Double hashing is computable and randomizable

with universal hash functions

Jeanette P. Schmidt Alan Siegel
Department of Computer Science Department of Computer Science
Polytechnic University Courant Institute
333 Jay Street 251 Mercer Street
Brooklyn, NY 11201 N.Y.C., NY 10012
Abstract

Universal hash functions that exhibit clog n-wise independence are shown to give a performance
in double hashing and virtually any reasonable generalization of double hashing that has an expected
probe count of 2= 4 € for the insertion of the an-th item into a table of size n, for any fixed
a <1 and € > 0. This performance is within € of optimal. These results are derived from a novel
formulation that overestimates the expected probe count by underestimating the presence of partial
items already inserted into the hash table, and from a sharp analysis of the underlying stochastic

structures formed by colliding items.

Categories and Subject Descriptors: E.1 [Data]: Data Structures—arrays; tables; E.2 [Data]: Data Storage
Representations—hash-table representations; F2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—sorting and searching.

General terms: Algorithms, Theory.

Additional Key Words and Phrases: Double hashing, hashing, limited independence, open addressing, random

probing, uniform hashing, universal hash functions.

The work of the first author was supported in part by NSF grant CCR-9110255 and the New York State Science
and Technology Foundation Center through its Center for Advanced Technology.

The work of the second author was supported in part by ONR grant N00014-85-K-0046, NSF grants CCR-
8906949, CCR-8902221 and CCR-9204202.

Double hashing is computable and randomizable with universal hash functions

Summary

This paper gives the first performance bounds for classical closed hashing schemes in the case of
limited randomness, and thereby provides the first randomized performance analysis of these al-
gorithms in a model that supports programmable computation. In contrast, traditional analyses
have relied upon the use of mathematically random hash functions or the assumption that the
input data is completely random. Unfortunately, real data is seldom provably random, and the
average program size of a random hash function is so large it exceeds the size of the database it is
intended to support. The bounds for limited randomness establish near optimal randomized perfor-
mance for classical double hashing when restricted to programmable hash functions. Moreover, the

proof technique unifies and significantly generalizes previous results even in the case of unlimited

randomness.
Let D = (21,%9,...,2an) be a sequence of an distinct search keys, for o < 1, belonging to
the universe U = {0,1,...,m — 1}. The objective is to hash D into a search table of n locations

without the use of pointers and without relocating placed items. We show that for any fixed load
a < 1, universal classes of clogn-wise independent hash functions yield the same expected probe
performance as fully random hash functions for double hashing, with an error of e. That is,
the expected number of probes to insert the an-th item is 21— + ¢ when clogn-wise independent
functions are used instead of idealized mathematically random functions. The positive constant ¢
depends on « and ¢, but not n. The error ¢ can be any fixed positive quantity. A consequence is
that O(loglogm + log2 n) random bits suffice for these hash schemes. Moreover, subsequent work,
which builds upon the theorems and lemmas of this paper, has reduced the error from ¢ to an
optimalO(L) [17].

Our performance bound for double hashing readily applies to any generalization that exhibits
approximate pairwise independence for the first O(logn) probes of any item, features statistically
independent probe functions for any O(logn) items, and is robust in the sense that insertions must
eventually succeed, provided the table is not full, and that probe locations cannot be revisited too
often, during the insertion of an individual key. In these cases, the expected probe count to locate

2

Double hashing is computable and randomizable with universal hash functions

the an-th item is again bounded by i~ +e. The performance bound for these generalizations is
new even in the case of full randomness.

When combined with the highly independent fast hash functions of [16], these results give the
first randomized classical closed hashing schemes featuring, for a word model of computation, a
constant number of arithmetic operations per probe and nearly optimal probe performance.

These results are derived from a novel formulation that overestimates the expected probe count
by underestimating the presence of local items already inserted into the hash table, and from a

sharp analysis of the underlying stochastic structures formed by colliding items.

1.0 Introduction and background

Let D = (x1,29,...,%an) be a sequence of an distinct search keys, a < 1, belonging to the
universe U = {0,1,...,m —1}. We wish to hash D into a table L[0..n —1]. In closed hashing, which
is also called open addressing, all data must be placed within the hash table, and pointers will not be
allowed. In this model, each key x € U is mapped into a probe sequence p(z,1), p(x,2),...€[0,n—1]
(which ideally would be a permutation of [0,n — 1]), and the generic insertion scheme is to place
x in the first vacant table location in its probe sequence. The search procedure is to traverse the
same sequence until the item is located, or an empty table slot is identified, in which case the item
is known to be absent.

Uniform hashing is an idealized model where the probe sequence p(z,), for each key z € U, is
assumed to be a fully independent random function (or permutation). Traditional double hashing,
which originates in the 1968 Ph.D. thesis of Guy de Balbine [10], defines p(z,7) = f(z) - (j -
1)d(z) mod n, where the table size n is prime, f(z) is assumed to return an arbitrarily selected
integer in [0..n — 1], and d(z) is an arbitrarily selected value in [1,..n — 1]. The 2|U| random
values {(d(z), f(z))},cp are assumed to be fully independent and uniformly distributed over their
respective ranges.

In the most common versions of these hashing models, the probe sequences are used to place
a key in its first vacant probe location, as opposed to some earlier position with the concomitant
relocation of its former occupant. Relocation schemes, as originated by Brent (c.f. [4]), have been

3

Double hashing is computable and randomizable with universal hash functions

designed as a means to reduce the expected search time in applications where search operations
are much more frequent than insertions. Such schemes, however, are not the subject of this study.

Accordingly, we shall hereafter refer solely to models of closed hashing without rearrangement.

Contributions begun by Knuth, [10], Ullman [18], Ajtai, Komlds, and Szemerédi [2] culminate
in a proof by Yao [20], who showed that in terms of retrieval cost, uniform hashing is optimal: no
fixed set of hash functions can perform better than the random ones of uniform hashing. For double
hashing, work by Guibas and Szemerédi [8] and subsequent results by Lueker and Molodowitch [11]
culminate in a proof that for random functions f and d and any fixed load factor a < 1, the expected

5/2
number of probes to insert the (an+1)-st item is ﬁ—l—O(lOg\/ﬁ =), which is asymptotically equivalent

to uniform hashing, and hence optimal.

An important consequence of these analyses is the certainty that only two random functions
need to be defined to provide an optimal hashing scheme. Unfortunately, the question of what
computable functions can be proven to behave like random hash functions has been open. The
formal use of fully random functions on U leaves our understanding of computable hashing in an
unsatisfactory state, since such a function has a program size (Kolmogorov complexity) of about
2|U|log n bits, on average. We could use polynomials of degree n—1 to implement n-wise independent
random functions (c.f. Definition 1) to reduce the spatial cost to O(loglogm+nlogn), while raising
the time needed for evaluating the hash function to n, which is no better than the time needed to

search an unordered list.

A more constructive perspective on the traditional analyses such as [11] is that they establish
optimal performance bounds for hash schemes that use programmable functions, provided the mea-
sure of running time is taken to be the performance averaged over all possible input sequences. This
is not the same as a randomized performance bound, where the expected running time for any fixed
sequence of data is shown to be optimal. The problem of sorting makes this distinction especially
clear. Suppose we wish to sort n integers in the range [0,m — 1]. It is widely believed that no
algorithm, when m is arbitrary, can run in linear time. Yet if integer division of log m-bit words is
taken to be a unit time primitive, then a Binsort of the data into the intervals [¢2, (¢ +1)2 — 1], for

4

Double hashing is computable and randomizable with universal hash functions

1=0,1,2,..., followed by a sorting of each partition will run in linear time on the average, because
the Binsort partitions the data into pieces exhibiting an average size of 1 and a variance slightly
below 1. There are, of course, many data sets where the partitioning is useless.

Carter and Wegman [6] and [19], contributed to our understanding of limited randomness and
randomized performance by introducing the notion of universal hash functions, and showing that
these functions, when used for open hashing with separate chaining, result in an expected probe
performance that is equivalent to the fully random formulation. In this model, L[¢] comprises a
linked list of items hashing to the value ¢: external storage is used to hold colliding items and
pointer information linking them together.

In particular, Carter and Wegman exhibited the universal classes of uniformly distributed h-wise
independent hash functions, (which they called universaly):

Fh,n:{f|f($):(Z CL]?] mod p) mod n, a; € [0,p—1]}, (1)

0<y<h

where p > m is prime. They showed that if, for any D c U, a hash function is randomly selected
from F}, ,, (independent of D), then the sum of the expected j-th moments of the chain (i.e., list)
lengths is essentially the same as that resulting from fully random functions, for j < h. For separate
chaining, the second moment determines the expected retrieval time, whence pairwise independence
guarantees optimal expected performance.

Carter and Wegman also posed as an open question whether a comparable result could be
achieved for any form of closed hashing, such as double hashing. We resolve the question affirma-
tively if, for a sufficiently large ¢, clog n-wise independent hash functions are used.

For our purposes, however, the evaluation time of their universal hash functions is too high, but
the results of [16] exhibit such families with constant evaluation time for a standard word model
Random Access Machine. (The model in [16] follows the standard conventions of allowing indexed
access to a size n array in constant time. A constant number of multiplications and integer divisions
are deemed to require O(1) time for keys in the universe U, but most of the (constant number of)
operations are on O(logn)-bit words. The requisite number of random bits still turns out to be
O(loglogm + log? n), although the O(log2 n) dependence is increased by a constant factor, and

5

Double hashing is computable and randomizable with universal hash functions

auxiliary storage of n¢ (logn)-bit words is provably necessary, for some € < 1.)

The attraction of a universal hashing formulation is two-fold. First, the notion provides a way
to construct randomized algorithms for hashing, which eliminates any requirement that the data
be “random,” for suitable performance. Second, it allows a fixed — presumably computable — set of
functions to be used for hashing, as opposed to an axiomatically specified “random” function.

This work differs considerably from the analyses of [8] and [11] in that both analyze the inter-
section patterns of arithmetic progressions, whereas this work has no notion of such a sequence.

Byproducts of such a proof formulation include the following.

1) Automatic generalization of our performance results to arbitrary hashing schemes that satisfy
(minor) requirements regarding adequate table coverage and that (more importantly) exhibit
approximate pairwise independent probing, which can be formalized as follows.

VeViEk V£ Prob{p(z,k) =1L, plz,i)=j}< W.T

Actually, the probe sequence can be defined by the equation p(x,j) = h(f(x),d(z),s), for
random [and d, and any deterministic function A as long as pairwise independence is assured
for the first O(logn) probes, and reasonable coverage occurs for later probes. The coverage
requirements, as quantified later, simply ensure that overall probe coverage is adequate to

guarantee that the insertion of a key = will fail only when the table is full, and that within any

x’s probe sequence, locations will not be repeated enough to degrade the resulting performance.

2) A proof that O(logn)-wise independent hash functions are random enough to preserve the
expected performance of the hashing schemes in 1), up to a fixed error of e.
The rest of this section is organized as follows. Subsection 1.1 explains why a two-level hashing
scheme can enable the use of functions with a spatial complexity of only O(loglog m—l—log2 n) random
bits. Subsection 1.2 formalizes a notion of limited independence with requirements that, in most

respects, are slightly stronger than the definitions generally encountered in the literature (and in

TWe use the Big-Oh notation in the following standard way: f = ¢ + O(h) means that |f — g| = O(|h]).
Consequently, there is no distinction between f + O(g) and f — O(g). Nevertheless, we shall, upon occasion,
use minus signs to suggest that the worst case error is negative. Also, it is quite reasonable to write, say,

ﬁ =1-=0(h), for h = o(1).

Double hashing is computable and randomizable with universal hash functions

other respects slightly weaker) but are still readily achievable. It also presents constructions of two-
level hash functions that exhibit the statistical randomness required by our analyses. Subsection

1.3 outlines the rest of the paper.
1.1 Reducing the domain

Although our proofs show that any set of sufficiently well behaved hash functions can be used for
double hashing, it is worth noting that a universal class of linear congruential hash functions can
be used to map the data D into a polynomial sized space such as [0,7%] in a collision-free manner,
with high probability. Then the universal class F}, ,,,(as defined in Section 1.0), can be restricted
to have coefficients of size O(n?), as opposed to size O(m), which might be much larger. Such
mappings can be pieced together from techniques in [6], [12] and [7]. Accordingly, we first exploit

the following variation of Lemma 2 from [7]:

Fact 1: Let P, = {p| pis prime and p € (n*log m, (2 + 3)nFlog m)}, for some small suitably
fixed B > 0. Then

Ve#yeD: Probyep {z =y modp} < nF.

Proof: [12],[7]. By the Prime Number Theorem, |P;| = %(1 —o(1)). The product
of any 7|P;| primes in P is bounded below by (n*logm) 7l > (m)'ynk, whence no more than

v < 1/n* of the elements of P can divide |z —y|. 1

Fact 2: Let Fy(p) = {h | h(z) = (az + bmod p) mod n*, a # 0,b € [0,p — 1]}, where p > n* is

prime. Then
Ve #yel0,p—1]: Probyep if(e) = f(y)y<nF.

Proof: [6]. Given x and y, z,y € [0,p— 1], # y, the number of different f € Fy(p) where

f(z) = f(y), is precisely the number of 2 x 2 linear systems in a and b:

{a;l:—l—b:c—l—dnk mod p,

ay+ b= c+ enk mod p. where ¢,d,e > 0; c+dnf <p; c<nf; e£d; c+en* <p.

Now ¢+ dn* can have p different values. The remaining parameter e cannot be set to d because
this would give @ = 0. Thus there are at most [p/n* — 1] different values available for e. Since there

7

Double hashing is computable and randomizable with universal hash functions

are exactly p(p — 1) different functions in Fj, and the number of f where f(z) = f(y) is at most
plp/n* — 1] = p|p/n*] < ppn;kl7 the result follows. |
Combining Facts 1 and 2 shows that a hash function selected at random from FF = Uper, Fo (p)
will, with probability exceeding 1 —2(%*)n=*, map D into [0,n* — 1] with no collisions at all among
its (%') pairs. We may take k =4, so that the probability of a collision is below 1/n?, and assume
4

the functions Fj, ,, are defined for p ~ n*.

Because of this preprocessing, the spatial complexity of our composite universal hash functions

F, o F is O(loglogm + log” n) bits, for h = O(logn).

1.2 Limited randomness

Since the randomness of our hash function family restricts the size of the small data sets where the
hashing behavior is easy to analyze, it is convenient to formalize this family characteristic.
Carter and Wegman defined a family of hash functions F' with domain U and range R to be

strongly universal, if

Y y1,...,y, € RV distinct xq,...,2, €U : |{f€F:f(:ci):yi,izl,Q,...,hH:%,

so that the fraction of functions in F' that achieve the desired mapping of the z;’s is the same
as that for fully random functions. This definition combines the requirements of uniformity and
h-wise independence. The specification is a little stronger than that used by Carter and Wegman
for open hashing, and was introduced by them for application in cryptography [19]. They also
gave an application of almost universaly functions where the function density lRth is multiplied by
a constant factor and used as an upper bound.

Our bounds for closed hashing are so dependent upon inclusion-exclusion that we need a very
precise notion of almost universal;,, which separates the uniformity and independence requirements

and which is formalized as follows.

Definition 1.
We say that a set of functions /' with domain U and range R is an h-wise independent universal
family of hash functions with 3-tolerance if F' exhibits

8

Double hashing is computable and randomizable with universal hash functions
(h)-wise independence: ¥ yy,...,y, € R,V distinct z1,...,2, € U :

{fel: fle)=y;,i=1,2,.... h}| :HI{feFif(lfz')Zyi}l

]] ’
and near uniformity:

VyeRVazel: (1—ﬂ)%§|{f6F:f(x)=y}|§(1+5)%-

Thus the family of hash functions has a nearly uniform distribution, and the joint probability
distribution on any subset comprising i or fewer points in U, exhibits the usual multiplicative
independence. It is worth observing that the function classes F}, ,,, from Section 1.0 are (h)-wise
independent with 1/n3-tolerance for a universe of size n*.

On the other hand, our premapping step for larger universes will not quite meet the multiplica-
tive requirement of Definition 1 because F will have too many hash functions that map a sequences
of hash keys D into [0,n*] with collisions. If we ignore such unfortunate cases, and charge, say, an
O(n) cost per insertion for such instances, then our performance bounds will not change, and we

may rely on the constructions of Section 2 to perform well enough in general. Accordingly, our final

randomness characterization is as follows.

Definition 2.

We say that a family of hash functions F' with domain U and range R is effectively (h)-wise
independent with 3-tolerance if for each D c U with |D| < n, 3F ¢ F where % > 1 and F is
(h)g-wise independent with tolerance-3 for domain D and range R.

We shall take the requirement of uniform distribution with 3-tolerance to be understood, and
simply refer to these schemes in terms of their limited independence. Section 1.1 gives a formal
construction where for any fixed set D c U of n input keys, all but 1/n? of the Fi} map D into [0,n4]
in a collision free way, and the subsequent hashing is fully (h)-wise independent with tolerance
%. Evidently, this family is effectively (h)-wise independent with tolerance—nl—3 according to the
requirements of Definition 2.

In our formal models, a family of hash functions H comprises a finite set of functions. Given

the data sequence D, a specific hash function is selected by randomly choosing a function from H

9

Double hashing is computable and randomizable with universal hash functions

with each element equally likely to be selected. The statistical properties defined by Definitions 1

and 2, as well as the those which follow in Definition 4 are with respect to H.

1.3 A proof outline

Traditional analyses of hashing view the state of a hash table as a stochastic process that evolves
over a duration of an probabilistic insertions. Lueker and Molodowitch [11], for example, analyze
double hashing in the fully random case with an elegant scheme that keeps the table distribution
uniform by introducing moderately improbable randomizing insertions of fake items to correct the
distribution at each insertion step. By vigilantly maintaining a fully random table distribution,
they establish a simple proof that double hashing and uniform hashing exhibit comparable collision
statistics in a fairly strong sense, and this intuition has turned out to be invaluable in this current
work, which establishes an even closer statistical equivalence. Unfortunately, such an evolutionary
approach seems to be inappropriate for instances where the randomness is limited, since all of the
randomness would be used up after logn insertions. Instead, we are obliged to establish the bounds
with a proof technique that can be extended from uniform hashing to double hashing with full
independence to a comparable double hashing with limited independence. The hashing models are
fully specified in Definition 4.

Let a fixed hashing model complete with (probabilistically selected) hash functions be specified,
and consider a key x € D. We may define its dependency set dep(x, D) (Definitions 5,6, and 7) to
comprise x and the recursively defined members of the dependency sets of the keys that occupy the
table locations probed during the insertion of z.

Given a subsequence S C D, one may ask, what is the probability that the specific items in S
are the precise and full cause for the number of probes needed to insert x? A necessary condition
for S is that dep(x,S) = S (c.f. Definition 8 as applied to P(k,k) for k = |S|, and Section 2.1.1).
The probability that the probe sequences for S have this behavior turns out to be, up to a factor
of (14 O(@)), the same in uniform hashing and our generalized double hashing schemes, as long
as 3|5| does not exceed the amount of independence of our hash functions (Lemma 2).

Unfortunately, there can be many subsequences in D that, in the absence of other competing

10

Double hashing is computable and randomizable with universal hash functions

sequences, would satisfy the collision conditions for the set S. We may characterize, dep(x, D) as
that special S where dep(x,S5) =S and each y € S turns out to encounter no z € D — S residing in
its probe locations when it is inserted as a member of the full sequence D: its probe locations must
only contain elements from S (Lemma 3). The probability, that each y in S satisfies this latter
criterion when all of D is hashed, is more difficult to estimate. We define the formal notion of a
multiplicative vacancy estimator ¢(t) (Definition 14) that gives an overestimate of the probability

that a given location will be empty when z; is hashed as the ¢-th element in D.

Then an explicit overestimate for the expected number of probes to insert x4y, can actually be

calculated for uniform hashing and any multiplicative vacancy overestimator ¢ (Theorem 1).

The most complicated calculation for double hashing is to estimate the probability that
an arbitrarily specified sequence of probe locations I ¢ [1,2,...,n — 1] satisfies the claim
vj <|T|: (L[I}] is vacant prior to the insertion of z,,) (Lemma 6 and Theorem 3). We define a
quantifiable notion of weak vacancy estimator (Definition 15) where location ¢ is “vacant” at time ¢
if no subsequence of h or fewer items in xy, xy,...,x;_1 hash into a local dependency set that embeds
a key in L[{]. Then we formalize the notion of a witness set (Definition 16), which will comprise (a
maximal) subset of D—S that includes (among other keys) all subsets that will (or might) cause the
vacancy condition to be false. The probability that our weakened vacancy criterion holds can then
be estimated by a summation (equation (22)) over all subsets of D — .S of the probability that each
subset i1s a witness set that does not contradict the vacancy statement, and this summation could,
in principle, be summed (in equation (2)) to give an expression that overestimates the insertion cost
for x4n. Rather than evaluate such a hopelessly complicated summation, we show that the sum is
asymptotically the same for uniform hashing and double hashing with full independence (Lemma
6).

Inclusion-exclusion is used to extend the result to double hashing with limited independence.
We also have to establish a bound that guarantees that the witness set has a size that is proportional

to logn, with overwhelming probability (Lemma 7).

Lastly, Theorem 3 shows that for uniform hashing, the explicit vacancy estimate given for ¢

11

Double hashing is computable and randomizable with universal hash functions

satisfies the multiplicativity criterion used for our estimate in Theorem 1, which therefore holds,

and provides an evaluation of our more complicated performance summation under all models.

2.0 Generic probe counts

Since our probe formulations are based on graphs that capture all essential collision behavior, a few

preliminary definitions would seem to be appropriate.

2.1 Basic definitions

Definition 3.

e The hash keys D = (21, 2,...,Zqn) comprise a sequence of an distinct items, o < 1, belonging
to the universe U = {0,1,...,m — 1}, and p(x,j): U — [0,n — 1] denotes the j'th probe for key

Z.

e The ith element in a sequence S is denoted by S;. For D, we also have D, = z,.

e The random variable giving the number of probes needed to insert x; is defined to be probe;.

The randomness is due to the randomness in the hash functions as opposed to the data.

e A rooted DAG is a directed acyclic graph with only one root, (i.e. one vertex with indegree 0).
e Let dgr(G) of a rooted DAG (G be the outdegree of the root of G.

e Let z is embedded at location £ mean that as a consequence of hashing D into table L, L[{] = z.
We extend this notion to include cases where only a subsequence S ¢ D of the data is hashed,
in which case D should be replaced by S, and the embedding assignment should be understood
to be possibly incorrect, when all of D is processed.

We will be analyzing how D is hashed into a table L of size n under three models: uniform hash-
ing, a generalization of double hashing where random hash functions are used, and the same double
hashing model where the hash functions are constructed from a family of (v)-wise independent
family of universal hash functions.

12

Double hashing is computable and randomizable with universal hash functions

Definition 4: The models UH, DH, and DH,.

e In UH, the probe sequence p(x,x) is an independent family of random variables that are
uniformly distributed over [0,n — 1]. Any collection of sequences p(zy,*), p(x9,*),...,p(Tn,*)

are mutually independent, for distinct x;.
e DH relaxes the requirement that each individual probe sequence be fully random.

1. Each probe sequence p(z,*) exhibits approximate pairwise independence:

VeVi,ji#Ejyr,sel0,n—1]r#s: Prob{p(z,i)=r, plz,j)=s}= W

2. Furthermore, the random sequences {p(x,*)},. p are mutually independent. This condition

need only hold for a subset of hash functions Fc F, where F depends on D, and % >
O
1- 920

3. In addition, we have the following robustness requirements.

i) Extremely long probe sequences are quite rare: For a fixed ¢ that depends on «a;,

v Z Prob{| Ule {plz,)} <an+1} < 01(11).

t>con

ii) Probe sequences are unlikely to reprobe locations too frequently.
VeVj<k<h,rel0,n-1]: Prob{p(z,j)=plz, k), ple,h)=r}= %211
Va Vh<i,j <k, (h,i)# (j,k): Probip(z,h) = p(x,i), p(x,j) = p(z,k)} = L.

n

e In DH, the statistical probe behavior of an individual probe sequence is subject to the same
requirements as in DH for the first b probes, the global coverage requirement must still hold,
and the joint distribution of initial probe sequences, for collections of @ or fewer probes, is
required to be statistically independent, for distinct items. More precisely,, we have the follow-

ing.
1. VeVi,j<tvi#£gV¥r,sel0,n—1]r#s: Prob{p(xz,i)=r, p(z,j)=s}= W

2. Knowing a limited number of the probe values for a small set of keys gives no information
about the first few probes for another key. Formally, let Z be a set of keys (€ U with

13

Double hashing is computable and randomizable with universal hash functions

associated probe count bounds j¢, where 3. 7 j- < ¢. Let {KC,17K6,27"'7“C,14}C€Z be a
multiset of arbitrary probe locations. Then
Prob{ \ N\ p(C,5) = w¢;} =[] Prob{ \ p(¢,5) = e}
CeZ 5<i¢ CeZ I<I¢

This condition need only hold for a subset of hash functions Fc F, where F depends on

F o(1
D, and%>l— ?1(2).

3. For some fixed ¢y that depends on «a, Vz : Yiseqn Prob{|Ul_,; {p(z,i)}| < an+1} < L

o)

n? °

4. YaVy<k<h<i, rel0,n—1]: Prob{p(xz,j)=p(z, k), plz,h)=r}=

5. Ve Vh <i<,j<k<w, (hi)# (j,k): Probip(z,h) = p(z,i), p(z,j) = p(z, k)} = 2L,

n2

The requirement that r # s is explicitly included in 1 of DH to ensure that standard double
hashing, which suffices to guarantee that p(z,*) be a permutation, belongs within DH. Similarly,
double hashing and all of DH are included in DH,y.

Our robustness requirements replace the (stronger) requirement that probe sequences be permu-
tations. It is easily seen that some form of robustness is necessary to guarantee that hash functions
do not fail. Consider the damage that would occur if the offset function d(z), for standard double
hashing, were allowed, for example, to be zero even with the tiny probability 1/n3: with probability
1/n3 the number of probes needed to insert x; becomes o and so does the expected probe count.
Such degenerate functions must therefore be excluded from DH and DH,.

Since we are using finite classes of hash functions, a single defective function can place an
otherwise efficient algorithm outside DH or DH,,. On the other hand, we may include such classes
in DH, by modifying the hashing procedure when, say, an item’s first nl/3 probes (or O(n)) have
failed to find a vacant location. A suitable strategy would be to switch to linear probing (where
p(z,j) = f(z) -7+ 1 mod n, for a random f), which would reduce the probability of failure to zero,
and satisfy our global robustness requirement. We could even set f =0, in this case. Alternatively,
one could select new random seeds and rehash the entire data set.

The independence 1 needed for these proofs will turn out to be O(logn). An immediate
consequence of this work is that standard double hashing will achieve near optimal performance, if

14

Double hashing is computable and randomizable with universal hash functions

for example, the probe and offset functions f,d are chosen from an effectively 1 -wise independent
family of hash functions with tolerance nl—3 For example, an adequately independent family is
given by f € Fy,0g, and (d-1) € Fy, 109, where g is a random function in F§. Subject
to the caveats needed to ensure the absence of failure, uniform hashing will achieve near optimal
expected performance for the probe functions p(z,7) = f(j+ng(z)), for g € F¥, and f € Fw’n, where

pon i [0,nFH] = 10,n—1], for, say k =4 as in Section 1.1. The function families F, ,, Fyy,_;, and

qu}’n could be the universal hash functions presented in Section 1.0, or the constant time functions

of [16].

We have already seen that the presence of irregular hash functions, such as the small 1/n?
fraction in £} that have collisions on D are insignificant. We now drop all reference to them since
they induce a probe cost of O(1/n).

To analyze how the ordered data set D hashes into the table, we introduce a family of directed

graphs to capture the structure of the collision events.

Definition 5: The dependency graph G(D).

Given a sequence D of hash keys, we say that a hashing of D defines a directed dependency
graph G(D) as follows. The vertex set of G(D) is D and the edge set is initially empty. Suppose
that when inserting = into the hash table, x is placed in its k-th probe location I, (after probing
li,...,lk_1). We add a directed edge from z to each of the items 7, ,. .., &7, _, residing in table
locations lq,...,{;_;. Each edge is labeled with its corresponding probe number, and each vertex
xp € D bears its label T', which is its position in the sequence D.

Notice that G(D), despite extensive labeling, bears no information to indicate where nodes are

embedded.

Definition 6: The dependency graph G(z, D).

e The dependency graphof x in D, G(x, D), is the restriction of G(D) to the vertex set comprising

z and all nodes reachable from z in G(D). Its edges and vertices are both labeled.

e The dependency set of x, dep(x, D), is defined as the vertex set of G(z, D).

15

Double hashing is computable and randomizable with universal hash functions

It is also convenient to refine these objects based upon intermediate events.

Definition 7: Partial dependency graphs G,(z, D).

e The partial dependency graphs of x; are the probe; subgraphs of G(x;, D), in which z; is
restricted to prefixes of its probe sequence: Gy(z;, D) c Gy(z;,D) C ~-~Gpmbei_1(:ci,D) =
G(z;, D). Gy(z;, D) is composed of z;, the edges corresponding to the first r probes of z; and
the restriction of G(D) to the vertex set reachable from z; by these r probes. We note that
the graphs G,(z,D) and G,;1(z,D) might have the same vertex set and only differ in the

outdegree of the root z in the graph.

e The vertex set of Gy(x, D) is denoted by dep,(z, D).

The set of all partial dependency graphs of x is denoted by G*(x, D). The vertices in each of
these graphs have labels in [1,|D|]. We may relabel the vertices of any G = (V, E),G € G*(x, D), in
the unique order preserving way to 1,2,...,|V]. Let G(x, D) be the resulting set of relabeled graphs.
Clearly G(z, D)| = |G*(, D)|.

These definitions provide immediate formulations for the expected number of probes to insert
x;, as a function of its dependency graph.

We will count the expected number of partial dependency DAGs rooted at x4y, which means
that root x4, may not yet have found a vacant table slot for insertion. Thus the next probe, on
behalf of z4p, will add another branch to the DAG, if the new slot turns out to be occupied. Let
Zan have r children in the DAG G(zan, D). Then it will have encountered r + 1 DAG s. (The
first will have zero children since we do not require the root to be inserted when counting these
structures.) Thus the number of such DAGs actually encountered by xqy is precisely the number

of probes needed to insert the key.
Elprobe;] =Y Prob{dgr(G(z;,D)) > k}
k>0
= Ellg(z;, D)]].

To estimate the probability that a given labeled graph G with k vertices is in G(x;, D), we can
sample all subsequences S of (xq,z9,...,2,_1) with k-1 vertices and map them as prescribed to
the vertices of G. We may then evaluate the probability that the collision behavior of these vertices

16

Double hashing is computable and randomizable with universal hash functions

is exactly as prescribed, and that the chosen subsequence is the right one (i.e. the elements in S
end up in the same locations regardless of whether only S or all of D is hashed). The probability
of the latter event is clearly the more difficult to estimate, since it concerns all of D. Moreover,
estimating the probability that a sequence is the right one involves estimating the probability that
certain locations are not occupied at certain times, which is our original problem. There is, however,
one important difference: we may overestimate the probability that a sequence is the right one by
underestimating the probability that the locations in which a candidate subsequence is embedded
are full. The resulting expected number of such S gives an overestimate for E[probe;].

A key to determining a window size (of subsequences to examine) is to find a minimal sized h:

Prob{|dep(zan, D)| > h} < 1/n?. Pursuant to this objective, we have the following,.
Definition 8: The probabilities P(k,j) and ID(]C,J)

e Let P(k,j) be the probability that a partial dependency graph of z;, (the jth item to be

hashed), contains exactly k vertices: P(k,j) = Prob{|dep:(x;, D)| = k}, for some r.

o Let JB(k,J) be the expected number of partial dependency graph of z; that contain exactly &
vertices:]B(k,J) =, Prob{|dep,(z;, D)| = k}.

The technical reason for defining the IB(k,J) as an expected number as opposed to a probability

is that a single dependency graph may have two partial dependency graphs with the same number

of vertices, due to a collision between z; and some node already within its dependency graph.

Moreover, we now have the following formulation, which expresses E[probe;| as a function of its

partial dependency graphs.

Lemma 1. E[probe;], the expected number of probes needed to insert the jth element z;, equals

zj,
20<k ﬁ(kﬂ)
Proof:

3" P(k,j) = E[IG(z;, D). 1
0<k

Unfortunately, P(k,j) may be a little unruly in DH, because of the possibility of reprobing
earlier probe locations. Accordingly, we account for such events as follows.

17

Double hashing is computable and randomizable with universal hash functions

Definition 9.
Let Erry(j) be the expected number of probes from z; to vertices already belonging to partial

dependency sets of x;: Erry(j) = Efrzozbej_l Prob{dep,(x;, D) = dep,_1(X;, D)}.

Lemma 1 may now be restated as follows.

Corollary 1.

Elprobe;] = Errg(j) +>_ P(¢,5). |
0<’

Remark 1.

Note that the probabilities P(¢,j) (and, in fact, all performance statistics) are defined with
respect to a universal class of hash functions. Now, these probabilities are not, of course, exactly
the same for all classes in DHy; or all classes in DH. However, since UH ¢ DH c DHy, Corollary 1
shows that DH, would be guaranteed to provide optimal performance if P({, ;) and Errq(j) were
shown to be asymptotically the same for all families DH . In the following subsection, we establish

that P(k, k) is indeed essentially the same for all members of DH,;,, when 1 > 3k.
2.1.1 The importance of P(k,k)

The value P(k,k) is of special interest because the event (|dep(x,D)| = k) corresponds to the
existence of a subset 6 ¢ D of k items x € 6, which has the collision behavior |dep(z,6)| = k.
Consequently, ¢ is the dependency set dep(x,ﬁ) for data the subset D = §. The event dep(z,6) =6,
as the next lemma will show, is nearly independent of the hashing scheme and specific items being
inserted. But before analyzing the probability distribution of dependency DAGs, we need a standard

traversal procedure to extract unique spanning trees from each DAG.

Definition 10.

Given a DAG G = (V, E), let its spanning tree be constructed according to the following process.
[ts vertices are scanned in order of decreasing index in D. When a vertex z is scanned, its children
are immediately processed in order of decreasing probe count, so that the vertex in x’s first probe
location is processed after all of its siblings. The tree edges out of = will comprise the edges to z’s
previously unprocessed children.

18

Double hashing is computable and randomizable with universal hash functions

Lemma 2. In DHy, for ¢ > 3k, P(k, k) is within a factor of (1 4+ O(k3/n)) of the same value, for

¥
all k-tuples of distinct items in D and any family that satisfies the requirements of DH,. More
precisely, let G be a dependency tree of k vertices, and let S = (51,57...5;) be a sequence of k

distinct elements in UU. Then for k = O(n'/3),
1) The probability that the dependency graph G(S)= G under DHy, for o > 3k, is ﬂ(zk@

2) The probability that G(S) is a rooted dependency DAG, that properly contains the structure
(i as its spanning tree with root Sy, under DH,, for v > 3k, is bounded by O(k3/n*).
Proof: Let G(S) = (V,E), where |V| = k. Let the sequence S be (3\1,@,...,@), be the
order the vertices are processed as genuine children in our spanning procedure, with the root placed
first. Let T'r = (V, Ep,) be the tree discovered by the search. We embed the vertices in the order

of exploration, root first.

1) Suppose that G(5) is a tree, whence Ep, = E. If the root S) has k children then Sy is embedded
in its h + 1st probe location, which is any one of n locations. The A children correspond to
the h items §1 encountered when it was inserted. The probability that these first 2+ 1 probes
are to distinct locations is between 1 and 1 — O(h?/n). Subsequent node embedding will have
two constraints: a node with h children has its (h 4 1)-st probe location predetermined, and
the first & probes must be to & distinct unembedded locations. Let R; be the set of locations
used for the tree node destinations that are specified prior to the placement specification for
the children of node :S’;) and let r; be the location for gj
The probability that a node S; with h; children hashes to meet these two constraints is:

Prob{< Sphy+0)=r) A 050 #0(5.0), A (p(ﬁj,a);éf%j)},

1<i<€<h; 1<i<h;

which is at most Prob{(p (S hj4+1)=r;)} < ﬂll/—nl, and at least

PR
Prob{(S],h]—l—l =, }— > Prob{ S],h]—l—l —r)(p(g],i)zp(gj,ﬁ))}
1<i<t<h;
= X Prob{(p(S;,hi+ 1) = 1)), (0(Sj.0) = 1)},
<i<h
1reR]»]

19

Double hashing is computable and randomizable with universal hash functions

2
which is bounded below by n—i—(l)(l) — Oi};i) _ (n_lgl(jl))T We used our assumption of local robustness

to derive the second term and pairwise independence to derive the third term. We appeal to

the independence of individual probe sequences to multiply all k& factors to get a value between

(1- O(kz))(%)k‘l and (1)¥=1(14 O(k/n)), which proves 1).

n—1

2) If G(S) is not a tree then £ # FEp, and the nodes of Tr have different embeddings since
collisions occurred. The tree construction is similar, but some nodes = € T'r, will have gaps
in their probe sequences p(z,1),p(x,2),... to their tree children, since edges to nodes that are
already embedded or that have embedding locations already specified will be omitted. Now, the
initial probe sequences for any k items are mutually independent, as long as the total number
of probes is bounded by . Consequently, the probability that V' hashes into a DAG that yields
Er, as its spanning tree is at most H?:l prj, where pr; overestimales the probability that the

j-th vertex is hashed to have the correct probes to previously determined locations.

Let §] have h; tree edges. To upper bound pr;, we distinguish among three cases: §] has
no non-tree edges, §] has fewer than A ; 42 non-tree edges and at least one, and 3; has at least
h; + 2 non-tree edges. Note that if no two locations can be probed twice in a probe sequence
— as is the case in double hashing — then cases two and three combine into the case gj has at

least one and at most £ — 1 non-tree edges.

The first case is as the overestimate in 1), and contributes a probability of at most 1 to

pry, and at most 1(1+O(1/n)) to prj, for 7 > 1.

In the second case, there are different DAG structures, depending on which probe count
within (k; +2,...,2h; 4 2) is the last and actually embeds Sj Summing over all possible last
probe counts, over the possible probe counts that correspond to the first non-tree edge, which
is among the first 2; + 1 probes, and the set of possible destinations for this first non-tree

edge, (which must be to a location already probed by gj or some other item in 5), we get

O((h;+1)(h;+1)k)

n2

as an overestimate for the probability contributed to pr; by case 2.

In the third case, there must be two consecutive non-tree edges among the first 2h; + 2

20

Double hashing is computable and randomizable with universal hash functions

probes of gj These edges may go to previously embedded items or collide with earlier probes
of §] To estimate this contribution to pr;, we ignore the requirement that 37 must be placed

successfully and focus on the expected number of ways a first pair of such probes could occur,

which is bounded by (Zhj + 1)%’;—21

Combining like terms from the three cases into factors and multiplying gives

I = T G008 - g o/,

1<y<k
and hence the probability that G results from the traversal of a non-tree DAG is at most

(F11+ Ok /) - (1= QED (Dr=1 = Ok fnk)
Notice that we have used the pairwise independence of probes, the independence of probes for
k different items, the local robustness requirements that restrict an item’s probe sequence from
excessive reprobing of previously tried locations, and have assumed that the insertion procedure
did not fail. The total number of probes, which governs the independence % as defined in Definition
4 is less than 3k. Even sharper bounds can be attained (more naturally) for true double hashing
and for uniform hashing, but such results cannot improve our asymptotic efficiency results.

In view of Lemma 2, we need to examine the hash statistics associated with trees in greater

detail. Accordingly, we have the following definitions.

Definition 11.
e Let N(k) be the number of distinct ordered (dependency) trees that can occur with k vertices.

o Let Pjycc(k,7) be the probability that some partial dependency graph of z; is a tree of k nodes.

Remark 2.

Lemma 2 shows that for any k element subset § = (6y,...,6;) C D, where k = O(n!/3):

(a) Pk, k)= Prob{dep(6;,8) =6} = n * I N(k)(1 4+ O(k?/n))

() Preclb, k) = =N (RY(1+ O).

The next step is to formalize these remarks and to introduce Err(k,j), a bound that will replace
Errg(j), in the formula of Corollary 1, and include a truncation error that permits the P(¢,j) to

be summed through the first £ terms only.

21

Double hashing is computable and randomizable with universal hash functions

Definition 12.
o Redefine P(k,k) to be n=* 1N (k)(1 + O(k3/n)).
o Let Pyee(k, k) = n=*IN(E)(1 + O(k?/n)).
e Let Erry(k,j) be the probability that the vertex count |dep(z;, D)| > k.

e Let RR(k,j) be the Boolean indicator function for the event
(dep(x;, D)| < k and some unsuccessful probe for z; does not increase the size of its partial
dependency set):
RR(k,j) = (|dep(zj, D)| < k) A(depr (x5, D) = depy i1 (2, D) for some r < probe; — 2).
Let Erry(k,j) = 2E[|dep(xj, D)| x RE(k,j)], so that we take a penalty of 2|dep(z;, D| probes
when z; has a dependency set of size k or less, z; has a directed edge to z; and the indegree

of x4 is greater than 1, in G(z;, D).

o Let Errs(k,j) be the probability that |dep(z;, D)| < k and z; has at least 2|dep(x;, D)| probes

to dep(z;, D).
o Let Erry(y) = Ytseon robiprobe; > t}, where ¢g is used in Definition 4 for DH and DH,.

o Let Err(k,7) =conErri(k,j)+ Erry(k,j) + conErry(k,7) + Erry(y).
It is easy to see that Erry(j) =35, (t+1—con)Prob{prob; = t}, so that this error is the expected

number of probes beyond ¢gn — 1. The expected number of excess probes among the first ¢yn are

overcounted by the three other terms comprising Err(k, 7).

Corollary 2. For ¢ > 3k = O(nl/3),

E[probej] < Err(k,j)+ Z P(i,7).
1<i<k
Proof: In view of Lemma 1, we need only show that Errg(j) + > ;5% IB(L,J) < Err(k,j). But
this follows from the definition of Err(k,7). 1
The following definitions will enable us to formulate P(k,an) as a function of P(k, k).

22

Double hashing is computable and randomizable with universal hash functions

Definition 13.
Let I be a sequence of k distinct locations in our hash table. Let 7" be an increasing sequence

of k indices, T}, < an, with corresponding items Dy in the ordered data set D.

e Define locp(Dr) to be the sequence of table indices occupied by Dy when D is hashed into
L. Let, for a data sequence D', loc(D') = locp,(D'), so that loc without a subscript, takes its

argument to be the complete sequence being hashed.

e Let M(T, 1) be the event: all of D can be successfully hashed into L according to the following
modified hashing process: for j ¢ T', x; is hashed according to its specified probe sequence; for
j=12,...,|T, () can be placed in the (formerly vacant) location L[I;] without concern for
the probe sequence. If some L[/;] turns out to be already occupied at time T}, then M(T,I)

does not occur.

Thus M(T, 1) depends on I, T and D — Dy, but is independent of the values comprising Dy.
Simply stated, (locp(Dr)=1)= ((loc(Dy)=1)AM(T,I)). In models UH and DH the events
(loc(Dy) = 1) and M(T,I) are independent, although they depend on I.

e Let ¢(7, 1) denote the probability of M(T,I). As noted earlier, we have not shown yet that

the probabilities ¢(T', I) for different families in DH,, are very close.

e Given any sequence 0, let ¢||x denote the sequence 6 with x appended at the end.
These definitions can now be put to use to find additional formulations for the expected number

of probes.

Lemma 3.

In UH, for any fixed Iy c [0,n — 1], with || =k - 1:

P(kaan) = P(kak) Z q(T7]0) (2)
Tc[l,an-1]
T 1=k—1
In DH:
P(k,an) < P(k,k) > pnax qo(T,1). (3)
Tc[l,an-1] \I|=k—1
\T1=k—1

23

Double hashing is computable and randomizable with universal hash functions
In DH,, for 3k <:

P(k,on) < P(k,k) > max _Prob{M(T,I) |

Ic[0,n-1]
Tcl[l,an-1 i
|C1£|:k—1] \I=k-1
(dep($an7DT||om) = DT||ozn) A (ZOC(DT) =])}7 (4)
< P(k7 k) Z Icr[r()l?zx 1] q'¢1—3k(T7])7 (5)
Tc[l,an-1 T
|C1L|:k—1] \|=k—1

where the subscript in the expression gy_s; in (5) is intended to restrict numerical computation of
q to inclusion-exclusion calculations that use no more than (¢ — 3k)-wise independence.

Proof: In all three models:
P(kv Oﬂl) = E Prob{(dep(man, DT||an) = DT||om)/\(ZOC(DT) =])AM(Tv I)}

|I|=k—1
|T|=k-1

< E ((Z Pmb{(dep(ianaDTnan):DT”an)/\(ZOC(DT):I)})
\Ti=k-1 |[|=k-1

X Icr[r()l?z}il] PTOb{M(T7]) | (dep(‘ran7DT||an) = DT||om)7 (ZOC(DT) = I)})
I|=k-1

Now 3= 5—k—1 Prob{(dep(zan, Dryjan) = Drpyjan)Aloc(Dy) = 1)} = Prob{(dep(zan, Dpyjan) =
Dryjan)}. We know (Lemma 2 and Remark 2) that in all three models, Prob{dep(xan, Dryjan) =
Dpyjan} = P(k, k), for all Dy, and the same (asymptotic) equality holds if we add the restriction
that the dependency graph has no more than 3k probes. Inequality (4) now follows.

In UH, the event M(T,I) is independent of (dep(zan, Dpyjan) = Drjjan) A (loc(Dy) = 1), and is
uniformly distributed over all sets I that comprise k — 1 elements. Hence (2) follows with equality.

In DH, M(T,I) depends on locations [, but for any fixed I, is also independent of
{(dep(xan, D§™) = D3") A (loc(Dy) = I)}, since hash values on D do not disclose any information
about hash values on D — Dp. Thus (3) follows.

In DHy, large events are not necessarily independent, but our estimates of the conditional
M(T,I) will be based on windows of @ — 3|Dp| probe events for keys in D — D, conditioned on
information about the hash function’s behavior on Dp. Since these events are independent of the
conditioning, the numerical estimate in (5) now follows. 1

Further analysis of P(k, k) will show that P(k,an) is negligible for £ > Clogn, for a suitable
constant C'. Similarly, Err(k), will turn out to be negligible. As a consequence, the behavior of

24

Double hashing is computable and randomizable with universal hash functions

the hash function can be analyzed by determining P(k, k) for the very light loads & = O(logn) and

estimating ¢(7, I) based on small samples of points in D — Dy, for small |T'| = O(logn).

3. Good vacancy estimators and their generic performance equation

Suppose that T' is a sequence of insertion times for a collection of keys that locally hash into a
dependency graph. This dependency graph is important if its apparent hash locations are really
empty at respective times T'. We need a function ¢(7") that overestimates the probability, in DH,

that these |T'| locations are empty at times 7'

Definition 14: Multiplicative vacancy overestimators.

e We call a Boolean function M'(7,I) a vacancy overestimator if, for any sequence of table
locations [and key indices T', the event M (T, I), (that locations [are empty at respective

times 7'), implies the event M'(7',1).

e We call a function ¢(t) a multiplicative vacancy overestimator for an event M'(T,1) if ¢ is
decreasing and for any fixed a < 1, some bound k, and forall D : |D|=an, T c [l,an]: |T| <k,

I cll,n]: |I|=|T|, the following holds:

: _ _ OUTP)\ 1
mmax Prob{M'(L, 1) | [deplaan) = D] alloc(Dr) = D))} < (1 ¥ —) [«
We could have defined weaker multiplicative overestimators that have a correction factor of (1 +
gg—lp), for some fixed p > 2 instead of p = 2, and our asymptotic results, it turns out, would be
unchanged; this extra freedom, however, appears to be unnecessary.

Of course, any multiplicative overestimator for an event M’ that overestimates M is also a
multiplicative overestimator for M. We shall eventually take the bound |7T'| < k to be proportional
to logn, but shall adopt the expedient of leaving its value unspecified as long as possible. In any
case, (1+0(1/n))q(t) is an overestimate of the probability that a given table location is empty after
t—1 items have been entered, (since we may choose T' = {t}). Moreover, such ¢’s do exist: ¢(t) =11s
certainly a (very uninteresting) multiplicative overestimator. Given a multiplicative estimator ¢ to

overestimate the probability that a given dependency graph hashes into empty locations at the times

25

Double hashing is computable and randomizable with universal hash functions

specified by T', Lemma 1, Lemma 2 and Corollary 2 show that the expected probe count for z; can be
overestimated by a computation that is virtually identical in UH, DH, and DH, provided that for
a suitable k = O(logn), Err(k,j) = @, so that the computation can be restricted to dependency
trees of size k or less. For DH,;, the independence ¢ will be required to exceed 3k + s, where the
s-wise (conditional) independence of the probe sequences must guarantee that the behavior of ¢ is
as stated. Until these values are quantified, we shall expose the implicit dependencies by writing ¢
and s when appropriate.

The presentation of a suitably multiplicative overestimator ¢ is technical, and will be deferred
even further. Meanwhile, the reader may prefer to view the following development as if it were for

UH, although the conclusions will apply to DH and DH, as well.

Corollary 3. Let ¢s be a multiplicative vacancy overestimator for UH, DH, or DH,, where
sp+ 3k <1, and put 157 4., ¢s(b) = Qs(a). Then for k = O(nl/3),

O(k?) kol
Pt'ree(kyan) < (1 +) Z Ptree(ka k) H qS(Ti) (6)

\T1=k-1 i=1

Tc[l,an-1]
O(kQ) nk‘le(an)k‘l
§(1‘|‘T)Ptree(k7k) (k—l)’ . (7)
Proof: Lemmas 2 and 3 show that
O(k?)
Piee(k,an) < (14 T)Ptme(k, k) Z maxpqs(T, 1T).
Tc[l,an-1]
1T|=k-1

Inequality (6) follows from Definition 14, which requires that (14 O(|T|?)/n)[1; ¢s(1;) overestimate

an—1

k-1
qs(T). Similarly, (7) is an immediate consequence, since ﬁ (> qs(t)) includes, for all
=1

subsequences 1" C [1,an| with (|T'| =k — 1), each of the products Hf:_ll qs(T;), exactly once. 1
Corollary 3 provides a way to estimate Pjq.(k,an) and hence E[probeqy,| from a vacancy esti-

mator gs(t).

Theorem 1. Let g5 be a multiplicative vacancy estimator, for UH, DH, or DH,, where s +3k <1

26

Double hashing is computable and randomizable with universal hash functions

and k= O(n'/3). Let L3 4., 9s(0) = Qs(a). Then

1

Elprobean] < ———u=——
1 -2Qs(an)

+ O(%) + Err(k,an).

Proof: By Lemma 2,

Prree(k. k) = N(E)(S)F1(1+ O(K2/n)),

where N (k) counts the number of different dependency trees with the k vertices xq, x5, ...

(8)

,Tp. 1o

determine N(k), we observe that the root of the dependency trees is fixed at xj, the vertex with

highest index. Both the rightmost subtree of zj, as well as the tree consisting of root zj plus the

remaining vertices comprising its other subtrees, if any, constitute partial dependency trees. If the

k-1

rightmost subtree contains j vertices, its elements can be chosen in (;

following recurrence equation for NV:

NE= Y (

1<j<k-1
which upon setting 3’ =k —j gives:

= > (GT)NINGE=).

1<j/<k-1
Averaging these two formulations, and applying the equality (?:}) + (k;l) = (;“) gives:
N(1) =1,
1/k : .
N(k) = s(NGNGE-G), k> 1.
1<y<k-1 J

Let

Then multiplying (9) by x*, summing, and applying (10) gives:

IN()N(k-y .
sa)=e+ Y ¥ FRIEE S),
k>11<5<k-1 J: J):
and hence
. /2N ok
g(;v)zl—Vl—szl—Z(')(—Zx) .
k>0
Equating coefficients of z* in (10) and (11) gives:

27

) ways. This results in the

(10)

(11)

Double hashing is computable and randomizable with universal hash functions

N(k) = K (1/2)2k(_1)k—1 = (k—1)! (‘1/2) (<2)k-1.

k k-1
Substituting for N(k) in (8), and using Corollary 3 to define P(k,an) in terms of Pyc.(k, k) and
Qs(an) gives:

plban) < ((12) (14 20) (220} ™ (1) (14 0) (oo 19

Summing the P(z,an), as prescribed by Corollary 2 gives:

:)\ (-1/: i1
E[probean] < Z(l + Osl))(c 1_/12) (—2Qs(an)) " + Err(k,an)
- ; (13)
S O(7’) _.1/2 e an i-1 rr(k. an).
- 1—2Qs(an)+zz':(n ><1_1)(2Qs(an)) ™" + Err(k, an)

The error attributable to non-tree DAGs is seen to be bounded by:

> A () 2@uteny™ < 3 OB (GI0) (2utan)™! =0 G,)

1>0 1>3 n(l - QQS(O‘n))Uz
We conclude that for fixed a < 1, and 2Qs(an) bounded by some fixed value less than 1,

__
1-2Qs(an)

It is worth remarking that the results and computations are monotone in ¢s; any error in its

E[probean| < + O(%) + Err(k,an). 1

estimation carries through in @)s.
It is also reassuring to observe that Theorem 1 gives the correct performance bound for UH.

In UH, the probability that a location is vacant at time an is 1 —a + i, and Prob(M(T,1)) <

n’

HLTll(l — %), whence ¢(t)=1- t—TIII =(1-H(1+ %) is a multiplicative vacancy overestimator.

In this case, Q(an+1) = %E?n(l - J—TIII) =(a—a?/2)(1 + ﬂvllﬂl)
Theorem 1 says that for UH,
1

probegn 1 rr n
e]<¢1—2<a—a2/2><1+0<|1|>/n>+O(")+E i)
1 |]| rTr n
e A U
<+ 0 4 Ere(i1), am).

1«

28

Double hashing is computable and randomizable with universal hash functions

In fact, we ought to observe that

E[probeqn| < 1% + O()+ Err(k,an).

This sharper bound follows by noting that Q(t) = (& - 1(%)?)(1 + %ﬂ), for a partial dependency
set of size j. Substituting this formulation into (12) gives a sum of error terms in (13) that are of

the same form as (14).

We now use Theorem 1 to bound Err(k,an).

Corollary 4. Let ¢ be a multiplicative vacancy estimator, in DH and DHy, for s; + 3k <. Set

2Q(an) = EO<]<cyn q(j), and suppose that 2Q(an) < 8 < 1. Then Err(k,an) = O(\/_Elﬁkﬁ))

log n
hence for k > 357 (1/[9),

E[probean]| < + O(ﬁ)'

1 -2Q(an)

Proof:

1) Recall that Erri(k,j) is the probability that the vertex count |dep(x;, D)| > k. We use ¢yn
as an overestimate of the first ¢yn or fewer probes that occur, in this case, and show that
conErri(k,an) = ﬂnll for suitable k. So suppose that |dep(xan,D)| > k. Then some x € D
has a partial dependency set of size]As, where k < k < 2k. Indeed, let z; be the first key
in D to have a dependency set of size k + 1 or more. Then each child of z; in G(zy, D)
can have a dependency set of size k or less. Sequencing over Gq(x¢, D), Gy(xy, D),. .. gives a
family of dependency graphs with vertex counts growing by steps of k or less, and eventually
exceeding k. Hence one of these counts must be within [k+1,2k]. It follows that Errq(k,an) <
Yican Lk<j<2k P(1,1) <anFpcjoor P, an).

29

Double hashing is computable and randomizable with universal hash functions

The proof of Theorem 1 (inequality (12)) allows us to bound this sum as follows.

conErri(k,an) < acon? Z (14+0(3/n)) (J 1/2) (—2Q(an))~!

1=k+1

Zﬁ"H

1>k 1=1

)3 9 T e (15)

gk =1

n?) S pie-(loss)/2

ik

< 0(n?) > Lﬂ]

s>k VJ
) pBF
< O(n m)

Taking k = 3% gives an additive error of ﬂnll

2) Recall that Erry(an, k) equals 2|dep(zan, D)| in the case that |dep(z;, D)| < k and x; has some
unsuccessful probe that does not increase its partial dependency set. Let |dep(zan,D)| = j.
There are at most j probes of x4y, that could be the first to revisit a dependency set. There
are at most j — 1 vertices that could be the probe’s destination. Let the destination node be z.
Key z can be reached by a direct probe edge from 4y, and by some earlier path from z4y that
comprises one or more edges. Let the node probed by z4y along this path be w. If w =z, we
have a constraint that two specific probes of x4, are the same, which occurs with probability
— 0(1) for each of the () or fewer possibilities. Otherwise, we compute the probability that

the DAG structure hashed as specified by a traversal that begins with w, reaches all of its

descendents, and then continues from z4y. The embedding of w is unconstrained, but =4, will

be constrained at two probe locations.

The expected number of ways these events can occur, in this case, is N(J)(%) n=I 11+ O(‘%)),

and hence Erry(an, k) <E] 1N()2‘7 n]+1(1‘|‘O(‘§))'

3) Recall that Errs(k,an) is the probability that |dep(zan, D)| = j < k and zqyn has at least 2
probes to dep(xan, D). The probability that the dependency set G(zan, D) occurs as stated with

30

Double hashing is computable and randomizable with universal hash functions

j nodes is bounded by (14+0(53/n))N(5)P(j,7)253/n?t1, since x4y must have two consecutive
probes among the first 25 that visit locations previously probed by z4n,. We take ¢yn as an

estimate for the number of probes in this case.

4) Recall that Erry(an) is the expected number of probes of length ¢yn or more needed to in-
sert xon. Then the expected number of probes contributed in this case is ¢ynProb{at least

con probes occur} + 374 ., Prob{at least ¢ probes occur}. The first term is already counted

o)

by conErrs + conErry. The second term is bounded by =, according to our robustness

requirement that long probe sequences be rare.

5) Recall that Err(k,j7) = conErri(k,7) + Erra(k,j) + conErrs(k,7) + Erry(j). Taking k& =

3101;(% gives an additive error of 07(11) for cgnErry. Erry = O(1/n) by the global robustness

requirement. As for Erry + conFErrs, summing these error terms over the range of dependency

set sizes j gives a formulation that is equivalent to (14), and hence O(1) in size. 1

We are now ready to identify our vacancy estimator.
Definition 15: The vacancy criterion M(#)(T, I) and its probability ¢(®)(T' I).

e Let M(®)(T,I), be the vacancy criterion: for j =1,2,...,|I], no tuple S c {z1,. SPEY Dy

of size |S] < i hashes into a dependency tree G rooted at location I;.

e Let ¢(M)(T, I) denote the probability that the vacancy criterion M%) (T, I) holds.
Thus, M()(T,I) is a vacancy criterion with limited backtracking. The criterion deems a location
{ to be occupied by time t if some witness subsequence S — comprising h or fewer items among
the first t — 1 elements — hashes locally into a dependency tree rooted at ¢. Otherwise ¢ is deemed
vacant. It should be noted that a witness sequence S may not represent the dependency graph
actually rooted at £. Moreover, it turns out that we will not actually determine ¢(®)(T, I); instead,
we will estimate its value with moderate accuracy. For our calculations, the vacancy estimator will
be virtually unaffected by the assumptions of limited independence, as well as the specific hashing
model, but will be strong enough to give good hashing bounds when used in Theorem 1. We also
note that M) (T I) excludes small dependency sets that hash into a location I if the structure is

31

Double hashing is computable and randomizable with universal hash functions

not a tree or if the structure uses more than one probe to locations in /. These overestimates of

the vacancy will turn out to be asymptotically negligible.

Lemma 4. For any fixed a < 1 and fixed &, in uniform hashing,

(k) . B I (2a—a2)Mtl O(1)
qp g (an,) <1 oz—{—\/m 1_ay +=—
Proof: If the event M(h)(Tj, 1;) occurs, then either I; is vacant at time 7 or the true depen-

dency graph rooted at I; has at least i + 1 vertices. The probability of the event M(h)(Tj,Ij) is
therefore bounded by the probability that I; is empty at time 7} plus the probability that the true
dependency graph rooted at location [;, at time 7}, is a DAG with & +1 or more vertices.

Such a dependency graph differs from the dependency graphs we have analyzed so far in just
two respects. First, the root is required to be embedded at the fixed location ;. Second, the root
could be any key in (1,9, .. .,ZL‘Tj_l).

Let Pp,._;(k,T};) be the probability that the true dependency graph rooted at location I; by
time 7 is a DAG with & nodes. It is easy to see that the computation for Py,._;(k,T}) is very

)

similar to that for P(k,T}). The reasoning of Lemmas 2 and 3 gives the following.

k
Proe_i(k,an) < (1+O(k)/n) 37 N(k)n "] (T)
\TI=k =1
Tc[l,an-1]

< (1+0(k) /)N (k) LLen)

= _<1]/€2> (1 + 0(53)) (—QQ(an))k. (16)

We have seen that in the uniform hashing, of UH, 2Q(an) < 2a — a?, since the sum for @

includes fewer than an terms. Hence for suitable K,

K ¢
Proby g {MW (an, Iun)} < (1 —a) - > (1]/3) (1 + %kg)) (—QQ(an))k + %h?)) + Erri(K, an)
k=h+1

(2a — a?)h+1 O(1)
Ut = a7

It is worth remarking that our vacancy estimator actually convergences at a much faster rate (as

, by the estimate in (15). 1

a function of h) than the estimate given by Lemma 4. The Lemma used a bound for the probability

32

Double hashing is computable and randomizable with universal hash functions

that the true dependency graph rooted at a specific location has h or fewer vertices, as opposed
to the probability that some witness DAG with h or fewer vertices can certify that the location is

already occupied. When the case h = 1, for example, it is easy to verify that the probability that

a location will not have been hit by a first probe of an items is 1 — e=%" + @, which is already

much smaller than the corresponding bound predicted by Lemma 4.

Assume for the moment that, as we will soon prove, ¢(P)(t) is a multiplicative vacancy overes-
(24-(F)*)"
Vh+1(1-£)?

error estimates from Taylor’s Series to establish the following Corollary.

timator that satisfies ¢(P)(¢) < (1 - 1)+ . Then this estimator can be used with simple

2E-(F))™ | o()
Virta-gr T
mator in DH,, and hence Err(k,an) = O(1)/n, for large enough ¢ = O(logn). Let 2Qs(an) =

Theorem 2. Suppose that qgh)(t) = (1-1)+ is a multiplicative overesti-

h h
L ican qgh)(t) < 2a—a? —I—IZW, and choose h so that 2a—a2 +222=2 1" 5o Joser to 20— a?

Vh+ (l—a) \/h—|—1(1—a)
than 1. Then
90 2Vh+1
E[probeqn| < 1 + o) < 1ia + O((2a— o))+ o) |

1 -2Qs(an) " Vi +1(1 -)’/ "

This theorem is actually our main result. The remainder of this paper is solely aimed at showing
that the probability of M(®)(T 1), for any constant h, can be adequately estimated in DH, even
with limited independence. Accordingly, we will define a witness graph W () (T, I) for locations I
and corresponding times 7. Intuitively, the witness graph ought to contain all vertices (hash keys
from D) that could possibly belong to some local dependency tree that comprises h or fewer vertices
and has its root located in 1.

This witness graph is constructed in a greedy top-down manner, much as the construction of
dependency trees. Let D' = (z1,..., me’l) be the sequence (D — D) in reverse order. The witness
set will be found by scanning D’ to see, essentially, which items might wind up hitting relevant
items within their first A probes. We call the locations of relevant items eligible collision points. If
an item hits an eligible collision point at its k-th probe, where k < h, the item is inserted into the
witness set and its first £ — 1 probe locations are inserted into the set of eligible collision points,
since these locations must be already occupied by the (real) time the key is actually hashed, if it is

33

Double hashing is computable and randomizable with universal hash functions

to require k probes for insertion. Then the next item is processed. The eligible collision set (i.e., set
of eligible collision points) is initialized to /. As this procedure suggests, the witness set is defined
without reference to the time constraints 7'; this simplification can only increase the number of

relevant keys and eligible collision points that are found.

We achieve better bounds by including the sum of the number of probes consumed by the
sequence of collisions that is responsible for the presence of each eligible collision location. If some
item takes k probes to reach an eligible collision location, then only h — k 4 1 probes are available
for an item that (at some earlier real insertion time) fills one of the first £ —1 probe locations in the
probe sequence. The following procedure provides a formal construction of the witness graph. The
eligible collision set is represented by the family £;(7), (2 € [0,k — 1]), where 7 is an underestimate
of the size of the dependency graph which led to the addition of items in £;(7), and 7 € [0,]D’|]
indicates that the locations in £;(7) are available for collisions within the first A —¢ probes of item
/(7 4+ 1). Initially £4(0) = I and £;(0) = ¢ for ¢ > 0. After z/ is processed and hence £;(7)
determined, £;(7 4 1) is initialized to £;(7) and additional locations might then be inserted into
£(7+1), depending on the first A probes of z/_ ;. In particular, if 27 _; hits a location in £;(7+ 1)

on probe ¢, with j 42 < h, then 2/ , , is inserted into the witness set W and its first 2 — 1 probes are

+
inserted into £;4; 1(7 +1).

This graph may be viewed as directed and bipartite, with keys and locations as vertices, outgoing
edges from a key to locations that correspond to unsuccessful probes, and an incoming edge to a
key from the eligible hit location where the key must reside, if it is to belong to some dependency

tree of size h or less with root in /.

Because the keys are processed in reverse order, with a greedy interpretation as to their eventual
hash location, the procedure will include many elements in the witness set that will turn out to be
irrelevant. Some items are assumed to reside in probe locations, for which earlier probe locations
will turn out to be empty; for others, the dependency graph will turn out to be to big. On the
other hand, these circumstances will only be evident after the structure is completed and all items
are inserted.

34

Double hashing is computable and randomizable with universal hash functions

It is easy to believe that the elements of any actual dependency graph of h or fewer items that
is rooted in [are included in the witness set. Actually, we are obliged to state what happens in the
unlikely event that several of an item’s first h probes hit eligible collision points. The reason that
this issue must be addressed is that once two probes are given specific values, the remaining probes

may be completely deterministic, in DH.

It an item in D’ — Dy incurs multiple collisions, we elect to throw away the “witness”, and
not record the collisions. This produces a simpler witness graph that overestimates the probability
M (T, 1) that event M (T, I) occurs, since some witnesses for M) (T, I) will not have been
included in the graph. On the other hand, we may underestimate ¢(*)(T, I) as the probability that

the vacancy criterion M(A) (T, I) holds and no multiple collisions occur in the witness set.

Definition 16: The witness graph WG(h)(T, I)=(c,W,E).
Let witness graph WG(h)(T, I)= (£, W, E) be procedurally specified by the following algorithm.
1. D" — Reverse(D — Dr);
2. Lo(0) = Ip;
3. W(0) — 0;
4. fori—1toh-1do £;(0)—6 endfor;
D. for 7 — 1 to |D'| do

6. fori —0toh-1do £;(r)—L;(t-1) endfor;

7. W(r) — W(r—1);

8, if for exactly one pair (i,7) i € [1,h], j < h—i:p(at,i) € £;(r — 1) then

{ A single collision occurs at probe location p(z'.,i). }

9. {—p(at,1);
10. Liyj1(7) = Ligj1(7) Upei {p(a%, k))
11, W(r) — W(r)u{at);
12. E — Eu(l,2%) labeled 7;
13. E — E U {(ah, p(ah, k))} labeled &
14. endif

35

Double hashing is computable and randomizable with universal hash functions

15. endfor;
16. W —W(|D));
1. Loy, L)
18. Replace all location labels referencing indices in L — I by pointers to abstract vertices.
This procedure enables us to compare the probabilities that a given witness graph structure
will occur in UH, DH, and DH. (See Lemma 5.) To establish an asymptotic equivalence among
all three models, it is essential that the actual probe locations apart from those hitting I be absent
from the structure (line 18). All that is recorded in the structure is which probes collided with
which. To show that the vacancy estimates are almost the same in the three models, we need, in
part, estimates to bound, with high probability, the size of a witness graph as a function of the
dependency set size |I|. Lemma 6 gives a crude (and simple) bound for the expected size of the
witness graph, and shows that the witness graph is proportional to |I| with sufficient probability.
Lemma 7 gives a better bound on the size of witness sets and thereby establishes a better bound
for the independence .
Let W C D' be a candidate witness set of k keys with W = {z; ,...,z; }. Let WG be a candidate
labeled witness graph for the pair (7', 1) with key vertex set W, and (abstract) eligible location set

£, with £;(7) as defined in the formal procedure. Recall that by construction, any such WG is a

forest, when edges are viewed as being undirected; there will be no cycles.
Definition 17.

o Let £(7) = Y023 (h —i)li(7)].

o Let Prob‘l’}/H{WG}, Probll/)VH{WG}, ProbVDVHw {WG} be the respective probability that WG is the
actual witness graph for the pair (7', 1) in UH, DH and DH,.

o Let Probl/ {WG}, Probl) i {WGY, Prob’l’;‘ﬁz{WG} be the respective probabilities that WG is
the witness graph for the pair (7', /) and that no vertices where eliminated in its construction
due to double hits.

We suppress, for notational simplicity, the implicit dependence of these probabilities on sets

36

Double hashing is computable and randomizable with universal hash functions

D, T, and 1. We shall use the notation WG in two contexts. When WG is selected from a set of
candidate witness sets, WG will represent a sample set of keys and a hash structure; here we will
compute the probability that WG is the actual witness set that occurs. When WG is not bound as
a candidate, it will represent the actual witness set; here the computational issue is the probability
that its size |WG| is extremely large. Due to the multiplicity of hashing models, it is convenient to

extend Definition 17 as follows.

Definition 18.

o Let Prob" {WG} and ProbPure {W({'} be used in expressions that hold for each of the three

models.

o Let ProbW {WGY and Prob?" ¢ {WG} and be used in expressions where o is a free subscript that

holds when all e-s are simultaneously replaced by UH, DH, or DH.

Lemma 5. Let WG be a candidate witness graph with £ = O(n!/2). Then
1) Prob"V (WG} = Probll ,{WG}1+ O(|£]?)/n).
2) ProbVDVHw{WG} = ProblV {WG}(1 4 ee=P), for ¢ > (A|W|+ 6L+ 3|I|+ D), and some € |¢| < 1.

3) ProfU {WQ} = Probl (WG} (1 + ()('T"%) for UH, DH, and DH,, for ¢ > (h|W|+ 62 +
3111+ D).

Proof: The counting statistics for witness sets is similar to that for dependency graphs, but
differs from the latter in two aspects. The simplest change is that witness sets have embedded roots
(in locations of I). The other difference is that, unlike the dependency sets of Theorem 1, which are
based entirely on local properties within (windows of) k vertices, witness graphs (forests) are global
structures selected from the large subsequence D— Dp and locations I. Consequently, the probability
that a forest W is the witness forest in question involves both local hashing properties and the
event that the many items not included in WG either do not hit any of the eligible hit locations
belonging WG or hit the location set more than once. Most importantly, these probabilities turn

out to be nearly identical in our three models.

37

Double hashing is computable and randomizable with universal hash functions

Definition 19.

o Let Probz h”{WG} be the probability that the local set comprising the keys W c D hit the
prescribed virtual locations in the manner prescribed by W', and with no additional collisions

among the eligible probes of keys in W.

o Let Prob’&oél‘h“{WG} be the probability that vertices in D — Dy — W incur either no hit or
multiple hits to the eligible location set within the requisite number of probes, as they are

processed by the algorithm.

o Let Prob’&”ﬁh”{WG} be the probability that D — Dy — W do not hit the eligible location set at

all, within the requisite number of probes.

We extend these definitions to models DH and DH,l/,.

Clearly Prob WG} = Probz h”{WG} X Prob’wt1 htfw@y. In DH, such a simple formu-
lation is not quite true, since Probz h”{WG} and Prob’wt1 bt (WG will depend, somewhat, on
just which actual locations are used for each possible embedding of WG. Now, Probt-Mt{WG)
s (in UH, or DH), between (1/n — O(h|£|/n?))* and (ﬁﬂ)k’ where k is the number of keys
belonging to W(G. The extra factor of 1 comes from the fact that unlike dependency sets, the
roots in witness forests are explicitly embedded in specific locations. In UH, one could evaluate
this probability precisely as a function of the sizes |£;(7)|, for a given witness graph. Such an
evaluation, however, is unnecessary, since it suffices to show that the computations in the three

models are virtually identical. Given a specific embedding of the candidate WG structure, the

second factor in Prob g {WG} is readily written as Prob’[}‘}?_h“{WG} = Prob{ /\ -s(7)},
T sheD-W
where s(7) is the event that z € D’ experiences a single hit with respect to the embedded

sets Lo(7 = 1),...,L,_1(7 = 1). Let o(r,W(), with appropriate subscript UH, DH and DH,,
denote Prob{s(7)}. Since, for any specific embedding of W, the events s(7) are mutually in-
dependent in both DH and UH, Prob"!-ht/WaGy = 17, srep—w(l = o(r,WG)) in these two
models. It is easy to see that for all 7, both oygy(r,WG) and opy(r, WG) are, up to fac-
tors of (1 4+ O(1/n)), between @ = == a)w and @ — O(g)lz(l;zl)lz Hence

38

Double hashing is computable and randomizable with universal hash functions

1= opy(r,WG) = (1 - oy y(r,WG))(1 + 2ECU0) for any embedding of the structure, and
any constant h. Prob"t-rt{W(} is therefore the same in UH and DH to within a factor of
(14 0(Ic(m)*/n?))™ = (1 + O(1£(7)*/n)). In DH,, the events s(7) are only (¢ — h|W| - 3|I|)-wise
independent, but o (7, WG) = opy, (1, WG), (as long as ¢ > h|W|+ £ +3|1|). Lemma A2.2 in

the Appendix shows that in this case,
|Probn0ﬂ MUWGY — Prob H=MUWGEY| < Prob =Mt WaGhe=P it ¢ — hlW|~ £ - 3|1|> 5L + D,

where £ is used as an overestimate for the expectation Y . p, opy(7, WG). Consequently,

1) ProbIl/)VH{WG} = Prob}}/H{WG}(l +O(|£]*/n)), and

2) ProbVDVHw{WG} = ProbV AWG}(1 + O(e=P)), for b > h|W|+ 6L + 3|I|+ D. It is easy to
verify 3). Let ProbfVD,_z,T{WG} denote the computation for Prob {WG} over the set D' — /.,
where D' =D — Dy — W. Then

IWGI

= Prob/ {WG0(*——),

ProblV {WG) - Proti" {WGy < ¥ Probl’), . {WG}<) WZGl

where the factor (]21) |V[;(2;|2 is an estimate of the probability that =/, has two or more eligible probes
mto £. 1

We can now show that q(h)(T, I), the probability that our vacancy criterion holds for locations
I, can be successfully approximated in all three models by the probability that these locations are
declared empty by our witness graphs. It will follow that the probabilities qgl[)f(T, 1), qu}J(T, 1),
qgl}{w(T, I) differ by a factor of at most <1 + %ﬂ%) in the three models, for an appropriate choice

of . Lemmas 6 and 7 both establish this equivalence.

Lemma 6. Let T'=(T,...,T|7y) be a sequence of increasing time stamps with 77y = an, and let
I be an arbitrary sequence of distinct table locations with |/| = |T'|. In addition, let the following
definitions hold.

Definition 20.
e Let the random structure WG(h)(T, I)=(£,W, E) be the witness graph for D, T', and I.

e Define the random variable £(t) = S ' =1 (h —)c;(7)].

39

Double hashing is computable and randomizable with universal hash functions

o Let w®)(T,I), with appropriate subscript UH, DH or DHy, be the probability that
WGH(T, I) contains no witnesses, and hence “declares” each location I; to be empty at

insertion time Tj.

Then for 1] = o(nl/3),

n

1) wh (1. 1) < wil) (T,1) (1 + M)
wipy (T.1) < wipy (T, 1)(1+ e P) 4 Probje| > K}, for v > 31|+ ThK + D;

2) For ¢ > 14(h 4 2)!(|1|log 2= + log h + logn),
¢W(T, 1) = wl) (1, 1) <1 + %“2)) in UH, DH, and DH,,
and hence witness graphs formalize a good vacancy criterion for all three models.

Proof: It is convenient to analyze the construction of the witness forest as if each collision
p(z},2) € £;(t — 1) were the outcome of a Bernoulli trial with probability of success |£;(t - 1)|/n.
Thus each time step is viewed as contributing (g) (somewhat dependent) Bernoulli trials, of which at
most one may result in success. This simplification will have a few insignificant consequences, which
we are obliged to acknowledge. The simplest is that the requirement that at most one of the trials
be successful can be ignored, since we are interested in establishing upper bounds on the number
of successes. The other is that a single (real) probe can hit at most one of the disjoint sets £;, and
modeling the outcome with h different Boolean trials undercounts the probability that at least one
success occurs, since the conditional probability that £; is probed, given that £g,...,£;_; are not

probed can be increased by a factor of about The simplest resolution of this problem

__n
n=) o<icj &l
is to include this factor in our model implicitly, by replacing the table size n by the parameter
ny, and recast the probabilities in terms of nq, which will be adjusted a posteriori. We follow

this prescription, although technical arguments can establish that no such a rescaling is actually
necessary.

Let N(z,t) = E[|£,(t)]]. We overestimate the probability that (p(x},j—i4+1) € £;(t—1) is the only
hit of x}) as the outcome of a Bernoulli trial with probability of success equal to qul_—lh We may
ignore the time restriction on locations in [as prescribed by the algorithm, and form the system

40

Double hashing is computable and randomizable with universal hash functions

for N as follows:

N(0,t) = |I|, and N(j,0) =0, y=1,2,...,h—1;

NG 1) =Nt =1) 4> (7 -)N (1,1 = 1) /ny. (17)

1<y
A gross overestimate of E[£;(an)] (and N(j,an)) is given by the system:

Ny(0,0) = 1], Ny(j,0) =0, j=1,2,....h—1;

. . . . (18)
Ng(3, 1) = Ng (g, t = 1) 4+ 3> Ny(i, an) [ny.
1<y
Lj(om)
7

In terms of the random variable , we may define a stochastic dominator fj(t) > |£;(t)]

with E[£;(t)] = Ny(j,t) as follows. Let Lj](t) be the outcome of ¢t independent Bernoulli trials

with probabilities of success E] 1L (n) , where Ly(t) = I. We now prove by induction on 7 that our
overestimate of 3°,; ; £ C;(an) (and hence Yicj ILi(an)]) is bounded by B; = MBO with probability
1 — je=Bo/2 for any choice of By > |I|. It suffices to set, for simplicity and additional overcount,
an =ny. Clearly Ly(an) < By with probability 1. In general, the probability that i L Ci(ar

subject to the condition that 37, ;_4 Li(an) < B;_1, is bounded by the probability that £,
Z;

1) >
()
(o) ;

Bj - B;_q, which can be rewritten as EJ—(JLﬂ > (14 l/j)Bj_l, since B; = (7 + 2)Bj_
bounded by the number of successes in n; Bernoulli trials with probability of success Bj_l/nl. A
standard Chernoff-Hoeffding bound for the sum of independent Bernoulli trials, X with expectation
E[X], is Prob{X > (1 4+ ¢)E[X]} < e~<’EIX1/3_for 0 < e < 1. This estimate shows that for ¢ < nq, the
probability that Ej(t) exceeds (14 1/7)B;_; is bounded by e‘Bj—l/ng, which is at most e~Bo/4 for
all values j > 1. Consequently, the probability that 37, , £ C;(an) > MBO, is bounded by je~Bo/4.

Let [£] = [L(an)| =Y ;cp_1 |Li(an)|. We have shown that
Prob{|c| > (h+1)!By/2} < he=Bo/* for any By > |1].
Let ¢co = —2log(1 — a). Choosing 70 = |I|ca + D, we see that

Prob{|c] > (h 4+ 1)!(|I|ca + D)} < he=(HlcatD)/2 < p(1 _ o)l1e=L/2, (19)

41

Double hashing is computable and randomizable with universal hash functions

Furthermore,
_k-calli(h+1)!
Y Prob{|c] = k}k* < ST Eh(1—a)lle 20+
k>call|(h+1)! k>call|(h+1)!

2
1 k Tt
< h(1 - a)H1(Beall|(h+ 1)) (g+m) e

k>0 (
k

2
—k
— oMl 12 -~ 2(h+1)!
<h(1 “)(&M““**>>§3(1+8%uuh+mJ :

k>0

< h(1 =)(8call|(h+ 1)) Zewumw (Eay]

k>0

< h(1—a)Hl(BealI|(h+1)1)2 3 €™ AT
k>0

< h(1 = a)T(8eq I|(h + 1)) —L
1 — ¢ TR+

< h(1 = a)l(8ea 1)25((h + 1)1)?

= 11(1 - a)lO(1).

(20)

(21)

We can now show that the probability that the witness graph WG(h)(T, I) contains no occupancy

witnesses for any of the locations is identical in UH and DH, up to a factor of (1 + O(|I|*/n)).

Evidently, w(®) (T, I) can be expressed as the sum, over all legal candidate witness graphs that

declare locations I empty, of the probability that each such graph occurs. Denote by Weppiy (T, 1)

the subset of all the witness graphs that declare all locations in I empty at the prescribed times.

Let |WG| denote the size of the eligible collision set |£|. Clearly

wih (T, 1) = 3 ProblV, (WG}
WGEW ,ypipy (T,1)
and
wih) (1,1) = 3 ProbW (WG},
WGe VVempty (T,1)

We have proven in Lemma 5 that for any witness graph WG, where |WG| = O(n!/?2),

O(WGP)

Probl¥ {WG} = Probll , (WG} (1 +)

and

Prob”H (WG} < Probll iWGY(1 + e P), for ¥ > (RIW |+ 6Ly + 31|+ D).

42

Double hashing is computable and randomizable with universal hash functions

It follows from (19), (21) and (22) that

wh) (T,1) < Prob{]WG| > (call|+2log n)(h +1)1}

O(|WG 2
- 5 Probffywa(1 + CUNEE),)
VVGeWempty(T,I)
IWG|<(call|4+2log n)(h+1)!
—_ o)l 1\2
<p=a no‘) + 3 Probl¥ (WG} (1+ O(C“”'(éz“)‘)) (23)
WGEWempty(TaI)
IWG|<call|(h+1)!
+ E Prob‘g/H{WG}
WGeVVempty(T,I)
call|(h+1)I<|WG]|
IWG|<(call|+2logn)(h+1)!
2
+ E ProbEIH{WG}%,
WGeVVempty(T,I)
call|(h+1)I<|WG]
IWG|<(call|+2logn)(h+1)!
h(1 = a)HI h colh+ D)2 O(IP2((h+1))3c2
< (-) —|—'w§]}{(T,])(1—I—O(((n)||)))+h(1_a)|f| (||((n))7
where the O(Mh—";lw) error term comes from (20),
w®) od1P)
ngH(T,I)(l—I— n)

which establishes the first par of 1). The second part: wgll)qw (T,1)< w%b}{(T, D(1+e= D)+ Prob{|c| >
Ky, for b >3|I|+ ThK + D, follows directly from Lemma 5.
To show that w(?) (T, I) is close to ¢(A)(T,I) in all three models, we recall that
3 Prob? (WG < ¢W(T, 1) < 3 ProtV {Way,
WGeW ppiy (T,1) WGeW ppiy (T.,1)

and that w(®)(T 1) = CWGew, 1) ProbW {WG'}. Lemma 5 guarantees that each term is close,

mpty (
for witness sets where £ = O(n1/2), and (19) shows that larger sets have a negligible probability
of occurrence. Hence ¢(W)(T,I) = w® (T, 1)((1+ O(|1|?)/n) in DH and UH. A similarly tight
inequality holds for DH,, provided that ¢ is sufficiently large. The bounds on ¢ are that ¢ >
(hW| + 6£ + 3|I| + logn) from Lemma 5. From (19) and (23), |£| can be restricted to be no
larger than (co|l|+ 2logh + 2logn)(h + 1)!. Finally, ©» must be large enough that the Chernoff-
Hoeffding bound for fully random Bernoulli Trials holds with limited independence. Bound (19)

was attained by modeling independent probes as independent Bernoulli trials. From Theorem 5 in

43

Double hashing is computable and randomizable with universal hash functions

[15], it can be seen that (much more than) sufficient independence is achieved for an independence
¥ —3|I|— h|W| = L, for the maximum £ value used in (23). (Alternatively, Lemma A2 can be used,
with an increase in v by factor of five, and a nominal change in the size of the bound.) Thus,
it suffices to set ¢ = 7(h + 2)!(calI| + 2log h + 2logn), where we use the fact that £ < |hL|, and
as is easily shown, |W| is unlikely to exceed our bound for £. The 3|I|-wise independence for the
dependency set is already included in this bound for .

As for the elusive ny and the fact that the Bernoulli trials are not completely independent, we
see that the probability that some set is hit, conditioned on the event that some other set is not
gives a rescaling by at most —~. As long as an <ny =n - (call]|+ 2logh + 2logn)(h + 1), our
results hold as stated. |
Recall that a bound for the parameter || is achievable in terms of the vacancy estimator and Errq
in Corollary 4.

The next Lemma shows that ¥ need only be proportional to log n multiplied by a subexponential

function of A.

Lemma 7. Given [, let Iy = R3[In(1/(1 — a)|I| 4+ 2Inn]. Let f(h) = 62(h+1/2)2/3, and take @ >
Th2(3f(h)I,.

1) Let WG(h)(T, I) = (£,W,E), be the witness graph for the pair (T, 1), with Tj7; = an and let
N(j,an) = E[£;(an)]. Then N(j,an) < |I|f(j) in UH, DH, and DH,.

2) Furthermore,

and

Prob{|W|>3hf(h)Iy} < QU_TO‘)'I'.

3) The vacancy over-estimator ¢(#)(T) (defined in Definition 14) with respective subscript UH,
DH and DH, are equal, up to a factor of (1 + O(|1|?)/n):

b . =dferon (14 28 = ff) .y (14 UL

n

44

Double hashing is computable and randomizable with universal hash functions

Proof: Equation (17) establishes that a suitable overestimate for the size of the eligible hit

set is given by the system:
N(0,0) = ||, and N(7,0) =0, j=1,2,...,h—1.

NG) =Nt =1+ (7 =)V E=1)/ny.

1<y
It will be convenient to use generating functions and to define a strong inequality f(z) < g(x)
to mean that each coefficient in the Taylor expansion of f(x) (about @ = 0) is positive and at most
the value of the corresponding coefficient for g. It will also be convenient, for establishing part 2,

to take the following overestimate, where I > |/|.

N(,0) =1y, 7=0,1,2,...,h—1.

NG 1) = NGt =1) 4+ (7 -)Nt =1)/n,
1<y
and to extend the definition of & to larger values of j by setting

N(J,O) :]07 .]:071727
NG =Nt =1) 4> (7 -)N = 1) /n.
1<
This latter modification does not even affect the values of N (j,0), for j < h.

. N(j,t)z?. The solution for v is immediate.

Let v(t,z) be the generating function v(t,z) = 3;

The initial condition is v(0,z) =3; Iyx?t = ll_—oz, and the recurrence equation becomes

vit,e)=v(t—1,2)+> > (-)N (2,1 - a? [ny

7 <y

:Z/(t—l,x)—l—niz:/\/(j,t—1):Ejstck

1] &
(1) L) Sk 1«
- (t 17)‘I' ny (zk:k) (t 17)(1+n1(1—:c)2).

Hence

T)t]
ni(l-z)2” 1-a’

v(t,z)=(1+

Now, 1+ nl(lzi—z)? < (-2 (since e(1-2)7 =1 + ﬁ +3 551 wjm)’ whence for all ¢ > 0,
i

—tr —_tr
(1+ n(fiz)z)t < em-2% Thus v(t,z) < em1(1-2)° ﬁ, and N(j,1) is bounded by the jth term in
=
tr
the Taylor expansion of e"1(1-#)* % Evidently, v(t,z) is defined for all |z| < 1. Consequently, its

45

Double hashing is computable and randomizable with universal hash functions

Taylor coefficients grow subexponentially. Indeed, any analytic function, which has positive Taylor
coefficients and has an infinite subsequence of coeflicients a)_ as large as (%))‘i, for any fixed p < 1,
cannot be bounded as z — p, since the summation will have an infinite number of terms that become
at least as large as 1. Similarly, if the Taylor coefficients of f were bounded by some polynomial
la;| < cj* for fixed k and ¢, then the k + 2 fold iterated integral of f would have coefficients of size
O(aj/jk‘i‘z) = O(j~2), which would render the integrated function convergent on |z| = 1. It follows
that the coefficients of 6"1(17:)2% must be superpolynomial since the function has an essential
singularity (i.e. poles (-21)? for unbounded degree d) at z = 1. A more precise estimation of the
coefficients, with ¢t = an = ayn; follows.

v(agng,) 7/"70‘1 k=27

k>2y

Yy kjo‘l(=S (S5

7 k>27 =0

ol .
Consequently, L’iln < Ez 0()71 Now, (Z;'Z])l <+ 1/2)24(315[)%, and (?’f) < g;, so the
3 ~(j+1/2))23 1/3)

GO 1%(”1/2)2/ .

summation is bounded by E% 0 Setting oy = 1 establishes

1).

Given a dependency set size |I|, let N(7,t) be defined by (24) with Iy = a|l|+ b, where a and b
will be specified later. We now show that for suitable a and b, |£;(t)| is with very high probability
no larger than 3N (7,1).

Formally, we analyze the following modified process: if at any time 7, |£;(7)| > (1+1/h)YIN(5,7),
then the process is aborted, and failure declared. The probabilistic recurrence analogous to (17) is
given below, where X (event) denotes the indicator function for the event.

1Co(T)| = 1], and [£;(7)]=0, j=1,2,...,h L.

1Ci(T)| = 1Li(T =)|+ D (7 —)X (p(yr,j —i+ 1) € £i(T = 1)).
1<y

Expanding the recursion gives:

7-1
1L (r)1 =2 =D ¥y, j—i+1) € Li(r' = 1))], for j>0. (25)
1=0 T'<T

46

Double hashing is computable and randomizable with universal hash functions

where the event (p(yr,j —t+ 1) € £;(7' — 1)) requires that no other probe of y within the first
hit an eligible collision location.
A similar expansion for A gives:
1—1
N(i,7) = Z Z NG, ") /ng + L. (26)
7=0 /T

1
We are now ready to show that in DH, with probability 1 - (an(h - 1))e_h_% or more, |£;(7)| <

(1+1/h)N(j,7) for j =0,1,...,h—1 and t = 1,2,...,an. The bound is clearly true for j = 0.
The method of proof is to compute the probability that the bound fails to hold, for each pair (j,7),
given that it holds for all smaller (z,s),7 < j, s < 7.
By construction, 3. .. X(p(yr,i—j + 1) € £j(7' — 1)), is statistically dominated by the sum of
1£;(r'-1)]
1

independent Bernoulli trials X (77,) with probability of success equal to ,for 7' =1,..

T,

Let X;(t) = St _, X(7,7). By assumption,

B(X,(1) < [(1 +1/hp AT)]

<t

We now use the following type of Chernoff-Hoeffding bound, (proven in Lemma A1 in the Appendix),

to bound our Bernoulli process:

5¢
h

Prob{X;(t)> (1 + 1/h)E[X;]+ C} <75

21,

Let C =21I,/h?, so that with probability exceeding 1 — e~ W , an individual X;(2), (0 <y <i-1),is
bounded by [Er<t(1 + 1/h)1+1M + 210], if the earlier X;(7)-s satisfy their respective bounds

for 7 <t—1. According to the definitions of X; and £;, for z > 0,

whence,

n 2
<t 1 h

1£i(1)] < i_l(i—j) [Z(l + 1/h)f+1w 42

1—1 : _
<To+(1+1/R) S (- [ZNi(‘]’n: 1)},
7=0

T<t

which by (26) is

47

Double hashing is computable and randomizable with universal hash functions
< (14+1/R)N(i,1).
Hence vr <t, 1 < h,
| P : . L 2
1c;(7) < (1 + ﬁ)’/\/(z,'r), with probability 1 — (ti)e” 3.

Now let 1, = h2—3[ln(1/(1—0z1))|]|+31nn], so that (hn)e_%) < ﬁl_—ofnlm Upon substituting, we see
that in DH (and UH), the size of the eligible collision set |£(aqn)| is bounded by 3AN (h —1,aqn),
with probability 1 — ﬁl_—gﬂ

The size of the witness set W can be bounded similarly. Let W;(7) be the witness set at time

7 containing elements that were due to a hit to £;:

W)l < > X(p(yr,1) € £;(7' = 1) for some probe number i € [1,h - j]).

T'<T

If we are given upper bounds R;(7'—1) for the size of the £;(7'—1), then |W;(7)| is bounded by the

sum of 7 independent Bernoulli trials X/, with probabilities of success pr < (h—j)R;(7" = 1)/n;.
a1

We have just shown that ., (h—j)|£;(7" —1)|/ny is with probability 1 — (th)e_h_?g) bounded by

Y rer(1+1/R) (h=3)IN;(7'=1)|/ny. The Chernoff-Hoeffding bound from Lemma A2 and the bound

for £;(7) gives:

Prob{IW,(r)] > (1+1/k) 3 (1+1/R)i(h - HING(r — Dlfm + 22} < e

T'<T

21,

Hence W (7) is with probability 1 —2h7e™ %3 > 1 — 2(1_71L)|II bounded by

h-1
> (Z (L4 1/ R (B = J)NG(r = D) /1 + Z%) <3N (R, 7).

]’:0 T!<T

We again take 7 = ny and establish the bound for the witness set as stated.
Part 3) follows from Lemma 6 and the bounds for |[W| and |£]. 1
The only remaining step is to prove that witness graphs give multiplicative vacancy overesti-

mators.

48

Double hashing is computable and randomizable with universal hash functions

Theorem 3.

1) qglf){(t) = q[(jlf){(t, 1) is a multiplicative vacancy overestimator for M[(J}%(T,]). Hence, for any

fixed a < 1, fixed h, and T C [1,an]| with |T'| = O(logn),

.=+ U 1 o,

) gt 2E-(H)) O
qDHw(t)_l_E+\/m(1_£)z+ n

Proof: Lemmas 5, 6 and 7 establish that

O] 2 ure
g M(r, 1= (1 + Ln')) 3 Proble (WG}
WGeW ppiy (T.,1)
2 . .
_ (1 4 QUIE))) S ProbMUWG) x Probits WG,

WGeWempty (T,1)
where Wepmpty (T, I) denotes the set of all graphs of O(I+logn) keys that could be the witness graph
for the pair (7, 1), and which declare all [locations empty. Probé‘Hh“{WG} is the probability that
vertices included in the witness graphs behave as prescribed and Prob’&oﬁh”{WG} is the probability

that no other vertex has an eligible hit.

We may partition each forest WG into the [I| trees WGy, ..., WG|y, rooted at the respective

locations Iy,..., ;. It is easy to see that Probé‘ﬁ“{WG} =(1+ O(M))Hﬂl Probé‘ﬁ“{WGi},

where the factor (14 O(|WnG|2)) is needed to account for the conditioning needed to ensure that the
trees have disjoint embeddings. Lemma 5 remarks that in U H, Prob’[}’)ﬁhit{WG} can be expressed
as [[,. z’TeD’—W/(l —o*(r,WG)), and Prob’&ofgh”{WGi} = I1,. z’TeD'—Wi(l —o*(r,WG;)). 1t is not
hard to verify that for any z- € D' = W*, o*(7, WG;) = (1 + w)a**(r, WG;), where o**(1, W)
is the conditional probability that z; has an eligible probe hitting WG, given that its eligible
probes do not hit the relevant portions of WG, WGy, ..., WG,_;. Consequently, 1 — o*(7, WG;) =

49

Double hashing is computable and randomizable with universal hash functions

(14 wxl — o (7, WG,;)). Multiplying over 7 and ¢ gives:
awyrn= 3
WGEW iy (T,1)
O(WG]2 » o WGIIWG,
(1+ %)Pmbg—gn{wa} I I o+ ol n! D1~ ov(r, wez,))

=17zt eD'-W

= X
WGeVVempty(T,I)
oqwaG?), M : O(WG||WG,
OUWGE) T Provtsjitway(+ QWVEIWGD) 1 (1o (r, i)
1=1 T xheD -W
1]
-y s ouwen) T Probovey T (=o', 06y)
WGGVVempty(TaI) T osheD Wi
1] .
Il Y QWG by hiway [T (- ot (r WG)).
=1 WGeW i (13.1;) ozt e DI-Wi

(1+

mpty
Evaluating each outer factor with size limits as in (23) gives

|1
¢M (1, 1) < H OUDy) (7, - 111, 1), (27)

where we take 'wglf){(t,ﬁ) to be 1, for t < 1, and subtract |I| from 7; in (27) because D’ comprises
the elements D — D.

Appealing to Lemma 6.2 gives:
2 ||

h h
(T, < (1 Hqé}i - 1),
whence a final simplification shows that
1]
1,0 < 1+ U1 Hq}}% (28)

which establishes 1).

Claim 2) is a direct consequence of 1), Lemma 4, and Lemma 7.
To be precise, (28) follows for our specific function quj){ Modestly annoying combinatorial argu-
ments would be needed to establish (28) in full generality; we forbear.

Part 3 of Lemma 7 ensures that q%% and qg%w inherit a multiplicative formulation comparable

to that for quf){ |

50

Double hashing is computable and randomizable with universal hash functions
4. Conclusions

We have shown that in double hashing, a universal family of log n-wise independent hash functions
can give nearly optimal performance for any fixed load bounded below 1.

These results comprise a significant step toward understanding why extremely simple functions
seem to perform so well when used to double hash arbitrary values into a partially filled table.
Indeed, it is quite conceivable that real data, when hashed by such functions, might yield sequences
that exhibit O(logn)-wise independence.

Our proof technique analyzed local and global hashing interactions separately, and used analytic
tools to measure complicated but weakly correlated events in terms of simpler independent processes.
Surely these methods can be applied to other probabilistic processes that exhibit weak correlations

and that might be supported only by a source of limited randomness.

5. Appendix

This section contains two technical Lemmas, which can simplify large deviation calculations in cases

of full and limited independence. Lemma A.2 is a special case of Theorem 6 in [15].

Lemma A1l. Let X =31 ; X; be the sum of n mutually independent Bernoulli trials Xy,..., Xy,

where Prob{X; =1} = p;. Then
for any C >0, and 0 <e< 1, Prob{X > (1+¢)E[X]+C} < e-1.25¢C

Proof: Let p= X1 According to Hoeffding, [Ho-63]:

1\ (+9)E[X] 1—p n—(146)E[X]
1+6) (1—(1+5)p)

Let C = (6 — ¢)E[X]. It suffices to show that for any 6 >0, and 0 <e <1,

<

< 1)(1+5)E[X]
I+

Prob{X > (1+6)E[X]} < (

SE[X] . ,-1.25(c)(6-)E[X]

(&

1\ (+OEX]
(r535)

(For 6 < 1, a simple derivation gives the slightly better bound where the 1.25, is replaced by 3.)

We therefore need only show that for all 0 <e< 1,

51

Double hashing is computable and randomizable with universal hash functions

Let g(6,¢) = (1}__6)(1—1—6) eb+1.25¢(6-€) . For any fixed ¢, ¢(6,¢) attains its maximum at 1+ § = el-25¢,
Therefore log g(6,¢€) < logg(el 2> —1,¢) = el-2%¢ — 1 — 1.25¢ — 1.25¢2. For € > 0, the expression
el:25¢ _ 1 - 1.25¢ — 1.25¢2 first decreases and then increases since it is initially decreasing and its
derivative is the sum of a linear function and a function with a rapidly increasing derivative. Hence
f(e) = g(e'?5¢ —1,¢) first decreases and then increases. It follows that f(e) < max {f(0), f(1)}, for

€ [0,1]. Since log f(0) = 0, and calculation shows that log f(1) < —.009, we see that ¢g(6,¢) < 1,

for all 6, and e€[0,1]. 1

Lemma A2. Let X1, X5,..., X, and Y7,Y5,...,Y, be Bernoulli trials with probabilities of
success E[X;] = E[Y;] = p;. Let X =31 ; X;. Suppose that the Y;-s are mutually independent, and
that the X;-s are fully ¢-wise independent. Let [= {¢1,29,...,%;}, and let I= [1,n]—1. Let p(1) =
Prob{(njes(Yi, = 1)) A (/\jef(Y;j =0))}, and let py(1) = Prob{(A;e(X;, = 1)) A (/\jef(Xij =0))},
so that the subscript ¥ indicates that the event is with respect to the fully @-wise independent
trials X1, X5, ..., Xy.

(1) For ¢ > D + k + eE[X] - log (Hz’ef(l —Pi)) and some ¢ where |¢| <1,

py(I) =p(I)(1+ee™P)

(2) If vi: p; <1/2, then for ©» > D + k + 5E[X] and some € where |¢| < 1,
py(1) = p(I)(1 +ee™?).
Proof: The proof of Lemma A2 is a special case of Theorem 6 in [15]. It is given here for

completeness.

We may use standard inclusion-exclusion to estimate the probability p, (/) as follows.

py(1) = Proby| (A(X; = 1>)) (/\(Xz = o>)}

jel

= Proby{ \(X; =1)} > > (—1)ZP7’06¢{ A (X; =1)}.
Truncating the outer summation at ¢ = ¥ — k introduces an error that is bounded by the last

term of the truncated sum. Let p:*g(k) and p’ (k) denote these truncated sums, in the respective
cases of ¥-wise and full independence. Since the first ¥» — k£ terms in the outer summation are

52

Double hashing is computable and randomizable with universal hash functions

the same for both fully and i-wise independent random variables, pg(k) = p! (k). Furthermore,

PTOb {/\16{11, ,zk_H}()} - H;H—i pz Hence

v—k
py(k) = pT (k) — (=1)**8,[[] IZA DR | BT

i ¢l

for some 6, € [0,1], and an identical inequality holds without the ¢ subscripts. Hence

l/]—k
py(D)-p(I<[IIri] > Il Py

Y-k
> 11 Pi; is maximized when all pi; are equal and therefore the error |py(k)—p(k)| is bounded
iy <o<iy_y j=1
by
vk

[JI;IIPZJ]Q/)?]{) <P1-|—P2—7|;...—|—pn)” le L/(¢ k),

jel

To get multiplicative error bounds, we need that (E[X])¥=F/(1)—k)! < e= P[],/ (1-p;). Setting

¥ —k = eE[X] - log (H]'g](l —pj)) + D, gives:

e Y-k lo o1(L—p; D ook
x4 o< (S2) g(1+ # (Ml p) ¢) <P TI0-py)

Jjel

This proves 1. The second inequality follows immediately by observing that if, say, Vi: p; < 1, then

—log(Hl p]) 33 "<ZZ S WD 5o 10k < (LOELX]. B

7¢l 7¢Il k>0 Jjel k>0

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974.

[2] M. Ajtai, J. Komlds, E. Szemerédi. There Is No Fast Single Hashing Algorithm, IPL, 7,6, 1978,
pp- 270-273.

[3] B. Bollobas, A.Z. Broder, and 1. Simon. The cost distribution of clustering in random probing,
to appear, JACM.

[4] R Brent. Reducing the Retrieval Time of Scatter Storage Techniques, CACM, 16(2), 1973,
pp- 105-109.

[5] H. Chernoff. A measure of asymptotic Efficiency for Tests of a Hypothesis Based on the Sum
of Observations, Ann. Math. Statist., 23 (1952), pp. 493-507.

53

Double hashing is computable and randomizable with universal hash functions

[6] J.L. Carter and M.N. Wegman. Universal Classes of Hash Functions, JCSS, 18, 1979, pp. 143—
154.

[7] D.H. Greene and D.E. Knuth. Mathematics for the analysis of algorithms, Birkhauser, 1990.
[8] L. Guibas and E. Szemerédi. The Analysis of Double Hashing, JCSS, 16, 1978, pp. 226-274.

[9] W. Hoeffding. On the Distribution of the Number of Successes in Independent Trials, Ann.
Math. Statist., 27 (1956), pp. 713-721.

[10] D.E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-
Wesley, Reading, Mass. 1973.

[11] G. Lueker and M. Molodowitch. More Analysis of Double Hashing, 20th STOC, May, 1988,
pp- 354-359.

[12] K. Mehlhorn. On the Program size of Perfect and Universal Hash functions, Proc. 23rd Ann.
Symp. on Foundations of Computer Science, 1982, pp. 170-175.

[13] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching, Springer-Verlag,
Berlin Heidelberg, 1984.

[14] J.P. Schmidt and A. Siegel. On aspects of universality and performance for closed hashing,
21st STOC, May, 1989, pp. 355-366.

[15] J.P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding Bounds for Applications with
Limited Independence. Proc. jth Ann. ACM-SIAM Symp. on Discrete Algorithms, 1993,
331-340. To appear SIAM J. Discrete Math.

[16] A. Siegel. On universal classes of fast hash functions, their time-space tradeoff, and their
applications, Proc. 30th Ann. Symp. on Foundations of Computer Science, Oct., 1989, pp. 20—
25.

[17] A. Siegel and J.P. Schmidt. Closed hashing is computable and optimally randomizable with
universal hash functions, submitted.

[18] J.D. Ullman. A Note on the Efficiency of Hash Functions, JACM, Vol 19, 1972, pp. 569-575.

[19] M.N. Wegman and J.L. Carter. New Hash Functions and Their Use in Authentication and Set
Equality, Journal of Comp. Syst. Sci. 22, 1981, pp. 265-279.

[20] A.C. Yao. Uniform Hashing Is Optimal, JACM, Vol 32, No. 3, July, 1985, pp. 687-693.

94

