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1 Introduction

Much recent work in artificial intelligence has required formal techniques for
working with incomplete knowledge. The new approach clearly necessitated
that a distinction be made between logic and the action (i.e. two compo-
nents of intelligence: the epistemological and the heuristic; cf. [MCC 69]).
However, certain new inference procedures associated with the new approach
(for example the familiar example of default logic) have, like classical logic,
been based on an underlying consistent ontology. (Cf. [GIN 87a]: “It is pre-
cisely this ‘absence of information to the contrary’ that makes the inference
non-monotonic...”)



Philosophers were the first to call attention to the new situation.

(Cf. [RES 79]: “...we can live with the prospect of inconsistency — not only
in epistemology, but even in ontology”; and further: “The invocation of
ontology here is significant... Thus if ¢(P) were to be construed not as ‘P is
true in itself’, but as ‘X (I, you, he, etc.) maintains that P is true’, then we
can clearly and unproblematically have both ¢(P) and ¢(—P)...”)

In 1975 N. Belnap proposed a computer-oriented ontology for contradic-
tory knowledge (cf. [BEL 75, BEL 76]). He expressed the idea of representing
possibly contradictory knowledge, in the form of epistemic states constitut-
ing in entirety an approximate lattice. On the other hand, Dana Scott in-
troduced the notion of data type as an approximate lattice with an effective
basis (cf. [SCO 71]).

In our view, Belnap’s remarkable attempt to consider knowledge states as
a data type has not been completed. (This is the case, for example, because
the question concerning an effective basis did not even arise there.) However,
although his papers appeared almost twenty years ago, we believe that their
value has still not been fully recognized.

We propose a representation of knowledge (possibly with contradictions)
in a propositional language, and we show how such knowledge can be main-
tained and how it should be transformed on receipt of new information. In
this transformation, the key role is played by Scott’s continuity rather than
by consistency.

In the present paper, we are concerned only with problems of maintaining
knowledge information from an ontological point of view; we leave the logical
issues for later consideration. Our starting point is the concept of distinguish-
ing feasible knowledge actually accessible to a computer from complete (i.e.,
ideal or thorough) knowledge and we maintain that availability of the former
implies availability of the latter. We were led to consider two notions: finite
epistemic state and generalized epistemic state, and to study the relation-
ship between them. This point of view will be discussed more extensively in
Section 4 on Scott Principle.

2 Preliminaries

As in [BEL 75| we suppose that a computer is able to accept information
(possibly with contradiction) in the form of either formulas A,B,. .. of propo-



sitional language (containing a countable set Var (= {po,p1,...}) of variables
and the connectives: A (conjunction), V (disjunction) and — (negation)),
or in the form of conditions (or rules) A— B. This information is represented
in the computer in the form of an epistemic state, i.e. a nonempty set of
setups.

A setup is a mapping from Var into the set & of truth values: ¢ (true),
f (false), T (both), L (none), which are ordered by the relation C in the
form of the Belnap’s approximate lattice A4 (= (;M,L))) (see Figure 1).

Figure 1: Lattices A4 and L4.

A4 L4

Two setups s; and s, are considered to be
S0 < 81 if and only if so(7) C s1(7) for every 7 € Var.
This relation is a partial order.

Proposition 1 The partially ordered set of all the setups is a complete lattice
(AS ) with the operations:

M{s; |t € I}(m)="{si(m) ]t €1},

L{s; s € I}(m) =U{si(m) |t eI}
for every ™ € Var.



Proof. Let us consider A4 as a partially ordered set. Then the Cartesian
power AGVEr s o complete lattice with the component-wise determination of
the operations.

Following [BEL 75, BEL 76], every setup can be extended to the set of
all the formulas using the “logical lattice” L4 (= (S;A,V)) (see Figure 1)
which is a lattice according to A and V, and the — is given as

~t=f,~f=t,-T=T,-L=1.

Having ‘combined’ A4 and L4 we get the so-called simplest nontrivial
bilattice in the sense of [GIN 87b].

Because the logical connectives are monotonic with respect to the order
on A4, we prove the following

Proposition 2 Let A be a formula, sq and s; be setups and so < s;. Then

so(A) C s1(A).

Remark. Consider s(.A) as a result of the application of the formula A
to the setup s. Then one can say that the formulas are monotonic functions
on AS.

By an epistemic value of a formula A in a state E, (symbolically E (\A)
we shall mean the element M{s(A)|s € E} of the lattice A4 (cf. [BEL 75]
Two states Eg and E; are called formula indistinguishable iff Eq (A) = E; (A)

for every formula .A.

We denote V(s) o {7 |m € Var,s(7) # L} for any setup s. A setup s is
called finite if V(s) is a finite set. A finite collection of finite setups is called a
finite epistemic state. The finite epistemic states are properly accessible to a
computer. In contrast to them infinite epistemic states represent elements of

ideal (thorough) knowledge which admits a finite approximation as we shall
def

show later. We denote V(E) = U{V(s)|s € E} for any state E. Thus a
state E is finite if and only if V(FE) is a finite set.

Let V be a set of variables, i.e. V C Var.

By the down-restriction of a setup s over V we call the setup s¥

)y
)

1.

Vi def | s(m) formeV
g (ﬂ-)_{ 1L formrgV

By the up-restriction of a setup s over V we call the setup s ':
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v def | s(m) formeV
5= T formgV

By the down-restriction (up-restriction) of an epistemic state E over V
we call the state

EV: & {SVL |s € E} (EVT &ef {sVT |s € E}) .

In case it doesn’t matter up- or down-restriction is in question we shall
write EV.

It is obvious that in the case when V is a finite set the down-restriction
EV< is a finite state and the up-restriction EV is a finite set of setups. Let
us notice an important property: EV(E)L = E. (We shall use it without
mention.)

We describe now some properties of restrictions.

Proposition 3 Let V;,V; be two sets of variables and E be an epistemic
state. Then the following equalities hold

Vit it

gV = ghonhis - glot™ — phonhar,

Vit
Proof. We shall prove the first equality. If s € EYoL "' then there

. V. ‘/1L
is a setup so € E such that s = so"0+ I r e VoNVi then s(7m) =
s0(m). Assume that 7 ¢ VoNVi. If 7 ¢ V; then s,”-(7) = L and, hence,

L
SOVBJ‘ ! (m) = L. It is so in the case # ¢ V] as well. Thus we have s =

Let now s € E%nvll, jie. 8 = S}/E)nvll

v
m € VoMW1 then s(7) = s1(7) = SlvbJ‘(ﬂ') = 51%L 1l(71'). If 7 ¢ Vy then
s(m) = s VE)L( — VBLVH — :

= 8 T) = 81 (r) = L. Case 7 ¢ V; can be proved in the

Vit
same way and we have s = 51%L .
The second equality is proved similarly.

for some setup s; € E. If

Proposition 4 Let V be a set of variables containing all the variables of a

formula A. Then EV (A) = E (A).



Proof (by induction on the length of A) is obvious.

Proposition 5 Let V be a set of variables, so and s; be setups. Then the
following equalities are correct:

SOVL |_| S]_VJ_ — (30 |_| sl)VJ_’ SOVT |_| 31VT — (30 |_| Sl)VT,
SOVJ_ M S]_VJ_ — (30 M sl)VJ_’ SOVT M S]_VT — (30 M Sl)VT

Proof. We shall only prove the first equality using the Proposition 1:

So(m)Usi(w) ifreV
Lol ifrgV

507t U sV () = so(m)VE U sy(m)Vt = {

= REY = e

3 Finite epistemic states

By m(E) we shall mean the set of the minimal setups in F according to the
order on AS. For finite E the set m(E) is nonempty because of the Descending
Chain Condition.

Theorem 3.1 If E is a finite epistemic state then E and m(E) are formula
indistinguishable.

Proofis obvious.

A finite state E is called minimal, if m(E) = E. Notice that a finite state
E is minimal if and only if it is an antichain in AS and that m(m(E)) = m(E).
Following N.Belnap we introduce a relation < on the set of all the epistemic

states:

EO S E1 déf (V.Sl € El)(ELS() € Eo)(Sg S 31).

It is obvious that this relation is a partial order on the set of minimal states.
Theorem 3.2 The collection of the minimal states forms a lattice (AFE)
with operations as follows:

EO [l El d:ef m(Eg UEI)

E() L El déf m({so L 81 |30 € EO,Sl € El })

But the lattice AFE s not complete.



Proof. The first part of the statement is obvious. To illustrate the incom-
pleteness of AFE consider the infinite set {E; |¢ < w}, where each E; consists
of the only setup s; such that s;(p;) = L if ¢ # j, and s;(p;) = ¢. This set has
no upper-bound in AFE.

Basic Lemma 3.3 Let Ey be an epistemic state consisting of a finite set of
setups and E; be any state. Then Eq < E; if and only if Eq(A) C E; (A)
for each formula A.

Proof. Assume that Ey < E; is false. Since Eq is finite, Eg = {s1,...,8n}-
There is a setup s € E; such that s; < s is false for each ¢ (1 < i < n).
The later means that for every i there exists a variable m; € V(s;) such that
si(m;) C s(m;) is false. Notice that s(m;) # T for each i. Now we shall define
formulas A; (1 <7< n) as follows:

m Voom if s(m) =L
=f
t

A <

T if s(m;)
-7; if s(m;)

Let now A be the formula A4; VA, V- - -V A,. For it we have both t C s;(.A;)
and s(A4;) C f. Therefore t C s;(A) for each ¢, hence, t C Ey(A). On the
other hand, F; (A) C s(A) C f. Hence, Ey (A) C E; (A) is false.

At last, Ey < E; implies Eo(A) C E; (A) for every A via the Proposi-
tion 2.

Remark. Analyzing the above proof one can see that if Ey < E; is false,
then there exists a formula A, all the variables of which belong to V(E,),
such that Ey(A) C E; (A) doesn’t hold.

Theorem 3.4 Any two minimal states are formula indistinguishable if and
only if they are equal.

Proof. 1t follows immediately from the Lemma 3.3.

The condition of finiteness in the Lemma 3.3 and the Theorem 3.4 is essen-
tial as it shows the following example. Let E;(= {s}) and Eo(= {s1, $2,...})
be states such that s(w) = L for every # € Var and s;(p;) = L if ¢ # 7, and
si(pi) = t. It is easy to see that Eq(A) = E;(A) = L for any A, although
Ey < E; doesn’t hold.



4 Generalized epistemic states
Let us consider the following relation on the set of all the epistemic states:
Ey < E; ' for every formula A FEy(A) C E; (A).

It is obvious that this relation is a quasi-order and Ey < F; implies
EO j El.

By a generalized epistemic state we shall mean an equivalence class with
respect to the relation:

EO = E1 d:ef EO j El and El j Eo,
i.e. a class of formula indistinguishable states. It is that element of ideal
knowledge, which was in question above and for which we shall try to find
a finite approximation (in the form of finite states). We shall consider the
generalized states to be ordered by a relation as follows:

def

Ey<Ey = Ey = Ei.

It is evident that this relation puts the collection of the generalized states in
partial order .

Theorem 4.1 The generalized epistemic states form a complete lattice AGE
according to the order <, in which

WEliel}=U{E}€I}.

Proof. First of all we notice that the class of the states, which are formula
indistinguishable from {s}, where s(7) = T for each 7 € Var, is the largest
one with respect to <.

Now let the set {Eh € I} be given. Denote E & U{E:iliel}. It is
evident that £ < FE;. Assume that for a state E/ E' < E; for each 7 € I.
Then we have for an arbitrary formula A:

EN(A)CNEAel}=r{r{s(A)|sc E}licI} =
n{s(A)|s € E} = E(A).

Therefore we conclude by virtue of a well-known argument (see [BIR 67])
that AGE is a complete lattice.



Lemma 4.2 Let Ey, E; be epistemic states and V be a set of variables. Then
the following hold:

(1) If Eq consists of a finite set of setups then Ey = E; implies that
E,Y < E1V, where Ey” and E," either both are up-restrictions or both are
down-restrictions;

(2) Eq = E; implies E)Yt < BV

(8) If V is a finite set then EoY" < E; implies Eg < E," 7.

Proof. (1) by the Lemma 3.3, E; < E; implies Ey < E;. We notice
that sy < s; always implies so¥ < s;”. Hence, again by the Lemma 3.3,
EY 2 E.

(2) For a while assume that V is a finite set. Then E,"™*, as it was
noted above, is a finite epistemic state. Using the fact that s¥+ < s and the
Lemma 3.3 we conclude that E¥* < Ey < E;. Applying (1) proved above
and the Proposition 2 we receive: E) L = EOVLVL < E, V",

Now let V be an arbitrary set of variables. By V (A) we denote the set

of variables of the formula A. Then we have by virtue of the Propositions 2
and 3:

B (A) = BV (4) = BV (L), and
E,Vt (A) = E1V¢V(A)l (A) = ElV(A)J_VJ- (A).

Since V (A) is a finite set, BV < B VAL follows from the above case.

V(A)L ; VALY

However, E, is a finite state. Applying (1) we receive that Eq

v
E VAL -, Hence, by the Proposition 2

BV (A)T BV (A).

(3) It is evident that s < sV and VYT = §VT for arbitrary setup s.
The former implies Fy < E,) T and, hence, Ey = E,Y7. The latter gives the

equality EOVLVT = Eo"". Now assume that Eo” " < E;. Since E, is a finite
state, then, by (1), EngVT < E.V7 and, hence, E; < E;"".

Theorem 4.3 The lattice AFE is a sublattice of the lattice AGE.



Proof. We shall show that the mapping £ — F is an embedding of AFE
in AGE. First, by virtue of the Lemma 3.3, this mapping is an embedding of
AFE into AGE as a partially ordered sets. Now we shall prove that the image

of AFE is a sublattice of AGE. Consider two minimal states F; and E, and
def

denote V = V(E;)UV(E,).

It is evident that V is a finite set and F; = E1VT,E2 = E"".

Let E & E, U E,. Then EV+ < E follows from the Lemma 3.3. Since

E, < E and E, < E we have E;"* < EV! and E,”* < EVZ by virtue

of the Lemma 4.2. Now, applying the Theorem 3.1 and the Lemma 3.3,
we receive: B, = ElvL < m(EVL>, and £y = EzvL < m(EVL>. Hence,

B UE, <m(E"*)=E"*<E<E UE,
It gives the equality E; LI E; = E; LI E5. The equality for the greatest
lower bound is proved similarly.

5 Scott Principle

Theorem 4.3 being proved, we may digress for the sake of a short discussion.

Our aim is to represent knowledge expressed by means of epistemic states
as a data type in the sense of [SCO 71], i.e. to represent it as a complete
lattice equipped by an effective basis.

So far we have the lattice AFE, whose elements we want to serve as ap-
proximations to any (generalized) epistemic state. To attach a contensive
meaning to the notion of approximation among elements of a complete lat-
tice £ we introduce a topological structure (so-called Scott topology) on it.
(Consult [SCO 72],[GIE 80] about definition and motivations). Then we de-
fine an important relation between the elements of £ : z < y means z is
less or equal (i.e. z is an approach to) each point of some neighborhood of y
(see [SCO T71],[SCO 72],[GIE 80]).

By a basis of the lattice £ equipped with the Scott topology we shall name
an up-semilattice £ such that z = U{e|e € £, e K z} for every element
z € L. Moreover, we want the basis to be effective, i.e. its points allowing
representation in a finitary way (for example, by an effective enumeration)
and the relation < being recursive on it (cf.[SCO T71]).

Further, following [SCO 71] only Scott continuous operations are admit-
ted on a complete lattice being a data type. We feel natural to demand also
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that the admitted operations must be coordinated with the basis in the sense,
that the result of the operation from points of basis belongs to the basis.

This demand — to consider a data type as a complete lattice with an ef-
fective basis admatting only Scott continuous operations coordinated with the
basis — we call Scott Principle. However, Professor D.S.Scott and Professor
N.D.Belnap may find this quite strict (cf.[BEL 75, SCO 71, GIE 80]). Notice
that our notion of basis is stronger than the one in the book [GIE 80]. How-
ever, it seems to be natural in our case. Note also that the sets {z |¢ < z},
where ¢ is from the basis (in our sense) of a complete lattice £, constitute a
basis of the topological space 3 L (cf.[GIE 80]) .

Finally, we remark that the basis in a complete lattice turns it into con-

tinuous one (cf.[SCO 72, GIE 80]).

6 Lattice AFE as a basis of lattice AGE

Following the Scott Principle, we shall show that the lattice AFE is an effec-
tive basis of the lattice AGE. But first here is one more property of down-

restriction. vl
Define E' = &' EVZ for any state £ and a set V of variables. By virtue

of the Lemma 4.2, this definition is well-founded.

Lemma 6.1 Let V be a finite set of variables. Then the following equality
holds: - B -
|_|{Ei i € I} _ (u{E i € I}) .

Proof. According to the Lemma 4.2, for every ¢ € I holds the correlation
=Vi = . Vi
E; < (l—l{Ez i € I}) :

Assume that an epistemic state E is such that FiVL < E for each i € I,
ie. E;Y* < E (i € I). By the Lemma 4.2, we have E; < EVT foreachi € 1.

Hence, I_I{Fi i € I} < E'T. Let E; be I_I{Ei i € I}. Using the Lemma 4.2

. . 14 . o=vye _=viVl —vi =
again and the equality sV L:sVl, wereceive: £ ~ < E =F " <E.

Now we consider the Scott topology on the set of the elements of the
lattice AGE.

Lemma 6.2 Let F be a finite epistemic state. Then the set {FI ‘F < EI}
s open.
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Proof. Let the directed set {Ez i € I} be such that £ < I_I{Ei i € I}.
From the Lemmas 4.2 and 6.1 We have

E=F'" < (W{Efier})™” { 7L e]}

V(E)L

Now we notice that the set {E i € I} remains directed and, more-

over, it is finite since V(F) is a finite set. Therefore, there exists ¢ such that

I_I{E V(B i € I} E; V(ENL . However, EiV(E)L < E; and, hence, E < E;.

Lemma 6.3 Let E be a finite state and E' be any one. Then E < E iof and
only if E < E.

Proof. Tt is sufficient to prove only that E < E implies F < F’, because
the implication in the reverse order was noted in [SCO 71]. However, an
immediate application of the Lemma 6.2 completes the proof.

Theorem 6.4 The lattice AFE is an effective basis of the lattice AGE.

Proof. Since AFE is a lattice, it remains to verify the second condition
in the definition of basis. And even, by virtue of the Lemma 6.3, we need
only to show that every element in AGE is the least upper bound of the lower
elements from AFE.

So, let an arbitrary epistemic state be given. We consider the following
finite sets of variables:

def .
Vi = {po,p1,-pi} (I<w).

Each down-restriction EVit is a finite state. Moreover, it is obvious that
Vit < E. We denote ' %f {EVQL i < w}. It is evident that E' < E.
Now we shall show that E < E’,i.e. E < E'.

Really, for any formula A there is a set V; containing all the variables
belonging to A. Applying the Proposition 2 we receive E (A) = EVit (A)C
E'(A).

Finally, we notice that the basis is effective, because the relation < is a
decidable one on the set of the minimal states.

Corollary 6.5 The lattice AGE is continuous.

Proof. 1t follows immediately from the Theorem 6.4
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7 Some operations on AGE

We shall consider three forms of operations.The first two correspond to the
situation, when a computer accepts a message about truth or falsity of the
statement expressed by a formula A. We denote them A" and A~ respec-

tively and define: A" (F) ' F L Tset Tset (A) and A~ (E) ' F L Fset Fset (A),
where

TsetA & {s s € AS,t Cs(A),V(s) CV (A},

FsetA & { lseAS,fCs(A),V(s)CV(A)}

and V (A) is the set of variables belonging to A (cf. [BEL 75]).
Warning. Everywhere below D (A) means D (.A) for any class D.
The following properties are verified easily.

R
— the change of the epistemic state upon encountering the message about

the falsity of A is equivalent to the change of the state upon accepting the
message that -4 is true;

A+ (A% (B)) = A*(E)

— the repeated message about the truth of a formula does not change the

A+ (B+(E)) = B*(4*(E))

— order of entering messages does not influence on the epistemic state ob-

epistemic state;

tained;

tC A (E)(A), fCA(E)(A);

if E(A) = L and A is self-consistent, i.e. (s € AS )(s(A) = t),
then At (E) (A) =t.

Let us remark that the application of the operations above to the classes
defined by minimal states, by virtue of the Theorems 3.1 and 4.3, leads us
to the equalities:

AT (E) ¥ E Um(Tset (A)) and A~ (E) & E U m(Fset (A)).

So, we have proved the
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Theorem 7.1 Operations A" and A~ are coordinated with the basis AFE.
Now we shall establish the

Theorem 7.2 Operations AT and A~ are continuous in Scott topology on

AGE.

Proof. 1t is sufficient to justify the continuity of the former operation
only, i.e. to prove the equality:

AH(WEilieT}) =u{A*(E;)liel}

for every directed set {Ez i € I} (cf.[SCO 72, GIE 80]). However, this equal-
ity is obvious.

At last, the third kind of operation is associated with the situation, when
a computer accepts a condition A— B. In this case a computer must analyze
each setup of a current state and, having discovered the formula A being
true in the setup considered, change the setup in order to provide truth of B.
We shall denote this operation on AGE by [A— B| and define it setup-wisely
in two steps (cf.[BEL 75]).

At first, we shall define an operation [A— B] on the set of all the epistemic
states as follows:

(A=Bl(E) < U{[A~Bl(s)|s € B}
for every E, where

1,y def | {sUs'|s" € m(Tset(B))} ift T s(A)
A= BJ(s) = { {s} otherwise
for every s € AS.

Lemma 7.3 For every setups so and sy, if so < 81 then [A— B]'(so) <
[A— B]'(s1).

Proof. If t T s (A) then, according to the Proposition 2, ¢t C s; (A) . Hence,
we have:

[A— B]'(50) = {50 U s'|s' € m(Tset (B))} <
< {s; Us'|s" € m(Tset (B))} = [A— B]'(s1).

14



If t C so (A) is false then [A— B]'(s0) = so < 51 < [A— B]'(1).
It is worth-while to remark that [A— B]'(E) is a finite state if E is such.

Lemma 7.4 For every finite epistemic states Ey and E, if Ey = E; then
[A— B]'(Eo) = [A— BJ'(E).

Proof. First of all, let us notice that by virtue of the Lemma 3.3 the condition
Ey < E; can be substituted for the condition Fy < Ej.

For an arbitrary s; € [A— B]I(El) there exists s;’ € F; such that s; €
[A— B]'(sl'). Then, the condition Eq < FE;,implies that thereis s’ € Fg such
that so’ < s;'. By the Lemma 7.3, we receive: [A— B]I(Sol) <[A— B]'(sl').
Hence, there exists so € [A— B]'(s0') such that sy < s;. Since sq is a setup
from [A— B]'(Ep) and s; is an arbitrary setup from [A— B]'(E;), we have
[A— B]'(Eo) < [A— B]'(E;). Now we apply the Lemma 3.3 again to substi-
tute < for <.

Lemma 7.5 Let a set V of propositional variables contain all the variables

of formulas A,B and C. Then the following equality holds:

([A—B]'(E))

Proof. Applying the Proposition 5, we receive:
! Vi !
(14— Bl'(E)) (€)= (W{[A—Bl(s) " se E}) (C) =

= U{{sUs1 [s1 € m(Tset (B))}'* |s € E,t T s(A) JU

Vi

€)= ([A—BI'(EV)) (C).

{s"*|s€ B,s(A)C f}(C)=
= U{{s"* U5,V |5y € m(Tset (B)) } |s € E,t C s (A) }U
{s"*|s€ B,s(A)C f}(C)=
= U{{s"* Us1]s1 € m(Tset (B)) }|s € B,t C s"* (A) JU
{s"]s € B,s"* (A C f}(C) =
= U{{s Us1]s1 € m(Tset (B))}|s € BV, C s (A) JU
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{s|s € B:,s(AHCF}(C) =

(lA—B(E"4)) (C).

Lemma 7.6 For every epistemic states Ey and E; and for every formulas

A and B, if Ey < E; then |[A— B]'(E) < [A— B]'(E;)

Proof. Assume that £y < E; and consider an arbitrary formula C. Denote
V € vuvB)UV(C).

By the Lemma 4.2, we have Ey"* < E;”*. Using the Proposition 4 and
Lemmas 7.5 and 7.4 we receive:

([A—B]'(Eo)) (€) = ([A—B]'(Eo)) (€)= ([A—B'(E"™*)) () &
(A= BY (B:7)) (€©) = (A= BI(E) (€)= ([ A—B'(Ev)) (C).

Vi

Summarizing, we can prove the

Theorem 7.7 The operation [A— B] on AGE defined as
A—B|(E) € [A—BJ(E)
1s correct and coordinated with the basis AFE.

Proof. The first part of the theorem follows from the Lemma 7.6. The
second part is a consequence from the remark that [A— B]'(E) is a finite
state provided that F is finite and from the Theorem 3.1.

Theorem 7.8 The operation [A— B| is continuous on AGE in Scott topol-
0gy.

Proof. By virtue of [GIE 80, SCO 72] it is sufficient to prove the following
equality for every directed set {Fl i € I}:

A-B(U{E:lie I}) = u{[A-B](E:)lie I}
i.e. for an arbitrary formula C

(A-B)(W{Eili e 1})) (€)= (W{[A—BI(E:) li € I}) (C)
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Let us fix a formula C and denote: V & v AUV (B)UV(C).

Using the Proposition 4 and Lemmas 7.5 and 6.1 we receive:

(A—B|(W{E:li e 1})) (€) = (4—BI(W{Elie 1}))" (€)=
([A—>B] <|_|{E i € 1}”)) ©) = (A—BI(U{E i e 1)) (©),

and

({A-BI(E) i e 1}) ©) = ({A-BI(B) ic 1)) (©) =
<|_|{[A—>B] (B) i I}) ©) = (W{IA—=BI(E" ) i e 1}) (©).

Now we notice that, by virtue of the Lemma 4.2, the set {FiVl i € I}
remains directed and, by virtue of the Lemma 7.6, {[A—> B] (EiVl> i € I}
also is directed. Since the set {EiVL i € I} is finite and directed, there
has to be E;V+ = I_I{Fivl i € I} for some ¢ € I. It is evident that the

. —V1 = V1 . .
equality [A— B] (Ei: ) = I_I{[A—> B] (Ez ) s € I} is correct too. Hence,
we conclude: [A—>B]<I_I{Ei | € I}) = I_I{[A—>B] (FZ> i € I}.
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