Let us be the vector of nodal values, interior to §, of 7(0,1,0). A nodal
basis of W"(§) is formed from the standard nodal basis on §" by combining two
basis functions at each end to create two special basis functions which are constant
in the mesh intervals of 6" that touch the endpoints of §".

By using (7.4), we obtain a tridiagonal system of linear equations
./MQL; = b

It is easy to show that only the first and last diagonal elements of M differ from
those of the mass matrix with respect to the space of piece-wise linear functions on
8" that vanish at the endpoints. The differences between these matrix elements are

positive and therefore
17(0,1,0) = ¢, |[72(5) < uf Mus < ufb < (uf Mug)'/*(0" M~'b)"/?,

where ¢, is the nodal basis function on §* associated with the left endpoint. By
examining the right hand side b, which has only one non-zero, we easily find, using

the quasi-uniformity of 6", that
[17(0,1,0)| |25y < Chs,

from which (7.11) and (7.12) follow by using inverse inequalities. [
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Lemma 7.2.5 Letwv, be the left endpoint of a mortar~, and let v, be the standard

nodal basis function on ¥* corresponding to v,. Then,
||7r(99vn7 07 0)||L°°(5) < 07 (713)

and

(s 0,0l 17205y < € (7.14)

Proof. We first prove the lemma for hs < h.; these are the minimal mesh sizes
of 6" and +", respectively. In addition, we first also assume that the second leftmost
point of ¥, Q, coincides with a mesh point of §". Using (7.4), we can easily check
that

(pu,50,0) = ¢y, = —m(0,1,0),
since both sides are finite element functions on §*. The L**-norm estimate (7.13)
now easily follows from (7.11). The H'/?-norm estimate (7.14) is a consequence of
lpunl s < C and (7.12).

If the second leftmost point of 4%, @, does not coincide with a mesh point of
8", we denote by R the mesh point of §”* that is the right next neighbor of Q. Let
@ be the piece-wise linear function that equals 1 at v, and vanishes at R, and to
the right of R. Then, the argument just given can be used for ¢, since it is now a
finite element function on the mesh §*. There remains to estimate o, — &. From
the definition of ¢, we find that ||¢,, — 95”%2(5) < Chs. An argument similar to
that of the proof of Lemma 7.2.4 shows that ||7 (¢, — @, 0, 0)||%2(5) < Chs, and we
can conclude the proof of the result for s < h., by using two inverse inequalities.

If hs > h., we can use that ||¢,,||72(y) < C'h,y and an argument similar to that

of the proof of Lemma 7.2.4, to conclude that
17 (@05 0,0)||22(s) < CR2[hs < Chyy.
The two estimates (7.13) and (7.14) now follow as before. O
Lemma 7.2.6 For any v, € V, we have:
D, || 1oy < C, (7.15)

and

@' (¢u,; bu,) < C(1+0). (7.16)
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Proof. The first bound, (7.15), follows immediately from Lemmas 7.2.4 and
7.2.5. The bound on the square of the trace norm, proportional to (1 4 £), follows
from (7.15) and an argument in the proof of Lemma 3.2 in [115]. O

7.3 Algorithm and Analysis

Our solution procedure starts with the static condensation of all degrees of freedom
interior to the different substructures, reducing the size of the discrete system.
We note that it is not necessary to compute the Schur complement. All that is
needed is to carry out a matrix-vector multiplication with the Schur complement.
After finding sufficiently accurate values on I', the solution of (7.6) is then computed

everywhere by solving a finite element problem for each subregion ; with Dirichlet

data given on 01); \ 0Qx.

7.3.1 Schwarz methods

We solve (7.6) with a preconditioned conjugate gradient method, using an additive
Schwarz method determined by a finite family of subspaces {V;} whose sum spans
V%, and bilinear forms {b,(, )}, defined on V, x V;. Using the Schwarz framework
described in Dryja and Widlund [52], we define approximate projections 7 : V* —
Vi, by

bs(Tsu,vs) = aF(u,US) Y, € V;.

The preconditioned operator T is given by

T:aTO+ZT57

s>1

where « is a positive parameter that is used to tune the algorithm; see Section 7.4.

Let CZ be a constant such that, for all u € V", there exists {u,}s, us € V;, with
st(us,us) < CgaF(u,u) where u = Zus,
and let w be a constant such that
ar(u,u) < wbg(u,u) Yu € V.
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Since our algorithm is a two-level algorithm, the third hypothesis of Theorem 2.2
in [52] is trivially satisfied. This theorem then provides a bound on the condition
number of 7"

w(T) < CClw. (7.17)
In subsection 7.3.3, we will introduce our algorithm and establish bounds for Cy

and w.

7.3.2 A hierarchical basis

Before we can introduce our preconditioner in detail, we need to review some
aspects of Yserentant’s hierarchical basis method; cf. [117]. We denote by N},
k= 0,1,...,0(i), the set of vertices of the triangles of T/, by V| the space of
continuous functions on §; that are linear in the triangles of 7', and by V* the
most refined space Vj@. All elements of V} vanish on 99; N 9Qp. An interpolation
operator [} : V' — Vi, is defined by

[}Cu(;r;) =u(z) V€ ./\/g

Following Yserentant [117], we define a discrete norm, for any set A C €, by

£(3)
Nellli=2>2 > (= Tyu)(x)]% (7.18)
k=1 zeN;\N;_ R

cf. Yserentant [117]. Let W} be the image of I; — I{_,; this is the subspace of
functions of VkZ that vanish on N}i_r A hierarchical basis of V* can now be defined
recursively. The hierarchical basis of V{ is the standard finite element nodal basis
restricted to the single triangle ;. It is clear that V! = V', + W}, k > 1. In each
step, we augment the hierarchical basis of V}_, by the level k nodal basis functions
which span W} C V}'. For a function u represented in this basis, the discrete norm
[||u[||% is simply the Euclidean norm and thus very easy to compute. Moreover,
the transformation between the standard nodal basis and the hierarchical basis is

very fast and easy to implement; see [110] and [117].
We first describe some results that have motivated the definition of our precon-

ditioner. For one substructure, we have:

Tiuldngy + llull3, < CO+ ) [ulinigy YueVi,  (7.19)
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and

|ulina,) < Clllsuling,) + lllulllg) Yue V. (7.20)

Equation (7.19) is an easy consequence of the definition of the interpolation opera-
tors. Equation (7.20) results from a strengthened Cauchy-Schwarz inequality; see
Yserentant [117].

For our purposes, we need a variant of (7.20):

Lemma 7.3.1 For u € V"(Q,),
ulfay < Ol + g, (7.21)

Proof. We first define an extension F(u) € V* of u, normally not discrete
harmonic, such that F(u) agrees with u on 9);, and when written in the hierarchical
representation, has all its degrees of freedom in the open set (2; equal to zero.

Equation (7.20), applied to E(u), implies

|E(u)lin ;) < Cllguling, + llulll3o,).

since ||| E(u)]

function u has the smallest energy among all extensions in V' of the boundary

o, = |||u|||ag,- We conclude by noting that the discrete harmonic

values of w. O

7.3.3 The algorithm

We are now in a position to describe and analyze our algorithm. The coarse space,

which is conforming, is given by
Vo ={u e V"N H}(Q,00p)| uis linear on each ;}.

The bilinear form associated with V4 is a''(+,+) which coincides with a(-,-) on this
subspace.

A one-dimensional vertex space is associated with each v, € V:
V., = span of ¢, .
We use the exact bilinear form a' (-, ) for these spaces.

121



A subspace V., = V' (R(7.)) is associated with each mortar. The bilinear
forms for these spaces are given by b, (-,-) = ||| - ||2, .

The Schwarz framework provides a preconditioned equation T'u = b in terms
of these spaces and bilinear forms and the solution of this equation is the same as
that of (7.6). The main result of this paper is the following theorem. We note that
a more straightforward approach to the proof would lead to a bound with a fourth

power of /.

Theorem 7.3.1 The condition number of T' satisfies
&(T) < C(1+ 1),

Proof. We first partition u € V" and obtain the estimate CZ < C'(1+/)2. To do
so, we select ug € Vg, in the representation of u = 3 us, by making ue(¢,) = u.,,
where u,,_ is the average value of u at the vertices of V that coincide geometrically

with ¢,. A standard Sobolev-like inequality for finite elements, see e.g. [16], gives:

1
uva) = wo(va)F £ €3 (1+log(H; /)N [uliie, + 773 llullFzaf 22
J

Q;CR(ecr)
1
< C+0 Y (ulfg, + ﬁHUH%%QJ))a
Q;CR(er) J
since log( H;/h;) is proportional to £(j).

If R(c,) has a whole edge on 99Qp, then the last sum above can be bounded
by a%(CT)(u, u), the restriction of a' (-,-) to R(ec,), by using Lemma 7.2.3. If R(c,)
has only one point in common with 9€Qp, we consider its union with an additional
subregion, chosen so that this new R(c,) has a whole edge on 9f2p, and use Lemma
7.2.3 again. If 9Q; N 90p = B, we add a constant to u, which does not change the

left hand side, and use Lemma 7.2.2. For any of these three cases, we have:

u(vn) = uo(va)|* < C(L+4) >0 |ulinig,), (7.23)

Q;CR(er)

which in turn implies, by a standard argument, that

uoltay < C(L+L0) Y- |uling,). (7.24)

Q;CR(cr)
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We next define the vertex space components of u. For each vertex v, € V, let
= (u — up)(v,) ¢y, . Using equation (7.16) and (7.23), we obtain

Uy

n

N

aF(uvn, U,,) < C(1+0)|(u—uo)(va)|® (7.25)
< C(1 40 age,(u,u),

where ¢, is the crosspoint that coincides geometrically with v,,.
Let w = v —uo — 3, Uy,. Then, w vanishes at all the vertices. For each
mortar v, let u, € V, coincide with w on ~,. It is easy to see that u =

U+ Dy Uy, + Do Usy,,, and that

M I
> M, < D 1kolll3q,-
m=1 =1
By the argument used to derive (7.19), we have
Ilwlll3e, < C(A+ OlwlZ(oq,-

By (7.15), we know that ||¢,, || ) < C for all v, € V. Hence,

IN

C(L+0)]Ju— U0||%oo(as2¢)
< OO+ Ol + D uoler))

cr€8Y;

[1lwl[l3¢,

1
CA+02C Y |ulfne,) + EHUH%%QJ)%
J

Q,; CR(%)

IN

since the value of ug at ¢, depends only on the values of u at the vertices that
coincide geometrically with ¢,, and by using the same Sobolev-like inequality used
to derive (7.22).

We now repeat the quotient space argument of (7.23), and obtain
llwlllfe, < C(1+0)%agq,(u,u).

Summing over all subregions, we find
M I
2ol B, < CO+0 Y agq,(u,u). (7.26)
m=1

=1
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Every point of Q is covered only a small number of times by {R(¢.)}, ¢ a
crosspoint, and by {R(;)}. We use (7.24), sum (7.25) over all ¢,, and (7.26) to

obtain

woliinie) + Coney @' (e, te,) + ainy gl

< C(L+0)%d" (u, u),

which completes the estimate of C7.
Our next task is to show that w can be bounded by a constant. Fortunately,
this is a very simple matter. For the coarse and vertex spaces, w = 1, since we use

exact solvers for these spaces. Let u € V. Then,

ar(uvu) = |u|12ql(9i(m)) + |U|12111(Q](m))'

The stability of the mortar projection, Lemma 7.2.1, the standard trace theorem,
and an extension theorem for finite element functions, [15, Lemma 5.1], allow us to
bound the second term of the right hand side by the first. Then (7.21) can be used
to obtain

a' (u,u) < Clllulll3,, = Cby,(u,u) Vu eV,

since the elements of V., vanish at the subdomain vertices. Hence, w < C'. 0O

7.4 Numerical Experiments

Our method has been implemented in MATLAB, and the code is general enough
to treat regions that can be decomposed into the union of rectangles aligned with
the axes; the mesh inside each subregion can be any tensor product mesh, and the
meshes do not necessarily match on the interface between the subregions. We only
report results for a very simple region; we note that even for more general ones,
the algorithm appears to be insensitive to quite different mesh sizes in adjacent
regions.

In a first set of experiments, the region (2 is the unit square, divided uniformly
into M x M substructures, where M is 2,4, 8, or 16. The substructures are squares,
and V5 is the space of continuous, piece-wise bilinear functions on the coarse tri-

angulation. For every N € {4,8,16,32}, each substructure is divided into an
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TABLE 1
Condition numbers for the N x (N +4) case

Refinement levels 3 4 5H 6 7 8 9

N 4 8 16 32

M=2 7.84 7.26 830 10.11

N 4 8 16 32

M=4 9.95 824 858 10.35

N 4 8 16 32

M=8 10.01  8.22 8.88 11.23

N 4 8 16 32
M=16 10.94 827 9.09 N/A

N x (N +4) grid of smaller rectangles, if the substructure is in an odd row, and
into an (N 4+ 4) x N grid if it is in an even row. These small rectangles are then
divided into two triangles by drawing the diagonals from bottom left to top right.
The meshes do not match at the interfaces of the substructures; we assign mortars
and nonmortars in an arbitrary fashion. The results are summarized on Table 1,
which is organized in the same way as Table 2 in [110] to facilitate a comparison.
The number of refinement levels is approximately equal to log,(M N) starting from
the entire region.

In a second set of experiments, odd rows of subregions have uniform grids of
N x N squares divided into two triangles each, and even lines have (N +4) x (N +4)
squares also divided in two triangles each. Table 2 summarizes the results for this
case.

As in [110], the coarse space V; generates a separate contribution to the precon-
ditioner, which may be multiplied by a constant « in order to improve the overall
condition number; cf. Subsection 7.3.1. In our experiments, we found that a = 5
is close to the optimal parameter value for a large range of N and M, and all the
results reported have been obtained with this value of a.

We remark that the growth of the condition number is virtually independent of
M?, the number of substructures, if we fix the value of H/h = N. Our results

are quantitatively slightly better than the results obtained in the conforming case.
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TABLE 2
Condition numbers for the N x N and (N +4) x (N +4) case
Refinement levels 3 4 5 6 7 8 9

N 4 8 16 32

M=2 548 6.32 7.80 9.81

N 4 8 16 32

M=4 9.30 7.95 836 10.28

N 4 8 16 32

M=8 9.46 8.36 9.01 11.23

N 4 8 16 32
M=16 9.52 855 9.21 11.48

This appears to be due to a larger overlap of the subspaces in a neighborhood
of the crosspoints, since several subspaces are nonzero there. It can also be an
effect of using parameters, different from those of the conforming case, to scale the
contribution of the coarse problem to the preconditioner.

The growth is also consistent with the estimate log®(/N) given by Theorem 1.
For small values of N, N and N + 4 differ substantially, and this appears to be the

reason for the variations in this pattern found in the tables.

126



Index

1,108

1%, 28

Ky, 13

M, 11,112
P (), 72
PN(Q,), 12
Pé}fv(ﬂi), 74
PN (Q), 12
()-discrete harmonic, 29
Tas, 21

Tms, 20
VH{IVH(Q), 80
VH(Q), 80
PN=2(Q), 13
Prv(Q), 75
Q;;, 82

PN, 13

pj, 12
o(-,F), 63
€, 12
h-discrete harmonic, 29
x,H

u, 5

v, 5

€2, 6

1l 100

127

VI (), 100

n

FEM-SEM, 29

GLL(N), 12
GMRES, 18

interface, I', 29

PCG, 17
Poincaré’s inequality, 6

Poincaré-Friedrichs’ inequality, 6



Bibliography

1]

2]

3]

[4]

[5]

[6]

Yves Achdou and Yuri A. Kuznetsov. Substructuring preconditioners for
finite element methods on nonmatching grids. Fast-West J. Numer. Math.,
3(1):1-28, 1995.

Yves Achdou, Yuri A. Kuznetsov, and Olivier Pironneau. Substructuring
preconditioners for the Q1 mortar element method. Numer. Math., 71(4):419-
449, 1995.

Yves Achdou, Yvon Maday, and Olof B. Widlund. Iterative substructur-
ing preconditioners for the mortar finite element method in two dimensions.
Technical report, Department of Computer Science, Courant Institute, 1995.

In preparation.

Yves Achdou, Yvon Maday, and Olof B. Widlund. Méthode itérative de
sous-structuration pour les éléments avec joints. Technical report, Analyse

Numérique-CNRS et Université Pierre et Marie Curie, Paris, France, October

1995. To appear in C.R. Acad. Sci. Paris.

Ivo Babuska, Alan Craig, Jan Mandel, and Juhani Pitkaranta. Efficient
preconditioning for the p-version finite element method in two dimensions.

SIAM J. Numer. Anal., 28(3):624-661, 1991.

Ivo Babuska and Howard C. Elman. Some aspects of parallel implementation

of the finite-element method on message passing architectures. J. Comp.

Appl. Math., 27:157-187, 1989.

128



[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Ivo Babuska, Michael Griebel, and Juhani Pitkaranta. The problem of se-
lecting the shape functions for a p-type finite element. Int. J. Numer. Meth.
Eng., 28:1891 — 1908, 1989.

Faker Ben Belgacem. Discretisations 3D Non Conformes pour la Méthode de
Decomposition de Domaine des Elément avec Joints: Analyse Mathématique
et Mise en (Kvre pour le Probleme de Poisson. PhD thesis, Université Pierre

et Marie Curie, Paris, France, January 1993. Tech. Rep. HI-72/93017, Elec-

tricité de France.

Faker Ben Belgacem and Yvon Maday. Adaption de la méthode des éléments
avec joints au couplage spectral élments finis en dimension 3. Etude de I’érreur

pour l’équation de Poisson. Technical report, Electricité de France, April

1992. Tech. Rep. HI-72/7095.

Faker Ben Belgacem and Yvon Maday. The mortar element method for three
dimensional finite elements. Unpublished paper based on Yvon Maday’s talk
at the Seventh International Conference of Domain Decomposition Methods
in Scientific and Engineering Computing, held at Penn State University, Oc-
tober 27-30, 1993.

C. Bernardi and Y. Maday. Polynomial interpolation results in Sobolev

spaces. J. Comput. Appl. Math., 43:53 — 80, 1992.

Christine Bernardi and Yvon Maday.  Approzimations Spectrales de
Probléemes aux Limites FElliptiques, volume 10 of Mathematiques & Appli-
cations. Springer-Verlag France, Paris, 1992.

Christine Bernardi and Yvon Maday. Mesh adaptivity in finite elements
by the mortar method. Technical Report R94029, Laboratoire d’Analyse
Numérique, Université Pierre et Marie Curie — Centre National de la

Recherche Scientifique, January 1995.

Christine Bernardi, Yvon Maday, and Anthony T. Patera. A new non con-

forming approach to domain decomposition: The mortar element method. In

129



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

Haim Brezis and Jacques-Louis Lions, editors, Colléege de France Seminar.
Pitman, 1994. This paper appeared as a technical report about five years

earlier.

Petter E. Bjgrstad and Olof B. Widlund. Iterative methods for the solution of
elliptic problems on regions partitioned into substructures. STAM J. Numer.

Anal., 23(6):1093-1120, 1986.

James H. Bramble. A second order finite difference analogue of the first
biharmonic boundary value problem. Numer. Math., 9:236-249, 1966.

James H. Bramble. Multigrid Methods. Longman Scientic & Technical, 1993.
Pitman Research Notes in Mathematics Series #294.

James H. Bramble and Joseph E. Pasciak. A domain decomposition technique
for Stokes problems. Applied Numerical Mathematics, 6:251-261, 1989.

James H. Bramble, Joseph E. Pasciak, and Alfred H. Schatz. The construc-
tion of preconditioners for elliptic problems by substructuring, IV. Math.
Comp., 53:1-24, 1989.

James H. Bramble, Joseph E. Pasciak, Junping Wang, and Jinchao Xu. Con-
vergence estimates for product iterative methods with applications to domain

decomposition. Math. Comp., 57(195):1-21, 1991.

James H. Bramble and Jinchao Xu. Some estimates for a weighted L? pro-

jection. Math. Comp., 56:463-476, 1991.

Susanne C. Brenner. A nonconforming multigrid method for the stationary

Stokes equations. Math. Comp., 55(192):411-437, 1990.

Susanne C. Brenner. A two-level additive Schwarz preconditioner for the

stationary Stokes equations. Technical report, University of South Carolina,

1994.

130



[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of
Finite Flement Methods. Springer-Verlag, Berlin, Heidelberg, New York,
1994.

Franco Brezzi. On the existence, uniqueness and approximation of saddle
point problems arising from Lagrangian multipliers. RAIRO Anal. Numer.,
8:129-151, 1974.

Franco Brezzi and M. Fortin. Mized and Hybrid Finite Element Methods.
Springer-Verlag, Berlin, Heidelberg, New York, 1991.

Xiao-Chuan Cai. An optimal two-level overlapping domain decomposition
method for elliptic problems in two and three dimensions. SIAM J. Sei.
Comp., 14:239-247, January 1993.

Xiao-Chuan Cai. The use of pointwise interpolation in domain decomposition
methods with non-nested meshes. SIAM J. Sei Comput., 16(1):250-256,
1995.

Xiao-Chuan Cai and Youcef Saad. Graph decomposition techniques for gen-
eral sparse matrices. In Proceedings of the Sizth SIAM Conference on Parallel
Processing for Scientific Computing. STAM, 1993.

Xiao-Chuan Cai and Youcef Saad. Overlapping domain decomposition al-
gorithms for general sparse matrices. Numer. Lin. Alg. Applics, 1996. To

appear.

Xiao-Chuan Cai and Marcus Sarkis. Local multiplicative Schwarz algorithms
for convection-diffusion equations. Technical Report ICASE Report No. 95-
86, ICASE, NASA Langley Research Center, 1995.

Xiao-Chuan Cai and Olof Widlund. Domain decomposition algorithms for
indefinite elliptic problems. SIAM J. Sci. Statist. Comput., 13(1):243-258,
January 1992.

131



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Xiao-Chuan Cai and Olof Widlund. Multiplicative Schwarz algorithms
for some nonsymmetric and indefinite problems. SIAM J. Numer. Anal.,

30(4):936-952, August 1993.

Claudio Canuto. Stablization of spectral methods by finite element bubble
functions. Comput. Methods Appl. Mech. Engrg, 116:13-26, 1994. Proceed-
ings of [COSAHOM 92, a conference held in Montpellier, France, June 1992.

Claudio Canuto and Daniele Funaro. The Schwarz algorithm for spectral

methods. SIAM J. Numer. Anal., 25(1):24-40, 1988.

Mario A. Casarin. Diagonal edge preconditioners in p-version and spectral
element methods. Technical Report 704, Department of Computer Science,

Courant Institute, September 1995.

Mario A. Casarin. Quasi-optimal Schwarz methods for the conforming spec-
tral element discretization. Technical Report 705, Department of Computer

Science, Courant Institute, September 1995.

Mario A. Casarin. Quasi-optimal Schwarz methods for the conforming spec-
tral element discretization. In N. Duane Melson, Thomas A. Manteuffel,
and Steve F. McCormick, editors, Proceedings of the 1995 Copper Mountain
Conference on Multigrid Methods, Hampton VA, 1995. NASA.

Mario A. Casarin and Olof B. Widlund. A hierarchical preconditioner for
the mortar finite element method. Technical Report 712, Department of

Computer Science, Courant Institute, December 1995.

Tony Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund, editors.
Domain Decomposition Methods, Philadelphia, PA, 1989. STAM. Proceedings
of the Second International Symposium on Domain Decomposition Methods,
Los Angeles, California, January 14 - 16, 1988.

Tony Chan, Roland Glowinski, Jacques Périaux, and Olof Widlund, editors.
Third International Symposium on Domain Decomposition Methods for Par-

tial Differential Fquations, Philadelphia, PA, 1990. STAM.

132



[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Tony F. Chan and Barry F. Smith. Multigrid and domain decomposition on
unstructured grids. In David F. Keyes, , and Jinchao Xu, editors, Seventh
International Conference of Domain Decomposition Methods in Scientific

and Engineering Computing, Providence, RI, 1995. AMS. Also to appear in
ETNA.

Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems. North-
Holland, Amsterdam, 1978.

W. Couzy and M. 0. Deville. A fast Schur complement method for the spec-
tral element discretization of the incompressible Navier-Stokes equations. J.

Comput. Phys., 116:135-142, 1995.

M. O. Deville and E. H. Mund. Finite-element preconditioning for pseu-
dospectral solutions of elliptic problems. Siam J. Sei. Stat. Comput.,
11(2):311 — 342, March 1990.

Maksymilian Dryja. Additive Schwarz methods for elliptic mortar finite ele-
ment problems. In K. Malanowski, Z. Nahorski, and M. Peszynska, editors,
Modeling and Optimization of Distributed Parameter Systems with Applica-
tions to FEngineering. IFIP, Chapman & Hall, London, 1996. To appear.

Maksymilian Dryja, Marcus Sarkis, and Olof B. Widlund. Multilevel Schwarz
methods for elliptic problems with discontinuous coefficients in three dimen-
sions. Technical Report 662, Department of Computer Science, Courant
Institute, March 1994. To appear in Numer. Math.

Maksymilian Dryja, Barry F. Smith, and Olof B. Widlund. Schwarz analysis
of iterative substructuring algorithms for elliptic problems in three dimen-

sions. SIAM J. Numer. Anal., 31(6):1662-1694, December 1994.

Maksymilian Dryja and Olof B. Widlund. An additive variant of the Schwarz
alternating method for the case of many subregions. Technical Report 339,

also Ultracomputer Note 131, Department of Computer Science, Courant
Institute, 1987.

133



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Maksymilian Dryja and Olof B. Widlund. Additive Schwarz methods for
elliptic finite element problems in three dimensions. In David E. Keyes,
Tony F. Chan, Gérard A. Meurant, Jeffrey S. Scroggs, and Robert G. Voigt,

editors, Fifth International Symposium on Domain Decomposition Methods

for Partial Differential Equations, pages 3—18, Philadelphia, PA, 1992. STAM.

Maksymilian Dryja and Olof B. Widlund. Domain decomposition algorithms
with small overlap. SIAM J. Sci.Comput., 15(3):604-620, May 1994.

Maksymilian Dryja and Olof B. Widlund. Schwarz methods of Neumann-
Neumann type for three-dimensional elliptic finite element problems. Comm.

Pure Appl. Math., 48(2):121-155, February 1995.

S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Applications of an
element model for Gaussian elimination. In J. R. Bunch and D. J. Rose,

editors, Sparse Matriz Computations, pages 85—-96. Academic Press, 1976.

Stanley C. Fisenstat, Howard C. Elman, and Martin H. Schultz. Variational
iterative methods for nonsymmetric systems of linear equations. SITAM J.

Numer. Anal., 20 (2):345-357, 1983.

Howard Elman. Multigrid and Krylov subspace methods for the discrete
Stokes equations. Technical Report UMIA CS-TR-94-76, University of Mary-
land, June 1994.

V. Faber and T. A. Manteuffel. Necessary and sufficient conditions for the
existence of a conjugate gradient method. SIAM J. Numer. Anal., 21:352—
362, 1984.

Paul F. Fischer and Anthony T. Patera. Parallel spectral element solution to
the Stokes problem. J. Comput. Phys., 92(2):380-421, 1991.

Paul F. Fischer and Finar Rgnquist. Spectral element methods for large
scale parallel Navier-Stokes calculations. Comput. Methods Appl. Mech. Fn-
grg, 116:69-76, 1994. Proceedings of [COSAHOM 92, a conference held in
Montpellier, France, June 22-26, 1992.

134



[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Michel Fortin. Finite element solution of the Navier-Stokes equations, pages
239-284. Acta Numerica. Cambridge University Press, 1993.

Vivette Girault and Pierre-Arnaud Raviart. Finite Element Methods for
Navier-Stokes Fquations. Springer-Verlag, New York, 1986.

Roland Glowinski. Numerical Methods for Nonlinear Variational Problems.
Springer-Verlag, Berlin, Heidelberg, New York, 1984.

Roland Glowinski, Gene H. Golub, Gérard A. Meurant, and Jacques Périaux,
editors. Domain Decomposition Methods for Partial Differential Fquations,
Philadelphia, PA, 1988. STAM. Proceedings of the First International Sympo-
sium on Domain Decomposition Methods for Partial Differential Equations,

Paris, France, January 1987.

Roland Glowinski, Yuri A. Kuznetsov, Gérard A. Meurant, Jacques Périaux,
and Olof Widlund, editors. Fourth International Symposium on Domain
Decomposition Methods for Partial Differential Fquations, Philadelphia, PA,
1991. STAM. Held in Moscow, USSR, May 21-25, 1990.

P. Grisvard. Flliptic problems in nonsmooth domains. Pitman Publishing,

Boston, 1985.

William D. Gropp and Barry F. Smith. Experiences with domain decomposi-
tion in three dimensions: Overlapping Schwarz methods. In Alfio Quarteroni,
Yuri A. Kuznetsov, Jacques Périaux, and Olof B. Widlund, editors, Domain
Decomposition Methods in Science and Engineering: The Sizth International
Conference on Domain Decomposition, volume 157, pages 323-334. AMS,
1994. Held in Como, Italy, June 15-19,1992.

William D. Gropp and Barry F. Smith. Scalable, extensible, and portable
numerical libraries. In Proceedings of Scalable Parallel Libraries Conference,

pages 87-93. IEEE, 1994.

David E. Keyes, Tony F. Chan, Gérard A. Meurant, Jeffrey S. Scroggs, and
Robert G. Voigt, editors. Fifth International Symposium on Domain Decom-

135



[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

position Methods for Partial Differential Fquations, Philadelphia, PA, 1992.
SIAM. Held in Norfolk, VA, May 6-8, 1991.

David E. Keyes and Jinchao Xu, editors. Domain Decomposition Methods
in Science and Engineering, volume 180, Providence, R.I., 1994. AMS. Pro-
ceedings of the Seventh International Conference on Domain Decomposition,
October 27-30, 1993, The Pennsylvania State University.

Axel Klawonn. An optimal preconditioner for a class of saddle point problems
with a penalty term. Technical Report 676, Courant Institute of Mathematical
Sciences, New York University, December 1994.

Patrick Le Tallec. Neumann-Neumann domain decomposition algorithms for
solving 2D elliptic problems with nonmatching grids. Fast-West J. Numer.
Math., 1(2):129-146, 1993.

Jacques-Louis Lions and Enrico Magenes. Nonhomogeneous Boundary Value
Problems and Applications, volume 1. Springer, New York, Heidelberg,
Berlin, 1972.

Pierre-Louis Lions. On the Schwarz alternating method. I. In Roland Glowin-
ski, Gene H. Golub, Gérard A. Meurant, and Jacques Périaux, editors, First
International Symposium on Domain Decomposition Methods for Partial Dif-

ferential Fquations, pages 1-42, Philadelphia, PA, 1988. STAM.

Yvon Maday, Dan Meiron, Anthony T. Patera, and Einar M. Rgnquist. Anal-
ysis of iterative methods for the steady and unsteady Stokes problem: Appli-
cation to spectral element discretizations. SIAM J. Sei. Comp., 14(2):310-
337, 1993.

Yvon Maday and Anthony T. Patera. Spectral element methods for the
Navier-Stokes equations. In A.K. Noor and J.T. Oden, editors, State of the
Art Surveys in Computational Mechanics, New York, 1989. ASME.

Yvon Maday, Anthony T. Patera, and Einar M. Rgnquist. The Py x Pn_s
method for the approximation of the Stokes problem. Technical Report 92009,

136



[76]

[77]

(78]

[79]

[80]

[81]

[82]

[83]

Université Pierre et Marie Curie, Paris, France, 1992. To appear in Numer.

Math.

Yvon Maday and Olof B. Widlund. Some iterative substructuring methods
for mortar finite elements: The lower order case. Technical report, Courant

Institute of Mathematical Sciences, 1996. In preparation.

Jan Mandel. Iterative solvers by substructuring for the p-version finite ele-

ment method. Comp. Methods Appl. Mech. Eng., 80:117-128, 1990.

Jan Mandel. Two-level domain decomposition preconditioning for the p-
version finite element version in three dimensions. [Int. J. Numer. Meth.

FEng., 29:1095-1108, 1990.

Jan Mandel. Tterative solvers for p-version finite element method in three
dimensions. Comput. Methods Appl. Mech. Engrg, 116:175-183, 1994. Pro-
ceedings of [COSAHOM 92, a conference held in Montpellier, France, June
1992.

Jan Mandel and Marian Brezina. Balancing domain decomposition: Theory
and computations in two and three dimensions. Technical Report UCD/CCM
2, Center for Computational Mathematics, University of Colorado at Denver,

1993.

Tarek P. Mathew. Domain Decomposition and Iterative Refinement Methods
for Mized Finite Flement Discretizations of Elliptic Problems. PhD thesis,
Courant Institute of Mathematical Sciences, September 1989. Tech. Rep. 463,

Department of Computer Science, Courant Institute.

Tarek P. Mathew. Schwarz alternating and iterative refinement methods for
mixed formulations of elliptic problems, part I: Algorithms and Numerical

results. Numer. Math., 65(4):445-468, 1993.

Tarek P. Mathew. Schwarz alternating and iterative refinement methods for
mixed formulations of elliptic problems, part II: Theory. Numer. Math.,
65(4):469-492, 1993.

137



[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

93]

A. M. Matsokin and S. V. Nepomnyaschikh. A Schwarz alternating method
in a subspace. Soviet Mathematics, 29(10):78-84, 1985.

Jindfich Necas. Les méthodes directes en théorie des €quations elliptiques.

Academia, Prague, 1967.

Steven A. Orzag. Spectral methods for problems in complex geometries.

Journal of Computational Physics, 37(1):70-92, 1980.

Peter Oswald. An optimal multilevel preconditioner for solenoidal approxi-
mations of the 2d-stokes problem. Technical report, Texas A&M University,
1995.

Shannon S. Pahl. Schwarz type domain decomposition methods for spectral
element discretizations. Master’s thesis, Department of Computational and
Applied Mathematics, University of the Witwatersrand, Johannesburg, South
Africa, December 1993.

Seymour V. Parter and Ernest E. Rothman. Preconditioning Legendre spec-
tral collocation approximation to elliptic problems. SIAM J. Numer. Anal.,
32(2), April 1995.

Luca Pavarino. Neumann-Neumann algorithms for spectral elements in three

dimensions. Technical Report 979, [.A.N.-CNR, Pavia, Italy, 1995.

Luca F. Pavarino. Domain Decomposition Algorithms for the p-version Finile
Element Method for Elliptic Problems. PhD thesis, Courant Institute, New
York University, September 1992.

Luca F. Pavarino. Additive Schwarz methods for the p-version finite element

method. Numer. Math., 66(4):493-515, 1994.

Luca F. Pavarino. Schwarz methods with local refinement for the p-version

finite element method. Numer. Math., 69(2):185-211, 1994.

138



[94]

[95]

[96]

[97]

[98]

[99]

[100]

Luca F. Pavarino and Olof B. Widlund. Iterative substructuring methods for
spectral elements: Problems in three dimensions based on numerical quadra-
ture. Technical Report 663, Courant Institute of Mathematical Sciences,
Department of Computer Science, May 1994. To appear in Computers Math.
Applic.

Luca F. Pavarino and Olof B. Widlund. A polylogarithmic bound for an
iterative substructuring method for spectral elements in three dimensions.
Technical Report 661, Courant Institute of Mathematical Sciences, Depart-

ment of Computer Science, March 1994. To appear in STAM J. Numer. Anal.,
33-4.

Luca F. Pavarino and Olof B. Widlund. Preconditioned conjugate gradient
solvers for spectral elements in 3D. In W. G. Habashi, editor, Solution Tech-
niques for Large-Scale CFD Problems, pages 249-270. John Wiley & Sons,
1995. Proceedings of the International Workshop on Solution Techniques for
Large-Scale CFD Problems held at CERCA, Montréal, Canada, September
26-28, 1994.

Olivier Pourquier. Meéthode des éléments finis de haul degré (p-
version): estimation du conditionnement des malrices et construction de

préconditionneurs. PhD thesis, I.’Ecole Centrale de Lyon, France, July 1994.

Alfio Quarteroni, Yuri A. Kuznetsov, Jacques Périaux, and Olof B. Widlund,
editors. Domain Decomposition Methods in Science and Engineering: The

Sixth International Conference on Domain Decomposition, volume 157. AMS,

1994. Held in Como, Italy, June 15-19,1992.

Alfio Quarteroni and Elena Zampieri. Finite element preconditioning for

legendre spectral collocation approximations to elliptic equations and system:s.

SIAM J. Numer. Anal., 29:917 — 936, 1992.

Einar M. Rgnquist. A domain decomposition solver for the steady Navier-
Stokes equations. In Proceedings of the 1995 ICOSAHOM conference on
higher order methods, 1995. To appear.

139



[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems. SIAM J. Seci. Stat. Comp.,
7:856-869, 1986.

Marcus V. Sarkis. Schwarz Preconditioners for Elliptic Problems with Dis-
continuous Coefficients Using Conforming and Non-Conforming Flements.

PhD thesis, Courant Institute, New York University, September 1994.

Alfred H. Schatz. An observation concerning Ritz-Galerkin methods with
indefinite bilinear forms. Math. Comp., 28(128):959-962, 1974.

Alfred H. Schatz and Junping Wang. Some new error estimates for Ritz-
Galerkin methods with minimal regulariry assumptions. Technical report,
Cornell University, 1993.

H. A. Schwarz. Gesammelte Mathematische Abhandlungen, volume 2, pages
133-143. Springer, Berlin, 1890. First published in Vierteljahrsschrift der
Naturforschenden Gesellschaft in Zirich, volume 15, 1870, pp. 272-286.

David Silvester and Andrew Wathen. Fast iterative solutions of stabilised
Stokes systems Part II: Using general block preconditioners. STAM J. Numer.
Anal., 31(5):1352-1367, 1994.

Barry F. Smith. Domain Decomposition Algorithms for the Partial Differen-
tial Fquations of Linear Flasticity. PhD thesis, Courant Institute of Mathe-
matical Sciences, September 1990. Tech. Rep. 517, Department of Computer

Science, Courant Institute.

Barry F. Smith. A domain decomposition algorithm for elliptic problems in

three dimensions. Numer. Math., 60(2):219-234, 1991.

Barry F. Smith, Petter Bjgrstad, and William Gropp. Domain Decomposi-
tion: Parallel Multilevel Methods for Elliptic Partial Differential Fquations.
Cambridge University Press, 1995.

140



[110]

[111]

[112]

[113]

[114]

[115)

[116]

[117]

[118]

[119]

Barry F. Smith and Olof B. Widlund. A domain decomposition algorithm
using a hierarchical basis. SIAM J. Sci. Stat. Comput., 11(6):1212-1220,
1990.

Gerhard Starke. Iterative Methods and Decomposition-Based Preconditioners
for Nonsymmetric Elliptic Boundary Value Problems, July 1994. Habilita-

tionsschrift.

Barna Szabo6 and Ivo Babuska. Finite Element Analysis. John Wiley & Sons,
New York, 1991.

Patrick Le Tallec and Abani Patra. Nonoverlapping domain decompositin
methods for stokes problems with discontinuous pressure fields. Personal

Communication, June 1995.

Roger Temam. Navier-Stokes Fquations. North-Holland Publishing Com-
pany, Amsterdam, New York, Oxford, 1979.

Olof B. Widlund. [terative substructuring methods: Algorithms and the-
ory for elliptic problems in the plane. In Roland Glowinski, Gene H. Golub,
Gérard A. Meurant, and Jacques Périaux, editors, First International Sympo-

sium on Domain Decomposition Methods for Partial Differential Equations,

Philadelphia, PA, 1988. STAM.

Jinchao Xu. A new class of iterative methods for nonselfadjoint or indefinite

problems. SIAM J. Numer. Anal., 29(2):303-319, 1992.

Harry Yserentant. On the multi-level splitting of finite element spaces. Nu-

mer. Math., 49:379-412, 1986.

Xuejun Zhang. Studies in Domain Decomposition: Multilevel Methods and
the Bitharmonic Dirichlet Problem. PhD thesis, Courant Institute, New York
University, September 1991.

Xuejun Zhang. Multilevel Schwarz methods for the biharmonic Dirichlet
problem. SIAM J. Sei. Comput., 15(3):621-644, 1994.

141



