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Abstract

Universal hash functions that exhibit clogn-wise independence are shown to give a perfor-
mance in double hashing, uniform hashing and virtually any reasonable generalization of double
hashing that has an expected probe count of {1+ O(%) for the insertion of the an-th item into
a table of size n, for any fixed o < 1. This performance is optimal. These results are derived
from a novel formulation that overestimates the expected probe count by underestimating the
presence of local items already inserted into the hash table, and from a very sharp analysis of
the underlying stochastic structures formed by colliding items.

Analogous bounds are attained for the expected r-th moment of the probe count, for any
fixed r, and linear probing is also shown to achieve a performance with universal hash functions

that is equivalent to the fully random case.
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Closed hashing is computable and optimally randomizable with universal hash functions
1. Background

Hashing covers a variety of schemes to maintain an associative lookup table L[0..n — 1] for a set
of keys that belong to some large universe U. In closed hashing, access to a key z is achieved
by following a sequence p(x,1), p(x,2), p(z,3), ... of computed probe indices that belong to
the range [0..n — 1]. In particular, a key z is inserted into the hash table L by storing the key
in the first vacant table slot among L[p(z,7)], for j = 1,2,.-.. Retrieval is achieved by probing
according to the same sequence of computed indices, until either = is found or a vacant table

location is encountered.

Definition 1.
e Let D= (x1,29,...,2an) be a sequence of keys from the universe of integers U = [0..m —1].
e The members of D will be sequentially hashed into table L[0..n — 1].
e We say that z; is hashed at time k.
e We say that x;, is embedded at location ¢ if the hashing of D stores x} in L[{].

e Suppose T is an increasing subsequence of indices T' ¢ (1,2,...,an). Let Dy denote the

subsequence of keys (z4)sc7-
e For a sequence S and scalar ¢, Sy denotes the ¢-th item in S, so that Dy = z.

e Let the number of probes needed to insert x4y, be denoted by probeqy,.

This paper analyzes E[probeq,|, the expected number of probes needed to insert xqp.

Uniform hashing is an idealized model where the probe sequence p(x, ), for each key z € U,
is assumed to be a fully independent random function (or permutation).

Traditional double hashing defines p(z,j) = f(z) - (j — 1)d(x) mod n, where the table size
n is prime, f(z) is assumed to return an arbitrarily selected integer in [0..n — 1], and d(z) is an
arbitrarily selected value in [1,..n — 1]. The random functions {(d(z), f(z))},cy are assumed to
be fully independent and uniformly distributed over their respective ranges. The probe scheme
originates in the 1968 Ph.D. thesis of Guy de Balbine [11].
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Linear probing uses one independent random function, and the probe sequence is defined
by p(z,j) = (f(z) +1-j) mod n.

Tertiary clustering is an idealized model where a random function A is first used to map
the data D into the interval [0,n?], and the image multiset is then hashed via idealized uniform
hashing. The point of this formulation is to model circumstances where a pair of distinct hash
keys might receive the exact same random probe sequence with probability n%’ as opposed to

the even less feasible model of pure uniform hashing, where the probability is %

Prior work on double hashing includes the results of Guibas and Szemerédi [9], Lueker and
Molodowitch [12], and Schmidt and Siegel [16]. Lueker and Molodowitch presented a very elegant
proof to show that for random functions f and d and any fixed load factor a < 1, the expected
number of probes to insert the (an + 1)-st item is 2= + O(lﬁ%), which is asymptotically

equivalent to uniform hashing, and hence, by the result of Yao [21], optimal. Previously, Guibas

and Szemerédi, had established a comparable bound for loads a < 13—0.

Schmidt and Siegel showed that if the probe functions f and g are selected from a set of
universal hash functions that exhibit (clogn)-wise independence, then double hashing will have
an expected insertion performance that is at most ﬁ + ¢, for any fixed a < 1, € > 0 and a large
enough constant ¢. Consequently, nearly optimal performance can be achieved with functions f
and ¢ that are computed by a program that uses a small number of random seeds. The results
are established for a class of probe schemes that is considerably larger than the arithmetic
progressions of double hashing. Further information on previous work and the implications and

formalizations of limited randomness can be found in [16].

We now build upon the results and the frame work of [16] to show that double hashing has
an expected probe performance of 1=+ O(1), for any fixed a < 1. This error bound is new even
in the case of full randomness. More importantly, it is shown to hold even when (clogn)-wise
independent hash functions are used, where ¢ is a constant that depends on «. In addition,
comparable bounds are attained for the expected moments of the probe counts. These results
also hold for the generalized double hashing schemes of [16].
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The objectives underlying our generalized definition of double hashing are to include double
hashing and uniform hashing within the same model, and to characterize the basic probe strate-
gies that enable these schemes to achieve such good performance, both for fully independent

hash functions and for those exhibiting limited independence.

Definition 2: The models UH, DH, and DH.

e In UH, the probe sequence p(z,*) is an independent family of random variables that are
uniformly distributed over [0,n—1]. Any collection of sequences p(x1, ), p(x2, %), ..., p(Tn,*)

are mutually independent, for distinct z;.
e DH relaxes the requirement that each individual probe sequence be fully random.

1. Each individual probe sequence p(x,*) exhibits approximate pairwise independence:
Ve Vi, ji#Eg, Vrose0,n—1] r#s: Prob{p(z,i)=r, p(z,j)=s}= W.T

2. Furthermore, the random sequences {p(z,*)},cp are mutually independent. This con-

dition need only hold for a subset of hash functions Fc F', where F depends on D,
and % >1- %211

3. In addition, we have the following robustness requirements.
i) Extremely long probe sequences are quite rare: For a fixed ¢q that depends on «a,

Ve: > Prob{|ul_, {p(z,i)}| <aon+1} = ﬂnll‘
t>Con
ii) Probe sequences are unlikely to reprobe locations too frequently.

VeVj <k<h,rel0,n-1]: Prob{p(xz,j)=plz, k), plx,h)=r}= On(;).
Vo Vh <ij <k, (hi)# (j,k) : Probip(x,h) = p(x,i), pl(x,§) = plz, k)} = G5

e In DH,, the statistical probe behavior of an individual probe sequence is subject to the

TWe use the Big-Oh notation in the following standard way: f = g + O(h) means that |f — g| = O(|h]).
Consequently, there is no distinction between f+ O(g) and f— O(g). Nevertheless, we shall, upon occasion,
use minus signs to suggest that the worst case error is negative. Also, it is quite reasonable to write, say,

ﬁ =1-=0(h), for h = o(1).
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same requirements as in DH for the first ¥ probes, the global coverage requirement must

still hold, and the joint distribution of initial probe sequences, for collections of ¢ or fewer

probes, is required to be statistically independent, for distinct items. More precisely, we

have the following.

L. vavi,j<vi#j, vr,sel0,n-1] r#s: Prob{p(z,i)=r, p(aj,j):s}:m.

2. Knowing a limited number of the probe values for a small set of keys gives no informa-

tion about the first few probes for another key. Formally, let Z be a set of keys ( € U
with associated probe count bounds j., where 3"¢c 7 7. <¥. Let {k¢ 1,6¢9,. .-, KCJC}&Z
be a multiset of arbitrary probe locations. Then

Prob{ \ N\ p(C,5) = ke ;3 = T Prob{ A\ p(C.5) = ke ;)

CeZ j<ug CeZ J<3¢
This condition need only hold for a subset of hash functions Fc F, where F depends

on D, and %Zl—on(zl).

3. For some fixed ¢y that depends on a, Vo : 374 Prob{|ul_,{p(z,i)}| < an+1} = ﬂnll

4. YaVy<k<h<i, rel0,n—1]: Prob{p(x,j)=p(z, k), plz,h)=r}= %211

5. Va Vh <i<i,j<k<i, (hi)# (5, k)

Prob{p(z, k) = p(z,i), p(z,j) = p(z, k)} = L.

According to these definitions, UH ¢ DH ¢ DHy. The exclusionary r # s in 1 of the DH and

DH,, definitions is given to ensure that standard double hashing lies within DH.

In these formal models, a family of hash functions H comprises a finite set of functions.

Given the data sequence D, a specific hash function is selected by choosing a member from S at

random according to the uniform distribution. The statistical properties defined by UH, DH,

and DH, are with respect to H, although 3i for DH and 3 in DH, are also algorithmically

dependent.

The key notions used in the analysis of these probe schemes were 1) dependency sets, and
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2) multiplicative vacancy overestimators ([16]).

Definition 3.

e The dependency set of a hash key x}, is recursively defined to comprise zj, and the dependen-
cy set members of the previously inserted keys that reside in the locations unsuccessfully
probed on behalf of x; during its insertion. We denote the dependency set of x € D (with
respect to D) by dep(z, D). The dependency DAG for x, G(z, D), has the root x; the graph
also contains directed edges from x to the items that reside in the occupied locations visited
during the insertion of =, and the recursively defined dependency DAGs for each of these
items. The DAG is a tree if each vertex other than the root has indegree one. A subsequence
S c D is a local dependency set it S hashes by itself into a dependency set. Thus z; will
be the root of a unique dependency DAG when D is hashed, but will root many different
different local dependency DAGs, in general. A partial dependency DAG G,(z, D) is the
subgraph of G(z, D) restricted to x and paths from z that begin with the one of the first r

probes for .

e Given a set of hash functions (or set of statistical properties satisfied by a set of universal
hash functions), a vacancy estimator is a function ¢(t) that overestimates the probability
that a slot location [ is vacant at time t. The estimate should hold regardless of the value of
[ and the data in D. The estimator is multiplicative if, for any sequence of slots Iy, 15, ..., {;,
and corresponding times tq,%,,...,%;, the joint probability that slot /; is vacant at time ¢;,
fori=1,2,...,k is at most (1+ O(k?/n)) Hf q(t;). This multiplicativity need only hold for
k= O(logn).

We will count the expected number of partial dependency DAGs rooted at x4y, which means
that root x4, may not yet have found a vacant table slot for insertion. Thus the next probe,
on behalf of x4y, will add another branch to the DAG, if the new slot turns out to be occupied.
Let, xan have r children in the DAG G(zan, D). Then it will have encountered r + 1 DAGs.
(The first will have zero children since we do not require the root to be inserted when counting

6



Closed hashing is computable and optimally randomizable with universal hash functions

these structures.) Thus the number of such DAGs actually encountered by x4y is precisely the
number of probes needed to insert the key.

A consequence of these definitions is that the expected number of probes to insert the an-th
key xqon 1s precisely the expected number of local partial dependency DAGs rooted by zqmn,
where the probability that a subsequence hashes to form a local partial dependency DAG is the
probability that the colliding probes among the members of the subsequence occur as specified
by the DAG structure, and the non-root nodes find their locally determined embedding locations
vacant at the times of their insertions within D.

The difficult part of the calculation is to provide an adequate overestimate of the joint
vacancy probability for the members of a local dependency set. A good vacancy estimate
is essential for reducing the accounting of spurious dependency sets that locally hash into a
dependency DAG rooted by zqp.

Schmidt and Siegel use this counting approach to attain Theorem 1 in [16], which states
that the expected number of probes to insert x4y is at most

1
1-2Q(an)

where Q(k) = %Ef:_ll q(%), and ¢(z) is a multiplicative vacancy estimator. This bound, as a

Elprobean| < +O(1/n), (1)

function of @), is established for any hashing procedure that satisfies the statistical properties of
DH,, for ¢ > clogn, for some fixed constant ¢ that is independent of n.
Numerical values for the expected number of probes are attained by quantifying the following

vacancy criterion which, it turns out, is indeed a multiplicative vacancy overestimator, even in

DHy.
Definition 4: The vacancy criterion M(?)(T I) and its probability ¢(®)(T,I).

o Let M(W(T,I), be the vacancy criterion that says, for each j in 1,2,...,|I|, there is no
tuple S C (x4, .. .,:L’Tj_l) — Dy of size |S] < h that hashes into a dependency tree GG rooted

at location ]j.

e Let the exact probability of M) (T, I) be denoted by ¢(®) (T, I).
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Informally, location I; is deemed to be occupied by time T} only if there is some tuple of £ or
fewer items, among x4, ..., x;_;, that hashes by itself into a tree that is rooted at I;. We choose
to ignore non-tree DAGs in this definition.

Calculations in [16] show that with O(logn)-wise independence, these multiplicative vacancy
estimators ¢(%) are, for sufficiently large, fixed h, within any fixed € of the true estimate. Now,
the true vacancy estimate ¢(i) = 1—1/n gives the bound 1= +O(1/n) for the expected insertion
cost in (1), which is the actual bound for uniform hashing with fully independent random probes.

Unfortunately, it is necessary to have an asymptotically exact overestimator if the expected
probe count is to have an error of O(1). Otherwise our expectation will be augmented by
spurious probe statistics from DAGs other than the actual dependency graph for z, € D, since
there are many items that might initially hash to a given location, though only the first will
actually reside there. Yet, the errors resulting from very accurate vacancy formulations appear

to be rather difficult to bound satisfactorily.

1.1 Overview

We now use the constructions from [16] plus inclusion-exclusion to establish a sharp approximate
isomorphism between double hashing and uniform hashing. The inclusion-exclusion will elim-
inate the overcount of (spurious) probe collisions between o, and previous keys that appear
to be inserted at locations that satisfy our weak vacancy criterion, but are actually inserted
elsewhere, because their apparently vacant insertion slots will actually be already occupied by
the time they are hashed from D into L.

The isomorphism shows that double hashing, for example, admits a calculation for the
expected probe performance that is the same as that for uniform hashing, apart from a string
of principal error terms, plus a few other negligible errors. Some care will be needed to bundle
events together in a way that avoids exponential overcounts of these error terms. Then the k-th
error term will turn out to be the difference, between uniform hashing and double hashing, in
the expected number of look-ahead restricted k-item aggregates (or more precisely, aggregates
restricted by vacancy calculations determined from hashing h-item or smaller subtrees from D)
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of local dependency DAGs rooted by z4p. The resulting error will be dominated by the product
of O(%) and the k-th coefficient of a simple generating function ¢ defined from these structures.

The ensuing equation for ¢ depends on the amount of look-ahead that is used but is essen-
tially independent of n. The solution, as the look-ahead parameter! approaches infinity, turns
out to have a radius of convergence that exceeds 1, for any fixed load factor a@ < 1. Hence, for
some fixed look-ahead that depends on «, the errors sum to O(1) and decay rapidly in k. Thus
our approach throws the question of asymptotic optimality entirely onto the limit properties of
a simple family of ordinary differential equations that govern g. While our use of converging dif-
ferential equations is intended to be self-contained, a comprehensive introduction to the subject
can be found in [7].

The resulting isomorphism implies that as n — oo, there is a limiting probability distribution
on the (unembedded) DAG structures encountered by the collision behavior of the an-th item
and its recursive collision descendents. Moreover, this distribution is identical for generalized

double hashing and uniform hashing (c.f. Subsection 3.2).

2. Superdependency graphs

The thrust of our asymptotically exact performance proof is to analyze the statistical behavior
of double hashing on aggregates of local dependency DAGs. Consequently, we must extend the

notion of a dependency set to these larger ensembles of data.

Definition 5.

e The superdependency set of , sdep(x, D) is the union of all vertex sets belonging to local

dependency sets of x: sdep(x, D) =uUp,pdep(z, D’).

o The superdependency graph of z, G4, (z, D), comprises sdep(x, D) plus the directed edges
that occur from the actual collisions when sdep(x, D) is hashed: If y is the r-th member in

the adjacency list of z, then the first r probes for z must be to locations already occupied

TActuaHy, the amount of statistical independence that is needed for our parameter h turns out to be a fixed

function of h plus O(logn), rather than h itself (c.f. Lemmas 6, 7 and Theorem 3 of [16]
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by members of sdep(x, D), and y must actually be hashed (from the sequence D) to the

r-th probe location of z.

e We also define Gsyup(z) to be the set of superdependency graphs that result from any prefix

of the actual probe sequence for z.

e The vertex = will be called the root of Gy4,,(), even though the structure may contain
other vertices (that appear earlier in D) with indegree 0. Similarly, we shall call a superde-
pendency graph a tree if it is a tree when the edges are viewed as being undirected. The

outdegree of the root of a superdependency graph GG will be denoted by degr(G).

Gsaep(z, D), (and all graphs in Gsyp(z)), are DAGs, but have a more complex structure than
the dependency graph G(x, D), and the partial dependency graphs of x. For example, suppose
that y is in 2’s true dependency set dep(z, D), and suppose that y will be hashed (from D) into
a location [. There may be other nodes in local dependency sets dep(x, D’) that would reside in
location [ and would belong to the dependency set of x, were y (and perhaps others) removed
from D. We call these vertices dummies. Any vertex (other than root ), which has indegree
zero in the DAG is a dummy, since no key in the superdependency set is hashed in a way that
depends upon its presence. More generally, a dummy is a vertex that belongs to some local
dependency set of x, but which will actually reside in a later probe location than that indicated

by the local dependency set.

Since limited randomness forces us to examine superdependency structures that are not
maximal, we will also use these notions to refer to a local superdependency set, sdep(x, D’),
which is the union of the local dependency sets in D' c D.

When analyzing arbitrary superdependency DAGs, we will need to use a canonical traversal
process, which extracts a tree-like subset of edges, so that the resulting subgraph is connected

and acyclic, when the edges are viewed as being undirected.

Definition 6.

Let G = (V, E) be a superdependency DAG. We call T'= (V, E;) an omnidirected spanning
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tree it £y comprises the edges selected as follows. We scan and process the vertices V' in order of
decreasing index in D. The root is the first vertex processed, and is handled differently from the
rest. Its neighbors in G are immediately discovered and are forced to be its children in T'. For
specificity, a child receiving multiple probes from the root is taken to be connected by the edge
that represents the highest probe number. Thereafter, we initiate a standard recursive DFS
from the root. The DFS explores the probe edges exiting a vertex in order of decreasing probe
number. Edges taken to newly discovered vertices are entered in F;. When the DFS completes
and returns to its origin, the scan is continued to the next vertex that is not yet DFSed. There
is one final modification of the DFS. Also in Fj; is the very first cross edge encountered during
(some recursive level of ) each DFS initiated from the scan of a newly discovered vertex, except

for the DF'S initiated from the root.

The cross edges ensure that the resulting structure is connected, when the edges are viewed as

being undirected.

Lemma A in the Appendix (as adapted from Lemma 2, in [16]) shows that a v-vertex
e-edge superdependency graph has the same local probability distribution as its dependency
counterpart. In particular, let G be a superdependency structure with v vertices and v—1 edges.
We may deduce that v keys hash into the structure defined by G with probability H%%
Moreover, the chances are only O(v3n=") that the vertices will hash into a superdependency
graph with v vertices and v or more edges, which yields G as its omnidirected spanning tree. The

proof of Lemma A is presented in the Appendix, so that the basic argument can be repeatedly

applied without elaboration.

This probability distribution suggests that hashing statistics might be quantified from the
behavior of superdependency DAGs with e = v—1 edges. But before this notion can be exploited,

we will have to reduce the (expected) number of local superdependency graphs that can occur.

A way to control this expectation is by extending the definitions of superdependency graphs
to include our vacancy criterion. The vacancy criterion requires that any dummy item z in a
local superdependency set D', which locally hashes into a location [, must not have h or fewer
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items preceding it in D, which hash into a local structure rooted at [. Otherwise we recognize

that the local dependency set cannot be global, since [ known to be already occupied.

The following definitions incorporate our vacancy criterion into superdependency graphs.

Definition 7.

e The h-superdependency set of x, sdep(h)(x,D) is the union of all local dependency sets of
z, in which all elements find their locations empty according to vacancy criterion M),

which is evaluated with respect to all of D.
Sdep(h) ('1:7 D) = UD’cD{dep(h)(:C7 D/)}7

where a local h-dependency set S = dep(®)(z,D’), is defined to be a (possibly empty)
subsequence S c D', that hashes by itself into a local dependency graph rooted by z, and,
at the insertion time of the s € S, selects the apparent location [ where the following hold.
i) Location [ is vacant at the time s is hashed from the sequence D'.
ii) Location [ satisfies the vacancy criterion M®) at the time s is hashed from the

sequence D.

o The h-superdependency graph of z, ng)ep(m,D), comprises sdep®) (z, D) plus the edges that

occur from collisions when sdep(?)(z, D) is hashed by itself.

e We also define ng)ep(x, D"), the superdependency graph of x, when only D’ is hashed. The

vacancy criterion M) however, is always taken with respect to all of D.

e Finally, we define the set ggfﬁ,(;v, D), which contains, for each prefix of the probe sequence

for z, the resulting h-superdependency graph.

When the full vacancy criterion is used (i.e., h = n), of course, z; will only root probe;
different local superdependency graphs, which are also global. While the number of graphs
grows considerably when weaker criteria are used, we still have the following formulation for

any h (and actually any vacancy criterion).
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Elprobe;] = Prob{degr(GEle(xi, D)) >k}
= 2
= E[lgup(zi, D))
where degr(GgZ)ep(:ci,D)) is the degree of z; in the graph.

Our counting of superdependency sets requires a little explanation. It is helpful, for sake of
exposition, to limit the discussion to omnidirected spanning trees of superdependency graphs,
which have one fewer edges than nodes, although there may be many dummy roots. Imagine,
for the moment, that all edges are undirected. Take the root of such a structure to be the
vertex with highest index, call it z, and impose a redirection of the edges based on search from
x, so that the structure is now an actual tree. A dependency tree R; can be prescribed by
listing, for each vertex v in the graph R, the set of descendent vertices reachable from the first
probe for v, from the second, ..., up to the last probe that collided with items in the tree. This
formulation was used in Theorem 1, of [16], to attain a recursive count of the expected number
of dependency graphs rooted by z.

For our redirected superdependency tree, however, such a representation R, is ambiguous:
the 2th edge from v is either to the vertex w with highest index in the ¢th set, or, if w is a
dummy, to last(w), which is the item with highest index in w’s last subset, or, if last(w) is
also a dummy, to last?(w), and so forth. In a dependency prescription R, there is no such
ambiguity; the probe edge must be directed to the vertex with the highest index in the set. But
for superdependency trees, it follows that up to negligible terms, 2 x P(R;) is the probability
that a specified set of keys D* in R; hash locally into some superdependency structure Gy
whose undirected structure matches the tree R, where P(R;) is the probability that D hashes
as a dependency graph into the structure prescribed by R;, and 6 is the number of nodes that
can legally appear as dummies, according to the vacancy criterion as applied to Gz but without
regard for the hashing on D — D*.

As a very weak consequence of the vacancy criterion, a node z in a h-superdependency graph

(z,D) cannot be a dummy unless z has more than A descendents in Ggglp(fﬁ, D).

G(h)

sdep
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Definition 8.

e Let this weak consequence be named the polyexclusion principle.
We note that a stronger consequence can also be deduced: a hash key z cannot be a dummy
that is apparently (successfully) hashed into its [-th probe location if its [-th probe turns out
to store the root of any local dependency tree of j < h items and whose elements belong to
sdep(z, D).

We shall begin by recursively counting tree structures. This counting is more easily done
by counting dependency representations R;, and including a multiplier for each node that can
be interpreted as a dummy.

Given a representation R;, a top-down embedding of the tree has two possible constructions
for each node that might be a dummy: one which can occur to a locally vacant location with
vacancy probability ¢(®), and one that can occur to a location contain that already stores the
root of a DAG that has at least h+1 keys. To get all partial superdependency graphs, we again

count structures where the root is not yet embedded.

Theorem 1. Let oo < 1 and r be fixed constants. Let ¢, d and h be sufficiently large and fixed.
Let ©» = dlogn. Let s(k,an) be the recursively defined overestimate, as quantified below, of the

expected number of local h-superdependency trees that are rooted by zqn, contain & items, and

satisfy vacancy criterion M(®) in UH, DH, and DH,. Then

1) The expected number of such trees that have clogn nodes or less is bounded:

> s(k,an) =0(1).

k<clogn

2) The expected number of such trees with clogn nodes or less is bounded even when a tree

of k nodes is weighted by k™ 35 100, K7 5(k, an) = O(1).

3) The expected number of such trees having a node count in the interval [clogn,2clogn] is
O(n=%) even when a tree of k nodes is weighted by n": 3104 n<k<aclogn Sk, an) = O(n=27").
Proof: Let s(k,a) be the sum, over all of the (k — 1)-item subsequences in zq,...,2,_1,
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of the (over)estimated probability that the tuple plus z, hashes locally into a superdependency
tree whose non-dummy nodes other than x, find vacant locations, according to M(*). Nodes
that can be dummies yield alternative embeddings (superdependency structures), depending
upon whether they are interpreted as dummies or not. Dummy interpretations will be given
an embedding probability of 1 to avoid multiplying the dependent estimates that a given hash
location satisfies the vacancy criterion M (%) at different (locally successful globally unsuccessful)
insertion times. We admit a superset of candidate keys as potential dummies by applying the

polyexclusion principle as an overestimate of M (%),

Let p be the constant 1. (We shall later have cause to solve the same system with p = 3.)

By recurring on the subtree rooted at the most recent probe location of z,, we get:

s(lya) =1,
h h
sha)s Y s(j,b)ﬁgi()(b)s(k—j,a)—l— T s(j,b)q(n)(b)s(k—j,a), E> 1 (2)
h<j<k-1 1 1<j<h 1
0<b<a-1 0<b<a-1

q(") (b)

o for § < h, because the root of a subtree of size

h
We replace the quotient u—i—qqil)(b) by

h or less cannot be interpreted to be a local dummy, according to the polyexclusion principle.

1

Here, n

denotes an upper bound for the probability # of probing a given location. We

(1)
now suppress the subscript and use the simpler value n, which can only change the resulting a

O(k)

n

k’th coefficient by a factor of 1 +

, which turns out to be negligible in all cases.

We may overestimate s by solving the system

t(l,a)=1,
: (k) . 7. b)gh) :
thay= Y GOy Gy D0 G, ks,
h<j<k-1 1<j<min(h,k-1)
0<b<a-1 0<b<a-1

Set (k) = t(k, a)gM(a), o(k,a) = t(k,a)(t + ¢M(a)), and T(j,a) = Focpas . The
following equivalent system is attained.

15
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— (R
7(1,a) = ¢")(a),

T(a)=1 Y (b,

0<b<a-1
7(k,a) = Z T(j,a)7(k—-7,a), k>1,
1<g<k-1
. 1 7(7,b)
T(Jaa) = ) 3
n 0<b2_1 PTG (3)
o(1,a) = ¢ (a) + p,
. 1 .
S(],CL) = n Z O'(],CL),
0<b<a-1
O-(k7a): Z S(j,a)a(k—j,a)—l— Z T(j,a)a(k—j,a), k>1
h<jyj<k-1 1<j<min(h,k-1)

Let § be a continuous monotone rescaled interpolant of ¢(?), that is defined on the domain
[0,1]. In particular, set §(B) = 1, for B < 1/n, and §(3) = ¢ (Bn - 1), for B =1i/n. We will use
the customary notation fz = %, for any function f of 3.

Then the solutions 7, 7, 8, o, and T' can be tightly overestimated by 7, fﬁ, S, 35, and T in

the system:
7(k,0) =0,
73(1,8) = ™M (8),
Tk, B) = 1 2% lf(J,ﬂ)fﬁ(k —7:8), k>1, (4)
o
Tk, ) = /0 e Z‘E}(Li’;))doz, (5)
8(k,0) =0,

35(17/8) = q(h)(ﬁ) + i,

h<j<k-1 1<j<min(h,k-1)

The domains of & 7 and T are [1,00] x (0,1). Here 8(5,8), 7(j,5) and T(j,3), are tight
overestimates of S(j,n03), 7(j,nB) and T'(j,nfB), respectively. It is not difficult to see that
S(k,Bn) < 8(k,B), and o(k,n) < Sﬁ(k,ﬂ).
For convenience, we rewrite the system for S as:
S(k,0)=0,

16
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85k, 3)=0, k<0,

S5(1,8) = pn+a(B),

Sp(k,B)="3 81,885k -j,B)—p > T(j,B)8s(k~j,B), k>1.

1<j<k-1 1<5<h
Let
w(z, B) =3 8(k, B)z*1,
0<k
and put

g(x,8) = > T(k,B)zF".
0<k
Define the truncated function

G (z,8)= > T(k,p)z*,
0<k<h
and define

G, B) = 3 T(k,B)a*1.
0<k
Differentiating (7) and expanding via (6) and (9) gives
w(z,0)=0,

Manipulating (11) gives,

(e ) — 1+ 4q(8)
p(@:5) L+ peG) (2, B) - zw(z, B)

where we wish to determine when w(1, 3) is finite.
Differentiating (8) via (4) gives
g(x,0) =0,
9p(@,8) = xg(x,B)gs(x,B) + 4(B).

Integrating (13) as is, and applying the quadratic formula gives,

oz, ) = V1= 20Q0)

where

17
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and hence
a(3)

(0.) = 18
gﬁ J1=2:0()

In view of (5) and (8), we see that G(x,3) as defined in (10) can also be expressed as:

G(z,B) = /Oﬁ %db.

Finally, let

a- [ +4(b)
C(xmg)_/o gb(‘rvb)ﬂa(g) db

Then (17) gives

@(sc,ﬁ):gﬁ(x,ﬁ)“ﬁﬁ),

and expanding with (13) gives

— 2g(z, Bgsla, B B) 4+ v ao),

whence applying (19) gives

=zg(z, B)Cg(x, B) + p+ (),

so that (18) can be used to yield

= z(((z,8) - pG(x, ﬁ))cﬁ’($7 B)+un+4q(B),
whereupon collecting the (3 terms results with

B 1+q(B)
Cﬁ($7ﬁ) - 1+M$G(I,ﬁ)—~f<=(rvﬁ)

From (19) and (15), we see that (3 can also be expressed as:
Cﬁ@) B) = (1 +4q(8))

V1-220(8)

(18)

(19)

(20)

(21)

Since our interpolated ¢(3) converges uniformly to 1 -3 on [0,a] as h (and n) — oo, @(ﬁ) as

defined in (14) converges uniformly to 8 — 32/2, and (4(z, 3) as expressed in (21) will converge

uniformly to _(+1-B) on, say, domain I' = [0, M] x [0, a.

V1-2z+z 32

=

Now gsz(z,3) as expressed in (15) will converge uniformly on the same domain I', to

18
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(1-5) . . . : . :
BT and G(z,3) will converge uniformly and coefficient wise on I', (identity (16)).
But G* is the truncated function of G. Hence |G(z, 3) — G*(z, 3)| is uniformly bounded by ¢,
where €}, — 0 as h (and n) — co. The point is that G is analytic in z, and its coeflicients will be

uniformly exponentially decreasing once h and n exceed some fixed constants.

Now consider the differential equations defined by (12) and (20). We see that wg will

: : (u+1-8) . (h) /
converge uniformly with (5 to Nyl h — oo and ¢\®) and G(z,[) converge (as n
also goes to oo). In particular, for some fixed sufficiently large h, wy will be bounded on

I'. But then the analyticity of wg(z,3), for |z| < 1+ % guarantees that its coefficients

Sa(k+1,8) = O(s(k, Bn)(u+q(Bn)) are bounded by the exponentially decaying O((l—l—%)‘k).
The size of h and the decay rate are independent of n because the equations are.

In view of the uniform convergence, we conclude that:

1) For large enough constant h, the expected number of local superdependency trees rooted

by zan that have clogn nodes or less is bounded by O(wg(1,3) |5_,)-

2) For large enough constant h, the expected number of local superdependency trees rooted

by xon that have clogn nodes or less when a tree of k£ nodes is weighted by k", is bounded
by O((z45) ws(, B) | pm1)-

3) For large enough constant h, the expected number of local superdependency trees rooted by

Ton and having a node count in the interval [clogn,2clogn] is O(cn=3-"logn) for suitable

c=0( ?1?;:))’2 ).

The bound on % need only be large enough to ensure that the events in a sample of 2clogn
items behave as if fully independent, along with (proportionally sized) additional samples, to
ensure that the vacancy estimator also has a statistical behavior equivalent to the fully inde-

pendent case (c.f. Theorem 3 of [16]). |

Corollary 1. Let, as in Theorem 1, @ < 1, and r be fixed. Let ¢ and d be sufficiently large
and fixed with ©» = dlogn. Then for sufficiently large constant h, the probability, in UH, DH,
and DHy, that zqn roots a local superdependency tree that satisfies M) and contains 2clogn
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nodes or more is O(n‘r‘l).

Proof: Such a tree must contain a local superdependency (sub)tree of ¢ nodes for some
¢ € [clogn,2clogn], and root in D. From Theorem 1, the expected number of such trees with

—T—Z)

specific root x4, is O(n . Summing this probability over all possible roots x5 gives a bound

of O(n=m-1). 1

Theorem 2. Let, as in Theorem 1, @ < 1, and r be fixed. Let ¢ and d be sufficiently large
and fixed with ¥ = dlogn. Let Nj be the number of local superdependency sets that occur,
are rooted by an, contain k items, satisfy the vacancy criterion M), and are not trees.
Then for & sufficiently large but fixed, in UH, DH, and DH,, E[Ekgclogn k"Ni] = O(1), and
> clogn<k<2clogn Vi = O(n77).

Proof: We follow the proof schema of Theorem 1. Let v(k,a) be the sum, over all of the
subsequences of k — 1 items in xq,...,2,4_1, of the (over)estimated probability that the tuple
plus z, hashes locally into a superdependency DAG whose non-dummy nodes other than z,
find vacant locations, according to M(h). Tt is convenient to count the number of tree-like
structures plus extra-edge DAGs, and subtract the tree counts. We can justify subtracting the
tree overcounts by using a recurrence that introduces a tag variable z for DAGs that have extra

edges, and take (g(z) - 9(0)) |

.1 as our overestimate for the expected number of DAGs that

are not trees.

The counting will again be over the R, prescriptions of dependency trees with weightings
to account for all possible dummies that permit restructuring into different superdependency
trees, with additional factors to account for non-tree edges as in Lemma A. Let v(k,a) be an
overestimate of the expected number of h-superdependency DAGs rooted at an unembedded z,

which have £ nodes. We again recur on the subtree rooted at the most recent probe location

(A+g ™M () ¢ dM(b)

of x4, and again appeal to the polyexclusion principle to reduce the factor ,
when applied to embed a v(j,b), where 7 < h. But there is a catch. If the subDAG rooted by
xp has a DAG probe edge that points outside the subDAG, then the resulting structure may be

too large for the vacancy criterion to declare the apparent location of root x;, as being occupied
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7(1+q:b)(b)) in this

by time b. Following a rather pessimistic bent, we restore the factor to be ,

case. This restoration is done by applying it selectively to the terms of the generating function

q(h) (b)-|—Z(6’Ualz:1 _elvalzzo)

that carry tag factors of z. This can be formulated as the factor, -

, Where

eval,—, evaluates the factors to its right with = substituted for each appearance of z. This

prescription gives the following.

v(l,a)=1,
h ! 7
oha)= Y wk-ja)l )(b)“(e”“nl“l‘e”“lz=°>(1+20(k3/n))v(j,b)
1<j<h
0<b<a-1
(h)
+ > v(k—j,a)W(l+20(k3/n))v(j,b).
h<j<k-1
0<b<a-1

The probability that root x; sustains a (tagged) DAG probe to one of the k nodes is, in our
models DH and DH, bounded by O(k3/n). The expected number of non-tree DAG formations,
for our hashing schemes, is derived in Lemma A, which uses DFS traversal to attain a canonical
tree from the DAG, and estimates the number of ways additional probes could cause a DAG
that is not a tree. The O(k3/n) factor accounts for the non-tree DAG probing by the root wy,
which can have one extra probe to a member of its local superdependency set, or more, in which
case xp might not be placed in a random location, due to the limited independence for the probe
sequence of an individual hash key. The tag variable z records the fact that we are counting
structures that are not trees.

The system can be crudely bounded as follows. Let w solve

w(l,a) =1,
IO M) +1
wika)= ¥ wk-j0WuGn+ S wk- oWy
1<y<h h<j<k-1
0<b<a-1 0<b<a-1

Then it is not difficult to see that
w(t,a)(1+20(5)1 1+ 20((-2)Y), for £ < h,
w(l,a)(1+20(£ N1+ 20((-2:)k-1))-1, for £ > h.

n

v(l,a) < {

To establish the bound, it suffices to multiply the recurrence for w(¢,a) by

{(1+20(%3))£‘1(1+%0((a%5)“1))7 for £<h,

(14200010 + 50, for £ 1,
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and appeal to induction. We leave the intermediate minutiae to the reader.

k(2 _\Yh 4
Thus the tagged contribution v(k,a) | _, —v(k,a) | _, is bounded by O(%)s(k,a),

where s(k,a) is as in Theorem 1. The conclusions follow. |

Corollary 2. Let, as in Theorem 1, o < 1, and r be fixed. Let ¢, d and & be sufficiently large
and fixed with ©» = dlogn. Let T be a subsequence of the indices (1,2,...,an), with |T| < clogn,
and 1|y = an, so that Dy is a subsequence in D = (z1,29,...2an), and (D)) = Tan. Let G
be a local superdependency tree structure with |7'| nodes, and e ¢ be the event that Dr hashes
locally into G, and the hashing satisfies the vacancy criterion M(h), Let X7 ¢ be the indicator

function for er , so that X is zero if the event does not occur, and one if it does.

1) Let Nj be the expectation of the product of X7  and the number of local h-superdependency
sets S, where S ¢ D — Dy, |S| < clogn, S hashes into a local superdependency DAG that
satisfies M%) that is rooted by some item in D — Dy, and is not a tree structure, S
hashes locally into an embedded structure that intersects the local hashed embedding of

Dp, and no proper subset of S exhibits these properties, so that each S is minimal. Then

Zkgclogn Nkkr = O(%)PrOb{eT,G’}'

2) Let Z; be the expectation of the product of X7 ¢ and the number of local superdependency
DAGs that comprise k < clogn items solely from D — Dy, satisfy M(h), are rooted by
any item in D — Dy, and locally hash into a structure that intersects the locally hashed
embedding of D in at least two probes, and do not have a smaller subset of keys that
hashes into a local h-superdependency DAG that intersects Dy in two or more probes.

Then Ypcclogn Zrk" = O(#)PI’Ob{GT,G}-

3) Let Z be the expectation of the product of Xy  and the number of local superdependency
DAGs that comprise between clogn and 2clog n items in D— D, satisfy M%), and are root-

ed by any item in D — Dp. Then for sufficiently large constant h and ¢, Z < n="Prob{er g}
Proof: These statements follow immediately from Theorems 1 and 2, where the analog of
these claims without a T' component are established, from the multiplicativity of the vacancy
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estimator and from Lemma A, which quantifies the hashing statistics of subsets of ? items or
less, for DH,,. For example, if DT is a candidate subsequence of k items in D — Dy, it can
intersect the local hashing of Dy, in DH,, with a probability bounded below O(|T|2k?)/n?, for
case 2. We count minimally sized structures that intersect Dy to avoid the degenerate cases
where a loss of randomness occurs, and so many intersections occur that the vacancy criterion
is affected, since it is not multiplicative when evaluated at one location for two different times.
Similarly, the intersection and non-tree DAG requirements introduce a comparable factor for
Case 1. These factors multiply the count of local k-item h-superdependency DAGs that occur.
This count has an extra factor of O(n) when compared to the expected number of such structures
rooted by xqp, since the root is not restricted to be a specific key.

The size bound for @ should be doubled, since the statistics are subsets of data that are
twice as large. |

Corollary 2 helps confirm that superdependency trees account for most of the hashing s-

tatistics. This observation can be formalized as follows.

Corollary 3. For |T'| = O(logn), large enough constant k, and ¢ = O(logn), the following two
events are asymptotically equivalent: (D hashes into a local h-superdependency tree rooted
by #an), and the event (Dp hashes into a local h-superdependency tree rooted by xqp, and the
h-superdependency graph of zqay is a tree).

Proof: If Dy hashes into a local h-superdependency tree and sdep(h)((DT)lTl,D) is not
a tree, then one of the three cases in Corollary 2 must be applicable, whence the conclusion
follows. 1

We now need an inclusion-exclusion formula for trees. It will be convenient to change our
counting method for superdependency trees. QOur recurrence equations counted them as true
trees, with possible dummy nodes that actually bundled different superdependency structures
together with a single tree representative, and with multiplicative factors designed to give a
weighting that overcounted the expected number of such bundled structures.

The errors that result from our inclusion-exclusion formula will be especially important to
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bound.

Corollary 4. Let r fixed, and let ¢, d, and h be sufficiently large and fixed. Let A} be the
indicator function that is 1 when x; roots a local h-superdependency tree with a node count
that is in the interval [clogn, plogn| and the globally defined superdependency DAG rooted by

x4 1s a tree. Let N; be the number of local h-superdependency trees with root x; that have

clogn nodes or less. Let ¥ = dlogn. Then in UH, DH, and DH,, E[Non x X5;] = O(n"").

Proof: We again appeal to the recursive formulation of Theorem 1, and the earlier rep-
resentation of bundled superdependency DAGs with dummies. Let s(k,a) be the weighted
sum, over all of the (k — 1)-item subsequences in x1,...,x,_1, of the (over)estimated probabil-
ity that the tuple plus z, hashes locally into an h-superdependency tree. The weighting, for
each h-superdependency tree, is the number of local h-superdependency subtrees (with root )

contained by the tuple.

Let GG be alocal h-superdependency tree, and suppose that z is a dummy node in GG. Then we
may use z to construct an h-superdependency subtree where x is mistakenly treated as residing
in an unsuccessful probe location of its probing “parent” and eliminate earlier contenders for the
location, or we may eliminate x and its subtree, and use some other dummy or the true member
of the dependency set as the presumed resident of the probe location, or view z as a genuine
non-dummy, which gives yet another embedding structure where x’s parent probes a (possibly)
actual embedding location for x, rather than z’s (locally determined) last unsuccessful probe
location, or construct the h-superdependency tree that recognizes = as a dummy. These choices
give four possibilities, which are overcounted by setting g = 3 in the recurrence below. The
overcount is severe, since only one of the possibilities is multiplied by the vacancy criterion ¢(b),
and eliminating = eliminates a subtree with its additional interpretations (which this counting
procedure fails to do.)
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By recurring on the subtree rooted at the most recent probe location of z,, we get:

s(lya) =1,
. (R) (b . - gM(b .
sthas Y GO+ Y s Ok ja), k> 1,
h<j<k-1 1 1<j<h 1
0<b<a-1 0<b<a-1

where p = 3. The analysis of this system is the same as in Theorem 1. The fixed values for A and
d will be larger because the larger value of p will slow down the convergence. The convergence,

of course, is still to the system with p = 0.

We now fix p = 3e¢. For this range, we see that in the limit (A = o)

ENan¥l< Y s(h.an),
clogn<k<3clogn

=0(n™"), (22)

which follows from an analysis comparable to that used in Corollary 1. Again the radius of
convergence guarantees that the exponential decay and the resulting boundedness will occur for

sufficiently large constant h and c.

For larger p, we reason as follows. Let e, 7, be the event that Dy, and Dy, hash into local
h-superdependency trees. There is no restriction on the identity of the roots. Suppose that x4y,
roots an h-superdependency tree T' of 3clog keys or more, and let T} be an h-superdependency
tree of clogn keys or less that is rooted at z4n,. We may extract from 7" an h-superdependency
tree Ty with a vertex count between clogn and 2clogn, but which might not be rooted at zqp.
There are two cases: the trees are disjoint, or they intersect. If they intersect, the resulting
union is a tree than can occur with a probability comparable to that of an h-superdependency
tree of the same shape. There is the minor difference that the root of 15 need not be successfully
embedded. We account for this statistical variation by including an extra factor of n.
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In view of this, we see that

T, Toc[l..an]
1Ty 1<clogn, (T1)|T1|:wan
clogng|Tq|<2clogn
T nTy=0

> Prob{er, 1,} + O(n="*1) according to (22),
T, Tyc[l..an]
1T 1<clogn, (Tl)lTllzxan

clogn<|Tyl<2clogn
T10T2:0

< E[Na/n] Z PrOb{eT,T} + O(n_r)7

Tc[l..an]
clogn<|T|<2clogn

= O(n~"*1), since E[N;] = O(1), and because of the reasoning in Corollary 1.

IN

As r is arbitrary, the result follows. |

We now use a different representation, which gives a one-to-one mapping between superde-
pendency trees and their representations. While the following representation is tailored to match
the baroque features of superdependency sets, the combinatorial lemmas apply equally well to

more general structures.

Definition 9.

e Let D = (x1,29,...,zan) be a sequence of atoms. We say that 7" is an AND_OR tree over

D it T is a singleton AND node, or T is finite and the natural parse tree for

ok
= AV Ty
j=1i=1

where each T; ; is an AND_OR tree over D. Each AND node of T' stores an atom from D,

but the OR’s do not, and no atom appears in more than one AND node. The descendent

atoms of an atom y € T precede y in D. The adjacency list of each AND node is ordered.

The OR node children only bear the implicit ordering induced by the contents of their AND

roots.

It is easy to see that this description gives a faithful representation for superdependency
trees: an AND node has edges representing the unsuccessful probes by its resident atom. The
OR nodes point to children that all collide at a common location. All but the earliest child of an

26



Closed hashing is computable and optimally randomizable with universal hash functions

OR node are dummies. Some AND_OR trees will represent superdependency trees that violate

the vacancy criterion; this will cause no difficulty, since we shall not use them.

Definition 10.

e Let 7' be an AND_OR tree. Then S is an implicant subtree of T it S is an AND_OR tree,
has the same root as T', its edges and vertices are contained in 7', and each AND node in S
has the same outdegree as in T'. It is easy to see that such an S is a local superdependency

tree, and vice versa.

e Let S c T denote the property that S is an implicant subtree of 7.
By definition, T'c T'. It is also worth remarking that if 7' is an AND_OR tree that satisfies our
vacancy criterion, then each implicant subtree S c T' also satisfies the requirement, since true

vacancy is defined with respect to the atoms in D.

Definition 11.

o Let 7' be an AND_OR tree. Let R be the set of OR nodes in T'. The degree of freedom of
T fr(T) is defined to be:

> (outdegree(v) —1).

veR

e Let the node count of 7' be the number of atoms from D that reside in 7.

Lemma 1. Let 7" be an AND_OR tree. Let X be the indicator function that equals one if the
atoms named in 7" hash into a structure that satisfies the AND_OR structure stated by 7', and
in a way that satisfies M (%) and equals zero otherwise. Then

> (—1)fT(S) =1, and hence Y (- xg = eval(T),

ScT ScT
where eval(T') is the Boolean evaluation of the logic statement expressed by 7" about the probing
behavior of its constituent atoms.

Proof: Consider the first formulation. Its proof is by structural induction over 7. The

formula holds if 7" is a single node. If the root AND has at r > 2 children, then we simply note
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that > (-=1)I7(8) = 11 (=1)/7(9) | where T’; comprises the root of 7" and the j-th OR child

ScT J=15cT;

as its only child.

If the AND root has only one OR child, which has r children, then Z(—l)fr(s) =
ScT

T

> <T) (=1)-1.1=—(1-1)" + 1, since all (non-empty) combinations of the OR node’s subtrees
» J

=1

can be used to construct S c T'; here structural induction is used to attain the factor 1 that

arises from each such subtree S.

Finally, the latter formulation is just a restatement of the former when restricted to the

subtree of 1" that is logically equivalent to \/ S. 1

ScT
stl

Theorem 3. For fixed load a < 1 and suitably large fixed ¢, d and h, with ¥» > dlogn, the

expected number of probes to insert x4y, in UH, DH, and DH,, is bounded by ﬁ + O(1).

Proof: This bound is elementary and well known for UH, although (1) gives, in passing,
an independent albeit not so elementary proof of the fact. Rather than evaluate an even more

complicated expression for the expected number of probes in DH and DH,, we shall formulate

(OB
an elaborate expression that, in U/ H, must equal ﬁ—I—O(%), and observe that the computational

differences, for the analogous expression in DH and DH,, comprise an additive O(L).

Definition 12.

o Let Tri be the set of all fully structured h-superdependency DAG-trees (where all dummies
are unambiguously identified as in the AND_OR representation) that have k vertices, and
have outdegree ¢ at the root.

The tree property just says that the structure is a tree it we view the edges as undirected.
o Given T'c [1,an — 1], let DF denote Dy concatenated with an.

e Given 7 ¢ Tri, Let (H(h)(D%) — T) denote the event that the set D is locally hashed into
the tree structure 7, and the actual nodes (apart from the root) are assigned locations that
satisfy M (%) at the times of their insertion in D. By definition, we require that |D}'| = k.
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e Given an event F, let X(E) be the indicator function for F, which is one if £ occurs, and

zero otherwise.

(h)
d

sdep

e Let Ey,e. denote the event: ( the (globally defined) h-superdependency DAG G (zan, D)

is a tree ).
Let Trt = Trt
e L€ e = Uk<clognd Tk

o Let

JSCIE S (- D2 (HW(DF) = T) X (Eipec).

Tc(1,2,...,an-1)
1T |<clogn
TeTré

Lemma 1 guarantees that Pl(é) achieves the correct zero-one values when restricted to the

portion of the event space where |3dep(h)(1;om, D)| < clogn.

o Let PZ(Z) be the number of local h-superdependency AND_OR trees that occur with clogn or
fewer atoms from D, with root zan, AND degree ¢ at the root, when sdep(zan, D) > clogn,

and G gg)ep

(an, D) is a tree. Let Pz(g) be zero when sdep(xan, D) < clogn or ng)ep(:can,D)
is not a tree.
By definition, Pl(z) —I—PZ(Z) is never negative, and Pl(z) —PZ(Z) is never positive when sdep(zan, D) >
clogn.
Because of limited independence, and the use of probe axioms that permit a fair amount of

deviant probe behavior, there are additional error terms. When the h-superdependency set gets

too large, our limited independence will fail to quantify its behavior very well.

o Let

P; = cgnProb{|sdep™) (zan, D)| > clogn},
which charges a cost of ¢yn probes to the event.

e Even longer probe excursions might occur, which are quantified by setting

P, = Z Prob{probey, > t}.

t>con
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We now analyze the expected number of probes contributed by non-tree DAGs. The error
Py captures some of these events. Consider the h-superdependency DAGs G that are not trees
and yield T € Tr" as their omnidirected spanning tree, where |7| = k.

&)
o Let P% be the expected number of h-superdependency DAGs of clogn or fewer nodes that

are not trees and occur with root x4y, and where x4, has no non-tree edges.

The following two terms account for the extra probes by non-tree edges of a DAG G.

e Let, for k < clogn, B(k) be the indicator function for the event
(|sdep™ (zan, D)| = k), and degr(G) > degr(T). Set
Ps= > 2kE[B(k)],
k<clogn
so that we take a penalty of 2|sdep(®) (x4, D)| probes when zan uses at least one non-tree

probe.

e Let, for k < clogn, FR(k) be the indicator function for the event:
(|sdep™ (zan, D)| = k), and degr(G) > degr(T) + 1. Let
Pr=cynx > E[ER(k)],
k<clog n
so that we take a penalty of cyn probes when x4, uses two or more non-tree probes.
Finally, we must account for the errors that occur due to the differences in the models and
instances of UH, DH, and DH,. Of the expressions listed, only P has a contribution that is

not already asymptotically counted.

o Let
Py = Z E |Pr0bDH¢X(H(h)(D;) —T)- ProbUHX(H(h)(D;) —T)|.
1<f<clogn Tc(1,2,..,an-1) ¢ i
1T |<clogn
TeTré

We conclude that

Elprobean) = S E[PY14+0( S B[P+ P+ Py+ Ps+ Po+ Py + P).

0<f<clogn 0<f<clogn
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In our models, the probability that a tuple of k items hashes into a local tree can vary by a
factor of only (1+ O(%)) (Lemma 2 of [16]). Similarly, the probability that a set of k locations
satisfy our multiplicative vacancy overestimator, at specific insertion times, is, up to a factor

of (1+ 0(131_2))7 independent of the specific family of hash function in DH, (Lemma 6 of [16]).

Consequently,

= Y sthano)=od)

1<k<clogn

by Theorem 1.
Furthermore,
Soctectogn EIPYY] = O(3) by Corollary 4;
Py = O(1) by Theorem 1, Corollary 1, Theorem 2, and Corollary 2;
Py = 0O(1L) by the definitions of DH and DH,;
Ps + Ps = O(1) by Theorem 2; and finally,
P; = O(L) by Theorems 1 and 2, Lemma A, the definitions of DH and DH1, and the
fact that the two extra constraints on the root’s probing introduce an additional factor

of 0(5—2) into the accounting. |
3. Extensions

We now apply the techniques from Section 2 to see what else can be deduced for variants of
double hashing with full and limited randomness, and linear probing and uniform hashing in

the case of limited randomness.
3.1 Higher moments

Our generic error bounds also apply to such performance measures as the expected r-th moment
of the probe count. The basic reason for this fact is a convenient representation of moments in

our dependency set algebra. We may write:

robel] — . np® 1ol
Elprobel]= > (I"=({-1)")P —I_O(E)'
{<clogn
The cutoff clogn needs only a nominal adjustment, due to the radius of convergence for the

generating function with coefficients s(k, an), and the requirements for DH and D Hy must be
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modified to guarantee that for some fixed ¢y that depends on «,

> tr=1Prob{jut_; {p(z,))}| < an+1} < 1/n.
t>con
Corollary 5. Let r be fixed, and load a < 1 be fixed. Then for sufficiently large fixed ¢,
depending on « and r, and ¢ > clogn, where
Epp, [probeq,] = By glprobes,] + O(5),

provided ¥ > clogn. |
3.2 Tree statistics

An immediate outcome of our limit studies is that there is a probability distribution on de-
pendency DAGs, and this distribution is asymptotically the same in UH, DH and DH, for
sufficiently large ¢ = O(logn). Recall that a hash tree structure is defined to impose, on the
vertices, a total order that is consistent with the partial order dictated by the tree structure

itself. A reasonably representative distribution theorem is the following.

Theorem 4. Let 7' be a fixed hash tree structure of & vertices. Then the probability, in UH,
DH, and DH,, for sufficiently large 1> = O(logn), that the dependency DAG G(zan, D) is
isomorphic to 7" is ﬁ(l —a)(a- %2)]“‘1(1 + %kz)) IThe error factor comes from Appendix
A or from [16]. The principal term can be derived from the proof of Theorem 1 in [16], or direct

calculation in UH.

3.3 The criterion M(?)

As indicated earlier, the probability distribution for our vacancy estimator M(*) converges much
faster than the weak calculations we provide. It is even interesting to observe just how far the
vacancy criterion M(2) can be used to attain optimal probe performance for DH,. Surprisingly,
perhaps, it turns out that the full use of the M(2) criterion gives a constant for the expected
number of 2-superdependency trees for loads o < .669. The details are omitted.

The basic facts are that we may compute ¢(2) explicitly to get ¢(2)(an) = el=22=¢"*(141/n),
and Q(Z)(an) =(1+ e“”)el‘e_CY —2. The value .669 is obtained from a numerical overestimate to

32



Closed hashing is computable and optimally randomizable with universal hash functions

the rescaled differential equation associated with equation (2) and ¢(2) as stated with u =1. A
change to p = 3, for example, would yield a conservative cutoff for optimal performance bounds

under M(2),
3.4 Tertiary clustering

In tertiary clustering (which is also called 2-ary clustering), the probes sequence is defined,
for j > 2, by p(x,7) = f(p(z,1),p(x,2),7) where the probes p(z,1) and p(z,1) are assumed
to be fully random, and f is a fully random uniformly distributed hashing function mapping
[0,n% — 1] x probe index - [0,n — 1]. See, for example, [3].

Our performance bounds show that any (reasonable) deterministic f, will achieve the same
performance as tertiary clustering; the randomness provided by the first two probes is sufficient,

as long as the requirements for DH,, are satisfied.
3.5 Uniform hashing

Uniform hashing is generally viewed as an idealized model because of its computational require-
ments. Each probe requires the evaluation of a random probe (or worst yet, each element must
be mapped into a permutation). We can use 1-wise independence to define a reasonably uniform
scheme that is robust and has optimal performance, up to negligible errors, for any load factor
bounded by 1.

For size |D| = an data sets, the construction in Section 1.1 of [16] gives a universal set
of linear hash functions that, with high probability, maps D without any collisions into, say,
[0, p—1], where p ~ n*. We can then hash [0, p—1] into [0, —1] by defining a )-wise independent
Fy, with domain [0,p— 1] x [1,%], so that p(z,j) = f(¥ x  + j) mod n, where f € F.

As stated, there is a slight technical flaw. These hash functions will include a small number
of defective functions that fail to meet the robust coverage requirements. Even the presence of
one defective hash function will spoil the expected performance, if it fails to hash D, no matter
how many probes are used. Accordingly, a scheme that uses U H,, should either switch to linear
probing, or rehash the entire data set, once some large number of probes (such as n, or n¢) have
been expended in an unsuccessful attempt to insert a given datum. Alternatively, a more robust
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formulation of p(z,7), for our example, might be p(z,7) = f(¢ xx+(j mod ¢»)) 4+ 7 mod n, where
f € Fy, and ¢ is relatively prime to n.
In any case, we have the following Corollary, that is subject to a robustness requirement

such as that stated in the definition of DH.

Corollary 6. Let r be fixed, and load a < 1 be fixed. Then for sufficiently large fixed ¢,
depending on « and r, and v > clogn, where
Ev p, [probep,] = Ey glprobey,] + O(5),

provided ¥ > clogn, and the hashing includes some form of robustness guarantee.

4. Linear Probing

Linear probing is a hashing scheme that trades some of the efficiency of double hashing for
the computational efficiency of having only one non-trivial evaluation per key reference. It
originated at a time when computation was more expensive, and search was somewhat local and
sequential, which may be still be the case, for some storage devices. In this scheme, p(z, k) =
f(z)~k+1 mod n. Knuth [11] showed that the expected insertion cost for z,,, 11 is 1+1 Y ksolk+
DY~k which is less than (1 +1/(1 —a)?)/2.

Let L P denote the model of linear probing with fully independent uniformly distributed hash
functions. Let LP; denote a model of linear probing with, for simplicity, uniformly distributed
and fully ¥-wise independent hash functions. As before, we construct a formulation for the
expected number of probes that will expose an approximate isometry between LP and LP,.

Let X (/) bound the probability that a table of n locations will have more than I consecutive
table locations occupied after an — 1 items are inserted in LP (or LP,;). It is convenient to use
X(7) to analyze a slightly different problem, which involves hashing k items into [1,27] without
wraparound: if a bottom segment [1, Ij] becomes full, then items subsequently hashing into the
segment are discarded.

Let W (k) be the expected number of probes to insert a key x item onto [1,2/], when z
hashes with its first probe is to location I + 1, and &k keys have already been inserted among
the locations [1,2/] according to linear probing. With probability 1 — X(7), the keys inserted
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outside of this interval cannot affect the hashing of x. We will require ¥ to be so large that

W (k) is the same in LP and LPy, for relevant k. Then by inclusion-exclusion,

Elprobean] = > W(k) (O;gn_}jjl) (%)k—i—j <k ;';J) (~1)7

k<2l
0<j<dlel]-k (23)

L0 (nX<f>+ > wm (%) %)M <M’iﬂ)) |

k<21

where both E[probeqy] and X(I) are computed in the same LP or LP,. We charge a penalty of

n probes if the table has more than I consecutive locations filled, for some interval, at insertion

() (D)

0<y<dreN-k

time z4pn. The sum

uses inclusion-exclusion to overestimate the probability that exactly & items will have a first
probe hashing into the interval [1,2]], among locations [0,n — 1]. The inclusion-exclusion factor
(I”}l']) is due to the fact that the summation begins over k-tuples. The bound on j is selected to
be large enough to give a satisfactory error, which is just the last term, and to stay within the
freedom v = 4el.

The value for W is the same in LP and LP,, since k is suitably bounded, as is the expected
number of (k + j)-tuples that initially probe [1,27]. The only model dependent issue is how

large I has to be in LP,

> 8o that X(I) and the inclusion-exclusion errors will be small.

The simplest way guarantee that X (/) is small is to use Chernoff-Hoeffding bounds for
limited independence.

Evidently, X(I) < nProb{at least [ items in D have their first probe in [1, ]}, since the
factor of n accounts for all shifts of [1,7]. But this probability describes a large deviation
for a sum of an ¥-wise independent Bernoulli trials, each having probability % of success.

From a weak application Theorem 5 of [17], we attain that if ¢» > I(1 — «), then

—(1—a)2I
3

Prob{at least [ items in D have their first probe in [1, ]} <e

It follows that X (/) is nominal in LP and LP; when v = c¢(logn), for suitably large fixed c.
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The remaining errors in the summation (23) are bounded by the inclusion-exclusion terms

where j = 4[el] — k, which are bounded by

an — 1\ /21 *¢l ATel o fan—1\ f2I\* fder
k§]W<k><4fe11)<W) (e <e(tia) 5) ()
¢ 4el (21)461
<20 e~
94el el
221 (3¢)(4e-2)1
(2e)?
22](3/2)(46—2)]
¢ 4el (6)21
<2 e
. (a)élef
S 2”(3/2)(46-8)1'

< 2n(a)*e!

< 2n(a)*e!

Since all errors are exponentially small in I, we have the following.

Theorem 5.

For any constant w and any fixed load « < 1, there is a constant ¢ such that linear probing
with a hash function chosen from a set of clog n-wise independent hash functions results in an
expected insertion cost that exceeds that of LP by at most n=%. |

We deduce that LP and L P, have, apart from a polynomially small error, the same expected

r-th moment of the probe count, for any fixed r.

5. Conclusions

We have shown that in double hashing, a universal family of hash functions, that with high
probability provides clog n-wise independence, will give optimal performance for any fixed load
bounded below 1. The notion of double hashing is generalized to include almost any reasonable
probe scheme. Similarly, linear probing incurs no loss of performance when such hash functions
are used. These optimality results apply to the expected r-th moment of the probe count, for
any fixed r.

As noted in [16], a pool of O(log log m+log ?n) random bits are sufficient to achieve suitably
random universal families. The hash functions of [18] show that it is indeed possible to program
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hash functions that exhibit, with high probability, clog n-wise independence on the subset of keys
D, execute only a constant number of arithmetic operations to hash a key, and use O(log log m+
log ?n) random bits.

These results comprise a significant step toward understanding why extremely simple func-
tions seem to perform so well when used to double hash arbitrary values into a partially filled
table. Nevertheless, there is still a gap between the use of logn-wise independent hash func-
tions, and those that are typically used; yet one may well wonder if real data, when hashed by
standard hash functions, might, in fact, exhibit the statistics of log n-wise independence.

Our proof technique analyzed local and global hashing interactions separately, and used ana-
lytic tools to measure complicated but weakly correlated events in terms of simpler independent
processes. Bundling and thinning techniques were used to eliminate (spurious) combinatorial
explosions from more naive counting formulations. Surely these methods can be applied to oth-
er probabilistic processes that exhibit weak correlations or that might only be supported by a

source of limited randomness.
Appendix A

Lemma A. Adapted from [16]. Let GG be a superdependency tree of k vertices, and let S =
(S1,55...5;) be a sequence of k distinct elements in U. Then for k& = O(nl/3),

1) The probability that the superdependency DAG G, (S) = G under DH,;, for ¥ > 3k, is

1+0(k%/n)
nk—1  *

2) The probability that S hashed into a superdependency DAG, that properly contains the
structure G as its omnidirected spanning tree, under DH,,, for ©» > 3k, is bounded by
O(k3 [nk).

Proof: Let G =(V,E), where |V|=k. Let Tr = (V, Ep,) be the omnidirected spanning
tree discovered by the search. Let the sequence S be (§1,§2, . ..,SY;), list the vertices in the
order of discovery by the DFS, with the root first. We embed the vertices in this processing
order.
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1) Suppose that G is a tree, whence Ep, = FE. The root §1 can be embed anywhere; there
are no constraints. Consider, now, the embedding of bi», for some 7 > 1. Let gj have the
parent ST in (¢, and suppose that vertex §] has r children in (G, has indegree 1 and is the
h-th probe of gz Then the probability that the h-th probe of Si is to a vacant location

(with respect to 3\1,@,...,@_1) is between 1 and 1 — O(j;l), and the probability that

n

p(:q;,r + 1) = z given that p(gz, h)=zis n—é(l)'

It 3; is a dummy root with r children, then the probability that its (r+1)-st probe does not
collide is between 1 and 1 - O(%) However, each dummy root will be accompanied by a cross
edge to a previously embedded vertex. This cross edge will comprise a probe to a previously
embedded vertex, and will have a probability of ﬁ(l) of occuring as specified. The vertex
issuing this probe will thus have two constraints (or one if it is a dummy root): one for the
unsuccessful cross edge probe, and one for a successful insertion into an unsuccessful probe

location of its parent (if present).

We appeal to the independence of individual probe sequences to multiply all k& factors to

get a value between (1)5~1(14 O(k/n)) and (1 - On(ﬁ))(%)k‘l, which proves 1).

2) If G(S) is not a tree then E # Fp, and the nodes of T'r have different embeddings since
collisions occurred. The tree construction is similar, but some nodes x € T'r, will have gaps
in their probe sequences p(x,1),p(z,2),... to their tree children, since edges to nodes that
are already embedded or that have embedding locations already specified will be omitted.
Now, the initial probe sequences for any k items are mutually independent, as long as the
total number of probes is bounded by . Consequently, the probability that V hashes into
a DAG that yields Ep, as its search tree, under traversal by the DFS, is at most Hle Pris
where pr; overestimales the probability that the j-th vertex is hashed to have the correct

non-tree probes to previously determined locations.

Let gj have h; tree edges. To upper bound pr;, we distinguish among three cases: gj
has no non-tree edges, §] has fewer than h; 4+ 2 non-tree edges and at least one, and :9;
has at least hj + 2 non-tree edges. Note that if no two locations can be probed twice in a
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probe sequence — as is the case in double hashing — then cases two and three combine into

the case 3; has at least one and at most k — 1 non-tree edges.

The first case is as the overestimate in 1), and contributes a probability of at most 1 to

prq, and at most L(1+O(1/n)) to pr;, for j > 1.

In the second case, there are different DAG structures, depending on which probe count
within (h; 4 2,...,2h; 4 2) is the last and actually embeds S; Summing over all possible
last probe counts, over the possible probe counts that correspond to the first non-tree edge,
which is among the first h; + 1 probes, and the set of possible destinations for this first

non-tree edge, (which must be to a location already probed by 3; or some other item in 5),
O((h;+1)(h;+1)k)

we get p

as an overestimate for the probability contributed to pr; by case 2.

In the third case, there must be two consecutive non-tree edges among the first 24, +2
probes of §] These edges may go to previously embedded items or collide with earlier
probes of S; To estimate this contribution to pr;, we ignore the requirement that 3; must

be placed successtully and focus on the expected number of ways a first pair of such probes

O(k?)

n2

could occur, which is bounded by (2h; +1)

Combining like terms from the three cases into factors and multiplying gives

(h;+1)k?

n2

1

[Irr= II G+ ) = (2)E1(1+ Ok ).

1<y<k
and hence the probability that GG results from the traversal of a non-tree DAG is at most
(RE 1+ Ok n) - (1= GED G = Ok [nk) N
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