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Abstract

It is often useful to model the behavior of an autonomous intelligent creature in terms of
continuous control and choice. For example, a robot who moves through space can be idealized
as able to execute any continuous motion, subject to constraints on velocity and accelleration;
in such a model, the robot can “choose” at any instant to change his accelleration. We show
how such models can be described using a continuous branching time structure. We discuss
mathematical foundations of continuous branching structures, theories of continuous action in
physical worlds, embedding of discrete theories of action in a continuous structure, and physical
and epistemic feasibility of plans with continuous action.

1 Continuous Plans

It is often useful to model the behavior of an autonomous intelligent creature in terms of continuous
control and choice.

Imagine a creature that can move in the plane up to 1 meter per second but no faster, and that
wants to catch unintelligent prey that moves around the plane. The hunter can detect prey up to a
distance of 1 meter. A theory of plans should support conclusions like the following:

A. If the prey moves at 0.5 m/sec and is initially within sight, then the hunter can catch it by
chasing it.

B. If the prey moves at 0.05 m/sec and is initially within a distance of 2 meters, then the hunter
can catch it by encircling it: The hunter first goes in a circle of radius 2 meters, then in a
circle of radius 1.13 meters, then in a circle of radius 0.5 meters, until seeing the prey. It then
pursues the prey until catching it.!

*This research was supported by NSF grants #IRI1-9001447 and #IRI-9300446. Thanks to Steve Hanks for helpful
discussions.

1The plan given in the introduction AIPS-94 version of this paper is, I believe, correct, but I have not worked out
a full proof, and I suspect it would be involved. Specifically, a very delicate case analysis would be required to prove
that the prey cannot stay out of the range of the hunter sight, the analogue of lemma 20 here. The plan given on the
last page of the AIPS paper is certainly incorrect.



C. Suppose that:
i. The prey is currently at (0.0,1.0) and the hunter is at (0.0, 0.0).

ii. The prey moves at 2 m/sec in the y direction.
Then the hunter cannot catch the prey.
D. Suppose that:

i. The prey is currently out of view (more than a meter away).
ii. The hunter is at the point (0.0, 0.0).
iii. The hunter knows that the prey will come to a watering hole at point (0.0, 0.25).

iv. The prey moves no faster than 2 m/sec
Then the hunter can catch the prey by moving to the point (0.0,0.25) and waiting there.

E. Let us modify condition (D.iii) above to read “The hunter knows that the prey will come either
to (0.0,0.25) or to (0.0,—0.25).” Then the hunter cannot be sure of catching the prey.

Note that there is a difference between the impossibility in (C) above and that in (E). (C) is a
physical impossibility; the hunter physically cannot catch the prey under the given constraints. (E),
however, is an epistemic impossibility. If the hunter could find out which watering hole the prey
would go for, it could go there and wait; however, it lacks the necessary information.

A simple model for the hunter is that it can carry out any continuous, piecewise differentiable
movement in the plane with a speed that is always less than one m/sec. This is an idealization: actual
creatures cannot change velocity discontinuously, they can only execute a planned motion within a
certain tolerance, and, having only finite cognitive capacities, they cannot represent an infinitude of
different possible behaviors. But the idealization is a useful and natural one, comparable to using a
continuous model of matter to approximate the underlying discrete reality. A model that considered
these limitations would be more complex and would require more detailed knowledge of the creature.

A model of such an agent can be formulated using a branching, continuous model of time. The
time structure is continuous, because we categorize the agent’s behavior in continuous terms. It
branches, because the agent can choose different ways to go. Indeed, the time structure branches
continuously; at every point, the agent has a choice of direction.

The first discussion in the AT literature of branching, continuous time was (McDermott 1982),
but though that paper dealt with actions and with continuous processes, it did not study continuous
actions in depth. This paper is intended to fill that gap. (Forbus 1989) presented a theory that
integrates action with continuous physical change. Forbus used a discrete model of action; actions
were sudden discontinuous changes that occur discretely to a continuous world. We will show that
such an assumption is not technically necessary and, for many domains, not a natural assumption.
(Penberthy 1993) presents a planner that constructs partial plans that include continuous actions
that cause parameters to vary as a linear function of time. However, the notion of action used there
and the semantics of planning is less general than that developed here. (De Jong 1994) describes
explanation-based learning of control strategies. Our paper can be thought of as providing a general
ontological framework for programs like those of Penberthy and de Jong.

2 Temporal Theory

The intuition behind our theory is as follows. We characterize a behavior of the agent by a time-
varying state that it controls, subject to physical constraints. For example, the state might be
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Figure 1: Branching Time Structure

position in the plane; or a configuration in some configuration space; or a velocity; or a collection
of torques applied at joints; etc. This state can have many components, which may be discrete or
continuous. A behavior of the robot is then a function from time to the state space; that is, a fluent
that takes values in the state space. We call this the behavioral fluent.

The structure of branching time is intended to reflect the robot’s choices of behavior. For example,
let the state of the robot be his position in space, and suppose that the following two behaviors are
possible to the robot: Behavior Bl is first to go east for 2 minutes at 1 meter per second, then to
go north for 1 minute; behavior B2 is first to go east for 1 minutes at 1 meter per second, then to
go north for 1 minute, then to go east for 1 minute. The time structure for these two behaviors
consists of a single path for the first minute, where the two behaviors are the same; a branch point
at the one minute mark, corresponding to the choice that must be made; and two separate paths
for the remaining two minutes, corresponding to the two possible continuations (Figure 1). Such a
time structure has two properties:

e It exhibits the two behaviors. That is, each of the behaviors occurs in some branch of the
structure.

e It branches on the behavior. That is, the two branches coincide in the time structure as long
as the behaviors are identical. The branches fork only when they must, because the behaviors
have become different.

We will show (Theorem 1) that, given a class B of possible behaviors, one can construct a time
structure that exhibits all the behaviors in B and branches on the behavioral fluent.

Each point in the time structure is a situation (McCarthy & Hayes 1969); that is, a snapshot of
the universe. In particular, a situation is more than just a value of the behavioral fluent. Note that
branching is only into the future; even though the robot ends up in the same place in B1 and B2,
the final situations are not considered the same.

In this theory, we use branching in the time structure to express only the choice of the single
agent. (We do not deal with more than one intelligent agent.) Uncertainty or indeterminacy in
the behavior of the external world is treated as uncertainty as to the form of the overall model
rather than as branching within the model. Thus, we take the view that the world in fact follows a
deterministic path given the agent’s behavior, though the nature of that path may be unknown.



For example, consider an agent who controls an output voltage. There is a maximum M on the
voltage he can produce, which is known to be between 5 and 7 volts. The agent’s output voltage
is an input to an amplifier, which multiplies the signal by a factor of &k, where k is known to be
between 2 and 3. This situation is characterized by positing a branching time structure, in which
each possible behavior that stays within M is exhibited in some branch, and in which the amplifier
output is always k times the agent’s output. The uncertainty in & and M do not generate branches
within the structure; there is not one branch where the amplification is 2 and another where it is
3. Rather, they generate uncertainty about the structure; the amplification within the structure is
only partially determined.

3 Mathematical Foundations

Our formal analysis begins with the definition and study of forward branching structures. (Compare

(Shoham 1989) (van Benthem 1983).)

Definition 1: Let & be a set with a binary relation X < Y. § is a forest if the following condition
holds:

i. (Anti-symmetry) If X <Y then not Y < X.
ii. (Transitivity) If X <Y and Y < Z then X < 7.

iii. (Forward branching) If X < Z and Y < Z then either X <Y, X =Y, or Y < X. That is,
any point Z has a unique, totally ordered past history.
Example: A finite forest is a forest of trees in the usual sense.

A branch in a forest corresponds to an interval in a linear ordering.

Definition 2: Let S be a forest and let I be a subset of §. I is an branch of § if the following hold:

i. I is totally ordered. That is, for X, Y € I, either X <Y, X =Y, 0or Y < X.
ii. I is connected. That is, if XY € I, Z € 8, and X < Z <Y, then Z € .
Definition 3: Let & be a forest and let D be a function from S to the real line £. D is called
a clock function. § (strictly speaking, the triple 8, <, D) is a continuous forest (CF) if D has the
following properties:
i. D is order preserving. That is, if X, Y € S and X <Y then D(X) < D(Y).
ii. For any branch 7T C 8§, D(I) is a real interval.
iii. Let t € R be any clock time, and let s be any element of 8. Then there is an s’ € S such that
s’ < s and D(s') < t. That is, branches go back to —oo.
We now discuss the relation between a branching time structure and a space of possible behaviors
of the agent.

Definition 4: An initial interval is a real interval which is unbounded below. An initial behavior
is a function whose domain is an initial interval. Branch 7T is an initial branch if D(I) is an initial
interval. A fluent is a function whose domain is a CF.



Definition 5: Let § be a CF with clock function D; let I be an initial branch of §; let F' be a fluent
over §; and let B be an initial behavior. We say that F' ezhibits behavior B on I if the following
hold:

i. D(I) is equal to the domain of B;

ii. For all s € I, Fi(s) = B(D(s)).

That is, over branch I, the evolution of F' follows B.

Definition 6: Let § be a CF, and let F' be a fluent over §. 8 branches on F if the following
condition holds: for any behavior B there is at most one initial branch I C & such that F' exhibits

B on I. That is, any two different initial branches must be distinguished by different behaviors of
.

We now proceed toward the following result: Given a set B of initial behaviors, we construct a
CF called “CFg” and a fluent called “FLg” such that FLgz exhibits all the behaviors in 5 and CFp
branches on FLg.

Definition 7: Let By and Bs be initial behaviors, with domains I; and I respectively. By is closed
if I has the form (—oco,T|. By is an initial segment of By if Iy C I and Bj is the restriction of B
to Il .

Definition 8: Let B be a collection of initial behaviors. We construct CFgz and the fluent FLg as
follows:

1. X is an element of CFp iff X is a closed initial segment of some behavior B € B.
ii. For X,Y € CFg, X <Y if X is an initial segment of Y.
iii. For X € CFp with domain (—o0, 7], D(X) =T.

iv. Let B be a behavior in B; let X be a closed initial segment of B; and let (—oco,T] be the
domain of X. Then FLg(X) = B(T). It is easily seen that, for fixed X, this determines the
same value of FLg(X), however B is chosen.

Theorem 1: Let B be a collection of initial behaviors. Then CFg is a CF; FLg exhibits all the
behaviors in B; and CFpz branches on FLg.
Proof: We begin by defining two useful notations:

e If B is an initial behavior, then Dom(B) is the domain of B. Note that Dom(B) is an initial
interval.

e Let B be an initial behavior, and let 7" be an element of Dom(B). Then B|p is the restriction
of B to the interval (—oo,T]. Note that B|y is an initial segment of 7. Note also that, if
T1 < T, then (BlT)lTl = BTl.

The proof is now essentially definition hunting. We make the following observations:

i. The relation “Behavior Bj is an initial segment of By” is a partial ordering on initial behaviors,
since it is simply the subset relation on the class of initial behaviors, viewing a behavior as a
set of ordered pairs.

Ot



ii. Let By and B be initial segments of By. Then By = By, and By = Blyp, for some 11,75 €
Dom(B). If T1 < T then By = Bs|p , so Bj is an initial segment of By. Likewise, if 75 < T}
then Bj is an initial segment of B;. Thus, the forward branching property (Definition 1
condition iii) holds.

iii. Let By, By € CFg, let By < Bz, and let Dom(B;) = (—o0,T1] and Dom(B3) =
By construction Bj is a proper initial segment of Bg, so 71 < Ty. But D(Bj)
D(B3) = Ty. So D is order-preserving, satisfying Definition 3, condition i.

£ ]

iv. Let J be any branch in CFg, and let 7 = D(J). I is thus a set of real numbers. We wish to
show that I is an interval; it suffices to show that, if X, Y € I, and X < Z <Y then Z € I.
Thus, let Bx, By € J such that D(Bx) = X and D(By) =Y. Thus, Dom(By) = (—c0,Y].
Let By = By|,. It is clear that Bx is an initial segment of By and that By is an initial
segment of By . Therefore, since J is a branch containing Bx and By, it follows that Bz € J.

v. Let T1 € R be any time, and let B be an element of CFg with domain (—oc0,72]. Choose
T < min(T'1,72). Then B|; < B and D(B|;) < T1.

vi. Let B be any behavior in B. Let J be the set of all closed initial segments of B; J = {B| |
T € Dom(B)} It is immediate from the definitions that J is a branch of CFg and that FLg
exhibits behavior B on J.

vii. Let B be any initial behavior and let J, as in (vi), be the set of all closed initial segments
of B. We wish to show that J is the only branch on which FLg exhibits behavior B. Proof
by contradiction: Let J1 be another such branch. We note that D(J1) = D(J) = Dom(B).
Therefore, J1 is not a proper initial segment of J. So let S be an element of J1 — J. Since
S € J1, D(S) € Dom(B). Since S ¢ J, S is not an initial segment of B. Thus there is a value
T < D(S) such that S(T') # B(T). Certainly S|y € J1. But FLg(S|y) = S| (T) = S(T) #
B(T). Thus FLg does not exhibit behavior B on J1. This completes the contradiction.

Items (i) — (v) establish that CFp is an CF. Item (vi) establishes that FLyg exhibits all the
behaviors in B. Item (vii) establishes that CFp branches on FLg. Thus the proof of theorem 1 is
complete. O.

Theorem 2: CFp and FLg are the unique minimal CF and fluent satisfying the conclusions of
Theorem 1, up to isomorphism. More precisely: Let B be a collection of initial behaviors. Let <g
and Dg be the order relation and the clock function associated with CFg. Let & be an CF with
order relation <s and clock function Dg Let F be a fluent over & such that F exhibits all the
behaviors in B and such that & branches on F. Then there is a subset Sg of § and an isomorphism
¢ from CFp to Sg such that

1. ¢ is one-to-one and onto.
ii. For any B1, B2 € CFg, Bl <g B2 if and only if ¢(B1) <g ¢(B2).
iii. For any B € CFg, Dr(B) = Ds(é(B)).
iv. For any B € CFg, FLg(B) = F(¢(B))
Proof: Since § is a forest, it follows that for any element S € S there is a unique initial branch
whose largest element is S. Let us say that an element S € § corresponds to a behavior B € CFg if
the fluent F exhibits behavior B over the initial branch ending in S. Since F exhibits all behaviors

in B, it follows that every behavior B € B has a corresponding element S € S§. Since § branches
on F it follows that this corresponding element is unique. We can therefore define ¢(B) to be the



unique element of § corresponding to B. We define 8 to be the image of CFg under ¢. The above
properties then follow immediately.0

Theorem 3: Let § be any CF. Then there is a family of behaviors B such that § is isomorphic to
CF;.

Like many such results, the statement seems interesting until you see the proof, which is perfectly
circular.

Proof: We construct a family of behaviors whose range is § itself. For any element S € §, and for
T < D(S), let (S, T) to be the unique element of S such that D(0(S,T)) =T and §(S,T) < S. Let
(S) be the behavior B such that Dom(B) = (—oco, D(S)] and, for any T' < D(S), B(T) = 0(S,T).
Then it is immediate that § is isomorphic to CFp.

There are two problems with this construction. First, CFg may contain behaviors that are not
in B. Second, even if all the behavior in B have domain (—c0,00), there may be maximal branches
in B of finite length. Intuitively, B represents constraints on the possible behavior of the agent. CFg
then suggests that, by shifting behavior infinitely often, the robot can either violate the constraint,
or bring time itself to a sudden end. (Davis 1992a)

Example: Let B be the space of all continuous bounded functions on (—oo,00). For k = 2,3, ...

define the function . )
— fort<1-— ¢
a@={ 7 15101

k fort >1— ¢
(

Then by executing ca(?) before t = 1/2, ¢3(t) from t = 1/2 to t = 2/3, ..., the robot ends up
executing ceo(t) = 1/1 —t over the interval (—oo,0). This behavior is not an initial segment of any
behavior in B and cannot be extended to ¢ = 0 within the given constraint. The corresponding
branch in the time structure terminates at time 0. (Figure 2)

In general, a behavior B is exhibited in CFp iff every closed initial segment of B is also an initial
segment of some behavior in B. Such a behavior is called an initial limit of B.

Two solutions to this problem may be suggested. One is to mark certain branches in the CF
as disallowed. Thus a branch like ¢ () that diverges is considered impossible, though every closed
segment is possible. The other is to require B to be closed under the taking of initial limits. For
example, these two collections of functions satisfy that condition:

e The class of initial functions bounded by M.

e The class of functions b satisfying the Lipschitz condition | b(z) —b(y) |[< M |z —y |.

4 Causal Theories

One advantage of a discrete theory is that there is a simple basic form for causal theories: a causal
theory specifies the result of performing an action in terms of a transition function from one situation
to the next. Continuous theories; having no “next” situation, are harder to characterize. Continuous
time theories in science are usually posed as differential equations; however, these are often unsuitable
to commonsense reasoning (Davis 1988).

The AI literature contains a variety of formal characterizations of continuous physical domains
(e.g. (Hayes 1985), (Kuipers 1986), (Sandewall 1989), (Davis 1990)) but no standard framework for
such theories has emerged. The incorporation of volitional action into these theories is problematic,
in general. Sometimes it is straightforward. For example, in electronic systems, such as those in
ENVISION (de Kleer & Brown 1985) an agent can be viewed as generating an exogenous signal.
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Figure 2: Divergent Behavior

In the microworld of the hunter following prey, the hunter and prey move independently; the only
causal rule is that the hunter catches the prey when they are at the same location.

Other domains are harder. Consider the kinematic theory of rigid solid objects. The physical
theory is simple (see (Davis 1990), p. 332). There is a collection of objects. An object may be
fixed or mobile. Each object has a fixed shape, which is a spatial region satisfying certain regularity
conditions. The “place” of an object O is a fluent, whose value in each situation is a region congruent
to the shape of O. The “placement” of an object is a fluent whose value in each situation is a rigid
mapping from the shape to the place. The theory is characterized by the following axioms:

1. The place of O in situation S is the image of the shape of O under the placement of O in S.
2. The placement of O in S is always a rigid mapping.

3. If O1 # 02, then the place of O1 in S does not overlap the place of 02 in S.

4. If O is fixed, then the placement of O is constant.

5. The placement of O is a continuous function of time.

Rules (1) to (4) are domain constraints, which refer only to a single situation S. Rule (5) has
non-trivial time-dependence, but it has a simple and standard form.

However, if one of the objects has autonomous choice of motion, then the following rule holds:
Any motion of the agent is possible, as long as the other objects can move so as to avoid overlapping
it. This rule is much harder to express. (Consider particularly the case where several objects combine
to block the agent. (Figure 3)) The simplest formulation that I have found is as follows. We define
three new sorts. A configuration is a placement of all the objects. A history is a function from
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Figure 3: Kinematic Constraints



time to configurations. A history is feasible if it is continuous and differentiable, it does not cause
objects to overlap, and it leaves every fixed object in a constant position. A differential motion is a
combination of a translational velocity and an angular velocity; that is, the derivative of a placement.
We now state the following rule:

6. Let S be a situation and let C' be the configuration of objects in S. Let M be a differential
motion of C'. If there exists a feasible history H such that the configuration of H at time 0 is
equal to C' and the derivative of the placement of the agent in H at time 0 is equal to M, then
there exists a branch [S, S1] in the time structure such that the derivative at S of the motion
of the robot exhibited over [S, S1] is equal to M.

That is, if there is any way for the objects to move around from S so as to permit the agent to move
in direction M, then the agent can indeed move in direction M and the objects will move in some
permitted manner.

The contrast between the complexity of rule (6) and the simplicity of rules (1-5) is stark. It may
possible to derive (6) from a default rule of the form, “A differential motion of the agent is feasible
unless it is forbidden by rules (1-5).” However, finding a non-monotonic theory of this form and
establishing that it gives all and only suitable answers is hard.

Adding agents to a dynamic theory of objects is easier, at least at the level of metaphysical
adequacy (McCarthy & Hayes 1969). Take an agent to be a jointed collection of rigid parts, and
characterize its behavior in terms of the torques that it creates at joints. The agent then interacts
with the outside world via normal and frictive forces at its surface. The extension is formally simple,
but since it operates in terms of joint torques it is nothing like epistemilogically adequate.

5 Embedding Discrete Actions

The standard discrete situation can be easily embedded within a continuous branching time structure
as follows. For each situation calculus event F/, define a possible value of the behavioral fluent to be
a pair (£, T) where 0 < 7' < 1. (We assume that all such events take unit time. This assumption can
be modified to have elapsed time depend on the event and the starting situation.) 7" here represents
the fraction of the duration of the execution of E. We can then define the “result” function as
follows:

S1 = result(F, S0) <
[S1 > SO0 A clock(S1) — clock(S0) =1 A
Vs S0<S<S1 =
behavior(S) = (E, clock(S) — clock(S0) }].

That is, during the execution of E| the behavioral fluent always indicates that F is being executed,
and the clock for the event advances from 0 to 1.

6 Physical Feasibility of Plans

If the semantics of plan P are defined behaviorally — that is, necessary and sufficient conditions
have been given for the assertion “P is executed over interval I” — then the definitions of the
physical feasibility and correctness of P is the same as for discrete time. If P is determinate, then
the definitions are straightforward:

10



Definition 9: Determinate plan P is feasible in situation S if P is executed over some interval

[S, S1].

Definition 10: Determinate plan P achieves goal G starting from situation S if, for some S1, P is

executed over [S, S1] and G holds in S1.

To categorize indeterminate plans, we augment the time structure by allowing the behavioral
fluent to assume the value “fail”. Once the agent enters the failing state, it remains there forever.
We then define the semantics of plans so that, if a plan intuitively requires the execution of an
action that is currently infeasible or undefined, the agent in fact executes “fail”. In such a structure,
correctness of plans can be defined thus:

Definition 11: Plan P is possibly feasible in situation S if, for some non-failing situation S1, P is
executed over the interval [S, S1].

Definition 12: Plan P is necessarily feasible in situation S if, for every situation S1 such that P
is executed over the interval [S, S1], S1 is not a failing situation.

Definition 13: Plan P necessarily (possibly) achieves goal G from situation S if the plan “begin
P; if G then no-op else fail end” is necessarily (possibly) feasible in S.

7 Epistemic Feasibility of Plans

The problem of characterizing the conditions under which a discrete plan is epistemically feasible
is noted in (McCarthy & Hayes 1969) and was first studied at length by Moore (1985). In (Davis
1994) T propose the following definitions, modified from Moore’s. These apply both to determinate
and to indeterminate plans. “Executability” corresponds to necessary feasibility; it means that the
agent can carry out the plan by executing one step at a time, with no thought except understanding
what the plan says to do next. “Epistemic feasibility as a task” corresponds to possible feasibility;
it means that, if the agent is assigned to carry out the plan, then, by thinking hard, he can find a
way to do it.

Definition 14: Plan P begins over interval [S1,52], if there is an S3 > S2 such that P executes
over [S1, S3].

Definition 15: Plan P’ is a specialization of plan P in S if every execution of P’ starting in S is
also an execution of P.

For instance, the plan “begin A;B end” is a specialization of the plan “do both A and B in any
order.”

Definition 16: Discrete plan P is executable for agent A in situation S iff for any S2, if P begins
over [S,S2] then

i. A knows in S2 whether P has completed over [S, S2];
ii. A knows in S2 what are all the actions that constitute a next step of P after [S,S2]; and

iii. “fail” is not a next step of P after [S,S2].

Definition 17: Discrete plan P is epistemically feasible as a task for agent A in situation S if there
is a plan P’ such that A knows in S that:

i. P'is a specialization of P;

ii. P’ is executable in S.

11



I show (Davis 1994) these definitions are reasonable for a few simple examples and that they
have a number of natural properties:

e The more one knows, the more plans are epistemically feasible.

e For an omniscient agent, a plan is executable iff it is necessarily feasible; it is epistemically
feasible as task iff it is possibly feasible.

e Moore’s (1985) rule? for sequences: The plan “sequence(P1, P2)” is epistemically feasible for
Ain S if P1 is epistemically feasible for A in S and A knows in S that, after executing P1,
P2 will be epistemically feasible.

e Moore’s rule for conditionals: The plan “if ¢) then P1 else P2” is epistemically feasible for in
S if either [A knows in S that @ is true and P1 is epistemically feasible in S] or [A knows in
S that @ is not true and P2 is epistemically feasible in SJ.

These definitions have a straightforward generalization to the continuous case. We posit that an
agent cannot react instantaneously to perceptions. Rather, that there must be a delay of at least
A > 0 between perception and reaction.

Admittedly, this requirement of a delay can be a little clumsy. Plans, such as (B) of the intro-
duction, are more naturally stated in a form that idealizes the agent as responding instantaneously
(“As soon as you see the prey do ...”). However, in looking for a definition of epistemic feasibil-
ity that admits instantaneous response, I have always gotten into trouble with unsolvable feedback
systems. For example, consider the plan “Move toward the target with speed 1 m/sec greater than
the speed of the target”. Ordinarily, the feasibility conditions of this plan are easily stated: It is
physically feasible if the agent can move faster than the target is moving, and it is epistemically
feasible if the agent knows the direction and speed of the target. However, in the special case where
the target is attached by a stick to the agent, the plan becomes unachievable, even if both conditions
are satisfied. It is analogous to the discrete plan “Put block A on a block which will be clear at the
end of the put action.” It is not clear to me how this unachievability should be characterized, or
how the unachievable case can in general be distinguished from the achievable case.

Under this assumption that there is a delay, we can generalize definitions 16 and 17 to the
continuous case. The generalization involves one tricky issue. Let me proceed therefore by presenting
first a simple definition that is not quite correct, explaining the gap, and then presenting the more
complicated correct definition.

Definition 18.0: (Not quite correct)
A plan P is ezecutable for agent A in situation S with delay A iff
for any S1,
if A begins to execute P from S to S1
then A will know in S1,
whether P will complete within time A
and how to continue P for time A.

The problem is that this definition allows the following scenario: The robot gains some informa-
tion at time 77 > Ty — A before it starts execution of the plan at time 7p, and uses that information
to guide its execution of the plan. In this scenario, the robot has a reaction time of Ty — 77 < A.
We therefore modify the definition to require that the robot knows how to begin the plan for a time
A before it actually does so.

2Contrary to the statement in Moore, these rules are sufficient but not necessary conditions.
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Definition 18

A plan P is ezecutable for agent A in situation S with delay A iff

for any S1,

if either A begins to execute P from S to S1
or S1 precedes S by no more than A,
then A will know in S1,

whether, starting in S, P will complete within time A of S1,
and how to continue P after starting in S up to time A after S1.

Definition 19:
A plan P is epistemically feasible as a task for agent A in situation S with delay A iff
there is a plan P1 such that
A knows in S that
P1 is executable for A in S with delay A and
P1 is a specialization of P.

The above properties of definitions 16 and 17 also apply to definitions 18 and 19. Also, these
definitions are monotonic in A; if a plan is epistemically feasible with one value of A, then it is
epistemically feasible with any smaller value of A.

Let me emphasize that these definitions do not involve a discretization of time; they introduce a
constant delay at every instant of the time line. Thus, at every instant, the agent can make use of
all his perceptions up to time A before.

In the case of discrete actions, definitions 18 and 19 reduce to definitions 16 and 17, provided
that there is always a delay of duration at least A between the time that the agent gains information
from one step and the time that he applies it in the next step. For example, one could require that
the agent always wait for duration A between deciding on his next step and executing it.

To fit definition 18, plan (B) must be changed to admit delay between perception and action.

e The hunter must be allowed a delay between seeing the prey and changing from circling to
pursuing.

e Thus, the hunter must wait till the prey is well within view, not on the horizon, so that it does
not vanish the small interval before he begins pursuit.

e In pursuit, the hunter cannot move toward the current position of the prey. Rather, he moves
toward some position the prey has occupied within time A.

8 The formal analysis of a plan

We now show how plan (B) can be formally verified as physically and epistemically feasible. Our
discussion will be at the ontological level; that is, we will describe a formal model and show that
the conclusion holds in the model, but we will not give a full symbolic axiomatization of the model
or a full symbolic proof.

8.1 The physical microworld

In this example, the world at an instant consists only of the hunter and its prey, and the only
significant characteristics of these are their spatial positions. For these purposes, therefore, we can
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construct our temporal model as follows: There are two fluents “hunter” and “prey”. The value of
“prey” in any situation is a point in ®2. The value of “hunter” in any situation is a pair (X, F')
where X is a point in 2 and F' (for “failure”) is a Boolean value. The set of all values of such a pair
will be called “hunter state space.” The fluent of the spatial component of “hunter” will be called
“h_place” and the fluent of the failure component will be called “h_fail”.

We will assume that the positions of the hunter and the prey are continuous and continuously
differentiable from the right (later times). That is, the limit

L Q9 - Q)

e— 04 €

always exists and is continuous from the right as a function of ¢. Thus whenever we use the ex-
pressions “derivative” we will mean “derivative from the right”. Similarly “velocity”, “speed” and
related expressions are defined in terms of the derivative from the right.

A time structure 7 is a CF of situations, branching on the fluent “hunter”.

Until the hunter fails, he can execute all and only right-differentiable continuous motions with
speeds up to 1 meter per second. The hunter can fail after any situation. Once he has failed, h_fail
remains true forever, and by convention we say that he remains in the same place.

We thus have the following definitions:

Definition 20: Let F(¢) be a function from the reals to hunter state space. Let I be an initial
interval. F' is said to be a realizable hunter behavior over I if it satisfied the following condition:

There is an initial interval 71 such that
(A) Either I1 =TI or I1 = (—oco, L] C I.
(B) Over I1, h_place is right-differentiable, and | h_place’(T") |< 1 and
h_fail is always equal to FALSE; and
(C) Over I — I1, h_place has the constant value h_place(L) and
“h_fail” is always equal to TRUE.

Definition 21: Let G(¢) be a function from % to R?. G is said to be a realizable prey behavior if it
is continuous and right-differentiable, and the magnitude of the derivative is no greater than 0.05.
Definition 22: A realizable time structure is a CF of situations such that

e Only realizable hunter behaviors are exhibited by hunter.

e Every realizable hunter behavior is exhibited by hunter.
e Only realizable prey behaviors are exhibited by prey.

The simple form of definition 22, where any behavior of “hunter” can be combined with any
behavior of “prey”, reflects the trivial causal structure of the microworld. Richer worlds, where past
behaviors of external objects affect the current choices open to the agent, are harder to characterize.
open

8.2 Plan
Plan (B) was originally described in the introduction as follows:

The hunter first goes around in a circle at radius 2 meters, then at radius 1.13, then at
radius 0.5. It then pursues the prey until catching it.

14



As described in section 7, our theory of epistemic feasibility requires a time delay between the
hunter’s perception of a fact and his reaction to that fact. This affects the above plan in four respects.
First, there must be a time interval between seeing the prey and switching from the encircling part
of the plan to the pursuing part of the plan. Second, to make sure that the prey does not escape out
of sight during that time interval, we will modify the switchover condition to read that the hunter
sees the prey sufficiently far from the limits of his perception. Third, “pursue” must be defined so
that the hunter is not required to run precisely in the current direction of the prey, but may run
towards the prey’s position in the recent past. Finally, the criterion of success cannot be that the
hunter reaches the same point as the prey, but that he comes close enough to it.

As a result of this modification, this plan becomes an indeterminate one, because the delay in
responding is not fixed, though it is bounded.

Our formal representation of the above plan is as follows:
huntl =
sequence(monitor(A(7T) distance(h_place(T"), prey(7)) < 0.95,
sequence(go_circle(0,2), go-circle(2,1.13), go-circle(1.13, 0.5))

0.01),
follow(prey, 1, 0.01, 0.01))

gocircle(A, B) =
sequence(go(A(T) (0, A+ Tsign(B — A)), | B— A ),
go(A(T) (B cos(T'/B), Bsin(T/B)), 27 B)).

go(PATH, D) = for_duration(D,attempt(going(PAT H))).

follow(X, G, L,A) =
monitor(dist(h_place,X) < L,
forever(attempt(following(X, G, A)))).

The meaning of the above primitives is as follows:

o going(PATH) — PATH is afunction of time. Starting at time ¢, going(P AT H ) is the action
of moving so that at time T' > Tp, the position of the hunter is PATH(T — Tp).

e following(X,G,A) — X is a fluent whose value in each situation is a position. G is a speed.
A is a time duration. The action following(X, G, A) consists of the hunter moving toward X
at speed GG with time delay A. The precise semantics of the time delay is given in definition

27 below.
o attempt(E) is the plan of attempting to carry out E, or failing if £ is not feasible.
o for_duration(D, E) is the plan of carrying out F for time duration D.
e forever(E) is the action of carrying out E forever.
e go(PATH, L) is thus the action of attempting to go along path P for duration L.

e go_circle(R1, R2) is thus the following action: Starting at (0, R1), go to (0, R2) then traverse
a circle of radius R2 around the origin.

e follow(Z, G, L, A) is thus the action of attempting to follow Z at speed G with delay A for
duration L.
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e sequence(Py, Py...Py) — Py...P; are plans. sequence(P; ...Py) is the plan of doing P;
through Py in sequence.

e monitor(Q, P, A) — @Q is a Boolean fluent. P isa plan. A is a time duration. monitor(@, P, A)
is the following plan: Execute P, monitoring fluent Q). If @) ever becomes true, then, within
time A, terminate the “monitor” plan.3

In our formal definition, we use “action” and “plan” synonymously A plan is viewed as just a
complicated action.

We define the semantics of a plan in terms of the following primitives:

o executes(P, B, Z) — Predicate. Plan P executes completely over branch B of time structure
Z.

e succeeds(P, B, Z7) — Predicate. Plan P executes successfully over branch B of time structure
7.

e begins(P, B, Z) — Predicate. Plan P begins execution over branch B of time structure Z.

The predicates “succeeds” and “begins” are defined in terms of “executes” and the fluent “h_fail”
as follows:

Definition 23: P succeeds over B in T'iff P executes over B in T"and “h_fail” is false throughout
B.

Definition 24: P begins over Bl in 1" iff there is a branch B2 of T' such that B1 is an initial
segment of B2; P executes over B2 in T'; and h_fail is false throughout B1.

We now proceed with the formal definition of the primitives in the plan above. We first define
the semantics of the primitive actions “going” and “following”.

Definition 25: Let B be a branch with lower bound By and let Ty = clock(Bg). The action
“going(PATH)” is executed over branch B if, for every S € B, PAT H(clock(S) — Tp) = h_place(S).

We define the semantics of “following(X, G, A)” in terms of a delay function ©(S). In any given
situation .S, the hunter is reacting to a position of GG in some situation shortly preceding S. That
situation is ©(S5).

Definition 26: The function ©(T") mapping time T to a time is a delay function bounded by A
if the following conditions hold:

LT>O(T)>T-A

ii. ©(T) is monotonically non-decreasing, continuous, and continuously differentiable from the
right.

The function X(O(T)), the position of X at the delayed time ©(T'), will be informally called the
“ghost” of X.

Definition 27: Action following(X, G, A) is executed over interval I if there is a delay function
O(T') bounded by A such that:

i. If T € I and h_place(T) # X(O(T)) then the velocity of the hunter is equal to G times the
unit direction from h_place(T") to X(O(T)). That is, if the hunter is not at the ghost of X,
then he moves towards the ghost of X with speed G.

2In [Davis, 92b], the role of A was imbedded in the overall semantics of execution. Incorporating it directly in the
control structure leads, I think, both to a more flexible representation and to a cleaner semantics.
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ii. If 7€ I and h_place(T) = X(O(T')) then: Let Vo(T) = %X(G)(T)). Then the speed of the
hunter at time T is equal to min(G, Vo(T)) and the direction of the velocity is parallel to
Vo (T). That is, if the hunter is current in the same place as the ghost of X then he tries his
best to keep up with the ghost of X, subject to the constraint that the hunter cannot move
faster than G. Note that the ghost of X may move faster than X can, if ©(T) rapidly catches
up to the present.

We next define the semantics of the control structures used in the plan.

The function “attempt(E)” applies only to actions E that are beginnable in the sense of the
following definition:

Definition 28: Action E is beginnable if it satisfies the following condition: If F is executed
over branch B and Bl is an initial segment of B, then E is executed over Bl1.

If £ is beginnable, then the execution of the attempt to do E is related to the execution of F in
the following definition:

Definition 29: Let B be a branch of time structure Z with lower bound Sp; let “clock(S)” be
the clock function associated with Z; and let Ty = clock(Sp). The action “attempt(E)” is executed
over B in Z if either

a. E is executed over B and, for all S € B, h_fail(S) = false; or

b. There is no branch B’ with lower bound Sy such that F is executed over B’ and, for all S € B,
h_fail(S) = true; or

c. There exists an initial segment B1 of B such that

c.i. E is executed over Bl and, for all S € B1, h_fail(S) = false;

c.ii. There does not exist a B2 such that Bl is a proper initial segment of B2 and such that
FE is executed over B2; and

c.ii. For all S € B — B1, h fail(S) = true.

In case (a), the hunter successfully executes E throughout B. In case (b), he has no way to
execute E for any length of time so he immediately fails. In case (c¢), he (i) executes E successfully
during the initial segment B1; (ii) he then finds that he cannot continue executing E; (iii) he
therefore fails for the remainder of the time.

(The planning construct used above, in which the hunter plans to attempt certain actions — that
is, he in effect plans to fail if he gets stuck — is certainly counterintuitive. You do not plan to fail;
you plan to succeed, you attempt to carry out your plan, and you may fail in your attempt. The
object here is to get around the following technical problem: To “attempt” a plan means to begin
it and to take it as far as you can. To define this, we need to define “beginning” the execution of a
plan that may be impossible to complete successfully. One way to do this, pursued in [Davis, 92b]
would be to define the semantics of beginning a plan separately from the semantics of completing
it. However, this leads to a clumsy and redundant theory. The approach pursued here is to define
“executing” a plan to include all the ways in which the plan can be begun and taken either to the
point of successful completion or failure. This gives a more compact and elegant theory, but at the
cost of this anomaly, that the plan includes the possibility of failure from the beginning.)

Lemma 4: If F is beginnable, then attempt(Z) is beginnable.
Proof: Immediate from the definitions.

Definition 30: The plan “for_duration(D, E)” is executed over branch B if E is executed over B
and the duration of B is equal to D.
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Definition 31: The plan “forever(E)” is executed over branch B if E is executed over B and B is
unbounded above.

Definition 32: Let B be a branch. If B is bounded above, let By be the upper bound of B and let
Ty = clock(By); else, let Tf = co. The plan “monitor(Q, P, A)” is executed over B if the following
conditions hold:

A. P is begun over B;
B. If S € B and clock(S) < Ty — A, then @ does not hold in S.
C. One of the following holds:

C.. B is bounded above, and P is executed over B.
C.ii. B is unbounded above.

C.iii. There is a situation Sg € B such that clock(Sg) > T¢ — A and such that @ holds in Sq.

That is, the agent begins the execution of P. If () ever becomes true, then the execution of P is
interrupted within time A; otherwise, it continues to completion.

The definition of sequence is standard.

Definition 33: A k-partition of branch B is a sequence of branches By, Bs ... By such that

° B:BluBQUUBk
o Ifi <y, 5 €B;,S; €Bj then S; < 5j.

Definition 34: The plan “sequence(P; ... Py)” is executed over B if there is a k-partition By ... By
of B such that P; is executed over B; fort1=1.. k.

8.3 Physical Feasibility

The physical correctness of huntl is now established in the following theorem:

Postulate 1: In situation s0, h_place(s0) = (0,0); h_fail(s0) = false; and prey(s0) is a point
within distance 2.5 of (0, 0).

Theorem 5: In s0, plan huntl is necessarily feasible. Every execution of huntl starting in s0 is
finite and ends in a situation where the distance from hunter to prey is less than or equal to 0.0005.

Proof: The proof of physical correctness for this plan is actually easier than one might suppose,
because it is almost independent of the initial encircling actions. In this microworld a “follow” action
always ends with the hunter close to the prey. The purpose of the encircling action is to bring the
hunter within view of the prey, in order to establish the epistemic preconditions for the following.
The physical preconditions of following are always satisfied.

The proof involves the following steps:

1. Show that the plan step go(A(T) (0,T), 2) is determinate and that it is executed successfully
over a unique branch [s0,s1] starting in s0. Show that h_place(sl) = (0, 2).

2. Similarly argue that each of the other “go” steps of the plan is determinate and feasible
following the previous steps.
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3. From (1) and (2), show that the sequence of the three “go_circle” steps is determinate and
necessarily feasible in s0.

4. Lemma: If P is necessarily feasible in .S, then, for any fluent @ and duration A, monitor(@, P, A)
is necessarily feasible in S. Thus, the “monitor” subplan of huntl is necessarily feasible in s0.

5. For any situation S and for any A > 0, there is an unbounded branch B starting in S over
which the action “following(prey, 1.0, A)” is executed.

6. The action “attempt(following(prey, 1.0, A))” never ends in failure, and can be performed
over arbitrarily long durations. This follows directly from (5), the definition of “attempt” and
the fact that “following” is a liquid event in the sense of [Shoham, 88]; that is, if following is
executed over two consecutive intervals, then it is executed over their union.

7. Suppose that “following(X, G, A)” is executed over interval I. Let Ty be the start of I; let Lg
be the distance from the hunter to X in Sgy; and let v, be the maximum velocity attained by
X. Then, at any time in I after Ty + (Lo/(G — vy )), the distance from the hunter to X is at
most Av,,.

8. In any situation S, the action “follow(X,G, L, A)” is necessarily feasible. At the end of the
execution of “follow(X, G, L, A)” the hunter will be at a distance not more than max(L, Avy,)
from the prey. This follows by combining (5) and (7) with the definition of “follow”

9. In any situation S the plan huntl is feasible. At the end of the execution of huntl, the hunter
is at a distance not more than Awv,, = 0.005 from the prey. This follows by combining (4) and
(8) with the definition of huntl.

We will present detailed proofs of steps 5 and 7; the other steps are simple.

Let O(t) be the delay function governing the “following” action. Let ﬁ(t) be the position of the
hunter at time ¢. Let )?(t) be the position of the prey. Let f(t) = X:(@(t)) be the ghost of the prey.
Let vr, be the maximum speed of the prey. For any vector V let direction(fi) = V/ | 1% | be the unit
vector in the direction of V. (direction(0) is an arbitrary unit vector.) We posit that ©(t) observes
the constraints of definition 25 and that )?(t) observes the constraints of definition 21.

We begin the proof of 5 by defining abbreviations for the three functions that are used to
determine the velocity of the hunter:

Let fl('ﬁ,t) =G- direction(f(t) — 7); let f?(t) =G- direction(f’(t)); and let

) W@, i) # () )
Pty =4 F2(1) if A(t) = J(1) and G <| J'(t) |
J(t) if 1(t) = J(t) and G >| J'(t) |

Lemma 6: The behavior “following(X, G, A)” is executed over I if the equation ﬁ’(t) =F(1)is
satisfied over 1.

Proof: Immediate from the definition.

Lemma 7: If the following two conditions hold:

1. G > vy,
2. Forallt, ©(t)=t— A

then, for any initial value ﬁ(O), there exists a solution to the equation I_{"(t) = F(t) over the interval
[0,00). (I believe that condition 2 is actually unnecessary, but it makes the proof much simpler, and
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it is sufficient for the main theorem to be proven. Also, the solution is in fact unique, but, again,
we don’t need that property.)

Proof: Note that | f’(t) |= (1) ¢/ "
then during that interval ﬁ(t) = f’( t) = H'(t

(t) = F(1)
t

O(t)) |< vm < G. Thus if ﬁ(t) = f(t) over an interval,
(t

). Therefore, one solution to the initial value problem

—

(to) = J(to),

is H(t) = J(t), t > to.

H'(t
i

On the other hand, in any region where ﬁ(t) # f(t), we have ﬁ’(t) = ﬁ(t) = fl(ﬁ(t),t).
Now, fl(t) is a continuous, bounded function of H and t in such a region. Therefore, by the usual
existence theorem for ODE’s; there exists a solution to the equation I_{”(t) = fl(ﬁ(t),t) for all ¢,
until one leaves the region [ (t) # J(t).

So we define ﬁ(t) as follows:

If H(0) = J(0)
then ﬁ(t) = f(t) for allt > 0
else let Q(t) be the solution to the equation Cj t) = F1 (Cj( t),t) as above;

—

if there exists a ¢; such that limg_¢, ( )= J(t
then define H(t) = Q(t) for 0 <t < 4, ( )= ( ) for t > ty;
else define H(t) = Q(¢) for all t > 0.

This value of ﬁ(t) then statisfies the I.V.P.

We shall show below (lemma 9) that the final conditional in the above definition of ﬁ(t) is, in
fact, always satisfied; that is, there always exists a ¢; such that lim;_, Q(t) = f(tl).

Lemma 8: (Step 5 above). If S is any situation, then there exists an unbounded branch B starting
in S such that following(prey,1,A) is executed over B.

Proof: Use lemma 7 to construct the solution to the equation I:_f’(t) = F(t), I:_f(clock(S)) =
h_place(S). It is easily shown that this solution, with h_fail = FALSE, is a hunter-realizable behav-
ior. Therefore, there exists a branch starting in S where it is realized. By lemma 6, following(prey,
1, A) is executed on this branch.

We next address step 7 of theorem 5. We begin by defining an objective function P(?) to be the
distance from the hunter to the ghost plus a penalty which is the maximal possible distance from
the ghost to the current position of the prey (that is, the maximal velocity of the prey times the
difference between the true time and the delayed time.)

—

PO)=[J(t) - H@) |+ (= O(t))vm
Lemma 9: If [I(t) # J(t) at time ¢, then P’(t) < v, — G. (If the hunter moves faster than the
prey, v, — G is negative, so P is decreasing.)
Proof:

For any vector function V(t),

d

d = % 1/2 _ ‘7/() V(t)
Z V0 1= 2V - V) =

Ta) . TN = = V'(t) - direction(V (1))
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In particular

di | J(t) — H(t) |= (J'(t) — H'(t)) - direction(J (t) — H(t)) =

¢
J'(t) - direction(J(t) — H(t)) — H'(t) - direction(J(t) — H(t)).

Now, by definition of “following”, ﬁ’(t) =G- direction(f(t) — ﬁ(t))
so H'(t) - direction(J(t) — H(t)) = G.

Also

Since | )?’(G)(t)) |< v, we have

=

J'(t) - direction(J(t) — H(t)) < ©'(t)vp,

Thus we have

P'(t) = %q J(t) = Ht) | +(t — Ot))vm < O'(t)vm — G+ (1 = O'())vy = vy — G.

Lemma 10: If I:_f(to) = f(to) and G > vy, then distance(l:f(t), )?(t)) < Aw,y, for all t > tq.

Proof: Since the prey never moves faster than v,, and since J(¢) = X(O(t)), it follows that
Tt - X(t) | < (¢t — O)um.

Also by the triangle inequality, | H(t) — X(t) | <| H(t) — J(t) | + | J(t) — X(t) |. Combinding
this with the above inequality and the definition of P(t), we deduce that | H(t) — X (¢) |[< P(t).

- —

Therefore, if ﬁ(t) = J(t) then distance(H(t),)?(t)) < (t=0()vm < Avp,.
)

Suppose ﬁ(to) = f(to but ﬁ(t) # f(t) for some t > ty. Let t5 be the least upper bound of all
times t, < t for which H(ta) = f(ta). By the continuity of H and J_: it follows that ﬁ(tz) = 4(252).

We have P(t3) = | ﬁ(tg) — f(tz) | + (t2 — ©(t2))vm = (t2 — O(t2))vy,. Moreover, since the
conditions of lemma 9 hold over the interval (t2,t], and since v, < G, it follows from lemma 9 that
P(t) is a decreasing function of time over (¢2,t]. So P(t) < P(t¢s). Thus,

| H(t) — X(t) | < P(t) < P(t) = (t2 — O(t2))vm < Avy,

Lemma 11: (Step 7 above). If “following(X, G, A)” is executed over interval [17, T3], v, < G, and

| H(1) - X(1h) |

Ty > 1T;
2 1+ G o,

then the distance from ﬁ(tz) to )?(t;;) is less than Aw,,.
Proof: Immediate from lemmas 9 and 10.

This completes the proof of theorem 1.
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8.4 Epistemic Theory

We use a possible-worlds model for knowledge [Moore, 85], [Halpern and Moses, 85], [Davis, 90].
A possible world is one possible state of the world at an instant. Worlds are connected by an
accessibility relation. A statement ¢ is known in world W iff ¢ is true in every world accessible form
W. We will assume that the accessibility relation is reflexive and transitive; it is known [Halpern
and Moses, 85] that such a model is equivalent to an S4 modal logic.

The epistemic theory is integrated with our temporal theory by identifying possible worlds with
situations [Moore, 85]. Thus, we imagine a whole collection of branching time structures, inter-
connected by knowledge accessibility relation. We posit the following three constraints relating
accessibility to the temporal structure.

e The agent knows the clock time.
e “Axiom of memory” [Davis, 90]: The agent remembers everything he once knew.

e The agent knows his own behavior.

We can express these constraints axiomatically as follows:
Axiom K.1: (Veridicality of knowledge) Any situation S is accessible from itself.

Axiom K.2: (Positive introspection). If SB is accessible from SA, and SC' is accessible from

SB, then SC' is accessible from SA.
Axiom K.3: (Knowledge of the time) If SB is accessible from SA, then clock(SB) = clock(SA).

Axiom K.4: (Persistence of memory) If S1A4 precedes S2A and S2B is accessible from S2A4,
then there exists a situation S1B such that S1B is accessible from S1A4 and S1B precedes S2B.

Axiom K.5: (Memory of behavior) If SB is accessible from SA, then the value of the behavioral
fluent is the same in the two worlds.

We now proceed to rephrase definitions 18 and 19 of epistemic feasibility in the language of
possible worlds. We begin with a few preliminary definitions.

Definition 35: The pair (S1B,52B) is said to correspond to the pair (S1A4, S2A) if S1A is ordered
relative to S2A; S1B is ordered relative to S2B; S1B is knowledge accessible from S1A4 and S2B
is knowledge accessible from S2A.

Definition 36: The interval [S1,S3] is a continuation of P within A after the pair (S1,52) if
S1 < 83 and S2 < S3; plan P begins over [S1, S3]; and clock(S3) — clock(S2) < A.

Definition 37: Intervals [S1A4, S3A] and [S1B, S3B] match in behavior if clock(S1A4) = clock(S1B);
clock(S3A) = clock(S3B) and for every S24 € [S1A4,S34], S2B € [S1B.S3B], if clock(S24) =
clock(S2B) then the value of the behavioral fluent is the same in S24 and S2B.

Definition 38: Intervals [S1A4, S34] and [S1B, S3B] match in respect to plan P if they match in
behavior; P begins on one iff it begins on the other; and P executes on one iff it executes on the
other.

Definition 18.A:
A plan P is ezecutable in situation S1A with delay A iff
[P is necessarily feasible in S1A and
for any S2A, S1B, 52B,
if (S1B, S2B) corresponds to (S1A, S2A),
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then, for every continuation [S1A, S3A4] of P within A after (S1A4, S24),
there exists a continuation [S1B, S3B] after (S1B, S2B)
that matches [S1A, S3A] with respect to P; and
for every continuation [S1B,S3B] of P within A after (S1B, S2B),
there exists a continuation [S1A, S3A] after (S14, S2A)
that matches [S1B, S3B] with respect to P.]

The form “For every continuation [S1A, S3A] there exists a matching continuation [S1B, S3B]”
expresses the statement that each continuation of the plan P is known to be a continuation. The
converse, “For each continuation [S1B, S3B] there is a continuation [S1A, S3A4]” expresses the state-
ment that all the continuations of P are known.

Definition 19.A:
A plan P is epistemically feasible as a task in situation SA with delay A iff
there is a plan P1 such that
for every situation SB accessible from SA,
P1 is executable in SB with delay A and
P1 is a specialization of P starting in SB.

8.5 Proof of Epistemic Feasibility

We now proceed to the proof that plan huntl is epistemically feasible as task with delay 0.01 in
situation s0.

We begin by noting that the non-deterministic plan “huntl” is not itself executable with delay
0.01, because some completions of huntl — namely, those in which the “monitor” cuts off the
circular path before 0.01 seconds have elapsed, or those in which the prey is followed with less than
a 0.01 second delay — can only be carried out by an agent that can respond, at least sometimes, in
less than 0.01 second. We therefore define a determinate plan “hunt2” in which the hunter always
delays to the maximal degree allowed by huntl. The major part of the proof is showing that hunt2
is known to be executable (lemma 24). Combining this with the fact that hunt2 is known to be a
specialization of huntl (lemma 25) we verify that huntl is epistemically feasible as a task.

Formally, we define hunt2 as follows:

hunt2 =
sequence(monitor2(A(7) distance(h_place(T), prey(T)) < 0.95,
sequence(go_circle(0,2), go_circle(2,1.13), go_circle(1.13,0.5)),
0.01),
follow2(prey, 1, 0.01, 0.01))

follow2(X,G, L, A) =
monitor2(dist(h_place,X) < L,
forever(attempt(following2(X, G, A)))).

This uses the following new predicates:

o following2(X, G, A) — Follow X at speed G with delay precisely A. That is, in definition 27,
choose ©(T) to be always equal to T'— A.
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e monitor2(Q, P, A) — Execute P, monitoring fluent Q. If @ ever becomes true, then, after
exactly time A, terminate the “monitor” plan.

To be more precise, monitor2 is defined as follows:

Definition 39: Let @ be a fluent and let B be a branch with lower bound S1. @ becomes true at
the start of B if, for any SE € B,SE > S1, there exists an SD € [S1,SE) such that @ holds at
SD. (Note that SD may be equal to S1).

Definition 40: Let B be a branch. If B is bounded above, let B; be the upper bound of B and
let Ty = clock(By); else, let Ty = co. Let Bl be the subbranch of B containing all situation S € B
such that clock(S) < Ty — A and let B2 = B — B1. The plan “monitor2(Q, P, A)” is executed over
B if the following conditions hold:

A. P is begun over B;
B. @ is false throughout Bl
C. One of the following holds:

C.. B is bounded above, and P is executed over B.
C.ii. B is unbounded above.
C.iii. @ becomes true at the start of B2.

We also need to augment our characterization of the microworld by specifying the perceptual
powers of the robot. For the purposes of the current example, it suffices to postulate that, if the
prey is within distance 1 of the hunter, then the hunter knows where it is; if it is more than distance
1, then the hunter knows that it is more than distance 1. (If we wished to prove that a certain plan
was epistemically infeasible, due to the limitations of perception, then the more expressive language

of [Davis, 88] would be needed.)

Postulate 2: Let SA be a situation, and let SB be knowledge accessible from SA.
If distance(prey(SA), h_place(SA)) < 1, then prey(SB) = prey(SA).
If distance(prey(SA), h_place(SA)) > 1, then distance(prey(SB), h_place(SB)) > 1.

We further postulate that the robot always knows his own position.
Postulate 3: If SB is knowledge accessible from SA, then hunter(SA) = hunter(SB).

We begin by proving sufficient condition for the executability of a sequence. We introduce the
following two definitions:

Definition 42: Plan P is always defined if, for any situation S, there is a branch B starting in S
such that P executes over B. (Keep in mind that “executing” here includes failing.)

Definition 43: Plan P is always finite if any branch B such that P executes over B is bounded.

Lemma 12: If plan p is executable in situation sla, p succeeds over [sla,s2a], and (s1b,s2b) corre-
sponds to (sla,s2a), then p succeeds over [slb,s2b]. (That is, if p is executable in sla, and succeeds
over [sla,s2a] then the agent knows in s2a that it has succeeded.)

Proof: [sla,s2a] is a continuation of p after (sla,s2a). Therefore, by definition of executability, there
is a continuation [slb,sqb] after (slb,s2b) that matches [sla,s2a] with respect to p. But now note
that clock(sqb) = clock(s2a) (by definition of “matching”) = clock(s2b) (by axiom K.3) and that
sqb > s2b (by definition of continuation). Therefore sqb = s2b, which completes the proof.

Lemma 13: Let p = sequence(pu,pv), where pu and pv are always finite and always defined.
Interval [s1,83] is a continuation of p within A after (s1,s2) iff either
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1. [s1,83] is a continuation of pu within A after (s1,s2); or
2. pu executes over [sl,sm],sm < s3 < s2 + A, and [sm,s3] is a continuation of pv after
(sm,s2).

Proof: There are three parts to the above statement:

i. If [s1,83] is a continuation of pu then [s1,83] is a continuation of p. Proof: Let [s1,s3] be a
continuation of pu after (sl,s2) within A. Since pu is always finite, there is an s4 > s3 such
that pu executes over [sl,s4]. Since pv is always defined and finite, there is an sb > s4 such
that pv executes over [s2,s5]. By definition of sequence, p executes over [s1,s5]. Therefore, p
is begun over [s1,s3], so [s1,s3] is a continuation of p.

ii. If pu executes over [sl,sm] and [sm,s3] is a continuation of pv, then [s1,s3] is a continuation
of p. Proof: There is an s4 such that pv executes over [sm,s4]. By definition of sequence, p
executes over [sl,s4]. Therefore [s1,s3] is a continuation of p.

iii. If [s1,83] is a continuation of p, then either [s1, s3] is a continuation of pu, or pu executes over
[sl,sm] and [sm,s3] is a continuation of pv. Proof: There is an s4 > s3 such that p executes
over [s1,s3]. By definition of sequence, there is an sm < s4 such that pu executes over [s1,sm],
and pv executes over [sm,s4]. If sm > 3, then the first disjunct holds. If sm < s3 + A, then
the second disjunct holds.

Lemma 14: Let S2 be a situation, and let T'1 be a time such that 7'l < clock(S52). Then there is
a unique situation S1 such that S1 < S2 and clock(S1) = T'l. We will denote this situation S1 as
pre(S2,T1).

Proof: Immediate from definition 3.

Lemma 15: Let S2B be knowledge accessible from S2A4, and let S1A < S2A. Then the situation
pre(S2B,clock(S1A)) is knowledge accessible from S1A.

Proof: From lemma 14 and axioms K.3 and K.4.

Lemma 16: Assume that

Plan p = sequence(pu,pv) where pu and pv are plans.

Plan p is necessarily feasible in situation sla.

Plans pu and pv are always defined and always finite.

Plan pu is executable in situation sla.

For any sma, if pu is executed over interval [sla,sma], then pv is executable in situation
sma.

Then p is executable in sla. (Note: these conditions are sufficient for the executability of a sequence
but not necessary. [Davis, 94].)

Proof: Let s2a be any situation that is ordered relative to sla. Let slb, s2b be situations such
that (slb,s2b) corresponds to (sla,s2a). We must show that (A) for every continuation of p after
(sla,s2a) there is a matching continuation of p after (slb,s2b) and (B) vice versa.

A: Let [sla,s3a] be a continuation of p after (sla,s2a). Using lemma 14, we can distinguish two

possibilities:

A.1l [sla,s3a] is a continuation of pu within A after (sla,s2a). In this case, since pu is executable
in sla, there must exist a situation s3b such that [s1b,s3b] is a matching continuation of pu
after (slb,s2b). By lemma 14, [s1b,s3b] is a continuation of p after (slb,s2b).
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A.2 pu succeeds over [sla,sma], sma < s3a < s2a + A, and [sma,s3a] is a continuation of pv after
(sma,s2a). Let smb=pre(s2b,clock(sma)) By axiom K.4, smb is accessible from sma and slb
< smb < s2b. By lemma 12 plan pu succeeds over [slb,smb]. Therefore, by hypothesis, pv is
executable in smb. Clearly (smb,s2b) corresponds to (sma,s2a). Since smb is accessible from
sma, by definition of executability, there is a continuation [smb,s3b] of pv after (smb,s2b) that
matches [sma,s2a] with respect to pv. It is easily verified that [s1b,s3b] is a continuation after
(slb,s2b) that matches [sla,s3a] with respect to p.

B: The proof of B is exactly analogous to that of A.

Lemma 17: For any situation S, path H, and duration D, if h_place(S) = H(0), then the plan
“go(H, D)” is executable in S.

Proof: Let P=go(H, D). Let (S1B,S2B) correspond to (S1A4,S2A4). Let [S1A, S34] be a contin-
uation of P after (S1A4,S2A). Thus P is begun over [S1A, S3A]. Using the definitions, we have
that clock(S34) — clock(S1A) < D, and for SA € [S14, S3A], h_place(SA) = H(clock(SA) —
clock(S1A)). Since [S1A4,S3A] is a continuation of (S14,S2A), it is immediate that, for any SA,
if S1IA < SA < S2A, then h_place(SA) = H(clock(SA) — clock(S1A4)). (Of course if S24 < S1A4,
then no such SA exists and the statement holds vacuously.)

We know (step 1 of theorem 5) that there is an unbounded branch BB starting in S1B such that
going(H ) is executed over BB. Since the time structure branches on “hunter” that this branch is
unique. Let S3B be the situation in BB such that clock(S3B) = clock(S34). It is immediate that
[S1B, S3B] matches [S1A4, S3A4] with respect to P.

Let SB be any situation such that S1B < SB < $2B. By axiom K.4, SB is accessible from SA.
By axiom K.5, the value of the behavioral fluent h_place(SB) = h_place(SA). Note that clock(S2B)
= clock(S2A4) (by axiom K.3) < clock(S3A4) = clock(S3B). Therefore, since the time structure
branches on “hunter”, it follows that S2B < S3B, so [S1B, S3B] is a continuation of (S1B, S2B).

The second half of the proof (for every continuation [S1B, S3B] there exists a matching contin-
uation [S14, S2A)]) is exactly analogous.

Definition 44: A fluent @Q is elways known if the following condition holds: For any situations S A,
SB, if SB is accesible from SA, then @ has the same value in SA and SB.

Lemma 18: The fluent “A(T") distance(h_place(T"),prey(7")) < 0.8 7 is always known.
Proof: From postulates 2 and 3 and axiom K.4.

Lemma 19: Let @ be a fluent that is always known, and let P1 be a plan that is executable with
delay A. Let A > A. The plan P=monitor2(@, P1, A) is executable with delay A.

Proof: Let (S1B,S52B) correspond to (S1A4,S2A). Let [S1A, S3A] be a continuation of P within
A of (S1A,S24). Let SZA = pre(S3A4,clock(S3A4)—A).

Note that, since clock(524) > clock(S3A4)—A > clock(S3A)—A, it follows that SZA < S24.

Define SZ B=pre(S2B,clock(SZA)). Since S2B is knowledge accessible from S2A, the axiom of
memory implies that SZ B is knowledge accessible from SZ A, and that any situation in the interval
[S1B,SZB] is knowledge accessible from the corresponding situation in the interval [S1A4, SZA].
Also, any situation in the interval [SZ B, S2B] is knowledge accessible from the corresponding situ-

ation in [SZA, S24].

By definition of monitor2, since P begins over [S14, S3A], @ does not hold in any situation SA
such that S14 < SA < SZA. Therefore, since @) is universally known, ¢ does not hold in any
situation SA such that S1B < SB < §ZB.

Also, by definition of monitor2, P1 is begun over [S1A, S3A]. Since P1 is executable in S1A4,
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and (S1B,S2B) corresponds to (S1A4,S2A), there must be a continuation [S1B, S3B] within A of
(S1B,S2B) that matches [S1A4, S3A] with regard to P1.

We now claim that [S1B,S3B] is a continuation of (S1B,S2B) that matches [S1A4, S2A4] with
respect to P. To verify this, we note the following:

e P1 is begun over [S1B, S3B]. Since [S1B, S3B] matches [S1A4, S3A] with respect to P1, we
know that P1 completes execution over [S1B, S3B] iff it completes execution over [S1A4, S3A].

e () is false throughout [S1B, S3B). Therefore, P=monitor2(Q, P1,A)is begun over [S1B, S3B].

e [S1A4,S534] is a complete execution of P iff either it is a complete execution of P1 or if @
become true at the start of [SZA, S24]. The first possibility holds iff [S1B, S3B] is a complete
execution of P1. The second holds iff @ becomes true at the start of [SZB,S2B]. Thus, P
completes over [S1A4, S3A] iff it completes over [S1B, S3B].

The proof of the converse — for each continuation [S1B, S3B] of (S1B, S2B) there is a matching
continuation [S1A4, S3A] of (S1A4,52A) — is exactly analogous. O

The next step is to show that the encircling part of the plan will bring the hunter withing sight
of the prey.

Lemma 20: Let phl be the plan, “sequence(go-circle(0,2), go_circle(2,1.13), go_circle(1.13, 0.5)).”

Let S1 be a situation in which the distance from the hunter is at most 2. If phl is executed over
interval [S1, S2], there will be some situation SM € [S1,.52] in which the distance from the hunter
to the prey is less or equal to than 0.95.

Proof: The hunter is originally at the origin, the prey is originally a distance not more than 2 from
the origin, and the prey moves with speed 0.05. The proof is by contradiction: Assume that the
prey is always more than 0.95 from the hunter.

We begin with the first step of phl. Let il be the time interval [0,2], during which the hunter
goes from (0,0) to (0,2); and let i2 be the interval [2,2 + 4x], during which the hunter executes
a circle of radius 2. The duration of il U 12 is 2 4+ 47 < 15. Within that time, the prey cannot
move a distance more than 0.75. Therefore, the distance from the prey to the origin is at most 2.75
throughout 112.

We now establish that at the end of 12, the distance from the prey to the origin is at most 1.68.
To do this, we consider three cases:

Case 1: At some instant during 12, the prey is within 1.05 of the origin. If so, then by the end
of 12 the prey cannot be 1.05+ 0.05 - 47 < 1.68 from the origin.

Case 2: At some instant during i2, the origin, the prey, and the hunter are all collinear. If so, at
such an instant, the prey cannot be more than 1.05 from the origin. Thus, this is a special case of
case 1.

Case 3: Throughout 12, the prey is more than 1.05 from the origin, and the prey never lies on
the line between the origin and the hunter. Since the prey is always more than 1.05 from the origin,
the angle at the origin subtended by the motion of the prey is less than 0.05-47/1.057 < 0.2. Let
us take the angle of the hunter at the start of i2 to be 0, so that during i2 the hunter goes from 0 to
2m. Let @ be the angle of the prey at the beginning of i5. We will choose 6 to have value in [0, 2).
Thus, in i2, the prey goes from angle § to angle 6’ € [ — 0.2,0 + 0.2] Given the condition that the
hunter and the prey are never at the same angle, it follows by continuity that § > 27 — 0.2 and that
¢’ > 2m. That is, the prey begins just behind the hunter, and ends just in front of it.

Thus we have the following constraints: At the start of 12, the prey is clockwise from the hunter,
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is within 2.75 of the origin, and is outside the circle of radius 0.95 of the point (2,0). At the end
of 12, the prey is counterclockwise from the hunter, and is again outside the circle of radius 0.95
of the point (2,0). Moreover the distance from the starting point to the ending point is less than
0.05-47 < 0.63 (Figure 4). Thus, we are looking for a chord of length 0.63 across the circle of radius
0.95 with one end in the lower-left quadrant and with the maximal distance from the origin at the
other end. It is geometrically obvious, and easy enough to establish formally, that any such chord
ends up closer to the origin than the chord that starts at the point (1.05,0). But the latter falls
within case 1. Thus in case 3 as well, the prey ends up less than 1.68 from the origin.

Similarly, we can show that at the end of completing the circle of radius 1.13 the prey cannot
be more than 0.54 from the origin, and that the hunter will therefore encounter the prey during the
circle of radius 0.5, completing the contradiction. O.

Lemma 21: Let the plan
monitor2( A(T") distance(h_place(T), prey(T)) < 0.95, phl, 0.01).
be executed over interval [S1, S2]. Let SQ=pre(S2,clock(52)—0.01). Then

1. At SQ), the distance from hunter to prey is at most 0.95.

2. During interval [SQ, S2], the distance from hunter to prey is never more than 0.9605.

Proof: (1) follows from lemma 20, together with the definition of monitor2. (2) follows from (1)
together with the facts that the duration of [SQ, S2] is 0.01, and that the relative velocities of the
hunter and the prey is at most 1.05.

Lemma 22: Let [SQA, S1A4] be an interval of length A throughout which the distance from the
hunter to the prey is less than 1. Then the plan following2(prey,1,A) is executable with delay A in
S1A.

Proof: Note that following2 is a beginnable action (definition 28) so that beginning over an interval
and executing over the interval are equivalent. Let (S1B,S2B) correspond to (S1A4,S2A). Let
[S1A4, S3A] be a continuation within A of (S1A4,S2A), such that following2(prey,1,A) is executed
during [S1A4, S3A]. Let SQB = pre(S1B,clock(SQA)). Since S2B is knowledge accessible from S2A4,
the position of the hunter is the same in each. Let S3B be the situation such that the behavior of
the hunter over [S2B, S3B] is the same as his behavior over [S2A4, S3A].

Combining the constraint given here with the consequent of lemma 10, we infer that, through-
out the interval [SQA, S24], the prey is less than 1 from the hunter. Therefore, by postulate 2,
the position of the prey is known throughout [SQA, S2A]; that is, if SA € [SQA, S24], and SB
corresponds to SA, then the prey is in the same position in SB as in SA. Now, by definition of
“following2”, since the duration of [S2B,S3B] is A, the behavior that constitutes an execution of
following2(prey, 1, A) during [S2B,S3B] depends only on the positions of the hunter and prey
during [SQ B, S2B]. Since these positions are the same in [SQA, S2A4] as in [SQ B, S2B], and since
the behavior of the hunter is the same in [S2B,S3B] as in [S24, S3A], it follows that the hunter
continues following2(prey,1,A) in [S2B, S3B] iff he continue it in [S24, S3A4]. O.

Lemma 23: Let [SQA, S1A] be an interval of length 0.01 throughout which the distance from the
hunter to the prey is less than 1. Then the plan follow2(prey, 1, 0.01, 0.01) is executable with delay
0.01in S1A.

Proof: Immediate from lemmas 19 and 22 with postulate 1 and the definition of follow2.

Lemma 24: If the prey is within 2.5 of the hunter and the hunter is at the origin, then hunt2 is
executable with delay 0.01.
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Proof: Combining lemmas 16, 21, and 23.
Lemma 25: In any situation, hunt2 is a specialization of hunt1.
Proof: Immediate from the definitions.

Theorem 26: If the prey is known to be within 2.5 of the hunter then plan huntl is epistemically
feasible as task.

Proof: From lemmas 24 and 25 with the definition of “epistemically feasible as task.”

8.6 Some remarks about the proof

In the above proof, it is worthwhile between distinguishing three categories of lemmas. Lemmas 13,
16, and 19 characterize the planning language. They can be thus considered built into a planner for
that language, and incur only a one-time cost over the lifetime of a domain independent planner.
Lemmas 17, 18 and 22 characterize the domain. Lemmas like these must be proven for each new
physical domain. Lemmas 20, 21, 23 - 26 characterize the particular plan. Lemmas like these must
be proven for each new plan. (The other lemmas are general results about the basic predicates in

the model.)

Thus, the most discouraging part of the above analysis is the complexity of lemma 20, which can
be directly generalized only to a fairly narrow class of plans in this domain. The complexity of the
proof of this lemma reflects the high degree of indeterminacy in the exogenous behavior of the prey
that we have to deal with. In effect, we have to prove that no behavior of the prey will enable it to
escape. Universally quantified statements of this kind can notoriously involve a complex and careful
case analysis.

9 What About Implementation?

If, right now, you had to implement a domain-specific planner for this hunter, what would you do?*

I think that one could make a fairly good planner. I would evaluate plans by simulating prey
doing random walks, or perhaps executing simple evasive maneuver heuristics. Planning would be
done by a combinations of domain-specific heuristics and hill-climbing search in the space of plans.
Chiu [in prep.] has implemented such a planner for a similar domain.

If you really had to create a great planner for this domain, then you might be able to come up
with high-powered, special purpose algorithms for it.> This would have nothing much to do with
Al, of course.

What would be the connection between such a planner and all this logic stuff? In other words,
how would the logic help you build the planner?

For a simple planner in this fixed domain, it probably wouldn’t help at all. One doesn’t really
need branching time, because planners can, in almost all cases, be viewed as manipulating constraints
on a linear time line, rather than dealing with a branching time structure. One can usually avoid
the knowledge preconditions problem for primitive actions, by translating knowledge preconditions
into physical preconditions. For instance, one can assert that a physical precondition of executing
“following” is that the prey be within the range of visibility. One can then avoid the knowledge

4Steve Hanks put this cogent question to me in conversation. The other questions in this section are my own.
5In view of the obvious military analogues, it seems quite possible that such algorithms exist in the classified
literature.
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preconditions problem for plans by constructing the control structure primitives in such a way that
any physically feasible plan is also epistemically feasible.

One can imagine a more sophisticated planner for the domain which really would have to dis-
tinguish between knowledge preconditions and physical preconditions. For example, a hierarchical
planner might construct high-level plans where aspects of the plan were described in the language
of knowledge. Or you might have a circumstance where you have to reason that “following” is
epistemically feasible even though the prey is not within sight, because you somehow know where
it is without seeing it. I have no real idea how this could be done, nor how much mileage could be
gotten out of it.

Then what’s the logic for?

For a broader class of problems; that’s what Al is about. For example, if you want to build a
domain-independent planner, where you can declaratively specify domain properties, then you will
have to construct representations of the domain and of the control strategies, and contemplating
definitions 20, 21, 22, 25, and 27 above may at least alert you to some of the kinds of issues that
such a representation needs to address. Or if you want to reason about plans in ways other than
just constructing them — if, for example, you want to automate inference E of the introduction
that there is no epistemically feasible plan in that situation — then the logic might be very useful
in making explicit the assumptions that underly such an inference and in clarifying the distinctions
that have to be made so that these inferences are justified but other, improper, inferences are not.

Well, how would you implement a domain-independent planner for these kinds of domains, or a
program that reasons about plans?

I really don’t know. I don’t even know what the domain representation should look like. If
someone were pointing a gun to my head, I would code up the axioms, get myself the best theorem
. . . . 100
prover available, and tell him that he could probably expect an answer within 10 years.

Penberthy [1993] has implemented a domain-independent planner for continuous actions, but the
range of actions and domains is very limited. One thing you might do is to start with that planner
and extend it or modify it.

Incidentally, if inference E is a better illustration of the power of the logic, why did you choose
B to prove in this paper?

There’s nothing wrong with the proof of B as an illustration of the logic. All that the above
remarks indicate is that one can probably prove a bastardized version of B with a much weaker
logic, which would be much less true of E. As for why I chose B rather than E — mostly chance that
I happened to get started on it first; partly that I have the sense that people prefer to see proofs
of positive rather than negative results; partly that the proof of E is almost certainly a great deal

harder.

The whole thing would be a lot more convincing if you could show a single example of any kind
of AI program whose structure had been inspired by this logic, or could be justified in terms of this
logic.

Yes, it would.

By the way, the reason I got started writing this particular paper was that I got tired of seeing
papers trying to combine reasoning about action with reasoning about physics and starting with
the assumptions that actions are discrete and physics is continuous. The point here was originally
the small one that action is not necessarily discrete. Then the issue got involved with the issue of
knowledge preconditions for continuous plans, a problem I've been working in for five years.

Easier question: At the logical level, what next on this problem?
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Actually, I'm not planning more work on this problem at the logical level, at least until I see that
some indication that someone in the outside world is seriously interested in this line of thought. As
the format of this concluding section indicates, I have gotten to the point of talking to myself, for
lack of other people to talk to. This is not a healthy state of mind.

One thing to be done would certainly be to look for a more fundamental definition than the
current form of definition 18 and 18.A. These do not command immediate assent, to put it mildly.
Another problem would be to look at proofs of epistemic infeasibility, such as example E. My guess is
that this theory is essentially sufficient for that problem, but that is a dangerous prediction. Another
problem — the most tempting for me personally — would be to apply this in a less trivial physical
domain, such as those discussed in (de Jong 1994).
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