5 Concluding the Analysis

We choose s = 1 Recall that s’ = s (see Section 4.2). By Lemma 3 we have sd = 2, gp = 1d =
34, ¢ = 36. On taking equality in Equations 7, 10, 13, 14, 20, 21, we obtain hd = 36, d = 432,
b=214,¢ =144, a = 2 - 216% = 93,212 (incidentally, these values satisfy Equations 6, 8 and
9) and ¢ + 4 < 2%1; by Equation 4 it suffices to set e = 22. For each block we need to pay for
one global insertion and logn — e local insertions (note that the cost of the first e — 1 local
insertions is covered by the charge for the global insertion). Equations 15-19 and 22-25 are
not used here. From Lemma 17, we conclude:

Theorem 1 The number of rotations for sorting a log n-block sequence is bounded by 2500n +
O(n/logn). (Recall that the number of rotations dominates the overall cost of the sort.)

6 Acknowledgements

We thank Rajamani Sundar for his very careful reading of the paper which uncovered several
serious omissions in an earlier draft. We also thank S. Muthukrishnan for his help and advice
regarding figure drawing.

References

[C93] R. Cole. On the Dynamic Finger Conjecture for splay trees. Part II: The proof. Sub-
mitted for publication.

[Luc88a] J.M. Lucas. Arbitrary splitting in splay trees. Technical Report No. DCS-TR-234,
Computer Science Department, Rutgers University, 1988.

[Luc88b] J.M. Lucas. Canonical forms for competitive binary search tree algorithms. Technical
Report No. DCS-TR-250, Computer Science Department, Rutgers University, 1988.

[ST85] D.D. Sleator, R.E. Tarjan. Self-adjusting binary search trees. JACM, 3(1985), 652-686.

[STT86] D.D. Sleator, R.E. Tarjan, W.P. Thurston. Rotation distance, triangulations, and
hyperbolic geometry. In Proceedings Eighteenth Symposium on Theory of Computing,
1986, 122-135.

[T85] R.E. Tarjan. Sequential access in splay trees takes linear time. Combinatorica, 5(4),
1985, 367-378.

[Su89] R. Sundar. Twists, turns, cascades, deque conjecture, and scanning theorem. In Pro-
ceedings Thirtieth Annual Symposium on Foundations of Computer Science, 1989,
555-559.

[W86] R. Wilber. Lower bounds for accessing binary search trees with rotations. In Proceed-
ings Twenly Seventh Symposium on Foundations of Computer Science, 1986, 61-69.

45

following the rotation, u is no longer on L,,,. If r¢ is heavy on L,.,,, then by Invariant 14(ii)a
applied to L and L,¢,, there are no heavy nodes of L., in r¢’s left subtree nor in u’s left
subtree; so, again, following the rotation w is no longer on L,.,. A similar argument applies
if rg is the right guard of L,y .

4.5.2 Removing Debits

We show how to restore Invariants 1-4 and 6-7. For each node that was on a newest lazy tree
L, but is not on a lazy tree derived from L, we charge the removal of its debit, if any, to the
node’s potential associated with lazy tree L. So we are only concerned with nodes for which
the age of their newest lazy tree is unchanged. For such nodes, the invariants are all restored
exactly as in Section 4.3.

Restoring Invariants 14 result in the same maximum charge of two small debits and three
large debits to a promoted node; this holds regardless of how many lazy trees the promoted
node belonged to. Debit removal charged to the node relinquishing the debit is treated as
before; this takes care of Invariant 6 as well. It remains to consider Invariant 7.

For a promoted node to be charged as node z of the argument in Section 4.3, it must
be a heavy node on the left (resp. right) extreme path of its right (resp. left) lazy tree prior
to the split. Likewise, for a node to be charged as node y, it must be a heavy node on its
right (resp. left) lazy tree prior to the split and not on the left (resp. right) extreme path.
So as a promoted node, a node is charged no more than before. The same node may receive
additional charges, but as light nodes on other newer lazy trees; these charges are paid for by
the potentials associated with the node as a light node in these newer lazy trees. So as before,
Equations 20 and 21 suffice to enable Invariants 1-4 and 67 to be restored.

Again, for the more general case, to restore Invariant 11 Equations 22-24 suffice.

To satisfy any further restrictions obeying Property 3, we need to cover a charge of up to
a -md for each lazy tree created by the split. For each such lazy tree, the charge is given to its
root. However, this cannot be applied solely to the charge made to promoted nodes, as several
new lazy trees may share a common root. Instead, the charge is made to each node, either as
a light node or for the oldest lazy tree, as a heavy node. This requires modifying Equation 23
to Equation 24 as before, and modifying Equation 22 as follows:

d > 4md+a-md (25)

4.5.3 Summary

The presence of multiple levels of lazy trees does not alter the previous analysis of a global
insertion, stated in Lemma 10 (except that the constraint of Equation 25 is introduced). The
analysis of local insertions is also unaffected, for the discussion of Section 4.4 carries over
unchanged; so Lemma 6 also continues to hold. In summary, we have shown:

Lemma 17 The cost of a local access is ¢+ s+ 1 and the cost of a global access is e(3logn +
1)gp + bgplogn units.

In addition, we note that Lemma 11 continues to hold with Equation 22 replaced by
Equation 25 (but now in Lemma 11(ii), “block” is interpreted to mean the newest lazy tree
older than the lazy tree in question, to which nodes on the left path belong).

44

Lemma 16 Let w be a node on lazy tree L promoted in Case 2' or 2.1'. Let w' be a promoted
node in v’s left subtree on an older lazy tree Ly, if any. Then

(i) w' is a right descendant of w.
(it) lazy_rank(w) > g_-rank(w').
(1ii) lazy_rank(w) + ireserve(w) + jump(v) > g-rank(v).

Proof. The proof of (i) is very similar to the proof of Lemma 14. (ii) follows from Corollary
1(i). The proof of (iii) uses the argument of Case 2 in Section 4.3. e
Case 3'. The inserted item is to the right of the lazy tree root, r.

The new lazy tree rooted at r» must be provided with a right guard. The method followed
is identical to that used in Case 2’ for providing the new lazy tree rooted at v with a right
guard. Lemma 16 applies here too.

It remains to analyze the cost of the split operations. Clearly, for the nodes on the right
(resp. left) access path, the cost of the promotions is at most gp -logn, a total of 2gp - logn
units for the two access paths. Lemmas 15 and 16 imply that for each promoted node on
the right (resp. left) access path the associated promoted nodes form a chain descending
to the left (resp. right); let 1,23, -, 2, be a maximal path of such nodes, in descending
order. Lemmas 15 and 16 show that lazy_rank(z;) > grank(z;41), for i = 1,--- k — 1
and lazy_rank(zy) + ﬁreserve(m;ﬂ) + jump(v) > g-rank(v) > grank(z1). (Note that the
applications of Lemmas 15 and 16 will be interleaved if there is an interleaved sequence of
successively older left and right lazy trees.) We conclude that a further 2¢p - log n units of
potential pay for the promotion of the nodes z;.

So, as before, the cost of the split operation is at most 4gplogn and Lemma 8 continues

to hold.

Lemma 8 The promotions in a global insertion cost at most 4gplogn units, where for each
split lazy tree there is a charge of 2gp times the increase in global rank along the right split
path and of 2gp times the increase in global rank along the left split path.

It should be clear that Invariants 14-17 are maintained over the course of these promotions.
When the promotions are complete there are no pseudo-global nodes remaining, so at this point
Invariants 14-16 will have been restored.

Finally, we need to consider the effect of the guard restoration process. We claim that if
the guard restoration process is applied to lazy tree L, for each of the promoted nodes, the
newest lazy tree to which it belonged was L. Then it is easy to see that Invariants 14-16
continue to hold. To show the claim we demonstrate one case; the others are similar. Suppose
that rg, the right guard of L, is in a couple with heavy node u of L (see Figure 30). Suppose

Figure 30: Guard restoration

that w is also on a newer lazy tree L,e,. Then w is light on L, . If rg is light on L, then

43

some older lazy tree, L,4. then & must be on the left path of L, (by Lemma 13), so & was
already promoted. © will become the right guard of a new lazy tree formed from L. If a left
descendant, w, of , on the left path of L has already been promoted (there can be at most one
such node) then w becomes the root of this new lazy tree. If not, w is defined to be the first
heavy node on the left path of L which is a proper descendant of #; it is promoted. Finally,
if w has a non-empty right subtree in L, the right guard restoration process is applied to @.
Finally, suppose that © was not heavy on any older lazy tree. Let v be the nearest descendant
node on the left path of L which is heavy or pseudo-heavy. v is promoted if it is not already
promoted. It is then handled in the same way as node ? earlier in this case.
The charging for the promotions is analyzed shortly. The following lemmas are helpful.

Lemma 14 Lel v be a traversed node on lazy tree L. Suppose that w' is a node in v’s right
subtree, where v is promoted in Case 1’ or 1.1'; in addition, suppose that v and w' are on an
older lazy tree Log. Let wq,- -, wy be the nodes on L promoted by the right offset promotions.
Then w' is a proper left descendant of wy,.

Proof. Note that as w’ is on L., an older lazy tree including v, w’ must be in the range
(v,wy), by Invariant 14(ii)a. Suppose, for a contradiction, that w’ has an ancestor z on the
path from v to w; in the range (v, wq). See Figure 29. (If this is not the case then w’is a

<

w_l
5\

Figure 29: Proof of Lemma 14

proper left descendant of wy.) @ is global as both w’ and w; are global. As z is a global
node, by Invariant 16, z is heavy on some tree L’ older than L (it is not heavy on L as it
was not promoted). Let z’ be the first node on the path from v to z, in the range (v,z], on
L', which is heavy on L', or which is already promoted. Then 2z’ is promoted in whichever of
cases 1/,1.1/,2/,2.1" applies to L’. But if 2’ is promoted then w; would not be promoted, a
contradiction. e

The next lemma is shown by the same argument as used in Case 1 in Section 4.3.

Lemma 15 Let wy,---,wg be the chain of nodes promoted on lazy tree L by the right offset
promotions for node v. In addition, let w' be a promoted node, if any, in v’s right subtree
on an older lazy tree Lyq. lazy_rank(w;) > g-rank(wy1), for ¢ = 1,---,k — 1; similarly,
lazy_rank(wy) > g_-rank(w'). Finally, lazy_rank(wy) + jump(v) > g_-rank(v).

In addition, we note:

42

to wy, in the range (v',w;) has been promoted. Again, if the right offset promotions are not
performed, a new lazy tree is created exactly as in Case 1'.

If the left guard, lg, is separated from the remainder of L (through being accessed from its
right child), and, v’, the leftmost heavy node in L, is traversed, then the promotions described
in the previous paragraph are performed; but if lg is separated from the remainder of L without
v’ being traversed (which can arise only if lg is the root of the large lazy block tree) then the
new left guard for L is provided by the promoted node, if any, nearest to the root, r, of L,
in the range (lg,r), on the path from lg to r. (See Figure 27.) If there is no such promoted

V!

/ O
access \D r=a

Figure 27: Separating the left guard

node, as in Case 1.1, the right offset promotions for r are performed.

Again, we need to provide the new lazy tree rooted at v with a right guard. As in Case 2
of Section 4.3, let be the rightmost heavy descendant of » in the imaginary tree associated
with its lazy block tree. If 2 # v we proceed as in Case 2 of Section 4.3. If = v we proceed as
follows. Let w’ be v’s left child in the lazy block tree for L (if v does not have such a child then
the lazy block tree rooted at v will comprise only one node and so can be ignored henceforth).
Let w be the first node on the path from v to w’, in the range (w’, v), which has already been
promoted, if any (there will be at most one promoted node on this path). If there is no such
node, set w = w’ and promote it. w becomes the root of a new lazy tree formed from L with
right guard ». Finally, if w has a non-empty right subtree in L, the right guard restoration
process is applied to v.

Case 2.1'. ¥ is a light node on the left path of L and is accessed from its right child (a node
which is not on L). See Figure 28.

!

P

SN

access

Figure 28: Case 2.1/

v’ is defined to be the nearest heavy or pseudo-heavy ancestor of ©; v’ must be on the
left external path of L. v’ is handled as in Case 2, above. Suppose @ is a heavy node on

41

"

access

N

Figure 25: Case 1/

range (v, wp) has been promoted. If such a node has been promoted, there will be one such
node; let it be denoted w. Then w becomes a root of a lazy tree formed from L; its left subtree
is empty and its right subtree contains exactly the heavy nodes of L in »’s right subtree. v
provides the left guard for this new lazy tree. The right guard for the lazy tree rooted at w is
obtained in the same way as wy’s right guard in Case 1.

Case 1.1'. See Figure 26. v’ is a light node of L, which is not on the left path of L, and v’ is

’U/

|

"

access \ v

A
\os

Figure 26: Case 1.1

accessed from its left child, which is a node not on L.

Suppose v’ is a heavy node on some older lazy tree, L,q4; then v’ is on the right path of
L,q (by Lemma 13) and so v’ was already promoted. Suppose that o is straddled by L’s
heavy nodes z and y, where y is a descendant of v’. Let v be the promoted node nearest to y
on the path from v’ to y, in the range [v',y), if any. If v # ¢/, v is made the root of a lazy tree
formed from L; its left guard is the nearest node on the path from v’ to v, in the range [v/,v)
which has been promoted (in fact, this must be v’). Its right guard is handled as in Case 1.
While if v = ©" or if »' was not heavy on any older lazy tree, then the right offset promotions
for v = v are performed.

Case 2. v is a heavy node on the left extreme path and it is accessed from its right child, u.

v’ is defined to be the nearest heavy or pseudo-heavy ancestor of o; v’ must be on the left
external path of L. v and v’ are promoted as in Case 2 of Section 4.3. As in Case 1/, the
right offset promotions for v’ are performed exactly when no global node on the path from o’

40

By inspection plus induction, Invariants 14-16 are true on creation of a lazy tree L., ;
also, they remain true as the extreme paths of the lazy trees are traversed.

We need to reconsider the analysis of splits. Again, in turn, we consider the promotions,
the consequential removal of debits and the recreation of the complete lazy tree potential for
the lazy trees created by the split. Actually, the arguments concerning Invariants 8-10, 12—
13 are unchanged from Section 4.3 and so we will not discuss further the recreation of the
complete lazy tree potential.

4.5.1 The Promotions

For each split lazy tree, our goal in a split is to promote the same nodes as in Section 4.3
(remember, this needs to be interpreted symmetrically for left lazy trees); however, this may
prove too expensive because of the recursive containment of lazy trees. So, sometimes, instead
of promoting a node v, heavy on lazy tree L, we will promote a node w which is light on L
but heavy on an older lazy tree, and such that w is an ancestor of v.

We consider the promotions to be performed on one lazy tree at a time, oldest first.
Invariants 14 and 15 are maintained, but modified as follows.

Suppose the promotions have been applied to L,q but not to L., (see Figure 24). All the

lg

Ny

v is promoted; then v
is made pseudo-heavy in L _new

o

Figure 24: Pseudo-heavy nodes

promoted nodes which are on L,., are made into pseudo_heavy nodes of L,.,. In addition,
let lg be the left guard of L,e, and r its root. Suppose that lg is an ancestor of r. Let v be
a node on the path from lg to r in the range (lg,r). If v is promoted, then v also becomes a
pseudo-heavy node of L. A similar rule applies with respect to the right guard of L.

Invariant 17 Invariant 14(ii)(a) hold with respect to the heavy and pseudo_heavy nodes of
Lyew, as do Invariant 15(i) and 16.

Next, we explain how the previous promotion procedure is modified. Consider the promo-
tions on right lazy tree L.
Case 1'. See Figure 25. v is a heavy node in the lazy block tree, which is not on the left
extreme path. In addition, v is accessed from its left child, u.

v is promoted as in Case 1 of Section 4.3. w; is defined as in this Case 1. The right offset
promotions for v are performed exactly when no global node on the path from v to wy, in the

39

Lemma 13 Let w be on lazy tree L,g. Suppose w is also on a newer lazy tree L,e,,. Then w
is on an extreme path of L.

Proof. Invariant 14(ii)a applies to L., and L,q. Let u and v be the items of L., straddling
the root of L4, as in the statement of the invariant. Since w is on L, w is on the path from
w to v in the range (u,v) (if u < v) or (v, u) (if v <). If w does not lie on an extreme path
of Lyi4, then some item of L,y must lie outside the range (u,v) (or (v, u)), which contradicts
Invariant 14(ii)a. e

Invariant 15 Let L be a lazy tree.

(i) The nodes of L, apart from its root, are all heavy or light on L.

(ii) Apart possibly for its root, all of L’s heavy nodes carry their lazy potential.

(iii) Fach of L’s light global nodes is a heavy node in some older lazy tree.

(iv) Fach node, v, heavy on some lazy tree L, is a light node of all the newer lazy trees to

which it belongs.

Invariant 15 implies Requirement 1(ii) and 1(iii), above.

Before giving the next invariant, a few definitions are helpful. Let L be a lazy tree and let
u be a node of its large lazy block tree. v is an L-neighbor of w if v is also a node of the large
lazy block tree and » and v enclose no other node of the large lazy block tree. Suppose that «
is an ancestor of its L-neighbor v; the (u,v)-neighbor path comprises those items on the path
from u to v in the splay tree which are in the range (u,v), if u < v, or (v,u), if v < u.

Invariant 16 See Figure 23. Let L be a lazy tree. Let u and v be L-neighbors, with u the

Key: O nodes on neighbor path

\j right guard for L_old

Figure 23: A (u,v)-neighbor path

ancestor of v. Let N denote the (u,v)-neighbor path. If N includes a global node, there is a
lazy tree Loyg, older than L, rooted at u, such that every node in N is on Log. Further suppose
that w is a left (resp. right) ancestor of v. Then the right (resp. left) guard for L, is either
v or a left (resp. right) descendant of v.

38

Requirement 1. Suppose u is traversed in the current insertion. Let I be the newest lazy
tree to which u belongs.

(i) Let v be an ancestor of w on L. Then L is also the newest lazy tree to which v belongs.

(ii) w is either the root of L, or a heavy or light node of L; if a heavy node it carries a lazy
potential defined with respect to L.

(iii) If u is a heavy node of an older lazy tree, then it is a light node of L.

Items (i) and (ii) enable the traversal of node u to be treated as part of the traversal of
an extreme path of L; the previous analysis continues to apply. However, a new issue arises
because u may also belong to older lazy trees. We maintain «’s potentials with respect to each
such lazy tree. Maintaining the [-potentials and [-black potentials might appear problematic,
for it may involve the spending of k-spares, £ > 1. But we note that each node, w, is heavy in
at most one lazy tree, and this is the only lazy tree with respect to which u carries [-potentials
and [-black potentials and to whose heavy nodes it transfers spares (for in all newer lazy
trees that contain w, w is light). So there is only one lazy tree with whose [-potentials and
[-black potentials u is concerned, and this is the only lazy tree to which u contributes spares or
from which u draws spares. Thus the [-potentials and [-black potentials can be maintained as
before. Otherwise, the analysis of an extreme path traversal is unchanged, apart possibly for
the removal of debits following the maintaining of Invariant 13. We discuss this at the same
time as we show how to remove debits following the new split operation.

The following invariant characterizes the overlap of lazy trees.

Invariant 14 (i) Let L, and Ly be two lazy lrees of the same age. Then the two open
intervals defined, respectively, by the guards of L, and of Ly are disjoint.

(ii) Let Loiq be a lazy tree and let r be its root. Let L., be another, newer, lazy tree. Then

(a) If v lies strictly between the guards of Lye, then the guards of L,q lie between the
guards of Lye,. In addition, let v and v be the items in the large lazy block tree for
Lyew straddling r (r may or may not be an item in this large lazy block tree). Then
Lo plus its guards lies between u and v. (Recall that the large lazy block tree for
lazy tree L comprises the lazy block tree for L plus the guards for L.)

(b) If v is strictly outside the closed interval defined by the guards of L., then the open
intervals defined by the guards of Loig and L, respectively, are disjoint.
(c) Suppose that r is the right (resp. left) guard for L,e,. Let dye, be the rightmost

(resp. leftmost) item in the lazy block tree for Ly,e,,. Then the left (resp. right) guard
of Lo is either equal to or to the right (resp. left) of dyey-

Thus, in some sense, an older lazy tree is either contained in a newer lazy tree or is disjoint
from it. In the next two lemmas we show several consequences of this invariant.

Lemma 12 Requirement 1(i) holds.

Proof. Let u and v be as in Requirement 1(i). Suppose that v belongs to lazy tree Ly,
newer than L. Then L and L,., obey Invariant Invariant 14(ii)a. By assumption, only an
extreme path of L., is traversed; so the inserted item lies outside the range spanned by the
guards of L, ; without loss of generality, suppose that the inserted item is to the right of the
right guard of L,.,,. By Invariant 14(ii)a, all of L is to the left of L,.,’s right guard; so the
only items of L that are traversed must also be on L. ®

37

4.4 Lazy Trees and Local Accesses

We need to reconsider the analysis of local accesses to take the presence of lazy trees into
account (see Remark 2). Note that in such an access only the left paths of lazy trees can
be traversed. In fact, only two modifications are needed. First, we need to consider couples
comprising two heavy nodes. But these are analyzed as in a global insertion: They have
0 < s+ 1 amortized cost, for as noted in Remark 3, no spares are spent on paying for changes
to the j-potentials and/or j-black potentials. Second, we may need to modify the guards of
some lazy trees so as to maintain Invariant 13. As in Section 4.3, this does not occasion a
change to the analysis of the insert operation. So the results of Lemma 6 continue to apply.

4.5 Multiple Level Lazy Trees

It is convenient to refer to the lazy trees encountered so far in the paper as right lazy trees.
Analogous lazy trees, called left lazy trees, in which the roles of left and right are interchanged
are considered in this section. While they are not needed to prove the result of this paper, they
lead to a more general result in this section, without adding significantly to the complexity of
the current section.

Because a local access path may include nodes of a current lazy tree we may seek to make
the root of a lazy tree a heavy node carrying a lazy potential in a new lazy tree. We therefore
generalize the form of the lazy trees. Now, a “block,” or rather metablock, in a lazy tree may
itself be another lazy tree.

In order to distinguish the ages of the different lazy trees, we number the blocks, in insertion
order, by 1,2,---. A lazy tree is labeled by the number of its corresponding creating block.
When a lazy tree is split its parts keep the same age label.

Let L be a lazy tree; its skeleton plus its lazy block tree comprise the nodes on L. The
nodes on L are also said to belong to L. A node may be on an extreme path of several lazy
trees. For each lazy tree to which a node belongs it carries a separate potential. However, a
node may carry only one debit, as before. Invariants 1-4 and 6-7 should be interpreted with
respect to the newest lazy tree to which the node carrying the debit belongs.

We define a new lazy tree, L.y, to contain an old lazy tree, L,q, if the root, r, of L,y is
on Lye,. We write Lojg C Ly . If there is no tree L,,;q with Loy C Liig C Lpew, then Ly
is treated as a metablock of L,.,. The root of L,y is treated as the root of this metablock;
the root of L, is a heavy node on L,e,. All other nodes on L, are light nodes of this
metablock, unless they are not even on L,.,. This matters when defining the potentials for
nodes on L, . Suppose that L,y is contained in L., ; then, apart perhaps for its root, any
node on L, that is also on L,., must be a light node on L,.,; in fact, only the root and
nodes on an extreme path of L,y can be on L,¢,, but it need not be the case that even all
these nodes are on L,,.y,.

In addition, each guard of a lazy tree may be the root of another lazy tree, rather than
being the root of a block. More precisely, suppose that g is the right (resp. left) guard for lazy
tree L on creation of L, and L,iq is the newest lazy tree rooted at g at this time (L4 is older
than L). Then the root of L,y remains the right (resp. left) guard for L until one or both of
L and L., are split. Note that the root of L,y may at some point become the root of a newer
lazy tree, Lye.; however, the root of L., does not take over the guard role for L.

In order to carry over the previous analysis of an extreme path traversal, we require the
following properties concerning lazy trees to apply.

36

4.3.4 The Invariants Defined for the Split Operation

We note that the split operation has been defined so as to maintain Invariant 13. It remains
to consider the effect of the split on Invariant 12; but the only effect of a split is to reduce the
size and hence weight of a lazy tree; so this Invariant also continues to hold.

4.3.5 Summary and Generalization
We have shown (see Lemma 8 and Equation 5):
Lemma 10 The cost of a global access is at most e - (3logn + 1)gp + 5logn - gp units.

In a later paper we will again use lazy trees which will have heavy and light nodes. The
heavy nodes will have the same lazy and reserve potentials as here. It is useful to summarize
and slightly generalize the results of this section.

As already noted, the nodes of the lazy trees in the later paper will still have small, large
and lazy debits which obey the present invariants, namely Invariants 1-4 and 6-7. Other
additional debits satisfying Invariant 11 may be present. We need to show how to maintain
this invariant following a lazy tree split. It is readily seen that the method for restoring the
invariants concerning lazy debits suflice to restore this invariant also, so it suflices to replace
hd by md in Equations 20 and 21, yielding:

¢ > max{4md,ld+ 3md} = 4md (22)
b > 3md+ 2ld + 2sd + gp (23)

The debits may be restricted beyond the invariants of this paper. So long as these new
constraints satisfy the following property:

Property 3 The restoration of any further invariant concerning the debils requires the re-
moval of at most « additional debits from each lazy tree created by the split, a a constant.

By Property 2 there are at least as many promoted nodes as there are lazy trees created
by the split. So the sets of a additional debits can be charged a to each promoted node.
modifying Equation 23 as follows

b>3md+ 2ld+ 2sd + gp + a - md (24)

suffices to ensure all the invariants can be restored.
We have shown:

Lemma 11 If a lazy tree comprises light and heavy nodes where the heavy nodes carry lazy
potentials as specified in Invariant 12, then each lazy tree resulting from a split satisfies:

(i) Invariant 12.

(ii) If the nodes on its left path are new to a left path, then they are all light nodes in the
same block.

(iii) Assuming the debits obey Invariants 1-4 and 6-7, and 11, and assuming Fquations 22
and 24 hold, then these Invariants can be restored following a split.

Clearly, we also need:

Property 4 The potential must be partitionable following a split; i.e., each lazy tree created
by the split must be provided with an appropriate potential (eg. a lazy complete tree potential).

35

promoted root of 2’s new lazy tree. In this case, the removal of 2’s lazy debit is charged to z.

Note that a promoted node may be charged for the removal of three lazy debits (as node
y) or one lazy debit (as node z) but not both.

Case 3. x is the right child of its parent z, which was on the left path of the lazy tree prior to
the split. Then z pays for the removal of the lazy debit from z. So z may have to pay for the
removal of up to two lazy debits (the first such debit was removed in Case 2).

Fach light node in a block that becomes either ordinary or newly leftmost is charged for the
removal of at most four lazy debits (from itself and the nodes for which it restored Invariant
7) or one small or large debit and three lazy debits (removed from the same nodes). This is
charged to the reduction of at least ¢’ in the node’s potential. So it suffices to have:

¢ > max{4hd,ld+ 3hd} = 4hd (20)

FEach global node is charged for the removal of at most three lazy debits (from the nodes for
which it restored Invariant 7), two small debits and two large debits; it may also have to pay
a segment charge. So it suffices to have:

b > 3hd + 2ld + 2sd + gp (21)

Lemma 9 Following a split, Invariants 1-4 and 6-7 concerning the debils can be restored
provided Fquations 20 and 21 hold.

4.3.3 Recreating the lazy complete tree potential

We continue by showing how to reestablish Invariants 8-10. To restore Invariant 8, we proceed
essentially as in the original creation of active layers. Let h be the maximum creation_height
of any node in the normal form of the new lazy tree rooted at u, apart from its root (the
creation_heights are those defined with respect to the original tree; they are not redefined with
respect to the new lazy tree). Suppose there is no [-active node for some ! < h. Then, in the
corresponding normal tree, the lowest node v on the right path whose span includes [becomes
l-active (these new active layers are then translated back into the lazy tree at hand). Below,
we show that Invariants 8-10 hold once more (incidentally, this implicitly shows that the rule
for creating new [-active nodes is well defined).

Clearly Invariant 10 still holds for if dj(v) increases udj(v) is reduced by an equal amount.
Next we consider Invariant 9. In each new lazy tree the black status of the nodes is unchanged;
also, by Property 1, the heavy nodes on the new left paths were also previously on left paths.
So Invariant 9 still holds.

Next, we show Invariant 8 is reestablished by the creation of new active layers. First, we
consider the situation prior to the creation of new active layers. Clearly, Invariant 8 (iii) and
(v) still hold; (iv) holds likewise, since the symmetric order of the nodes in the normal form
of each new lazy tree is unchanged. We note that each new lazy tree has a span of active
layers, possibly empty, of the form (7, k], 0 < ¢ < h, where h is the largest creation_height (as
provided initially) of any node in the normal form of the new lazy tree, apart from the root.
By Invariant 8 (v), (iii) and (iv), the right path in each new normal lazy tree, from top to
bottom, contains a sequence, possibly empty, of active nodes with decreasing creation_heights.
It is now readily seen that the rule for creating new active layers restores Invariant 8(i)—(ii).

34

Case 1 D/ OR \

T 0Oy
o z
Case 2 /D y
o OR
\]:' .

left path /

Case 3 /:'Z
N5 o

Figure 22: Invariant 7

33

left path /
z

/N

N

x

Property 2 The number of promoted nodes from each old lazy tree L is at least the number
of lazy trees into which L is split.

4.3.2 Debits and their Invariants

We need to consider the effect of the split and (from the beginning of Section 4.3) of the
updates to the guards on Invariants 1-4 and 6-7. We show how to reestablish these invariants
by removing debits on the extreme paths of the new lazy trees and on the left and right paths
of blocks whose roots cease to be part of the lazy tree.

Invariant 1. The small or large debit, if any, is removed from each promoted node. This is
charged to the promoted node. Also, each light node that ceases to be an extreme path node,
and hence also ceases to be on a lazy tree, pays for the removal of its small or large debit, if
any.

Invariant 2. For each promoted node, the large debits, if any, are removed from its parent
and child (if any) on the extreme path. This is charged to the promoted node. (Note that the
reestablishment of Invariant 1 has already removed the large debit, if any, from itself.)
Invariant 3. The small debit, if any, is removed from each extreme path node. This is charged
to the promoted node.

Invariant 4. For each promoted node u, the small debit, if any, is removed from the corre-
sponding node w, if present. This is charged to the promoted node.

Note that reestablishing Invariants 1-4 requires each promoted node to pay for the removal
of at most two large debits and two small debits, or one large and three small debits, or five
small debits. The maximum charge is achieved with two large and two small debits.
Invariant 6. The lazy debit, if any, is removed from each light node whose block is no longer
part of a lazy tree. This includes those light nodes whose block roots become guards for a new
lazy tree. We call such blocks ordinary blocks. This is charged to the node itself. For each
block that becomes the leftmost block in a new lazy tree we reduce the potential of each light
node from 2¢’ to ¢’. This pays for the removal of lazy debits from these nodes. Any other
light node on a new left path must have been on the old left path and so already satisfied the
invariant.

Invariant 7. Any node violating Invariant 7 must be on a new right path. There are three
ways for a light node 2 on a new right path to still violate Invariant 7.

Case 1. z is adjacent to node y in block, By, where B, either has become the leftmost block
in a new lazy tree or has become an ordinary block. The removal of 2’s lazy debit is charged
to node y.

Case 2. See Figure 22. z’s right child is in the same lazy tree but is heavy. Let z be the root
of z’s block (z is a heavy node also). Let y be the nearest right ancestor of z. If y is between
x and z, y must be in a block, By, where B, either has become the leftmost block in a new
lazy tree or has become an ordinary block (this follows from Property 1). In addition, for each
such node y, there is at most one node z of Case 2, namely the first node, on the right path
descending from y’s left child, to have a heavy child. The removal of z’s lazy debit is charged
to node y.

If z had not been on the left extreme path of the lazy tree prior to the split then there is
such a node y, for if not, prior to the split, x would have been on the right path descending
from z, and by Invariant 7, would not be carrying a lazy debit.

So if there was no such node y, then z had been on the left path of the lazy tree prior to
the split and was on the right path descending from z in the splay tree. Also z must be the

32

(i) ¢ # v. Temporarily, z becomes the right guard for the new lazy tree rooted at v. In
the imaginary tree, z’s right subtree contains no nodes from its large lazy block tree. So by
Invariant 12(ii), the lazy potential for & plus its reserve potential is at least its global potential;
thus the promotion can be paid for at no extra charge. Now, the right guard restoration process
is applied to x. This has zero amortized cost.
(ii) « = v. Let w be v’s left child in its new lazy block tree (if v does not have such a child,
then the new lazy tree rooted at v comprises only one node and can be treated as an ordinary
block henceforth). w is promoted, becoming the root of a new lazy tree while v becomes its
right guard. Next, if w’s right subtree in the large lazy block tree is non-empty, the right guard
restoration process is applied to v. w’s promotion is paid for as follows. w adds its reserve
potential to its lazy potential; w’s modified lazy potential is at least gp times the global rank
of v’s right child in the imaginary tree (for by Invariant 12(ii), this modified lazy potential
is at least gp - lazy_rank(r_n(v)) and r_n(v) must be to the right of the accessed item; so
lazy_weight(rn(v)) includes the weight of all of v’s right subtree in the imaginary tree; now
recall that lazy_rank(r_n(v)) > loglazy_ weight(r_n(v))). Hence gp - jump(v) suffices to pay
for this promotion.

Overall, Case 2 occasions a charge of 2gp - jump(v) + gp - jump(v'). Note that v is on the
left split path and v’ is on the right split path.
Case 2.1. 7 is a light node on the left extreme path; it is accessed from its right child, which
is not in the lazy tree.
Let v be the nearest heavy ancestor of v in the lazy tree. v’ is treated as in Case 2. Let v
be the nearest heavy descendant of ¥ on the left extreme path. » is promoted. v’s promotion
costs at most gp- jump(?) (strictly speaking jump(?) was not defined; it is the jump in ¢g_rank
on accessing node o), which is at least g_rank(v). As in Case 2, we need to provide the new
lazy tree rooted at v with a right guard. This is handled as in Case 2.

Hence, overall, Case 2.1 occasions a charge of 2¢gp - jump(?) + ¢gp - jump(v’). Note that v
is on the left split path and v’ is on the right split path.
Case 3. The inserted item is to the right of the lazy tree root, r.
Then we need to provide the new lazy tree rooted at r with a new right guard. The method
followed is identical to that used in Case 2 for providing the new lazy tree rooted at v with a
right guard. So Case 3 occasions a charge of gp- jump(r). Note that r is on the left split path.
These promotions are performed even if only the right guard, rg, in the lazy tree is separated
from the rest of the lazy tree (through being accessed from its left child). This applies even if
rg is the root of the large lazy tree.

We have shown:

Lemma 8 The promotions in a global insertion cost al most 4gplogn unils, where for each
split lazy tree there is a charge of 2gp times the increase in global rank along the right split
path and of 2gp times the increase in global rank along the left split path.

The following properties of the new lazy trees are helpful; they are readily confirmed by
inspection of the split procedure.

Property 1 The left path of each lazy tree created by the split has one of the following two
forms;

(i) It is a subpath (possibly complete) of the left path of the lazy tree before the split.

(ii) It comprises light nodes from just one block.

31

henceforth. We call the promotions described in this paragraph the right offset promotions for
v.

So Case 1 occasions charges of 2¢p - jump(v). Recall that v is a node on the right split
path.

Case 1.1. v’ is a light node which is not on the left extreme path. In addition, v’ is accessed
from its left child, which is not in the lazy tree.

The right offset promotions for v’ are performed (where wy is now defined to be the nearest
heavy descendant of v'). Let v be the root of the block containing v'. As we will see, v is
promoted in Case 2 or Case 3. Thus the cost of Case 1.1 is at most gp - jump(v).

Case 2. v is a heavy node on the left extreme path and it is accessed from its right child, w.

Then v is promoted. v becomes the root of a new lazy tree. v’s promotion costs at most
gp - jump(v) (apply Corollary 2(i)).

We need to provide a new left guard for the remaining portion of the old lazy tree (See
Figure 21.) Let v’ be v’s parent in the lazy block tree. We perform the right offset promotions

right offset promotion

for v’

— right guard restoration for v

Figure 21: Promotions in Case 2

for v'. In addition, if v’ is not the root of the lazy tree, v’ is promoted. v’ becomes the root
of an ordinary block. If v' is not the root of the lazy tree, rg; becomes the left guard for the
remainder of the old lazy tree, while if v' was the root, then rg; did not need promoting as it
was already the right guard of the lazy tree. In the imaginary tree, v'’s lazy weight is at least
its normal weight; so its promotion comes for free. As in Case 1, gp - jump(v') suffices to pay
for the right offset promotions.

The promotion of v' and the associated right offset promotions are also performed if just
the left guard, lg, is separated from the remainder of the lazy tree (through being accessed
from its right child), and then v’ is defined to be the leftmost node in the lazy block tree (note
v" will be traversed in the access). This applies even if Ig is the root of the large lazy tree.

We need to provide the new lazy tree rooted at » with a right guard. So let = be the
rightmost heavy node in »’s lazy tree which is a right descendant of v in the imaginary tree
(possibly = v). There are two possibilities to consider.

30

(ii) Alternatively, suppose that v is not on the left path of L and is on the right split
path. Let v' be a heavy node which is a right descendant of v, not necessarily proper.
Then lazy_rank(v') 4+ jump(v) > g-rank(v).

Proof. We prove (i); the proof of (ii) is very similar. Let w be v’s right child in L (if w is not
present, define g_rank(w) = 0). Also, let w’ be v’s right child in the imaginary tree (again, if
w' is not present, define g_rank(w’) = 0). Then, by Corollary 1(i), lazy_rank(v) > g_rank(w).
Now w’ must be a descendant of w, so g_rank(w) > g_rank(w’). Finally, jump(v) =
g-rank(v) — g_rank(w’). So lazy_rank(v)+ jump(v) > g_rank(w') + jump(v) = g_rank(v). e
We now discuss which nodes are promoted in a split and how this is paid for. There are a
number of cases.
Case 1. v is a heavy node in the lazy block tree, which is not on the left extreme path. In
addition, v is accessed from its left child, w.
Then v is promoted. v’s promotion costs at most gp - jump(v) (apply Corollary 2(ii)).

Let wy be v’s right child, if any, in the lazy block tree, and let wq, ws, - - -, wi be the maximal
left path descending from wy in the lazy block tree (see Figure 20). wy,ws,- -, wy are also
/EI v
access w1

Figure 20: Right offset promotions for »

promoted. Between them, these promotions cost at most gp - jump(v). For, by Corollary
1(ii), lazy_rank(w;) > grank(w;y1), for 1 < i < k. In addition, lazy_rank(wy) + jump(v) >
g-rank(v) (by Corollary 2(ii)), and g_rank(v) > g_rank(w;). The nodes w; become the roots
of new lazy trees. Let rg; be the rightmost node in the subtree of the old lazy block tree rooted
at w;, for 1 <1 < k. Temporarily, rg; is made the right guard for w;. rg; is promoted; this
is paid for by its reserve potential (for note that rg; has an empty right subtree in the large
lazy block tree and apply Invariant 12(ii)). Then the right guard restoration process is applied
to rg;, for 1 <7 < k. Also, rg;41 becomes the left guard for the new lazy tree tree rooted
at w;, for 1 < ¢ < k; the tree rooted at wy uses v as its left guard. If rg; = w;, for some 7,
the new lazy tree rooted at w; comprises only one block; so it is treated as an ordinary block

29

We view a split as occurring in three phases. In Phase 1 no rotations are performed,
but certain heavy nodes are marked as promoted (a node is promoted by increasing its lazy
potential to its global potential). In fact the nodes are not promoted yet, but the splay will
proceed as if they had been promoted. The effect of the promotions is to partition the original
lazy tree into several new lazy trees. Phase 3 pays for these promotions. This ensures that
in Phase 2, the actual splay, only extreme paths of lazy trees are traversed. However, there
will be one difference in paying for Phase 2 as compared to the previous traversals. Any
(apparently) promoted node, whose global rank drops during the splay does not use gp units
of its global potential to pay for the associated segment, for it does not yet have its global
potential; instead paying for the segment becomes a charge to be paid for by the promotion
(a charge of at most gp units). It is called the segment charge; the segment charge is paid for
directly by the promoted vertex. Phase 3 pays for the remaining costs of the promotions, at
most 4gplogn units.

Phase 3 uses the following imaginary tree. Consider performing all the zig-zag operations
of the insertion but replacing each of the zig-zig operations by two single rotations performed in
bottom to top order. This creates two paths, called split paths, descending from the inserted
item, the root of the imaginary tree; one path, the left split path, to the left of the root,
descends to the right, the other path, the right split path, to the right of the root, descends
to the left (see Figure 19). The items on the split paths are exactly the items that will be

a 0
b w
¢ [/ c a
\
O d B —
/ e D ’
e E‘\ Left split d Right split
j f path f path
g Uy

v of

Figure 19: The split paths

traversed in the splay operation. We provide each global node on the split paths with an
imaginary global rank, namely the global rank it has in the imaginary tree. The global ranks
of the other global nodes are the same in the imaginary tree and the actual tree. Fach of the
split paths is traversed from bottom to top; for each global node at which there is a jump in
imaginary global rank, denoted jump(v), the following potential is provided: 2gp - jump(v).
The following corollary is helpful.

Corollary 2 Let v be a heavy node in lazy tree L. Suppose thal L is split.

(i) Also, suppose that v is on the left path of L and is also on the left split path. Then
lazy_rank(v) + jump(v) > g-rank(v).

28

Figure 17: Guard restoration for a root and right child couple

A B

Figure 18: Guard restoration for a root and left child couple

27

rooted at r. This is called the right guard restoration process applied to rg.

Second, consider a rotation between lg and heavy node u on the left path. Let v be the
parent of u in the large lazy block tree. Following the rotation, lazy_rank(w) > g_rank(u) (for
by Invariant 12(i), lazy_rank(u) > [log(wt(SL(v)))| — remember the lemma applies to the
normal form of the lazy tree). In addition, following the rotation, u has an empty left subtree
in the large lazy block tree (since lg had an empty right subtree before the rotation). So u is
made the root of a new lazy tree, with left guard lg; temporarily, its right guard, rg_new, is
the rightmost node in its right subtree in the large lazy block tree; rg_new acquires its global
potential by adding its reserve potential to its lazy potential (by Invariant 12(ii), this suffices).
See Figure 16. rg_new also becomes the left guard for the remainder of the lazy tree rooted

lg
U
O
lg - \D\
~_ rgmew
7 N
VR

I

~
~
~

/>

Figure 16: The left guard restoration process

at . Then the right guard restoration process is applied to rg,ew, to obtain the actual new
right guard for the new lazy tree rooted at u. There is one special case: u has an empty right
subtree; then u simply becomes the root of a normal block and r acquires u as its new left
guard. This is called the left guard restoration process applied to w.

Third, consider case (ii) of Invariant 13; suppose there is a rotation between r and its right
child, u, a heavy node (see Figure 17). Then, following the rotation, the left guard restoration
process is applied to r, which is now the left child of u, the new root of the lazy tree. Fourth,
consider case (iii) of Invariant 13; suppose there is a rotation between r and its left child, u, a
heavy node (see Figure 18). Then, following the rotation, the right guard restoration process
is applied to rg.

It remains to discuss how to maintain Invariants 1-10. We explain how to do this later in
the section, when we show how to maintain these invariants following a split operation.

26

(i) (i) (i

lg rg

K \ \\q Yy

Figure 14: The large lazy block tree

(iii) rg is the root of the large lazy block tree. Then r is the left child of rg, v has an empty
right subtree, as does lg.

Now, we show how to restore Invariant 13 following a traversal of an extreme path. Invari-
ant 13 can cease to hold only if there is a couple containing a guard or the root of the lazy
tree and a heavy node. So first consider a couple comprising a heavy node w on the right path
and rg (see Figure 15). Following the rotation, let rgg = rg, and let rg;41 be the rightmost

9 = Tgo
u=rg

~
~

/EI rg —_— \\Drgg
\\ E/\//
\\‘\Erg:a
Y

Figure 15: The right guard restoration process

node in the left subtree of rg; in the large lazy block tree, if this subtree is not empty. This
defines a non-empty sequence of nodes rgy,---,rgy; all these nodes are promoted (i.e., they
have their global potential restored) by adding their reserve potential to their lazy potential
(this suffices by Invariant 12(ii)). rg; becomes the new right guard for the remaining lazy tree

25

Invariant 12 Let v be a heavy node in the normal form of the lazy block tree for lazy tree L.
Then:
(i) lazy_rank(v) > [log(wt(SL(v))].

(i) If, in the normal form of the large lazy block tree, v has no heavy node or guard in its right
subtree, lazy_rank(v)+1/gp-reserve(v) > g_rank(v). While if v does have a heavy node
or guard in its right subtree, then lazy_rank(v)+ 1/gp-reserve(v) > lazy_rank(r_n(v)).

Invariant 12 can be seen to hold when the lazy tree is created by considering node v at the
point at which it becomes lazy. Also, is is readily seen that this invariant continues to hold
following traversals of the extreme paths (for they leave the lazy rank of nodes in the normal
form of the lazy tree unchanged).

Corollary 1 See Figure 13. Lel v be a heavy node other than the rootl in lazy tree L. Lel w

(i) (it)

Left path
of L v

O

lazy rank(v') > grank(u)

lazy rank(v) > grank(w) if v not on left path

Figure 13: Heavy nodes

be v’s right child and u be v’s left child.

(i) Suppose that v is on the left path of L; then lazy_rank(v) > g_rank(w).

(7i) Suppose that v is not on the left path of L. Let v' be a right descendant of v, not
necessarily proper. If v' is a heavy node, lazy_rank(v') > g_rank(u).

It is convenient to define v’s lazy weight to be wi(.SL(v)).
The analysis is simplified by, on occasion, modifying the guards of a lazy tree following a
traversal of one of its extreme paths. Specifically, we maintain the following invariant.

Invariant 13 See Figure 14. Consider a lazy tree L. Let r denote the root of the truncated
lazy block tree, and let lg and rg denote, respectively, the left and right guards of L. The large
lazy block tree has one of the following three forms.

(i) r is the root, the left subtree of rg is emply, as is the right sublree of lg.

(ii) lg is the root of the large lazy block tree. Then r is the right child of lg, r has an empty
left subtree, as does rg.

24

(i) v is not on the left path of the lazy tree.
(ii) If v is on the right path of the lazy tree then so are its parent and right child in the splay

tree.

This invariant meets condition (i) of Remark 1; so long a condition (ii) is also met, the analysis
of the traversal of extreme paths of the lazy trees is unaffected. But the presence of new debits,
of value ed say, merely raises the cost of a couple by at most 2ed. It is convenient to let

md = max{ed, hd} (15)

The new debits can be handled in the present analysis by modifying Equations 9, 10, 13 and
14 so as to pay for the removal of up to two debits of value ed from each couple being analyzed,

yielding;:
d>s+1+2md (16)
hd > s+ 1+ max{ld,2sd,2ed} (17)
d '25' > max{(s + 1 + 2ed + 2hd), %} (18)
(19)

2> 541+ 2ed+ 2hd

19
2d

4.3 Splitting the Lazy Tree

A split of the lazy tree occurs when the inserted item lies in value between the left guard and
the right guard in the lazy tree. Since a split causes a zig-zag rotation within the lazy tree,
and hence in the splay tree other that at the splay tree root, a split can occur only during a
global insertion. For this section, we assume that each node belongs to at most one lazy tree,
apart possibly, for the sharing of guards. In Section 4.5, we analyze the general case.

The split is analyzed in three parts. First, we show that if the lazy tree satisfies invariant
12, below, then by promoting appropriate nodes (i.e., restoring their global potentials) the
lazy tree is split into several new lazy trees which all also satisfy Invariant 12. In addition,
the promotions cost at most 4gp - logn units of potential. Second, we show that the cost of
removing debits so as to restore all the invariants concerning debits can be charged to the
promoted nodes at no further cost. Third, we show how to create the lazy tree potential for
each new lazy tree from the corresponding potential for the lazy tree prior to the split.

In order to permit more general accesses in the Part Il paper, we show how to analyze
a split when a local item in a block is accessed as well as when a global item is accessed.
The goal, when a local item e is accessed, is to remove €’s block from the lazy tree so that it
becomes a normal block.

4.3.1 The Promotions

At this point it is helpful to mention a few properties of the lazy and reserve potentials.
Consider the heavy nodes in a new lazy tree. Let SL be the set of global nodes contained
strictly between the guards of a lazy tree. For each heavy node, w, in the lazy tree, define its
right neighbor r_n(w) to be the heavy node immediately to its right in the large lazy block
tree, and define SL(u) to comprise the subset of SL strictly to the left of w. Finally, define
the lazy rank of heavy node v to be é times its lazy potential.

23

%25+1+ld—|—2hd (14)

We turn to the analysis of left path traversals.
Consider a couple, w, v, on the left path, with v the parent of w; let w be the parent of v
(see Figure 12). If nodes w and v were on the right path, subtree U (resp. V') would be the left

Actual situation v, u rotated onto right path

Figure 12: Left path traversals

subtree of u (resp. v). We treat the rotation of couple w,v on the left path as if it were the
rotation of couple u, v on the right path. We pay for the rotation between v and w using w’s
present 55 units of [-black potential, where w is l-active (note that the present potentials of v
and w correspond respectively to those v and u would have if on the right path). Then w and
v swap potentials; v and all the nodes in its right subtree reduce their black spans accordingly.
Invariants 8-10 continue to hold, as can be seen by arguments similar to those used for the
right path traversal.

Remark 3 A left path traversal itselfl does not cause the spending of any spares, for all the
rotations on the left path involving two heavy nodes of the lazy tree (which are the only
rotations to spend spares) are paid for by black potentials.

We can conclude (as asserted in the second paragraph of Section 3):

Lemma 7 For each of the first e — 1 local insertions in a block’s insertion, for each couple, s
spares can be provided to the couple.

In a later paper we will again use lazy trees generalized in various ways. However, the
nodes of the lazy trees in the later paper will still have small, large and lazy debits which obey
the present invariants, namely Invariants 1-7. Other additional debits may be present. They
will satisfy the following invariant.

Invariant 11 Let light node v carry an additional debit. Then

22

A /\

Figure 10: Rotations with black nodes

w’ transfers a second portion of 75 units of potential. Note that by Invariant 8(iv) each active
layer j' of w' satisfies j' > j and so dj;/(w') < j'; thus the j'-potential of w’ is reduced by %,
owing to the creation of the black node, and w’ can afford to transfer two sets of 55 units of
j'-potential to the new black node (one set for itself and one set for node w). (See Figure 11
for an example.)

O u (%)
\D v T-active 0
: u I:/ 3
v H-active \ o
. = (%))
6-active \ vy dactive E\‘j vs

v .
2 V5 3-active \

D\ vr
O vz 10-active ,

U6 2-active

[e2)

v3 pays for the 5-black potential and the 2-black potential

Figure 11: Creating a black node

We summarize the above discussion. The rotation of a couple costs coup = s+ 1+1d+ 2hd
units. Suppose the bottom node of the couple is [-active; then these coup units are paid for by
either 7 units of [-potential, or by 57 units of /-black potential, or by the d'TSI [-spares. While
if the l-active node was not involved in a rotation with another global node of the lazy tree,

the d'Tsl [-spares may have to provide it with & units of potential. So it suffices to have:

d-s
2

> max{(s + 1 + Id + 2hd), g} (13)

21

(ii) If a node w is l-black all u’s left ancestors, apart from the root, in the corresponding
normal tree are [-black.

We define the following distances for each node v, active at layer I. Its right path [-distance,
di(v),is the number of proper left ancestors of v on the right path, excluding all I-black nodes.
(Recall that a left ancestor of v is an ancestor of v to the left of v in symmetric order.) Its
layer 1 interior right path distance, idj(v), is the number of proper left ancestors of v below
the first [-black node and below the right path.

For each [-active node we maintain an [-potential, which satisfies the following invariant.

Invariant 10 The [-potential at node v is at least

d
0 mind 20 (12)
d d
We note that initially a node has a -l units of potential for each layer [at which it could
become active, so when a node first becomes [-active Invariant 10 holds.
In addition, for each /-black node we maintain an /-black potential of 75 units.

In turn, we analyze traversals of the right and left extreme paths.

Immediately prior to a traversal of the right path, each node on that path is given s'/2
spare rotations (whether or not the node is part of a couple comprising two heavy nodes of the
same lazy tree). Each node’s spares are subsequently provided by the rotation which involves
that node. Suppose node v remains on the right path following the rotation. Let layer [be
the largest layer at which v is presently active. Suppose node u, the other node in v’s couple,
is not [-black. If dj(v) > d -1, then the spares, called the [-spares, for the nodes at depths
(d(l = 1),d - 1] on the right path, are used to pay for v’s rotation. Otherwise, a/d units of
v’s l-potential are used to pay for this rotation. Note that Invariants 8-10 continue to hold
following this rotation.

If node v is [-active, but is not on the right path, then its [-potential can increase, but only
if dj(v) > d - 1. In this case, the unit increase in potential is paid for by the [-spares as in the
previous paragraph.

A rotation between an [-black node u and its child v, where v is [-active, is paid for by
the 75 units of [-black potential at u; u reduces its black span accordingly, as do all the nodes
in u’s new right subtree (the subtree following the rotation). Again, it is clear Invariants 8, 9
hold following the rotation. To verify Invariant 10 we argue as follows. (See Figure 10.) First,
for j-active node w, j < [, in v’s old right subtree, d;(w) is unchanged or reduced, since u
ceases to be an ancestor of w; in addition, ¢d;(w) is unchanged. Second, for j-active node w,
7 > 1,in v’s old left subtree, as in the previous paragraph, if ©’s j-potential increases, it is paid
for by the j-spares. Third, for j-active node w, j > [, in u’s left subtree, d;(w) and id;(w) are
unchanged since the locations of w’s left ancestors are unchanged, as is their j-black status.
Reference to Invariant 8 (iv) shows that these are the only possible cases.

A black node is created in a rotation with the root. v becomes the new root. wu, the
old root, acquires all of v’s potentials; v acquires the root’s global potential. If v now has
minimum active layer [it acquires black span [1,{ — 1]. The new portion of its black span,
[1,k — 1], for some k < [, is paid for as follows. Let w be the j-active node, for some j < k. If
d;(w) < j before u’s rotation, as d;(w) is reduced by at least one by u’s rotation, a/2d units of
w’s j-potential provide u’s j-black potential. If d;(w) > j, then let w’ be the node at depth j.

20

touched node is provided with %, spare units of potential, s’ < s (this is part of the node’s

portion of the s spares provided to its couple in the splay tree)!. The spare potential of the
touched nodes, together with any changes to the potentials of the touched couples will pay for
the rotations of the touched couples.

At any time, certain nodes, called active nodes, are the nodes that pay for a traversal of the
extreme path. Some nodes may pay more than other nodes. This is captured by the notion of
active layers. A node of creation_height h has an associated span of layers [1, h]; each active
node v of creation_height h has an active span of active layers, (i,h], 0 < ¢ < h; for each [,
1 <l < h, we say v is l-aclive. If the active span is non-empty we say the node is active.

Initially, only the nodes on the right path are active. An inactive node becomes active
when it first reaches the right path. Once a node becomes active it remains active, whether
or not it remains on the right path; also, the active span of a node can only grow.

Recall that a rotation of the splay operation involving a heavy node, v, and the root,
r, of the lazy tree causes the two nodes to swap all their potentials. Also, r acquires v’s
creation_height and active span.

The following invariant states several properties of the active nodes. We prove the invariant
later. In order to avoid special cases for the left path we state the invariant with respect to the
normal form of the tree, defined as follows. It is obtained by performing the following series
of single rotations: one by one, the left path nodes are moved to the right path; each such
rotation, between node v and node 7, the root of the lazy tree, makes v the root and places r
on the right path. r acquires v’s active span. The resulting tree is called the normal lree.

Invariant 8 Let H be the maximum creation_height for the nodes, other than the root, present
in the tree initially. Then, in the corresponding normal tree:

(i) There is exactly one l-active node, 1 <1 < H.
(ii) Every node on the right path is active (this does not include the root).
(iii) Apart from the root, the ancestors of an active node are all active.

(iv) Let v be an l-active node. Lelt w be a j-active node. If 7 <l then w is to the right of v
in symmelric order, while if 5 > 1 then w is lo the left of v in symmelric order.

(v) Let inactive node v have creation_height I. Then ils parent has creation_height greater
than l.

When a lazy tree is created the active spans for the nodes in the corresponding lazy block
tree are initialized as follows. Let u be a node on the right path, of creation_height h; suppose
it has a right child v of creation_height ¢ (if there is no such node v let ¢ = 0). Then u is given
active span [i 4+ 1, h]. Clearly, the new tree obeys Invariant 8.

The layers of a node are further categorized as black or while; an active node, with active
span [, h], can be black with respect to each of the layers [1,j — 1]. In general, an active node
v, with active span [j, h], is black with respect to all the layers in some range [i,7 — 1], 7 > 1,
called its black span; we say v is [-black, for 1 <[< 57 — 1. If the black span is non-empty
we say the node is black. Nodes are initially white at all layers. A node becomes black as a
consequence of a rotation with the root. The following invariant applies to black nodes.

Invariant 9 (i) All the nodes on the left path of a tree are fully black, i.e., a node with active
span [, h] has black span [1,7 — 1].

'In this paper we can take s’ = s; the more general form will prove useful in a later paper.

19

We need to mention one detail about couples containing the root, u, of a lazy tree and
another node, v in the same lazy tree. Following the rotation, v becomes the root of the lazy
tree; v and u interchange roles and potentials (so if v had been light, resp. heavy, u becomes
light, resp. heavy).

In Section 4.3 we will explain how a lazy tree is split.

4.1 Analysis of Couples Including One Light Node

Consider a couple comprising nodes « and v, where u is the parent of v, both u and v are on
an extreme path of their lazy tree and one, at least, of w and v is a light node.

Case 1. u and v are both light. u ceases to be on the skeleton. u’s ¢’ potential pays for the
rotation, s spares, and the removal of all debits on u and v. So it suflices to have:

¢ >s+1+2hd (9)

Case 2. u is a light node and v is a heavy node. By Invariants 6 and 7, u and v do not have
lazy debits. If u leaves the skeleton, the operation is paid for by u’s ¢’ potential, as in Case
1; Equation 9 suffices. Otherwise, u is given a lazy debit; this then pays for the operation.
The cost of the operation comprises the rotation, s spares, and the removal of small or large
debits, if any, from » and v». So it suffices to have:

hd > s+ 1+ max{ld,2sd} = s+ 1+ 1ld (10)

Case 3. v is a light node, u is the root of v’s block (but is not the lazy block tree root). By
Invariants 6 and 7, v and v do not have lazy debits. v becomes the block root. As in Case 2,
if u leaves the skeleton, the operation is paid for by u’s ¢’ potential. Otherwise, u is given a
lazy debit, which pays for the operation. The cost of the operation comprises the rotation, s
spares, and the removal of small or large debits, if any, from » and v. Here too Equations 9
and 10 suffice.

4.2 Analysis of Couples Comprising Two Heavy Nodes

The potential associated with the lazy block tree is called the lazy complete tree potential.
Consider a couple comprising nodes « and v, where u is the parent of » and both w and
v are heavy nodes on an extreme path of the lazy tree. We need to pay for the rotation, for
s spares, and for the removal of small or large debits from w and v, if any. In addition, we
may need to reestablish Invariant 7 for node u; this may require the removal of up to two lazy
debits, which will also be paid for by the rotation. So the cost of this rotation is at most

s+ 1+1d+2hd (11)

For the remainder of Section 4.2 we focus on the lazy block tree. Hence when we refer to
a node we mean a node in the lazy block tree; likewise a reference to a tree refers to the lazy
block tree. The depth of a node in the tree is its distance from the root. The height of a node
at the time of the creation of the lazy tree is called its creation_height; the creation_height does
not change subsequently.

Consider how an extreme path traversal appears to the lazy block tree. A top contiguous
portion of the nodes on this path are all touched (these are the nodes contained in couples of
the splay tree). Some (arbitrary) subset of disjoint pairs of touched nodes form couples. Each

18

units, hd > ld, a constant to be defined later. We now state two invariants concerning the
lazy debits.

Invariant 6 Let L be a lazy tree. Suppose node v in L has a lazy debit. Then v is a light node
of L. Also, v is not on the left path of L. Finally, v does not carry a small or large debit.

Invariant 7 Let L be a lazy tree. Let u be a local node of L. Suppose w has a lazy debit. Lel
v be the root of u’s block.

(1) Suppose that v is not on the left path of L. Then if u is on the right path descending from
v in the splay tree, both the parent and child of uw on this path are local nodes in u’s block.

(ii) If u is on the right path of L then its parent and child in the splay tree are local nodes in
u’s block; this holds regardless of whether u is on the right path descending from v in the
splay tree.

Next, we show how to incorporate lazy trees into the analysis of global insertions. A global
insertion can traverse a lazy tree in one of three ways:

(a) Traverse the right extreme path of the lazy tree (or rather a topmost portion of it).
(b) Traverse the left extreme path of the lazy tree (or rather a topmost portion of it).

(c) Traverse the interior of the lazy tree and thereby split the lazy tree.

Actually, it is convenient to classify a traversal of type (a) which is to the left of the right
guard to be a split (a type (c) traversal); likewise a traversal of type (b) to the right of the
left guard is defined to be a split. As we will see later, local insertions only involve traversals
of type (a) or (b).

A traversal of Type (c¢) will be paid for in two phases. First, in a preprocessing phase,
the current lazy tree is partitioned into several lazy trees and/or ordinary blocks, so as to
ensure that the actual splay (the second phase) comprises only traversals of Types (a) and
(b). (In fact, as we will see, we need a third phase in order to pay for some of the partitioning
performed in the first phase.)

We start by considering the interactions between the lazy tree and the remainder of the
splay tree (which may include other lazy trees). We treat the lazy tree, as delimited by its
extreme paths, as a block. We note that Invariants 6 and 7 ensure that a node on an extreme
path, carrying a lazy debit, satisfies condition (i) of Remark 1. In addition, we note that on
creation, the nodes of the lazy tree have no debits; so Invariants 1—4 all hold at this point.

Next, we need to show that condition (ii) of Remark 1 is satisfied. That is we have to show
that couples involving two nodes on an extreme path of the lazy tree, which will be marked,
can pay for the removal of their debits and s + 1 rotations. There are two classes of rotations:
those involving at least one light node of the lazy tree and those involving two heavy nodes;
they are treated in Sections 4.1 and 4.2, respectively.

Segments are defined and paid for essentially as before. The one difference occurs if either
node of the leading couple of the segment carries a lazy debit; then the couple pays for its own
rotation and the removal of its debits as part of the lazy tree, as we see later; but this can only
reduce the total remaining cost of the segment and so the bounds of the previous analysis are
still valid.

17

block. The root of the lazy tree corresponds to the block root, and the other nodes of the
lazy tree, called local nodes of the lazy tree, correspond to the local nodes of the block. The
lazy tree local nodes may carry small and large debits according to the invariants specified for
blocks; a further lazy debit may be carried as specified later.

The right guard of each new lazy tree has its global potential restored (this is paid for by
adding its reserve potential to its lazy potential, which suffices, as is stated in Invariant 12,
in Section 4.3). In addition, Invariants 3 and 4 need to be restored for the right guard; this
requires the removal of at most two small debits. These are paid for by the potential a+b (see
the following paragraph) associated with the right guard prior to the restoration of its global
potential. So it suffices to have

2sd < a+b (6)

Thus both the left and right guards of each lazy tree have their global potentials.

Next, we provide additional potentials to the nodes in the lazy tree (in addition to the
potentials these nodes already carry). All light nodes on the lazy tree carry a potential of
2¢’ units, except for the light nodes from the leftmost block in the lazy tree, which carry
a potential of only ¢ units; ¢’ is a constant to be specified later. In addition, we give the
following potential to the heavy nodes. Let v be a heavy node; suppose it had height i in
the lazy block tree. Then v receives potential a E?:l t+ b, where a and b are constants to be
specified later. This potential is provided by redistributing the potential ¢ given to each lazy
node in the initial lazy trees. Note that each initial lazy tree has the following form: Consider
the right path descending from its root; the left subtree of each node on this path, excluding
the root, is a complete binary tree; in top to bottom order, these trees have strictly decreasing
height. The ¢ potentials are redistributed as follows. First, a potential of a Ele 1+ b is given
to each height k& node in the initial lazy tree, other than the lazy tree root. The following
argument shows that it suffices to provide each node with a potential of 8« + b. Each node of
height k£ in a complete binary tree receives a potential of %ak(k + 1) 4 b; it provides this by
passing a charge of %a[(k — 1)k 4+ 4(k — 1)] to each of its children; if it has a parent, in turn,
it receives a charge of %a[k(k‘ + 1) 4+ 4k] from the parent; adding its own initial potential of
12a 4 b provides exactly the required final potential (note that a leaf will pass a charge of 0
to its non-existent children). The nodes on a right path acquire their potential from their left
child. A node of height k& 4 1 receives potential k(k + 1)a from its right child, which together
with its own initial potential of 12a + b suffices to provide the required [%(k + 1)(k+2)]a+b
potential; note that the right child still has potential [%k(k +1)]a+b, as required. So it suffices
to have

12a+b<¢q (7)

But the potentials in the initial lazy tree upper bound the potentials desired in the (truncated)
lazy block tree. Finally, to provide the light nodes with their potential, it suffices to have

2 <a+b (8)

The left (resp. right) extreme path of (truncated) lazy tree, L, is the path from the root
of L to the leftmost (resp. rightmost) node in L; it is convenient to exclude the lazy tree root
from the extreme paths. We will call these the left and right paths of L, for short.

Nodes on the extreme paths of the lazy tree may have a small or large debit; these debits
satisfy Invariants 1-4, where lazy tree L replaces block B in the statement of the invariants.
Also, each light node in the lazy tree may have a lazy debit, which is huge and has value hd

16

4 The Analysis of Lazy Trees

Most of the analysis focuses on a subtree of the initial lazy tree, called the truncated lazy tree
or the lazy tree, for short. It is defined as follows. Consider a new initial lazy tree, L, created
by a sequence of local insertions. Consider the set of heavy nodes in L plus the root of L;
the tree they induce is called the initial lazy block tree. We remove the rightmost node from
the initial block tree; this defines the (truncated) lazy block tree for the (truncated) lazy tree.
This rightmost node is called the right guard for the lazy tree (see Figure 9). The left guard

v /
D\ Notation: IL.w lazy tree rooted at v

local access L lazy tree rooted at u
path O\D

Key: O local nodes of L_v

U \O\D O local nodes outside L_v

L

-

\D right guard for L_u D\ right guard for L _v

= left guard for I _v .|

Figure 9: Left and right guards

is a global node, defined later, to the left of the nodes of the lazy block tree. The root of the
(truncated) lazy block tree is called the root of the (truncated) lazy tree. We define the tree
induced by the nodes of the (truncated) lazy block tree plus the left and right guards to form
the large lazy block tree. Now we define the (truncated) lazy tree as follows.

We define the left guard, w, of the lazy tree as follows. Let L be a new lazy tree with
root u. Let v be the the first proper global descendant of w on the local access path, if any.
Suppose v exists; if v is the root of another new lazy tree, let w be the right guard in this lazy
tree, while if v is not the root of a new lazy tree, then let v = w. Otherwise, let w be the root
of the splay tree. In general, a node may be a right guard in one lazy tree and a left guard in
a second lazy tree.

The truncated lazy tree comprises the nodes of the (truncated) block tree together with
the following light nodes. For each node v in the (truncated) block tree we add the following
nodes from v’s block. Let w be any descendant of v in the large lazy block tree. Those nodes
in v’s block on the path from v to w in the splay tree are added to the (truncated) lazy tree.
The light nodes added to the lazy tree form its skeleton.

Intuitively, a truncated lazy tree is a megablock comprising several of the blocks at hand.
In its interactions with the remainder of the splay tree it will behave in the same way as a

15

u removed from the path may have too small a potential, which is called its lazy potential.
Again, the cost of this rotation is s 4+ 1 units; however, Invariants 3 and 4 may no longer be
true for the block B whose root now has a lazy potential. All these rotations, as noted in the
previous paragraph, are paid for by the potential at hand.

Lemma 6 A {rue local insertion has amortized cost ¢ + s + 1 units.

Proof. As discussed in the paragraph before the lemma, all couples comprising two nodes on
the local access path are paid for by the potential associated with the nodes of the couple. So
the only rotation to be paid for is the final rotation of the insertion; it costs s + 1 units. In
addition, the item displaced from root of the splay tree is given ¢ units of potential for it has
become an additional node on an extreme path of its block. e

Remark 2 We will need to generalize this analysis to take account of the presence of lazy
trees on the local access path. The previous analysis will continue to apply if the following
conditions hold.

(i) Each node on the local access path has potential (2671 — 1)s.
(ii) Each node on the local access path does not carry any debit.

(iii) The rotation of each couple on the local access path costs at most s+ 1 units.

(i) and (ii) will be achieved as here. (iii) will be discussed later.

Every node removed from the access path in a true local insertion and remaining on an
extreme path of its block is called a lazy node, whether or not it has a lazy potential. Those
lazy nodes with a lazy potential are called heavy nodes; the other lazy nodes are called light
nodes. When the insertion of the current block is completed we form lazy trees. Each global
node v remaining on the local access path becomes the root of a new lazy tree. Its left subtree
is empty; its right subtree comprises those lazy nodes created during the insertion of the
current block that are in »’s right subtree in the splay tree. It is straightforward to see that
each new lazy node is contained in a new lazy tree. We call the lazy trees as defined above
initial lazy trees. (We will be adding and removing a few nodes from the initial lazy tree in
order to obtain other lazy trees, which are the lazy trees that are actually analyzed.)

The intuition behind the lazy tree is that if all the lazy nodes were restored to a left path
then the lazy potentials would be the actual global potentials (perhaps with some swapping).
Actually, difficulties are caused by the fact that the left subtree of the path may increase in
size through rotations between the lazy tree and the remainder of the splay tree. So strictly
speaking the intuition may be incorrect. More precisely, the constant potentials ¢ provided to
the lazy nodes will pay for rotations among lazy tree nodes until these nodes have their global
potentials restored (in general, this will not happen by recreating the left path from which
these nodes originated).

Let us return to the cost of the insertions. A global insertion, as noted above, costs
e(3logn + 1)gp + gplogn units. We see below that the presence of lazy trees adds a further
4gplogn units to the cost of the global insertions, for a total of

e(3logn + 1)gp + bgplogn units (5)

In Section 4 we show how to modify the analysis of global and local insertions to account
for the presence of lazy trees.

14

g T - root of splay tree

local access path

w - node being inserted

Figure 8: The local access path

e — 1 local insertions, each node on the local access path, except the topmost, will have at least
(271 — 1)s spare rotations. The rotations in subsequent local insertions will be self-paying,
apart from the rotation involving the splay tree root. These subsequent local insertions are
called true local insertions.

In fact, we provide another gplogn units to the global insertion. Following the first e — 1
local insertions we provide a reserve potential to each global node on the local access path.
The reserve for global node w is defined as follows: let v be the first proper global descendant
of u on the local access path, if any; let g_rank(v) be v’s global rank, if v is present; otherwise,
let g_rank(v) = 0. Then reserve(u) = gp(g_-rank(u) — g-rank(v)). The role of the reserve
potential will become clear later.

We need one further constant, ¢, to be specified later. We choose e so that

27 = 1)s> g+ (s+1) (4)

We note e > 2. In a true local insertion, each node v removed from the local access path is
given potential ¢; s + 1 will bound the cost of the rotation involving ». This is paid for by
the (271 — 1)s potential associated with the node removed from the local access path. At the
end of the sequence of local insertions, the nodes remaining on the local access path, apart
from the topmost node, are also given potential ¢ (these nodes all have (2°7! — 1)s potential
at hand, which more than suffices).

Consider a true local insertion. The inserted item, e, is not provided a global potential;
rather, following the final rotation of the insertion, e becomes the root of the splay tree and
acquires the global potential associated with the old root of the splay tree. There are three
types of rotation on the local access path. They all involve a couple u, v, with u the parent
of v. Fither both u and v are local, or one of w or v is local and the other is global, or both
are global. Only in the last case is a global node removed from the local access path. The
rotations, apart from those involving two global nodes, cost at most s 4+ 1 units, for there is
no increase in global rank in such rotations and there are no debits to remove (for following
the global insertion there are only large debits on the nodes of the local access path, which
are removed by the first local insertion; as e > 2, the current insertion is not the first local
insertion). In the case of a rotation involving two global nodes we swap their global potentials.
The node remaining on the local access path still has the correct global potential, but the node

13

Remark 1 Later, the form of the blocks will be generalized to allow more complex situations
nwvolving local nodes. Specifically, we will allow local nodes to carry other debils. For the above
analysis to continue to apply, it will suffice that:

(i) If a local node on its block’s right (resp. left) path carries a new debit then ils parent and
right child (resp. left child) are both local nodes of the block.

(ii) A zig-zig rotation in which the couple comprises two local nodes pays for the removal of
all debits on the couple’s nodes, plus s+ 1 rotations, if the rank of the accessed item does
not increase.

Indeed, in a subsequent paper, we will introduce a hierarchy of blocks. A block will
comprise a contiguous set of items (with respect to the items’ sorted order). A superblock will
comprise a contiguous set of blocks. (In this section, the superblock is simply the whole splay
tree.) As here, the root of each block is a global item and the other items are local items.
Suppose each global item has a positive integer weight and each local item has non-negative
integer weight. Suppose further that there are small and large debits, which obey Invariants
1-4; there may be additional types of debits also, but they must obey the following invariant:

Invariant 5 Let v be a local node on an extreme path of block B. Suppose that in the splay
tree v is the left (resp. right) child of its parent w. v can have an addiltional debit only if:

(i) u is a local node of block B,
(ii) v has a left (resp. right) child w which is a local node of block B.

Then the following theorem has been shown:

Lemma 5 Let v be a global node in a superblock B. Suppose that v is the accessed item. Let I
be the increase in global rank undergone by v during some (arbitrary) portion P of the access.
The amortized cost of the rotations in portion P of the access is bounded by (31 + 1)gp units,
where gp,ld = 17(s + 1), ¢ = 18(s + 1) and sd = s + 1, provided the conditions of Remark
1 hold. The amortized cost of the traversal comprises a payment of s + 1 rotations for each
couple, the removal of debits on the path traversed and the removal of other debits needed to
restore Invariants 3 and 4, minus the debits thal are created.

3 Local Insertions

We show how to analyze a sequence of local insertions. This leads to the introduction of lazy
trees which forces a reanalysis of global and local insertions. Following this reanalysis, the
overall analysis is readily concluded.

Recall that the insertion of each block comprises one global insertion followed by a sequence
of logn — 1 local insertions. Each local insertion traverses a left path up to the right child
of the splay tree root (see Figure 8); we call this path the local access path. By providing
e(3logn + 1)gp units to the global insertion we can treat the first e — 1 local insertions as
if they were global insertions. Throughout these e — 1 local insertions, spare rotations will
be accumulating (though for reasons that will become clear later it may be that no spares
accumulate during the global insertion itself); more precisely, each couple receives s spares in
each of these local insertions (see Lemma 7). These spares, plus the spares already accumulated
by the nodes of the couple are given to the node remaining on the local access path. So after

12

(2) By the creation of an abutting portion, in the case that this abutting portion is not
traversed. This can only occur for the top node v of a couple and then only if both nodes
in the couple are global and the rotation is a zig-zig rotation. Here, the contribution to
Cost3 is at most 2sd.

Next, we determine, in turn, the contribution to C'ost2 + Cost3 of the truncated segment
and of the first couple.

First, we consider the truncated segment. By Lemma 1, the contribution to Cost2 is at
most 7sd. For a contribution to C'ost3, the discussion of the previous paragraph shows we need
only consider possibility (2) since global nodes in the truncated segment do not have a change
in global rank. Likewise, possibility (2) cannot arise for the couples of the truncated segment
each have at most one global node. We conclude that the truncated segment contributes at
most 7sd to Cost2 + Cost3.

We turn to the leading couple. The contribution to C'ost2 is at most sd for each local node
it contains. By the above discussion regarding contributions to C'ost3, the leading couple may
contribute up to 4sd to C'ost3, but only if both nodes of the couple are global; if there is only
one global node in the couple then the contribution to C'ost3 is at most 2sd. In any event, the
total contribution of the first couple to C'ost2 + Cost3 is at most 4sd. e

In case A, the cost of the rotation is paid for either by the drop in global potential, which
provides at least gp units, or, if there is an increase in global rank, by gp units of the at
least 3gp units provided for this rotation. In case B, the middle node in the sequence of three
contiguous nodes is given a large debit, which pays for the rotation. So it suffices to have:

gp,ld>6(s+ 1)+ 11sd (3)

Now, we show how to pay for the incomplete segment, if present. Recall that we provided
(3logn + 1)gp units to pay for the present insertion. The +¢p term is used to pay for the
incomplete segment; in addition, this term is used to pay for the incomplete rotation, if any;
however, the +¢p term does not need to account for any increase in rank, on the part of the
inserted item during the incomplete rotation, for this has already been accounted for. Clearly,
the result of Lemma 2 applies here too (in fact, a tighter bound can be shown). Here too,
Equation 3 suffices.

On taking equalities in Equations 1-3, we conclude:

Lemma 3 A global insertion has amortized cost at most (3logn + 1)gp units, where gp,ld =

17(s+1), c=18(s+ 1) and sd = s + 1.
Actually, we have shown:

Lemma 4 The path traversed in an access of an item can be partitioned into segments, such
that for any segment o, the amortized cost of the rotations for the couples of o is at most
gp + 2gp - 1., where I, is the increase in rank undergone by the accessed item in the last
rotation of segment o. Furthermore,

(i) gp - I, units of the cost are used to raise the potential of the accessed item.

(ii) gp - 1, units of the cost are used to raise the potential of the lower global item, if any, in
the final couple of segment o.

(iii) gp units are used to pay for all the rotations of o, and all the associated spare rotations
and debil removals.

11

Type 2 See Figure 7. By Invariants 2 and 4, node u does not have a debit (for g_rank(z) =
g-rank(w) as and u are both in the truncated segment). The rotation is paid for by giving u
a small debit following the rotation. Again, it is straightforward to check that Invariants 1-4
are unaffected. Here too, Equation 1 suffices.

Type 3 This is the Case 1 analyzed earlier. We need to pay for the rotation plus the removal
of two small debits or one large debit. Again, it is straightforward to check that Invariants
1-4 are unaffected. So it suffices that:

¢ > s+ 14 max{2sd,ld} (2)

The remaining rotations are paid for by the first couple in the segment, which was removed
in truncating the segment and which causes a violation of at least one of the conditions (i)-(iv),
except in the case of an incomplete topmost segment, which is handled subsequently. Either
the rotation involving the first couple causes a change in global potential (case A) or it creates
a sequence of three contiguous local nodes from the same block (Case B), or possibly both.
Both cases involve three costs.

e Costl. The rotation and spares for each couple: < 6(s + 1).

o (Cost2. Removal of small debits from nodes on the segment; Cost2 is analyzed below.
(A node with a large debit will always be a marked node of Type 3.)

o (C'ost3. Removal of small debits for local nodes that now violate Invariant 3 or 4; C'ost3
is analyzed below.

Lemma 2 For each segment C'ost2 + Cost3 < 11sd.

Proof. A definition is helpful here. Let B be a block and let » be the root of B. Consider an
extreme path of block B and consider the topmost portion that is contiguous in the splay tree.
If this topmost portion is incident on v in the splay tree then it is called an abutting extreme
path portion for v, or an abutting portion for short. (Comment. Node v of Invariant 3 is the
top node of an abutting portion for u, while node w of Invariant 4 is the bottom node of an
abutting portion for u.)

Next, we make some observations about C'ost3. Note that none of the nodes from marked
couples on the traversed path retain small debits; so these nodes do not contribute to C'ost3.
Contributions to C'ost3 can arise in one of two ways:

(1) Through a traversed global node v having a reduction in rank. Then, on an already
abutting portion (for v) which continues to be abutting (for v), if the portion was not
traversed, we may need to remove up to two single debits in order to maintain Invariants
3 and 4. v can have at most one such abutting portion. This contributes up to 2sd to
C'ost3. This contribution can be a consequence of either a zig-zag rotation or a zig-zig
rotation. We examine each in turn.

(a) In a zig-zag rotation, there may be one such abutting portion for each global node
in the couple. In this case the contribution to C'ost3 can be as large as 4sd.

(b) In a zig-zig rotation only the top node in the couple can retain such an abutting
portion; so here the contribution to C'ost3 is at most 2sd.

10

: Key: /= Root of B

0 Local node of B

v J O Global node outside B

Figure 7: Type 2 couple

Type 2 See Figure 7. Suppose u is a local node and let & be the root of u’s block. Further
suppose u is on the left (resp. right) path descending from z. Let v be the left (resp. right)
child of w; if z is in the truncated segment and if v is global then both w and v are marked.

Type 3 Suppose u and v are both local nodes of the same block; then both u and v are
marked.

It is not hard to see that the marked nodes are all involved in zig-zag rotations.
We can now prove a bound on the length of a truncated segment.

Lemma 1 A truncaled segment comprises al most 10 unmarked nodes, of which at most 7
are local.

Proof. Observation 1. Define the left (resp. right) side of the segment to comprise those nodes
that are to the left (resp. right) of the item being inserted. From (ii) we deduce that one side,
at least, contains no global nodes; without loss of generality suppose that this is the right side.
As the right side contains no global nodes, its nodes must all come from the same block; so,
by (iv), the right side comprises at most two sets of contiguous nodes, each one of at most two
nodes. Because of Type 3 markings the right side contains at most two unmarked nodes.

The left side of the segment is partitioned in the obvious way into subsegments by the
nodes on the right side. By Observation 1, the left side comprises at most three subsegments.

Observation 2. There are at most two couples that include both a node on the left side
and a node on the right side. This follows from (iv) applied to the right side of the segment.

Observation 3. There is at most one unmarked couple within each subsegment; if present,
this couple comprises the topmost global node and its parent, a local node. For the marking
strategy marks all other couples within the subsegment. This is a total of at most three
unmarked couples.

Thus there are a total of at most 5 unmarked couples, and at most 2 of these do not include
a global node; so there are at most 7 unmarked local nodes.

Next, we show how to pay for the rotations (and associated spares) along a segment. Each
marked couple pays for its rotation (and spares), as follows.

Type 1 See Figure 6. By Invariants 2 and 3, node v does not have a debit. The rotation is
paid for by giving node « a small debit following the rotation. It is straightforward to check
that Invariants 1-4 are unaffected. So it suflices that:

sd>s+1 (1)

g 6/{3
A
O/j

g

Key: O Node being inserted

O Visible nodes

Figure 5: Visible nodes

(iv) See Figure 5. Define a node to be visible if it is involved in a zig-zag rotation or it is
the lower node in a couple. (Intuitively, the visible nodes are those that remain on one
of the traversed paths following the splay. Note that the splay, in general, creates two
traversed paths.) For each block there are at most two visible nodes in the truncated
segment that are local following the rotation.

The topmost segment is said to be incomplete if it satisfies conditions (i)—(iv) prior to trunca-
tion. We consider an incomplete segment to comprise a (trivially) truncated segment.

Next, we mark the following types of coupled nodes in each truncated segment. The
rotations involving marked couples are self-paying, as is demonstrated later. For each type
below, suppose the segment includes a couple, u, v, with u the parent of v.

Type 1 See Figure 6. Suppose u is the root of »’s block; then both u and v are marked.

U Key: O Root of block B
a Local node of block B
v O Node being inserted (outside block B)

Figure 6: Type 1 couple

(i) u is a local node of block B,
(ii) v has a left (resp. right) child w which is a local node of block B, and

(iii) neither u nor w carry any debit.

Invariant 3 Let u be the root of block B. Let v be a child of u. If v is in B, then v can have
a small debit only if g_rank(v) < g_rank(u).

Invariant 4 See Figure 4. Let u be the root of block B. Let P be an extreme path of the

/ Key: /= Root of B
O | Local node of B

O Node outside B

Figure 4: A small debit

subtree (of the splay tree) rooted at u. Let w be the bottommost node on the path P which is
in B. w can have a small debit only if g_rank(w) < g-rank(u).

For the purposes of the analysis the access path is partitioned into segments. Each segment
comprises an even number of nodes, every two nodes on the path forming the coupled nodes
of a rotation of the present splay operation. The segments are created by a traversal of the
access path from bottom to top; each segment is chosen to have the maximum length such
that following the removal of its front (top) two nodes, the (truncated) segment satisfies the
following conditions:

(i) The node being inserted has the same global rank throughout the rotations involving the
truncated segment.

(ii) Each global node on the truncated segment has the same rank following its rotation.

(iii) (This is implied by (i) and (ii).) Each couple in the truncated segment includes at least
one local node (i.e., it does not comprise two global nodes).

U w U w
v — v OR 5
/3 \ \ v v
w O O
Key: O Global node O Node being inserted (another global node)

Figure 2: A couple comprising two global nodes

u Key: O Node of block B with no debit
O Node of block B with large debit

Figure 3: Large debits

In the analysis of global insertions, whenever a rotation is performed (and paid for) another
s spare rotations are also paid for, s a constant to be specified later. The spare rotations are
needed subsequently, to handle the effects of local insertions. We provide (3logn + 1)gp units
to pay for a global insertion. If a rotation increases the global rank of the item being inserted
by A, then the rotation is paid for with 3Agp of these units. Note that the rank of an inserted
item increases by at most logn (from > 0 to logn). If the last rotation (the one involving the
root of the splay tree) involves just two nodes, we call it an incomplete rotation; the remaining
gp units are used as additional payment for the incomplete rotation, if any.

To avoid special cases it is convenient to redefine the access path for an insertion to exclude
the splay tree root r in the event that r is involved in an incomplete rotation. Now consider
a rotation performed during the splay along the access path. Of the three nodes involved in
the rotation, the top two are called the coupled nodes of the rotation, or a couple for short.
The analysis focuses on the coupled nodes in a rotation. In order to provide the reader some
intuition we describe two simple cases.

Case 1 The coupled nodes are both local nodes in the same block (see Figure 1). Nodes u

Key: (O Local Node

U w
O Node being inserted
v S \U (a global node)
w O u

Figure 1: A couple comprising two local nodes

and v are on an extreme path of their block, without loss of generality the left path; v is the
left child of u, and w, the node being inserted, is the left child of ». Since node u leaves the
extreme path of its block it loses potential ¢. This pays for the removal of debits (small or
large) from nodes w and v and in addition pays for s+ 1 rotations. Later, we see that we want

¢ > s+ 1+ max{2sd,ld}.

Case 2 The coupled nodes are both global nodes (see Figure 2). Again, let w be the inserted
node, let v be w’s parent and u be v’s parent. This case is analyzed using the centroid potential
analysis of Sleator and Tarjan. The cost is at most 3 times the jump in global potential from
w to u; to pay for s + 1 rotations it suffices to have gp > s + 1; later, we see that in fact we
want gp > 6(s+ 1) + 11sd.

The full analysis is more involved. We begin by stating several invariants about the debits.
Invariant 1 Only local nodes on an extreme path of their block can have debits.

Invariant 2 See Figure 3. Let v be a local node on an extreme path of block B. Suppose that
in the splay tree v is the left (resp. right) child of its parent u. v can have a large debil only if

e The potential depends on the access sequence; that is, identical trees, if created by
distinct access sequences, may have different potentials. (Actually, this is a difference ‘in
principle’; we have not constructed any examples to demonstrate it.) Nonetheless, the
bounds we obtain do not depend on the input sequence.

These techniques are used later in the proof of the Dynamic Finger Conjecture [C93]. Some
of the techniques are slightly generalized so that they can be used as modules in this later

paper.

2 Global Insertions

We start with some definitions.

The left path of a tree comprises the nodes traversed in following left child pointers from
the root, but excluding the root itself; the right path is defined analogously. Collectively, they
are called extreme paths. Extreme paths of a subtree rooted at v are defined analogously; they
are also called v’s extreme paths. Node u is a right ancestor of node v if u is an ancestor of
v that is to the right of v in symmetric order; note that v must be in u’s left subtree. A left
ancestor is defined analogously. A right edge is an edge to a right child; a left edge is defined
analogously.

A block B is an interval [i,j] C [1,n] of items; here a block always comprises logn items
with ¢ = clogn + 1 and j = (¢ + 1)logn, for some integer ¢. Any block [¢, j] induces a binary
tree Tg, called the block tree of B, which comprises exactly those nodes of the splay tree, 5,
containing items ¢ to j; they are called the nodes of B. Loosely speaking, the block tree is
constructed by shrinking paths in § between nodes of B to single edges. More formally, the
root, 7, of T'g is the lowest common ancestor of nodes ¢ and j in S. The left (resp. right) subtree
of r is the tree induced by the set of items in S to the left (resp. right) of r, if non-empty;
otherwise the subtree is empty.

The root of block B is the root of the corresponding block tree. The global nodes are exactly
the block roots. The remaining nodes are called local nodes.

Every node on an extreme path carries a potential of ¢ units, ¢ a constant to be specified
later. Also, each node on an extreme path may carry a debit, either small or large, comprising
sd and [d units, respectively; sd and Id are constants that are specified later. A node may not
have both a small and a large debit. We note that for any block B the only nodes that may
be visited henceforth are those presently on the extreme paths of its block tree, plus its root.

Each global node is given a centroid potential, called its global potential; it is defined on
the splay tree using the following weights: each global node has weight 1 and each local node
has weight 0. It is convenient to define a global rank for all nodes: this is the centroid rank
in the splay tree under this weighting; g_rank(v) denotes the global rank of v. Global nodes
have a global potential equal to gp times their global rank, gp a constant to be specified later;
the local nodes do not have a global potential.

To avoid difficulties created by the insertion of weighted nodes, for the purposes of the
analysis we preinsert all the nodes into an ordinary binary search tree (without splays) in the
order of their insertion into the splay tree. Then, in this same order, we access each node, in
the binary search tree, by a splay operation. It is easy to see that the rotations performed on
the binary search tree are identical to those performed on the splay tree. However, now each
insertion can be treated as an access.

general results related to the above conjectures follow. [T85] proved the Scanning Theorem, a
special case of the Traversal Conjecture (also a special case of the Dynamic Finger Conjecture):
accessing the items of an arbitrary splay tree, one by one, in symmetric order, takes time O(n).
Sundar [Su89] considered various classes of rotations on binary trees. Among other things,
this led to results concerning the Deque Conjecture; formulated by Tarjan [T85], it states
that if a splay tree is used to implement a deque, in the natural way, then a sequence of m
operations on a deque, initially of n items, take time O(m + n); Sundar proved a bound of
O((m+ n)a(m+ n)).

In this paper we investigate a special instance of the Splay Sorting problem, which is related
to the Dynamic Finger Conjecture. Splay Sorting is defined as follows. Consider sorting a
sequence of n items by inserting them, one by one, into an initially empty splay tree; following
the insertions, an inorder traversal of the splay tree yields the sorted order. We call this Splay
Sort. A corollary of the Dynamic Finger Conjecture is the:

Splay Sort Conjecture. Let S be sequence of n items. Suppose the ith item in S is distance
I; in sorted order from the (¢ — 1)th item in 5, for 7 > 1. Then Splay Sort takes time
O(n+ Y i glog(l; +1)).

Incidentally, an interesting corollary of the Splay Sort Conjecture is the:

Splay Sort Inversion Conjecture. Let S be sequence of n items. Suppose the ith item
in S has I; inversions in S (counting inversions to both the left and right). Then Splay
Sort takes time O(n + >_i—; log(L; + 1)).

In the remainder of this paper we prove the Splay Sort Conjecture for the following type
of sequence. Suppose the sorted set of n items is partitioned into subsets of logn contiguous
items, called blocks. Consider an arbitrary sequence in which the items in each block are
contiguous and in sorted order. We call such a sequence a log n-block sequence. We show an
O(n) bound for Splay Sorting a log n-block sequence. It is convenient to assume that the set
being sorted comprises the integers 1...n.

In brief, our analysis has the following form. The first insertion in each block is provided
O(log n) potential; it is called a global insertion. Every other insertion in the block is provided
O(1) potential; these insertions are called local insertions. In Section 2, we analyze the global
insertions; then, in Section 3, we modify the analysis to take account of local insertions.

Our work has a number of interesting features and introduces several new techniques for
proving amortized results.

e Weintroduce the notion of lazy potential; this notion can be viewed as a tool for designing
potential functions. The lazy potential is a refinement of an initial potential function
that avoids waste when potentials decrease. (For an example of waste, consider the
following splay tree analyzed using the centroid potential. The tree is a path of n nodes,
each of unit weight. The last node on the path is accessed. The resulting splay will have
a real cost of ©(n), but will reduce the potential by ©(nlogn). The desired amortized
cost of this operation is O(logn), so essentially all the reduction in potential is wasted.)
The idea of the lazy potential is to keep an old potential, ¢4, in situations in which
the creation of a new (larger) potential, ¢,e, may be followed by a return to the ¢4
potential, with essentially ¢,en — @014 potential being wasted. Not surprisingly, some
care is needed in choosing which operations to treat as ‘lazy’.

Henceforth, we refer to the rotation, single or double, performed by the splay step as a
rotation of the access or splay operation. A rotation is the basic step for our analysis; the cost
of one rotation is termed a unit; clearly, this is a constant.

Sleator and Tarjan use the following centroid potential to analyze the amortized perfor-
mance of a splay operation. Node z is given weight, wi(z), equal to the number of nodes in its
subtree; they define the centroid rank of x, or simply the rank of z to be rank(z) = |log wi(z)]
(our terminology). Each node is given a centroid potential equal, in units, to its centroid rank.
Let 6 denote the increase in centroid rank from z to g, if ¢ is present; otherwise it denotes the
increase in centroid rank from z to p. Sleator and Tarjan showed that the amortized cost of
the splay step if g is present is at most 36 units, while if g is not present the cost is at most
6 + 1 units. Since the total increase in rank for the complete access is bounded by logn, the
amortized cost of an access is at most 3logn + 1 units. More generally, this analysis can be
applied to weighted trees, in exactly the same way. We call this the centroid potential analysis.

The operation insert(z) is performed as follows: first, item z is inserted as in a binary
search tree and then the operation splay(z) is carried out. Clearly, the cost of an insertion is
dominated by the cost of the corresponding access. So, subsequently, when analyzing the cost
of insertions we only count the cost of the splays themselves.

Now, we list the conjectures formulated by Sleator and Tarjan.

¢ Dynamic Optimality Conjecture. Consider any sequence of successful accesses on
an n-node binary search tree. Let A be any algorithm that carries out each access by
traversing the path from the root to the node containing the accessed item, at a cost of
one plus the depth of the node containing the item, and that between accesses performs
an arbitrary number of rotations anywhere in the tree, at a cost of one per rotation.
Then the total time to perform all the accesses by splaying is no more than O(n) plus a
constant times the time required by algorithm A.

¢ Dynamic Finger Conjecture. The total time to perform m accesses on an arbitrary
n-node splay tree is O(m + n + 3_7L; log(d; 4 1)), where, for 1 < ¢ < m, the jth and
(j — 1)th accesses are performed on items whose ranks differ by d; (ranks among the
items stored in the splay tree). For j = 0, the jth item is interpreted to be the item

originally at the root of the splay tree.

e Traversal Conjecture. Let T} and T3 be any two n-node binary search trees containing
exactly the same items. Suppose the items in 7T are accessed one after another using
splaying, accessing them in the order they appear in T3 in preorder (the item in the root
of T, first, followed by the items in the left subtree of T3 in preorder, followed by items
in the right subtree of 7% in preorder). Then the total access time is O(n).

Sleator and Tarjan state that the Dynamic Optimality Conjecture implies the other two
conjectures (the proof is non-trivial).

There have been several works on, or related to, the optimality of splay trees [STT86],
[W86,T85,5u89,Luc88a,Luc88b]. [STT86] shows that the rotation distance between any two
binary search trees is at most 2n — 6 and that this bound is tight; they also relate this to
distinct triangulations of polygons; although connected to the splay tree conjectures, this
result has no immediate application to them. [W86] provides two methods for obtaining lower
bounds on the time for sequences of accesses to a binary search tree; while some specific tight
bounds are obtained (such as accessing the bit reversal permutation takes time @(nlogn)) no

On the Dynamic Finger Conjecture for Splay Trees. Part
I: Splay Sorting log n-Block Sequences”

Richard Cole; Bud Mishra, Jeanette Schmidt, Alan Siegel

Courant Institute, New York University; Polytechnic University;
Ecole Normale Supérieure

Abstract

A special case of the Dynamic Finger Conjecture is proved; this special case introduces a
number of useful techniques.

1 Introduction

The splay tree is a self-adjusting binary search tree devised by Sleator and Tarjan [ST85]. It
supports the operations search, insert and delete, collectively called accesses. The splay tree is
simply a binary search tree; each access will cause some rotations to be performed on the tree.
Sleator and Tarjan showed that a sequence of m accesses performed on a splay tree takes time
O(mlogn), where n is the maximum size attained by the tree (n < m). They also showed that
in an amortized sense, up to a constant factor, on sufliciently long sequences of searches, the
splay tree has as good a running time as the optimal weighted binary search tree. In addition,
they conjectured that its performance is, in fact, essentially as good as that of any search tree.
Before discussing these conjectures it will be helpful to review the operation of the splay tree
and the analysis of its performance. The basic operation performed by the splay tree is the
operation splay(z) applied to an item z in the splay tree. splay(z) repeats the following step
until becomes the root of the tree.

Splay step.

Let p and g be respectively the parent and grandparent (if any) of z.

Case 1. pis the root: Make z the new root by rotating edge (z, p).

Case 2 — the zig-zag case. p is the left child of g and z is the right child of p, or
vice-versa: Rotate edge (z,p), making g the new parent of z; rotate edge (z, g).

Case 3 — the zig-zig case. Both z and p are left children, or both are right children:
Rotate edge (p, g); rotate edge (z,p).

*This work was begun while all four authors were at New York University; Richard Cole continued the work
while on leave at Ecole Normale Supérieure. Presently Jeanette Schmidt is at Polytechnic University. The work
was supported in part by NSF grants CCR-8702271, CCR-8902221, CCR-8906949, CCR9202900, DMS-8703458,
ONR grants N00014-85-K-0046 and N00014-89-J3042, and by a John Simon Guggenheim Memorial Foundation
Fellowship. The work of Richard Cole was made possible, in part, by the hospitality of the Laboratoire
d’Informatique, Ecole Normale Supérieure; it is associated with and supported by CNRS as URA 1327.

